
Optimization of Combined Cycles for
Offshore Oil and Gas Installations

Alexander Svae Sletten

Master of Science in Mechanical Engineering

Supervisor: Olav Bolland, EPT
Co-supervisor: Lars Olof Nord, EPT

Department of Energy and Process Engineering

Submission date: June 2013

Norwegian University of Science and Technology

Abstract
With the increasing focus on the greenhouse effect and the introduction of taxation on NOX

and CO2 emissions there has been an increased interest in reducing the emissions from the

offshore oil and gas installations to bring down the operating costs. This makes the possible

use of combined cycles as a source for power production offshore of great immediate

interest. Compared to the simple cycle gas turbines typically used offshore today, combined

cycles offer a significantly improved thermal efficiency and as such reduced emissions and

fuel consumption. However, the large weight and area requirements for combined cycles are

a concern; for offshore applications a compact system is needed.

This thesis is an extension of the project work Process simulation of combined cycles for

offshore applications, written autumn 2012, and focuses on optimizing the design developed

in that work. The design parameters for the system developed in the project work were

optimized in MATLAB using a connection between MATLAB and a Microsoft Excel spread

sheet linked with GT PRO. The thesis includes the development of an objective function and

a screening of the potential MATLAB optimization methods. After the optimization methods

were decided upon, adjustments were made to them in an attempt to improve the

optimized solution, and a brief comparison of the different optimization methods was

carried out. Finally, the best solution was compared to that of the project work, both in

respect to the individual design parameters and total system performance.

Through this thesis it has become apparent that the selection of objective function is of

paramount importance, the optimized solution will only be as good as the selected function.

In terms of the optimization methods, there were fairly small differences between the

various algorithms, though the pattern search with a MADSPositiveBasis2N search algorithm

seemed to be a good option for obtaining the best possible solution. In comparison to the

design developed in the project work, there were noticeable improvements to be had in

terms of power production and weight savings. Overall, the main components of the

optimized solution were 493 kg lighter and able to produce an additional 268 kW when

compared to the project work, corresponding to a 2.6 % improvement in the value of the

selected objective function. This may not sound like much, but the cumulative savings over

the lifetime of an installation may become quite significant. Overall it appears to be quite

advantageous to optimize the design of combined cycles for offshore oil and gas

installations. Once a suitable objective function is established a quite good optimized

solution can be realized in relatively short time. It does not appear to be necessary with

many adjustments to the optimization parameters, though adjustments can be made if a

better solution is sought after.

Sammendrag
Med økt fokus på drivhuseffekten og innførelsen av CO2- og NOx- avgift på utslipp har det

vært økende interesse for å redusere utslippene fra offshore olje- og gassinstallasjoner for å

få ned driftskostnadene. Dette har gjort den mulige bruken av kombinerte kraftprosesser

som en kilde til kraftproduksjon høyaktuell. Sammenlignet med enkle gassturbiner som stort

sett brukes offshore i dag tilbyr kombinerte kraftverk betydelig forbedret termisk

virkningsgrad og dermed også reduserte utslipp og drivstofforbruk. Den høye vekten og

arealbehovet for kombinerte kraftprosesser er imidlertid en bekymring,

offshoreinstallasjoner er avhengig av et kompakt system.

Denne avhandlingen er en videreføring av prosjektoppgaven Process simulation of combined

cycles for offshore applications, skrevet høsten 2012, og fokuserer på å optimalisere det

kombinerte kraftprosessanlegget utviklet i den prosjektoppgaven. Designparameterne for

det utviklede systemet ble optimalisert i MATLAB ved hjelp av en forbindelse mellom

MATLAB og et Microsoft Excel regneark knyttet til GT PRO. Avhandlingen omfatter

utviklingen av en objektiv funksjon og screening av potensielle optimaliseringsmetoder i

MATLAB. Etter at valg av optimaliseringsmetoder var foretatt ble de justert i et forsøkt på å

forbedre den optimaliserte løsningen, og en sammenligning av de ulike

optimaliseringsmetodene ble gjennomført. Til slutt ble den beste løsningen sammenlignet

med løsningen fra prosjektoppgaven, både med tanke på de enkelte designparameterne og

med tanke på den totale systemytelsen.

Gjennom denne avhandlingen har det blitt klart at valg av objektiv funksjon er svært

avgjørende for den oppnådde løsningen, og løsningen vil kun bli så god som valget av

objektiv funksjon. Når det gjelder optimaliseringsmetodene var det ganske små forskjeller

mellom de ulike algoritmene, men pattern search med en MADSPositiveBasis2N

søkealgoritme virket å være et godt alternativ når det gjaldt å finne best mulig løsning. I

forhold til designet utviklet i prosjektoppgaven var det merkbare forbedringer å finne både

med tanke på kraftproduksjon og vektbesparelse. Totalt sett var den optimaliserte løsningen

493 kg lettere og i stand til å produsere ytterligere 268 kW i forhold til løsningen fra

prosjektoppgaven, tilsvarende en 2.6 % forbedring i verdien av den valgte objektiv

funksjonen. Det høres kanskje ikke mye ut, men de kumulative besparelsene over levetiden

til installasjonen kan bli ganske betydelig. Generelt virker det å være ganske fordelaktig å

optimalisere designet av kombinerte kraftprosesser for offshore olje- og gassinstallasjoner.

Når en passende objektiv funksjon er etablert er det mulig å oppnå en ganske god løsning i

løpet av relativt kort tid. Det virker ikke å være nødvendig med mange justeringer av

optimaliseringsparameterne, men dersom en bedre løsning søkes er det fullt mulig å gjøre

justeringer.

Acronyms and Abbreviations

CC Combined cycle
DPHRSG HRSG draft loss

F-count Number of function evaluations
GA Genetic algorithm
GPS Generalized pattern search

GSS Generating set search
GT Gas turbine
HRSG Heat recovery steam generator
Iter Number of iterations

LB Lower boundary
LSP Live steam pressure
LST Live steam temperature
MADS Mesh adaptive search
Pcond Condenser pressure
PPTD Pinch point temperature difference
PS Pattern search
ST Steam turbine
UB Upper boundary

Nomenclature

BW
Weight of structures and components needed for the
combined cycle offshore in addition to the main
components

[kg]

Ci Any constant [-]

D Degree of difficulty [-]

Gi Any equality constraint [-]

Hi Any inequality constraint [-]

N The number of independent variables [-]

PST Power production from the ST [kW]

T
Total number of polynomial terms in the objective and
constraints function

[-]

U Objective function to be optimized [-]

Uopt Optimal value of the objective function [-]

WMC
Weight of the main components in the steam cycle of
the combined cycle

[kg]

x1 to xn Independent design variables [-]

ΔCi Slack variable [-]

ΔPGT
Power production from the GT minus a reference power
production from a GT run as a simple cycle

[kW]

Table of Contents
Preface .. i

Abstract ..ii

Sammendrag ... iii

Acronyms and Abbreviations .. iv

Nomenclature .. iv

List of Figures ... ix

List of Tables ... x

1 Introduction ... 1

1.1 Background .. 1

1.2 Risk Assessment .. 2

1.3 Scope of Work ... 2

2 Optimization .. 3

2.1 MATLAB Search Methods .. 8

2.1.1 Pattern Search ... 9

2.1.2 Genetic Algorithm ... 12

2.1.3 Simulated Annealing .. 14

3 Methodology ... 16

3.1 Simulation Software .. 16

3.2 Choice of Objective Function and Design Parameters .. 16

3.3 Choice of Optimization Methods .. 16

4 Results and Discussion .. 17

4.1 Objective Function .. 17

4.1.1 Estimation of Bulk Weight ... 18

4.2 Design Variables .. 20

4.3 Choice of Optimization Methods .. 23

4.3.1 Initial Screening ... 24

4.3.2 Second Screening .. 28

4.4 Modifications of Selected Optimization Methods .. 32

4.4.1 Pattern Searches.. 32

4.4.2 Genetic Algorithm ... 39

4.5 Best Optimized Solution .. 43

4.6 Comparison to Project Work ... 45

4.7 Summary.. 49

5 Conclusion ... 51

6 Further Work ... 53

7 References ... 54

Appendix A – Bulk Weight Estimation Motors and Pumps ... A

Appendix B - MATLAB Code .. B

ix

List of Figures
Figure 2.1 – Global maximum of objective function U within the acceptable design domain of design

variable x1 (Jaluria, 2008, p. 434). .. 4

Figure 2.2 – Illustration of convex polyhedron (MathWorld, 2013). .. 6

Figure 2.3 – Elimination of regions in search of a maximum U (Jaluria, 2008, p. 517). 7

Figure 2.4 – Hill climbing lattice search with two design variables (Jaluria, 2008, p. 528). 8

Figure 2.5 – Flowchart of pattern search with a search algorithm (MathWorks, 2012, p. 4.24). 11

Figure 2.6 - Comparison of high diversity, blue, and low diversity, red (MathWorks, 2012, p. 5.17). . 13

Figure 4.1 - Effect of LSP on weight and plant efficiency for different LSTs (Sletten, 2012, p. 30). 21

Figure 4.2 - Effect of condenser pressure on weight and plant efficiency (Sletten, 2012, p. 29). 22

Figure 4.3 - Effect of PPTD on weight and plant efficiency (Sletten, 2012, p. 28). 23

Figure 4.4 – Values of objective function relative to a GA reference case for PS with added search

methods... 27

Figure 4.5 - Computation time for PS with added search methods relative to a GA reference case. .. 27

Figure 4.6 - Values of objective function in second screening, relative to GA reference case. 30

Figure 4.7 - Computation time second screening relative to GA reference case. 31

Figure 4.8 – PS with MADSPositiveBasis2N search, objective function values after changes to options

structure. ... 34

Figure 4.9 - PS with a MADSPositiveBasis2N search algorithm with an expansion factor of 5,

contraction factor of 0.8, no adjustments made to LB and without a complete poll. 34

Figure 4.10 – PS with GA search, objective function values after changes to options structure. 37

Figure 4.11 – PS with GA search from initial screening, expansion factor of 3, contraction factor of

0.67, no adjustments to LB but with a complete poll. .. 38

Figure 4.12 - GA, objective function values with changes to options structure. 41

Figure 4.13 – GA with an elite count of 15, selected range for initial population, no selected individual

in the initial populations and 0 function tolerance. Be aware that the mean values of the population

are slightly misleading. .. 42

Figure 4.14 – Best solution of each of the final optimization methods and median of the initial

screening, relative to the reference GA. ... 43

Figure 4.15 – Range of design variables in simulations with an objective function value below 29.70

relative to the median values of the same simulations. ... 45

Figure 4.16 – Comparison of design variables between optimized solution and design obtained in

project work. ... 46

Figure 4.17 – Relative net efficiency of respectively the project work and the optimized solution at

part-load. ... 47

Figure 4.18 – Comparison of net efficiency of respectively the project work and the optimized

solution at part-load. ... 48

x

List of Tables
Table 2.1 – Solver Characteristics (MathWorks, 2012, pp. 1.24-1.25). ... 9

Table 4.1 – Weight estimations bulk weight ... 20

Table 4.2 – Upper and lower bounds of design parameters ... 23

Table 4.3 – GA with population size of 50 and 100 respectively .. 25

Table 4.4 – Default pattern search compared to a pattern search with an expansion factor of 3 and a

contraction factor of 2/3 ... 26

Table 4.5 – Comparison of various search methods added to regular pattern search 26

Table 4.6 – Second screening, comparison between GPSPositiveBasisNp1and MADSPositiveBasis2N29

Table 4.7 – PS with MADSPositiveBasis2N search, changes to options structure 33

Table 4.8 - Pattern search with MADSPositiveBasis2N search algorithm with varying upper and lower

boundaries ... 35

Table 4.9 – Pattern search with MADSPositiveBasis2N search algorithm with varying initial point 36

Table 4.10 - PS with GA search, changes to options structure.. 36

Table 4.11 - Pattern search with GA search algorithm with varying upper and lower boundaries 38

Table 4.12 - GA, various changes to options structure ... 40

Table 4.13 – PS with MADSPositiveBasis2N search from previously best solution 43

Table 4.14 - Range of design variables from simulations with an objective function value below 29.70

 ... 44

Table 4.15 – Comparison of optimized solution to the project work ... 45

Table 4.16 – Part-load performance optimized solution compared to project work 47

1

1 Introduction

1.1 Background
For offshore oil and gas installations, power generation and mechanical drive typically comes

from simple cycle gas turbines. They have a high power to weight ratio, good reliability and

can make use of fuel usually readily available at the site. However, they also have a relatively

poor thermal efficiency and consequently relatively large flue gas emissions. With the

increasing focus on the greenhouse effect and the introduction of taxation on NOX and CO2

emissions, this has resulted in increasing operating costs and brought to light a motivation to

find power generation alternatives with lower emissions.

The Norwegian government introduced a tax on carbon emissions in 1991. The current

offshore CO2 tax rate for natural gas is at 410 NOK/ton, up from 226 NOK/ton last year.

Similarly, a NOx tax on among others turbines with a total installed capacity above 10 MW

and flares on offshore installations was introduced in 2007. It is currently sitting at 17.01

NOK/kg, up from 16.69 NOK/kg last year. In its 2013 government budget, Norway have

budgeted for 3 400 000 000 NOK in CO2 taxes from the continental shelf, while they expect

to fetch about 130 000 000 NOK in NOx taxes. As the budget makes no mention of what

sector the NOx taxes are from, it presumably includes all sectors. However, with petroleum

activities’ accounting for 29.2 % of the total NOx emissions in Norway in 2011 it still becomes

a sizeable number. With tax costs like that it is quite apparent there are large financial

incentives to reducing the emissions from the offshore power generation

(Finansdepartementet, 2012; Norwegian Petroleum Directorate, 2013; Tollvesenet, 2013).

Realistic alternatives for reducing the emissions offshore includes increasing the thermal

efficiency, cleaning of the exhaust gas or receiving electricity from environmental friendly

onshore sources. Of those alternatives, increasing the plant efficiency is a very attractive

alternative as it reduces both the fuel consumption as well as reducing the flue gas

emissions. In some cases using combined cycles has proven economically preferable to

simple cycles in Life Cycle evaluations. Kloster (1999) describes three such solutions, for the

platforms Eldfisk, Oseberg and Snorre B.

Kloster (1999) estimates the increased thermal efficiency with combined cycles reduces NOX

and CO2 emissions by a minimum of 25 % when compared to a simple cycle gas turbine with

similar power output. Combined cycles are also known to have very good part-load

performance, particularly if multiple gas turbines are connected to a single heat recovery

steam generator. Part-load performance is of great importance in offshore applications as

operating conditions and requirements rarely matches that of the design point.

However, using combined cycles offshore does have its drawbacks. Particularly the weight

and area requirements are a concern, both of which are at a premium offshore and have

2

large costs connected to them. As such, offshore combined cycles have to be very compact

compared to their onshore counterparts (Kloster, 1999).

Nord and Bolland (2012) considered the possible use of a once-through steam generator, as

such avoiding the steam drum and possibly bypass stack and thereby saving weight and area

footprint. Using the Thermoflow (2012a) product GT PRO such a plant was developed in my

project work during autumn 2012, and when compared to a more conventional onshore

combined cycle it showed considerable weight savings without affecting the thermal

efficiency too much.

1.2 Risk Assessment
In this thesis no laboratory work or excursions has been performed. Consequently no risk

assessment regarding this work has been carried out.

1.3 Scope of Work
This master thesis is an extension of my project work Process simulation of combined cycles

for offshore applications, written autumn 2012. Theory concerning combined cycles (CC) and

thermodynamics is handled in the project work, and is as such not repeated here. The plant

design originally developed in the project work was thought to have some room for

improvements. As such, this thesis focuses on optimizing the design developed in the project

work and comparing the results to that of the project work. The work includes a review of

general optimization theory, as well as possible optimization methods using the global

optimization toolbox available with MATLAB.

The main focus of the thesis is the optimization of combined cycles for offshore oil and gas

installations. The plant developed in the project work was used as a starting point, and then

the design parameters for that design were optimized in MATLAB by extracting point data

from and inserting to a Microsoft Excel spread sheet linked with GT PRO. The thesis includes

the development of an objective function and the design parameters to optimize. Then

potential optimization methods were assessed by screening the various methods, and

considering which methods achieved the best solution as well as how well quickly they did

so. After the optimization methods were decided upon they were modified in an attempt to

improve the solution of the optimization problem, and a brief comparison of the different

methods was carried out. The modifications were mainly changes that essentially affected

the number of function evaluations, though other changes in optimization parameters were

also considered. Then the best optimized solution was compared to that of the project work,

both in respect to the individual design parameters and total system performance.

If the software had easily permitted it, it would have been preferable to also optimize the

HRSG geometry.

3

2 Optimization
In simple terms optimization is the process of finding a solution that gives the maximum or

minimum values of a function or quantity. In engineering optimization is typically used to

find the best design of a system according to the objective of the design, for instance

minimizing the cost for a given output, or maximizing energy efficiency. As such, the quantity

or function to be optimized represents the features or aspects of the design that are of

particular interest. This quantity or function is known as the objective function. It is a

function of the independent variables in the problem, and may be expressed as:

 () (2.1)

Where U denotes the objective function to be optimized, x1 to xn denotes the n independent

design variables in the problem and Uopt denotes the optimal value of the objective function

(Jaluria, 2008, pp. 429-433; Stoecker, 1980, pp. 131-132).

What a suitable objective function may be depends on the application and type of system.

Thermal systems are frequently optimized with respect to aspects like weight, size, rate of

energy consumption, efficiency, overall profits, incurred costs or output delivered. If the

total cost is to be minimized, the objective function could be the summation of the cost of all

components in the system. The optimization can be within a given concept or between

different concepts. A complete optimization procedure thus consists of finding all reasonable

concepts, then optimizing the design of each concept and finally choosing the best optimized

design. The objective function must represent all important characteristics and concerns of

the system and its intended application. At the same time, it should be sensitive to variation

in design parameters so that a clear optimum can emerge from the optimization process

(Jaluria, 2008, pp. 429-433; Stoecker, 1980, pp. 131-132).

In addition to the objective function, the independent design variables are a crucial part of

defining the basic problem for the optimization. The number of independent design

variables dictates the complexity of the problem, so to limit the complexity it is important to

focus on the dominant design variables. Each new independent variable increases the

workload attended with solving the problem at hand substantially, particularly for

complicated nonlinear problems that are typically associated with thermal systems. As such,

optimization is generally carried out using only the most important design variables for the

system under consideration (Jaluria, 2008, pp. 438-439).

During the optimization process, parameters are free to float until a combination that

optimizes the design is reached. However, there may be some minimum requirements or

constraints which limit certain parameters or system designs. As such there is a workable

domain that satisfies the constraints and requirements. As can be seen in Figure 2.1 local

extrema may be present at different points in the domain, but in most applications there is

only one global optimal point. For optimization purposes the interest is in finding the global

optimum, but local optima can easily confuse the search for the true global optimum, and

4

thus complicating the optimization process (Jaluria, 2008, pp. 433-434; Stoecker, 1980, pp.

131-132).

Figure 2.1 – Global maximum of objective function U within the acceptable design domain of
design variable x1 (Jaluria, 2008, p. 434).

The constraints for a given problem typically arise from the conservations principles for

energy, mass and momentum, or limitations on the ranges of the physical variables.

However, the constraints from the conservation principles are often satisfied by the

governing equations, as they are usually based on the conservation laws. On such occasions,

it is already included in the objective function. If the conservation principles are satisfied,

only the additional limitations that define the boundaries of the design domain, like

maximum allowable pressure or temperature, remains to be considered (Jaluria, 2008, pp.

434-435).

There are two different types of constraints, equality and inequality. As the names suggest,

an equality constraint may be written as an equality function (Jaluria, 2008, p. 436):

 () (2.2)

Where Gi is any equality constraint. An inequality constraint indicates the upper or lower

limit of a function, and may consequently be written as an inequality function (Jaluria, 2008,

p. 436):

 () (2.3)

Where Hi is any inequality constraint while Ci could be any constant. The equality constraints

typically arise from the conservation principles, and are as such often already included in the

objective function. However, inequalities usually demands more attention, and are typically

difficult to solve. Equations and systems of equations are generally easier to deal with due to

a greater amount of methods for solving them. Accordingly, inequalities are often converted

5

into equations by use of slack variables before applying optimization methods. The slack

variables are added to the inequality constraints, transforming them into equations, and

restricting the design variables to remain within the permitted design domain. A

transformation of the inequality constraint from Equation 2.3 could look like this (Jaluria,

2008, p. 437):

 () (2.4)

Where the slack variable ΔCi is a chosen quantity that makes the equation satisfy the original

inequality constraint. An optimization problem can also be unconstrained, in which case it is

much easier to solve than a constrained problem (Jaluria, 2008, pp. 436-438).

As such, the total optimization problem may be written mathematically as combination of

Equation 2.1 through Equation 2.4 (Jaluria, 2008, pp. 436-439):

 ()

with ()

and

 () (2.5)

With m needing to be smaller than n for there to be an optimization problem. If m is equal to

n there is no need for an optimization as the problem can simply be solved be solving the

constraint equations. While m being larger than n would imply that the problem is over-

constrained, and no solution is possible without removing some of the constraints.

When the basic problem is developed, including deciding on design variables, objective

function and potential constraints, there are several different optimization methods that

could potentially be employed to solve the problem. Most commonly used are calculus

methods, search methods and dynamic, linear and geometric programming, where

programming simply refers to optimization (Stoecker, 1980, pp. 132-136).

Calculus methods are based on the maximum or minimum of a function occurring when the

slope of the function is zero. As such, calculus methods for optimization boil down to finding

the derivatives of the objective function and the accompanying constraints. Consequently,

the equations expressing the problem at hand need to be differentiable in the design

domain, and any constraints must be equality constraints, which limits the application of

calculus methods (Jaluria, 2008, pp. 440-441; Stoecker, 1980, pp. 146-147).

Dynamic programming is used to obtain the best path of continuous processes, e.g., the best

route of a pipeline. As such, it results in an optimal function rather than an optimal state

point, which is quite different from most other optimization techniques. It is applicable to

staged processes and continuous functions that can be approximated by staged processes,

and as such it is frequently used for systems with discrete stages such as a series of

compressors, pumps or heat exchangers. With the total path divided in stages, dynamic

programming arrives at an overall optimal path by first establishing optimal paths for the

6

subsections of the problem, and then using the optimum from each subsection in the overall

path (Jaluria, 2008, p. 559, p. 588; Stoecker, 1980, pp. 199-201).

Linear programming can be applied when the objective function and the constraints can be

expressed as linear combinations of the independent variables. It is an optimization method

that can handle large systems with thousands of variables, and as opposed to calculus

methods it can also handle inequality constraints. For linear systems, the workable domain

takes the shape of a convex polyhedron, illustrated in Figure 2.2, and any optimum occurs

somewhere at the boundary of the workable domain. Consequently, a very simple

explanation of most linear programming would be that it moves from one corner in the

feasible region to whichever adjacent corner shows the most improvement in the objective

function. When there are no corners improving the objective function any further, the

optimum is reached (Jaluria, 2008, pp. 442-443, pp. 579-581; Stoecker, 1980, pp. 242-244, p.

255).

Figure 2.2 – Illustration of convex polyhedron (MathWorld, 2013).

Geometric programming is used to optimize problems where the objective function and the

constraints consist of sums of polymers. It differs from most other optimization methods in

that it first finds the optimum value of the function rather than values of the independent

variables. Additionally, it provides insight into the solution by supplying information

regarding the impact each of the design variables have on the solution. For suitable

problems it is easy to apply, as it involves solutions of linear equations. However, certain

conditions have to be met to make a problem suitable. To determine how suitable a problem

is for geometric programming, a parameter called degree of difficulty is used. The degree of

difficulty, D, is defined as (Jaluria, 2008, p.561; Stoecker, 1980, p. 224):

 ()
(2.6)

Where T is the total number of polynomial terms in the objective function and constraints

and N is the number of independent variables. When the degree of difficulty is zero it is

considered a perfect match for geometric programming, and the problem becomes easily

7

solvable. When the degree of difficulty is larger than zero the problem is solvable by

geometric programming, but will include nonlinear equations and hence become much more

time consuming, and other optimization methods are likely to be more efficient (Jaluria,

2008, pp.559-561; Stoecker, 1980, pp. 223-225).

Search methods are based on there being a finite number of designs satisfying the

requirements and constraints, and then selecting the best design from the set of acceptable

designs. As such, what is needed for a problem to be solvable by search methods are

numerical values of the objective function at various locations in the design domain. This

makes search methods very versatile, and a large number of methods are developed to

handle different problems. Search methods are particularly efficient when discrete points

are evaluated, but can also be applied to continuous functions. However, for continuous

functions the exact optimum can only be approached, due to the finite number of iterations

associated with search methods. In its simplest form, the objective function is calculated at

uniformly spaced locations in the acceptable domain, and the optimum value is chosen.

However, search methods like that require a large number of simulations, which can be very

time-consuming. Consequently, systematic searches that minimize the number of

simulations are needed in order to increase the efficiency of the searches (Jaluria, 2008, pp.

441-442, pp. 511-512; Stoecker, 1980, p. 135, p. 169).

Typically there will be regions in the design domain where the objective function approaches

its optimal value, and as such it makes sense to focus on those areas. There are two main

categories for such search methods; elimination and hill-climbing techniques. As its name

suggests, the elimination techniques intends to reduce the domain where the optimum lies

by gradually eliminating regions of little interest. An example of this can be seen in Figure 2.3

where the region to the left of A and to the right of C are eliminated as the optimal solution

is assumed to be located somewhere between A and C due to the high objective function

value at location B.

Figure 2.3 – Elimination of regions in search of a maximum U (Jaluria, 2008, p. 517).

8

Hill-climbing techniques on the other hand use the derivatives of the objective function to

gradually move towards the optimum value for the objective function. Figure 2.4 illustrates a

hill climbing technique with a lattice search for two variables. Here the search evaluates all

points in the lattice immediately surrounding the current point, and moves to the point with

the highest value of the objective function. Consequently the search gradually moves

towards the optimal solution located in the innermost contour (Jaluria, 2008, pp. 551-553;

Stoecker, 1980, pp. 170-180).

Figure 2.4 – Hill climbing lattice search with two design variables (Jaluria, 2008, p. 528).

2.1 MATLAB Search Methods
This thesis covers optimization of an offshore combined cycle using Thermoflow and

MATLAB. Thermoflow calculates the output variables based on the provided input variables.

All underlying equations and calculations are hidden, and as such this is a black box problem

that is unsuitable for any gradient based optimization methods. Additionally, it is safe to say

there are non-linear equations involved, as well as a strong possibility of several local

maxima or minima and a possibility of discontinuity. As such, it appears as if search methods

are the only viable method for optimizing the problem at hand.

MATLAB comes with a set of built-in search methods in its global optimization toolbox. With

the objective function being non-smooth, and the desired solution being the global

minimum of the objective function, MathWorks (2012, pp. 1.19-1.20) names three suitable

solvers; pattern search (PS), genetic algorithm (GA) and simulated annealing. Of the three

methods, PS is suggested as the initial method of preference, with GA generally being less

efficient, though being of preference for problems with integer constraints, while simulated

annealing is more or less suggested as a last resort, due to its slow convergence. The solver

characteristics listed in Table 2.1 are excerpts from a table for all the solvers in the global

optimization toolbox (MathWorks, 2012, pp. 1.23-1.25).

9

Table 2.1 – Solver Characteristics (MathWorks, 2012, pp. 1.24-1.25).

Solver Convergence Characteristics

patternsearch Proven convergence to
local optimum, slower
than gradient-based
solvers.

Deterministic iterates

Can run in parallel

No gradients

User-supplied start point

ga No convergence proof Stochastic iterates

Can run in parallel

Population-based

No gradients

Allows integer constraints

Automatic start population, or
user-supplied population, or
combination of both

simulannealbnd Proven to converge to
global optimum for
bounded problems with
very slow cooling
schedule.

Stochastic iterates

No gradients

User-supplied start point

Only bound constraints

2.1.1 Pattern Search

A simple PS is essentially a lattice search. It evaluates the objective function at the current

point, creates a mesh around the point and then computes the objective function at the

corresponding mesh points. If an improved value of the objective function is found, that

point is chosen as the next current point. If no improvement is found, the current point is

retained for the next poll. After a successful poll where an improved objective function is

found the size of the mesh is increased, while a failed poll results in a reduced mesh size. The

pattern of the mesh can be created in various ways. The Global Optimization Toolbox comes

with three direct search algorithms for creating the mesh of the pattern search. Generalized

pattern search (GPS), generating set search (GSS) and the mesh adaptive search (MADS). The

GPS algorithm uses fixed direction vectors, while the MADS algorithm uses a more random

selection of vectors. GSS is identical to the GPS algorithm except when there are linear

constraints and the current point is close to the constraint boundary. The default pattern for

the polling is the GPS Positive basis 2N, consisting of a set of direction vectors. 2N refers to

each of the independent design variables having a fixed positive and a negative direction

vector. As such, for an objective function with three independent design variables, the GPS

Positive basis 2N pattern will consist of the six vectors:

10

[1 0 0]
[0 1 0]
[0 0 1]
[-1 0 0]
[0 -1 0]
[0 0 -1].

An alternative pattern is the GPS Positive basis Np1, where Np1 refers to N+1 direction

vectors. That is one positive unit vector for each independent variable, and then one vector

for all the negative directions, giving an objective function with three independent design

variables a pattern consisting of four vectors:

[1 0 0]
[0 1 0]
[0 0 1]
[-1 -1 -1].

Consequently an Np1 poll method performs fewer computations per poll, and as such is

expected to be quicker. However, a 2N pattern will explore each point more thoroughly and

should therefore be better at avoiding ending up in local minima (MathWorks, 2012, p. 4.2,

p.4.10, p.4.12, pp. 4.49-4.51).

With PS it is also possible to use a direct search algorithm in addition to the poll. The search

algorithm then runs prior to the poll, and attempts to find a point with a lower value of the

objective function than the current point. If an improved point is found, that point becomes

the current point and no poll is performed at that iteration. If the search is unsuccessful, a

poll is performed. The flowchart in Figure 2.5 illustrates the PS algorithm when combined

with a direct search method.

11

Figure 2.5 – Flowchart of pattern search with a search algorithm (MathWorks, 2012, p. 4.24).

At each iteration step, any of the poll methods can be used as a search algorithm. However,

there is no point in using the same algorithm for the search as for the poll. For instance, a

GPS poll should be combined with a MADS search, or vice versa. Another option is to use a

search method that runs to its completion at the first iteration, and then proceeds with a

regular PS after the initial search is completed. Such searches are essentially equivalent to

choosing a better starting point for the optimization and possible methods includes GA,

Nelder-Mead and Latin hypercube search. GA and Latin hypercube search are both

stochastic, while Nelder-Mead only works for unconstrained problems (MathWorks, 2012,

pp. 4.23-4.27).

By creating an options structure there are adjustments that can be made to the optimization

methods in an attempt to improve their performance, whether that performance gain is in

terms of speed of the search or accuracy of the global optimal solution found. For PS the

most obvious adjustment possibilities are changing the expansion factor of the mesh

following successful polls or the contraction factor of the mesh following unsuccessful polls,

changing the stopping criteria for the solver, the choice of search method, initial values of

design parameters or if a poll should be complete. By complete poll it is meant that all points

12

in the mesh are evaluated before a potentially new current point is selected. If complete poll

is turned off PS will accept the first mesh point that improves the objective function as the

new current point. Any remaining mesh points in the current poll will not be evaluated. For

problems with several local minima it is sometimes preferable to use complete poll.

Additionally, vectorizing the objective and constraint functions will generally lead to an

increase in speed as all points in a poll or search pattern can then be evaluated at the same

time (MathWorks, 2012, p. 4.51, pp. 4.65-4.73, pp. 4.80-4.81, p. 4.84).

PS has a number of stopping criteria that determines when the algorithm should stop. Mesh

tolerance specifies how small the mesh size can become before the algorithm halts. Time

limit puts into place a limit on the allotted time before stopping, while max iteration and

max function evaluations determines how many iterations and function evaluations the

algorithm can potentially carry out before terminating. Additionally there are some

tolerance limits. X tolerance specifies the minimum distance between the current points at

consecutive iterations, and the algorithm terminates if the distance, in conjunction with the

mesh size, is smaller than the specified limit. Function tolerance is similar, only with the limit

being on the objective function. If the change in function value and size of the mesh after a

successful poll is smaller than the specified limit, the algorithm stops. Lastly there is the

nonlinear constraint tolerance that tests the feasibility of the point with respect to nonlinear

constraints, and deems the point feasible if the constraint violation is less than the specified

limit (MathWorks, 2012, pp. 4.80-4.81, pp.9.21-9.22).

2.1.2 Genetic Algorithm

The idea behind genetic algorithm is that over generations the best individuals in a

population will evolve towards an optimum by natural selection. The fittest individuals in a

population have the best chance of surviving and passing on their genes to the next

generation. In genetic algorithm the objective function is termed fitness function, and any

point where the fitness function can be evaluated is an individual. As such an individual is a

vector of the design variables, and generally the lower the values of the fitness function, the

fitter the individual is. However, some form of transformation is required as using the fitness

function value directly is usually ineffective. The population is an array of individuals, while

each successive population is termed a generation (Edgar, Himmelblau and Lasdon, 2001,

pp. 400-402; MathWorks, 2012, p. 5.2, pp. 5.16-5.18).

In MATLAB the initial population is created at random, though if desired it has the possibility

of adding specific individuals to the population or specifying the range from which the

population should be generated. Sequences of new populations are created using the

current population to create the next population. Members of the current population are

selected as parents based on their fitness value. The selection is random; though the fitter

the individual is the more likely it is to be selected as a parent. New individuals for the next

population, children, are produced from the parents, either by random changes to a single

parent or combining the vectors of a pair of parents. The random changes are called

13

mutation, while the combination of two parents is called a crossover. When two parents are

combined in a crossover; at each coordinate of the child vector an entry at the same

coordinate is randomly chosen from one of the parents. For instance, for a problem with

three design variables, two parents with respectively [2 4 7] and [3 1 9] vectors might

produce a [2 4 9] child. Here 2 and 4 stems from the first parent, while the 9 is passed on

from the second parent. For the creation of the mutation children, the algorithm randomly

changes the entries of the parent, so that for instance a [2 4 7] parent produces a [3 4 7]

child. The best individuals in a population are deemed elite, and are carried over unchanged

to the next generation. Together with the produced children they replace the current

population to form the next generation (Edgar, Himmelblau and Lasdon, 2001, pp. 401-403;

MathWorks, 2012, p. 5.2, pp. 5.16-5.22, pp. 5.88-5.89).

For the GA to be efficient, the initial population needs to cover as much space of the

interesting region as possible. That is achieved by having a large average distance between

the points, a high diversity. Figure 2.6 shows how the population at the left with a high

diversity is able to cover a large region of space, while the low diversity population on the

right only covers a small space. If the approximate location of the optimal solution is known

or suspected, an initial range of the individuals in the population can be set in MATLAB so

that the GA searches that region thoroughly. However, as some of the mutation children will

come into being outside the suspected region, the GA can find the optimum even if it lies

outside the specified range (MathWorks, 2012, pp. 5.17-5.20, pp. 5.74-5.75).

Figure 2.6 - Comparison of high diversity, blue, and low diversity, red (MathWorks, 2012, p. 5.17).

There are a number of stopping conditions for the GA. One can specify a limit on the number

of generations that should be generated, or a time limit on how long the algorithm can run.

Other options includes stopping the simulation when the best fitness function reaches a

specified limit, or if it fails to improve over a certain number of generations or time,

14

respectively called fitness limit, stall generations and stall time limit. The last stopping

condition for unconstrained problems, function tolerance, is slightly more complicated as it

stops the algorithm when the weighted average relative change of the value of the fitness

function over stall generations is less than the specified function tolerance. If any of the

stopping conditions are met, the algorithm will stop. Additionally there is a stopping

condition that is not really used as a stopping criterion, the nonlinear constraint tolerance.

Its purpose is to test the feasibility of the point in respect to nonlinear constraints

(MathWorks, 2012, pp. 5.24-5.25).

There is a long list of possible adjustments for the GA described in the Global Optimization

Toolbox User’s Guide by MathWorks (2012, pp. 9.31-9.54). In order to increase the accuracy

of the solution a larger population size, more generations, no time limit, a decreased elite

count and a reduced function tolerance should be used. By increasing the size of the

population the algorithm searches more points, and increases the chance of finding the

global minimum, with the default value being 15 times the number of variables, and the

most common size being somewhere between 50 to 100 individuals. However, having to

search more points naturally causes the algorithm to run slower. Increasing the number of

generations and having no time limit allows the algorithm to continue running until one of

the other stopping conditions are met, possibly avoiding stopping the search while there is

still room for improvement of the fitness function. A smaller elite count increases the search

of the design space at each generation as fewer individuals are kept unchanged from one

generation to the next. However, with multiple local minima a higher elite count might allow

the algorithm to explore more minima simultaneously, possibly finding the global minimum

quicker. A low function tolerance allows the algorithm to continue searching until the elite

member of the population changes very little. A good initial guess of where the global

optimum is located can help speed up the algorithm, as parts of the initial population then

should have a pretty good fitness function value. As mentioned previously an initial

population range surrounding the suspected region can be set, while if a specific point is

known or suspected to be close to the global optimum it can be included as an individual in

the initial population. Additionally, as with PS, vectorizing the objective and constraint

functions will generally lead to an increase in speed as all points in a population can then be

evaluated at the same time (Edgar, Himmelblau and Lasdon, 2001, pp. 401; MathWorks,

2012, p. 5.43, p. 5.83, pp. 5.108-5.111, p. 7.5, pp. 9.36-9.37, p. 9.42).

2.1.3 Simulated Annealing

The last potential direct search MATLAB solver is simulated annealing, though as it generally

converges much slower than either PS or GA it is more of a backup solution if the other

methods fail to converge. The method models the physical process of annealing metals. If a

heated metal is cooled rapidly from a molten state irregularities will appear in the crystal

structure, and the energy level in the resulting solid will be much higher than in a perfect

crystal. When annealing a metal it is cooled very slowly by holding the temperature steady at

a series of levels until it reaches thermal equilibrium with the environment. This minimizes

15

the energy level in the final crystal, and decreases the defects. For the simulated annealing

algorithm, the objective function is analogous to the energy level of the metal, and following

an annealing schedule where the metal is cooled by systematically lowering an imagined

temperature should hence minimize the objective function. As the pretended material cools,

while the system is attaining thermal equilibrium at any given temperature, the state

changes in a random way, though at lower temperatures it is more likely to transition into

states with lower energy than it is at higher temperatures. To achieve this, the algorithm

randomly generates a new point at each iteration, with the distance from the new point to

the current point depending on a probability distribution with a scale proportional to the

temperature. The algorithm accepts all new points that lower the objective function, though

with a probability depending on the temperature there is also a chance of a point that raises

the objective function value being accepted. The higher the temperature is, the higher the

probability of accepting a point that increases the objective function value is, but as the

temperature approaches zero the probability of a point that raises the objective function

value being accepted approaches zero. This prevents the method from being trapped in a

local minimum (Edgar, Himmelblau and Lasdon, 2001, pp. 399-400; MathWorks, 2012, pp.

1.23-1.25, p. 6.2).

Details concerning simulated annealing in MATLAB can be found in the Global Optimization

Toolbox User’s Guide by MathWorks (2012, pp. 6.2-6.21) but will not be treated here.

16

3 Methodology
This section briefly describes the simulation tools used in this thesis, and the procedure for

the selection of objective function, choice of design variables with upper and lower bounds

and the choice of optimization methods.

3.1 Simulation Software
As this thesis is an extension of my project work, the simulation software used and described

in my project work is also used in this thesis. The description of said software, the

Thermoflow products GT PRO (2013a), GT MASTER (2013b) and PEACE (2013c), are

consequently covered in that thesis. Version 22 of Thermoflow is used in this thesis, as it was

the most up to date version when the work with the thesis was started.

MATLAB R2011a, from The MathWorks, Inc., is used to program the optimization methods

and objective function, and then simulate said optimizations. GT PRO is then linked with

Microsoft Excel 2010 and MATLAB, with the help from Lars Nord (2013), and together they

are used to compute all the discrete points used in the optimization process. GT MASTER is

used to compare the off-design performance of the optimized system with that of the

system from my project work, while PEACE is used to estimate the weight of some of the

components. The offshore CC plant model used is the one developed in the project work.

3.2 Choice of Objective Function and Design Parameters
The objective function was chosen by considering the motivation behind using a CC offshore

and the main drawbacks in doing so. Or in other words, trying to maximize the advantages

and minimize the disadvantages associated with installing a CC offshore. There are no

apparent constraints associated with the problem at hand, only physical and software

limitations handled by upper and lower bounds in design parameters and conservation laws

already included in the equations used by the GT PRO software.

For design variables, the variables believed to have the most impact on the objective

function was chosen. Upper and lower bounds for the parameters were selected based on

what was deemed feasible in regards to previously studied literature and limitations in

physical parameters and software.

3.3 Choice of Optimization Methods
The choice of optimization method was done by screening the potential algorithms. The

screening of the optimization methods was performed by running a series of optimization

methods at similar settings and comparing their resulting value of the objective function and

time it took completing or approaching an adequate value. Additionally, the viability of the

method, as in how often the simulation crashed, was taken into consideration. It is worth

nothing that the setup with GT PRO, Microsoft Excel and MATLAB can only compute one

point at a time, making vectorizing and parallel computing of very little interest to this thesis,

and as such it was not taken into consideration when selecting optimization methods.

17

4 Results and Discussion

4.1 Objective Function
Naturally, the first step of the optimization process was to decide upon a suitable objective

function. The motivation behind using a CC offshore is to increase the efficiency of the

power production, and thereby reducing fuel consumption and CO2 emissions. This is

obtained by extracting additional power from the waste heat from the gas turbine (GT) by

adding a heat recovery steam generator (HRSG) and connecting it to a steam turbine (ST). As

such, it made sense for the objective function to include the power gain from switching from

a simple cycle GT to a CC system. However, an offshore CC also has a considerable drawback

in the form of a considerable investment cost associated with its weight and space

requirements (Kloster, 1999), which also should be included in the objective function.

With optimization methods in MATLAB generally looking to minimize the objective function,

combining the power gain and additional weight in a way where minimizing the objective

function would maximize the power gain and minimize the weight seemed necessary.

Accordingly, an initial objective function of additional weight per additional power appeared

to be quite sensible. The power gain from switching to a CC obviously includes the power

from the ST; however, realizing the pressure loss associated with the HRSG has an impact on

the performance of the GT, the delta power from the GT would also have to be included in

the total power gain. The cost of the additional weight and space is difficult to estimate, the

industry has understandably little interest in sharing their data regarding this area. However,

discussions with Lars Nord (2013) and Olav Bolland (2013) suggested weight to be

dominating the cost picture, and assuming the investment cost to be proportional to the

additional weight from the CC system seemed like an adequate assumption for the purpose

of this thesis.

In the project work only the weight of the main components was extracted, so the initial

thought was to just continue using the weight of the main components. However, with using

only the weight of the main components it quickly became apparent that the optimization

methods was focusing very heavily on the weight savings, and almost ignoring the power

production aspect. After discussions with Nord (2013) it was suggested to add a bulk weight

to the weight of the main components, and hence more accurately represent the real

situation as well as making the changes in objective function due to weight changes less

volatile. Consequently, the principal objective function to minimize ended up as:

With WMC being the weight of the main components in the steam cycle of the CC, BW being

the bulk weight corresponding to the weight of structures and components needed for the

combined cycle in addition to the main components, while PST is the power production from

the ST and the ΔPGT is the power production from the GT minus a reference power

18

production from a GT run as a simple cycle with exhaust losses of 4,99 mbar, corresponding

to 32504 kW for the GE LM2500+RD (G4) GT used in this thesis. The weight of the main

components is using the wet weight the GT, ST, HRSG and the condenser. The bulk weight

estimation includes estimations of the bottom frame for the ST and HRSG skid, water- and

chemical tanks, motors and pumps, water treatment system and so on, and will be

elaborated on later in this thesis.

With an objective function focusing on the weight to power ratio of the additional system

associated with a CC, it might be interesting to consider what the approximate weight to

power ratio of an offshore simple cycle GT is. According to GT PRO, the GT used in my

project work and this thesis produces about 32 MW and weighs about 222 250 kg, while

Hellberg (2006) writes that the weight of the skid for Siemens 29 MW SGT-700 GT is about

78 metric tons. By assuming a similar skid structure for the GE LM2500 as well as scaling the

size to fit 32 MW, and further assuming a linear relationship with the power production of

the GT and the weight of the corresponding GT skid, an estimated weight of the entire GT

skid would be around:

Kloster (1999) indicates the weight of a GT skid is comparable to the weight of a ST skid with

similar power production, and estimates that a ST skid producing between 15 to 20 MW

would weight somewhere between 150 to 175 tons. Extrapolating those numbers to fit a 32

MW GT suggests a weight range from:

The initial estimation of right above 300 tons fits right in the middle of this range, and seems

like a decent estimation. This weight, with a 32 MW GT power production, would correspond

to a weight to power ratio of about 10.

For comparison, the estimated weight of the main components in an onshore high efficiency

CC developed in my project work, not including the GT, was 444 930 kg, with a gross

additional power compared to a simple cycle GT of 13155 kW. Resulting in a weight to power

ratio of about 34, and that is without considering any skids needed offshore.

4.1.1 Estimation of Bulk Weight

The following crude weight estimation of the bulk weight for the objective function are

based on among others data from GT PRO and PEACE. Discussions with Nord (2013)

suggested the weight of the bottom frame for a ST skid producing about 17.3 MW being in

the range of 40 tons, while as previously mentioned Hellberg (2006) estimates a GT skid

producing about 29 MW weighting about 78 tons. The power production from the ST in the

offshore CC developed in my project thesis was about 11.2 MW, and it seems reasonable to

expect the power production from the optimized plant to be in the same range.

19

Extrapolating the figures indicated from the personal communication with Nord suggests a

bottom frame weight for the ST of about 26 tons, while extrapolating the numbers from

Hellberg (2006) are indicative of a weight around 29 tons. This seems to be in agreement

with the suggestion Kloster (1999) made about a ST and GT skid being about the same

weight, and using an average of the two as an estimation of the weight of the bottom frame

for the ST in the optimized plant seems reasonable. The weight of the HRSG bottom frame is

more difficult to estimate, but it seems safe to say it would weigh at least as much as the ST

bottom frame, as it in comparison to the ST bottom frame needs additional structure to

keep the HRSG in place.

GT PRO suggests three types of water tanks for demineralized, raw and neutralized water, in

addition to a water tank for fire protection. A raw water tank seems a bit superfluous

offshore, though some form of raw water source, either in the form of transportation from

land or desalination plant is needed. It is assumed that some sort of fire protection system is

already present at the platform.

In order to establish what sort of water tank sizes GT PRO indicates for different system

water levels, the High Efficiency onshore plant developed in my project work was used. The

condenser pressure was varied from 0.009 bar to 0.14 bar, resulting in water levels ranging

from 21 170 kg to 42 060 kg. Even with these vastly different water levels, the suggested

tank sizes never changed much, ranging from 44 810 l to 48 060 l for demineralized water

tanks, and from 22 410 l to 24 030 l for neutralized water. In comparison, the suggest tank

sizes for the developed offshore OTSG system with water levels of about 8 000 kg were

respectively 40 230 l and 20 110 l. As such, it appears as if the suggested tank sizes are only

weakly dependent on the water levels in the system. A possible explanation is that the

plants developed in GT PRO are intended for onshore use, where the size of the tanks has

fairly little impact on the plant costs, and that GT PRO as such operates with a more or less

“standard” tank sizes. Based on the suggested tank size for various GT PRO designs,

demineralized water a tank size of about 1.5 times the water content in the system, and 0.75

for the neutralized water, seems more than adequate. That would imply the required

volume of the water tanks being about 18 000 l for a system containing 8 000 kg of water.

Assuming one litre of water weighting 1 kg, and allowing for the tanks self-weight, 20 metric

tons might be an adequate estimation of the weight of the water tanks needed for the

combined cycle.

The chemical tanks for acidic and alkaline solutions used to clean the water are indicated by

PEACE to each hold about 2410 l. Assuming a density of about 1.05 kg/l for the acidic

solution and about 1.25 kg/l for the caustic soda, the total weight of the tanks would then

slightly exceed 5.5 tons in total (The Engineering ToolBox, 2013).

Using the PEACE results from the offshore CC plant developed in my project work, the total

weight of motors and pumps was estimated to about 11 500 kg, with a list of the various

units and corresponding weight accessible in Appendix A. The same PEACE data was used to

20

estimate the weight of the control centre to 5000 kg, and the weight of a step-down

transformer also to 5000 kg. It was assumed all the produced power would be used at the

platform or in the immediate proximity, rendering a step-up transformer for long distance

transportation needless. For the water treatment system PEACE suggest weights between

4000 kg and 36 000 kg depending on the water purity, referred to as total dissolved solids

and turbidity. However, discussions with Nord (2013) indicated a value closer to, if not

above, 40 000 kg might be more realistic for an offshore CC.

The rounded estimation of all the weights used in the bulk weight estimation can be seen in

Table 4.1. The total bulk weight used is rounded up to account for the HRSG bottom frame

estimation likely being too conservative, as well as some components, like a separate skid

for the feed water pumps to deliver the necessary NPSH, being omitted in this analysis.

Table 4.1 – Weight estimations bulk weight

 Estimated weight [kg]
Bottom frame (ST) 27 500
Bottom frame (HRSG) 27 500
Water tanks 20 000
Chemical tanks 5 500
Motors and pumps 11 500
Control centre 5 000
Transformer (step down) 5 000
Water treatment system 40 000
Total weight 142 000
Total bulk weight, rounded up
from the total weight

150 000

As such, a very crude estimation of the bulk weight of about 150 000 kg appears to be quite

reasonable, and though it contains a lot uncertainties and qualified guesses it should be

adequate for this thesis. It should certainly be closer to reality than ignoring the bulk weight

altogether.

The MATLAB code for the objective function can be found in Appendix B. It is worth noting

that when a GT PRO computation returns a warning message, the objective function value at

that point will be set to a very high value so that the point is essentially ignored.

4.2 Design Variables
When it came to choice of design variables to focus the optimization on, it seemed logical to

focus on the parameters with the largest influence on the system weight and power

production. As in my project work, the parameters believed to have the most impact are the

live steam pressure (LSP), the live steam temperature (LST), condenser pressure, pinch point

temperature difference (PPTD) and HRSG draft loss.

21

In order to limit the space of the region the optimization methods would have to search, a

lower boundary (LB) and an upper boundary (UB) were used. Based on the results in my

project work, the most interesting region in terms of maximum performance and minimum

weight appeared to be from 15 to 35 bar as seen in Figure 4.1 For the LST there is a physical

upper limitation in that the GT exhaust temperature is about 530 °C, and with the need of a

temperature difference to transfer the heat any LST above 510°C is probably unfeasible.

Additionally, as also seen in Figure 4.1 the weight savings of reducing the temperature below

455 °C appears negligible, with the only result being lower plant efficiency. Eventually, a

lower bound of 400 °C was selected, though it could probably safely have been increased to

around 455 °C.

Figure 4.1 - Effect of LSP on weight and plant efficiency for different LSTs (Sletten, 2012, p. 30).

As for the condenser pressure (Pcond), the lowest feasible limit with the selected ambient

water temperature is 0.0234 bar, while Figure 4.2 shows that any weight savings past 0.14

bar seems negligible. Considering it is unknown whether the best course of action to

optimize the system is to cut weight or increase power production, the entire range from

0.0234 to 0.14 bar was kept. For the PPTD, the entire range from 8 to 35 °C suggested in

theory, and shown in Figure 4.3, was also kept, though it is probably unlikely that the lower

end of that range will feature in the optimized solution. The same could probably be said for

22

the HRSG draft loss, where the weight savings pertaining to an increase in draft loss is

considerable in comparison to the performance loss. Still, the range from 15 to 35 mbar used

in the project work was retained here. For both the PPTD and the HRSG draft loss (DPHRSG)

it is quite possible that a better solution might exist outside the suggested upper limit.

However, GT PRO struggles when the cross-sectional area of the HRSG gets too small, and

fails to compute accurately when the mass flux surpasses 6.103 kg/m2s. With an inaccurate

computation GT PRO accompany the calculation with a warning message, and any such point

will essentially be ignored in this optimization process. The cross-sectional area of the HRSG

typically reduces when the PPTD and HRSG draft loss increases, and simulations with GT PRO

in the region above the suggested upper limit for those two parameters proved very difficult,

with most computations returning a warning message and occasionally crashing the

simulation. So in order to limit crashes and somewhat simplifying the optimization process,

the upper limits were kept as is.

Figure 4.2 - Effect of condenser pressure on weight and plant efficiency (Sletten, 2012, p. 29).

23

Figure 4.3 - Effect of PPTD on weight and plant efficiency (Sletten, 2012, p. 28).

A summary of the upper and lower boundaries used for the design parameters can be seen

in Table 4.2.

Table 4.2 – Upper and lower bounds of design parameters

Lower
boundaries

Upper
boundaries

LSP [bar] 15 35

LST [°C] 400 510

Condenser pressure [bar] 0.234 0.14

PPTD [°C] 8 35

HRSG draft loss [mbar] 15 35

4.3 Choice of Optimization Methods
As discussed in the theory, there were three distinctively different built-in search methods in

the MATLAB global optimization toolbox that are suitable for the problem at hand. Of those,

PS should in theory be the quickest, followed by the GA and lastly the simulated annealing.

PS also comes with a large number of possible search algorithms that can be added to the

general algorithm, possibly improving its performance, though vastly increasing the number

of possible search algorithms. The basic MATLAB codes for the different optimization

methods are available in Appendix B.

In order to narrow down the number of possible search algorithms, an initial screening of

the methods was performed, with the aim of ending up with 2-3 different optimization

24

algorithms to move on with. Under the screening process it was considered how quickly an

adequate objective function value was achieved, though the main emphasis was placed on

the best obtained value of said objective function. With PS expected to both being the

quickest and having the most alternatives to investigate, it was the main emphasis of the

initial screening process. To validate and put any PS results into perspective it was preferable

if one of the 2-3 methods retained for further analysis were fundamentally different, and as

such GA and simulated annealing were explored as potentially reference search methods.

As described in the theory, there are two fundamentally different ways to apply additional

search algorithms to the PS. There are the GPS, GSS and MADS algorithms that run

concurrent with the regular PS, either with a Np1 or 2N patterns, and then there are the GA,

Nelder-Mead and Latin hypercube searches that runs prior to the regular PS. Additionally, it

is possible to use different polling methods for the regular PS. The initial screening used the

default GPSPositiveBasis2N method. Attempts were also made using MADSPositiveBasis2N.

However, as it proved impossible to modify the mesh expansion and contraction using that

polling method, the polling mesh changes ended up too crude to find any points close to the

optimum, and it was consequently discarded as a potential polling method for this thesis.

Further, Np1 pattern for the polling was not attempted, as evaluating each point more

thoroughly using a 2N pattern was believed to be better considering the objective function

was expected to include several local minima.

For the search methods, based on theory one would expect Np1 patterns having fewer

function evaluations and as such being quicker in reaching its stopping criteria, while a 2N

pattern should be less likely to be trapped in a local minima, and consequently possibly

obtaining a better objective function value. Considering GSS searches are supposed to be

identical to GPS searches when there are no linear constraints, they should perform very

similarly. As the default poll method is GPSPositiveBasis2N, one would expect a different

search method, like MADS, to work the best, while a GPSPositiveBasis2N search method

should make absolutely no difference from just the regular PS. For the algorithms running in

advance of the regular PS it is difficult to predict the performance based on the available

theory, the typical course of action seems to be trial and error.

4.3.1 Initial Screening

Initially, a couple of GA simulations were run in order to have a reference point to compare

the various PS search algorithms with. Population size was believed to be very important for

the result, and with the size typically being somewhere between 50 and 100, it was decided

to test both outliers on that region. Simulated annealing was also tested, but with the

computer crashing each time it was attempted it was quickly given up on and discarded as a

potential search method for this thesis. In any event it was expected to be by far the slowest

method, and with the GA performing fine, trying to get the simulated annealing to work did

not seem to be worth the time required.

25

The initial GA simulations applied a 1e-7 function tolerance limit as the main stopping

criteria, the stopping criteria expected to terminate the simulation, and included the values

of the design variables from the project work in the initial population. The thought process

behind including the values from the project work in the GA initial population was that the

PS the GA is supposed to be a reference to will need an initial point to start its search from,

and as such it would probably be beneficial if the two methods started from the same

location, and hence not putting one of the methods at a disadvantage right off the bat.

Further, when deciding on what the initial location should be, the design variable values

developed in my project were assumed to be relatively close to an optimal solution, and

should at the very least provide a decent starting point for the optimization process. Using

the design parameters from the project work corresponds to an objective function value of

30.4612. With that as the only tweaks to the default GA algorithm, Table 4.3 shows the

differences between the two population size outliers. Note that Iter is short for Iterations,

while F-count is the number of function evaluations. The GA with a population size of 100

took roughly 50 % more time to complete than the population with 50 individuals, but ended

up with a better objective function value. The GA with a population size of 100 was kept as a

reference search method as the value of the objective function is ultimately more important

than the time to reach it.

Table 4.3 – GA with population size of 50 and 100 respectively

Objective
function value

Iter F-count Time [h]
LSP
[bar]

LST
[°C]

Pcond
[bar]

PPTD
[°C]

DPHRSG
[mbar]

GA - 50 29,7297 42 2150 02:01:06 24,6 488,7 0,054 33,23 34,98

GA - 100 29,6889 36 3700 03:27:08 22,9 492,2 0,047 34,99 34,99

With the initial location already decided on, the only change to the default options structure

for the initial PS screening was setting complete poll to on, as it was suspected the problem

would have multiple local minima, and it is often preferable using a complete poll in such

scenarios.

A straightforward PS was then performed. However, it seemingly got stuck in the same local

minima as the GA with a population size of 50. It was thought that a possible reason for this

could be that the mesh from the polling would be too coarse with the default expansion and

contraction factor of respectively 2 and 1/2, and as a consequence miss the region

surrounding the global optimum when the mesh size contracted. To test this hypothesis a

second PS was performed, now with an expansion factor of 3 and a contraction factor of 2/3.

As can be seen from Table 4.4 this change did in fact make the PS locate a point in the same

region as the GA with a population size of 100, and as predicted taking less time in doing so.

With basically the same arguments as for selecting the GA with a population size of 100, it

was decided to keep the PS with an expansion factor of 3 and a contraction factor of 2/3 for

the remaining of the initial screening process.

26

Table 4.4 – Default pattern search compared to a pattern search with an expansion factor of 3 and
a contraction factor of 2/3

Objective
function value

Iter F-count Time [h]
LSP
[bar]

LST
[°C]

Pcond
[bar]

PPTD
[°C]

DPHRSG
[mbar]

PS - default 29,7344 300 2925 02:44:01 23,9 488,6 0,054 33,73 34,52

PS - 3, 2/3 29,6819 357 3308 03:05:35 22,9 490,3 0,049 34,52 34,16

GPSPositiveBasisNp1, GPSPositiveBasis2N, GSSPositiveBasisNp1, GSSPositiveBasis2N,

MADSPositiveBasisNp1, MADSPositiveBasis2N, GA search, Nelder-Mead search and Latin

hypercube search were subsequently added as search methods to the regular PS and tested,

and the results can be seen in Table 4.5. The relative differences to the GA reference method

in terms of achieved objective function value and time to complete the optimization

simulation needed to achieve said value are visualized in Figure 4.4 and Figure 4.5. As can be

seen from the table and figures there are relatively small differences in value of objective

function. However, even small improvements in the solution can be of significance when

there are large sums of money involved. All the PS searches except GSSPositiveBasis2N

arrived at a better solution than the reference GA method, and all searches except the two

MADS searches took less time in doing so.

Table 4.5 – Comparison of various search methods added to regular pattern search

Objective
function
value Iter F-count Time [h]

LSP
[bar]

LST
[°C]

Pcond
[bar]

PPTD
[°C]

DPHRSG
[mbar]

Regular pattern search 29,6819 357 3308 03:05:35 22,9 490,3 0,0485 34,52 34,16

GPSPositiveBasisNp1 29,6703 93 901 00:50:26 24,4 490,7 0,0487 35,00 34,94

GPSPositiveBasis2N 29,6819 357 3308 03:06:03 22,9 490,3 0,0485 34,52 34,16

GSSPositiveBasisNp1 29,6703 93 884 00:49:18 24,4 490,7 0,0487 35,00 34,94

GSSPositiveBasis2N 29,7300 71 718 00:40:00 24,4 490,8 0,0542 35,00 34,94

MADSPositiveBasisNp1 29,6819 357 5023 04:41:49 22,9 490,3 0,0485 34,52 34,16

MADSPositiveBasis2N 29,6708 257 3816 03:33:23 22,9 490,4 0,0485 33,56 34,94

GA search 29,6688 182 2779 02:35:36 24,3 487,3 0,0485 33,06 35,00

Nelder-Mead search 29,6819 357 3573 03:20:00 22,9 490,3 0,0485 34,52 34,16

Latin hypercube
search

29,6701 211 1878 01:47:19 22,9 490,4 0,0486 35,00 34,82

27

Figure 4.4 – Values of objective function relative to a GA reference case for PS with added search
methods.

Figure 4.5 - Computation time for PS with added search methods relative to a GA reference case.

28

As one would expect based on theory, adding a GPSPositiveBasis2N search to a PS using a

GPSPositiveBasis2N polling pattern makes absolutely no difference, one might as well just

use the regular PS. Further, the GSSPositiveBasisNp1 search does indeed appear to perform

identical to the GPSPositiveBasisNp1 search, as one would expect for an objective function

without constraints. However, surprisingly the GSSPositiveBasis2N search was nothing like

the GPSPositiveBasis2N search, though perhaps the GPSPositiveBasis2N search not really

functioning when it is also used as the polling method had a part to play in that. In any case

neither of the GSS searches appeared to be particularly interesting to analyse any further.

Perhaps more surprisingly, MADSPositiveBasisNp1 appeared to be identical to the regular PS

in terms of what solution it arrived at, and how many iterations it took getting there, though

with significantly more objective function evaluations and consequently significantly longer

total simulation time. For some reason it seemed like a very poor fit with a

GPSPositiveBasis2N poll method. Ignoring the similar searches; in terms of arriving at the

best solution MADSPositiveBasis2N, GPSPositiveBasisNp1, GA search and Latin hypercube

search appeared to have performed the best, while GPSPositiveBasisNp1,

GSSPositiveBasis2N and Latin hypercube search took the least time in doing so. With

GSSPositiveBasis2N being of little interest due to its poor solution, the most interesting

search methods remaining appeared to be the MADSPositiveBasis2N search , the

GPSPositiveBasisNp1 search, the GA search and the Latin hypercube search.

Further, as a MADS search in theory should be a good fit with a GPS poll it is somewhat

surprising that a GPSPositiveBasisNp1 search located a better solution than a

MADSPositiveBasis2N search. Generally one would have expected the MADSPositiveBasis2N

search to arrive at the best solution, though perhaps the settings for this initial screening

were particularly suitable for the GPSPositiveBasisNp1 search, or less favourable to the

MADSPositiveBasis2N search. It was believed to warrant a second slightly more thorough

comparison of the two methods with different mesh expansion/contraction and without a

complete poll.

4.3.2 Second Screening

Considering achieving the best possible solution is the most important aspect of the

optimization process, the options structure in the second screening between

GPSPositiveBasisNp1 search and MADSPositiveBasis2N search was modified in an attempt to

locate an improved solution. The expansion and contraction factor were adjusted to have

the methods evaluate more points, and as such cover more space of the interesting search

region. This meant increasing the expansion factor for the mesh, and as such increasing the

size of the mesh after each successful poll and cover more space, as well as decreasing how

much the mesh is reduced after an unsuccessful poll, thereby checking the area surrounding

the current point more thoroughly. Consequently, the contraction factor was set to 0.8 for

all the attempted searches at this screening, while the expansion factor was tried as both 3

and 4. Due to the uncertainties regarding the impact of the complete poll setting, the

searches were also carried out both with and without a complete poll. However,

29

unfortunately the MADSPositiveBasis2N searches with an expansion factor of 4 crashed

repeatedly with the complete poll turned off, and with the MADSPositiveBasis2N search

crashing it seemed rather uninteresting to consider the GPSPositiveBasisNp1 with the

complete poll turned off, particularly as there appeared to be little difference between

having it turned on or off for the GPSPositiveBasisNp1 search. As a consequence the

searches with an expansion factor of 4 only include the complete poll setting set to on.

The result of this second screening can be seen in Table 4.6 and Figure 4.6 and Figure 4.7.

The increased contraction factor did as expected result in a better solution for the

MADSPositiveBasis2N search. However, for the GPSPositiveBasisNp1 search the solution was

actually noticeably worse, lending credibility to the theory that it perhaps was a bit fortunate

with the settings in the initial screening. The MADSPositiveBasis2N search experienced a

further improvement in the solution with an increased expansion factor, now with a better

solution than any of the search methods achieved in the initial screening. Increasing the

expansion factor also significantly improved the GPSPositiveBasisNp1 search for the same

contraction factor, but was still worse than in the initial screening, only reinforcing the

impression that it was somewhat lucky in the first screening. In terms of computational time,

it increased markedly both for increased expansion factor and for an increased contraction

factor, as one would expect. As for the complete poll, the GPSPositiveBasisNp1 search

experienced little if any difference whether it was turned on or off, while the

MADSPositiveBasis2N search was seemingly significantly quicker without a complete poll, as

well as ending up with a marginally better solution.

Table 4.6 – Second screening, comparison between GPSPositiveBasisNp1and MADSPositiveBasis2N

Expansion
factor

Contraction
factor

Complete
poll

Objective
function
value

Iter F-count Time [h]

GPSPositiveBasisNp1 3 0,8 off 29,6829 179 2271 02:07:21

GPSPositiveBasisNp1 3 0,8 on 29,6829 179 2292 02:09:05

MADSPositiveBasis2N 3 0,8 off 29,6699 309 3556 03:18:32

MADSPositiveBasis2N 3 0,8 on 29,6699 363 4555 04:14:13

GPSPositiveBasisNp1 4 0,8 on 29,6735 400 5618 05:12:51

MADSPositiveBasis2N 4 0,8 on 29,6685 569 8702 08:07:04

Being unable to complete a PS with MADSPositiveBasis2N search, with an expansion factor

of 4 and the complete poll turned off, without the computer experiencing a blue screen

error was a bit of a nuisance. Nonetheless, this second screening suggested it might be

difficult for the GPSPositiveBasisNp1 search to improve upon the results it achieved in the

initial screening. The MADSPositiveBasis2N search on the other hand improved both its

solution and total simulation time with the contraction factor increased to 0.8 and the

complete poll turned off, and showed further improvement in the solution when the

expansion factor was increased. With that in mind, and the fact that the

30

MADSPositiveBasis2N search according to the theory should be a better fit for the default

polling method, it seemed logical to proceed with the MADSPositiveBasis2N search at the

expense of the GPSPositiveBasisNp1 search.

Figure 4.6 - Values of objective function in second screening, relative to GA reference case.

31

Figure 4.7 - Computation time second screening relative to GA reference case.

As such, after two separate screening processes the interesting search algorithms for the PS

was narrowed down to the MADSPositiveBasis2N and the fundamentally different GA and

Latin hypercube search. With the regular GA remaining as a reference method, and the

MADSPositiveBasis2N search being fundamentally different from the two other potential PS

search methods, that left deciding between which of the GA search and the Latin hypercube

search to move on with.

In the initial screening, the GA search arrived at a slightly better solution than the Latin

hypercube search, though took a fair bit of extra time in doing so. However, taking

everything into account they did seem fairly interchangeable. Considering both methods are

identical after the initial search for a better objective function value, there was little reason

to suspect them to deviate much at any point if any of the other PS options were to be

adjusted, and as such it was assumed to be a poor use of resources to perform an additional

screening between the two. However, an interesting aspect with the GA search was that it to

some extent could be considered as a hybrid solution between the two other searches

retained for further analysis, as it essentially uses the GA to search for a good starting

position to start a regular PS. With that in mind, and the fact that the GA search ultimately

did obtain a better solution in the initial screening, it was decided to retain the GA search.

Hence, the final three optimization methods to be explored further were the GA as a

reference method, the PS with a MADSPositiveBasis2N search and the PS with GA search.

32

4.4 Modifications of Selected Optimization Methods
As previously alluded to there were some issues with the computer crashing during some of

the simulations. The crashes seemed more rampant the longer the simulations went on,

making finding the best possible solution particularly challenging. Setting parameters like

populations size, mesh expansion or mesh contraction too large seemingly always

guaranteed the simulation to crash. However, on rare occasions a simulation that had

previously crashed several times would all of a sudden work flawlessly. Not knowing when a

simulation might crash made completing systematic searches a challenge, particularly for the

very long simulations that with the regular crashes quickly became a protracted affair.

Eventually had to balance between trying to achieve the very optimal solution and working

within the confines of what would usually allow the simulations to work flawlessly. The

frequent crashes for long lasting simulations also meant that trying to modify the stopping

criteria in the form of reducing the mesh tolerance, and hence prolonging the searches, was

never really entertained as an option. Neither was applying more stringent stopping criteria

causing the searches to stop sooner. Having the default mesh tolerance as the most

restrictive stopping criteria was believed to offer the best compromise of accuracy of the

solution and time to reach it, as well as giving all the search methods equal chance at

locating the best possible solution by having similar size of the mesh in their last polls of a

search.

4.4.1 Pattern Searches

For the pattern searches the previous screenings had shown that modifications to the mesh

expansion and contraction as well as whether a complete poll was used could have a

significant impact on the performance of the algorithms. As explained previously, increasing

the mesh expansion should allow the algorithm to cover more of the solution space, and

hence being able to find a better solution than with a smaller expansion factor, though

taking more time in doing so. Increasing the contraction factor should have much of the

same effect, though rather than covering more of the solution space it would mean

searching the region surrounding the current point more thoroughly. Additionally it was

thought that perhaps more stringent boundaries on the design parameters could reduce the

simulation time. After all the lower bounds used in the initial screenings did contain some

regions very unlikely to contain a good solution. As discussed previously, it was very unlikely

that any decent solution would have a LST below 455 °C, while a reduction in the PPTD or

HRSG draft loss from the project work values seemed equally unlikely. Consequently, when

the boundaries were adjusted the lower boundaries for those three parameters were

narrowed down to respectively 455 °C, 20 °C and 25 mbar.

Table 4.7 and Figure 4.8 shows the most interesting successful simulations of the PS using a

MADSPositiveBasis2N search algorithm, and the adjustments made to the options structure

of said searches. As can be seen from the second row of the table and the second column of

the figure, increasing the contraction factor does indeed result in the algorithm finding a

better solution, as well as increasing the simulation time. As discovered in the previous

33

screening, turning the complete poll off actually has a positive effect on both the achieved

solution and the simulation time. However, somewhat surprisingly, as seen from the 4th row

of the table and 4th column of the figure, narrowing the LB actually had an adverse effect on

the solution found, though the algorithm did arrive at it more quickly. Then countless

simulations with an expansion factor of 4 with complete poll set to off were attempted to no

avail; as in the second screening they all crashed, usually after about six hours. Then in an act

of despair an expansion factor of 5 was attempted, which inexplicably worked on the second

attempt. Perhaps only a stroke of good luck, but in any case the results it yielded were as

one would expect. The simulation time obviously was significantly longer than any of the

other simulations performed so far, almost eclipsing 13 hours. Fortunately the improvement

of the solution seemingly matched the extra computation time, and it was a slight

improvement on the result achieved with an expansion factor of 4 and the complete poll set

to on. A further increase in contraction factor to 0.9 was also attempted, with an expansion

factor varying from 3 to 5, though with no successful simulations.

Table 4.7 – PS with MADSPositiveBasis2N search, changes to options structure

Expansion
factor

Contraction
factor

LB
changed

Complete
poll

Objective
function
value

Iter
F-
count

Time [h]

Initial screening 3 0,67 no on 29,6707699 257 3816 03:33:23

3, 0.8, no, on 3 0,8 no on 29,6699491 363 4555 04:14:13

3, 0.8, no, off 3 0,8 no off 29,6698521 309 3556 03:18:32

3, 0.8, yes, off 3 0,8 yes off 29,6720417 267 3052 02:50:18

4, 0.8, no, on 4 0,8 no on 29,668471 569 8702 08:07:04

5, 0.8, no, off 5 0,8 no off 29,6681832 876 13291 12:51:52

Looking a bit more in depth on the PS with a MADSPositiveBasis2N search algorithm with an

expansion factor of 5, contraction factor of 0.8, no adjustments to LB and without a

complete poll, Figure 4.9 shows how the value of the objective function evolved over the

iterations. It quite rapidly, after 129 iterations and 1168 function evaluations, achieved a

quite decent objective function value of 29.6728, which was followed by a series of

incremental improvements until the mesh size was smaller than the mesh tolerance,

culminating in an objective function value of 29.6682.

34

Figure 4.8 – PS with MADSPositiveBasis2N search, objective function values after changes to
options structure.

Figure 4.9 - PS with a MADSPositiveBasis2N search algorithm with an expansion factor of 5,
contraction factor of 0.8, no adjustments made to LB and without a complete poll.

0 100 200 300 400 500 600 700 800 900
29.6

29.7

29.8

29.9

30

30.1

30.2

30.3

30.4

30.5

Iteration

F
u
n
c
ti
o
n
 v

a
lu

e

Best Function Value: 29.6682

35

With the changes in LB a bit surprisingly having very little impact on the results, a couple of

more tests with both stricter and more relaxed upper and lower boundaries were carried

out, using the settings from the initial screening with a PS with a MADSPositiveBasis2N

search algorithm. However, the upper limit of the PPTD and DPHRSG was maintained at the

same level as that is right around where the best solution without frequent crashes

seemingly occur. The upper boundary on the LST was also retained, as when it was

attempted increased to about 550 °C the optimization returned a solution where the LST was

higher than that of the gas turbine exhaust temperature, which is clearly an infeasible

solution. As seen from Table 4.8, a tightening of the boundaries actually increased the

simulation time as well as somewhat worsening the final solution. The more relaxed

boundaries reduced the simulation time, but ended up with a similar solution to that of the

search with tighter boundaries. It seems as if the upper and lower boundaries have fairly

little impact on the performance of a PS with a MADSPositiveBasis2N search algorithm, if

anything the initially chosen boundaries seem to produce the best results.

Table 4.8 - Pattern search with MADSPositiveBasis2N search algorithm with varying upper and
lower boundaries

LB [LSP, LST, Pcond,
PPTD, DPHRSG]

UB [LSP, LST, Pcond,
PPTD, DPHRSG]

Objective
function
value

Iter
F-
count

Time [h]

Initial screening [15 400 0.0234 8 15] [35 510 0.14 35 35] 29,6707699 257 3816 03:33:23

Tighter
boundaries

[20 455 0.04 24 29] [30 510 0.10 35 35] 29,6740477 342 5455 05:08:59

More relaxed
boundaries

[10 355 0.0234 5 5] [55 510 0.20 35 35] 29,6739821 216 2729 02:26:40

With the change in upper and lower boundaries having little effect on the outcome of the

search, it was assumed that part of the explanation for that could be down to how the PS

works. As the PS focuses on exploring the region immediately surrounding the current point,

and the current point is typically relatively close to a good solution for the most of

simulation time, it will rarely investigate locations far from a good solution. Even if the initial

point is located in a region with a poor solution, and far from the optimal solution, the

current point will move quite rapidly towards a better solution, so the time spent

investigating the region of a poor solution will be short. In an attempt to confirm this

hypothesis, a small test using the settings from the initial screening with a PS with a

MADSPositiveBasis2N search algorithm with varying initial points was carried out. As seen

from Table 4.9, there was very little difference resulting from different initial points. In fact,

the search using the values from the project work actually achieved both the worst solution

and took the longest time in doing so, despite having by far the best objective function value

at the initial point. The simulation starting the furthest from the best solution, listed as the

3rd search in the table, actually took the shortest time in finding its solution. The differences

36

are essentially negligible though. Overall it seems as if the selection of the initial point is

fairly insignificant for a pattern search with a MADSPositiveBasis2N search algorithm.

Table 4.9 – Pattern search with MADSPositiveBasis2N search algorithm with varying initial point

Initial point [LSP, LST,
Pcond, PPTD, DPHRSG]

Objective
function value

Iter F-count Time [h]

x0 = [25 470 0.08 25 30] 29,6707699 257 3816 03:33:23

x0 = [15 400 0.03 8 15] 29,6695171 266 3479 03:16:04

x0 = [15 400 0.13 8 15] 29,6697019 238 2890 02:42:58

To test is this was true for other pattern searches as well, and not just an anomaly when

using a MADSPositiveBasis2N search algorithm, a similar test was performed with a regular

patter search. That test yielded very similar results, suggesting that the selection of the

initial point might actually be of very little importance for pattern searches.

For the PS with a GA search it was attempted to employ roughly the same adjustments to

the options structure as for the PS with the MADSPositiveBasis2N search. The GA search had

much of the same crash issues, particularly with a contraction factor of 0.9, but unlike the

MADSPositiveBasis2N search one of the simulations with an expansion factor of 4 was

actually successful. However, any changes made to the options structure had seemingly very

little bearing on the final result, as seen from both Table 4.10 and Figure 4.10. Actually none

of the adjustments resulted in an improvement upon the solution from the initial screening,

though the simulation with an adjustment made to the LB was the closest. This is perhaps

indicating that the boundaries set are of some importance for the GA search, which seems

reasonable considering the default GA searches the entire solution space.

Table 4.10 - PS with GA search, changes to options structure

Expansion
factor

Contraction
factor

LB
changed

Complete
poll

Objective
function
value

Iter
F-
count

Time [h]

Initial screening 3 0,67 no on 29,6687982 182 2779 02:35:36

3, 0.8, no, on 3 0,8 no on 29,6692836 354 4354 04:05:44

4, 0.8, no, on 4 0,8 no on 29,6694707 446 5119 04:46:16

5, 0.8, no, on 5 0,8 no on 29,6693091 392 3824 03:34:21

5, 0.8, no, off 5 0,8 no off 29,6694709 466 5026 04:41:26

3, 0.8, yes, off 3 0,8 yes off 29,669022 289 2879 02:40:51

37

Figure 4.10 – PS with GA search, objective function values after changes to options structure.

Looking a bit closer on the details of the simulations, it appears as if the initial screening was

perhaps a bit lucky with the initial GA search. As discussed previously, using a GA search with

a PS is more or less equivalent with choosing a good starting position for the regular PS, and

the initial screening managed to locate a point with an objective function value of 29.7437,

much better than the other GA searches that were in the range of 29.85. There were no

changes made to the GA part of the search, so the difference must be attached to stochastic

nature of the GA. Looking at Figure 4.11 and comparing it to Figure 4.9 it is evident that the

GA search managed to locate a point after the first iteration that it took the

MADSPositiveBasis2N search about 50 iterations to achieve. Further, as the GA search did

not need to contract its mesh size in order to locate said point, it had an advantage in that it

with a relatively larger mesh size at that point quite quickly could locate further

improvements to the objective function. However, it took the GA search a not insignificant

1151 function evaluations to complete the first iteration. A number of function evaluations

that the PS with the MADSPositiveBasis2N search only reached after 128 iterations.

However, with the relatively large mesh size of the PS after the GA search has run its course,

the algorithm can locate better points quite rapidly, possibly making up for any

disadvantages in terms of number of function evaluations.

38

Figure 4.11 – PS with GA search from initial screening, expansion factor of 3, contraction factor of
0.67, no adjustments to LB but with a complete poll.

To test if the changes in boundaries were of some significance with a GA search, a similar

test to what was performed for the PS with MADSPositiveBasis2N search algorithm was

carried out. As seen from Table 4.11 does seem to have some impact. The search with more

relaxed boundaries was noticeably worse. However, the tighter boundaries did not result in

a better solution than the initial screening. As such, it appears as if the best approach is a

boundary that is neither too relaxed nor too tight, and that the initial boundary selected was

quite good. However, as previously speculated, it is possible that the initial screening was a

bit lucky, and that for several simulations over time a tighter boundary might lead to better

results on average.

Table 4.11 - Pattern search with GA search algorithm with varying upper and lower boundaries

LB [LSP, LST, Pcond,
PPTD, DPHRSG]

UB [LSP, LST, Pcond,
PPTD, DPHRSG]

Objective
function
value

Iter
F-
count

Time [h]

Initial screening [15 400 0.0234 8 15] [35 510 0.14 35 35] 29,6687982 182 2779 02:35:36

Tighter
boundaries

[20 455 0.04 24 29] [30 510 0.10 35 35] 29,6752004 197 2571 02:24:44

More relaxed
boundaries

[10 355 0.0234 5 5] [55 510 0.20 35 35] 29,7002988 133 2237 02:05:23

0 20 40 60 80 100 120 140 160 180 200
29.6

29.7

29.8

29.9

30

30.1

30.2

30.3

30.4

30.5

Iteration

F
u
n
c
ti
o
n
 v

a
lu

e

Best Function Value: 29.6688

39

Considering the purpose of using a GA search with a PS is to improve the initial point for the

PS, it was assumed to be unnecessary to test different initial points for the search.

4.4.2 Genetic Algorithm

The GA is quite a bit different from the two other searches, and though it was initially

thought of as a reference model to validate that the PS algorithms located sensible solutions,

it was thought to be of interest to also try to improve its performance. However, even with

the difference from the PS algorithms, GA also had its fair share of problematic crashes, with

its Achilles' heel mainly being the size of the population. Any increase in the population size

from the 100 used in the initial screening seemed futile. Still, there were other adjustments

that could be made.

By default the GA uses an elite count of only 2, as for a smooth objective function a lower

elite count would result in the optimum being achieved quicker. However, the objective

function being optimized in this thesis appeared to be laden with local minima. As such it

was thought that an increase in the elite count could allow the GA to explore more local

minima at each generation, possibly resulting in a better solution. Another aspect was that

as the GA randomly searches the entire solution space, it would probably stand to benefit

greatly from a narrowed solution space to search. As discussed in the theory, the initial

population range permits creating a range from which the design parameters used to create

the initial population is selected from, while still allowing the algorithm to potentially find

solutions outside of the specified region. As such it adds the benefits of a narrower solution

space, but without permanently removing the suspected uninteresting parts of it. It also

renders having an initial population somewhat meaningless. Lastly there is the matter of the

stopping criteria of the algorithm, which with the default settings typically is the function

tolerance. To try and prolong some of the searches, the function tolerance was attempted

reduced, and when it was set to zero it prompted the need for an alternative stopping

criteria. The number of generations was thought to be a convenient stopping criterion, and

the default value of 100 seemed suitable enough. Adding a narrower LB as was done for the

pattern searches was also attempted, though it seemed a bit superfluous with an initial

range already being used.

As for deciding on what values to use for the initial population range, the design variables

from the project work was used as a basis, and then a plus and minus range was added to

the project work value. For the LSP 5 bar was added and subtracted from the 25 bars in the

project work, for the LST there was added and subtracted 30 °C to the initial 470 °C while for

the condenser pressure 0.04 bar was added and subtracted. PPTD and DPHRSG were a bit

different as they were thought to be very unlikely to go down, but the lower range limit was

still set 5 °C and mbar below the project work respectively, while the maximum was set to

what was believed to be the maximum possible without running into frequent computation

errors. As such design variable range for the initial population creates was 20 - 30 bar for the

40

LSP, 440 – 510 °C for the LST, 0.04 – 0.12 bar for the condenser pressure, 20 - 33.3 °C for the

PPTD and 25 – 35 mbar for the DPHRSG.

Table 4.12 contains various GA simulations where adjustments have been made to the

default options structure, and the differences in obtained objective function value are

visualized in Figure 4.12. It is worth noting that the initial screening is not included in graph

as all columns are relative to that of the initial screening. It appears as if increasing the elite

count from 2 to 5 in order to explore more minima simultaneously has a positive impact on

the solution attained, though a further increase to 15 seemed a bit more risky. One

simulation with 15 as elite count ended up with the best solution of any of the GA

optimizations, while another simulation with exactly the same settings ended up with a

worse solution than any of the GA optimizations apart from the initial screening. As such, an

elite count of 5 might seem like the safest approach to obtain a good solution for this

problem. Decreasing the function tolerance does as one would expect increase the

simulation time, and allows the algorithm time to locate a better solution, as seen quite

evidently when comparing column 2 with column 3 and column 5 of Figure 4.12. Further, as

seen from the comparison of column 1 and column 2 and column 4 and 5 of the same Figure

4.12, adding a range for the initial population does indeed help in regards to ending up with

a better solution. The impact of adding an initial range also seems to be of more importance

for shorter simulations, which seems logical as shorter searches are probably more

dependent on having a quite good initial population to work with as it has less time to

recover from any potential poor population composition. As expected, adding a narrowed LB

made very little difference, it actually resulted in a worse solution. Using an initial range for

the initial population seems much more beneficial.

Table 4.12 - GA, various changes to options structure

Elite
count

Initial
range

Initial
population

Function
Tolerance

Objective
function
value

Iter
F-
count

Time [h]

Initial screening 2 no yes 1e-7 29,6889125 36 3700 03:27:08

5, no, no, 1e-7 5 no no 1e-7 29,6778215 28 2900 02:42:50

5, yes, no, 1e-7 5 yes no 1e-7 29,6751831 27 2800 02:37:36

5, yes, no, 1e-9 5 yes no 1e-9 29,6719687 88 8900 08:17:21

5, no, no, 0 5 no no 0 29,6701337 100 10100 09:27:58

5, yes, no, 0 5 yes no 0 29,6693852 100 10100 09:41:42

15, yes, no, 0 15 yes no 0 29,6686772 100 10100 09:25:16

LB, 5, yes, no, 0 5 yes no 0 29,6703843 100 10100 09:25:55

41

Figure 4.12 - GA, objective function values with changes to options structure.

As discussed in the theory the GA does have an element of randomness to it. This was

illustrated by the first generation usually finding an individual with a fitness value around

30.0, though for some simulations the best individual in the first generation had a fitness

value closer to 31.0, or in other words a worse solution than the project work. However,

given enough simulation time it ended up with more or less the same final solution. Though

for short simulations, like the ones with a function tolerance around the default value of 1e-

7, algorithms with identical settings could end up with relatively vastly different solutions

from different simulations.

Figure 4.13 shows the development of the best fitness vale and the mean value for the

iterations of the GA arriving at the best GA solution. However, the mean values are slightly

misleading. As the objective value is set to 50 when the calculations in GT PRO contains

warning messages, populations with a lot of erroneous calculations can have a high mean

fitness value even when the rest of the population develops towards a better fitness value.

The graph does paint a picture of how many of the calculations actually were problematic

though, especially as none of the individuals with a warning message would be particularly

likely to survive to the next generation. Considering that with the initial range selected most

individuals in a typical population would have a fitness value around 30, there would need to

be around 25 individuals with a fitness value of 50 for the mean in a population of 100 to be

as high as 35. That is a staggering 25 % of the simulations, and possibly a part of the reason

why so many of the long lasting simulations seemingly crashed. In regards to how the

individual with the best fitness value evolved, it quite quickly reached a fitness value of

42

around 29.75, before almost 40 iterations with only marginal improvements before a

significantly better individual was discovered, followed by a series of very small incremental

gains before stalling completely over the last 10 generations.

Figure 4.13 – GA with an elite count of 15, selected range for initial population, no selected
individual in the initial populations and 0 function tolerance. Be aware that the mean values of the

population are slightly misleading.

On a whole, the differences between the various optimization methods seemed to be pretty

minor. They all arrived at roughly the same solution, and though some were quicker in

arriving at its solution, the total simulation time was relatively low to begin with, in essence

making the difference in simulation time relatively insignificant. However, if there had been

no issues with simulations crashing, allowing for much longer simulations in general, then

perhaps the simulation time would have been of more interest. Still, in terms of obtaining

the very best possible solution, the pattern search with a MADSPositiveBasis2N algorithm

search does look like a very attractive option. If a fairly good solution in a short time is

desired, using a GPS or GSS search algorithm with the pattern search might be a decent

choice. The pattern searches running a search algorithm in advance of the pattern search,

like the GA search, seems to be able to achieve quite good solution in reasonable time,

though it seems to struggle with finding a very good solution. Further, due to the random

element of the GA algorithm, how fortunate the initial search is seems to have a greater

impact on the final result than any changes to the options structure. The genetic algorithm is

able to find a quite good solution with the proper adjustments to match the problem at

0 10 20 30 40 50 60 70 80 90 100
29

30

31

32

33

34

35

36

37

Generation

F
it
n
e
s
s
 v

a
lu

e

Best: 29.6687 Mean: 29.6855

Best f itness

Mean fitness

43

hand, though it is a bit random and has difficulties obtaining a very good solution, and it is

not particularly quick either.

4.5 Best Optimized Solution
PS with MADSPositiveBasis2N search was able to locate the best solution, though the best

solutions for all 3 algorithms were relatively close, and considerably better than the median

of the initial screening as seen from Figure 4.14.

Figure 4.14 – Best solution of each of the final optimization methods and median of the initial
screening, relative to the reference GA.

To check for further improvements another PS with MADSPositiveBasis2N search was

performed, using the final values from the PS with a MADSPositiveBasis2N search algorithm

with an expansion factor of 5 and contraction factor of 0.8 as the starting point for the

search. After a search lasting almost 3 hours it arrived at the solution in Table 4.13, which is

only a very marginal improvement on the previously best solution. As such it appears to be a

solution that should be very close to the true global optimum.

Table 4.13 – PS with MADSPositiveBasis2N search from previously best solution

Objective
function
value

LSP [bar] LST [°C]
Pcond
[bar]

PPTD [°C]
DPHRSG
[mbar]

MADSPositiveBasis2N,
0.9, 3 from previously
best solution

29,668165 24,347673 488,68725 0,0485562 33,251477 34,996414

44

It is also worth noting that for about 50 different simulations with an objective function

value below 29.70, the difference in design variables were very minor, suggesting that the

best solutions are all located in the same region. Table 4.14 shows the median, the lowest

and the highest value of each of the design variables in those aforementioned 50

simulations, while Figure 4.15 illustrates the range of the design variables relative to the

median values of those simulations. The only two parameters there appears to be some

fluctuation for are the LSP and the PPTD. For the LSP it is worth noting that all but 3 of the

simulations actually have a value below 24.7 bar, which is less than 2 % above the median,

and hence skewing the positive range somewhat. As for the PPTD fluctuations, a lot can

probably be attributed to issues with the GT PRO computations when the mass flux gets too

large. When the DPHRSG is very close to the upper boundary set of 35 mbar, it appears as if

the maximum PPTD attainable without relatively consistently having erroneous

computations is around 33.3 °C, though there are occasionally some simulations that are

successful even when both the PPDT and the DPHRSG variables attained are close to the

upper limit set. Anyway, even with those fluctuations for the LSP and the PPTD, all the

relatively good solutions are very close to each other, further strengthening the claim that

the best solution obtain is likely to be very close to the true global optimum.

Table 4.14 - Range of design variables from simulations with an objective function value below
29.70

LSP [bar] LST [°C] Pcond [bar] PPTD [°C] DPHRSG [mbar]

Median 24,28 490,35 0,04856 34,443 34,982

Lowest value 22,89 484,66 0,04738 32,947 34,159

Highest value 26,29 495,14 0,04881 35,000 35,000

45

Figure 4.15 – Range of design variables in simulations with an objective function value below 29.70
relative to the median values of the same simulations.

4.6 Comparison to Project Work
Table 4.15 shows a comparison of the results from the optimized solution to what was

obtained in the project work.

Table 4.15 – Comparison of optimized solution to the project work

Project
work

Optimized
solution

Absolute
difference

Relative
difference

LSP [bar] 25 24,35 -0,65 -2,60 %

LST [°C] 470 488,69 18,69 4,00 %

Pcond [bar] 0,08 0,04856 -0,03 -39,30 %

PPTD [°C] 25 33,251 8,25 33,00 %

DPHRSG [mbar] 30 34,996 5 16,70 %

Objective function value 30,4612 29,6682 -0,79 -2,60 %

Weight HRSG [kg] 103 278 91 223 -12 055 -11,70 %

Weight ST [kg] 25 151 32 418 7 267 28,90 %

Weight ST generator [kg] 33 530 34 281 751 2,20 %

Weight condenser [kg] 12 388 15 932 3 544 28,60 %

ST power [kW] 11 182 11 536 354 3,20 %

GT power [kW] 31 970 31 884 -86 -0,30 %

Total weight components [kg] 174 347 173 854 -492,59 -0,28 %

Total power output [kW] 43 152 43 420 268,02 0,62 %

46

Looking at the design variables first, the relative differences are illustrated in Figure 4.16. For

the LSP the difference is very minor, so it appears as if the project work choice was a quite

decent. In the project work the LST of 470 °C was chosen due to the conspicuous increase in

equipment weight for LSTs above 470 °C. The optimized solution however, has opted for a

bit higher LST, allowing for more energy being transferred to the steam which then can

potentially be extracted as power in the ST. The significantly lower condenser pressure in the

optimized solution also seems to indicate a focus on extracting more power from the ST. In

the project work the choice of the condenser pressure was essentially down to cutting as

much weight as possible without losing too much performance, so there appears to be a

fundamental difference in how to achieve the best possible solution. In the optimized

solution the PPTD and DPHRSG are more or less cut from the same cloth; within the confines

of the upper boundaries set they are essentially as large as possible without resulting in

erroneous computations. It is quite easy to understand why; the performance loss

associated with an increase in the DPHRSG is quite marginal compared to its potential

weight savings and the same holds true for the PPTD. However, the potential efficiency loss

attached to an increase in PPTD is larger than for the DPHRSG, also explaining why

maximizing the DPHRSG seems to be prioritized in the optimized solutions. In the project

work, using a higher PPTD and DPHRSG than what was eventually used was seriously

entertained as a possibility. However, ultimately decided to stay well within the confines of

the reviewed theory, and not use extreme outliers. With a bit more aggressive approach the

values of the project work would have been a bit closer to that of the optimized solution.

Figure 4.16 – Comparison of design variables between optimized solution and design obtained in
project work.

47

The optimized solution was also compared to the project work at part-load, to check if the

optimization had had any adverse effect on the system performance. As Table 4.16, Figure

4.17 and Figure 4.18 shows, that was not the case. If anything the relative part-load

performance increased somewhat with the optimized solution, with the largest difference in

net efficiency between the two solutions seemingly occurring at around 40 % and around 60

% of the GT load. In terms of absolute efficiency, the optimized solution was consistently

better at all part-loads, though mainly due to having a better efficiency in the first place.

Table 4.16 – Part-load performance optimized solution compared to project work

Gas turbine load [%] 40 50 60 70 80 90 100

Net efficiency - Project work [%] 42,24 44,77 45,35 47,07 48,67 49,89 50,48

Net efficiency - Optimized solution [%] 42,66 45,09 45,76 47,44 48,97 50,17 50,81

Difference 0,42 0,32 0,41 0,37 0,3 0,28 0,33

Figure 4.17 – Relative net efficiency of respectively the project work and the optimized solution at
part-load.

48

Figure 4.18 – Comparison of net efficiency of respectively the project work and the optimized
solution at part-load.

So to summarize; the design differences between the optimized solution and project work

suggests that the optimized solution appears to be more complete in its analysis, and not

only focused on cutting weight like the project work was. This was perhaps illustrated the

best by the apparent illogical choice of having a relatively low condenser pressure. In the

project work it was assumed that the weight savings for the steam turbine and condenser

associated with a higher condenser pressure would be advantageous in an offshore

application. However, given the developed objective function, it turned out that in

combination with the other optimized design parameters the increased power production

with a lower condenser pressure outweighed the weight saving advantages of a higher

condenser pressure. This apparent difference in philosophy is further emphasised when

looking at the weight and power production of the different components. The optimized

solution has shaved considerable weight from the HRSG system, in excess of 12 tons, and

losing 86 kW from the GT as well as an unknown power loss in the ST. However, this power

loss is easily recuperated with an increased power production from the ST as a consequence

of the reduced condenser pressure and increased LST, resulting in a net power increase of

268 kW for the optimized solution. The weight cost of the increased power production can

be seen in the larger ST and ST generator needed to handle the increased power, as well as

the larger condenser needed for the reduced condenser pressure, totalling about 11.5 tons.

As such, in total the optimized solution shaves off about half a ton of weight from the

project work design, a weight reduction of 0.28 %, while increasing the power production by

268 kW, a power increase of 0.62 %. This may not sound like much, but when combined in

49

the objective function that also includes a bulk weight it adds up to a 2.60 % reduction in the

value of the objective function, which can result in considerable savings when the total costs

involved are as large as they are for offshore applications. In terms of part-load

performance, the differences seem to be negligible.

4.7 Summary
As previously discussed, a simple cycle offshore GT has weight to power ratio of about 10.

That is about three times better than the best weight to power ratio obtained for the steam

cycle part of a CC in this thesis. However, as the steam cycle requires no additional fuel there

are considerable fuel and CO2 tax savings associated with using a CC, as well as CCs usually

having a better part-load performance. Which solution is actually better is difficult to know

without knowing the complete cost picture and performing a thorough life cycle analysis.

What is known is that the CC solution developed in this thesis has a net plant efficiency of

about 50.8 % at design point, which is about 33 % better than a simple cycle with the same

GT. Additionally, the weight of the main components is considerably lower than for that of a

high efficiency onshore CC, which has a weight to power ratio for just the main components

of about 34, though its net plant efficiency is only a couple of percentage points worse.

Consequently the CC optimized with respect to a weight to power ratio that includes a bulk

weight for the necessary skid structures in addition to the main components looks like a

quite good solution.

As previously alluded to, the first tested objective function only included the weight of the

main components, which resulted in a partly conspicuously different design solution. It

seemed to focus a lot more on saving weight; or rather, any weight changes had a much

greater impact on the objective function than any changes in power output. The main

difference with a different objective function was that the condenser pressure for the

objective function only considering the weight of the main components was significantly

higher at around 0.12 bar. Further, to recover some of the lost power output with an

increased condenser pressure, the LSP was a bit higher at around 30 bar. The other design

parameters were largely unchanged. Still, the optimized result for the objective function

with a bulk weight was a relatively poor solution for an objective function without a bulk

weight, only emphasising that the optimized solution is in fact only optimized for that

particular objective function. The optimized result is only as good as the chosen objective

function.

Generally speaking, it does seem very beneficial to optimize a plant design for combined

cycles. However, as the optimized solution is very dependent on the choice of objective

function, the choice of objective function is paramount for the optimization process. The

optimized solution seems to depend a lot more on the choice of objective function than the

choice of optimization method. For a given objective function all optimization methods were

seemingly in the same ballpark in terms of the obtained solution, and without too much

difference in simulation time. As such, if the problem at hand and what should be optimized

50

is well known, and an objective function can be developed to fit with that knowledge, there

seems to be possible to achieve quite significant improvements in a design solution with a

reasonably swift optimization search. If a more accurate representation of the true global

optimum is sought after, adjustments can be made to either in the form of a different

optimization method or by changes to the options structure of the optimization method

used. As one would expect, the longer more thorough searches with more function

evaluations are generally able to find the most improvement in the solution. The selection of

initial point and boundaries seemed to be fairly insignificant for the performance of the

pattern search with a MADSPositiveBasis2N search algorithm. However, a pattern search

with a GA search algorithm seemed to perform the best when the boundaries were neither

too relaxed nor too tight, though due to the stochastic nature of the GA there is some doubt

about the validity of that claim. For the GA using a specified range for the initial population

seems far more beneficial than using an initial point or narrower boundaries.

The best solution in this thesis was discovered by running a second pattern search using the

final point of the best solution achieved so far as the starting point. Running one relatively

quick optimization first, and then a second more thorough simulation using the solution

from the first optimization as the starting point might be a very viable course of action.

51

5 Conclusion
This thesis has looked at optimizing combined cycles for offshore applications. This was done

by developing an objective function thought to suitable address the presumed advantages

and disadvantages of installing a combined cycle offshore, and then optimizing said objective

function using MATLAB, GT PRO and Microsoft Excel. A small disclaimer is needed off the

bat. The frequent crashes with certain settings and simulation methods were a bit of a

nuisance, and consequently impeding the progress of some of the optimization attempts.

Through this thesis it has become apparent that the selection of objective function is of

great importance. It must fit with what is desired of the solution, as the optimized solution

will only be optimized for the scenario described by the objective function, and as such the

optimized solution will only be as good as the selected objective function. In terms of choice

of optimization method, the global optimization toolbox of MATLAB comes with several

suitable alternatives, and all non-crashing algorithms were seemingly able to locate quite

good solutions. There were no apparent differences in the design solutions between the

various search methods; they were all in the immediate vicinity of each other.

In the end, the pattern search with a MADSPositiveBasis2N search algorithm seemed to be a

good option for obtaining the best possible solution, while a pattern search with a genetic

algorithm search seemed to be able to achieve a quite good solution in a fairly reasonable

time, though struggling to locate the very best solutions. The genetic algorithm was also

thoroughly investigated, and though it offered much room for improvement by adjustments

to its options structure, it was neither able to obtain a very good solution nor particularly

quick. As such it seemed more suitable as a backup method than as the method of

preference.

In comparison to the design developed in the project work, there were noticeable

improvements to be had in terms of power production and weight savings. While the project

work had essentially focused on cutting as much weight as possible, the optimized solution

was more balanced in its approach and able to consider several elements of the problem

simultaneously. Overall, the optimized solution was 493 kg lighter and able to produce an

additional 268 kW when compared to the project work, corresponding to a 2.6 %

improvement in the objective function value. This may not sound like much, but the

cumulative savings over the lifetime of an installation may become quite considerable. The

optimized weight to power ratio for the steam cycle part of a combined cycle was about 3

times higher than that of a comparable gas turbine typically used offshore. However, as it

requires no additional fuel it offers considerable savings in both CO2 tax and fuel cost,

perhaps making it the preferred solution when a complete life cycle analysis is performed.

In terms of changing the optimization parameters, the pattern search with a

MADSPositiveBasis2N search algorithm was able to improve the final solution by essentially

covering more of the region immediately surrounding the optimal solution, though naturally

the increased number of points being searched increased the simulation time. Still, there

52

were fairly marginal differences between solutions for any pattern search with a search

algorithm. Of note, for the pattern search with a MADSPositiveBasis2N search algorithm the

selection of an initial point and boundaries had little influence on the final solution and total

simulation time. The upper and lower boundaries set had seemingly little impact other than

preventing GT PRO from having to try simulating processes that were clearly infeasible or

entailing frequent erroneous computations.

Overall it appears to be quite advantageous to optimize the design of combined cycles for

offshore oil and gas installations. Once a suitable objective function is established a quite

good optimized solution can be realized in relatively short time. It does not appear to be

necessary with many adjustments in the optimization parameters, though adjustments can

be made if a better solution is aimed at.

53

6 Further Work

The optimization in this thesis was for a fixed HRSG geometry developed in the project work.

However, there are other hardware configurations that could entail a better optimized

solution. Potential further work could include optimizing the hardware geometry of the

HRSG if the software allows it. As it was at the time of writing this thesis, changing the

hardware geometry was not possible from the link with Microsoft Excel, and as such any

optimization would have had to be done by manually changing the hardware parameters in

GT PRO, much like what was done in the project work.

Other possible work includes attempting the optimization for different objective functions.

Alternatives includes among others only optimizing with respect to weight or power, or

perhaps developing a more accurate bulk weight. Most optimizations consists of minimizing

the cost of something, so if the cost of each kg of installed weight as well as the running

costs of fuel and CO2 tax for a given power production could be developed, then that could

be minimized over the expected lifetime of the installation and compared directly to the

simple cycle gas turbines typically used offshore today.

54

7 References
Bolland, O., 2013. Discussion of master thesis [conversation] (Personal communication, 16

January 2013).

Edgar, T. F., Himmelblau, D., M, and Lasdon, L., S., 2001. Optimization of chemical processes.

2nd ed. Boston: McGraw-Hill.

Hellberg, A. 2006. Experience of 29MW SGT-700 Gas Turbine in Power Generation

Applications. [pdf] Available at: <http://www.energy.siemens.com/fi/pool/hq/energy-

topics/pdfs/en/gas-turbines-power-plants/8_Experience_of_29MW.pdf> [Accessed 12 April

2013].

Jaluria, Y., 2008. Design and Optimization of Thermal Systems. 2nd ed. Boca Raton, Florida:

CRC Press.

Kloster, P. 1999. Energy Optimization on Offshore Installations with Emphasis on Offshore

Combined Cycle Plants. In: Society of Petroleum Engineers Inc, Offshore Europe Conference.

Aberdeen, Scotland 7-9 September 1999, paper no. SPE 56964.

Finansdepartementet, 2012. Skatter, avgifter og toll 2013, Forslag til CO2-avgiftssatser for

2013 [online] Available at: <http://www.regjeringen.no/nb/dep/fin/dok/regpubl/prop/2012-

2013/prop-1-ls-20122013/11/9/2.html?id=702766> [Accessed 07 June 2013].

MathWorld, 2013. Convex Polyhedron. [image online] Available at:

<http://mathworld.wolfram.com/ConvexPolyhedron.html> [Accessed 12 March 2013].

Nord, L.O., 2013. Discussion and counselling of master thesis [conversation] (Personal

communication, several meetings from 16 January 2013 to 28 May 2013).

Norwegian Petroleum Directorate, 2013. Facts 2013 - The Norwegian Petroleum Sector.

[online] Available at: <http://npd.no/Global/Engelsk/3-

Publications/Facts/Facts2013/FACTS_2013.pdf> [Accessed 07 June 2013].

Sletten, A., 2012. Process simulation of combined cycles for offshore applications.

Stoecker, W., F., 1980. Design of Thermal Systems. 2nd ed. New York: McGraw-Hill.

Thermoflow Inc, 2012a. Products, Combined Cycle, GT PRO. [online] Available at:

<http://www.thermoflow.com/combinedcycle_GTP.html> [Accessed 13 December 2012].

Thermoflow Inc, 2012b. Products, Combined Cycle, GT MASTER. [online] Available at:

<http://www.thermoflow.com/combinedcycle_GTM.html> [Accessed 13 December 2012].

Thermoflow Inc, 2012c. Products, Combined Cycle, PEACE. [online] Available at:

<http://www.thermoflow.com/combinedcycle_PCE.html> [Accessed 13 December 2012].

http://www.energy.siemens.com/fi/pool/hq/energy-topics/pdfs/en/gas-turbines-power-plants/8_Experience_of_29MW.pdf
http://www.energy.siemens.com/fi/pool/hq/energy-topics/pdfs/en/gas-turbines-power-plants/8_Experience_of_29MW.pdf
http://www.regjeringen.no/nb/dep/fin/dok/regpubl/prop/2012-2013/prop-1-ls-20122013/11/9/2.html?id=702766
http://www.regjeringen.no/nb/dep/fin/dok/regpubl/prop/2012-2013/prop-1-ls-20122013/11/9/2.html?id=702766
http://mathworld.wolfram.com/ConvexPolyhedron.html
http://npd.no/Global/Engelsk/3-Publications/Facts/Facts2013/FACTS_2013.pdf
http://npd.no/Global/Engelsk/3-Publications/Facts/Facts2013/FACTS_2013.pdf
http://www.thermoflow.com/combinedcycle_GTP.html
http://www.thermoflow.com/combinedcycle_GTM.htm
http://www.thermoflow.com/combinedcycle_PCE.html

55

The Engineering ToolBox, 2013. Liquid – Densities. [online] Available at:

<http://www.engineeringtoolbox.com/liquids-densities-d_743.html> [Accessed 12 April

2013].

The MathWorks, Inc., 2012. Global Optimization Toolbox User’s Guide. [pdf] Available

through: MathWorks PDF Documentation Center.

<http://www.mathworks.se/help/pdf_doc/gads/gads_tb.pdf> [Accessed 07 February 2013].

Tollvesenet, 2013. Excise Duty on Emissions of NOx 2013. [online] Available at:

<http://www.toll.no/upload/aarsrundskriv/Engelske/2013%20Emissions%20of%20NOx.pdf>

[Accessed 07 June 2013].

http://www.engineeringtoolbox.com/liquids-densities-d_743.html
http://www.mathworks.se/help/pdf_doc/gads/gads_tb.pdf
http://www.toll.no/upload/aarsrundskriv/Engelske/2013%20Emissions%20of%20NOx.pdf

Appendix A – Bulk Weight Estimation Motors and Pumps

Estimated weight of motors and pumps in plant, extracted from PEACE.

Number of
units Weight [kg]

Feedwater Pump 3
 Pumps

338

Motor

209

1641

Condensate Forwarding Pump 2
 Pumps

148

Motor

66

428

Condenser C.W. Pump (P4) 2
 Pumps

1380

Motor

2760

Condenser Vacuum Pump (P7) 2
 Pumps

1380

Motor

2760

Treated Water Pump (P11) 1
 Pumps

81

Motor

25

106

Demin Water Pump (P23) 2
 Pumps

56

Motor

15

142

Raw Water Pump 1 (P26) 1
 Pumps

71

Motor

21

92

Raw Water Pump 2 (P27) 1
 Pumps

71

Motor

21

92

Aux Cooling Water Pump (closed loop) (P10) 2
 Pumps

92

Motor

33

250

Diesel Fire Pump (P12) 1
 Pumps

1440

Motor

1440

Air Compressor 2
 Pumps

889

Motor

1778

 Total weight motors and pumps

11489

Appendix B - MATLAB Code

Objective function to be optimized

function WP = WeightToPower(x) % Weight to power objective function to be

optimized

global e

% Writes the input value for the simulation
ePres = e.Activesheet.get('Range', 'E8'); % Live steam pressure
ePres.Value = x(1);
eTemp = e.Activesheet.get('Range', 'E9'); % Live steam temperature
eTemp.Value = x(2);
ePCond = e.Activesheet.get('Range', 'E10'); % Condenser pressure
ePCond.Value = x(3);
eDT = e.Activesheet.get('Range', 'E11'); % Minimum pinch point temperature

difference
eDT.Value = x(4);
ePHRSG = e.Activesheet.get('Range', 'E12'); % HRSG draft loss
ePHRSG.Value = x(5);

BWeight = 150000; % Estimation of additional bulk weight from HRSG and ST

skid, including skid structure, water tanks, pumps, makeup water system++

e.ExecuteExcel4Macro('!Therm()'); % Executes Excel Macro 'Therm'
pause(2) % pause time in seconds (estimated time to complete one Thermoflow

run)

% Reads the cell with the Thermoflow Computation Message (OK, Messages,

Failed!)
eFlag = e.Activesheet.get('Range', 'E6');
flag = eFlag.Value;

% Generates weight-to-power ratio
 if strcmp(flag,'OK')
eWeightHR = e.Activesheet.get('Range', 'E15'); % Wet weight HRSG
eWeightST = e.Activesheet.get('Range', 'E17'); % Weight steam turbine
eWeightG = e.Activesheet.get('Range', 'E18'); % Weight generator steam

turbine
eWeightC = e.Activesheet.get('Range', 'E20'); % Wet weight condenser
eSTPower = e.Activesheet.get('Range', 'E16'); % Power from steam turbine
eGTPower = e.Activesheet.get('Range', 'E19'); % Power from gas turbine

GTrefP = 32504; % Power output from GT when run as a simple cycle with

exhaust losses of 4.99 mbar
Weight =

eWeightHR.Value+eWeightST.Value+eWeightG.Value+eWeightC.Value+BWeight; %

Weight of all components in steam cycle
STPower = eSTPower.Value;
GTPower = eGTPower.Value;

Power = STPower - (GTrefP - GTPower); % Additional power from adding a

steam cycle
WP = Weight/Power; % The weight to power objective function to return
elseif strcmp(flag,'Messages') % If there are any warning messages, WP is

set to a high value so the point will be "ignored"

 WP = 50; % The weight to power objective function to return when

computation is erroneous
 else
 WP = INF; % If the computation completely fails, WP is set to

infinity, and the optimization stops
 end

end

Pattern search algorithm

% Direct Search using pattern search with the possibility of including the

following search methods: GPSPositiveBasis2N, GPSPositiveBasisNp1,

GSSPositiveBasis2N, GSSPositiveBasisNp1, MADSPositiveBasis2N (current

search method being used), MADSPositiveBasisNp1, searchga(GA search),

searchlhs (Latin hypercube search) and searchneldermead(Nelder-Mead

search).
lb = [15 400 0.0234 8 15]; % Lower boundary for x, LSP, LST, PCond, PPTD,

DP HRSG
ub = [35 510 0.14 35 35]; % Upper boundary for x, LSP, LST, PCond, PPTD, DP

HRSG
x0 = [25 470 0.08 25 30]; % Initial guess of best point, values from

project work
tic; % Start clock
tStart = tic;
% Creates options structure for altering the default settings of the
% pattern search algorithm
options =

psoptimset('SearchMethod','MADSPositiveBasis2N','PollMethod','GPSPositiveBa

sis2N','CompletePoll','off','MeshContraction',0.8,'MeshExpansion',3,'MaxIte

r',2000,'MaxFunEvals',40000,'display','iter','PlotFcns',@psplotbestf);
[x fval] = patternsearch(@WeightToPower,x0,[],[],[],[],lb,ub,[],options); %

Returns the value of the objective function at the solution x
tElapsed = toc(tStart); % Returns the time elapsed in seconds

Genetic algorithm

% Genetic Algorithm (GA)
lb = [15 400 0.0234 8 15]; % Lower boundary for x, LSP, LST, PCond, PPTD,

DP HRSG
ub = [35 510 0.14 35 35]; % Upper boundary for x, LSP, LST, PCond, PPTD, DP

HRSG
nvars = length(lb); % Number of design variables
tic; % Start clock
tStart = tic;
% Creates options structure for altering the default settings of the GA
% PopInitRange is chosen based on the immediate region surrounding the

project work values
options =

gaoptimset('populationsize',100,'generations',100,'StallGenLimit',20,'TolFu

n',0,'EliteCount',5,'PopInitRange',[20 440 0.04 20 25;30 500 0.12 33.3

35],'display','iter','PlotFcns',@gaplotbestf);
[x,fval] = ga(@WeightToPower,nvars,[],[],[],[],lb,ub,[],options); % Returns

the value of the objective function at the solution x
tElapsed = toc(tStart); % Returns the time elapsed in seconds

Simulated annealing, frequent crashes so not really used in thesis

% Simulated annealing
lb = [15 400 0.0234 8 15]; % Lower boundary for x, LSP, LST, PCond, PPTD,

DP HRSG
ub = [35 510 0.14 35 35]; % Upper boundary for x, LSP, LST, PCond, PPTD, DP

HRSG
x0 = [25 470 0.08 25 30]; % Initial guess, values from project work
tic; % Start clock
tStart = tic;
options =

saoptimset('display','iter','PlotFcns',@saplotbestf,'PlotFcns',@saplotf);
[x fval] = simulannealbnd(@WeightToPower,x0,lb,ub,options); % Returns the

value of the objective function at the solution x
tElapsed = toc(tStart); % Returns the time elapsed in seconds

