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Abstract
How individuals move and interact with each other is a complex matter.
Even so, the knowledge of how such movements and interactions happen
is important to understand in order to be able to keep genetic variation
and prevent extinction of species. Also it is important to be able to limit
dispersal of unwanted diseases or pests. In this thesis I have investigated
different models for dispersal rates for individuals in a set of partially isolated
subpopulations of house sparrows in Northern Norway. The models differ in
what factors contribute to increase or decrease the dispersal rate. By using
such models one can get a broader understanding of what may cause an
individual to disperse from one location to another, and hence it gives a
pointer in what way one should act in order to adjust the dispersal.

In my master’s thesis I have used discrete localities and continuous time.
The localities are defined to be the ten farms on the island where observations
were made. In the study, distance as well as home locality, sex and date is
tested for contributions to the dispersal rate. The expanded models seem to
give a more likely result than the simple ones, suggesting that all the factors
tested for make a significant improvement to the model and that the dispersal
is in fact affected by many factors.
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Sammendrag
Hvordan individer beveger seg og samhandler er en sammensatt sak. Allikevel
er kunnskap om slik bevegelse og samhandling viktig å ha for å kunne sørge
for å beholde genetisk variasjon og hindre utryddelse av arter. Det er også
viktig for å kunne begrense spredning av uønskede sykdommer og skadelige
arter. I denne studien har jeg undersøkt ulike modeller for spredingsrate
for individer i en gruppe delvis isolerte subpopulasjoner av gråspurv i Nord-
Norge. Modellene skiller seg fra hverandre i forhold til hvilke faktorer som
bidrar til økning eller senkning av spredningsraten. Ved å prøve ut slike
modeller kan man få bredere kunnskap om hva som kan få et individ til å
reise fra en lokalitet til en annen. Dermed kan slike modeller gi en pekepinn
på hvor eventuelle endringer bør gjøres for å påvirke spredningen.

I masteroppgaven benytter jeg diskrete lokaliteter og kontinuerlig tid.
Lokalitetene er de ti gårdene på det geografiske området hvor dataene er
samlet inn. I studien er avstand, avstand til fødested, kjønn og dato testet
for bidrag til spredningsraten mellom to punkter. De mer avanserte mod-
ellene ser ut til å gi bedre resultater enn de enkle. Dette kan indikere at
alle faktorene testet i denne studien gir en forbedring i modellen for spred-
ningsrater, og ikke minst at spredningsratene er påvirket av mange faktorer.
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1 Introduction
For several years large amounts of data have been collected on house sparrows
(Passer domnesticus) on the coast of Northern Norway. The house sparrow is
a small bird often found close to human settlements where food resources like
farming waste is accessible. For practical reasons, the geographical area in
this study is limited to the island Hestmannøy, which is on Helgelandskysten
outside the city of Mo i Rana.

The island is scarcely populated and has ten farms where data is collected.
Thus it is likely that the sparrows live close to the farms as they can supply
food and shelter. In this study I have assumed that as long as an individual
is alive, it will be on a farm. The bird can be at different farms during its
lifetime, but at any one point in time, each individual is on a farm if it is
alive. Ringsby et al. (2006) study the extinction time of a house sparrow
population after the last farm on another island in the area is shut down.
In the study they find that after the farm is closed, the adult death rate
increased and new recruitment decreased, which are important reasons for
the extinction. Therefore, the assumption of discrete locations is justified in
that it is likely that any sparrow at any one time will be at one of the ten
farms.

In addition to resources, genetic variation is essential for a population
to survive. An important source for large genetic variation is migration, in
that individuals move from one population to another and breed there, thus
possibly extending the genetic pool in the population where they arrive. In
populations completely cut off from others of the same species, inbreeding
may become a serious problem if the population is not of sufficient size to
maintain a large enough genetic pool. This could cause inbreeding depres-
sion. This means that a large number of negative recessive conditions being
expressed in an individual as explained by Halliburton (2004, p. 286-293) .
This is the result of closely related parents breeding and thus increasing the
risk of their offspring receiving a double dose of negative recessive genes. As
discussed in Halliburton (2004, p. 290-292), this could potentially contribute
to extinction in small populations. The genetic pool on an island is typically
smaller than on the mainland (Jensen et al., 2013), increasing the risk of a
small genetic pool in this case. An endangered population is not likely to be
very large, and the distance to another population of the same species might
be too large for individuals to travel. This illustrates the importance of hav-
ing a thorough knowledge of how genes can be passed between populations,
as this knowledge could help prevent extinctions. This could for instance be
done by aiding movement between populations so a certain genetic exchange
is present. A large enough genetic pool is also important to prevent extinc-
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tion as it increases the probability that some individuals will be able to adapt
to possible changes, either in climate, or in their environment.

Because of the assumption that the birds are at one of the ten farms
at all times, Hestmannøy creates a tiny model of several subpopulations
of sparrows that are partially isolated. That is, the subpopulation on one
farm has limited migration to and from other farms. Hence the setup can
be used to model how populations with limited contact spread their genes
and interact with other populations. Thus the model is useful for situations
where subpopulations have limited contact, as may be the case for endangered
species.

On the other hand, knowledge of how individuals move does not only
help aid in the migration of individuals, it can also help prevent the spread
of unwanted elements. For instance, if a population has individuals carrying a
contagious lethal disease, it could be important for the management of other
populations. If the infected population has individuals who can disperse
to other localities, such knowledge is important to prevent spread from the
contaminated population or to ensure that proper precautions are taken.
Even if the disease is not lethal, knowledge of the dispersal rate and distance
can help prepare the governing body in surrounding areas of the oncoming
disease so that they can take the necessary precautions.

The aim of my thesis is to attempt to find a good model for the dispersal
rate of house sparrows. Ovaskainen (2004) conducted a similar study on
butterflies in continuous space. In his study the entire area is divided into
different habitat types according to how individuals move, with adjustments
for border areas and habitat areas. In my study I have used discrete localities,
the ten farms on Hestmannøy, and continuous time. In the study I gradually
include new factors to the function of the rate, to see what factors give an
improved result.

2 Definitions
In this thesis the use of the word observation will normally refer to a case
where an individual is either caught or seen. The total number of observations
made at the different locations is shown in figure 1 for the reduced data set
for model 1.

The term sampling point is used to indicate a pair of a locality and a
date at which observations were taken. In other words that someone was
present to make observations of the birds at that location at that date. Each
location, that is farm, is given a location number, see table 2.0.1. Similarly,
each date is denoted by a ts, which is the date for sampling point s. Note
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Locality number Locname
1 Isachsen
2 TorMathisen
3 Randecker
4 Heen
5 BirgerMathisen
6 Klausen
7 Hjørdis
8 Asbjørn
9 Danielsen
10 Sletthågen

Table 2.0.1: Locality name and number

that the definition of a sampling point means that two sampling points may
have the same date so each date does not have one unique s, but they will
then not have the same locality. This will be the case if observations were
made on the same day at more than one locality .For instance, observations
were made on on the 6th of May 2011, at the Danielsen farm. Hence this
time and place pair is a sampling point, denoted by (l2, t2)=(9,20110506), as
the Danielsen farm is farm number 9 and time-location pair is the second
sampling point at the chronological list of points.

Figure 1: Histogram of observations at each location

An individual’s catch-mark-resight history is denoted by Yi. The history
consists of a series of variables, Xi,s, one for each sampling point after the
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individual enters the study. The value of Xi,s is 0 if individual i is not
observed at sampling point s, and 1 if it is observed.

3 Data Set
The data set was provided by Henrik Jensen at the Department of Biology at
NTNU. For practical reasons, the data used for this study has been limited
to the data collected on one of the islands, Hestmannøy, located outside of
Mo i Rana in Northern Norway. The data set is collected through the catch-
mark-resight method, where each individual is caught, marked, released and
later might be caught or observed again. The marking makes it possible to
identify the different individuals, hence tracing each individual’s history.

The observations of the birds are made at different times throughout the
year. That is, the birds are not continuously followed with a computer chip
or something of the sort. This means that the only times an observation
may take place is when data was actually collected. Hence, individuals may
have moved more than what is indicated by the data, or have gone through
other localities between two observation times. An individual is considered
to enter the study when the first observation of it is made.

The data set includes information on many individuals. Each bird is
identified by a ring number, and data is collected and sorted according to this
unique identifier. This means that for each sampling point, an observation is
either made of an individual or not, simply depending on whether the bird is
observed at the sampling point. The fact that the bird is not seen or caught(
observed), does not necessarily mean that it was not there, something taken
further into account later.

To further limit the data set, only juvenile individuals were taken into
account, and only data collected in 2011 was used as part of the data set,
resulting in only individuals born in 2011 being used in the project. This
narrowed the data set down to data on I = 192 individuals, and 962 observa-
tions(not including multiple data). Note that all sample times and locations
from 2011 were included, also if juveniles were not observed at that particu-
lar time and place, as this also gives useful information to the models. This
leaves a total of S = 142 sampling points to be considered. Note also that the
number of individuals can differ depending on what model is used, because
some individuals lack data that is needed for certain models.
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Figure 2: The distribution of the sampling points by location and
date(yyyymmdd).

3.1 Distances
When finding the distance between two locations, I used the values of the
longitude and latitudes of the data collected at each farm. Henceforward,
the term collected data refers to the data that is real, that is, collected in
the field. This is meant to be the opposite of the "simulated data" which is
computer generated, and not the result of observations. Each farm only had
one latitude and one longitude value, so it is assumed that all individuals
observed on a farm is observed at the same coordinates. Note that these
coordinates are based on the complete data set, including double or multiple
observations, as not all locations were observed at in the limited data set.
This should not affect the results as the distance should be constant.

The function I used to calculate the distance used the mean of the lon-
gitudes and latitudes collected as each farms longitude and latitude value.
The use of the mean allows for small differences in the longitude/latitude
measurements, for example within the area of a large farm. However as men-
tioned, in the data set used for this project, all data from the same farms
have the same longitude and latitude, so use of the mean values would not
have been necessary in this case, and thus has no effect as the mean is the
same as all the measurements for each farm.

From the calculated mean position for each farm, I calculated a distance
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matrix giving the distances between the farms, based on the Haversine for-
mula (Movable Type Ltd. (2014) , see appendix B.) which calculates the
distance between two points(on a sphere, not elliptical) given by the radius
of the sphere (the earth) and the longitudes and latitudes of the two points.
The distance matrix is thus a symmetric nlxnl matrix, where nl is the num-
ber of locations, here nl = 10, in which element i,j denotes the approximate
distance (in meters) between location i and location j.

3.2 Multiple Data
While working with the data set, it became clear that certain individuals
were observed more than once at certain sampling times, either at different
localities, or in the same locality. Since the time units are days, it is reason-
able that it is possible to observe an individual twice within the course of a
day, if different localities are sampled from in the same day. However, this
causes an issue. From the model, an assumption that the different dates do
not overlap follows, as each date is seen merely as one point in time, not as
an interval. Therefore, it does logically not make sense that an individual is
at several farms during one date, and thus such data has to be omitted from
the set.

Multiple observations are therefore removed by reducing them to one
observation, that is, only one observation is permitted per individual per
day. This is simply done in the case of multiple observations at the same
sampling point, and for the case where an individual is observed at the same
date and at different localities, I have adjusted the data so that only one
time-location observation, randomly chosen between the observations (with
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equal probabilities), is present in the capture history data used. A total of
17 observations were removed for one of these two reasons, leaving the data
set to include 962 observations. This means that each observation had to
be checked to see if the individual was already observed on that date, and if
that was the case, the two (or more) observations had to be randomly chosen
from.

3.3 Organization of Data Set
To organize the data set in a practical way, the variable Xi,s is introduced.
The variable indicates whether or not individual i is observed at sampling
point s. If the individual is observed at sampling point s, Xi,s takes the value
1. Otherwise, the value is 0.

From this, an observation matrix could be made. In this matrix, each row
represents one individual, and each column represents one sampling point.
Note that one time (date) can have several columns in cases where several
localities were sampled from in the same day, recall that a sampling point is
a date and location pair.

In the observation matrix, each element is one of the X-s mentioned in
section 2. All the Xi,s-s in one row belong to the same individual, and to-
gether they represent that individuals capture-mark-resight history, that is
that individuals Y . In other words, element i, s in the observation matrix is
1 if individual i was observed at sampling point s, and 0 if not. This orga-
nization of the data hence gives a quite simple overview of each individual’s
catch -release history.

4 General Model
The goal of the study is to find a statistical model that fits the data well, so
multiple models should be tested to find out what works best. As a basis for
the different models in this study, a general model is used, which is adjusted
for different model.

To find out what models work well, it is essential that one is able to
calculate how well the data set fits the model. The value of the log likelihood
can be used for this purpose. In this study, pi(t) indicates the probability of
an individual being in locality i at time t. There are several individuals, so
the total probability of observing the observed data given a correct model
depends on all these individuals’ probabilities.
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4.1 Probability of Movement
The probability of an individual being in a location at a given date is assumed
to follow a certain model. If one thinks of the probability of an individual
being at a locality at a certain time, it would be reasonable to assume that
this probability depends on where the individual was at the previous time.
If this previous location is also unknown, this could also be represented by
probabilities and so on. At the time of sampling point s, one can then assume
that the probability of being at locality i is the sum of the probabilities of
moving from the previous locality to locality i, and subtracting the proba-
bility of moving away from i if i was the previous locality. Note that the
dispersal rate λi,j is the dispersal rate from location j to location i, that is
the rate at which an individual in locality j moves to locality i (see section
4.5). This gives the following differential equation (note that pi = pi(t)):

d

dt
pi(t) =λi,1p1 + λi,2p2 + ...+ λi,i−1pi−1 +

λi,i+1pi+1 + ...+ λi,10p10 − Σj 6=iλj,ipi (1)

where the pi(t) is the probability of an individual being in location i at time t,
given the history until time t. This scenario forms the basis for all the models
in my thesis, the differences between the models being in the expressions for
the rates. From the expression for the derivative above one can see that the
positive additions in the start of the expression represents contributions that
come from individuals moving to location i from the other locations, while
the last sum is the contributions from location i to the other locations.

Rewriting this to matrix form, one gets the simple expression
d

dt
p(t) = Ap(t). (2)

This expression thus has to be solved. By the definition of an exponential
matrix eAt where A is a matrix,

eAt = I + At+ 1
2(At)2 + 1

6(At)3 + 1
24(At)4 + . . .

= I + At+ 1
2A

2t2 + 1
6A

3t3 + 1
24A

4t4 + . . . (3)

The derivative of expression (3) with respect to t can now be found
d

dt
eAt = 0 + A+ 1

22A2t+ 1
63A3t2 + 1

244A4t3 + . . .

= A(I + At+ 1
2A

2t2 + 1
6A

3t3 + . . . )

= AeAt (4)
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Hence, because of equation (4) it is clear that

p(t) = eAtp(0) (5)

is a possible solution of the differential equation because

d

dt
p(t) = d

dt
(eAt)p(0)

= (∂At
∂t

eAt)p(0)

= AeAtp(0)
= A(eAtp(0))
= Ap(t).

So (2) has the solution p(t) = eAtp(0) where p(t) is a 10x1 column vector
of the pi (first element p1, second p2, etc), and A is a 10x10 matrix with the
coefficients from above. More specifically, the matrix A takes this form,



−∑
j 6=1λj,1 λ1,2 λ1,3 λ1,4 . . . λ1,9 λ1,10
λ2,1 −∑

j 6=2 λj,2 λ2,3 λ2,4 . . . λ2,9 λ2,10
λ3,1 λ3,2 −∑

j 6=3 λj,3 λ3,4 . . . λ3,9 λ3,10
... . . . ... ...
... . . . λ9,10

λ10,1 λ10,2 . . . λ10,9 −
∑
j 6=10 λj,10


where the exact expression for A is determined by the chosen model for the
λi,js.

4.1.1 Factorizing

The basic difference between the log likelihood function for the different mod-
els is how the A-matrix is calculated. This is done outside the log likelihood
function itself by calling a different function which calculates the correct λs.
What function is called upon depends on what model is used. As is clear from
section 4.1, the diagonal elements can then be found by simply subtracting
the sum of all the other elements in the appropriate column.

The A-matrix is different for each individual for models more complicated
than model 1. This indicates that a new calculation has to be done for
each of the individuals when it comes to calculating the exponential of the
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matrix. The definition of an exponential matrix is an infinite sum of matrix
multiplications as noted in section 4.1: eA = I +A+ 1

2A
2 + 1

3!A
3 + 1

4!A
4 + ....

Logically, this requires some computation since it has to be repeated for
each individual and time step (from equation 4 that it is eAt that has to be
calculated) and during an optimization for several parameters. Hence any
short cut to limit the computation may be of great help.

A possible way to reduce computations and limit the use of exponential
matrices is to factorize the matrix At by using the eigen values and eigen
vectors. At may be factored into a product of three matrices, UDU−1, where
U is a matrix where the columns are eigen vectors, andD is a diagonal matrix
of the eigen values. By using this for the A matrix, the matrix exponential
becomes

eAt =eUDU−1t

=I + UDU−1t+ 1
2(UDU−1t)2 + 1

6(UDU−1t)3 + . . .

=I + UDU−1t+ 1
2(UDU−1t)(UDU−1t)

+ 1
6(UDU−1t)(UDU−1t)(UDU−1t) + ...

=UU−1 + UDU−1t+ 1
2UD

2t2U−1 + 1
6UD

3t3U−1 + ...

=U(I +Dt+ 1
2D

2t2 + 1
6D

3t3 + ...)U−1

=UeDtU−1. (6)

The use of the factorized A-matrix hence only requires eDt to be calcu-
lated for each time step. Since D is a diagonal matrix of the eigen values, the
elements inD can easily be calculated without using matrix multiplication by
simply multiplying the eigen value vector by t, the time difference, and then
setting up a diagonal matrix of the result. However, a diagonal matrix mul-
tiplied by itself again makes a diagonal matrix, where each element is simply
the square of itself. Similarly, for a product of three diagonal matrices, the
product is a diagonal matrix where each of the elements is the original element
to the power of three. From this it follows that eDt is simply, by definition of
an exponential for a single value(ex = 1 + x + 1

2x
2 + 1

3!x
3 + · · · ), a diagonal

matrix. The elements on the diagonal are the exponential values of the time
difference multiplied by the different eigen values, eDt = diagonal(eev·tdf ) (ev
and tdf are the eigen values and the time difference respectively). By uti-
lizing this, the need for an exponential matrix calculation vanishes, replaced
by a simple matrix multiplication. Hence in the log likelihood function, this
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factorization of the A-matrix is used. Furthermore, noting that if t = 0,
eAt = I, the identity matrix, the need of the calculation is eliminated. This
occurs whenever there are several sampling points in the same day, as the
time difference between at least two sampling points is then 0.

4.2 Inclusion of Death Rate
It is likely that not all individuals will survive to move to a different location.
This implies that some sort of death toll adjustment should be done. Ex-
pression (5) assumes that an individual is alive, and hence p(t) contains the
probabilities for an individual’s possible positions given that the individual
is alive. Assuming that death rate is independent of location and movement,
the probability of movement and death should be independent probabilities.
The assumption of a constant death rate may be a controversial assumption
as some farms may offer better living conditions for the birds than another.
This is discussed further in section 9. For an example of locality dependent
death rates, see for example the article by Ovaskainen (2004) on dispersal
rates in continuous time and space.

In order to obtain an expression for the probabilities which includes an
adjustment for possible deaths, some assumptions has to be made about the
lifetime of a house sparrow. The exponential distribution can be used to
model the lifetime of an individual, as it reflects a decreasing probability of
being alive after a certain age. Assuming that the lifetime of an individual
bird is exponentially distributed, one can find the probability of survival in
a given time interval for the bird. Let the variable T denote the lifetime of
a random individual. Then

P (T = t) = αe−αt, t ≥ 0, (7)

where α is the death rate. The cumulative distribution is given by

P (T < t) =
∫ t

0
P (T = x)dx

= [−e−αx]t0
= −e−αt + e0

= 1− e−αt. (8)

The probability needed in the model is the probability of an individual re-
maining alive between two sampling points, if we know it is alive at the first
sampling point. This can be written as P (T > ts+1|T > ts). This is easily
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calculated by Bayes’ theorem,

P (T > ts+1|T > ts) = P (T > ts+1)
P (T > ts)

= e−αts+1

e−αts

= e−α(ts+1−ts). (9)
So, the probability of an individual being alive at the end of a certain time
interval, given that it was alive at the beginning, is simply dependent on
the time difference between the two sampling points. This is due to the
memoryless property of the exponential distribution, which states that if
you know that an individual is still alive at the beginning of a time interval,
the probability of the individual dying in the following time interval is the
same, no matter how old the individual was at the beginning of the interval.

Having this probability, the calculation of the adjusted probability for the
movement is simply calculated by multiplication of the probabilities of being
alive and of being in a certain locality at a certain time. The probability
of a bird being in any position at time t given that it is alive, is given in
p(t). This is independent of the probability of being alive, which depends on
when the bird was last observed alive. From now on letting p(t) mean the
probability of the individual being alive and at the different localities, the
expression becomes p(t) = eAtp(0)e−αt starting at t = 0. For a time interval
ts−1 to ts, the t is simply replaced by the length of the interval, and p(0) is
replaced by the probability at the beginning of the interval (a new zero-point
is set at t = ts−1), so the expression becomes

p(ts) = eA(ts−ts−1)p(ts−1)e−α(ts−ts−1). (10)

4.3 Time Adjustment
Ideally, the birds’ whereabouts would be known at all times. This is however
not the case, and a stepwise approach is thus used. The way the data set is
organized makes it natural to use the sample points as steps in the calculation
of the probabilities as indicated above. This means that the p(t) probability
must be adjusted to account for the fact that we do not know exactly where
the individual birds are at all times. Furthermore, the later sample points,
the more information we have on the birds, and hence the probability should
be updated each time new information is obtained, that is, at each sampling
point.

In order to calculate the probability under the approximation that the
sampling points are single points in time, probabilities are calculated right
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before a sampling point, then directly after. Note that this assumes that an
individual stays in the same locality between two sampling points. That is, if
an individual is at locality i at time ts, it is assumed to stay there until (but
not necessarily at) ts+1, even if this is several days after. To calculate the time
difference, the actual dates are used, not the day before or after. For instance,
for a hypothetical time interval were the two following dates are May 6th and
May 16th, the time difference would be 10 days. The probabilities for a given
sampling date is calculated by using the value given right before the sampling
point. This way, one can take into account that time actually has (or might
have) passed between the two sampling points, and adjust the probability of
an individual being at a certain probability accordingly.

Throughout the calculations, expression 10 is used to find the next prob-
abilities by using the available information from the previous sampling point.
Defining ts+1− to be the time immediately before sampling point s+ 1, and
ts+ to be the time immediately after ts, one can express the probabilities of
the different localities for a sampling point. For example, when sampling the
new position of an individual for the simulated data sets, the probabilities
sampled from are found by using

p(ts+1−) = eA(ts+1−ts)p(ts+)e−α(ts+1−ts). (11)

Note that since the probability is based on the time between the two sampling
points, the time is simply the time difference between the previous and the
current sampling point.

4.4 Expression for Log Likelihood
The likelihood of a certain result or observation is by definition the probabil-
ity of getting the result you got (or making the observation you did), given
that the model you are testing out is the "correct" model (no model will be
perfect, as they are all models). This means that to calculate the likelihood
for each of the models, I need an expression for the likelihood that can be
applied. In this thesis, I assume that the individuals are independent. Hence,
the total likelihood is the product of all the individual likelihoods. If one lets
there be I individuals, and the complete set of observations for individual i
is denoted by yi, the the expression for the total likelihood is

P (YT = yT ) = P (Y1 = y1)P (Y2 = y2) · · ·P (YI = yI). (12)

Hence, the individual likelihoods, P (Yi = yi), have to be found so one can
multiply them or sum their logarithms to get the total likelihood or log
likelihood respectively.
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4.4.1 Individual Likelihoods

The goal is to be able to find an estimation of the probability P (YT = yt),
which can be done by considering one individual at a time. Let yi be the
history of the i’th individual. When the individual enters the study, all we
know is where it was at the time of the first observation. After this first
observation, all observations or non-observations will contribute to the log
likelihood of the individual.

As mentioned in section 2, yi consists of several values, referred to as
the Xi,s-s. Each of the sampling points after an individual enters the study
has an X. If individual i is observed at the sampling point s, then Xi,s = 1.
Otherwise, Xi,s = 0. This means that the individual’s likelihood can be
expressed in terms of its x’s,

P (Yi = yi) = P (Xi,oi
= xi,oi

, Xi,oi+1 = xi,oi+1, . . . , Xi,S = xi,S), (13)

where S is the total number of sampling points in the study, and oi is the
sampling point number where individual i is first observed.

By the chain rule of probability, this can be rewritten as

P (Yi = yi) =P (Xi,oi
= xi,oi

)P (Xi,oi+1 = xi,oi+1|Xi,oi
= xi,oi

)
P (Xi,oi+2 = xi,oi+2|Xi,oi+1 = xi,oi+1, Xi,oi

= xi,oi
) · · ·

P (Xi,S = xi,S|Xi,oi
= xi,oi

, Xi,oi+1 = xi,oi+1, . . . ,

Xi,S−1 = xi,S−1). (14)

By obtaining an expression for the probabilities above, one can thus find
the individual likelihoods. Note that by calculating the probabilities above
stepwise through all the earlier probabilities, the later probabilities are con-
ditioned on the earlier probabilities, creating the conditioned probabilities
above. Since the probabilities are dependent on the past probabilities through
the present probability only, they constitute a Markov Chain. A Markov
chain is defined by that the probability for the next state depends on the his-
tory only through the previous state (see for instance Ross (2010, p. 191-192)
for more detailed definition).

Calculating the probabilities of the different Xi,s can be done by using
the law of total probability. First however, some probabilities need to be
stated. Let Li,s denote the true position of individual i at sampling point s
(time ts and location ls). Then,

P (Xi,s = 0|Li,s 6= ls) = 1, (15)

the probability of not observing the individual, given that it is not at ls at
time ts, is naturally one, and an observation could only be registered if a
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misidentification or other mistake is made. Consequently

P (Xi,s = 1|Li,s 6= ls) = 0, (16)

the probability of observing the individual given that it is not present at ls
at time ts is zero as an individual cannot be observed if it is not present.
Further, introducing the recapture/resighting probability β,

P (Xi,s = 1|Li,s = ls) = β, (17)

the probability of observing an individual who is present at location ls at ts,
defining β to be the probability of observing an individual that is present.
From this it follows that

P (Xi,s = 0|Li,s = ls) = 1− β, (18)

is the probability of not observing an individual who is present. If the in-
dividual is present, it must either be observed or not, so together the two
probabilities sum to one. If Li,s = 0, the individual is taken to be dead,
and hence P (Xi,s = 0|Li,s = 0) = 1. Note also that the probability of the
individual dying is

P (Li,t = 0) = 1−
g=nl∑
g=1

pg(t), (19)

since this is one minus the probability of the individual being alive, under the
assumption that the individual must be at one of the nl localities at all times
while alive. This also implies that if an individual is observed, then it is still
part of the study, and counted as not dead. Thus P (Li,s = 0|Xi,s = 1) = 0.

After observations are taken into consideration for a sampling point, one
conditions the following probability on this result. For instance, if the indi-
vidual is observed, the probabilities for the next sampling points are condi-
tioned on this observation. Hence, if the individual is observed at sampling
point s the probability is 1 for its presence at ls, or pls(ts+) = 1. This means
that plk 6=ls(ts+) = 0. As before the + in ts+ indicates immediately after the
sampling at sampling point s, and pj is P (L = j).

If a bird is observed at a sampling point, the probability is given for the
following step (a vector of a 1 and 0, where the 1 is the probability of being
at the observed location). In mathematical terms, this means that

P (Li,s = j|Xi,s = 1)(ts+) (20)

is known for all localities j, as they are either 0 or 1. However, to be able
to calculate the contribution to the log likelihood, one needs to be able to
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say something about how likely an observation of an individual is at a given
place and time, and not only if the individual was observed at the previous
sampling point.

The probability of observing a bird which is known to be present is β
(see equation (17)). The probability of a bird being present at locality ls at
time ts is calculated by pls(ts−). Hence, the probability of an observation of
a bird at sampling point s is

P (Xi,s = 1) = P (Xi,s = 1|Li,s = ls)P (Li,s = ls) + P (Xi,s = 1|Li,s 6= ls)P (Li,s 6= ls)
= P (Xi,s = 1|Li,s = ls)P (Li,s = ls)
= βpls(ts−). (21)

Thus the non-observation of an individual is

1− βpls(ts−), (22)

due to that the two possibilities are complements of each other (one or the
other has to happen). The expressions 21 and 22 hence constitute the con-
tribution to the likelihood from an observation or non-observation of an in-
dividual respectively. The missing component in these expressions are thus
p(ts−). These probabilities are found from expression (10). The remaining is
thus to find the probability ps(ts−1+), so expression (10) can be calculated.
This expression is known for cases where the individual is observed at s− 1
(see previous paragraph), but not for cases where the individual is not ob-
served at s − 1. The probability that needs to be found for individual i is
thus

P (Li,s = j|Xi,s = 0)(ts+) (23)

for all localities. Together, with each used in the appropriate situation, ex-
pressions (20) and (23) offer all probabilities needed to continue the chain of
probabilities for all sampling points.

The probability of not observing an individual is known from expression
(22). The probability in this expression is P (Xi,s = 0). By then using
Bayes’ theorem one can find the probability P (Li,s = j|Xi,s = 0), which
is the probability used to advance the probabilities after an observation or
non-observation is made.

By Bayes’ theorem, for locations lk 6= ls (locations where sampling is not
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done at sampling point ts),

P (Li,s = lk|Xi,s = 0) = P (Xi,s = 0|Li,s = lk)P (Li,s = lk)
P (Xi,s = 0)

= 1plk(ts−)
1− βpls(ts)

= plk(ts−)
1− βpls(ts)

, (24)

where ts− indicates the time right before sampling point s. For the location
where the sampling is being done, ls,

P (Li,s = ls|Xi,s = 0) = P (Xi,s = 0|Li,s = ls)P (Li,s = ls)
P (Xi,s = 0)

= (1− β)pls(ts−)
1− βpls(ts)

(25)

From the expressions one can see that the probability of the individual being
in location ls if it is not observed, is decreased by a factor of 1 − β com-
pared to the other probabilities. The rest are increased by the division of
something between 0 and 1, and not reduced. Logically, this makes sense as
the individual is not present at locality ls with probability 1 − β, while no
such restriction is present on the other localities. Hence, by not observing an
individual, the probability of it being present is smaller than for a locality
where no attempt at observations have been made. This means that as the
recapture/resight probability, β, increases, the probability of an individual
being present, but not observed, decreases, which is what one would expect.

Each of the probabilities depend on the probabilities right before the
current sampling point through pj(ts−). Furthermore, this probability is
calculated by use of pj(ts−1+), the probability immediately after the previous
sampling point. This depends on pj(ts−1−), which depends on pj(ts−2+) and
so on until the very first observation of the individual. By this, it is clear that
the conditioning on the previous observations in expression 14 is in fact done.
The process thus goes as follows: a sampling is done at sampling point s, the
probability is updated to p(ts+). This probability is updated to account for
the time between two sampling points, giving p(ts+1−). The probability is
again updated by using the new sampling data, giving p(ts+1+) and so on.
The chain is started by using that the probability immediately after the first
observation is set to 1 for the location where the individual was observed
(pl0(t0+) = 1), and 0 for the rest.
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4.4.2 Example

By adding together the logarithm of the appropriate cases above, one gets
each individual’s contribution to the log likelihood of the entire sample, that
is, one gets log (P (Yi = yi)). For example, consider an hypothetical individual
who is observed at sampling point 3, 4 and 6, that is at localities l3 = 1, l4 = 3
and l6 = 10 in the first six sampling points. Recall that p(ts−) and p(ts+)
are column vectors which denote the probability of an individual’s position
immediately before and after sampling point ts respectively, and that element
k in these vectors is the probability for locality k position.

The calculation goes stepwise after a sampling, first p(ts+) is calculated
conditioning on the observation (or non-observation). Then p(ts+1−) is cal-
culated, adjusting for the time passed between the two adjoining sampling
points. This entails that the probability of an observation at sampling point
ts is pls(ts−)β , and hence for a non-observation 1−pls(ts−)β, and so the log
likelihood contribution is simply the logarithm of the appropriate of these.
The calculation is then done as seen in table 4.4.1 for the first three sampling
points after the first observation, and so on until sampling point S.

As soon as the computations for individual i is completed for all sampling
points, the likelihood can be obtained. The log likelihood is the sum of all
the contributions, which can be calculated parallel to the computations, and
the likelihood can thus be calculated by P (Yi = yi) = elog(likelihood). I have
chosen to use the log likelihood in place of the likelihood for comparisons, op-
timizations and calculations. One can do this because of the monotony of the
functions (if a is greater than b, then log (a) is greater than log (b)). Note that
the first sampling point for an individual is taken to be when the individual
is first observed, hence the number of sampling points that contribute to an
individual’s log likelihood can be different for different individuals depending
on the first observation of them.
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Example
Sampling- Probability Contribution Details

point to log-
(Xi,s =) likelihood
s=3 log (1) = 0 First observation.

(1) p(t3+) =


1
0
...
0


p(t4−) = eA(t4−t3)p(t3+)e−α(t4−t3) adjustment for

time difference
between
s=3 and s=4.

s=4 log(βp3(t4−))

(1) p(t4+) =



0
0
1
0
...
0


l4 = 3

p(t5−) = eA(t5−t4)p(t4+)e−α(t5−t4) time adjustment.
l5 = 3, so
element 3 is

s=5 log(1− βp3(t5−)) used in the fraction
and the third

(0) p(t5+) = element is different

1
(1−βp3(t5−))



p1(t5−)
p2(t5−)

(1− β)p3(t5−)
p4(t5−)
p5(t5−)

...
p10(t5−)


(see (25)).

p(t6−) = eA(t6−t5)p(t5+)e−α(t6−t5) time adjustment.
s=6 log (βp3(t6−))

(1) p(t6+) =


0
...
0
1

 l6 = 10

Table 4.4.1: Example of calculation of log likelihood.
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4.4.3 Total Likelihood

As soon as the log likelihood is calculated for an individual, it is added to the
total sum. The sum is 0 at the beginning, and when the log likelihoods of each
of the I individuals are added, the total log likelihood for the entire sample is
obtained. This log likelihood can then be used to compare different models,
optimize the value of the log likelihood, and by repeatedly calculating the log
likelihood value for different parameters, numerically obtain the maximum
likelihood estimates of the different parameters. The optimization of the log
likelihood function is done by use of the function optim in R.

4.5 Expression for Rates
The remaining expression is now that of the rate. λi,j denotes the dispersal
rate from location j to location i. The dispersal rate is, as can be seen
in equation 1, a value that reflects how much the probability of being in a
location changes. The dispersal rate from i to j gives the weight of how
much the probability of being in location i affects the change in probability
of being in j with time. The aim of my thesis is to find a good expression
for these rates, an expression that shows how the rates change with different
factors.

In the thesis I have used the general equation

λi,j = θeηi,j (26)

where θ is a parameter calculated for each model and ηi,j is a linear function
of distances and other specifics of the individual and locality the rate is
calculated for. For example, ηi,j could be ηi,j = −θ1ri,j +θ3(rj,h−ri,h), where
ri,j is the distance from locality i to locality j, and h is the home locality of
the individual in question. The values of the parameters θ1 and θ3 are thus
the weight given to these covariates. The example mentioned is model 2b,
which is described further in section 5.2.2.

5 Models
As mentioned in section 4, several models are tested out to find out which
one gives the best picture of how the dispersal rates change. In this section
I present the different models I have attempted to fit to the data. The first
model is pretty simple, depending only on distance between two sampling
points. For the later models, more variables are added to try to create a
better fit. A more complicated model often will cause more computations.
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Therefore, for each new model, the new model is compared to the simpler
one to check if the improvement is significantly large to justify the use of a
more complicated model.

5.1 Model 1: Distance Only
The first model is the simplest one, adjusting only for the distance between
two localities. It is based on the assumption that the dispersal rate from
locality j to locality i, λi,j, is given by:

λi,j = θ0 exp−θ1ri,j , (27)

where θ0 and θ1 are constant parameters. This means that the rate depends
on the distance between the two locations in question. If the distance is
large, the dispersal rate is small (assuming that θ1 > 0). Accordingly, if the
distance is small, the rate is larger. So the rate decreases with increasing
distance, which seems plausible assuming that birds are more likely to move
shorter distances than larger ones. Also, as long as the death rate is constant,
the dispersal rate λi,j is constant given the distance ri,j between locality i
and locality j, and between individuals. This means that it is only necessary
to calculate the matrix once, as all individuals can use the same matrix.

5.2 Model 2: Home-centered
The second model is a little more complicated in that it includes an extra
parameter. In models 2a and 2b the birds’ hatching locality plays a role. The
term home or home locality will henceforward mean the location (farm) at
which an individual was hatched. The models are made under the assumption
that the sparrows have a stronger connection to their home locality, than
to the other farms, so that they are more likely to disperse towards this
location, and less likely to leave it for other locations. Thus it is a type of
focal point attraction model as discussed by Börger et al. (2008), where the
home locality is the focal point. A focal point attraction model is a model in
which individuals are drawn to a specific point (see Börger et al. (2008) for
further details on such models and home range behaviour). I have suggested
two different models, both based on this assumption.

A consequence of using this type of model in this case is that the data
set is reduced. Only individuals where the hatch locality is known can be
used. This reduces the data set from 192 individuals and 962 observations to
105 individuals and 538 observations. In addition to this, the home locality
will be different for each individual, the rates will differ between individuals.
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This entails that a new A-matrix has to be calculated for each individual,
increasing the computation required.

5.2.1 Model 2a

In the simplest model, the expression for the dispersal rate is adjusted de-
pending on whether or not i or j is the individual’s home locality. If j is
their home locality, the dispersal rate to i is reduced. If i is their home
locality, the dispersal rate from j to i is increased, and if neither of i or j
is the individual’s home locality, the dispersal rate is in between the other
two options. This model does not take into account whether the location
i (where the individual might be moving to) is closer to the home location
than location j, which seems like a reasonable assumption. This possibility
is however taken into account in model 2b.

The expression I have used for the dispersal rate to reflect this scenario
is

λi,j = (θ2)δi,jθ0 exp−θ1ri,j

where δi,j is 1,0 or -1 if i, neither i nor j, or j is the home locality respectively.
For this model to reflect an increased probability of returning home, it follows
that θ2 > 1.

5.2.2 Model 2b

Model 2b takes into account the distance from each possible locality to the
home locality, h. By this I mean that the rate for a bird to move from j to i
is greater if the distance from i to h is smaller than the distance from j to h,
and lower if the distance from i to h is greater than the distance from j to
h. In other words, that the birds move towards their home at a higher rate
than they move away from it.

To reflect this, I have introduced a new parameter θ3 which is to be the
weight given to the difference in the distances. Hence, the new expression
for the dispersal rates is

λi,j = θ0e
−θ1ri,j+θ3(rj,h−ri,h),

where h is the home locality.
Here, the difference between the distance from i to h and from j to h

causes the rate to increase or decrease depending on whether the distance
from i to h is smaller than the distance from j to h. If ri,h is greater than
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rj,h the rate will decrease, since the distance to the home locality is smaller
from the position where the bird initially is (j). If it is the other way around,
the opposite is the case and the rate will increase. This of course assumes
that θ3 > 0, an assumption which is therefore part of model 2b. At the same
time, the rate is reduced by an increasing distance as in model 1 and 2a.

5.3 Model 3: Differences Between Sexes?
Tufto et al. (2005) discuss the effect of sex on dispersal range. Although they
do not find any difference between dispersal range between the two sexes for
house sparrows, they do find a difference in tits (great tits and blue tits),
where females dispersed longer distances than males. Based on the idea of
a possible difference between the sexes, I chose to further expand the model
by adding a variable depending on the sex of the individual, even though no
significant difference between the dispersal ranges of male and female house
sparrows was found by Tufto et al. (2005).

Tufto et al. (2005) considered the dispersal distance. To see if there is a
difference in dispersal rate, that is if there is a reason to believe that females
disperse more often than males, or the other way around, parameter θ4 is
added. This parameter is to reflect the potential difference caused by sex.
For female individuals, the parameter will be present, for male individuals
not. It is incorporated in the model by adding θ4sxp to the expression in the
exponential, where sxp = 0 if individual p is a male, and sxp = 1 if individual
p is female. It follows from this that if the value of θ4 is negative, females
disperse less often than males, and if θ4 is positive, females disperse more
often than males. Accordingly, if θ4 is 0, there is no difference between males
and females.

By comparing the first models (model 1, 2a and 2b), I chose to work
further with model 2b, as this seemed to give the best results (see sections
8.3.3 and 8.4). Therefore, model 3 is simply made as an expansion of this
model. The rates are thus calculated by the following expression, where sxp
is as defined above,

λi,j = θ0e
−θ1ri,j+θ3(rj,h−ri,h)+θ4sxp . (28)

The inclusion of a sex-parameter requires that data on each individual’s
sex is available, which could mean a further reduction of the data set. How-
ever, in this case all individuals where nestling locality is known, also have
data on their sex, and hence no further reduction is needed compared to
models 2a and 2b.
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5.4 Model 4: Seasonal Changes?
The house sparrow is known to have seasonal changes in its dispersal pattern
(Anderson, 2006). These changes are present in the dispersal distance in that
the birds fly longer distances in late summer and autumn to find food (An-
derson, 2006, p. 336). To check if there is a seasonal change in the dispersal
rate, I have chosen to include a model in which the date of the sampling
has a part in adjusting the dispersal rate. To do this, a new parameter is
introduced to model 3, θ5, which is multiplied by an indicator variable, ds,
which is 0 if the date is before a certain date limit,θ6, and 1 if the current
date is after the limit. This date limit, θ6, can either be a variable itself, or
a set date. This makes the dispersal rate function

λi,j = θ0e
−θ1ri,j+θ3(rj,h−ri,h)+θ4sxp+θ5ds, (29)

where the value of ds indicates whether the current sampling point is before
or after the date limit. The inclusion of this date parameter increases the
number of computations that need to be done, as the A matrix has to be
calculated more frequently. For one set value of the date limit, the number
of A matrix calculations is in the best case doubled, because there has to be
one matrix for each individual before and one matrix after the date limit for
each individual. If the value of θ6 is not a set date, further computations can
be necessary. I have chosen to use a set date for θ6 as this limits the number
of additional computations.

6 Simulation of Data Sets
To be able to compare the data set to a data set actually based on the
models, I have also simulated data sets by use of bootstrapping. How they
are simulated depends on what model they are being based on, but the
general idea is the same.

Bootstrapping is a statistical method used to obtain information about a
distribution or a variable when the distribution is partially unknown. A ver-
sion of bootstrapping is parametric bootstrapping. The idea of parametric
bootstrapping is to repeatedly sample from a distribution with parameters es-
timated from the original data, calculate equivalent estimates for the param-
eters based on the sample, and from the collection of results make inferences
about the distribution itself (the parameters). Details of such bootstrapping
is explained by Devore and Berk (2007, p.339). More specifically, in this case
the maximum likelihood estimators (MLEs) resulting from the calculations
on the collected data are set as the true parameter values in the simulation
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of n data sets based on the model in question. Then a new observation ma-
trix is made, and a new likelihood optimization through the optim-function
in R is done, and new parameter estimates reached. This is done for each
of the n data sets, so one has n estimates for each parameter. From these
estimates one can then calculate properties of the parameter estimators, for
instance the expected value of the estimator of the parameter, which is the
mean of these n MLEs. The set of results from the bootstrapping procedure
can also be used to create confidence intervals for the expected values of the
parameters and standard deviations for the estimates.

For example, if one does n = 100 simulations, one simulates 100 data
sets with the true values set to be the result from the collected data. For
each of the data sets one calculates the MLE of the parameters in question.
Note that the simulated data sets are in fact based on the model in question,
so one would perhaps assume that the simulated data sets give a very well
fit. However, given the randomness involved, this will not necessarily be the
case.

After the 100 simulations are done, one has 100 estimates of each pa-
rameter. Then, one can calculate the mean of these estimates to obtain an
estimate of the expected value of the maximum likelihood (ML) estimator.
Also, since the 100 estimates will differ because of the randomness involved,
they can provide insight into how much variation there is expected to be in
the parameter estimates. Therefore one can calculate the standard devia-
tion of these 100 MLEs to obtain an alternative estimate of the parameter
estimate standard deviation.

The simulated data set consists of the same number of individuals as
the collected data set. However, in the simulated data set each individual’s
position at each time is simulated based on the model in question, with
exception of the first observation for each individual which is the same as for
the original data set. Naturally, the distances and sampling points are also
the same as for the original data set, as well as the home location and sex.
The starting values are set to be the true values of that simulation, and so is
the scaling (see appendix A). The results, that is, parameter estimates, log
likelihood and convergence of the optimization, are then stored in a matrix.
The process is then repeated n times, with a new simulated data set for each
time.

Each individual’s new position is sampled, with probability p(t), which
depends on the dispersal rates (through matrix A, see section 4.1), and on
what the previous position was, through a vector of the probabilities of the
location of the individual immediately after the previous observation was
made. The probabilities right after a sampling point at time t is denoted
by p(t+), and correspondingly the probabilities of position right before a

31



sampling point at time t is denoted by p(t−). The previous probability is
a vector of length 10 with all zeros except for element j, which is 1, when
element j is the position at the previous sampling point.

Multiple observations are avoided automatically by the way the data are
sampled. If the time difference to the next sampling point is 0, then the
probability that the bird is in the same locality will be 1, following expression
(10) (and this will be 1 for the locality of the bird at sampling point s). Hence,
if the time difference is 0, the position of the bird at the next sampling point
is the same as the last, and multiple observations are avoided.

After each individual has had its movement history simulated, the ob-
servation matrix is constructed. If the position of an individual at a certain
time is the same as the position where sampling was done at that time, then
the simulated individual was observed with probability β. Hence a 1 ap-
pears in the observation matrix with a probability β for that sampling point.
All the other elements are 0, including the points where the individual was
present, but not observed (happens with probability 1 − β). Since the sim-
ulated observation matrix has the same meaning as the observation matrix
based on actual data, one can simply use it the same way as the data-based
observation matrix.

Each data set is simulated using the model in question. However, when
and where the observations are done is independent of the simulated data.
Also, because the probability of observing an individual even though it is
present is less than one, the data may not give as much information to the
optimization as expected. Hence, the simulated data may not appear to be
as well fitted to the model in question as one would expect, since not all
of the movement history is taken into account. This is also the case for the
collected data, but one would perhaps expect the simulated data to fit better,
as it is actually based on the model.

7 Comparison and Testing of Models
In order to expand the models, each model needs to be evaluated in some
way in order to compare it with other models. This is necessary to know
if an extended model is worth the extra computation needed for a more
complicated model. In this section I discuss the methods used to evaluate
the different models.
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7.1 Maximum Likelihood Estimators
The estimates of the parameters are obtained by optimizing the log likelihood
function through the optim function in R. Thus, this makes the results
approximate maximum likelihood (ML) estimates, and hence properties of
these can be used. For instance, as the number of samples goes to infinity, the
distribution of maximum likelihood estimators (MLEs) approaches a normal
distribution (see for instance Devore and Berk (2007, p.369)). Thus each
of the values that result from the optimization is approximately normally
distributed.

The results from the bootstrapped/simulated data are also estimates of
the MLE for their respective data sets. Thus, the optimized parameters for
the simulated data set is also approximately normal. Since the simulated
data results are the result of different simulated data sets based on the same
true parameters (found from the collected data), the results of the simulated
data can be used to show how much a MLE from a data set with the same
initial or true parameters can differ from the true parameter values behind
the data set.

7.2 The Likelihood Ratio Test
Each of the models, except model 1, are expansions of a simpler model with
only an extra parameter added. This makes it possible to use a likelihood
ratio test, as described by for instance Casella and Berger (2002, p.490).
The likelihood ratio test is a statistical test used to compare two models.
The two models must be such that one model (the larger one) is equal to
the other one when some of its parameters are within a restricted parameter
space compared to the parameter space for the large model. The likelihood
ratio test tests if it is reasonable to assume that the two models are different.
Hence the null hypothesis is that the extra parameters in the larger models
are within the area they have to be for the two models to be equal. The
alternative hypothesis is that the restricted parameters are not within the
restricted parameter space. For instance, one could test a model where η = 0
(the smaller model) against a model where η 6= 0 (the larger model, the
parameter η is free and not limited to the restriction η = 0).

The likelihood ratio test uses that the value −2 log(LR(Y )) is χ2
df , when

the number of observations goes to∞. Here, LR is the ratio of the likelihood
under the null hypothesis (or more generally, the highest possible value of
the log likelihood under the null hypothesis) to the maximum value of the
likelihood under all possible parameters in the parameter space of the param-
eter of interest. Note that this may be simplified to −2[log(likelihood0) −
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log(likelihood1)] where the 0 indicates the null hypothesis, and the 1 the al-
ternative hypothesis. The degrees of freedom, df, is the number of parameters
restricted by the null hypothesis or in other words, the difference between
the number of free parameters over all the parameter space and under the
null hypothesis.

The above means that having obtained the values of the likelihood of
the different models, the models can be compared to one another by simply
choosing a level for the test and using the LR-test variable. For example,
in comparing model 1 and 2b, the null hypothesis would be H0 : θ3 = 0
which is model 1, and the alternative hypothesis is H1 : θ3 6= 0, or in this
case θ3 > 0, which is model 2b. Then one can calculate the test statistic,
−2[log(likelihood0)− log(likelihood1)], and reject the null hypothesis if the
obtained value is greater than or equal to the relevant χ2−value. Alterna-
tively, the p-value can be computed. For this test the p-value is the area
under the χ2 curve to the right of the computed test statistic value. This is
the approach I have chosen to use.

The p-value is by definition the probability of receiving the result you got
or a more extreme result given that the model you assumed is correct. Hence,
a large p-value would indicate that the null hypothesis model is a good fit
as the probability of getting a more extreme result under the null hypothesis
is large, and one is within a reasonable range of the null hypothesis model.
On the other hand, a small p-value suggests that the probability of getting a
more extreme value is rather small under the null hypothesis. This suggests
that the value of the test statistic is on the outskirts of the model, and hence
the null hypothesis model is perhaps less likely. Another way to define the
p-value is as the lowest level of test for which the null hypothesis is rejected
(Devore and Berk, 2007, p.450). For instance, if the p-value is 0.01, all tests
of a level higher than 0.01 will reject the null hypothesis, while all tests of a
level lower than 0.01 will reject the alternative hypothesis.

7.3 Standard Deviations
The standard deviations of the estimates can be used to see how accurate
the estimate is. A smaller standard deviation indicates that the estimate is
quite accurate, while a larger standard deviation indicates greater variability
of the estimate, and a less accurate estimate.

7.3.1 Standard Deviations by Fisher Information

One method to find the standard deviation for the different parameters from
the collected data set is to use the Fisher information (FI) and the Hessian
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matrix, a matrix that contains the double derivatives of the log likelihood
with respect to the different parameters. The Fisher information for a pa-
rameter κ can be defined by −E[ ∂2

∂κ2 log(f(X;κ))] (Devore and Berk, 2007,
p.365), and is called so because it says something about how much informa-
tion is contained in a data set. The expression log(f(X;κ)) is simply the
log likelihood when viewed as the function of the parameter κ. The Fisher
information can be approximated by use of the observed Fisher information,
which is defined by − ∂2

∂κ2 log(f(X;κ)), and consequently the observed FI is
found in the Hessian matrix. In this thesis I have used the observed Fisher
information, so this is an approximation to the Fisher information itself.
Note however that Efron and Hinkley (1978), argue that the estimate based
on the observed FI is a better estimate of the standard deviation than the
estimate based on the expected FI. If this is indeed the case, the use of the
observed FI should be justified.

The estimate based on the FI is approximately the value of the standard
deviation for the limiting distribution of the parameters. For large sample
sizes the limiting distribution of the MLEs is approximately normal with
variance equal to the inverse of (-1) times the Fisher information (Devore
and Berk, 2007, p. 369), or in the case of more parameters, (-1) times the
diagonal elements on the inverse of the Fisher information matrix.

I have found the Hessian matrix by use of the numDeriv-package in R,
with the values from the result and the function as parameters. Originally
I used the built in Hessian function in optim, but the numDeriv function
allows more control and is more reliable, since the parameters are scaled.

By use of the Hessian matrix one can also find further support for that
a point is actually a maximum point. If the point is a maximum, the Hes-
sian matrix should be negative definite (alternatively, negative semidefinite),
("non-positive definite", de Jong and Heller (2008, p. 69)), which is the case
if all the eigen values are negative (Lay, 2012, p. 405-406) (for semidefinite,
some may be 0). This works as an extra control, but cannot alone prove that
the point is a maximum, so further controls have to be used.

7.3.2 Standard Deviations by Bootstrapping

In addition to saying something about the variability of the estimate, one
can compare the standard deviation of the estimates obtained by use of the
observed Fisher information on the collected data, to the standard deviation
obtained by simulation and bootstrapping.

As described in section 6 one can reach an estimate of the standard devi-
ation of the estimators by using the simulated data. This is done by calculat-
ing the standard deviation between the optimized results from the simulated
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data sets. The simulated data sets are all based on the model in question,
and hence the results are all a MLE of the corresponding parameter in the
true model. The estimated MLEs thus represent a set of results one could
expect to get if the model is correct. Therefore the standard deviation of
the estimator can be estimated by using the standard deviation of the n
simulation results.

7.3.3 The Standard Deviation Estimates

The standard deviation estimates based on the bootstrapped data sets are
not based on the Hessian matrix, and do not use that the limiting distri-
bution of an MLE is normal with variance 1

IF
(Devore and Berk, 2007, p.

369). According to the Cramér-Rao inequality, any unbiased estimator of
a parameter will have a variance (and hence a standard deviation) which is
equal to or greater than 1

IF
, where IF is the Fisher information for the sample

(Devore and Berk, 2007, p. 367). Note that the sample space cannot depend
on the parameter in question. This means that in theory, the standard de-
viation based on the Fisher information should have the smallest possible
variance for an unbiased estimator. Note however that I have used the ob-
served Fisher information in this study (see 7.3.1), and that the Cramér-Rao
inequality uses the expected Fisher information.

7.4 Confidence Intervals and Bias
To determine the bias of the MLEs and compare the standard deviations
obtained from bootstrapping to the ones obtained from the observed Fisher
information, confidence intervals for the expected value of the parameter es-
timators and the standard deviations are calculated. A confidence interval
is an interval which illustrates a possible area for an estimated value. When
many confidence intervals of level α are made, approximately (1 − α)% of
them will cover the true parameter value. Confidence intervals for the ex-
pected values of the parameters can be obtained by using the simulated or
bootstrapped data results. The bootstrap estimates are approximate maxi-
mum likelihood estimators, as they are obtained by numerically optimizing
the log likelihood value. As mentioned, a maximum likelihood estimator for a
large sample size will approach a normal distribution. The results calculated
from the simulated data hence constitutes an approximately normal sample,
and hence properties of a normal sample can be used. The confidence inter-
val is based on a sample, and the width of the interval is dependent on the
number of samples, as can be seen in the calculation below. The larger the
number of samples, the narrower is the interval and hence less uncertainty
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in the result.
A normally distributed sample X1, ...Xn has the property that X̄−µ

S√
n

is t

distributed with df=n-1 (Devore and Berk, 2007, p. 315), where S√
n
rep-

resents the estimated standard deviation of the sample. Using this as a
starting point, it is simple to construct a confidence interval of size α for the
true expected value, µ,

tn−1,1− 1
2α
<
X̄ − µ

S√
n

< tn−1, 1
2α

S√
n
tn−1,1− 1

2α
< X̄ − µ < S√

n
tn−1, 1

2α

−X̄ + S√
n
tn−1,1− 1

2α
< −µ < −X̄ + S√

n
tn−1, 1

2α

X̄ − S√
n
tn−1,1− 1

2α
> µ > X̄ − S√

n
tn−1, 1

2α

X̄ − S√
n
tn−1, 1

2α
< µ < X̄ + S√

n
tn−1 1

2α
(30)

Note that the t-distribution is centered around 0 and symmetric, from
which it follows that tn−1,1− 1

2α
= −tn−1, 1

2α
.

By the above it is simple to find confidence intervals for the parameters
based on the simulations. By comparing the mean of the estimates from
the simulated data (the expected value of the simulated sample) to the true
value of the model behind the simulated data sets (the value reached from the
collected data optimization), one can determine whether it is a reasonable
estimate, or whether it is biased in either direction. The bias is the difference
between the expected value of an estimator and the true value. That is

E(θ̂)− θ. (31)

In the study, the bias is sometimes given in percent. This is calculated by

E(θ̂)− θ
θ

. (32)

If the estimate based on the collected data is unbiased, it should be found
in the corresponding confidence interval. Similarly, one can find confidence
intervals for the standard deviations. However, the standard deviations here
represent an alternative estimate to the Fisher information estimate, and not
the expected value. The estimated variance for a normal sample, S2 is related
to the χ2 distribution by (n−1)S2

σ2 , which is χ2
n−1 (see Devore and Berk (2007,
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p. 314)). This makes it simple to construct a confidence interval of level α for
the standard deviation, based on P (χ2

n−1,1− 1
2α
< (n−1)S2

σ2 < χ2
n−1, 1

2α
) = 1− α.

χ2
n−1,1− 1

2α
<

(n− 1)S2
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n−1, 1

2α

1
χ2
n−1, 1
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<
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(n− 1)S2 <
1

χ2
n−1,1− 1

2α

(n− 1)S2

χ2
n−1, 1

2α

< σ2 <
(n− 1)S2

χ2
n−1,1− 1

2α√√√√ (n− 1)
χ2
n−1, 1

2α

S < σ <

√√√√ (n− 1)
χ2
n−1,1− 1

2α

S (33)

See alternatively Devore and Berk (2007, p. 402-403). By constructing a
confidence interval for the standard deviation of data actually based on the
model, one can compare it to the size of the standard deviation obtained by
the collected data, which is based on the limiting distribution of the MLE.

8 Results
The results reached when optimizing the different models are presented in
this section. The models are all built up as an extension of the first model.
The main idea is that by setting the null hypothesis to be that a parameter
is equal to a specific value, one gets the new extended model equal to the old
model. The likelihood ratio test can be used in just these situations, since
the null hypothesis is then that the extra parameter, for example θ3 in model
2b, is set (θ3 = 0 in model 2b), since that makes the first (1) and second (2b)
models the same.

Running the models yield results on the model itself, as well as on what
model is better suited when compared to others. Below, the individual results
for a model are presented first, before two models are compared. Note that
to be able to use the optim-function in R, slight adjustments had to be
made between the different models as to how many parameters are to be
optimized, and that the log likelihood function was modified to work for the
more complex model between the different models. These changes should
not matter to the results other that they allow results for more models.
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8.1 General Settings
The settings used for running the different models can be seen below in the
copy from an optimization of model 2b. Similar settings are used for the
other runs as well. The first element in optim is the vector of the starting
points for the parameters to be optimized. The length of this vector thus
varies with the model used, as the number of parameters differ. logl is the
name of the log likelihood function, and the three following elements are
settings that indicate model, the observation matrix, and a vector of the
nesting localities. The method used by the optim function is set to be
the BFGS method (note that the Nelder-Mead method was also considered,
see appendix section A.2.4). McKinnon (1998) shows that in certain cases,
the Nelder-Mead method may converge to a nonstationary point, and this
supports the decision to use the BFGS method. The final element, control, is
a list containing the scaling of the different parameters (see appendix section
A.2.3), the maximum number of iterations permitted and finally fnscale =-1
indicates that the function is to be maximized, not minimized which is the
default for the optim function.

om2b1BF=optim(stpar2b1,fn=logl,m=3,obsmat=l2$mat,hm=nest2,
method="BFGS",control=list(parscale=stpar2b1,maxit=max,fnscale=-1))

om2b1BFh=hessian(logl,om2b1BF$par, method="Richardson",
method.args=list(eps=om2b1BF$par*10^(-4)),
m=3,obsmat=l2$mat,hm=nest2)

The arguments for the hessian function mostly explain themselves, after
the explanation for the optim function. Otherwise the method is set to
the default (Richardson), and logl is the function for which the Hessian is
required for the points om2b1BF$par which are the resulting parameters for
the optimization done above.

When attempting to run the optimization of the methods, several issues
occurred. Some could be fixed by simple adjustments, while others were
more complicated. This was also the case for optimization of the simulated
data. The issues were mostly dealt with and fixed before the optimizations
presented in this section. For further details of issues that occurred at some
point during the process, see appendix A.

8.2 Model 1
The first model has four parameters to be optimized, namely θ0, θ1, α and
β. To control that the optimization worked properly, I tried several starting
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Parameter Starting Estimate Standard Log-
value deviation likelihood

θ0 0.01 0.75852 0.23566 -2290.065
θ1 0.0001 0.00232 0.00018
α 0.1 0.01358 0.00166
β 0.1 0.74873 0.03936
θ0 0.1 0.78289 0.24555 -2290.059
θ1 0.005 0.00234 0.00018
α 0.01 0.01362 0.00167
β 0.06 0.75169 0.03965
θ0 0.1 0.78399 0.24773 -2290.062
θ1 0.006 0.00234 0.00018
α 0.0001 0.01348 0.00165
β 0.9 0.75153 0.03980

Table 8.2.1: Model 1 results for collected data, BFGS method.

values for the parameters. This was to ensure that the results applied no
matter where the procedure was started.

Results from the optimization of model 1 for three sets of starting values
can be seen in table 8.2.1. The horizontal lines between β and θ0 indicates
different runs, in other words, that the results from a new run start below
the line with the estimate for β. The scaling of the parameters for the runs
in the table are done by the starting values. It is however not necessarily the
case that this scaling works. For instance, when running the optimization
for starting parameters (0.09, 0.005, 0.033, 0.02) and scaling with these there
was an error. When scaling with sc=c(0.5, 0.0001, 0.01, 0.5) however, the
result is similar to the others (see appendix A.2.3).

From the results in table 8.2.1 there seems to be an agreement about a
maximum point. That the same point (or approximately the same point) is
reached from different starting values suggests that this is a maximum. To
back this up, the corresponding Hessians all have negative eigen values.

However, not all the results were the same. This was for instance the
case for the Nelder-Mead method for the first run and third runs above. The
resulting values from these runs could however not be maximums, as the log
likelihood values were smaller than for the results listed above. They did not
agree either, suggesting that they ended up at points which were not a very
global maximum at the best, or that the optimization failed somehow. The
Hessian matrix of these results did have negative eigen values, suggesting
that perhaps the points are along a ridge, or a very local maximum. Another
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Parameter Mean Standard
deviation

θ0 0.79614 0.128
θ1 0.00235 0.00013
α 0.01364 0.00164
β 0.75078 0.02898

Table 8.2.2: Model 1 results of simulation, n = 1000 simulations.

Parameter 95% confidence interval True
for E(θ̂), Parameter value/

based on bootstrapping ML estimate
θ0 [0.78819, 0.80408] 0.78289
θ1* [0.0023403, 0.0023562] 0.0023434
α [0.01354, 0.01375] 0.01362
β [0.74898, 0.75257] 0.75169

Table 8.2.3: Model 1, confidence intervals based on bootstrap results for expected
values of the estimators. *Two extra digits included to be able to determine
difference.

possible explanation is that the Nelder-Mead method did not manage to find
sufficient change in the log likelihood method to continue searching for a
maximum, or that the convergence went to the wrong point.

The standard deviations of the parameters are quite good, except for the
one for θ0, which appears to be very large for all the runs above. The standard
deviation is here about one third of the size of the parameter, suggesting that
the values are not very exact. Otherwise, the size of the standard deviations
seem to be very small, suggesting precise estimates.

The simulated data is built on the results from the collected data, through
the method described in section 6. The mean values of the parameters
reached by simulated data sets can be seen in table 8.2.2. As can be seen, the
values are not far away from the true parameters (estimates from collected
data), so this suggests that the optimizations actually find the values they
are supposed to find.

As mentioned, the simulated results may also be used to make confidence
intervals (see section 7.4). The confidence interval for the expected values of
the estimators can be seen in table 8.2.3. If the estimates (ML estimates)
of the expected value are unbiased, they should lie within the confidence
interval of the expected value. As can be seen in the table, this is the case
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Standard deviation 95%CI Estimate
based on bootstrapping based on FI

σθ0 [0.12263, 0.13387] 0.24555
σθ1 [0.00012, 0.00013] 0.00018
σα [0.00157, 0.00171] 0.00167
σβ [0.02776, 0.03031] 0.03965

Table 8.2.4: Model 1 confidence intervals for standard deviation, based on simu-
lation results.

for all the parameters with exception of the first parameter, θ0. The estimate
of θ0 appears to be slightly biased to the left side. This bias is however
small, approximately 0.01325 (1.692%), so for a slightly larger level of the
confidence interval, it might have been within the interval itself as a higher
level indicates a broader interval.

In table 8.2.4 the confidence intervals and the FI based estimates represent
two possible estimates of the standard deviations of the parameters. The
confidence intervals are based on the standard deviation in the parameter
estimates from the bootstrapped sample, as described in section 6, while the
FI based estimate is based on the assumption of normality for the MLE of
large sample sizes. As can be seen, the estimate based on the FI tends to be
greater than the estimate based on the simulated data. This is the case for
all the parameter standard deviations except α. The value of σ̂α is closer to
the value from the simulated data as it is within the limits of the confidence
interval. The difference between the two estimates has an absolute value of
approximately 0.00003, so it is quite small.

8.3 Model 2a and 2b
The second models are an expansion of the first, with one extra parameter.
I have chosen to use the estimates of θ0, θ1,α and β from the first model
results for further calculations. Since the second models are an expansion, it
is reasonable to use the estimates from the first model as the starting point
for the next models. The new parameter is simply started with a few different
values as starting points. The staring values, rounded to five digits, can be
seen in table 8.3.1.
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θ0 θ1 α β
0.78289 0.00234 0.01362 0.75169

Table 8.3.1: Starting values for models 2a and 2b, rounded to five decimals.

Parameter starting Estimate Standard Log-
value,(θ2) deviation likelihood

θ0 0.26998 0.08326 -1248.801
θ1 0.00161 0.00020
θ2 1 1.57018 0.10223
α 0.01372 0.00222
β 0.60977 0.03239
θ0 0.26991 0.08351 -1248.802
θ1 0.00161 0.00020
θ2 1.05 1.57003 0.10220
α 0.01370 0.00222
β 0.60963 0.03241
θ0 0.27009 0.08325 -1248.801
θ1 0.00161 0.00020
θ2 1.5 1.56967 0.10218
α 0.01372 0.00222
β 0.60986 0.03239

Table 8.3.2: Model 2a, results from collected data.

8.3.1 Model 2a

Model 2a is a simple model that changes the rate only dependent on whether
the localities involved are the individual’s home locality or not. For further
details on the model, see section 5.2.1.

The results for a few runs with different starting values can be seen in
table 8.3.2. Note that only the starting values for θ2 are indicated in table
8.3.2, as the starting values for the remaining parameters are in table 8.3.1,
as stated .

The results in table 8.3.2 seem to converge towards the same point. In
particular, the value of θ2 is approximately 1.57. This suggests that the
change in rate due to whether or not the bird is flying towards its nesting
locality is an increase of approximately 57 % for flying to the home locality,
and a decrease of about 36 percent in going away from their home locality
compared to other locations. Also, the value of the log likelihood is very
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Parameter Mean of Standard Deviation
Estimates in estimates

θ0 0.27672 0.05636
θ1 0.00162 0.00015
θ2 1.57329 0.10593
α 0.01381 0.00221
β 0.60821 0.03265

Table 8.3.3: Model 2a, results from simulated data. n=1000 simulations.

reduced compared to the first model, suggesting that a model which adjusts
for home localities may be a good idea.

The runs in the table represent starting values at three points positioned
differently compared to the value they converge to for θ2. That all three of
them converge to the same value suggests that the value is in fact a maximum.
When optimizing the function for a higher starting value of θ2 (θ2 = 2) the
results are similar to the ones in the table above. However, probably because
of the limited accuracy of a computer, some of the probabilities contained
imaginary parts that were not 0 (see appendix A.2.2). As explained in the
appendix, this probably does not have an effect on the result, even though
it causes a warning to be issued. For the runs in table 8.3.2 all the Hessian
matrices have negative eigen values, supporting the theory that this is a
maximum point.

The simulation of the results for model 2a is similar to that of model
1, but with the difference that the data is now based on model 2a, and
the optimization is done with respect to the model 2a log likelihood. Some
summary statistics can be seen in table 8.3.3, while confidence intervals can
be seen in table 8.3.4 and 8.3.5.

The mean of the simulated data results, as seen in table 8.3.3, are quite
similar to the results reached by the collected data calculation in table 8.3.2.
θ0 is however a bit larger. In general, similar results suggest a small bias of
the estimates based on the collected data if any. The means in table 8.3.3
represent the expected value of the ML estimator, and is thus a way to check
for biases as the true parameter values are known for the simulated data sets.

From the bootstrap results in table 8.3.4, the only parameters which
are biased are θ0 and θ1. The bias of θ0 is small, approximately 0.00663,
which means a percentage of approximately 2.455. The bias is small, but
nevertheless it might show a tendency for the ML estimator to give a biased
estimate of the true value. This could therefore mean that the estimate from
the collected data is also biased.
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Parameter 95% CI True
based on Parameter value/

bootstrapping ML estimate
θ0 [0.27322, 0.28022] 0.27009
θ1* [0.0016099, 0.0016284] 0.0016065
θ2 [1.56671, 1.57986] 1.56967
α [0.01367, 0.01395] 0.01372
β [0.60619, 0.61024] 0.60986

Table 8.3.4: Model 2a, confidence intervals for expected values of parameter
estimators.

Standard deviation 95% CI FI estimate
based on bootstrapping

σθ0 [0.05400, 0.05895] 0.08325
σθ1 [0.00014, 0.00016] 0.00020
σθ2 [0.10149, 0.11079] 0.10218
σα [0.00212, 0.00232] 0.00222
σβ [0.03128, 0.03414] 0.03239

Table 8.3.5: Model 2a, Standard deviation Confidence intervals based on simu-
lated data.

The bias for θ1 is approximately 0.00001 (0.621%), and is thus very small.
Although this could also be caused by a tendency of the MLE to be biased,
this is perhaps less likely as a smaller difference than for θ0 would have
made it unbiased. It could also be the case that the θ1 bias is caused by
computational limits, but either way, a slightly broader confidence interval
would probably have included the θ1 estimate. Consideration of the accuracy
of computers must be taken into account, so even though the estimates are on
the outside of the CI, one should bear in mind the proximity to the interval.
The other estimates are within their respective confidence intervals, and are
thus unbiased.

As can be seen in table 8.3.5, the estimates based on bootstrapping and
the estimates based on FI do not quite agree for all the parameters. For
three of the parameters the FI estimate is not within the confidence intervals
at all. The FI information estimates are based on the normal assumption of
the MLE for large sample sizes, and in addition to this, the FI used is the
observed FI, and not the Fisher information to which the normal behaviour
of the MLEs apply (note however that Efron and Hinkley (1978) argue for
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the use of the observed Fisher information). The normal assumption and the
observed Fisher information could be reasons that the two estimates are so
different.

8.3.2 Model 2b

In model 2b, the distance to the home locality is taken into account. This
is done by increasing the rate for travelling from i to j if j is closer to the
home locality than i, and decreasing it if the distance is smaller from i to
the home locality than from j to the home locality. The idea of this model
is thus that a bird moves towards its home at a higher rate than away from
it.

What value one starts with for a parameter is particularly important for
models such as this. The reason for this is that as the rather large distances
are measured in meters and there is no subtraction from the meters, the
parameter can quickly blow up the rate to a very large or shrink it to a very
small value. If the distance had been in for instance kilometres this could be
avoided to a certain degree. However, the parameter value would have had to
have been adjusted, and perhaps have been very small. This is also the case
in model 1, but in model 1 there is only one parameter which has the ability
to do this in the exponential, while for model 2b there are two. However,
this could also be an advantage as the two contributions might cancel one
another to a certain degree as one is negative and one is positive. However,
one has to consider that the value of θ3 is in fact the effect in the exponential
of the rate per meter. A choice of parameter of for instance 1 could lead to
a change of e4000 in the rate if the distance is 4000 meters. This change is
probably too large. Hence it is important that the starting values are not
too large, as this might cause the rate to become uncontrollably high (see
appendix section A.3.3).

All the parameter values in table 8.3.6 seem to converge to the same point,
suggesting that this is a maximum. The new parameter, θ3, is estimated to
be 0.00044, which indicates a change in the rate of 0.44 per kilometre of
distance. The fact that the value of θ3 is assumed to be positive seems to
give a reasonable result, which perhaps would not be the case if movement
tended to be away from the home locality.

Comparing table 8.3.7 and table 8.3.6 it is clear that the mean of the
estimates from the simulated data is close to the value reached for the col-
lected data. This suggests that the bias is small for the estimator. To further
consider the bias, the confidence intervals reached for the expected value of
the estimator are shown in table 8.3.8. Table 8.3.9 shows the estimates of the
standard deviation based on the simulated data and the Fisher information

46



Parameter Starting Estimate Standard Log-
value deviation likelihood

θ0 0.09872 0.03651 -1248.538
θ1 0.00094 0.00027
θ3 0.0001 0.00044 0.00006
α 0.01328 0.00220
β 0.59212 0.03181
θ0 0.09868 0.03649 -1248.538
θ1 0.00094 0.00027
θ3 0.0005 0.00044 0.00006
α 0.01328 0.00220
β 0.59211 0.03181
θ0 0.09872 0.03652 -1248.538
θ1 0.00094 0.00027
θ3 0.00001 0.00044 0.00006
α 0.01328 0.00220
β 0.59212 0.03181

Table 8.3.6: Model 2b, results from collected data.

Parameter Mean of Standard deviation
estimates in estimates

θ0 0.10002 0.02156
θ1 0.00093 0.00018
θ3 0.00044 0.00006
α 0.01335 0.00231
β 0.59262 0.03009

Table 8.3.7: Model 2b, summary results from bootstrapped/simulated data, n =
1000 simulations.
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Parameter 95% CI True
based on parameter

bootstrapping value/estimate
θ0* [0.0986810, 0.1013573] 0.0986833
θ1* [0.0009226, 0.0009447] 0.0009401
θ3* [0.0004335, 0.0004405] 0.0004351
α [0.01320, 0.01349] 0.01328
β [0.59076, 0.59449] 0.59211

Table 8.3.8: Model 2b, Confidence intervals for expected values of parameters
based on simulated data.

Standard deviation 95% CI FI estimate
based on

bootstrapping
σθ0 [0.02066, 0.02255] 0.03649
σθ1 [0.00017, 0.00019] 0.00027
σθ3∗ [0.0000536, 0.0000586] 0.0000616
σα [0.00221, 0.00242] 0.00220
σβ [0.02883, 0.03147] 0.03181

Table 8.3.9: Model 2b, standard deviation confidence intervals based on simulated
data, n = 1000 simulations. *7 digits used to show difference.

respectively.
By the confidence intervals of the expected values of the estimators, all

the estimates based on the collected data are within the confidence inter-
vals. Thus, the comparison indicates that all the estimators are unbiased
when measured with a 95% CI. Hence the estimates are not assumed to be
consequently too low or to high compared to their expected value.

From the confidence intervals for the standard deviation in table 8.3.9 it
is once again clear that in general, the FI estimate tends to estimate a higher
standard deviation than the bootstrap estimate. The opposite is the case
for σα, where the value is slightly lower for the FI estimate. However, this
estimate is only just below the confidence interval, so the difference is not
very big.
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8.3.3 Model 2a and Model 2b

The two models based on the principle that birds move home at a higher
rate seem to both have improved the first model a lot when considering the
log likelihood values. When performing a likelihood ratio test on the two
selected runs for model 2a and 2b respectively versus the selected run for
model 1, the p-value came out as 0 for both of the tests.

Thus a test of any level would reject the null hypothesis which is H0 :
θ2 = 1 and H0 : θ3 = 0 for model 2a and 2b respectively. This suggests
that including an increased rate for movement towards home is a significant
improvement on the model. This is reasonable when you consider the very
large difference in the log likelihood value. The log likelihood values reached
for model 2a and 2b are much higher than for model 1, but they are quite
similar to each other. This makes the choice of model 2a or 2b more difficult.

As can be seen, the difference between the log likelihood values for model
2b and 1 is larger than that between model 2a and 1. This results in a
slightly larger value for the chi-squared test variable of the likelihood ratio
test, placing the value even further away from the chi squared distribution
which applies if the null hypothesis is true.

I have chosen to continue with model 2b as the log likelihood value is
slightly larger, and the specification of direction is more accurate in that
it increases the rates for all movements toward home and not only for the
movements specifically to the home locality.

8.4 Model 1 and model 2b
Comparing model 1 to model 2b gives a p-value of 0, so model 2b is a
significant improvement at any level for the data. Therefore I have chosen
to use model 2b as a basis for the next models. Note that model 2b also
incorporates the details from model 1.

8.5 Model 3
Model 3 is an extension of model 2b. It allows for a difference between rates
for male and female individuals through the introduction of the parameter
θ4 (see section 5.3). As in model 2b, model 3 allows for an adjustment for
increased rate to home locality and an adjustment based on distance from
model 1. Hence model 3 incorporates all the factors from model 1 and model
2b in addition to the new parameter.

As for model 2a and model 2b, the starting parameters for the "old"
parameters are set to be the result of the run for the previous model. In this
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Parameter Starting value Estimate Standard deviation Log likelihood
θ0 0.18911 0.07876 -1243.541
θ1 0.00110 0.00026
θ3 0.00042 0.00006
θ4 0.5 -0.78009 0.25237
α 0.01332 0.00219
β 0.59407 0.03214
θ0 0.18932 0.07902 -1243.541
θ1 0.00110 0.00026
θ3 0.00042 0.00006
θ4 3 -0.78029 0.25255
α 0.01332 0.00219
β 0.59413 0.03216
θ0 0.18974 0.07919 -1243.541
θ1 0.00111 0.00026
θ3 0.00042 0.00006
θ4 -3 -0.78004 0.25257
α 0.01332 0.00219
β 0.59436 0.03218

Table 8.5.1: Model 3, results from collected data.

case these are the results from model 2b (table 8.3.6). The starting values
of the new parameter for a few runs positioned differently compared to the
resulting estimate can be seen in table 8.5.1. From the results in table 8.5.1 it
seems like the value of θ4 is approximately -0.78. Since the value is negative,
it further decreases the rate for individuals where it is present. Since males
do not have θ4 (sx = 0, so θ4sx = 0), this suggests that females have an
overall lower dispersal rate than males. This can easily be seen by that for a
female the rate is reduced by a further multiplication of eθ4 , which is smaller
than 1, and hence reduces the overall rate compared to the rate for male
individuals. In fact, the value of e−0.78 is approximately 0.46, which means
almost halving the dispersal rate of a female compared to a male in the same
position and with the same home locality.

As mentioned, Tufto et al. (2005) writes that female blue and great tits
disperse longer distances than males according to their results. In the book
Biology of the Ubiquitous House Sparrow by Anderson (2006), it is stated
that male house sparrows have greater foraging distances than females in
average(Anderson, 2006, p. 337). The results above (table 8.5.1) indicate
that female house sparrows disperse less often than males, but does not say
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anything about distances when they do. However, if males and females are
thought to be travelling the same amount of time, a lower dispersal rate for
females would indicate that the females fly greater distances than the males,
which is not the case according to Anderson. Another possibility is that
either females stay at their home farm more, or that they are more difficult
to observe. Of the 105 individuals with data recorded on them for all the
models, there are 56 females and 49 males, so the distribution of individuals
on the two sexes is quite equal. However, when it comes to the number of
observations, 308 of the observations used were of females, and only 230 of
males. This suggests a difference in the mean number of observations of each
individual to be nearly one higher for females than for males, indicating that
perhaps females are easier to observe. Note that this is not a formal test,
and that further research would have to be done to establish this.

Again, the different starting points seem to converge to the same point.
This suggests that this is a maximum over a larger area, and not just a local
maximum for one of the starting points. In addition to this, the runs have
negative eigen values on their Hessians, which supports the claim that this
is indeed a maximum point.

Parameter Mean of estimates Standard deviation in sample
θ0 0.19620 0.04940
θ1 0.00111 0.00019
θ3 0.00042 0.00005
θ4 -0.79338 0.21595
α 0.01337 0.00227
β 0.59425 0.03090

Table 8.5.2: Model 3, summary results from simulated data, n = 1000 simulations.
Note warning, see appendix, section A.3.4.

The results seem to be quite similar for the simulated data. The means in
table 8.5.2 are similar to the results reached for the collected data (which are
the true values for the simulated data sets). When running the simulations,
a warning appeared. Even though this warning appeared, the results appear
to be quite as expected, so the results were used anyway. For more details
on the warning, see appendix section A.3.4.

From the confidence intervals based on the simulated data in table 8.5.3
it is clear that all the parameters are unbiased except for θ0. The bias of the
θ0 parameter is of size 3.749%, so it is not very large, albeit larger than it
was for model 1 and 2a for the same parameter (here they were 1.692% and
2.455% respectively). The bias here is about 4% so it seems that the ML
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Parameter 95% CI for expected value True value
of estimate

θ0 [0.19313,0.19926] 0.18911
θ1* [0.0010993,0.0011228] 0.0011046
θ3* [0.0004202,0.0004270] 0.0004211
θ4 [-0.80678,-0.77998] -0.78009
α [0.01323,0.01351] 0.01332
β [0.59234,0.59617] 0.59407

Table 8.5.3: Model 3, confidence intervals for expected value of parameter esti-
mator, n=1000 simulations. Note Warning, see appendix section A.3.4. *7 digits
used to determine difference.

Standard 95% CI FI based
deviation based on bootstrapping estimate

σθ0 [0.04733,0.05167] 0.07876
σθ1 [0.00018,0.00020] 0.00026
σθ3∗ [0.0000526,0.0000575] 0.0000611
σθ4 [0.20689,0.22586] 0.25237
σα [0.00217,0.00237] 0.00219
σβ [0.02961,0.03232] 0.03214

Table 8.5.4: Model 3, estimates of standard deviations. *7 digits used to deter-
mine difference.

estimator tends to overestimate the true value by almost 4%. The parameter
estimate of θ0 seems to be out of the confidence interval quite often, as this
is the case in model 1 and 2a as well.

Table 8.5.4 of the standard deviation estimates shows that the FI based
estimate again seems to have the highest estimate for the standard deviation
for the parameters. The estimates for σα and σβ are however within the
confidence interval of the bootstrapping results, so at this level the two results
are not in disagreement. Overall, the standard deviations appear to be quite
good, but perhaps a bit large for the parameter θ4.

8.6 Model 2b and model 3
From the log likelihood values of the runs of models 2b and 3 it is clear that
the improvement is nowhere near the improvement the second models made
on the first model. The log likelihood values are however a little smaller for
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model 3, and to test if they are significant enough the likelihood ratio test
is used. Note that the test in this case takes the form H0 : θ4 = 0, which is
model 2b, versus H1 : θ4 6= 0, which is model 3.

The likelihood ratio test gives a p-value of approximately 0.00157. The
p-value is quite low, below any value which is normally used for a test (that
is, 0.05 or 0.01), so tests on these levels, and any other level higher than the
p-value, would accept the alternative hypothesis. The alternative hypothesis
is thus accepted, and the adjustment in the model based on an individual’s
sex is a significant improvement of model 2b.

8.7 Model 4
From the results for the comparison between models 2b and 3 it was clear
that model 3 offered a significant improvement to the dispersal rate model.
Therefore model 3 is used as the basis for model 4, and the starting values
used for the parameters present in both the models as the result from model
3 (table 8.5.1).

To run model 4 I had to choose what value to give θ6, the date limit (see
section 5.4), in addition to the starting values for θ5. To coincide with the
increase in the dispersal distance noted by Anderson (2006), I chose θ6 to
represent a date in late summer. As the limit I used 16th of August 2011.
This corresponds to the index 91 in the list of ordered sampling points. This
way, all sampling points which have a sampling point with index lower than
91, gets ds = 0, and equal or greater than 91 gets ds = 1. This splits the
sampling points into two uneven groups when it comes to size (90 sampling
points and 52 sampling points), but the number of sampling points is of
reasonable size on both sides of the limit (note that this is the number of
sampling points, not the number of observations).

The results for model 4 for three runs where the starting value of θ5 is
positioned differently to the estimate reached for θ5, can be seen in table 8.7.1.
From the results, it is clear that all the runs converge to the same point. They
all agree that θ5 takes a value of approximately -1.99. This value indicates a
decrease in the dispersal rate in late summer because the dates which have
θ5 present, the ones in late summer, are multiplied by eθ5 compared to those
who do not have it present. This means that the result suggests a decrease in
dispersal rate for individuals in late summer and autumn. The result could
fit with longer distance dispersal in the late summer and autumn (Anderson,
2006), as longer distances could mean fewer dispersals as the distances flown
are more time-consuming.

The standard deviation estimates based on the observed FI are varying.
The standard deviation is mostly good, that is quite small, but for certain

53



Parameter Starting Estimate FI estimate of Log
value s.d. likelihood

θ0 0.18994 0.09504 -1218.056
θ1 0.00017 0.00033
θ3 0.00048 0.00005
θ4 -0.75467 0.30675
θ5 2 -1.99458 0.33075
α 0.01141 0.00214
β 0.56164 0.02712
θ0 0.19019 0.09525 -1218.056
θ1 0.00017 0.00033
θ3 0.00048 0.00005
θ4 -0.75491 0.30695
θ5 -0.5 -1.99591 0.33106
α 0.01141 0.00214
β 0.56165 0.02712
θ0 0.19134 0.09622 -1218.056
θ1 0.00017 0.00033
θ3 0.00048 0.00005
θ4 -0.75775 0.30732
θ5 -4 -1.99630 0.33133
α 0.01141 0.00214
β 0.56164 0.02712

Table 8.7.1: Model 4, results from collected data.

parameters it is very bad. To take the worst case first, the standard deviation
of θ1 is larger in absolute value than the parameter itself. This means that
the estimate is very uncertain, and drawing conclusions from this estimate
can be risky.

Further, the standard deviations of θ1 and θ4 are quite large as well. The
values of the standard deviation estimates are approximately half and one
third of the estimated parameter value. Hence one has to use caution if
drawing critical assumptions from this.

The log likelihood values for the three runs in table 8.7.1 are all equal, and
the estimates all tend to converge to the same point. The eigen values of the
Hessians are all negative, which supports the maximum point assumption.
The log likelihood value is larger than the one for model 3, suggesting that
there is a difference in time.

The simulation and optimization of the model 4 data sets require more
computations than the equivalent process for the other models. This is be-
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Parameter Mean of Standard
estimates deviation

θ0 0.22370 0.10107
θ1 0.00022 0.00021
θ3 0.00049 0.00004
θ4 -0.77064 0.25165
θ5 -2.04532 0.27216
α 0.01150 0.00219
β 0.56367 0.02884

Table 8.7.2: Model 4, summary statistics for simulated data. n = 425 simulated
data sets.

cause of the recalculation of the A matrix mentioned in section 5.4. Due
to this, the number of simulations done for model 4 is lower than the 1000
simulations done for the other models. This causes the confidence intervals
to be broader, and the estimates less accurate, as the simulation is less rep-
resentative (not as many possibilities are taken into account). As opposed
to the other models, some of the runs did not converge for model 4. All of
the runs are based on the same conditions, so either the function does not
work for certain simulated data sets, or the optim function must have failed.
After removing the results from runs which did not converge (results from
35 runs were removed), the sample size for model 4 is n = 425.

The results from the simulated data sets seem to differ a bit from the
results from the collected data. The values are all greater than their true
value (the results from the collected data), which suggests a tendency for
the estimator to be biased. However, some of the optimizations for model 4
failed with the BFGS method. The Nelder-Mead method is then used instead
as explained in appendix section A.2.4. This is the case for 84 of the used
simulations, while the remaining 341 are calculated with the BFGS method.

The standard deviations among the simulated results are rather large for
θ0, θ1 and θ4 as it was also suggested in the calculations for the collected
data. This again can suggest that these parameters, and particularly θ1 as
the standard deviation is nearly as large in absolute value as the estimate
itself, are very uncertain.

From table 8.7.3 it is clear that some of the estimates are within a rea-
sonable range of the true value, and are hence unbiased. This is the case
for parameters θ3, θ4, α and β. The remaining parameters are biased when
measured at the 95% level. The biases are 17.8%, 29.4% and 2.5% for θ0,
θ1 and θ5 respectively. The very large biases for the two first parameters
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Parameter 95% CI MLE
from simulations from collected data

θ0 [0.21406,0.23333] 0.18994
θ1 [0.00020,0.00024] 0.00017
θ3* [0.0004824,0.0004908] 0.0004842
θ4 [-0.79463,-0.74664] -0.75467
θ5 [-2.07127,-2.01937] -1.99458
α [0.01129,0.01171] 0.01141
β [0.56092,0.56642] 0.56164

Table 8.7.3: Model 4, CI for expected value of estimator, and estimate based on
collected data (true value for simulation optimization). *7 digits used to show
difference.

Parameter 95% CI FI based
from simulations estimate of sd

σθ0 [0.09470,0.10836] 0.09504
σθ1 [0.00019,0.00022] 0.00033
σθ3* [0.0000411,0.0000471] 0.0000492
σθ4 [0.23580,0.26981] 0.30675
σθ5 [0.25501,0.29180] 0.33075
σα [0.00205,0.00235] 0.00214
σβ [0.02702,0.03092] 0.02712

Table 8.7.4: Model 4, estimates of standard deviation. CI for estimate based on
simulation, and estimate based on FI.*7 digits used to show difference.

can be seen in the light of the very large standard deviation present in table
8.7.1. A very large standard deviation suggests a very uncertain estimate.
This could be the case for the simulated data as well, suggesting that the
different parameter estimates for these two parameters are vastly different,
as is also reflected in table 8.7.2 where the size of the standard deviations
are very large compared to the estimates.

The estimates of the standard deviations in table 8.7.4 again seems to
show that the estimates based on the observed Fisher information are higher
than those based on the simulated data. For θ0, α and β however, the
two estimates seem to bee in reasonable agreement with the value of the
observed Fisher information estimate inside the 95% CI of the simulated
data estimates. For the remaining four parameter estimates, the observed
Fisher information estimate seems to be larger than the upper limit of the
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confidence intervals based on the simulated data, and hence the observed
Fisher information estimator seems to estimate a higher standard deviation
than the standard deviation present in the results from the simulated data.

8.8 Model 3 and Model 4
As already mentioned, the log likelihood value of model 4 is a bit larger
than the log likelihood value of model 3. This suggests that model 4 offers a
better fit to the data. However, some of the parameter estimates in model 4
had very large standard deviations. This suggests that the model is perhaps
not the best model when it comes to stability, as the uncertainty of the
results are quite large. Nevertheless, a likelihood ratio test gives a p-value of
approximately 9.3778 ·10−13, which suggests that model 4 offers a significant
improvement of model 3. If doing a test of level 5% it is now clear that the
alternative hypothesis (θ5 6= 0) would have been accepted.

The large standard deviations in model 4, which were not present in the
earlier models to such a great extent, suggests that perhaps the use of model
3 is a safer choice. One will have to weigh up the two models and compare
them in each case to find out which is better suited. In cases where accuracy
is essential, model 3 might be a better choice, while in models where it is not
crucial that the parameters have small standard deviations, perhaps model
4 would be better.

8.9 General
Throughout the estimates from the different models it seems that the es-
timates of α and β are quite similar. This should make sense because the
death rate and the resighting probability should be independent of the dis-
persal rate, and they should be the same for the same data set. Note that
the two parameters are not present in the expression for the dispersal rates
(equation 26 in section 4.5), and only enter the calculations through the
probabilities calculated and the log likelihood expressions respectively.

In figure 3 one can see how the different model estimates are compared
to each other. From the plots it is clear that there are differences between
the different models, but that the values of the parameter estimates are not
that different. There is however some variation, as is to be expected. One
would expect such a change when there are more parameters and covariates
which can explain changes in the rate.
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Figure 3: Estimates for different models.

9 Discussion
The assumption of the death rate to be equal at all localities and all times is
perhaps controversial. As von Post mentions in her PhD thesis, moderniza-
tion of farm work and less leftovers from farming may make birds’ life more
difficult at farms (von Post, 2013, p.16). Changes in agriculture or farming
is believed to be a major reason for an observed decline in house sparrow
populations Anderson (2006, p.343). Hence a possible addition to the model
is to take into account possible differences in the living conditions at the dif-
ferent farms. However, the largest distance between two farms in this study
is approximately 4840m (4841.12m between farms 3 and 8). Anderson (2006,
p. 336) states that house sparrows are quite sedentary, but that typical flight
distances from a bird’s breeding site can be up to a few kilometres at certain
times of the year (late summer/autumn). Anderson mentions several stud-
ies, and from the distances mentioned there, typical foraging distances varies
from a few hundred meters from the breeding site to 5 km, although 3.2 km
is also mentioned as a maximum distance (Anderson, 2006, p. 337).

Hence, the conclusion on the distances between the farms is that although
the direct distance between some farms are perhaps out of normal range for an
individual, it should certainly be possible for an individual to move between
all the farms in search of food. Also, it must be taken into account that
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although an individual is assumed to always be on a farm, this is probably
not the case in real life. It is possible that an individual will start on a
journey longer than what one would perhaps assume normal, and eat on the
way. This suggests that the birds will be able to travel between any two
farms, although they might not do so too frequently for farms separated by
large distances.

One should also keep in mind that as the data are collected at certain
times and not continuously, the birds may have used a completely different
route than what appears from the data. In addition to that the bird may
have flown differently than what is randomly chosen for the multiple data,
this could also be the case for other data. For example, a hypothetical
individual could have travelled between farms 1 and 4 in many ways, for
instance 1-2-6-3-2-4. If the bird is only observed at farms 1 and 4, it will
appear from the data that the individual flew directly from farm 1 to farm
4, although that was not the case. This is particularly important to keep
in mind since the farms are so close to each other that an individual should
easily be able to reach any farm from its position. This makes such cases
not only possible, but also rather likely. For larger study areas, for example
when considering subpopulations on different islands as Jensen et al. (2013)
does, this is perhaps less likely to happen.

The birds used in this study are all juveniles, meaning that they might
disperse away from their nestling site as well to find a new place to live
(natal dispersal, Anderson (2006, p. 338)). This could therefore increase
the number of dispersals in this study compared to a population where all
individuals are part of the study. On the other hand, the natal dispersal in
house sparrows is only about 10% (Pärn et al., 2012)), so the effect of this if
present, might not be very large. If the value of the natal dispersal is higher
for such short distances as used in this study, it might however have an effect.

Another potential inaccuracy is the constant death rate when it comes
to time. Very young individuals may have a higher death rate than older
individuals, as they are new to the environment around them and more
helpless. On the other hand, younger individuals may have other advantages
over older ones. In addition to this, seasonal changes may affect the death
rate, as it may be more difficult for birds to find food during certain periods,
for example in the winter. As mentioned, only data on juvenile birds are
used in this project, again justifying the constant death rate with respect
to age as all the individuals are of similar age. Also, all the data used is
collected in the period May through September. Hence any great seasonal
changes might not be reflected in the data. This can make it hard to give
a good picture of movement for all of the year, but then it also justifies the
use of a constant death rate. I have used the assumption of a constant death
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rate, but this is something that should be further researched. For further
research on the death rate it might be reasonable to also use data from the
winter half of the year in order to detect potential differences. One way to
do this is to split the year into units of similar weather conditions and then
have a death rate for each unit. Alternatively, the death rate could be a
function of the weather (or other factors, for instance age) if one finds a way
to sufficiently tie together weather conditions and death rate. By inclusion
of biologists with a thorough knowledge of how house sparrows are affected
by the weather, this could be an interesting possible field of study.

Further research should also be done into the differences of the dispersal
rate in time. Model 4 takes a very simple version of this into account, but
only for one date limit. The value of when such a limit should be set is
perhaps something that should be discussed, and also whether there should
be an increase in the number of such limits. The one limit set in model 4
is set with the goal of capturing a potential difference between spring/early
summer and late summer/autumn. There might be similar differences close
to the breeding season as well, if one imagines that the birds are busy feeding
their offspring. Although this might not affect the dispersal distance, it could
affect the dispersal rate, which is what is being studied here.

An alternative to the set date time difference used here is to instead let
the time affect the rate through a function. It is rather unlikely that suddenly
in the course of one day, the rate should change drastically. A more plausible
scenario is that the gradual changes in weather and the environment that
naturally comes as the seasons change, have an effect on the rate. A way to
do this is to let the date affect the rate through a continuous function that
has an appropriate value at different times of the year so the change between
following days is gradual, and not abrupt as in model 4. To make such
a model, an appropriate function for the seasonal changes must be found.
This is a challenge in itself, but by no means impossible, and with the help
of a meteorologist and a biologist it should be possible.

The dispersal rate can also be dependent on population size indirectly
(Pärn et al., 2012)). Pärn et al. argues that a larger population size may
restrict the resources available for each individual. This is logical, as the
number of individuals competing for the food and other resources is greater,
and hence more individuals may not get the needed resources. At Hestman-
nøy, the distances are so small that individuals will in theory be able to travel
between all farms to find food, so if there is not enough, they might fly to the
neighbouring farm just to get food, and then return. This could also increase
the number of dispersals.

Another possible adjustment is to add an adjustment based on memory
effects, which is discussed by Börger et al. (2008). Börger et al. discuss

60



examples where a home range is defined by the help of memory. Such ad-
justments are for instance adjustments on whether an animal will or will not
revisit previously visited sites more or less often than other sites. Perhaps
an incorporation of an idea of this type could also be useful in a dispersal
rate model.

When simulating the data sets, some values have to be chosen as the true
values. The simulations are based on the the model in question, but this
also means that the value of the parameters have to be chosen before the
simulation is done. The values I chose to use as true values in this thesis
are the values that result from the optimization of the collected data. These
values are as mentioned estimates of the maximum likelihood estimates, and
hence a very reasonable value to base the simulations on. Under the hypoth-
esis that the collected data is based on the model in question, these MLE
values would be likely values for the true parameters of the model behind
the collected data. One would similarly expect the MLE estimates based on
the simulated data set to be similar to their true value if the log likelihood
function and optimization work as they should. The difference is that for the
simulated data, the true parameters and the model behind the data sets are
known.

Because of the limitations in my data set on year and age, several of the
localities do not have any data on individuals travelling to or from them.
This could either be because observations were not made on that particular
farm in 2011 (the case for farm number 1, 5, 7 and 8), or because no juvenile
individuals were observed at these farms at any of the sampling points (the
case for farm 3). This means that all the rates to and from these farms are
based on the rates between other farms. Therefore, the rates may not be
very representative for rates to and from the "missing" farms. To amend
this, a possible solution is to use a larger data set, perhaps the data set for
juveniles for two years, or however many years are needed for all farms to be
represented by data. Note that to avoid any age difference disturbance one
should only use juveniles for each year (or another age group) or adjust the
rates to account for a possible difference. If the resulting data set proves to
be too large, it might be sufficient to follow a few individuals from each year,
or perhaps a random sample of individuals from each year.

10 Conclusion
In this study I have attempted to fit five different models to a data set
consisting of house sparrow movement history. The goal has been to find a
well-suited model for the dispersal rates of the house sparrows, and thus reach
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a model that can easily be adapted to other partially isolated populations.
It was clear from the study that the models improved the more detail was

included in the expression for the rate. An exceptional improvement was seen
when each individual’s home locality was adjusted for, through a very great
increase in the log likelihood value. The home locality was adjusted for in
a manner that increased the dispersal rate for travelling towards the home
locality. This suggests that distance between two points as a basis for the
dispersal rate between them does not alone offer the best possible basis for
the rates.

When expanding the model, more data on the individuals is used. The
first expansion, the inclusion of a home locality, suggested that the rate was
indeed higher for movement toward the home locality than away from it.
This does not necessarily suggest that the birds only fly to where they were
hatched, but might indicate that a bird prefers not to disperse too far from
their hatching locality. The second expansion, which included a parameter
depending on the sex of an individual, pointed in the direction that there
might be a dispersal rate difference between males and females. The females
seemed to disperse less often than males. This result might be controversial,
so this should be studied further.

The last element included in the final expansion is difference in time. The
log likelihood ratio test indicated that the inclusion of difference in time is
significant. However, the model used in this study is very simplified, with
the difference set for dates after a specific date limit. In addition to this, the
standard deviation estimates were very large for some of the parameters. It
is possible that other dates would be more suited, or that more dates should
be included. A perhaps better possibility is to let the time be a function to
allow gradual changes in the rate throughout the year. The dispersal rates’
dependence on time is a field of study with much potential, as it is reasonable
that the birds move differently at different seasons as the hunt for food or
shelter would be different.

I conclude that to create a model for the dispersal rate, several factors
should be taken into account. The model seemed to improve for every new
parameter included, although it was clear that not all new expansions to
the model should be accepted unquestionably. If utilizing the models tested
in this study without further improvement, I would probably recommend
model 3 or 4. Although the fourth model has in increased log likelihood to
the third model, the fourth model has a few unreasonably large standard
deviations. More research on the model could probably improve it further.
What parameters are taken into account in a possible future study is up
to the researches, but I would recommend to further use distance to home
locality, or for older individuals perhaps change this to the site of their adult
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nests. Another possibility is to adjust for memory, as mentioned by Börger
et al. (2008). In particular, I think the use of a function to represent the
contribution based on the different seasons could be an interesting field of
study for further research.
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Appendix A The Log Likelihood Function

A.1 Implementation of the Log Likelihood Function
The implementation is principally done in such a way that each function has
one task. The main function is the function that calculates the log likelihood
value based on the observation matrix.

The log likelihood function calculates the value of the log likelihood based
on the parameter values and the observation matrix. The input given to
the log likelihood function varies with the model used, for instance model
1 requires only four parameters, while model 2b requires five parameters,
as well as a list over the home localities. Because of this, what model one
wishes to use is also given as input with default set to model 1. In addition
to this, the likelihood function is updated to accommodate later models, but
in general, the results from earlier models would not have been affected by
the changes made.

Copy of section of log likelihood with tests

if(tdf==0){
pm=pn #To avoid using A2

} else {

A2=diag(exp(D*tdf)) #

pm =U%*%A2%*%Uinv%*%pn*exp((-1)*alpha*tdf)

if (sum(abs(Im(pm))>(1*10^(-15)))>0){
print(’Imaginary value error’)
print(sum(abs(Im(pm))>(1*10^(-15))))
print(t(round(Im(pm),digits=16)))

} else {
pm=Re(pm)
}

pm=round(pm,digits=15)
}

During the computation of the results, I have tried to change the log
likelihood function as little as possible. However, certain runs have caused
issues, and to further unveil these, some changes have been made. In general
I have attempted to make sure that all the results presented in the thesis

68



for one model is run with the same code. There is however one case where
there is a difference for the simulated and collected data, but this should
not have affected the results. Note however, that these are not changes that
would likely have affected the calculations of earlier models, either because
they are not relevant for the earlier model, or because no warning or error
was obtained for earlier runs to indicate that something was amiss. This is
for instance the case for the imaginary values issue discussed below, which
occurred for model 2a. Furthermore, the log likelihood function has been
changed to work for new models, but in a way that should not affect older
models.

A.2 Issues in and Adjustments to the Log Likelihood
Function

While running the log likelihood function, several issues turned up. In this
section, some of the issues are discussed, and how they were resolved are
presented.

A.2.1 Rounding of Probabilities

It became clear that some of the runs resulted in probabilities which were
out of the legal range for probabilities ([0,1]), as they sometimes occurred as
negative. This resulted in an attempt to calculate the logarithm of a negative
value, which of course cannot be done. Some of the probabilities were of size
10−17 and thereabouts when this occurred. It is likely that probabilities this
small were in fact supposed to be 0, but were not because of computational
errors caused by the limitations in the number of digits used in the calcu-
lations on the computer. Therefore, when discovering that the probabilities
were wrong and of what size they were, I chose to round the probabilities to
15 decimal places. This causes extremely small probabilities to be rounded
to 0, and hence avoiding the problem occurring with negative probabilities.
With the rounding of the probabilities to 15 decimal places, the problem did
not occur any more, suggesting that these probable computational effects
were indeed the problem.

A.2.2 Imaginary Values

For some of the runs of model 2a, an issue with imaginary values occurred.
This was the case when the probability of movement contained imaginary
values in addition to real values. From the values I observed, it appeared to
be the case that in very many of these instances, the imaginary value actually
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had value 0, and hence the number was in fact real, but it was not registered
as such. In order to attempt to correct this, I chose to check the vector of
probabilities if any imaginary values were different from 0, and later if the
imaginary value’s absolute value was greater than 1 · 10−15, to avoid further
complications. If this was not the case, then only the real part was used,
otherwise, a message was printed out together with some information. At
first this was the probabilities, however, the probabilities still came out with
an imaginary value of 0, even though the test had claimed that was not the
case.

I later tried a few runs were the function printed out the number of
imaginary parts different from 0 as well, and eventually, only the imaginary
part in hope of getting more decimals. The result of this was that it appeared
that the values giving out an imaginary value were very small, on level 10−15,
so they were just large enough to be greater than the set limit and therefore
very likely also a result of computational limitations. This raises the question
of where such a limit should be set.

Note that after the message stating that the imaginary value was different
from 0 was printed, the function continued as usual, and the imaginary parts
were discarded. As a result of this warning messages are issued from R,
stating that the imaginary values were discarded. However, assuming that
these imaginary values are indeed very small, and in any case should have
been 0, this should not matter for the results reached.

A.2.3 Scaling of Parameters

By first running the data, it became clear that the logl function, which
calculates the log likelihood, did not work as planned. This is because it
caused very large numbers for the rates, which in turn caused issues when
attempting to do calculations with the A matrix. At first, I attempted to
scale down the model for model 2b, as the problem did not appear very
clearly in model 1. However, it turned out that this did not work. After
reading the warnings received when running the first model (that NaN were
produced), I chose to run the whole process again, from the first model.

The optim-function in R did not take into account what values the dif-
ferent parameters were permitted to take, and this caused another problem.
I had not taken this into account while writing the function. This was there-
fore adjusted, by returning -Inf as the log likelihood if any of the parameters
were out of bounds (see A.2.5 for further details). Particularly for α the op-
tim function did not work with larger starting values (for example 0.3), and
it appeared that one of the parameters did not converge, even though the
optim function claimed that it did. In the end, it turned out that this
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last problem could be solved by scaling the parameters so appropriate step
lengths were taken for each parameter. The first problem is probably caused
by too large values not making sense or causing too large values in the func-
tion. This is avoided by making sure the starting values are not too far away
from a reasonable value.

Scaling the parameters entails that when the function is optimized, the
step sizes for the different parameters are not the same for each parameter,
but a step of a reasonable size depending on what scale one expects the result
to be. For instance, if one parameter is of size 1000 and another of size 0.001,
changing the parameters by the same value of for instance 0.1 when trying
to find the maximum, might not give an effect on the log likelihood. This is
because it might not change enough for the large parameter, and too much
for the small parameter to find a difference in the log likelihood. For scaled
parameters it is up to the scaling whether each parameter is changed little
or much.

A.2.4 Choice of Method

In order to optimize a method with the optim function in R, a method
for the optimization had to be chosen. As several parameters were to be
optimized, a method which could handle this was necessary. Two of the
methods implemented in R which can handle this is the BFGS method and
the Nelder-Mead method. Eventually, mostly the BFGS method was used,
but also the slower Nelder-Mead method was used in some cases.

Initially I used the Nelder-Mead method in the optim function, however,
there turned out to be a problem. The Nelder-Mead method did not give
the same results for all scalings at least in one case, although mostly the
same values were reached. According to McKinnon (1998), the Nelder-Mead
method will in some cases not converge to the stationary point one might
expect, but instead to a nonstationary point. This was part of the reason
why I chose to use the BFGS method. Also the BFGS method sometimes
gave results that was in accordance with other runs when the Nelder-Mead
method did not.

I chose to run all the runs (different starting values) for model 1 with
both the BFGS and the Nelder-Mead method, to ensure that they were in
agreement. If the Nelder-Mead method was not in agreement, I chose to see
which one agreed with the other runs, and to double check that it was in fact
a maximum. For the later models I chose to run the BFGS method as a first
choice, and to run the Nelder-Mead method if an issue occurred. The issue
could be that a result was not in agreement with the other runs or that the
run failed.
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For optimizing the simulating data, I chose to use the BFGS method,
but to try the Nelder-Mead method if the BFGS method failed. This was to
prevent that the entire simulation loop failed if the BFGS method failed. If
both the methods failed for a simulated data set, the simulated data set would
have been replaced with another, so that the correct number of simulations
were calculated. This is potentially an error in the method, if specific data
sets lead to failing. However, in the end, for this study, no data sets failed
for both the Nelder-Mead and the BFGS method.

When optimizing the simulated data sets for model 4 it also became
particularly clear that the BFGS method is a lot faster than the Nelder-
Mead method. This was because for model 4 the calculations took some
time in the first place, and for cases where the BFGS method failed and the
Nelder-Mead method used, it became very clear that the BFGS method was
a lot faster.

A.2.5 Limitations on Parameters

The log likelihood function rejects illegal parameter values by returning -Inf
before any calculations are done, and ending the calculation. The return of
minus infinity is reasonable because it is the worst possible log likelihood
value a set of parameters can give, and so the parameter set will not be
accepted as a maximum as any other returned log likelihood value would be
better (or as bad).

As mentioned, the results I used are the BFGS result, as far as possible.
However, when attempting to simulate data, it became clear that the BFGS
method failed quite often. Because of the fails when running the optimization
with the BFGS method, I also chose to only allow values of θ1 that were
greater than or equal to 0, as the method seemed to get warnings when θ1
was negative. This is reasonable as the assumption is for the rate to decrease
with increasing distance. These warnings were issued by the probabilities
being NaN, which might have been caused by errors because the rates in
the A-matrix were of level infinity. In other words, for model 1, if θ0 or θ1 < 0,
α <= 0 or if β is not in the interval [0,1], the log likelihood came out as -Inf
if an illegal parameter value is attempted used by the optim-function.
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Copy from code illustrating settings for running the optim function
in R for first parameter set for model 1.

In the code section, the function hessian is from the numDeriv-package in R,
and the value −1 for fnscale makes optim find the maximum of the log likelihood
function logl.

#Model 1
om11NM = optim(spar1,fn=logl,obsmat=l1$mat,

method="Nelder-Mead",
control=list(parscale=spar1,maxit=max, fnscale=-1))

om11NMh = hessian(logl,om11NM$par,
method.args=list(eps=om11NM$par*10^(-4)))

om11BF = optim(spar1,fn=logl,obsmat=l1$mat,method="BFGS",
control=list(parscale=spar1,maxit=max,fnscale=-1))

om11BFh = hessian(logl,om11BF$par,
method.args=list(eps=om11BF$par*10^(-4)))

A.3 Notes on the Different Models and Simulations
A.3.1 Model 1

The simulated data is simulated using the results from the original data set, second
run in table 8.2.1, as the true values. I chose to use the second run in the table
above as the basis, because it had the highest log likelihood value. The values of
its standard deviation are not the best for all parameters, but they are not the
worst for all parameters either. However, the three results displayed in table 8.2.1
are at so similar that which one of them is chosen would probably not have much
effect on the final results.

A.3.2 Model 2a

For the simulations, the results for the third run in table 8.3.2 were used as the true
values and starting values. Note however again the similarity of the runs-either
one would probably give the same result.

Note that during the simulation, there were several instances of imaginary value
occurrences, see section A.2.2. A total of 7 warnings were issued because of this.
When controlling this, the imaginary parts were very close to zero, that is of order
10−17 and smaller. I therefore assumed that they were caused by computational
limitations. However, the result did not appear to be affected by it.
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A.3.3 Model 2b

The second run in table 8.3.6 was used for the simulations of the data and further
calculations. For the collected data, attempting to run the function for larger
values of θ3, for instance θ3 = 0.01, θ3 = 1 or θ3 = 0.01, did not work. This
is probably because too large values are created, and therefore the calculations
cannot be carried out (for instance if a value is infinite). As discussed in section
8.3.2, if the value of θ3 is too large it will when multiplied by possibly thousands
of meters cause the rate to get extreme. For lower values the errors did not occur.
Too large values of for instance θ3 can cause very large changes in the rate, and
possibly an error when attempting to calculate e−θ1ri,j+θ3(rj,h−ri,h) if θ3(rj,h− ri,h)
is much greater than −θ1ri,j .

A.3.4 Model 3

For the simulated data, the first run results in table 8.5.1 are used as the true
values, although there probably would not have been much of a difference if any
of the other results had been used. At the end of the simulation, one warning
occurred. It stated that for log(beta*pm[ctli]) NaNs were produced, where pm
is the vector with the probabilities right before the sampling point, and ctli is
the location in question. When investigating this by running a few additional
simulations with some printouts from the function, it appeared that the same
warning was caused by negative values in the probabilities. However, the values
that were printed out were negative values of 0, which does not make sense. My
theory is therefore that the values are very small and negative, but for some reason
either did not get rounded so it is still registered as negative, or that the prefix for
some reason did not change when the value became 0. The small negative numbers
are probably a result of numerical limitations in the calculations. I chose to use
the simulated data set even though this warning occurred.

A.3.5 Model 4

For model 4, the results in the first run in table 8.7.1 are used for the simulations
and further calculations. Several of the runs for model 4 did not converge according
to the convergence indicator in the optim function. These data sets were hence
removed from the set of simulated results before any further calculations were
done. The number of data sets optimized with the BFGS method is 341, while
for the remaining 84 data sets, the BFGS method failed and the Nelder-Mead
method was used. As the computations for model 4 in general took some time as
more computations were required, the relatively frequent use of the Nelder-Mead
method (see ?? and its use of time (see section A.2.4), further contributed to limit
the number of simulations.
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A.4 R-code for Log Likelihood Function
This section contains a copy of the code for the log likelihood function. Some
comments are added for the benefit of the reader.

logl = function(par,obsmat=l1$mat,m=1,hm=0, th2=0,th3=0,
th4=0,th5=0, sl=slist,datloc=c1,tim=tm){

if (par[4]>1 || par[4]<=0 || par[3]<0 || par[1]<0 || par[2]<0){
return(-Inf)

} #control of parameter values, all models
th0 = par[1]
th1 = par[2]
alpha = par[3]
beta = par[4]
if (m==2) { ##model 2a, control of parameter values, model specific.

if (par[5]<=0){return(-Inf)}
th2=par[5]

} else if (m==3){ #model 2b
if (par[5]<0) {return(-Inf)}
th3=par[5]

} else if (m==4){ #model 3
if (par[5]<0){return(-Inf)}
th3=par[5]
th4=par[6]

} else if (m==5){ #model 4
if(par[5]<0){return(-Inf)}
th3=par[5]
th4=par[6]
th5=par[7]

}
nlt = ncol(obsmat) #number of sampling points

prdct= log(1)
if(m==1){ #for model 1, the same matrix for all individuals.

A = matrixA1(th0,th1)
Ae = eigen(A)
U = Ae$vectors
Uinv=solve(U)
D = Ae$values

}
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for (ind in 1:nrow(obsmat)){ # For each individual
s=0
pn = rep(0,10) #probabilities, plus(after a sampling point)
pm = rep(0,10) #probabilities, minus(before a sampling point)
cll = log(1) #contribution to log likelihood for individual i
st=match(1,obsmat[ind,]) #finding first observation for individual

if(m>1 &&m<=5 && s==0){#other models than model 1,
#only once for each individual

A=matrixA1(th0=th0,th1=th1,th2=th2,th3=th3,th4=th4,
m=m,hm=hm[ind],sl=sl[ind])

#more complicated models require
Ae=eigen(A) #a separate A matrix for
U = Ae$vectors #each individual
Uinv = solve(U)
D= Ae$values
s=1

}
pn[datloc[st,2]]=1 #first observation of individual
for (i in (st+1):nlt){#For each time/location pair,

#after individual enters study.
if (i>nlt) {#otherwise the previous observation is in

#the last sampling time/place,
break() #to prevent possible errors if st=last observation

}
if(m==5 && i>=91 && s<2) { #for model 4, only calculated

#once after datechange
A=matrixA1(th0=th0,th1=th1,th2=th2,th3=th3,

th4=th4,th5=th5,m=m,hm=hm[ind],
sl=sl[ind],spl=i)

Ae=eigen(A)
U=Ae$vectors
Uinv=solve(U)
D=Ae$values
s=2

}
tdf=tim[i-1,i] #Time difference between two sampling times

if(tdf==0){
pm=pn #To avoid using A2

} else {
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A2=diag(exp(D*tdf)) #

pm =U%*%A2%*%Uinv%*%pn*exp((-1)*alpha*tdf)

if (sum(abs(Im(pm))>(1*10^(-15)))>0){ #Checking for
#larger imaginary values

print(’Imaginary value error’)
print(sum(abs(Im(pm))>(1*10^(-15))))
print(t(round(Im(pm),digits=16)))

} else {
pm=Re(pm)
}

pm=round(pm,digits=15)
if(sum(pm<0)>=1){print(pm)} #Check if any elements are negative

}
ctli = datloc[i,2] #current location
if (obsmat[ind,i]==1) {#if individual is observed

pn=rep(0,10)
pn[ctli]=1

cll=cll+log(beta*pm[ctli])

} else { #individual not observed
pn=pm

pn[ctli]=(1-beta)*pm[ctli] #probability that individual is not observed
pn=pn/(1-beta*pm[ctli])
cll = cll+log(1-beta*pm[ctli]) #Contribution to log likelihood

}

} #end i-loop
prdct=prdct+(cll)#adds in each individual’s contribution

} #end individual calculation

return(prdct)
}
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Appendix B Calculations

B.1 The Haversine Formula
The coordinates used in the formula are measured in radians, and can easily
be obtained from the longitude and latitude by cr = 2 ∗ π( cd

360), where cr is
the coordinate in radians, and cd in degrees (longitude or latitude).

In the Haversine formula below, the abbreviation la means latitude and
lo means longitude. The index 1 indicates the first point, and 2 indicates the
second point, so the output is the distance in meters between points 1 and
2. The radius is that of the earth and in this study I have used R = 6341000
(meters), as stated on Movable Type Ltd. (2014).

s1 = (sin (c2,la − c1,la

2 ))2

+ cos (c1,la) cos (c2,la)(sin (c2,lo − c1,lo

2 ))2

s2 = 2 arctan (√s1,
√

1− s1)
distance1,2 = s2 · radius

Appendix C A Note on R
For the calculations in this thesis, I have used the programming language R.
I have mainly used this through the program R-Studio, which allows you to
program in R. The version of RStudio I have used is 0.98.501, and the version
of R has varied through the process. I would also particularly like to mention
that I have used the numDeriv package in R, and to thank contributors to
R for making many of the functions I have used available.
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