
Optimal non-linear solvers
Applications in reservoir simulation

Svein Morten Drejer

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF

Department of Mathematical Sciences

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

This thesis starts by giving a general introduction to hydrocarbon reser-
voirs, before physical relations and mathematical tools used to model the flow
of the fluid components in the porous media are presented. The resulting
partial differential equations, the black oil equations, describes the dynamics
of the hydrocarbon components. Mathematical tools used to solve the PDEs
are introduced, in particular the sequential splitting method. This approach
results in a set of pressure and saturation equations, to be solved in sequence
at each time step of the simulation. The finite volume method (FVM) is pre-
sented and used for the discretization of the differential equations, giving a
coupled system of non-linear equations. The reordering approach due to Lie
et al. [2013] is also presented, which reduces the equations from the FVM to a
sequence of non-linear single cell problems. These residual equations can be
solved by one-dimensional root finding methods. The theoretical background
follows the implementation found in the open source reservoir simulator tool-
box provided by the Open Porous Media Initiative (OPM) [OPM, 2014].

The goal of this work is to investigate and implement optimal numerical
root finders for solving the singe cell residuals. In particular, the well known
general root finding methods due to Brent [1973], Ridders [1979], and the
field specific trust region methods due to Jenny et al. [2009], and Wang and
Tchelepi [2013] are introduced and tested against the reference Regula Falsi
solver used in the OPM . Numerical tests show that our implementation
of the trust region method by Jenny et al. [2009] outperforms the reference
in terms of CPU time when running the test cases without gravity effects.
Further, the tests show that the general methods, namely the Ridders and
Brent methods, are less efficient than the reference solver. Finally, numer-
ical evidence is presented indicating that the trust region approach can be
improved by providing better initial guesses.

i

ii

Sammendrag

Denne oppgaven starter med en generell introduksjon av olje- og gassreser-
voir. S̊a presenteres fysiske relasjoner og matematiske verktøy brukt til å
modellere fluidkomponentene i reservoiret. Disse betraktningene leder frem
til et sett med partielle differensialligninger som beskriver flyten av hydrokar-
boner i steinformasjonene. Differensialligningene blir løst ved hjelp av et
sett med matematiske verktøy, som ogs̊a blir presentert her. Den sekven-
sielle oppsplittingsmetoden deler settet med ligninger i to nye ligningssett
kalt trykkligningen og metningsligningen. Metoden løser de partielle dif-
ferensialligningene sekvensielt, som gir et oppdatert trykk- og metningsfelt
etter hvert tidssteg i simuleringen. B̊ade trykk- og metningsligningene blir
diskretisert ved hjelp av endelig volum-metoden (FVM), som muliggjør im-
plementasjon og løsning av ligningene p̊a en datamaskin. I utgangspunk-
tet er disse ligningssettene sterkt koblet, slik at en må løse et system av
ligninger. Lie et al. [2013] presenterer en reordningsmetode som gjør at en i
stedet kan løse en serie én-celle-problemer, alts̊a å finne røtter for en rekke
én-dimensjonale ikke-lineære residualer. Teoridelen følger reservoirsimulator-
implementasjonen som blir tilbudt, som åpen kildekode, gjennom prosjektet
The Open Porous Media Initiative (OPM) [OPM, 2014].

Målet med denne oppgaven er å undersøke og implementere optimale
rotløsere for de ikke-lineære én-celle-problemene. De velkjente metodene in-
trodusert av Brent [1973] og Ridders [1979] blir testet opp mot den eksis-
terende implementasjonen i OPM . Videre blir metodene presentert i [Jenny
et al., 2009] og [Wang and Tchelepi, 2013] introdusert og testet. De numeriske
tesetene viser at metoden til Jenny et al. [2009] konvergerer raskere, m̊alt
i CPU-tid, enn de øvrige metodene n̊ar gravitasjonseffekter ikke simuleres.
Videre viser testene at de mer generelle metoden fra [Brent, 1973] og [Ridders,
1979] løser testproblemene saktere enn referanseløseren. Til slutt presenteres
numeriske resultater som indikerer at metoden til Jenny et al. [2009] kan
gjøres raskere ved å forbedre initialgjetningen til rotløseren.

iii

iv

Contents

Abstract i

Sammendrag iii

Preface 1

Introduction 3

1 Flow in Porous Media 5
1.1 Introduction to Petroleum Reservoirs 5

1.1.1 Porous media . 5
1.1.2 Driving Mechanisms of Production 7

1.2 Petroleum Reservoir Modeling 8
1.2.1 The Continuity Equation 9
1.2.2 Fluid Models . 12

2 Numerical Methods 15
2.1 Sequential Splitting . 15

2.1.1 The Pressure Equation 17
2.1.2 The Transport Equation 19
2.1.3 Mathematical Model 20

2.2 The Finite-Volume Method 22
2.3 Pressure Solver . 23
2.4 Transport Solver . 25

2.4.1 Reordering . 30
2.4.2 Root Finders . 33

3 Numerical Results 49
3.1 Test Procedure . 49

3.1.1 The OPM Package . 50
3.2 Test Cases . 50

3.2.1 Case A: Quarter Five Spot 51

v

3.2.2 Case B: Tarbert 2D . 61
3.2.3 Case C: Upper Ness 2D 65
3.2.4 Case D: Three-Dimensional Domain 68

3.3 Convergence Tests . 71

4 Discussion 75
4.1 Two-Dimensional Domains . 75

4.1.1 Case A - Large Grid Cells 75
4.1.2 Case A - Small Grid Cells 80
4.1.3 Case B and C . 81

4.2 Three-Dimensional Domain 84
4.3 Convergence Tests . 85
4.4 Initialized Precise Trust Region 87

4.4.1 Implementation . 87
4.4.2 Numerical Results . 87

5 Conclusion 93
5.1 Further Work . 94

Appendices 95

A Test Drivers 97

vi

1

Preface

This report is the final obligatory thesis for my masters degree in Indus-
trial Mathematics at the Norwegian University of Science and Technology
(NTNU), course code TMA4910. The work was started in January 2014 and
was handed in on the 19th of June 2014 and should represent 100% of this
semesters total work load. The project has been done in collaboration with
Chief Scientist Knut-Andreas Lie at the Department of Applied Mathemat-
ics at SINTEF in Oslo and professor Helge Holden at the Department of
Mathematics at NTNU, Trondheim.

Svein Morten Drejer
Oslo/Trondheim
June 19th, 2014

2

3

Introduction

Petroleum products are a major source of energy in the modern world and
also see extensive use in other parts of industry e.g., in the production of
plastics. These resources are usually found in subsurface petroleum reser-
voirs, located in porous rock, clay, and sand formations under the surface
of the earth. The production of oil and gas requires large investments in
hardware and man-hours, making the development of a new petroleum field
a risky decision in terms of economics. Thus it is interesting to know as much
as possible about the economic potential of a discovered reservoir in the ex-
ploration phase. Further, controlling the parameters of a reservoir during
the production phase is a demanding and important task, since decisions can
have a large impact on the hydrocarbon recovery percentage from the field.

A reservoir engineer will analyze experimental data gathered from field
samples in order to predict the characteristics of a subsurface hydrocarbon
reservoir, laying the groundworks for an economic analysis of the proposed
development. A reservoir simulator is a useful tool for the reservoir engineer,
allowing her to test different production scenarios, removing some uncertainty
from the economic decisions. Modern computers allows larger and larger
simulations to be performed, even on fairly standard desktop computers,
and with good speed and accuracy.

Reservoir simulators are designed around a reservoir model, where the
characteristics of the rock formations and fluids are described using physi-
cal insight and mathematical tools. Still, a full scale realistic simulation of
fluid behavior on the pore scale of the rock is impractical. Instead, a dis-
crete approximation of the reservoir is made, with rock formation data such
as permeability and porosity averaged over larger portions of the reservoir.
Further, the fluid parameters are also averaged over control volumes in the
computational domain. These parameters include the pressure and satura-
tion of the different fluid phases. Conservation principles are then applied
to the fluids, resulting in systems of partial differential equations describ-
ing the dynamics of the fluids in the porous media. Only simple theoretical
models have known closed form algebraic solutions, so in practice the sys-

4

tems of equations must be solved by numerical methods. These techniques
uses mathematical tools to develop discrete approximations of the equations,
giving problems that can be implemented and solved on computers.

One such computer implementation is provided by The Open Porous Me-
dia Initiative (OPM), developed as collaboration project between a number
of industrial players and research institutions, see OPM [2014]. OPM is an
open source library seeking to supply researchers with a broad selection of
efficient reservoir simulation tools in an accessible format. The OPM library
implements a range of numerical methods for solving the flow equations aris-
ing from the reservoir modeling. On such approach is to use the sequential
splitting scheme, i.e., splitting the flow equations into one equation for the
pressure of the fluid phases and a separate set of equations for the phase
saturations, often called the transport equations. The most straight forward
way of solving the transport equation involves solving a large non-linear sys-
tem of equations where all cell saturation are solved for simultaneously. It
is possible to reorder this set of equations based on the flow field found in
the pressure solver such that one can solve a series of single cell or smaller
coupled problems, thus reducing the computational effort. The single cell
problems are on the form “find x such that f(x) = 0, f : R → R”, that is,
root finding problems. Currently the OPM library solves the single cell prob-
lems using a modified version of the Regula Falsi method. Several other root
finding algorithms are known, both classic methods like the Newton-Raphson
method, and more advanced methods like the Brent method. This project
focuses on testing numerical methods for solving the single cell equations. A
range of root finders are tested, among them Newton-Raphson-like methods
with update heuristics, like the Trust Region methods, which we will study
two examples of, namely the method due to Jenny et al. [2009], and the the
more recent method due to Wang and Tchelepi [2013]. The root finders are
implemented in the OPM framework and tested against the current Regula
Falsi solver.

Chapter 1 gives a general introduction to petroleum reservoirs, before
conservation principles and the conservation equation are introduced. Next,
Chapter 2 starts by presenting the sequential splitting scheme and the finite
volume discretization of the flow equations. The reordering approach is pre-
sented in Section 2.4.1, before the root finding algorithms used to solve the
residual equations are discussed in Section 2.4.2. Then, Chapter 3 presents
numerical results for a range of test cases in order to compare the new meth-
ods with each other and the existing solver in the OPM library. Finally,
Chapter 4 discusses the numerical results, before the conclusions of the work
are shown in Chapter 5.

5 CHAPTER 1. FLOW IN POROUS MEDIA

Chapter 1

Flow in Porous Media

This chapter introduces petroleum reservoirs and the basic mathematical
tools used to model fluid flow in porous media. We start out by giving
a brief overview of porous media and petroleum reservoirs in Section 1.1,
before the mathematical model for fluid flow is developed from conservation
principles and constitutive relations in Section 1.2.

1.1 Introduction to Petroleum Reservoirs

1.1.1 Porous media

The term porous media encompasses a wide range of physical media contain-
ing void space, quantified by the porosity φ = volume of void space in V

|V | , where V is

a connected region in the media at hand and |V | is the volume of said region.
Here the term void space is interpreted as areas of the material matrix not
occupied by the material itself, that is, areas where for example fluids can
reside. We also use the term pore space for these volumes. The total avail-
able pore volume in a rock sample is measured by the quantity |V |φ, where
φ is assumed to be a constant value for given regions of the media. Many
seemingly solid everyday materials contain void space on a microscopic scale.
Examples include wood, fabric, and, maybe more interesting, geological ob-
jects like rock and clay. Even “solid” rocks can contain a non-trivial void
space, and it is in these cracks and crevices the hydrocarbon components in
a petroleum reservoir are trapped. Void space in solid rock can be caused by
either space between mineral grains, fractures, solution cavities in carbonate
rock, or gas vesicles in volcanic rock [Jain, 2013]. Figure 1.1 illustrates the
void space for the mineral grain and fracture type pore volumes.

For so-called immiscible (non-mixing) fluids the volume available for hy-

CHAPTER 1. FLOW IN POROUS MEDIA 6

(a) Mineral grains (b) Fractures

Figure 1.1: Illustration of volume between mineral grains and fracture voids
in rocks. White color indicates void space where fluids can reside. Black
color indicates mineral structures.

drocarbons, the hydrocarbon pore volume, is limited by residual water in the
pore space, called the irreducible water saturation Swc of the rock [Dake,
1978]. This water cannot be displaced by the hydrocarbon components,
effectively reducing the available pore volume φ with a factor Swc. Thus
the hydrocarbon pore volume becomes |V |φ(1 − Swc). In the following it
is assumed that the porosity is adjusted according to the irreducible water
saturation, allowing us to use |V |φ for the hydrocarbon pore volume.

The porosity is obviously an essential parameter for a petroleum reservoir
in that it limits the amount of space available for fluid components. What
the porosity does not tell us about is the ease with which fluids flow through
the formation. A rock with completely isolated pore spaces could in theory
have a very high porosity, but without fluid flow between pore spaces oil
and gas extraction would be impossible. Thus, the permeability K of the
rock is introduced [Jain, 2013]. K measures the degree of interconnectivity
between the pore spaces. A high permeability indicates that it is easy for
fluids to pass through the rock. As here, K is often given as a tensor since
the media in which fluid flows can be anisotropic. That is, the permeability
is directional dependent and varies between the different spatial directions.
Table 1.1 shows a few typical absolute value permeability ranges, along with
a classification and examples of rock types with the relevant properties. The
table is modified from Bear [1972].

The permeable regions where hydrocarbons flow are of little use if the
valuable components escape to the surface. Laymen often think of oil and
gas reservoirs as underground “pools” of fluids. The reality is not that far
off, except that the geometry is inverted; light petroleum components es-

7 CHAPTER 1. FLOW IN POROUS MEDIA

Table 1.1: Typical permeability ranges for petroleum reservoir rock forma-
tions. Modified from source: Table 5.5.1 in [Bear, 1972, p. 136].

Permeability Rocks Range of log10(K)[mD]

Pervious Fracture rock 108 to 104

Semipervious
Oil Rock 104 to 10

Sandstone
10 to 1

Impervious
1 to 0.1

Dolomite 0.1 to 10−3

Granite 10−3 to 10−5

cape towards the surface and are trapped in an upside down pool by low-
permeability geological formations, or in some cases by special hydrological
phenomena [Jain, 2013]. Light components such as natural gas, if present,
are found in the top layer, while the heavier oil is found just above the water
aquifer in the bottom of the region.

1.1.2 Driving Mechanisms of Production

Petroleum components are harvested by drilling wells with perforations in
the reservoir region, where pressure differences in the fluid drives it towards
the surface. The natural pressure of the reservoir is often sufficient to drive
the initial production. Continued production of hydrocarbon is driven by
one or more of four mechanisms; solution gas drive, gas cap drive, natural
water drive, and compaction drive [Dake, 1978]. Removal of fluids from the
reservoir causes a pressure drop. When the pressure is lowered compressible
components expand and push the fluid components out of the rock forma-
tions. This is the cause of the three first drivers. In particular, gas drive is
caused by expansion of oil and gas in solution. A lowering of pressure causes
these components to precipitate and expand the volume of fluids, causing an
evacuation of the rock formation. A gas cap or an aquifer, if present, will
also expand under lowered pressure, again pushing down (or up in the case
of water) on the oil strata and forcing it out of the reservoir region. The
last driving mechanism, compaction drive, is caused by a collapse in the rock
formation following the removal of supporting fluids. The collapse of the rock
matrix forces remaining fluid out of the void space. All of these processes
are part of the primary recovery of the oil field. Primary recovery usually
accounts for no more than 15% of the oil in place [Tzimas et al., 2005].

CHAPTER 1. FLOW IN POROUS MEDIA 8

Figure 1.2: Example of a stratigraphic grid model of the Saigup field with
wells and initial pressure data [Norsk Regnesentral, 2003].

After the natural pressure drive of the reservoir weakens so called sec-
ondary recovery is used. These techniques expend energy to increase the
production potential of the reservoir. The most common secondary recovery
technique is water injection, but other fluid types are also used. In the North
Sea the primary and secondary oil recovery ranges between 45% and 55% of
original oil in place [Green and Willhite, 2003].

The last category of the so called enhanced oil recovery techniques, ter-
tiary recovery, seeks to alter the fluid and rock properties in the reservoir to
improve the flow. These techniques are usually employed towards the end
of the lifetime of a field, and are known to give an extra 5% to 15% of pro-
duction [Tzimas et al., 2005]. It is worth noting that in modern petroleum
reservoirs all three levels of recovery techniques are used in every part of
the lifecycle of a field according to need, contrary to the hierarchical naming
convention.

1.2 Petroleum Reservoir Modeling

An oil reservoir is a complex and extensive structure. To run fluid simulations
on the full scale model we need to identify and store the important properties
of the rock formations together with information about the fluids contained

9 CHAPTER 1. FLOW IN POROUS MEDIA

within the hydrocarbon pore volume. These data points are gathered from
the field by core samples, fluid samples, and seismic and electromagnetic
geological exploration. The data gathered from field studies are compiled
into a reservoir model containing all relevant parameters about the physical
reservoir. Parameters like the permeability tensor K, porosity φ, phase
saturation Sl for phase l, and pressure p are averaged and assigned to blocks
representing subdomains of the model. This discrete version of the reservoir
is closely connected to the discretized domain used when solving the fluid
equations, as discussed in Section 2.1. These static parameters represent
the geological model, which (at least in our discussion) does not change
throughout the lifetime of the field. The reservoir model also includes any
injection or production wells and relevant well equations. An example of a
grid on a rock formation is shown in Figure 1.2. Here, the wells are shown as
black lines and the pressure in each cell is indicated with color. This example
uses a typical stratigraphic grid, which allows for a semi-structured grid while
retaining the layered nature of the rock formations. It is on such discrete
versions of the domain we will develop the flow equations. The reservoir
model also includes a fluid model, a set of principles and equations chosen to
model the hydrocarbon and water components present in the rock formations.
Finally, the external interfaces of the reservoir are described. These include
production and injection wells, and any fluxes across the outer boundaries
of the reservoir, although no-flow boundaries are usually assumed. We start
by deriving a continuity equation from the principle of mass conservation.

1.2.1 The Continuity Equation

Conservation of mass is an important concept in fluid dynamics. It effectively
states that mass can be neither created nor destroyed. This implies that the
amount of mass in a closed system is constant. Here ”closed” is taken to
mean closed to mass and energy transfer, since thermodynamical processes
also cause mass transfer according to the principle of mass-energy equiva-
lence. Even for thermodynamically open systems the conservation of mass is
a relatively good approximation at reasonable energy levels. The continuity
equation follows from conservation of mass by considering a control volume
V ⊂ Rd, d ∈ {1, 2, 3}, over which we track mass exchange, see Figure 1.3 for
an example in two dimensions (d = 2). For a material with density ρ we can
compute the mass m in the control volume at time t by a volume integral of
ρ(x, t) over V , where x ∈ Rd is a point in V :

m =

∫
V

ρ(x, t) dV.

CHAPTER 1. FLOW IN POROUS MEDIA 10

If the concentration of some quantity in V is measured by ϕ we can do a
similar integral and compute the amount in the control volume at time t by

ϕV (t) =

∫
V

ϕ(x, t)ρ(x, t) dV.

This assumes that the conserved quantity is chemically inert, i.e., that there
is no mass transfer between the conserved material and the other components
in the control volume, and that no sources are present. We now open the

V

ν

f

Figure 1.3: A control volume V ⊂ R2 with boundary ∂V , unit surface normal
ν and a flux f .

boundary ∂V of V and start tracking the mass transfer out of the control
volume. The movement across ∂V sets up a flux f . Letting dv be an in-
finitesimal part of ∂V with an outward facing unit normal ν we can compute
the mass transfer by ∫

∂V

f · ν dv,

where f ·ν is the transport of the preserved quantity across dv. Further, the
change in the concentration of the preserved quantity within V is measured
by the temporal derivative of ϕV (t):

∂ϕV (t)

∂t
= change in ϕV (t) during dt.

Sources, either negative (sinks) or positive (sources), are introduced through
a source term q(x, t). Integrating over the control volume gives the total
source term qtot =

∫
V
q(x, t) dV . By convention, q > 0 is treated as an

injection into the control volume. We now arrive at the complete conservation

11 CHAPTER 1. FLOW IN POROUS MEDIA

principle as applied to the control volume V :

∂ϕV (t)

∂t
=

∫
V

q(x, t) dV −
∫
∂V

f · ν dv. (1.2.1)

We now use the divergence theorem, see e.g. [Weber and Arfekn, 2003, p. 68-
69], to relate the boundary flux to the divergence inside the control volume:∫

∂V

f · ν dv =

∫
V

∇ · f dV. (1.2.2)

The boundary flux term now transforms directly to a control volume formu-
lation, allowing us to gather the terms in the same integral, giving∫

V

[
∂

∂t
[ϕ(x, t)ρ(x, t)] +∇ · f − q(x, t)

]
dV = 0.

This works under the assumption of sufficient smoothness of the flux (for
the divergence theorem) and the concentration and density (for the time
derivative to move inside the integral), and by the linearity of the integral
operation. Finally we arrive at the continuity equation for the quantity of
concentration ϕ:

∂

∂t
[ϕ(x, t)ρ(x, t)] +∇ · f = q(x, t). (1.2.3)

Here we have used the fact that the control volume V is chosen arbitrarily,
which implies that we can drop the integral sign without destroying the
equality. If needed the source term can be modified to track mass transfer
between components. The mass conservation relation follows from Equation
(1.2.3) by setting ϕ = 1 and defining the mass flux f = ρu, where u is
the fluid velocity. Using a subscript for the time derivative we get the mass
continuity equation:

ρt +∇ · (ρu) = q. (1.2.4)

So far we have assumed that the fluid phases can fill the control volume V
completely. As mentioned before, the porosity φ of the rock formations in the
reservoir measures the available pore space. The porosity can be introduced
into the continuity equation by letting it scale the total mass in the control
volume, giving

(φρ)t +∇ · f = q. (1.2.5)

Here the temporal and spatial arguments are dropped for brevity. Equation
(1.2.5) only models a single fluid phase. A more advanced fluid description
is introduced in the next section.

CHAPTER 1. FLOW IN POROUS MEDIA 12

1.2.2 Fluid Models

An important part of the reservoir model is the fluid description. The crude
oil usually contains dissolved gas and the presence of a water phase is also
common. A standard approach to fluid modeling is to use a compositional
model where each hydrocarbon component, or at least a pseudo-component
combining several chemical species, is subject to a mass balance equation.
The fluid is described using three phases; the water, liquid and gas phase. In
addition we introduce the mass fractions Ckg and Cko, that is, the mass frac-
tion of component k present in the gas and oil phase, respectively. Now the
conditions

∑nc

k=1 Ckα = 1, α = {g, o}, hold for a system with nc components.
The mass-balance equations become

(φ(CkgρgSg + CkoρoSo))t +∇ · (Ckgf g + Ckof o) = qk,

for all components k, in addition to a standard continuity equation for water.
The compositional fluid model will not be pursued further here.

At surface pressure and temperature the fluids from the reservoir separate
into three phases; oil, gas, and water. The black-oil model assumes that this
holds in the reservoir too. Three pseudo-phases are assumed; a liquid phase,
a gaseous phase, and a water phase. The black-oil model includes gas in
solution through the solution gas-oil ratio:

Rso =
volume of gas evolved from oil at std. conditions

volume of oil at std. conditions
.

The solution gas-oil ratio Rso is used to modify the density of the oil phase in
order to account for the dissolved gas. Assuming three fluid phases implies
three conservation laws, one for each phase. We model each of these phases
by defining the phase saturation Sl of phase l ∈ {w, g, o}, denoting water,
gas, and oil, respectively. The saturation of a phase measures the ratio of the
amount of fluid of the given phase to the available hydrocarbon pore volume
in the control volume V . The restriction∑

l

Sl = 1, (1.2.6)

called the saturation constraint, is rather obvious since we assume that the
phases fill the entire available pore volume. In the two phase case the restric-
tion becomes Sw + So = 1. Introducing the phase saturation into Equation
(1.2.5) produces the phase continuity equation

(φSlρl)t +∇ · f l = ql. (1.2.7)

13 CHAPTER 1. FLOW IN POROUS MEDIA

Since the oil can contain gas in solution we need to modify the densities
accordingly. Introducing the oil and gas density at standard condition, ρso
and ρsg, respectively, the liquid oil density ρlo and the gaseous oil density ρgo,
we can express the reservoir density of oil as

ρo =
ρso + ρsgRso

Bo

= ρlo + ρgo,

where Bo is the formation volume factor, the ratio of volume of oil at reservoir
conditions to the volume of oil at standard (surface) conditions. That is,

Bo =
volume of oil at reservoir conditions

volume of oil at std. conditions
.

This gives the following set of black oil equations which we will use, where
gas in solution is taken into account:

(φSwρw)t +∇ · fw = qw, (1.2.8a)

(φSoρ
l
o)t +∇ · f o = qo, (1.2.8b)

(φSgρg + φSoρ
g
o)t +∇ · f l = qg. (1.2.8c)

CHAPTER 1. FLOW IN POROUS MEDIA 14

15 CHAPTER 2. NUMERICAL METHODS

Chapter 2

Numerical Methods

In practice we want to use the black oil model equations from Section 1.2.2
to predict fluid flow in the reservoirs. Closed form algebraic solutions are
only available for the simplest problems, e.g. the Buckley-Leverett problem
[Buckley and Leverett, 1942]. For real life reservoirs we need to use numerical
methods to solve the system of equations. Different solution procedures have
been proposed, and seen extensive use, throughout the years. Examples
include, but are not limited to, the simultaneous solution method [Aziz and
Settari, 1979; Molenaar, 1995], the IMPES method [Fagin, 1966; Coats, 2000;
Aziz and Settari, 1979], and the sequential implicit method, also called the
sequential splitting method or the sequential solution method [MacDonald,
1970; Spillette et al., 1973; Aziz and Settari, 1979; Aarnes et al., 2007, chap.
5]. The latter method will be presented and used here.

The sequential splitting method is presented in Section 2.1 before we intro-
duce the finite volume method in Section 2.2 which we use to develop discrete
fluid flow equations for the pressure and saturation in Sections 2.3 and 2.4,
respectively. We conclude the chapter by presenting a number of numerical
root finders used to solved the residual transport equations resulting from
the discretization of the transport equation from Section 2.4.

2.1 Sequential Splitting

The black-oil equations, Equation (1.2.8), are coupled through the saturation
constraint, Equation (1.2.6). To solve this coupled set of equations we want
to rewrite the system to a form with a single unknown. To this end we
introduce two tools; a per-phase version of Darcy’s law,

ul = −Kλl(∇pl − ρlg), (2.1.1)

CHAPTER 2. NUMERICAL METHODS 16

and the capillary pressure

pcow = po − pw. (2.1.2)

Darcy’s law, first described by Darcy [1856], is a semi-empirical law relating
pressure, gravity effects, and flow velocity of fluids in a porous medium. This
formulation follows the velocity ul and pressure pl of phase l. In Darcy’s law,
K is the absolute permeability tensor, and λl the mobility, defined by

λl =
krl
µl
. (2.1.3)

Here the relative permeability for phase l, krl is used. The relative per-
meability is modeled heuristically according to the properties of the fluid
components in the reservoir. In the following krl = S2

l will be used. We
also define the total mobility λ =

∑
l λl. Together, the absolute and relative

permeability define the parameter kl = Kkrl, the permeability of phase l.
This number quantifies the ease with which each phase moves through the
rock formation. Here we will limit the discussion to a two-phase, immiscible,
incompressible black-oil model. Thus we drop the gas equation and the Rso

part of the oil equation in Equation (1.2.8).
Together with boundary conditions, the multi-phase continuity equation

and Darcy’s law model the dynamics of the fluids in a reservoir through
a coupled system of partial differential equations. Additional effects like
compressibility can be accounted for within this framework, see e.g., [Aziz
and Settari, 1979]. The sequential splitting method works by decoupling
the system of equations into a pressure equation and a saturation equation,
also called the transport equation. The decoupling is done by using the
saturation constraint from Equation (1.2.6) together with the Darcy law
in Equation (2.1.1) and the capillary pressure defined in Equation (2.1.2).
These relations allow us to eliminate the oil variables So and po from the
continuity equation and Darcy’s law, giving two non-linear PDEs with the
water saturation Sw and water pressure pw as primary variables. Having
obtained separate equations for the pressure and transport we can solve the
two equations sequentially with separate implicit methods suited for each
type of problem. We start out with an initial saturation in the reservoir,
which is fed into the implicit pressure solver. This produces an updated
velocity field u. The transport solver uses this updated u to compute new
saturations, after which the process is restarted. At each invocation of the
transport solver (resp. pressure solver) the flux field (resp. saturation field) is
assumed known. That is, the values are evaluated at the previous time step,
making them explicit in nature. The primary unknowns in the equations are

17 CHAPTER 2. NUMERICAL METHODS

evaluated at the current time step, making them implicit. This makes the
sequential splitting method semi-implicit. Algorithm 1 shows pseudo code for
the sequential splitting method. One assumes that this splitting introduces
only small errors for incompressible reservoir simulations [Aziz and Settari,
1979, chap. 5.6]. In the next two sections we develop the pressure and
transport equations in more detail.

Algorithm 1: Pseudo code implementing the sequential splitting
scheme, see Section 2.1

Data: s0, tend, ∆t, reservoir grid and parameters
Result: s

1 Initialize saturation field;
2 s = s0;
3 Solve for initial pressure;
4 p = PRESSURE-SOLVER(s0);
5 t = 0;
6 while time t is less than tend do
7 Solve transport equation with pressure assumed constant;
8 s = TRANSPORT-SOLVER(s,p,∆t);
9 Solve pressure equation with saturation assumed

constant;
10 p = PRESSURE-SOLVER(s);
11 Advance time step;
12 t = t+ ∆t;

13 end

2.1.1 The Pressure Equation

The derivation of the pressure equation loosely follows the notation and pro-
cedure from Aarnes et al. [2007] and Lie and Mallison [2013], and starts by
assuming that the porosity ϕ and density ρ are constant in time, that is,
incompressibility of rock formations and fluids. Now, by Equation (1.2.5),
we obtain

∇ · (ρlul) = ql,

since the temporal derivative vanishes. The flux is defined to be a mass flux
such that f l = ρlul, with ul being the velocity of the fluid. Note that the
equation is taken to be per phase l ∈ {w, o}. Dividing by the density and
substituting the velocity using the Darcy law in Equation (2.1.1) yields the

CHAPTER 2. NUMERICAL METHODS 18

pressure equation for a single phase:

∇ · (−Kλl(∇pl − ρlg)) =
ql
ρl
.

Now we define the global velocity u = uw + uo, giving an equation relating
the water and oil pressure:

∇ · u = −∇ · (K [λw(∇pw − ρwg) + λo(∇po − ρog)]) = q′, (2.1.4)

with a modified source term

q′ =
qwρo + qoρw

ρwρo
.

We still have both the oil and water pressure as unknowns. Following Chavent
and Jaffre [1982] we define a saturation dependent complementary pressure
pc by

pc(sw) =

sw∫
swc

fw(s)
∂pcow

∂sw
(s) ds. (2.1.5)

Here, swc denotes the irreducible water saturation discussed in Section 1.1
and we have defined the fractional flow function for phase l by

fl =
λl
λ
. (2.1.6)

We note that in the two phase case the fractional flow function becomes

fl =
krl

krl +Mkrn
, (2.1.7)

where n indicates the second phase and the viscosity ratio M is defined by

M =
µl
µn

> 0. (2.1.8)

Figure 2.1 shows fw under the influence of different viscosity ratios. Note that
M < 1 increases the fw-value on the left hand side, while M > 1 lowers the
fw-values in the same region. Even moderate deviations from M = 1 causes
significant changes in fw. The complementary pressure equation in Equation
(2.1.5) takes care of the saturation dependency of the capillary pressure,
giving a looser coupling between the pressure and transport equation [Aarnes
et al., 2007]. Taking the gradient of pc yields

∇pc = ∇
sw∫

swc

fw(s)
∂pcow

∂sw
(s) ds =

[
fw
∂pcow

∂sw

]
(sw)−

[
fw
∂pcow

∂sw

]
(swc)

=

[
fw
∂pcow

∂sw

]
(sw) = fw∇pcow, (2.1.9)

19 CHAPTER 2. NUMERICAL METHODS

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S

f w
(S

)
M=0.01
M=0.1
M=1
M=10
M=100

Figure 2.1: The fractional water flow function fw, Equation (2.1.6), with
quadratic krl and viscosity ratio M , Equation (2.1.8).

by the fundamental theorem of calculus and the fact that fw(swc) = 0. The
purpose of pc is to define a global pressure p by

p = po − pc (2.1.10)

in order to rewrite the pressure equation to be dependent on the global pres-
sure and saturation only. Gathering the gradient pressure terms in Equation
(2.1.4), and since pcow = po − pw, we get

λw∇pw + λo∇po = λw(∇po −∇pcow) + λo∇po = λ∇po − λwpcow.

Using the relation from Equation (2.1.9) and the global pressure definition in
Equation (2.1.10) we are able to express the gradients in terms of the global
pressure only:

λw∇pw + λo∇po = λ∇po − λwpcow = λ∇po − λw
∇pc
fw

= λ(∇po −∇pc) = ∇p.

Inserting this relation into Equation (2.1.4) gives the global pressure equa-
tion, an elliptic equation for the global pressure p:

−∇ · (K [λ∇p− (λwρw + λoρo)g]) = q′. (2.1.11)

2.1.2 The Transport Equation

Having found a pressure equation we need to complete the model by in-
troducing the transport equation. We start out with the phase continuity
equations in the black oil model as stated in Equation (1.2.8), but drop the
gas terms. These equations already contain the time derivative of the satu-
ration, but the flow velocity term must be removed in order to have a single

CHAPTER 2. NUMERICAL METHODS 20

unknown. We do this by using Darcy’s law from Equation (2.1.1) and the
capillary pressure defined in Equation (2.1.2), as in Aarnes et al. [2007], to
obtain

K∇pcow = K(∇po −∇pw) = (Kρog −
uo
λo

)− (Kρwg −
uw
λw

)

Inserting the total velocity u = uw + uo for uo and multiplying by the
mobilities, we get

λoλwK∇pcow = (Kλoλwρog − λwu+ λwuw)− (Kλoλwρwg − λouw).

Gathering terms and dividing by the total mobility λ yields the following
expression for the water velocity vector uw:

uw = fwu+Kλofw∇pcow +Kλofwg(ρw − ρo).

Here we have used the fractional flow function fw, see Equation (2.1.6).
Inserting this relation into the continuity equation, Equation (1.2.7), and
assuming constant porosity and density gives the following equation for the
water saturation, and in extension the oil saturation (by the saturation con-
straint in Equation (1.2.6)):

φ
∂Sw
∂t

+∇ · (fw[u+Kλo∇pcow +Kλog(ρw − ρo)]) =
qw
ρw
. (2.1.12)

This equation has both hyperbolic and parabolic properties [Aziz and Settari,
1979]. The coupled pressure and transport equations are solved using the
procedure outlined in Algorithm 1.

2.1.3 Mathematical Model

The black oil model, and in extension the pressure and transport equations,
describes the spatial and temporal variation of the properties of the fluids
in the reservoir. We solve these equations on the spatial domain Ω ⊂ Rd,
where d ∈ {2, 3}, from time t = 0 to the final time t = T , giving the domain
Ω+ := Ω × [0, T] for the partial differential equations, as sketched in Figure
2.2. The boundaries of this domain are denoted by ∂Ω+ := ∂Ω× [0, T]. To
have a well posed problem, we need initial and boundary conditions. That
is, we have to know the initial value at time t = 0 of all variables and
how the equations behave at the boundaries ∂Ω+ of the domain Ω+. The
initial condition Sw(x, 0) = S0

w(x), S0 : Ω → [0, 1], allows us to compute
the corresponding initial pressure field p(x, 0) by the pressure equation in

21 CHAPTER 2. NUMERICAL METHODS

Ω × [0, T]
Ω

∂Ω

Figure 2.2: The spatial and temporal domain Ω+ = Ω× [0, T] for the partial
differential equations in the black oil model, Equation (1.2.8). The spatial
domain has border ∂Ω.

Equation (2.1.11), giving a complete initial condition. Common boundary
conditions for reservoir simulations include flow rate (Neumann type) and
pressure (Dirichlet type) conditions. The Dirichlet and Neumann part of the
boundary denoted by ∂ΩD and ∂ΩN , respectively. Note that ∂ΩD∩∂ΩN = ∅.
The pressure boundary condition becomes

p(x) = pD(x), ∀x ∈ ∂ΩD

where ∂ΩD ⊂ ∂Ω and pD : ∂ΩD → R+ is some scalar pressure function. Rate
conditions can be specified as

v · ν = [−Kλ(∇p− ρg)](x) · ν = Q∂ΩN
(x), ∀ x ∈ ∂ΩN ,

using the unit surface normal ν of ∂Ω and Darcy’s law, see Equation (2.1.1).
The magnitude of the rate at the Neumann part of the boundary, ∂ΩN ⊂ ∂Ω,
is defined by the function Q∂ΩN

: ∂ΩN → R. The default rate boundary
condition is a no-flow condition, i.e., v · ν = Q∂ΩN

= 0, indicating that no
fluid particles will cross the domain boundary.

The transport and pressure equation over the domain Ω+, along with

CHAPTER 2. NUMERICAL METHODS 22

boundary conditions, combines to the following problem:

φSw(x, t)t +∇ · (fwα(x, t)) = qw(x, t)ρ−1
w , (x, t) ∈ Ω+,

−∇ · (K(x) [λ∇p(x, t)− (λwρw + λoρo)g]) = q(x, t), (x, t) ∈ Ω+,

Sw(x, 0) = S0(x), x ∈ Ω,

[−Kλ(∇p− ρg)](x, t) · ν = Q(x, t), (x, t) ∈ ∂Ω+,

where α(x, t) = [u(x, t) +K(x)(λo∇pcow + λog(ρw − ρo))] and we have used
Neumann boundary conditions. To solve these equations we will use the
finite volume method, or FVM, as presented in the following section.

2.2 The Finite-Volume Method

The finite volume method is a discretization technique for solving differential
equations. It is well suited for elliptic, parabolic, and hyperbolic equations,
and is a natural choice for conservation laws because of the control volume
formulation of the method and the fact that it lends itself to implementation
on a wide range of grid types, including unstructured grids. The idea behind
the method is to express a balance over each control volume, making the
FVM conservative in the sense that the numerical flux is conserved between
neighboring control volumes. In other words, the conservation of quantities
over any group of control volumes is exact [Patankar, 1980]. Another strength
is the natural and intuitive formulation of the method.

The finite volume method is defined over discrete control volumes of the
domain. We proceed by using the domain Ω from Figure 2.2. We let T
be a mesh on Ω such that

⋃
V ∈T V = Ω, where V is a control volume.

The finite volume method expresses an integral flux balance for each such
control volume V . In general the control volumes can be of any shape, but
a usual choice is to let every V be a polygonal convex subset of Ω such that
V ∩K = ∅, ∀(V,K) ∈ T × T , V 6= K [Eymard et al., 2003]. The collection
of sides s of the polygon V is denoted EV . Note that the term ”polygonal”
is used for both polygonal two-dimensional control volumes with d = 2 and
polyhedral three-dimensional control volumes with d = 3. Figure 2.3 shows
an example of a polygonal mesh on the two dimensional domain Ω. Notice
that the mesh coverage of the domain is only partial due to the straight edges
of the grid cells. The error introduced by this discrepancy is assumed to be
negligible in the theoretical setup. In practice the domain, i.e., the reservoir,
consists of grid cells taken from the geological model of the rock formations.
Such a grid is typically of a polyhedral type, removing the partial coverage
problem altogether. The precise formulation of the FVM is introduced by
applying it to the pressure and transport equations.

23 CHAPTER 2. NUMERICAL METHODS

ViΩ

Figure 2.3: The domain Ω, see Figure 2.2, with a grid T consisting of trian-
gular control volumes Vi.

2.3 Pressure Solver

The pressure equation in (2.1.11) is solved by the FVM method. We start
by integrating over a grid cell V :∫

V

−∇ · (K [λ∇p− (λwρw + λoρo)g]) dV =

∫
V

q′ dV.

The left hand side integral is split into two parts, allowing us to isolate
the pressure. Using the divergence theorem, and assuming that Kλ∇p is
smooth, we obtain

−
∫
∂V

(Kλ∇p) · ν dv =

∫
∂V

(K(λwρw + λoρo)g) · ν dv +

∫
V

q′ dV. (2.3.1)

Exploiting the polygonal geometry of the grid cells we can write

−
∫
∂V

(Kλ∇p) · ν dv = −
∑
s∈EV

∫
s

(Kλ∇p) · νs dv.

Thus, our task reduces to approximating the integral
∫
s
(λK∇p) · νs dv on

each edge s of the cell. To this end we introduce a one-sided transmissibility
tsV defined by

tsV =
νsKV ∆csV
‖∆csV ‖2

,

where νs is the surface normal of s with magnitude equal to m(s), KV is the
permeability tensor for the current cell, and ∆csV = cs−cV is the face-to-cell

CHAPTER 2. NUMERICAL METHODS 24

centroid difference vector. Here cV is the centroid of cell V while cs is the
centroid of face s. Further, the function m : T → R+ is the d-dimensional
Lebesgue-measure, which computes the “size” of the control volume, see e.g.
[Eymard et al., 2003]. When d = 2 this function gives the area of the control
volume V , while d = 3 gives the volume. We will also use the function
m : E → R+, the d − 1-dimensional Lebesgue measure to be used on edges
s of V . No confusion should arise from this double definition of m since the
correct version should be apparent from the context. Now we can express
the integral on the edge s connecting V and K using the two-point flux
approximation scheme, the TPFA scheme, expressed as∫

s

(K∇ps) · ν dv = (pV − pK)

(
1

tsV
+

1

tsK

)−1

=
tsV t

s
K

tsV + tsK
(pV − pK).

A mobility weighted version becomes∫
s

(λK∇ps) · ν dv = (pV − pK)

(
1

λV tsV
+

1

λKtsK

)−1

,

where λV is the total mobility in V . This result is inserted into Equation
(2.3.1), such that we obtain

−
∑
s∈EV

(pV −pK)

(
1

λV tsV
+

1

λKtsK

)−1

=

∫
∂V

(K(λwρw+λoρo)g)·ν dv+

∫
V

q′ dV.

The right hand side of Equation (2.3.1) is approximated in a similar manner.
The integral of the gravity term over the boundary is approximated by the
following relation:∫
∂V

(K(λwρw+λoρo)g) ·ν dv =
∑
s∈EV

g[∆csV ωV +∆csKωK]

(
1

λV tsV
+

1

λKtsK

)−1

,

where ωV = λwV ρw+λoV ρo
λV

. The source term q′ is simply integrated over the
control volume and expressed as a discrete value q′V for each V . This results
in the following linear system to be solved for the pressure in each control
volume V :

−
∑
s∈EV

(pV − pK)Ts = g[∆csV ωV + ∆csKωK]Ts + q′V , ∀V ∈ T .

Here we have defined the mobility weighted transmissibility Ts by

Ts =

(
1

λV tsV
+

1

λKtsK

)−1

,

25 CHAPTER 2. NUMERICAL METHODS

where K is the unique neighbor cell to V such that ∂V ∩ ∂K = s.
The next section introduces the finite volume method applied to the trans-

port solver. Since the method essentially expresses a balance equation over
the control volume at hand we will need to know the fluid fluxes across the
boundary ∂V . One of the assumptions of the sequential splitting method is
that these face fluxes can be computed based on the pressure field from the
current iteration. The face fluxes Fs for face s are computed by

Fs = Ts(pV − pK + F g
s), ∀s ∈ E, (V,K) ∈ T × T : ∂V ∩ ∂K = s, (2.3.2)

where the gravity flux F g
s is defined as

F g
s = (∆csV + ∆csK)g.

2.4 Transport Solver

The OPM code assumes that the transport problem can be solved in two
steps by splitting Equation (2.1.12) into a buoyant and a viscous-capillary
equation. That is, first

φ∂tSw +∇ · (fw[u+ λoK∇pcow]) = qw(x, t)ρ−1
w , (x, t) ∈ Ω+ (2.4.1)

is solved for the saturation influenced by viscous and capillary forces, and
sources before

φ∂tSw +∇ · (fwλoKg(ρw − ρo)) = 0, (x, t) ∈ Ω+ (2.4.2)

is solved for the gravity influenced saturation. The variables x and t are
dropped for brevity. We start by integrating the viscous-capillary transport
equation from Equation (2.4.1) over each control volume V ∈ T :∫

V

φ∂tSw(x, t) +∇ · (fw[u+ λoK∇pcow])− qw(x, t)

ρw
dV = 0, ∀V ∈ T .

This gives

φV
∂

∂t

∫
V

Sw dV +

∫
∂V

(fw[u+ λoK∇pcow]) · ν dv −
∫
V

qw
ρw

dV = 0, ∀V ∈ T

(2.4.3)
by the divergence theorem and under the assumptions that Sw is sufficiently
smooth and that the porosity φ is a given constant φV for each grid cell. We
now express the cell averaged water saturation SV for cell V as

SV =
1

m(V)

∫
V

Sw dV. (2.4.4)

CHAPTER 2. NUMERICAL METHODS 26

The number SV will be used as a representation of the saturation in the cell
and is one of the primary variables in the final system of equations. Now the
source term is integrated over V , giving a discrete source

qV =

∫
V

qw dV. (2.4.5)

This leaves only the treatment of the boundary integral term. Letting s ∈ EV
be the edges of V and νs be the outward facing unit normal of the edge s,
we can express the boundary integral as

∫
∂V

(fw[u+ λoK∇pcow]) · ν dv =
∑
s∈EV

∫
s

(fw[u+ λoK∇pcow]) · νs dv

 ,
since ∂V =

⋃
s∈EV

s̄. Here s̄ is the closure of side s. The pressure solver
handles each edge integral, see Section 2.3, but a few comments are in order
here regardless. The upwind method will be used to compute the interface
fluxes. That is, on each edge s shared by two control volumes, say V and
K, a scalar approximation Fs of the flux is chosen such that the information
is gathered in the cell the flow is coming from. This flux was calculated by
the pressure solver, and is shown in Equation (2.3.2). The fluxes over ∂V
can be categorized as either incoming or outgoing fluxes. The set of edges
with incoming fluxes for cell V is denoted E+

V , while the set of edges with
outgoing fluxes is denoted E−V . The fractional flow value for the incoming
fluxes are independent of the local cell saturation SV and distinct for each
edge, and will be denoted by fs. This allows us to denote the incoming flow
as

Q+
V =

∑
s∈E+

V

fsFs

and the outgoing flow as

Q−V =
∑
s∈E−V

fw(SV)Fs = fw(SV)
∑
s∈E−V

Fs = fw(SV)F−V ,

where F−V is the total outgoing flux. Note that because of the upwind method
only the flow out of cell V is influenced by the local saturation SV . Summing
the flow terms over all edges of V yields

∑
s∈EV

∫
s

(fw[u+ λoK∇pcow]) · νs dv

 = fw(SV)F−V +Q+
V .

27 CHAPTER 2. NUMERICAL METHODS

0

2

4

·105

00.20.40.60.81

−100

0

100

∆t
Sn+1

R
(S

n
+
1
,∆

t)

Figure 2.4: An example of the single cell residual in Equation (2.4.7) as a
function of ∆t and Sn+1.

Inserting this into Equation (2.4.3), using (2.4.4) and (2.4.5) and dividing by
the cell ”volume” m(V) and the porosity φV we obtain

∂SV
∂t

+
1

m(V)φV

[
fw(SV)F−V +Q+

V

]
− qV
ρwφV

= 0, ∀V ∈ T (2.4.6)

By averaging values over the control volume and using the upwind method
we have arrived at a semi-discretized version of the transport equation. Now
we must choose a technique for resolving the time derivative in the first term
of the Equation (2.4.6). We approximate the derivative by

∂SV
∂t

=
Sn+1
V − SnV

∆t
+O(∆t),

where the superscript n denotes the current time level corresponding to the
chosen time step ∆t. That is, the current time is t = n∆t, where n ∈
[0, 1, 2, . . . , nmax] and nmax = d T

∆t
e. Now we can choose between an explicit

and an implicit scheme by setting the time level of the other terms in the
equation. Explicit difference schemes put severe restrictions on the time step
∆t, e.g. through a CFL condition, as first described in Courant et al. [1928],
and becomes unstable for time steps exceeding this limit. Implicit schemes
are much more robust and are known to give unconditional stability, see e.g.
[Aziz and Settari, 1979]. We want to exploit the extra stability of the implicit
scheme, and thus choose to evaluate the other SV -dependent terms at the
new time level, that is, fw = fw(Sn+1

V).
One remark is in order here. In writing out Equation (2.4.6) we have

made a few shortcuts by skipping the dependent variables of the various

CHAPTER 2. NUMERICAL METHODS 28

terms. The cell saturation is obviously time dependent, but the interface
fluxes Fs also have a saturation dependency. In a pure implicit approach
these saturation values should also be taken at the new time level n+ 1, but
the assumption of known interface fluxes implies Fs = Fs(S

n
V), that is, the

fluxes are evaluated at the current time level. This is an explicit approach.
This mixing of implicit and explicit terms gives rise to the semi-implicit
nature of the sequential splitting method (a similar approach is used in the
IMPES method). Inserting the time derivative approximation and using the
implicit scheme we arrive at the residual form of the discrete viscous-capillary
transport equation, plotted for a single cell V as a function of ∆t and Sn+1

V

in Figure 2.4:

R(Sn+1
i ;Sni ,∆t) := Sn+1

V − SnV −
∆t

m(V)φV

[
fw(Sn+1

V)F−V +Q+
V

]
− qV ∆t

ρwφV

= 0, ∀V ∈ T . (2.4.7)

(2.4.8)

A similar approach is used on Equation (2.4.2), the gravity transport
equation. The OPM code assumes that the grid for this problem is aligned
in vertical columns, which holds for the stratigraphical grids often used in
reservoir simulation packages, as discussed in Section 1.1. Further it assumes
that the gravity effects are only influencing the saturation in cells above or
below a cell, allowing solution of the transport equations on a per column ba-
sis. The gravity terms on the interface to neighboring cells are approximated
using the transmissibility and a centroid difference, as was the case for the
viscous-capillary equation. These boundary fluxes are gathered in an edge
flux variable, say F g

s for each edge s ∈ EV , and are constant throughout a
simulation since they only depend on permeabilities, constant densities, and
the grid configuration. Note that the flux on edges in the x-z and y-z planes
are zero, since the cells are assumed to be vertically aligned and the gravita-
tional influence only works in the vertical direction. The FVM requires the
mobilities λl to be evaluated on each interface edge s, a task again accom-
plished by the upwind method. Since gravity causes the lightest phase to
move upwards the mobility for this phase must be taken from the cell below
the current edge. Likewise the mobility for the heavy phase is gathered from
the cell above the current edge. Figure 2.5 illustrates this for a heavy water
phase and a light oil phase. Denoting the top face of cell V as st and the

29 CHAPTER 2. NUMERICAL METHODS

V

L

K

F g
st ≥ 0

F g
sb
< 0

w

w

o

o
g

Figure 2.5: The flow of a light phase o and a heavy phase w with vertically
aligned cells K,V, L and interface edges st and sb.

bottom face as sb, we arrive at the following residual equation to be solved:

Rg(S
n+1
i) := Sn+1

V − SnV

− ∆t

m(V)φV

[
λw(SnK)λo(S

n+1
V)

λw(SnK) + λo(S
n+1
V)

F g
st +

λw(Sn+1
V)λo(S

n
L)

λw(Sn+1
V) + λo(SnL)

F g
sb

]
= 0, (K,L) ∈ T × T : K ∩ V = st, L ∩ V = sb, ∀V ∈ T . (2.4.9)

Here the phase mobilities λl are evaluated explicitly in the neighboring cells
using the cell saturation SnK and SnL according to the configuration in Figure
2.5. That is, λw(SnK) and λo(S

n
L) are known a priori when solving Equation

2.4.9. The single cell gravity residual is shown in Figure 2.6.

0
2

4
·105

00.20.40.60.81
−4

−2

0

2

∆t
Sn+1

R
g
(S

n
+
1
,∆

t)

Figure 2.6: An example of the single cell gravity residual in Equation (2.4.9)
as a function of ∆t and Sn+1.

We now want to solve Equations (2.4.7) and (2.4.9) by finding roots of

CHAPTER 2. NUMERICAL METHODS 30

the residuals R(Sn+1
V) and Rg(S

n+1
V). Existence of solutions of these residual

equations is hard to prove with rigor. Despite this a solution is assumed
to exist for well-posed reservoir simulation residuals for every time step ∆t
[Younis et al., 2010]. Further, if brackets [a, b]R and [c, d]Rg can be found
according to Definition 1 we know that a solution exists by Theorem 2.1 and
the continuity of the residuals.

2.4.1 Reordering

The upwind method is used for the discretization of the flow equations. This
choice of discretization ensures that the state of a cell i is only affected by the
state in the upwind neighboring cells U(i), creating a well defined domain
of dependence for each cell. The upwind direction is based on the fluid flux
on the border between neighboring cells. An example of a discretization
with interface flux directions is shown in Figure 2.7 along with the sparsity
pattern resulting from a standard numbering of the cells in the grid. The
state of each cell is influenced by the neighboring cells according to Equation
(2.4.6), giving the sparsity pattern in Figure 2.7b. In each row i in Figure
2.7b the red dots mark neighboring cells j where the interface flux goes from
i to j. That is, cell j is downwind relative to cell i under the given flux field.
Using the upwind method, the state in cell i is invariant under the state of
downwind cells, i.e., red cells j in row i in the figure. Therefore the coefficient
corresponding to the red dots in the sparsity pattern can be set to zero in
the system of equations, effectively reducing the computational complexity
of the problem. Note, however, that we still must use a full matrix solve
since there are non-zero values on the super-diagonal. This can be amended
by reordering the cells in the domain according to the flow direction, as
described in the following.

The approach can be motivated by viewing the domain as a directed
graph with the cells as nodes and the interface fluxes determining the edge
directions between nodes. In computer science, a topological sort is an al-
gorithm designed to order the nodes in a directed graph according to the
direction of the interconnecting edges. The sorting algorithm provides a list
of nodes such that all edges from every node points to nodes with a higher
ordering in the list. In fluid flow terms this approach provides an ordering of
the cells according to the domain of influence for each cell, as defined using
the upwind method on the interface terms. A cell early in the ordering is
independent of the subsequent cells in the list, allowing the state of each
cell in the ordering to be computed sequentially. In other words, the new
numbering gives a lower triangular matrix which indicates that the system of
equations for the cell saturations can be solved sequentially by a forward sub-

31 CHAPTER 2. NUMERICAL METHODS

stitution. Figure 2.8 shows the cell numbering and sparsity pattern resulting
from a topological sort of the cells from the example domain in Figure 2.7.
Note the lower triangular structure of the matrix after setting the coefficient
of downwind cells to zero, that is, cells marked with red dots.

1 2 3

4 5 6

7 8 9

(a) Cell numbering and fluid flow
direction.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b) Sparsity pattern. Downwind cells are
shown using red markers.

Figure 2.7: Domain with natural numbering

1 2 5

4 3 6

9 8 7

(a) Cell numbering and fluid flow
direction.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

(b) Sparsity pattern. Downwind cells are
shown using red markers.

Figure 2.8: Domain with topological numbering

The topological ordering can always be generated provided that the graph
is cycle free. That is, after leaving a node along an edge that node will never

CHAPTER 2. NUMERICAL METHODS 32

be revisited. This node structure results from a circulation free flux field v.
For incompressible flow, see Natvig et al. [2006], and cases with negligible
or no gravity and capillary forces, see Kwok and Tchelepi [2007]; Lie et al.
[2013], zero circulation is typical, at least with careful choice of numerical
methods [Natvig et al., 2006; Lie et al., 2013]. When introducing significant
gravity and capillary effects, see Kwok and Tchelepi [2007], or compressible
flow, see Lie et al. [2013], circulation can occur in the velocity field. On the
discrete domain circulation appear as cycles or strongly connected components
in the graph. A strongly connected component is a group of nodes such that
every node is reachable from every other node. These types of problems
are not unusual in practice and thus must be dealt with, since these groups
represents irreducible blocks in the system of equations, reintroducing the
need for a full matrix solve. One possible solution is to redefine the strongly
connected component as a single pseudo node in the topological ordering,
and solving this region as a separate problem using e.g. a modified Newton
method or Gauss-Seidel iterations. Another approach is to cycle through the
cells in each strongly connected region until the solution in each cell in the
component converges. This approach is described in more detail by Lie et al.
[2013]. Cycles can be found in linear time O(n) by either Tarjan’s algorithm
or by using a double depth first search, where n is the number of cells in the
discretization [Natvig and Lie, 2008]. Algorithm 2 outlines the reordering
procedure used to solve the transport equation, see Equation (2.1.12).

Algorithm 2: Pseudo code showing the reordering procedure for solv-
ing a transport problem, as in Equation (2.1.12)

Data: Saturations SV in all cells V , fluxes Fs on all faces s.
Result: Updated saturations SV

1 generate a topological ordering Torder of (pseudo) cells Vorder based on
the face fluxes Fs;

2 foreach (pseudo) cell Vorder in Torder do
3 if Vorder contains multiple cells V from T then
4 solve the non-linear system for SV using a vector procedure,

e.g. Gauss-Seidel iterations;

5 else
6 solve the single cell problem for SV using a scalar root finder,

e.g. Regula Falsi;

7 end

8 end
9 return updated cell saturations SV

33 CHAPTER 2. NUMERICAL METHODS

2.4.2 Root Finders

The reordering approach breaks the large system of equations into smaller
subproblems. The single cell problems involves solving a univariate equation
for the saturation in each cell V , namely Equation (2.4.7). That is, we want
to find the root of the residual R, the number Sn+1 such that R(Sn+1) = 0.
The literature contains a long list of numerical root finding algorithms for
such problems, a few of which will be tested here for the single cell solver.

2.4.2.1 The Bisection Method

The bisection method is a simple and robust bracketing method. That is, the
method works over a bracket of the function f on the real line, using the
following definition

Definition 1. A bracket [a, b]f for f : R → R is a closed subset of R such
that [a, b]f = {x ∈ R : a ≤ x ≤ b, a < b, f(a)f(b) < 0}.

Now we state the intermediate value theorem, which will help guarantee
the existence of a root in a given bracket:

Theorem 2.1. Intermediate Value Theorem: Let f : [a, b] → R be a
continuous function on the closed interval [a, b] = {x ∈ R : a ≤ x ≤ b}.
Then for every value y, f(a) < y < f(b), there exists a number c ∈ (a, b)
such that f(c) = y.

The proof of this theorem can be found in for example [Binmore, 1977].
Using a bracket [a, b]f in Theorem 2.1 quickly leads to the following corollary:

Corollary 2.2. Let f : R→ R be a continuous function with a bracket [a, b].
Then there exists at least one number r ∈ (a, b) such that f(r) = 0.

The corollary follows since the end points of the bracket are such that
f(a) < 0, f(b) > 0 or, conversely, f(a) > 0, f(b) < 0, thereby bracketing the
value y = 0 from the statement of Theorem 2.1.

Now, starting with a bracket [a, c]f the next iterate b is found by halving
the interval (hence the name of the method):

b =
a+ c

2
.

A new starting bracket is chosen from the points a, b, c according to Def-
inition 1. The new bracket is named [a, c]f and the process is restarted.
This iteration continues until a precise root is found, or the bracket be-
comes smaller than some tolerance ε. By Corollary 2.2, and the fact that

CHAPTER 2. NUMERICAL METHODS 34

the size of the bracket always decreases, the bisection method is guaranteed
to converge. This is true in general for bracketing methods, although the
convergence speed will vary. A more formal convergence theorem with proof
can be found in Kincaid and Cheney [2002].

2.4.2.2 Regula Falsi

Another bracketing method is the regula falsi, also called the false position
method. Again we start with a bracket [a, c]f . The method computes a secant
line between the two end points of the bracket, as illustrated in Figure 2.9,
using the following equation:

y(x) =
f(c)− f(a)

c− a (x− a) + f(a).

In the following we will use the notation fx := f(x) to simplify the equations.
Since the secant line y(x) is a continuous function the bracket [a, b]f can be
used as a bracket for y as well, giving [a, b]y. This implies, by Corollary 2.2,
that ∃b ∈ (a, b) : y(b) = 0. The root b is found by

b = a− fa
c− a
fc − fa

, (2.4.10)

the regula falsi step. Now b is used to update the bracket [a, c]f according to
Definition 1. This iteration is continued until a root is found or the bracket
size falls below some tolerance ε. Note that efficient implementations of the
regula falsi method requires only one function evaluation every iteration,
since only one new point in the bracket is computed. A common problem
pitfall this procedure is that for certain function shapes, for instance for
convex or concave functions, only on side of the bracket will be updated,
potentially leading to slow convergence. Dowell and Jarratt [1972] presents
a modification to the regula falsi method, named the Pegasus method, where
the end point retention problem is removed. This is done by first computing
the regula falsi update as usual, and then reducing the function value of a
retained end point by a factor γ, defined by

γ =
fo

fo + fn
.

Here, fn = f(b) is the function value at the regula falsi update, and fo is the
function value of the non-retained value on the opposite side of the bracket.
The modified method has an order of convergence of around 1.64 [Dowell and
Jarratt, 1972]. Algorithm 3 shows pseudo code for the OPM implementation
of the Regula Falsi method with the Pegasus modification.

35 CHAPTER 2. NUMERICAL METHODS

f(x)

y(x)

f(c)

c

f(a)

a
b

Figure 2.9: The secant line y(x) is computed from the function f(x) and a
bracket [a, c]f . y(x) = 0 is solved for the new update b and used in the regula
falsi method.

2.4.2.3 Ridders’ Method

Ridders’ method is another bracketing scheme, introduced by Ridders [1979].
Again a bracket [a, c]f is chosen. A function h(x;α) is defined by

h(x;α) = f(x)eαx.

Computing the midpoint b of the bracket we want to find an α ∈ R such that

h(c;α)− 2h(b;α) + h(a;α) = 0.

Inserting h(x;α) gives the following equation in α:

eαcfc − 2eαbfb + eαafa = 0.

Multiplying this equation by e−αa gives

eα(c−a)fc − 2eα(b−a)fb + eα(a−a)fa = eα2δfc − 2eαδfb + fa = 0,

since c − a = 2(b − a) and δ := b − a. Thus we get a second order equation
in eαδ. The solution of this equation can be found by

eαδ =
fb ±

√
f 2
b − fcfa
fc

. (2.4.11)

CHAPTER 2. NUMERICAL METHODS 36

Algorithm 3: Pseudo code implementing the Regula Falsi root finder,
see Section 2.4.2.2. The algorithm is modified with the Pegasus method,
due to Dowell and Jarratt [1972].

Data: Initial guess xi, a bracket [x0, x1]f for the function f(x), a
tolerance ε, and the iteration limit nmax

Result: An approximate root of f(x)
1 f0 := f(x0);
2 f1 := f(x1);
3 if xi is a root then return x0;
4 else Form a new bracket [x0, x1]f from x0,x1,xi;
5 while not converged and iterations less than nmax do
6 if [x0, x1] does not bracket the root then handle the bracket error;

7 xn := x1f0−x0f1
f0−f1 ;

8 fn := f(xn);
9 if |fn| < ε then return xn;

10 if fnf0 < 0 then
11 x0 := x1;
12 f0 := f1;

13 else

14 γ := f1
f1+fn

;

15 f0 := γf0;

16 end
17 x1 = xn;
18 f1 = fn;

19 end
20 return the root approximation x0+x1

2

We now need to know under which restrictions this equation has a solution.
Since ex ≥ 1, ∀x ∈ R, we need the right hand side positive in order for the
equation to have a solution. Definition 1 implies that f 2

b − fcfa ≥ f 2
b ≥ 0

and thus the square root always yields a real number. Since the square root
is a monotonic and increasing function, this implies that

√
f 2
b − fcfa ≥ |fb|.

Thus,

fb +
√
f 2
b − fcfa ≥ 0,

fb −
√
f 2
b − fcfa ≤ 0,

37 CHAPTER 2. NUMERICAL METHODS

implying that the sign of the right hand side of Equation (2.4.11) is com-
pletely controlled by sgn fc. The solution eαδ is then found by

eαδ =
fb + sgn fc

√
f 2
b − fcfa

fc
:= σα. (2.4.12)

Now we find α by

α =
lnσα
δ

.

Ridder’s method proceeds by applying the Regula Falsi to h(x) on the bracket
[b, c]h, using the regula falsi step in Equation (2.4.10). This computes a new
point d by

d = b− h(b)
c− b

h(c)− h(b)
.

Inserting the definition for h(x) gives

d = b− eαbfb
c− b

eαcfc − eαbfb
= b− δfb

eαc−bfc − fb
.

By Equation (2.4.12) eαδfc is given by

eαδfc = fb + sgn fc

√
f 2
b − fcfa,

and because δ = c− b, we get

d = b− δfb

fb + sgn fc
√
f 2
b − fcfa − fb

= b− δfb

sgn fc
√
f 2
b − fcfa

.

Now, by Definition 1, sgn fc = − sgn fa. Using sgnx := x√
x2

we arrive at
Ridders’ method:

d = b+
δfb

fa
f2a

√
f 2
b − fcfa

= b+
δ fb
fa√(

fb
fa

)2

− fc
fa

. (2.4.13)

The final step involves selecting the smallest new starting bracket [a, c]f
from the points {a, b, c} in combination with point d, keeping with Defi-
nition 1. Now the process is restarted, and continues until a root is found,
or the size of the bracket falls below a tolerance ε. Algorithm 4 shows the
OPM implementation of Ridders’ method.

CHAPTER 2. NUMERICAL METHODS 38

Algorithm 4: Pseudo code implementing Ridders’ method, see Section
2.4.2.3.

Data: Initial guess xi, a highly unlikely answer xinvalid, a bracket
[x0, x1]f for the function f(x), a tolerance ε, and the iteration
limit nmax

Result: An approximate root of f(x)
1 if x0,x1, or xi is a root then return the root;
2 else Form a new bracket [x0, x1]f from x0,x1,xi;
3 f0 := f(x0);
4 f1 := f(x1);
5 xr := xinvalid;
6 while not converged and iterations less than nmax do
7 xm := x0+x1

2
;

8 fm := f(xm);

9 s :=
√
f 2
m − f0 ∗ f1;

10 if s is zero then return xr;
11 if f0 ≥ f1 then

12 xr := xm + (xm − x0)fm
s

;
13 else

14 xr := xm − (xm − x0)fm
s

;
15 end
16 if xr is converged under ε then return xr;
17 Form a new bracket [x0, x1]f from x0, x1, xm, and xr;

18 end
19 Error: The iteration limit nmax is exceeded;

2.4.2.4 Newton’s Method

Unlike the bisection method, Regula Falsi, and Ridders’ method, Newton’s
method is an open method, meaning that it does not restrict the search to
a closed interval. This important feature allows the iterates to take on any
value x ∈ R, opening up the possibility for divergence of the solution. The
upside is that the method has quadratic local convergence, in contrast to
the super-linear convergence of the previously mentioned methods [Kincaid
and Cheney, 2002]. Newton’s method does not exhibit global convergence
properties.

To derive Newton’s method for solving f(x) = 0, x ∈ R, f : R → R, we
start with a Taylor expansion of f(x) around an initial guess x0:

f(x) = f(x0) + (x− x0)f ′(x0) +
(x− x0)2

2!
f ′′(x0) +O((x− x0)3).

39 CHAPTER 2. NUMERICAL METHODS

Evaluating this function at the root, say xr, gives:

f(xr) = f(x0) + ∆x0f
′(x0) +

∆x2
0

2!
f ′′(x0) +O(∆x3

0) = 0,

where ∆x0 = x − x0. Dropping all higher order terms in ∆x0 leads to the
following approximate equation:

0 = f(xr) ≈ f(x0) + ∆x0f
′(x0).

This relation implies that

∆x0 ≈ −
f(x0)

f ′(x0)
=⇒ xr ≈ x0 −

f(x0)

f ′(x0)
:= x1.

for f ′(x0) 6= 0. Here x1 is an updated guess for the root xr. Iterating this
equation leads to Newton’s method for a univariate equation:

xn+1 = xn −
f(xn)

f ′(xn)
. (2.4.14)

Newton’s method can also be derived from a geometric argument. The
tangent y(x;xn) to a curve f(x) at a point xn is given as

y(x;xn) = f ′(xn)(x− xn) + f(xn).

As long as f ′(xn) 6= 0 this tangent will cross the x-axis, i.e. we can find a
root xrn such that y(xrn ;xn) = 0. The solution to this equation is given as

xrn = xn −
f(xn)

f ′(xn)
,

which when setting the new iterate xn+1 = xrn is equivalent to Equation
(2.4.14). Figure 2.10 illustrates the geometric interpretation and one step of
Newton’s method.

The Secant Method The secant method is a derivative free version of
Newton’s method obtained by approximating f ′(xn) as

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

Inserted into Equation (2.4.14) this yields

xn+1 = `s(xn, xn−1) = xn − f(xn)
f(xn)− f(xn−1)

xn − xn−1

=: `s(xn, xn−1). (2.4.15)

Note that two initial guesses are required to start the method and that we
have defined a secant method function `s for later use. The secant method has
a super-linear convergence rate whereas Newton’s method converges quadrat-
ically [Kincaid and Cheney, 2002].

CHAPTER 2. NUMERICAL METHODS 40

f(x)

f(x0)

x0x1xr

y(x)

Figure 2.10: One step of Newton’s method used to approximate the root xr
of the function f(x). The new iterate x1 is found by computing the root of
the tangent line y(x) to f(x) at the initial guess x0.

2.4.2.5 Brent’s Method

Brent’s method, due to Brent [1973], combines the bisection method, see
Section 2.4.2.1, the secant method, see Section 2.4.2.4 and inverse quadratic
interpolation and switches between the methods using a suitable heuristic.
Brent’s method is inspired by the older Dekker’s method, see [Dekker, 1969].
We begin with a short presentation of inverse quadratic interpolation.

Linear interpolation is used in for example the secant method (Section
2.4.2.4) to approximate the function f ′(x) at two points a, b. Quadratic in-
terpolation approximates f(x) as a quadratic function, based on three points
a, b, c, possibly leading to complex roots. Similarly, inverse quadratic inter-
polation approximates f−1(y) by three points f(a), f(b), f(c), that is

f−1
∗ (y) =

3∑
i=1

f−1(fi)
3∏
j=1
j 6=i

y − fj
fi − fj

. (2.4.16)

Here f−1
∗ (y) denotes the interpolated function. Note that fi := f(xi), where

(x1, x2, x3) := (a, b, c,).The interpolated root is found by inserting f(xr) = 0
into Equation (2.4.16). Since, by definition, f−1(f(xr)) = xr this gives an
approximation for the root xr by the following equation (note the definition
of an inverse quadratic interpolation function `iqi):

xr ≈
3∑
i=1

xi

3∏
j=1
j 6=i

fj
fi − fj

=: `iqi(x1, x2, x3). (2.4.17)

41 CHAPTER 2. NUMERICAL METHODS

Brent’s method starts with two points ak, bk such that f(ak)f(bk) < 0
where bk is the current solution guess and |f(ak)| > |f(bk)|. At the initial
step k = 0, we define b−1 := a0. A candidate update s is found by

s =

{
`iqi(ak, bk, bk−1), if f(ak) 6= f(bk−1) and f(ak) 6= f(bk−1).

`s(ak, bk), otherwise.
(2.4.18)

The function `s implements the secant method defined in Equation (2.4.15).
If s /∈ [3ak+bk

4
, bk] a bisection step s = ak+bk

2
is used in this iteration. On the

other hand, if s ∈ [3ak+bk
4

, bk] we define a number ∆ such that

∆ =

{
bk − bk−1, if bisection was used in the previous iteration

bk−1 − bk−2, if interpolation was used in the previous iteration

(2.4.19)
Now, if |s − bk| ≥ 1

2
∆ or |∆| ≥ δ, for some tolerance δ > 0, we fall back to

the bisection method, such that s = ak+bk
2

. If f(ak)f(s) < 0, bk+1 = s and
ak+1 = ak. If f(ak)f(s) ≥ 0, then ak+1 = s and bk+1 = bk. The final step
is to ensure |f(ak+1)| > |f(bk+1)| by swapping ak+1 and bk+1, if necessary.
This iteration continues until the interval size is below a given tolerance ε
or a root is found. Brent’s method is shown in pseudo code in Algorithm 5
following the implementation in the OPM code.

Algorithm 5: Pseudo code implementing Brent’s method, see Section
2.4.2.5.

Data: Initial guess xi, function f(x), bracket [x0, x1]f , tolerance ε,
iteration limit nmax

Result: An approximate root of f(x)
1 if x0,x1, or xi is a root then return the root;
2 else form a new bracket [x0, x1]f from x0,x1,xi;
3 f0 := f(x0);
4 f1 := f(x1);
5 while not converged and iterations less than nmax do
6 use inverse quadratic interpolation to find an update xn;
7 if the interpolation failed then use the secant method to find xn;
8 if iterate xn converged to slowly then do a bisection step on xn;
9 form a new bracket from points x0, x1, xn;

10 end
11 if point x1 or xn is a converged root then return x1 or xn;
12 else the iteration limit nmax is exceeded;

CHAPTER 2. NUMERICAL METHODS 42

2.4.2.6 Trust Regions

As mentioned in Section 2.4.2.4, Newton’s method can diverge for bad initial
guesses. Despite this shortcoming we would like to exploit the nice conver-
gence properties of the method. Several modifications have been proposed,
among others the Appleyard Heuristic and the Modified Appleyard Heuristic,
see e.g., [Younis, 2011]. These methods seek to scale the Newton update
f(xn)
f ′(xn)

to stop the method from diverging or using too many iterations to

converge. Since we want to solve Equation (2.4.7) for the saturation Sn+1
V we

already have a well defined region of allowable values, namely Sn+1
V ∈ [0, 1].

This fact obviously follows from the physics of the problem and allows us to
limit the Newton updates to this interval, keeping the iterates from diverg-
ing. This is one example of an imposed heuristic. Another approach, used
in optimization, is to define a region within which the iterative technique is
trusted to compute valid results, a so called trust region. Jenny et al. [2009]
applies this to reservoir simulation residuals by identifying regions where the
Newton method converges reliably. This can also be viewed as a globaliza-
tion technique for Newton’s method. In order to present the update scaling
choices for the trust region methods we first introduce the dimensionless flux
function.

The Dimensionless Flux Function Wang and Tchelepi [2013] defines a
dimensionless water flux function by

Fw =
uw
u

= fw +
Kgλofw(ρw − ρo)∇h

ut
+
fwKλo∇pc

ut
. (2.4.20)

Here the permeability and gravity are assumed to be scalar. This equation
states the water flux as a product of three terms; the viscosity terms, the
buoyancy term, and the capillarity term, in that order. The idea is that
this function is the main contribution to the non-linearity of the transport
residual, and that this fact can be used to develop efficient update heuristics
for Newton’s method [Jenny et al., 2009]. Because the transport equation
has been split into two equations, see Section 2.4, we operate with a slightly
modified set of flux functions, the effects of which is most apparent in the
buoyancy term. The flux functions for the three regimes are shown in Figure
2.11. It is apparent from the figure that the different regimes have quali-
tative differences, which are exploited in two different trust region schemes,
presented in the two following sections. The discussion that follows warrants
two definitions, as follows:

43 CHAPTER 2. NUMERICAL METHODS

Definition 2. An inflection point xinflec of a function f : R→ R is a point
where the sign of the derivative of f changes sign or, equivalently, where the
second derivative of f is zero. That is,

∂2f

∂x2 (xinflec) = 0.

Definition 3. A sonic point xs of a flux function f is a point such that
f(xs) = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Sinflec

S

F
w
(S

)

(a) Viscosity

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Sinflec

Sinflec
SsSf=1

S

F
w
(S

)

(b) Buoyancy

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

Sinflec

S

F
w
(S

)

(c) Capillarity

Figure 2.11: Water flux function Fw dominated by viscosity, buoyancy and
capillarity. Sinflec denotes inflection points and Ss sonic points.

Jenny et al. Trust Region Jenny et al. [2009] presents an update heuris-
tic for the Newton method in the viscosity dominated case, with the flux
function shown in Figure 2.11a. This function is s-shaped and its qualitative
features are governed by the fractional flow function fw. A closer inspection
of this function shows that the domain [0, 1] can be split into two subsets such
that Fw is concave on one and convex on the other. This is convenient, since
Newton’s method is known to converge regardless of starting point on convex
or concave functions, see e.g. Morris [1983]. A smooth function making a
transition from a concave to a convex region, or vice versa, must cross the so
called inflection point, here denoted Sinflec. The inflection point is exactly the
point where the second derivative of the function at hand changes sign. The
Jenny Trust Region method, or the JTR, introduced in Jenny et al. [2009],
tries to exploit the convergence guarantee of the Newton-Raphson method
on convex or concave regions by first doing a regular Newton solve and then
restricting the saturation such that no update leaps between the two regions.
That is, if a saturation update ∆S and the initial saturation S is such that
(S − Sinflec)(S + ∆S − Sinflec) < 0, then the new saturation is set to Sinflec.
The inequality f ′′w(S)f ′′w(S + ∆S) < 0 also holds if the inflection point has

CHAPTER 2. NUMERICAL METHODS 44

been crossed since the sign of the second derivative f ′′w(S) changes at Sinflec.
This test is useful if the inflection point is not known a priori. In that case
Jenny et al. [2009] proposes to instead cut back the saturation update by
some heuristic, for example setting the new saturation to S + ∆S

2
. We call

this the approximate JTR scheme. The precise JTR scheme is summarized
in Algorithm 6.

Algorithm 6: Pseudo code implementing the JTR method, see Section
2.4.2.6.

Data: Initial guess x0, function f(x), tolerance ε
Result: A approximate root xr

1 xn = x0;
2 while f(xn) > ε and ∆xn > ε do

3 ∆xn := f(xn)
f ′(xn)

;

4 if xn + ∆xn has crossed an inflection point xinflec then
5 ∆xn := xinflec − xn;
6 end
7 xn := xn + ∆xn;

8 end
9 xr := xn;

10 return the root xr

When solving the single cell residual in Equation (2.4.7) the inflection
point can be computed a priori when the fractional flow function fw is known.
This follows since the second derivative of the residual becomes

∂2
Sn+1
V

R = ∂Sn+1
V

[
1− ∆t

m(V)φV
∂Sn+1

V
fw

]
= − ∆t

m(V)φV
∂2
Sn+1
V

fw, (2.4.21)

which holds because all the terms besides the fractional flow function terms
are constants (or first order) in Sn+1

V . Now, because the second derivative is
zero at the inflection point Sinflec, Equation (2.4.21) implies that Sinflec can
be found by solving

∂2fw

∂Sw
2 (Sw) = 0, (2.4.22)

where fw = fw(S). Recalling that fw was defined in Equation (2.1.6) as the
ratio of the water mobility λw and the total mobility λ we observe that in
our case Equation (2.4.22) is uniquely defined by the fluid model chosen at

45 CHAPTER 2. NUMERICAL METHODS

at the beginning of the simulation. Thus the inflection points are constant
and equal for every cell residual throughout the simulation. With favorable
definitions of the relative permeabilities krl Equation (2.4.22) can be solved
algebraically. When using quadratic relative permeabilities, as here, a cubic
equation must be solved. The current implementation of the precise JTR
method uses that approach. In the more general case a simple numerical
root finder can be used to find Sinflec. It is important to note that these
considerations are valid only for the viscosity dominated transport residual
in Equation (2.4.7). The inflection points of the gravity residual, Equation
(2.4.9), are dependent on the mobility in neighbor cells, calling for a new
algebraic or numerical solution for Sinflec before every call to the transport
solver. This makes the precise trust region scheme a less attractive alternative
for solving the gravity residual. We note that with quadratic permeabilities
the gravity residual inflection points are given by a simple quadratic equation,
leaving a possibility for an efficient algorithm.

−5 −4 −3 −2 −1 0 1 2

−6

−4

−2

0

2

s0

S

R
(S

)

(a) Regular Newton

0 0.2 0.4 0.6 0.8 1

−6

−4

−2

0

S0

Sinflec

S

R
(S

)

(b) JTR Newton

Figure 2.12: Newton iterations showing the JTR scheme converging unlike
the regular Newton updates on the residual in Equation (2.4.7) with ∆t =
20000 s, φV = 0.5, m(V) = 1 m3, F−V = 0.16 m3/s, and Q+

V = −0.16 m3/s,
µw
µo

= 10, and using initial guess S0 = 0.02. Sinflec is the residual inflection
point. The red rectangle marks the range of valid saturations.

Figure 2.12a shows an example of a situation where the Newton method
failed to converge and attained values outside the allowable range [0, 1]. Fig-
ure 2.12b shows the JTR method applied to the same problem. We observe
that the method converges in a few iterations. Note especially the first step
as compared to the first step in Figure 2.12a. The pure Newton method
computes and accepts a solution outside domain. When using the JTR, the

CHAPTER 2. NUMERICAL METHODS 46

algorithm detects that the solution update has crossed the inflection point
and the solution is cut back to the inflection point Sinflec. The next update
falls within the same concave region as the actual root, and the method
converges in a few iterations.

Wang-Tchelepi Trust Region Jenny et al. [2009] only considered the
viscosity dominated flux function, that is, all capillary and buoyant effects
were removed from the flow equations. Building on the JTR method, Wang
and Tchelepi [2013] present another trust region scheme in order to take
the gravity and capillary forces into account. The strength of their new ap-
proach relative to the JTR method is based on the way the interface flux is
computed. Jenny et al. [2009] uses a simple TPFA scheme with upwinding
based on the phase velocity. The resulting residual is smooth and mono-
tonic, with non-linearities caused by the fractional flow function fw. In con-
trast, Wang and Tchelepi [2013] includes the buoyancy term, as in Equation
(2.4.20), which can cause the water flux function to grow larger than one,
i.e. ∃S : Fw(S) > 1. When this happens the flow of water is larger than
the hydrocarbon pore volume and a back flow of the other phase, in our case
oil, is implied by mass conservation. This is called counter current flow. A
phase based upwind method is then employed to evaluate these fluxes on the
cell interfaces in a conservative manner. In practice this means that when
the water flux crosses the unit flux point, denoted SFw=1, the evaluation of
the phase mobilities in the gravity flux term suddenly switches to the other
cell, possibly causing a discontinuity in the resulting residual function. The
residual is convex or concave on both sides of SFw=1, but the discontinuity
can cause convergence problems for the ordinary Newton updates. To amend
this, Wang and Tchelepi [2013] presents a scheme where the unit flux point
SFw=1 is handled in the same manner as the inflection points was by the
JTR method; any solution updates crossing the inflection points or unit flux
points are chopped back. This restricts the Newton updates to the regions
where they are trusted to converge. Algorithm 7 presents the pseudo code
for the Wang-Tchelepi trust region, or WTR, method.

The preceding discussion indicates that the WTR method will not present
any advantage over the simpler JTR when used to solve the residuals in
Equations (2.4.7) and (2.4.9). This is caused by the gravity splitting scheme
described in Section 2.4 and the way the phase based upwind method is
applied. Specifically, the upwind method used by Wang and Tchelepi [2013]
evaluates the dimensionless fractional flow function from Equation (2.4.20)
as a function of the updated cell saturation Sn+1

V . Thus, when the unit flux
point is crossed the upwind method makes the interface flux a function of

47 CHAPTER 2. NUMERICAL METHODS

Algorithm 7: Pseudo code implementing the WTR method in a New-
ton iteration, see Section 10.

Data: x0,xinflec,xf=1,f(x),ε,nmax

Result: xn
1 Initial guess;
2 xn = x0;
3 while not converged and iterations less than nmax do

4 xn+1 := xn − f(xn)
f ′(xn)

;

5 if xn+1 > 1 then xn+1 := 1;
6 else if xn+1 < 0 then xn+1 := 0;
7 if xn+1, xn has crossed the unit flux point point xf=1 then
8 xn+1 := xf=1;
9 end

10 if xn+1, xn has crossed an inflection point xinflec then
11 xn+1 := xinflec;
12 end
13 xn := xn+1;

14 end
15 return the root approximation xn

the oil mobility λo in the neighbor cell, producing the discontinuity at SFw=1

in the residual as shown in Figure 2.13. In contrast, the numerical method
presented in Section 2.4 evaluates the upwind method based on a flux field
generated in the pressure solver. During the transport step this flux field
is constant with respect to Sn+1

V , rendering the unit flux point check in the
WTR method superfluous.

CHAPTER 2. NUMERICAL METHODS 48

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0

0.5

1

1.5

SFw=1

Sn+1
V

R
(S

n
+
1

V
)

Figure 2.13: A transport equation residual with a discontinuity at SFw=1

caused by the upwind method as described in Wang and Tchelepi [2013].

49 CHAPTER 3. NUMERICAL RESULTS

Chapter 3

Numerical Results

Reservoir simulation packages are large and complex programs with IO func-
tionality for well specifications, grid parameters, fluid definitions, etc., along
with a host of utility functions. In order to test the numerical methods de-
scribed in Chapter 2 we use the open source simulator supplied by the Open
Porous Media initiative, or OPM , see [OPM, 2014]. Section 3.1 starts this
chapter with a brief overview of the hardware and software used to test the ef-
ficiency of the new root finder implementations, as presented in Section 2.4.2.
Section 3.2 presents a number of tests cases and the corresponding numerical
results from running the cases with the different root finder implementations.

3.1 Test Procedure

In order to test the efficiency of the single cell solvers the OPM library was
installed on a server with Intel R© Xeon R© X7542 CPUs running at 2.67 GHz
with a 18432 kB cache size. The server has 252 GB of available ram. The
homogeneous tests have been run using the C++ driver program included
in Listing A.1. For the inhomogeneous tests the code in Listing A.2 was
used. Finally, the homogeneous 3D tests were run using the code in Listing
A.3. Further, all test cases were checked against the reference Regula Falsi
solver, see Section 2.4.2.2, to ensure that the correct solution is found. The
iteration count for each solver was reported along with the solution updates
to determine the convergence speed versus iteration for each method. Finally,
the total CPU time is reported to check the overall performance of each root
finder. In the following we will test these methods for solving the single cell
residual: Regula Falsi (RF), Section 2.4.2.2, Ridders (R), Section 2.4.2.3,
Brent (B), Section 2.4.2.5, and the Approximate (TR*) and Precise (TR)
Trust Region methods, Section 2.4.2.6. The method name abbreviations in

CHAPTER 3. NUMERICAL RESULTS 50

the parentheses will be used in the following.

3.1.1 The OPM Package

The OPM package provides a range of modules for grid handling, polymer
injection, upscaling methods, and more. The opm-core module contains
basic grid and well handling, and IO utilities, along with pressure and trans-
port solvers for the porous media fluid flow problems described in Section
1.2.2. In fact, the OPM package implements the exact numerical methods
described in Section 2.1 through the Opm::IncompTpfa pressure solver and
the Opm::TransportSolverTwophaseReorder transport solver classes using
the Regula Falsi Method for the single cell problems resulting from the re-
ordering procedure, see Section 2.4.1. Listings A.1, A.2, and A.3 show the
code for the driver programs implementing the sequential splitting scheme
using the OPM library. The class Opm::TransportSolverTwophaseReorder
implements the functionality for solving the residual equations in Equa-
tion (2.4.7) and (2.4.9), and is instantiated with the static properties of
the simulation, such as the grid specification and fluid model. At each
iteration of the sequential splitting method, as outlined in Algorithm 1,
a new saturation field is computed by calling the method solve(...) on
a Opm::TransportSolverTwophaseReorder object. The arguments to the
solve method includes the time step ∆t, and an instance of the fluid state
class TwophaseState containing the saturation, flux, and other state infor-
mation for every cell V ∈ T . The solve method proceeds to compute the
ordering of the flux graph based on the flux values obtained by solving the
pressure equation. This ordering leads to a set of pseudo cells consisting of
one or more regular cells, as described in Section 2.4.1. The new saturation
field is finally obtained by iterating over all the pseudo cells and solving each
subproblem by either the single cell root finders or the multi cell solver, de-
pending on the number of grid cells in each pseudo cell. The single cell root
finders are the main focus of this work. The transport equation residuals are
implemented by two structs, Equation (2.4.7) in the struct Residual and
Equation (2.4.9) in the struct GravityResidual. These structs are supplied
with an ()-operator taking the update saturation Sn+1

V as an argument and
returning the residual value.

3.2 Test Cases

The following test cases are chosen to highlight different properties of the
root finders. We start with the classical two-dimensional quarter five spot

51 CHAPTER 3. NUMERICAL RESULTS

problem as case A, Section 3.2.1. Next, two inhomogeneous, two-dimensional
problems are tested in case B and case C, Section 3.2.2 and 3.2.3, respectively.
Case D is a three-dimensional homogeneous block with gravity effects, see
Section 3.2.4. All tests are run with tolerance ε = 1 × 10−9. We have
assumed that the numerical methods are stable, so convergence of the single
cell problems indicates that the solutions are identical to the reference solver.

Figure 3.1: Water saturation profile when solving the Q5 problem on a 20x20
grid with tend = 300 d and ∆t = 60 d. The region has a homogeneous perme-
ability of 10 mD. Blue is water, red is oil.

3.2.1 Case A: Quarter Five Spot

The quarter five spot, abbreviated Q5, is a quadratic 2D domain with a
source in one corner and a sink in the opposite corner along the diagonal,
while the rest of the boundary has no-flow conditions. The fluid density
is set to 1000 kg/m3 for water and 800 kg/m3 for oil, porosity to 0.5 , and the
formation has homogeneous permeability 10 mD. There are no gravity effects
in this test. The simulation is run using different time steps ∆t until the final
time tend = 300 d. The viscosity is varied through three cases; µw = 1 cP and
µo = 1 cP, µw = 1 cP and µo = 10 cP, and µw = 10 cP and µo = 1 cP. This
gives viscosity ratios M of 0.1, 1, and 10, respectively. Relative permeabilities
are assumed to be quadratic functions of the saturation, i.e., krl = S2

l . Two
sub-cases are tested with different cell sizes. The first case is set up with
120 m × 120 m × 10 m cells on a 20 × 20 grid with a source and a sink of
magnitude 180 m3/s. Next the problem is scaled down to cell dimensions
10 m × 10 m × 10 m and a weaker source of magnitude 4 m3/s. Figure 3.1
shows an example of an advancing saturation profile from a simulation of
the homogeneous Q5 problem. Because of the uniform permeability and the

CHAPTER 3. NUMERICAL RESULTS 52

quadratic geometry the saturation profile is symmetric around the diagonal
between the source and sink.

3.2.1.1 Large Cells

The total iteration count spent when solving the Q5 problem with 120 m ×
120 m cells is presented in Figure 3.2 for all root finders. We include the
viscosity ratio because of the significant influence it has on the shape of fw,
as evidenced by Figure 2.1. The trend in the data is that Brent’s method uses
the highest number of iterations, while the Precise Trust Region scheme needs
significantly fewer iterations than all other methods. The data also indicates
that the average iteration count is lower and the differences between the
methods are smaller for larger values of M . The corresponding total CPU
running times are shown in Figure 3.3. The general impression from the
plots is that the methods have similar performance, i.e., CPU time within
the same order of magnitude. Further, none of the methods are consistently
better than the others, neither with varying time steps and constant viscosity
ratio M nor the other way around. All in all the data are fairly inconclusive.

A comparison of the iteration count and total CPU time results shown in
Figure 3.2 and 3.3, respectively, highlights the differences in computational
complexity for the different root finders. That is, even with the quite sig-
nificant variation in total amount of iterations, the CPU time is comparable
for all root finders over the range of tested parameters. For instance, the
Trust Region methods, which are essentially Newton methods, converge fast
in terms of number of iterations due to the quadratic convergence of the
Newton-Raphson scheme. But, since each iteration requires two function
evaluations, one for the function itself and one for the derivative, the reduc-
tion in number of iterations is balanced by a relatively high computational
complexity in each iteration. Similarly, the Brent method has “only” super-
linear convergence and thus uses a very high number of iterations, but since
it requires just one function evaluation per iteration, and has a fast imple-
mentation in general, the total CPU time spent is again normalized. Similar
considerations can be used to explain some of the discrepancy between the
the iteration count and CPU time results for the other root finders. Still,
the iteration differences are so significant that we should expect more pro-
nounced variations in execution time between the root finders. Worse, the
iteration counts show a consistent dependency on the time step ∆t, while
the CPU times do not. We hypothesize that the reason for the inconclusive
results is that the time spent by the pressure solver dominates the total run
time, effectively hiding the transport solver results. The choice of pressure

53 CHAPTER 3. NUMERICAL RESULTS

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(a) M = 0.1

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(b) M = 0.1

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(c) M = 1

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(d) M = 1

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(e) M = 10

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(f) M = 10

Figure 3.2: #iterations used to solve a modified Q5 problem, Section 3.2.1,
for varying root finders, ∆t, and M , with 120 m× 120 m cells.

CHAPTER 3. NUMERICAL RESULTS 54

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.3: CPU time used to solve the Q5 problem, Section 3.2.1, for varying
root finders, ∆t, and M , with 120 m× 120 m cells.

55 CHAPTER 3. NUMERICAL RESULTS

solver is independent of the transport solver, as discussed in Section 2.1, so
a more efficient pressure solver could be chosen. In that case the transport
solver might influence the total CPU time to a larger extent. Because of the
independence of the two solvers it is still interesting to investigate the effi-
ciency of the transport solver using different root finders. The plots in Figure
3.4 show timing results for just the transport step. It is clearly the case that
these data correspond better with the iteration counts in Figure 3.2 than the
total CPU times do. Now the Precise Trust Region method outperforms the
other methods for all time steps, while the Regula Falsi method is the second
best. The Brent method is slightly faster than the Ridders method, while
the Approximate Trust Region method has the highest CPU time. As men-
tioned earlier, these results can be explained by the convergence properties
of the individual methods, but these new results, without the influence of the
pressure solver, follow the theory even closer. Note especially the low perfor-
mance of the Approximate Trust Region method, and the good performance
of the (modified) Regula Falsi approach. The Approximate Trust Region
method uses two extra evaluations of the second derivative of the residual
to identify trusted Newton-Raphson updates, bringing the total number of
function evaluations per iteration up to four. Thus, each iteration of the
method is slow compared to the other methods. The improved convergence
rate of 1.64 for the modified Regula Falsi method, together with the single
function evaluation per iteration, makes this approach better than the more
complicated Brent and Ridders algorithms. Still, the local quadratic con-
vergence of the Precise Trust Region scheme makes this the most efficient
method for all tested time steps and viscosity ratios. We also note that the
average CPU time used by the transport solver is lower for large M , for all
root finders.

3.2.1.2 Small Cells

The total number of iterations spent by each root finder when solving the
Q5 problem with cell dimensions 10 m × 10 m is shown as a function of the
time step ∆t and the viscosity ratio M in Figure 3.5. The Brent method is
the least efficient in terms of iteration count, while the Regula Falsi method
is a close second. The Ridders algorithm needs more iterations than the two
Trust Region schemes for the majority of time steps. For ∆t / 60 the Precise
Trust Region scheme is the most efficient with the Approximate Trust Re-
gion scheme a close second, while ∆t ' 60 favours the approximate approach.
Qualitatively these observations are consistent for all tested viscosity ratios,
discounting edge effects. Note however that the actual difference between the
number of iterations spent by the various root finders is influenced by M .

CHAPTER 3. NUMERICAL RESULTS 56

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.4: CPU time used by the transport solver when solving case A,
Section 3.2.1, for varying root finders, ∆t, and M , with 120 m× 120 m cells.

57 CHAPTER 3. NUMERICAL RESULTS

The ordering of the methods in terms of iteration count is about as expected
based on theoretical convergence rates. The Trust Region schemes bene-
fits from the quadratic local convergence of the underlying Newton-Raphson
method, while the other procedures with only superlinear convergence need
more iterations to obtain the desired precision. The advantage of the trust
region schemes over the other methods seems quite significant. Note that the
flatlining of all methods for ∆t = 150 d is easily explained by the way time
step overshoots are handled, since the number of time steps for the simula-
tion is set to N := b tend

∆t
c. Thus, ∆t = 150 d and 120 d actually result in the

same number of iterations of the sequential splitting method, while the time
step factor in the residual is slightly different.

The total CPU time spent when solving the Q5 problem is shown in
Figure 3.6 for all root finders and different viscosity ratios. Starting with
Figure 3.6a for M = 0.1 we see that the CPU times for all methods are
practically indistinguishable up to ∆t ≈ 20 d. At this point the trust region
methods become slower than the rest. This holds until ∆t ≈ 50 d where the
Regula Falsi method also raises its CPU time. Finally, the Brent method
slows down somewhere between ∆t = 50 d and 75 d. The Ridders method
has the best performance for most time steps. The timing results with M = 1
are shown in Figure 3.6b. The results in this case are less clear cut than with
M = 0.1, with the ordering of the methods changing between time steps.
Finally, Figure 3.6c shows the results with viscosity ratio M = 10. Here
the Trust Region methods are the most efficient methods after the other
algorithms slow down between ∆t = 20 d and 40 d. The Approximate Trust
Region methods slows down at around ∆t = 100 d. Note the end effects for
the last time step size, as mentioned earlier. A general observation is that
all methods seems to have similar performance for the smallest time steps,
up until around ∆t ≈ 20 d.

Again the reported total CPU times show little agreement with the itera-
tion counts reported in Figure 3.5. The same reasoning applies here concern-
ing the dominance of the pressure solver, so we report the transport solver
CPU time in Figure 3.7. As for the case with large cells, the omission of
the pressure time overhead makes the CPU time correspond very well with
the iteration count. Again the Precise Trust Region method is the fastest
method, while the Regula Falsi, the Ridders, and the Brent methods follow.
The differences between the latter three methods are smaller, but the Regula
Falsi algorithm consistently outperforms the other two root finders. Finally,
the Approximate Trust Region method is the slowest approach. The trend
with large M giving a smaller average CPU time still holds.

CHAPTER 3. NUMERICAL RESULTS 58

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(a) M = 0.1

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(b) M = 0.1

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(c) M = 1

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(d) M = 1

0 10 20 30
104

105

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(e) M = 10

40 60 80 100 120 140 160
103

104

dt [d]

#
it
er
at
io
n
s

(f) M = 10

Figure 3.5: #iterations used to solve the Q5 problem, Section 3.2.1, for
varying root finders, ∆t, and M , with 10 m× 10 m cells.

59 CHAPTER 3. NUMERICAL RESULTS

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160

10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.6: CPU time used to solve the Q5 problem, Section 3.2.1, for varying
root finders, ∆t, and M , with 10 m× 10 m cells.

CHAPTER 3. NUMERICAL RESULTS 60

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.7: CPU time used by the transport solver, alternative run, when
solving case A, Section 3.2.1, for varying root finders, ∆t, and M , with
10 m× 10 m cells.

61 CHAPTER 3. NUMERICAL RESULTS

3.2.2 Case B: Tarbert 2D

We now test a case with a more realistic inhomogeneous permeability dis-
tribution taken from the second SPE10 data set [SPE10, 2000]. The data
set consists of scalar permeabilities in the x-, y- and z-directions on a three
dimensional grid with 60×220×85 cells, with the top 35 layers being part of
the Tarbert formation and the bottom 50 the Upper Ness formation.The fine
scale permeability grid cells are 20 ft × 10 ft × 2 ft in size. Figure 3.8 shows
the logarithm of the x-direction permeabilities for the entire domain, from
which the first layer of the Tarbert formation is chosen for the numerical
tests in this case. This layer is shown in Figure 3.9 along with a snapshot
of the saturation front. Since a layer has 220 × 60 = 13200 cells, versus
the 400 cells in case A, we expect the iteration count and CPU times to be
significantly larger in the present case. We have chosen to use a 60 × 220
grid with a source and a sink of magnitude 50 m3/s in each opposite corner,
without gravity effects. Otherwise the boundary has no flow conditions. The
cells in the grid have dimensions 10 m× 10 m× 10 m, while the fluid density
is set to 1000 kg/m3 for water and 800 kg/m3 for oil, and the porosity to 0.5 .
The viscosity ratio M is tested in the three cases M = 0.1, M = 1, and
M = 10, as before. Finally, the relative permeabilities are still assumed to
be quadratic functions of the saturation.

(a) Top view (Tarbert) (b) Bottom view (Upper Ness)

Figure 3.8: Inhomogeneous permeability data from the second SPE10 data
set [SPE10, 2000]. The top 35 layers are part of the Tarbert formation. The
lower 50 are part of the Upper Ness formation. The model dimensions are
1200 ft× 2200 ft× 170 ft with 60× 220× 85 cells.

Figure 3.10 shows the total iteration count used when solving case B.
As expected, the iteration count is orders of magnitude larger than for case

CHAPTER 3. NUMERICAL RESULTS 62

A, with a range from around 9 × 104 up to around 1.5 × 107 iterations.
Again the lowest iteration count is obtained by the Trust Region schemes,
with an advantage to the Precise Trust Region method. The other methods
also follow the pattern observed in case A, with the Brent method using
the highest number of iterations, and the Regula Falsi and Ridders methods
slightly fewer. We note that for M = 1 and M = 10, ∆t / 30 d gives the
Regula Falsi method a slight advantage, while the Ridders method is better
for larger time steps. With M = 0.1 the Ridders method is more efficient
than the Regula Falsi algorithm for all ∆t.

(a) Saturation at T = 30 d

(b) Permeability

Figure 3.9: Saturation profile (top) of water (blue) when running case B on
the first layer of the Tarbert formation from the SPE10 permeability data
set. The logarithm of the x-direction permeabilities are also shown (bottom).

Now, using the same reasoning as before with regards to the pressure
solver dominance, we show timing results for just the transport step in Figure
3.11. The order of magnitude of the run times varies between 10−2 and 1,
much larger than for the smaller test case A, as predicted. The timing results
also follow the iteration count results closely, with the Precise Trust Region
method as the fastest root finder. We still see the effect of the high per-
iteration computational complexity of the Approximate Trust Region scheme
with this method as the slowest despite the good iteration count. Yet again
the average run time is reduced for larger M .

63 CHAPTER 3. NUMERICAL RESULTS

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(a) M = 0.1

40 60 80 100 120 140 160
105

106

dt [d]
#
it
er
at
io
n
s

(b) M = 0.1

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(c) M = 1

40 60 80 100 120 140 160
105

106

dt [d]

#
it
er
at
io
n
s

(d) M = 1

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(e) M = 10

40 60 80 100 120 140 160

105

106

dt [d]

#
it
er
at
io
n
s

(f) M = 10

Figure 3.10: #iterations used to solve case B, Section 3.2.2, for varying root
finders, time steps and viscosity ratios.

CHAPTER 3. NUMERICAL RESULTS 64

0 20 40 60 80 100 120 140 160

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.11: CPU time used by the transport solver when solving case B,
Section 3.2.2, for varying root finders, time steps and viscosity ratios.

65 CHAPTER 3. NUMERICAL RESULTS

3.2.3 Case C: Upper Ness 2D

The problem setup for this case is exactly as in case B but with permeability
data from the Upper Ness formation. Figure 3.8 indicates that the Upper
Ness formation has more severe local permeability variations compared to the
Tarbert formation. Upper Ness is a fluvial formation, with channels of high
permeability rock, seen as red and yellow tones in Figures 3.8 and 3.12b. The
latter figure shows layer 36 in the dataset which will be used with 60 × 220
grid cells in the layer, with cell dimensions 10 m× 10 m× 10 m. Figure 3.12a
shows a saturation profile at time 30 d with the source in the bottom left
hand cell. The high permeability channels are clearly seen as regions with
water saturated cells with blue coloring.

(a) Saturation at T = 30 d

(b) Permeability

Figure 3.12: Saturation profile (top) when running case C on the first layer of
the Upperness formation, that is, layer 36 from the SPE10 permeability data
set. The logarithm of the x-direction permeabilities are also shown (bottom).

Figure 3.13 shows that the iteration count follows the same pattern as
before, with the trust region methods outperforming the other methods for
all tested time step sizes and viscosity ratios. For ∆t ' 40 d the Ridders
method uses fewer iterations than the Regula Falsi method for all viscosity
ratios, with a more pronounced difference for larger M values. As before we
report the transport solver CPU times, see Figure 3.14. The Precise Trust
Region method is again the best performer, with the Regula Falsi method as
the second most efficient method, although the Ridders and Brent methods
are not much slower. The Approxmiate Trust Region scheme is still slow. As
for the other cases the simulation time is reduced for larger M values.

CHAPTER 3. NUMERICAL RESULTS 66

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(a) M = 0.1

40 60 80 100 120 140 160

105

106

dt [d]

#
it
er
at
io
n
s

(b) M = 0.1

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(c) M = 1

40 60 80 100 120 140 160

105

106

dt [d]

#
it
er
at
io
n
s

(d) M = 1

0 10 20 30

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
TR*
B
R

(e) M = 10

40 60 80 100 120 140 160

105

106

dt [d]

#
it
er
at
io
n
s

(f) M = 10

Figure 3.13: #iterations used to solve case C, Section 3.2.3, for varying root
finders, time steps and viscosity ratios.

67 CHAPTER 3. NUMERICAL RESULTS

0 20 40 60 80 100 120 140 160

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
TR*
B
R

(c) M = 10

Figure 3.14: CPU time used by the transport solver when solving case C,
Section 3.2.3, for varying root finders, time steps and viscosity ratios.

CHAPTER 3. NUMERICAL RESULTS 68

3.2.4 Case D: Three-Dimensional Domain

We now want to test the root finders on the gravity residual in Equation
(2.4.9). The domain is made up of 10 × 60 × 10 grid cells of dimension
10 m × 10 m × 10 m, with permeability 10 mD for the whole domain. A
source of magnitude 5 m3/s is placed in the first grid cell, while a sink of
equal magnitude is placed in the last. Otherwise the boundaries have no-
flow conditions. Additionally, the top half of the domain is initialized with
fully water saturated cells, while the bottom half is saturated by oil. Since
the oil is lighter than the water, with a density of ρo = 400 kg/m3 versus the
water density at ρw = 1200 kg/m3, the oil will rise towards the top of the
domain. The simulation is run with tend = 400 d, and different time steps
and viscosity ratios. Figure 3.15 shows the saturation after 200 d.

Figure 3.15: Saturation profile after 200 d for case D. Blue is water, red oil.

Figure 3.16 shows the combined iteration counts for the regular transport
solver and the gravity column solver. Here the Precise Trust Region method
performs worse than before for small time steps, relative to the other meth-
ods. This effect is especially significant for small time steps with M = 1, as
shown in Figure 3.16c. The other results are qualitatively as before, with the
Precise Trust Region method using fewer iterations than the Regula Falsi
method, the Ridders method, and the Brent method, in that order. We note
that the Approximate Trust Region method failed for all time steps.

The CPU time without the pressure solver time is reported in Figure
3.17, i.e., the time spent by the transport solver including the gravity column
solver. Here both the viscosity dominated residual in Equation (2.4.7) and
the gravity dominated residual in Equation (2.4.9) are solved. The plots
show the Precise Trust Region method as the fastest solver overall, followed
by the Regula Falsi method, the Ridders method, and the Brent method.
The increase in iterations used by the Precise Trust Region approach for
small ∆t and M = 1 shows up as higher running times in Figure 3.17b.

69 CHAPTER 3. NUMERICAL RESULTS

10 20 30 40
105

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
B
R

(a) M = 0.1

40 60 80 100 120 140 160
105

106

dt [d]
#
it
er
at
io
n
s

(b) M = 0.1

10 20 30 40
105

106

107

dt [d]

#
it
er
at
io
n
s

RF
TR
B
R

(c) M = 1

40 60 80 100 120 140 160
105

106

dt [d]

#
it
er
at
io
n
s

(d) M = 1

10 20 30 40
105

106

dt [d]

#
it
er
at
io
n
s

RF
TR
B
R

(e) M = 10

40 60 80 100 120 140 160
104

105

dt [d]

#
it
er
at
io
n
s

(f) M = 10

Figure 3.16: #iterations used to solve case D, Section 3.2.4, for varying root
finders, time steps and viscosity ratios.

CHAPTER 3. NUMERICAL RESULTS 70

0 20 40 60 80 100 120 140 160
10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
B
R

(a) M = 0.1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
B
R

(b) M = 1

0 20 40 60 80 100 120 140 160
10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

RF
TR
B
R

(c) M = 10

Figure 3.17: CPU time used by the transport solver when solving case D,
Section 3.2.4, for varying root finders, time steps and viscosity ratios.

71 CHAPTER 3. NUMERICAL RESULTS

3.3 Convergence Tests

We now try to test the efficiency of the different root finders in a more
controlled environment. One measure of the efficiency of numerical equation
solvers is the convergence rate. This number measures the error reduction
per iteration of the method, that is, a high convergence rate gives a larger
reduction in the residual error per iteration, hence requiring fewer iterations
for convergence. We note that the viscosity dominated single cell residual
in Equation (2.4.7) is determined by five parameters; the initial saturation
in the cell, SnV , the time step to pore volume ratio τ = ∆t

m(V)φV
, the flux

out of the cell, say qo, the flux into the cell, say qi, and finally the viscosity
ratio M as defined in Equation (2.1.8). Thus, R = R(S;S0, τ,M, qo, qo),
where S := Sn+1 and S0 := Sn. Varying these parameters through a range of
typical values and running the root finders from Section 2.4.2 on the resulting
single cell problems can help in understanding the solver properties. Note
that the cell saturation from the previous time step is used as initial guess
for the root finders, as is the case in the reference Regula Falsi solver in
the OPM package. Figures 3.18 through 3.20 shows a number of different
convergence and residual plots where the solvers are run until a tolerance of
1× 10−9 is obtained. We keep M = 1 and τ = 6 s/m3 constant.

Figure 3.18 is obtained with incoming flux qi = −0.05 m3/s and outgoing
flux qo = 0.05 m3/s. This gives fairly linear residuals, and the initial guess
S0 is close to the root for S0 = 0.5 and 0.9. The number of iterations for
all tested root finders decreases when S0 is increased. We also note that
the Newton-like methods converge faster than the other methods. This plot
indicates that for small flux values the initial guess strongly influences the
residual bringing the root close to S0, with a stronger effect for larger S0.

Setting the incoming flux to −0.35 m3/s and the outgoing flux to 0.35 m3/s

we obtain Figure 3.19. The residual plots show a stronger non-linear influ-
ence, a fact reflected in the overall increase in the amount of spent iterations.
S0 still influences the residual, but to a lesser extent than with the lower flux
values. Again we observe that large initial guesses generally leads to a lower
iteration count. The Newton-like method are, together with the Ridders
method, the best performers.

Moving on to even larger flux values, we set the incoming flux qi to
−0.5 m3/s and the outgoing flux qo to 0.8 m3/s. Figure 3.20 shows the resulting
plots. The trend from the previous plots continues in that the initial guess
has less influence on the root position. The performance of the root finders
also seems to be relatively unaffected by the initial guess, except the Newton-
like methods. They show a significant performance boost for S0 = 0.5, where
the root is very close to the initial guess.

CHAPTER 3. NUMERICAL RESULTS 72

0 2 4
10−16

10−11

10−6

10−1

#steps

er
ro
r

RF
TR
TR*
B
R

(a) S0 = 0.1

0 0.2 0.4 0.6 0.8 1

0

1

S

R
(S
)

R(S)
∂SR(S)

(b) S0 = 0.1

0 2 4
10−18

10−12

10−6

100

#steps

er
ro
r

RF
TR
TR*
B
R

(c) S0 = 0.5

0 0.2 0.4 0.6 0.8 1
−1

0

1

S

R
(S

)

R(S)
∂SR(S)

(d) S0 = 0.5

0 1 2 3
10−14

10−10

10−6

10−2

#steps

er
ro
r

RF
TR
TR*
B
R

(e) S0 = 0.9

0 0.2 0.4 0.6 0.8 1

−1

0

1

S

R
(S

)

R(S)
∂SR(S)

(f) S0 = 0.9

Figure 3.18: Convergence history and residuals with parameters M = 1,
τ = 6 s/m3, qi = −0.05 m3/s, qo = 0.05 m3/s

73 CHAPTER 3. NUMERICAL RESULTS

0 2 4 6
10−17

10−11

10−5

101

#steps

er
ro
r

RF
TR
TR*
B
R

(a) S0 = 0.1

0 0.2 0.4 0.6 0.8 1

−2

0

2

4

S
R
(S

)

R(S)
∂SR(S)

(b) S0 = 0.1

0 2 4 6
10−13

10−9

10−5

10−1

#steps

er
ro
r

RF
TR
TR*
B
R

(c) S0 = 0.5

0 0.2 0.4 0.6 0.8 1

−2

0

2

4

S

R
(S

)

R(S)
∂SR(S)

(d) S0 = 0.5

0 1 2 3 4
10−17

10−12

10−7

10−2

#steps

er
ro
r

RF
TR
TR*
B
R

(e) S0 = 0.9

0 0.2 0.4 0.6 0.8 1

−2

0

2

4

6

S

R
(S

)

R(S)
∂SR(S)

(f) S0 = 0.9

Figure 3.19: Convergence history and residuals with parameters M = 1,
τ = 6 s/m3, qi = −0.35 m3/s, qo = 0.35 m3/s

CHAPTER 3. NUMERICAL RESULTS 74

0 2 4
10−16

10−10

10−4

102

#steps

er
ro
r

RF
TR
TR*
B
R

(a) S0 = 0.1

0 0.2 0.4 0.6 0.8 1

0

5

10

S

R
(S

)

R(S)
∂SR(S)

(b) S0 = 0.1

0 2 4
10−13

10−9

10−5

10−1

#steps

er
ro
r

RF
TR
TR*
B
R

(c) S0 = 0.5

0 0.2 0.4 0.6 0.8 1

0

5

10

S

R
(S

)

R(S)
∂SR(S)

(d) S0 = 0.5

0 2 4 6
10−16

10−10

10−4

#steps

er
ro
r

RF
TR
TR*
B
R

(e) S0 = 0.9

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

S

R
(S

)

R(S)
∂SR(S)

(f) S0 = 0.9

Figure 3.20: Convergence history and residuals with parameters M = 1,
τ = 6 s/m3, qi = −0.5 m3/s, qo = 0.8 m3/s

75 CHAPTER 4. DISCUSSION

Chapter 4

Discussion

4.1 Two-Dimensional Domains

The results from Sections 3.2.1, 3.2.2, and 3.2.3 all show very similar results,
with the Precise Trust Region methods as the fastest method both in terms
of number of iterations and the CPU time spent by the transport solver. The
following sections seeks to explain these results.

4.1.1 Case A - Large Grid Cells

Figure 4.1 shows a sorted distribution of all the converged cell saturations
Sn+1
V for all time steps ∆t and the usual M values for case A, Section 3.2.1.

The mean µS and standard deviation σS of the distributions, shown in Table
4.1, indicates that the viscosity ratio M has significant impact on the con-
verged saturation distribution. It seems that large M values give a larger
average water saturation in the cells, while smaller M give smaller average
saturation values. The trend in the shape of the distribution is even clearer,
with larger values of M pushing the distribution to the right and leaving a
larger fraction of saturations near zero. These observations are explained by
again noting that small M gives values of the fractional water flow function
fw closer to one, while larger M keeps fw close to zero, as shown in Figure
2.1. The function fw measures the water flow, and scales the outgoing flux in
the transport residual, Equation (4.3.1). Thus, large fw values gives a large
flow of water out of the cell, while small values gives a small flow. A large
outflow of water will lead to smaller saturation values in the cell, and vice
versa. Thus, a large M gives a small outflow of water, since it corresponds to
a small fw, leaving more water in the cell. This is exactly what we observe
in Figure 4.1 and Table 4.1. Recalling the definition in Equation (2.1.8) of
M as the ratio of water viscosity to oil viscosity, the physical interpretation

CHAPTER 4. DISCUSSION 76

of a large M is that water flows easier than oil, which corresponds with these
observations. Since the injected amount of water is independent of M this
discussion also explains the smearing of saturation values shown in Figure
4.1.

Table 4.1: Standard deviation σ and mean µ of the converged cell saturations
Sn+1 and initial guess error eS0 = |Sn+1 − Sn| for the Q5 problem, Section
3.2.1. The problem was solved with ∆t = 50 d, cell size 120 m× 120 m, and
viscosity ratio M . Correlation coefficients ρi,e between the iteration count
and eS0 are also shown., where ρ′i,e denotes results without data points where
eS0 ≤ ε

M µS σS µe σe ρi,e ρ′i,e
0.1 0.3549 0.1832 0.0814 0.0677 0.7103 0.6293
1 0.4815 0.3104 0.1219 0.1242 0.7750 0.6908
10 0.5224 0.4210 0.1474 0.2192 0.8258 0.7822

Figure 4.2 shows (truncated) initial guess errors eS0 and iteration counts
for the Precise Trust Region method when using the old cell saturation as a
starting point. The error is defined by

eS0 = |Sn+1 − Sn|.

Data points in the figure are shown in the order determined by the reordering
procedure, starting from the left at time zero. Note that all time steps
are shown, such that every block of 400 data points contains the single cell
problems in one time step ∆t. This causes the periodic nature of the plots.
We also stress that the initial guess errors are truncated at the machine
precision 10−16, giving a solid line at this point, and that a tolerance of
ε = 10−9 is used. Thus, values of eS0 below ε gives convergence in only one
iteration.

The plots indicate that there is some correlation between eS0 and the
number of iterations, with large initial guess errors generally giving a higher
iteration count. A basic statistical analysis gives the correlations coefficients
ρi,e shown in Table 4.1, indicating a strong positive correlation between the
error and the amount of iterations for all viscosity ratios. Since eS0 ≤ ε gives
convergence in one iteration the correlation seems higher than it actually is.
Table 4.1 also shows the correlation coefficients, denoted ρ′i,e, for only the
data points with initial guess errors above ε. As predicted, the coefficients
are smaller, but the data still supports the conclusion that there is positive
correlation between eS0 and the number of iterations used by the Precise
Trust Region method.

77 CHAPTER 4. DISCUSSION

0

0.5

1

µS

µS

µS

S

M=0.1
M=1
M=10

Figure 4.1: Distribution of converged Sn+1 for the Q5 problem, Section 3.2.1,
with ∆t = 50 d, 120 m× 120 m cells, and mean values µS, see Table 4.1.

Another feature in Figure 4.2 is that the there is a spike in the iteration
data in each 400 cell time step block. In the first time step, i.e., for single cell
problems 1 through 400 in the figure, the spike is located at the beginning of
the region. For larger time step the spike is located further right relative to
the start of the block, indicating that the iteration count has a spatial depen-
dency. Due to the nature of the reordering scheme the single cell problems
close to the source are encountered first, and thus shows up early in each
time step block in the figure. As the simulation progresses, the saturation
front moves towards the sink, as shown in Figure 3.1. This figure, along with
Figure 4.2 hints that the high iteration single cell problems are encountered
along the saturation front. Figure 4.3 shows this more clearly with a plot of
the iteration count per cell over the entire domain for all time steps. This
result seems reasonable since this is exactly where the saturation changes are
large. We also observe that the iteration spikes are sharper for larger M , and
more smeared out for smaller M , indicating that a relatively high number
of iterations are needed over a larger part of the domain when M is small.
These observations are in good agreement with the earlier discussion of the
saturation distribution in Figure 4.1. There we stated that large M gives
smaller flow, giving a more defined saturation front, and vice versa. Figure
4.2 also supports the observations made from Figure 3.4, namely that the
average CPU time decreased with increasing M . It is clear from Figure 4.2
that the iteration count is lower for larger M values, giving lower CPU times.

CHAPTER 4. DISCUSSION 78

0 400 800 1,200 1,600 2,000 2,400

2

4

6

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

|S
n
+
1
−

S
n
|

#iterations |Sn+1 − Sn|

(a) M = 0.1

0 400 800 1,200 1,600 2,000 2,400

2

4

6

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

101

|S
n
+
1
−
S
n
|

(b) M = 1

0 400 800 1,200 1,600 2,000 2,400

2

4

6

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

101
|S

n
+
1
−
S
n
|

(c) M = 10

Figure 4.2: Initial guess error |Sn+1−Sn| and #iterations spent by the precise
trust region method to converge for all single cell problems as sorted by the
reordering method in case A, see Section 3.2.1. 120 m× 120 m cells are used.

79 CHAPTER 4. DISCUSSION

5 10 15 20

5

10

15

20

x

y

0

2

4

6

(a) it = 1

5 10 15 20

5

10

15

20

x
y

(b) it = 2

5 10 15 20

5

10

15

20

x

y

(c) it = 3

5 10 15 20

5

10

15

20

x

y

(d) it = 4

5 10 15 20

5

10

15

20

x

y

(e) it = 5

5 10 15 20

5

10

15

20

x

y

(f) it = 6

Figure 4.3: Number of iterations spent in each cell of the computational
domain for each time step it of case A with ∆t = 50 d. Cell dimensions
120 m× 120 m× 10 m are used.

CHAPTER 4. DISCUSSION 80

0

0.5

1

µSr

µSr

µSr

S
M=0.1
M=1
M=10

Figure 4.4: Sorted cell saturations, 2400 in total, from all time steps for the
solution of the Q5 problem in Section 3.2.1 with ∆t = 50 d. Values for vis-
cosity ratios M = 0.1, M = 1, and M = 10 are reported with corresponding
mean values µSr at 0.3765, 0.5234, and 0.5849, respectively.

4.1.2 Case A - Small Grid Cells

The sorted converged cell saturation values are shown for the case with cell
dimension 10 m × 10 m in Figure 4.4. The overall trend in the data is the
same as for the 120 m × 120 m cell case, but with slightly larger mean sat-
uration values, as shown in Table 4.2. That is, we still observe the skewing
of saturation values to the right for large M . The difference is that in the
present case a large percentage of the saturation values are non-zero. When
the cell size was reduced from 120 m to 10 m the source strength was also
reduced. But, since the permeability is unchanged and the adjusted source
strength is larger relative to the cell size, the water flow reaches further into
the domain with the smaller cells. The effect is that a larger portion of the
domain contains water, and this happens relatively early in the simulation,
as observed in Figure 4.4.

Figure 4.5 shows the iteration count and initial guess errors eS0 as for
the case with cell dimensions 120 m × 120 m. As just stated, the average
saturation values are larger with smaller grid cells. This fact has a clear
impact on the iteration and initial guess data. The figure shows that the
values are more uniform across each time step block for all viscosity ratios,
although the spread is tighter for larger M in this case to. Still, as indicated
by the correlation coefficient in Table 4.2, high eS0 and high iteration counts
are strongly correlated. We also observe the same iteration spike advancing
with the saturation front, although less pronounced in this case because of
the smeared saturation front. Since more cells are reached by the flow we
observe a larger portion of the domain with significant flow, giving a more
uniform distribution of iterations in the domain. The spatial dependency of
the iteration count is shown more clearly in Figure 4.6, with a plot of the

81 CHAPTER 4. DISCUSSION

iterations spent in each cell over the whole domain for all time steps.

Table 4.2: Standard deviation σ and mean µ of converged Sn+1 and initial
guess error eS0 = |Sn+1−Sn| and correlation coefficients ρi,e for the iteration
count and eS0 for the Q5 problem, Section 3.2.1 with ∆t = 50 d, cell size
10 m × 10 m, and viscosity ratio M . Correlation for data with truncated
values removed is denoted ρ′i,e

M µS σS µe σe ρi,e ρ′i,e
0.1 0.3765 0.1811 0.0849 0.0711 0.7103 0.6830
1 0.5234 0.2982 0.1266 0.1275 0.7750 0.7674
10 0.5849 0.4092 0.1548 0.2233 0.8258 0.8570

4.1.3 Case B and C

The two cases with inhomogeneous permeabilities gathered from the SPE10
data set were included to investigate the impact of permeabilities on the
root finder efficiency. The numerical results presented in Sections 3.2.2 and
3.2.3 shows little difference between the two cases for all tested parameter
and root finder combinations. The one exception is that the reduction in
CPU time with the viscosity ratio M is much less pronounced for case C, as
shown in Figure 3.14. This is caused by the sharp permeability gradients,
since the fluid fills the high-permeability zones quickly even with the lowered
flow caused by high M values. Thus, increasing M has little impact on the
spread of the permeability front causing a comparable amount of high flow
cells for all viscosity ratios. This effect is not observed in case B, since the
permeabilities have fewer sharp fronts causing water saturation build up, so
low viscosity ratios still causes a smeared saturation front resulting in a larger
region with significant flow, and a higher computational load.

CHAPTER 4. DISCUSSION 82

0 400 800 1,200 1,600 2,000 2,400

2

4

6

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

|S
n
+
1
−

S
n
|

#iterations |Sn+1 − Sn|

(a) M = 0.1

0 400 800 1,200 1,600 2,000 2,400

2

4

6

8

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

101

|S
n
+
1
−
S
n
|

(b) M = 1

0 400 800 1,200 1,600 2,000 2,400

2

4

6

8

Single cell problem #

#
it
er
at
io
n
s

10−17

10−11

10−5

101
|S

n
+
1
−
S
n
|

(c) M = 10

Figure 4.5: Initial guess error |Sn+1−Sn| and #iterations spent by the precise
trust region method to converge for all single cell problems as sorted by the
reordering method in case A, see Section 3.2.1. 10 m× 10 m cells are used.

83 CHAPTER 4. DISCUSSION

5 10 15 20

5

10

15

20

x

y

0

2

4

6

(a) it = 1

5 10 15 20

5

10

15

20

x
y

(b) it = 2

5 10 15 20

5

10

15

20

x

y

(c) it = 3

5 10 15 20

5

10

15

20

x

y

(d) it = 4

5 10 15 20

5

10

15

20

x

y

(e) it = 5

5 10 15 20

5

10

15

20

x

y

(f) it = 6

Figure 4.6: Number of iterations spent in each cell of the computational
domain for each time step it of case A with ∆t = 50 d. Cell dimensions
10 m× 10 m× 10 m are used.

CHAPTER 4. DISCUSSION 84

4.2 Three-Dimensional Domain

Our implementation of the Precise Trust Region method computes the inflec-
tion point from the fractional water flow function fw as described in Section
2.4.2.6, which is the wrong inflection point for the gravity residual in Equa-
tion 2.4.9. Since the Precise Trust Region method computes the inflection
point for the viscous residual it chops back to the wrong saturation value.
In practice this causes the method to miss the trusted region of the residual,
giving worse convergence properties than when used correctly on the viscous
transport residual in Equation 2.4.7. With the wrong inflection point the
Precise Trust Region works similarly to the Appleyard and Modified Apple-
yard Heuristics briefly mentioned in Section 2.4.2.6, giving good convergence
but wasting a significant number of iterations because of too imprecise up-
date chops. Despite this the Precise Trust Region method seems to perform
adequately in terms of CPU time except for the smallest time steps, as ob-
served in Figure 3.16. These results can be explained by remembering that,
as previously discussed, small viscosity ratio values increases the significance
of the viscous flow. That is, with M = 0.1 the viscous flow dominates
the gravity induced flow. This causes the Precise Trust Region method to
perform almost as god as with pure viscous flow, since the majority of the
computational effort is spent on the viscous residual, where the Precise Trust
Region method performs well. With the larger viscosity ratios the gravity
flow becomes more significant, which explains the increase in the number of
iterations for larger M and small time steps in Figure 3.16. For large time
steps this effect is not seen as clearly because the number of extra iterations
per time step caused by the wrong trust regions is fairly low. With smaller
∆t the extra iterations caused by the bad trust region identification is com-
pounded over each time step, causing a larger number of extra iterations.
This is seen as a performance drop both in terms of iterations and CPU
time for small time steps, the latter shown in Figure 3.17. Still, despite the
obvious problem with wrong trust regions, the Precise Trust Region method
performs adequately on the three-dimensional problem with gravity.

85 CHAPTER 4. DISCUSSION

4.3 Convergence Tests

We restate the viscosity residual from Equation (2.4.7) with simplified nota-
tion:

R(Sn+1;Sn, qi, qo,M, τ) = Sn+1 − Sn + τ
(
qofw(Sn+1) + qi

)
= 0 (4.3.1)

Here τ is defined by

τ =
∆t

m(V)φV
.

The flow induced by the pressure gradient is governed by the last term of
Equation (4.3.1), i.e., τ (qofw(Sn+1) + qi), through the flux values qo and qi.
We call this the flow term of the transport equation. The observations from
the convergence tests in Section 3.3 indicates that the cell saturation from the
previous transport step can be a determining factor for the root placement
under certain circumstances. In other cases the previous cell saturation has
less influence. The tests showed that the trust region methods are highly
dependent on a good initial guess. This is also supported by the theory,
in that the Newton method has quadratic convergence only locally. It is of
interest to know a priori under which circumstances the old saturation value
is a good starting guess for the root finders. We now seek to determine under
which circumstances a good initial guess can be obtained.

Since Sn ∈ [0, 1] we have a well defined range for the size of the two first
terms in Equation (4.3.1). This implies that the old cell saturation Sn is
significant when τ (qofw(Sn+1) + qi) ≈ 1, in the sense that the size of the
flow term is of the same order of magnitude as the number 1. Of course,
Sn+1 = Sn when τ (qofw(Sn+1) + qi) = 0. Likewise, if the flow term is much
larger than 1, the solution Sn+1 is completely dominated by the fractional
flow function fw and the flux terms qi and qo. These facts explains the
observations made based on the convergence plots in Section 3.3. The size of
the flow term in Equation (4.3.1) is determined by the incoming and outgoing
fluxes, and the factor τ . The fluxes measure the magnitude of flow in and
out of the current cell, while τ gives the time-volume scale of the flow. That
is, τ measures the number of seconds the fluxes qi and qo are allowed to move
across the cell boundaries per volume unit of the cell. In practice this leads
to small cells being drained or filled faster than larger cells, and a larger flow
in each iteration for large time steps. The idea is that different combinations
of the flux and time scale magnitudes causes the flux term in the transport
equation to have varying significance on the root placement.

We start by treating the case qi = 0. Now, Equation (4.3.1) becomes

R(Sn+1) = Sn+1 − Sn + τqofw(Sn+1) = 0

CHAPTER 4. DISCUSSION 86

If τqo � 1 the equation reduces to fw(Sn+1) = 0, which will be positive and
much larger than zero for all but the smallest Sn+1. As Sn+1 goes to zero,
the influence of Sn+1 becomes more significant, pulling the root to the right.
The root remains close to zero in this case. With τqo of the same order of
magnitude as Sn the root will be significantly influenced by Sn.

Now, if qo = 0 the residual in Equation (4.3.1) reduces to

R(Sn+1) = Sn+1 − Sn + τqi = 0 ⇒ Sn+1 = Sn − τqi
By definition qi ≤ 0, so this requires 0 ≤ −τqi ≤ 1−Sn. The lower bound is
always satisfied since τ ≥ 0. Again Sn is significant in determining the root
placement.

The time scale τ is always greater than zero, and usually large when
compared to the saturation values when working on a reservoir scale, since
the value is given with unit seconds. With q0fw not very small we expect
the flux term to dominate the root placement. With small Sn+1, fw(Sn+1)
becomes close to zero. This causes the flux term dominance to be reduced
close to Sn+1 = 0, in effect reducing the flux term dominance. This effect is
pronounced with M < 1, since fw is small over a larger range in that case,
as shown in Figure 2.1. In this case we expect the root to be close to zero if
τqi � 1. Otherwise the root is given by

qo
qi
fw(Sn+1) + 1 ≈ 0, (4.3.2)

which, with quadratic relative permeabilities krl, becomes the second order
equation

S± =
2M ±

√
4M2 − 4M(1 +M + rq)

2(1 +M + rq)
=
M ±

√
−M(1 + rq)

1 +M + rq
,

where rq is defined by

rq :=
qo
qi
.

The special case 1+M+rq = 0 implies S = 1/2. In the following we therefore
assume 1+M +rq 6= 0. In order for the quadratic formula to yield a solution
we need rq ≤ −1. We define a number α = |1 + rq|/M , such that

S± =
1±√α
1− α ,

and α ≥ 0. The degenerate case α = 0 gives S± = 1. Otherwise, with α > 0
we see that

S+ =
1 +
√
α

1− α .

87 CHAPTER 4. DISCUSSION

The saturation S+ is clearly greater than unity for 0 < α < 1, further α = 1
corresponds to M+1+rq = 0, so S+ = 1/2 as stated above. Last, with α > 1
we get a positive numerator and a negative denominator, yielding a negative
S+, and invalid saturation solutions. We thus only consider the solution

S = S− =
1−√α
1− α . (4.3.3)

The case α = 1 still gives S = 1/2. With 0 < α 6= 1 we get 0 < S < 1
since 1 − √α < 1 − α, which holds because

√
x < x for x > 1 and

√
x > x

for 0 < x < 1. This lengthy discussion has provided a simple formula for
an approximate solution to the transport equation, the point being that it
can be used as to generate a better initial guess than the old cell saturation
Sn provides, in certain cases. The idea is to these updates initial guesses to
improve the convergence speed for the Precise Trust Region method.

4.4 Initialized Precise Trust Region

The results from the previous sections show that the Precise Trust Region
method is the fastest solver overall, especially for cases without gravity in-
fluence. Further, the numerical results and theory suggests that improved
initial guesses can speed up the method even more, and that this is of spe-
cial interest in high flow regions where the old cell saturation often is far
from the true root. The next subsection describes a numerical scheme based
on the considerations in Section 4.3 and some practical tests to determine
parameters sizes.

4.4.1 Implementation

The Initialized Precise Trust Region is implemented by using the precom-
puted residual equation parameters qo, qi, τ , M , and S0 to identify regions
where the old cell saturation S0 provides a bad approximation to the root
Sr. The proposed initializer, shown as pseudo code in Algorithm 8, is exe-
cuted before each call to the Precise Trust Region method to give a better
initial saturation guess. Note that the current implementation tries to use
the initial guess approximation on every single cell problem.

4.4.2 Numerical Results

The initialization technique presented in the previous section, here denoted
by the letters IN, was tested on cases A through C from Sections 3.2.1, 3.2.2,

CHAPTER 4. DISCUSSION 88

Algorithm 8: Pseudo code implementing the initialization method pro-
posed in Section 4.4.

Data: Old cell saturation S0, outgoing flux qo, incoming flux qi,
viscosity ratio M , time step to pore volume ratio τ

Result: Improved root approximation Sr
1 rq := qo

qi
;

2 α := |rq+1|
M

;

3 Sr := 1−√α
1−α ;

4 return Sr

and 3.2.3, respectively. Only the best root finder from previous tests is shown
for each case, namely the Precise Trust Region method. We omit the three-
dimensional test because of the erroneous trust region identification used by
the Precise Trust Region method for the gravity residual. The CPU time
results from case A are shown in Figure4.7 large and small grid cells. The
plots show that the IN method outperforms the Precise Trust Region scheme
only for low time step sizes. Here the computational overhead of using the
initializer on every single cell residual is so low, and the impact of bad initial
guesses so high, that the method works good even without a classification of
bad initial guesses. For the ∆t the transport solver is very fast, such that
the overhead of computing the initial guess approximations becomes large
enough to dominate the overall results.

Figure 4.8 shows the results from using the new technique on case B.
Here we see that the IN method improves with increasing τ , the time scale
factor introduced in Section 4.3. Larger τ gives a larger flow which, as
discussed, should give a worse initial guess. The method also performs worse
for larger M , which corresponds with the flow size observations since large
M corresponds with smaller flow. For the two lowest viscosity ratios the time
steps size also has an effect.

Finally, Figure 4.9 shows that the IN method performs on par with or
slightly worse than the Precise Trust Region method on case C. This re-
sults from the large number of zero flow cells, i.e., the cells outside the high
permeability zones. Here the initial guess approximation provided by the
IN approach is not so good. This is balanced by large flows in the high
permeable regions, making the two methods perform similarly.

The results presented here indicates that the IN approach can have a
positive impact on the transport solver CPU time in special cases. Further
work is required to classify regions where the method is useful, potentially
reducing the number of unnecessary or bad invocations of the approximation.

89 CHAPTER 4. DISCUSSION

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(a) M = 0.1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(b) M = 1

0 20 40 60 80 100 120 140 160

10−3

10−2

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(c) M = 10

Figure 4.7: CPU time used by the transport solver when solving case A,
Section 3.2.1, for varying root finders, time steps and viscosity ratios. Note
that 120 m× 120 m cells are used here.

CHAPTER 4. DISCUSSION 90

0 20 40 60 80 100 120 140 160

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(a) M = 0.1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(b) M = 1

0 20 40 60 80 100 120 140 160
10−2

10−1

100

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(c) M = 10

Figure 4.8: CPU time used by the transport solver when solving case B,
Section 3.2.2, for varying root finders, time steps and viscosity ratios.

91 CHAPTER 4. DISCUSSION

0 20 40 60 80 100 120 140 160

10−1

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(a) M = 0.1

0 20 40 60 80 100 120 140 160
10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(b) M = 1

0 20 40 60 80 100 120 140 160
10−2

10−1

dt [d]

C
P
U

ti
m
e
[s
]

IN
TR

(c) M = 10

Figure 4.9: CPU time used by the transport solver when solving case C,
Section 3.2.3, for varying root finders, time steps and viscosity ratios.

CHAPTER 4. DISCUSSION 92

93 CHAPTER 5. CONCLUSION

Chapter 5

Conclusion

This work has given a general introduction to reservoir simulation and the
physical models and mathematical tools used to simulate flow phenomena in
porous media. Special attention was given to the numerical methods used in
the reservoir simulator provided by the Open Porous Media initiative, which
has been thoroughly covered herein. In particular, the sequential splitting
method was covered, along with the finite volume method and the reorder-
ing approach due to Lie et al. [2013]. Several numerical root finders were
introduced to solve the single cell problems resulting from the reordering
technique.

Numerical tests have been performed to test the new root finder im-
plementations. The tests show that the pressure solver, i.e., the two-point
flux approximation scheme, dominates the simulation run time for the tested
cases. Further, the tests show that the Brent and Ridders methods perform
on par with or slightly worse than the reference Regula Falsi root finder for
the tested cases.

Our version of the Approximate Trust Region method is shown to perform
worse than the other root finders for all tests cases, and it fails to converge
for the three-dimensional case with gravity. The method fails because the
trust region identification is wrong for the gravity dominated residual.

Further, the bracketing methods, namely the Brent, Ridders, and Regula
Falsi methods are shown to converge fast with little dependence on the pro-
vided initial guess. This result follows from the global nature of bracketing
schemes. Likewise, in situations where the initial guess is good, these meth-
ods fails to take full advantage of this. Further, the Regula Falsi method with
the Pegasus method is found to be the best method among the bracketing
schemes.

The Precise Trust Region Scheme is shown to be the fastest method for
all tests without gravity effects. For viscosity dominated flow the method

CHAPTER 5. CONCLUSION 94

performs on par with the bracketing schemes, due to the small impact of
gravitational forces on the total flow in the tested problem. Finally, we have
shown that the CPU time used by the transport solver with the Precise Trust
Region root finder can be improved by providing better initial guesses, as in
the IN scheme presented in Section 4.4.

5.1 Further Work

Further improvements of the speed of the transport solver is of interest in the
reservoir simulation industry. This work indicates that the solution of the
transport equation can be done even faster. In particular, the initial guess
initialization scheme, IN, can be improved by providing better heuristics for
regions with high flow, such that the initial guess approximation proposed in
Equation (4.3.3) is only employed in regions where the extra computational
overhead is worth the cost.

The Precise Trust Region method presented here can also be improved
by exploring techniques to improve the classification of trust region for the
gravity residual.

Appendices

95

Appendix A

Test Drivers

1 (. . .) // Inc lude s are omitted f o r b r ev i ty
i n t main (i n t argc , char ∗∗ argv)

3 t ry
{

5 i n t nx = 20 , ny = 20 , nz = 1 , l a y e r = 0 ;
i n t nxperm = 60 , nyperm = 220 ;

7 i n t npr int = 100 ;
double xpos = 0 , ypos = 0 ;

9 double dxperm = 365 .76 , dyperm = 6 7 0 . 5 6 ;
double dx = 10 .0 , dy = 10 .0 , dz = 1 0 . 0 ;

11 double perm mD = 10 ;
double muw = 1 , muo = 1 ;

13 double t ime s t ep days = 0 . 1 , comp length days = 2 ;
double srcVol = 0 . 2 , s inkVol = −s rcVol ;

15 double grav x = 0 , grav y = 0 , grav z = 0 ;
bool verbose = f a l s e , is inhom perm = f a l s e ;

17 Opm: : RootFinderType s o l v e r t y p e = Opm: : RegulaFals iType ;
std : : s t r i n g perm f i l e name = ” spe perm . dat” ;

19 std : : s t r i n g execName = boost : : f i l e s y s t e m : : path (std : : s t r i n g (
argv [0])) . stem () . s t r i n g () ;

21 us ing namespace Opm;

23 i f (argc > 1)
parseArguments (argc , argv , muw, muo , verbose , t ime step days ,

comp length days , dx , dy , dz , nx , ny , nz , s o l v e r type ,
p r i n t I t e r a t i o n s , npr int , p r i n t p o i n t s f i l e n a m e ,
perm f i le name , layer , xpos , ypos , perm mD , is inhom perm ,
srcVol , s inkVol , grav x , grav y , grav z) ;

25

std : : vector<double> perm ;
27

GridManager gr id manager (nx , ny , nz , dx , dy , dz) ;

97

APPENDIX A. TEST DRIVERS 98

29 const UnstructuredGrid& gr id = ∗ grid manager . c g r i d () ;
i n t num ce l l s = gr id . n u m b e r o f c e l l s ;

31

i n t num phases = 2 ;
33 us ing namespace Opm: : un i t ;

us ing namespace Opm: : p r e f i x ;
35 std : : vector<double> dens i ty (num phases , 1000 .0) ; dens i ty [1] =

8 0 0 . 0 ;
double v i s c a r r [] = {muw∗ c e n t i ∗Poise , muo∗ c e n t i ∗Poise } ;

37 std : : vector<double> v i s c o s i t y (v i s c a r r , v i s c a r r + s i z e o f (
v i s c a r r) / s i z e o f (double)) ;

double p o r o s i t y = 0 . 5 ;
39 double pe rmeab i l i t y = perm mD∗m i l l i ∗darcy ;

Saturat ionPropsBas ic : : RelPermFunc re l pe rm func =
Saturat ionPropsBas ic : : Quadratic ;

41

IncompPropert iesBas ic props (num phases , r e l pe rm func , dens i ty
, v i s c o s i t y , poros i ty , permeab i l i ty , g r i d . dimensions ,
num ce l l s) ;

43 IncompPropertiesShadow shadow props (props) ;

45 const double g rav a r r [] = {grav x , grav y , grav z } ;
const double ∗grav = &grav a r r [0] ;

47 std : : vector<double> omega ;

49 double in j e c t edF lu idAbso lu t e = srcVol ; // mˆ3
double poreVolume = dz∗dx∗dy∗ p o r o s i t y /(nx∗ny) ;

51 double in j e c t edF lu idPoreVo l = in j e c t edF lu idAbso lu t e /poreVolume
;

53 std : : vector<double> s r c (num cel l s , 0 . 0) ;
s r c [0] = in j ec t edF lu idPoreVo l ;

55 s r c [num cel l s −1] = −i n j e c t edF lu idPoreVo l ;

57 FlowBCManager bcs ;

59 LinearSolverUmfpack l i n s o l v e r ;
IncompPrope r t i e s In t e r f a c e ∗ prop po in t e r ;

61 prop po in t e r = (IncompPrope r t i e s In t e r f a ce ∗) &props ;
IncompTpfa p s o l v e r (gr id , ∗ prop po inter , l i n s o l v e r , grav , NULL,

src , bcs . c bc s ()) ;
63

WellState w e l l s t a t e ;
65

std : : vector<double> porevo l ;
67 Opm: : computePorevolume (gr id , props . p o r o s i t y () , porevo l) ;

69 const double t o l e r a n c e = 1e−9;
const i n t max i t e r a t i on s = 50 ;

99 APPENDIX A. TEST DRIVERS

71 Opm: : TransportSolverTwophaseReorder t r a n s p o r t s o l v e r (gr id , ∗
prop po inter , grav , to l e rance , max i t e ra t i ons , s o l v e r type ,
verbose) ;

73 const double comp length = comp length days ∗day ;
const double dt = t ime s t ep days ∗day ;

75 const i n t num time steps = comp length /dt ;

77 TwophaseState s t a t e ; s t a t e . i n i t (gr id , 2) ;

79 std : : vector<int> a l l c e l l s (num ce l l s) ;
f o r (i n t c e l l = 0 ; c e l l < num ce l l s ; ++c e l l)

81 a l l c e l l s [c e l l] = c e l l ;
s t a t e . s e t F i r s t S a t (a l l c e l l s , ∗ prop po inter , TwophaseState : :

MinSat) ;
83

f o r (i n t i = 0 ; i < num time steps ; ++i) {
85 p so l v e r . s o l v e (dt , s ta te , w e l l s t a t e) ;

t r a n s p o r t s o l v e r . s o l v e (&porevo l [0] , &s r c [0] , dt , s t a t e) ;
87 }
}

89 catch (const std : : except ion &e) {
std : : c e r r << ”Program threw an except ion : ” << e . what () << ”\n

” ;
91 throw ;
}

Listing A.1: The C++ program used to run the homogeneous 2D numerical
tests in Section 3.2.1.

APPENDIX A. TEST DRIVERS 100

(. . .) // Inc lude s are omitted f o r b r ev i ty
2 i n t main (i n t argc , char ∗∗ argv)

t ry
4 {

const i n t NPRINT = 100 ;
6 i n t npr int = NPRINT, nx = 20 , ny = 20 , nz = 1 ;

i n t xpos = 0 , ypos = 0 , zpos = 0 ;
8

double xpos double = 0 . 0 , ypos double = 0 . 0 ;
10 double dx = 10 .0 , dy = 10 .0 , dz = 1 0 . 0 ;

double muw = 1 , muo = 1 ;
12 double t ime s t ep days = 0 . 1 , comp length days = 2 ;

double srcVol = 0 . 2 , s inkVol = −s rcVol ;
14 double t o l = 1e−9;

double denswater = 1000 .0 , d e n s o i l = 8 0 0 . 0 ;
16

bool verbose = f a l s e , s o l v e g rav i ty co lumn = f a l s e ,
use In i t ia lGuessApprox imat ion = f a l s e ;

18

Opm: : RootFinderType s o l v e r t y p e = Opm: : RegulaFals iType ;
20

s t r i n g perm f i l e name = ” spe perm . dat” , p r i n t p o i n t s f i l e n a m e
= ” p r i n t p o i n t s . dat ” ;

22 s t r i n g execName = boost : : f i l e s y s t e m : : path (std : : s t r i n g (argv [0])
) . stem () . s t r i n g () ;

24 us ing namespace Opm;

26 double ddummy; bool bdummy;
i f (argc > 1)

28 parseArguments (argc , argv , muw, muo , verbose , t ime step days
, comp length days , dx , dy , dz , nx , ny , nz , s o l v e r type ,
t i m e p r e s s u r e s o l v e r , printVTU , p r i n t I t e r a t i o n s , nprint ,
p r i n t p o i n t s f i l e n a m e , perm f i le name , zpos , xpos double ,
ypos double , ddummy, bdummy, srcVol , s inkVol , ddummy, ddummy,
ddummy, to l , bdummy, bdummy, useIn i t ia lGuessApprox imat ion ,

pr intFluxValues , denswater , d e n s o i l) ;
xpos = (i n t) xpos double ;

30 ypos = (i n t) ypos double ;

32 std : : vector<double> perm ;
buildPermData (perm f i le name , perm , xpos , nx , ypos , ny , zpos , nz ,

verbose) ;
34

GridManager gr id manager (nx , ny , nz , dx , dy , dz) ;
36 const UnstructuredGrid& gr id = ∗ grid manager . c g r i d () ;

i n t num ce l l s = gr id . n u m b e r o f c e l l s ;
38

101 APPENDIX A. TEST DRIVERS

i n t num phases = 2 ;
40 us ing namespace Opm: : un i t ;

us ing namespace Opm: : p r e f i x ;
42 std : : vector<double> dens i ty (num phases , denswater) ;

dens i ty [1] = d e n s o i l ;
44 double v i s c a r r [] = {muw∗ c e n t i ∗Poise , muo∗ c e n t i ∗Poise } ;

s td : : vector<double> v i s c o s i t y (v i s c a r r , v i s c a r r + s i z e o f (
v i s c a r r) / s i z e o f (double)) ;

46 double p o r o s i t y = 0 . 5 ;
Saturat ionPropsBas ic : : RelPermFunc re l pe rm func =

Saturat ionPropsBas ic : : Quadratic ;
48

IncompPropert iesBas ic props (num phases , r e l pe rm func , dens i ty
, v i s c o s i t y , poros i ty , 1∗m i l l i ∗darcy , g r id . dimensions ,
num ce l l s) ;

50 IncompPropertiesShadow shadow props (props) ;

52 const double g rav a r r [] = { 0 . 0 , 0 . 0 , 0 . 0 } ;
const double ∗grav = &grav a r r [0] ;

54 s o l v e g rav i ty co lumn = f a l s e ;
s td : : vector<double> omega ;

56

std : : vector<double> porevo l ;
58 Opm: : computePorevolume (gr id , props . p o r o s i t y () , porevo l) ;

60 double in j e c t edF lu idAbso lu t e = srcVol ;
double in j e c t edF lu idPoreVo l = in j e c t edF lu idAbso lu t e / porevo l

[0] ;
62 std : : vector<double> s r c (num cel l s , 0 . 0) ;

s r c [0] = in j ec t edF lu idPoreVo l ;
64 s r c [num cel l s −1] = −i n j e c t edF lu idPoreVo l ;

66 FlowBCManager bcs ;

68 LinearSolverUmfpack l i n s o l v e r ;
IncompPrope r t i e s In t e r f a c e ∗ prop po in t e r ;

70 prop po in t e r = (IncompPrope r t i e s In t e r f a ce ∗) &shadow props .
usePermeab i l i ty (&perm [0]) ;

72 IncompTpfa p s o l v e r (gr id , ∗ prop po inter , l i n s o l v e r , grav , NULL,
src , bcs . c bc s ()) ;

74 WellState w e l l s t a t e ;

76 const double t o l e r a n c e = t o l ;
const i n t max i t e r a t i on s = 50 ;

78 Opm: : TransportSolverTwophaseReorder t r a n s p o r t s o l v e r (gr id , ∗
prop po inter , grav , to l e rance , max i t e ra t i ons , s o l v e r type ,
verbose , use In i t ia lGuessApprox imat ion , pr intFluxValues) ;

APPENDIX A. TEST DRIVERS 102

80 const double comp length = comp length days ∗day ;
const double dt = t ime s t ep days ∗day ;

82 const i n t num time steps = comp length /dt ;

84 TwophaseState s t a t e ;
s t a t e . i n i t (gr id , 2) ;

86

std : : vector<int> a l l c e l l s (num ce l l s) ;
88 f o r (i n t c e l l = 0 ; c e l l < num ce l l s ; ++c e l l) {

a l l c e l l s [c e l l] = c e l l ;
90 }

s t a t e . s e t F i r s t S a t (a l l c e l l s , ∗ prop po inter , TwophaseState : :
MinSat) ;

92

std : : vector<int > : : i t e r a t o r i t = p r i n t p o i n t s . begin () ;
94

f o r (i n t i = 0 ; i < num time steps ; ++i) {
96 ps o l v e r . s o l v e (dt , s ta te , w e l l s t a t e) ;

t r a n s p o r t s o l v e r . s o l v e (&porevo l [0] , &s r c [0] , dt , s t a t e) ;
98 }
}

100 catch (const std : : except ion &e) {
std : : c e r r << ”Program threw an except ion : ” << e . what () << ”\n

” ;
102 throw ;
}

Listing A.2: The C++ program used to run the inhomgeneous numerical
tests in Sections 3.2.2 and 3.2.3.

103 APPENDIX A. TEST DRIVERS

1 (. . .) // Inc lude s are omitted f o r b r ev i ty
i n t main (i n t argc , char ∗∗ argv)

3 t ry
{

5 i n t nx = 20 , ny = 20 , nz = 1 , xpos = 0 , ypos = 0 , zpos = 0 ;
const i n t NPRINT = 100 ;

7 i n t npr int = NPRINT;
double xpos double = 0 . 0 , ypos double = 0 . 0 ;

9 double dx = 10 .0 , dy = 10 .0 , dz = 1 0 . 0 ;
double muw = 1 , muo = 1 ;

11 double t ime s t ep days = 0 . 1 , comp length days = 2 ;
double srcVol = 0 . 2 , s inkVol = −s rcVol ;

13 double grav x = 0 , grav y = 0 , grav z = 0 ;
double t o l = 1e−9;

15 bool verbose = f a l s e , p r i n t I t e r a t i o n s = f a l s e ,
s o l v e g rav i ty co lumn = f a l s e ;

Opm: : RootFinderType s o l v e r t y p e = Opm: : RegulaFals iType ;
17 s t r i n g perm f i l e name = ” spe perm . dat” ;

s t r i n g p r i n t p o i n t s f i l e n a m e = ” p r i n t p o i n t s . dat ” ;
19 s t r i n g execName = boost : : f i l e s y s t e m : : path (std : : s t r i n g (argv [0])

) . stem () . s t r i n g () ;

21 us ing namespace Opm;

23 double ddummy; bool bdummy;
i f (argc > 1)

25 parseArguments (argc , argv , muw, muo , verbose , t ime step days ,
comp length days , dx , dy , dz , nx , ny , nz , s o l v e r type ,
p r i n t I t e r a t i o n s , npr int , p r i n t p o i n t s f i l e n a m e ,
perm f i le name , zpos , xpos double , ypos double , ddummy,bdummy
, srcVol , s inkVol , grav x , grav y , grav z , to l , bdummy, bdummy
) ;

xpos = (i n t) xpos double ;
27 ypos = (i n t) ypos double ;

29 std : : vector<double> perm ;
buildPermData (perm f i le name , perm , xpos , nx , ypos , ny , zpos , nz ,

verbose) ;
31

GridManager gr id manager (nx , ny , nz , dx , dy , dz) ;
33 const UnstructuredGrid& gr id = ∗ grid manager . c g r i d () ;

i n t num ce l l s = gr id . n u m b e r o f c e l l s ;
35

i n t num phases = 2 ;
37 us ing namespace Opm: : un i t ;

us ing namespace Opm: : p r e f i x ;
39 std : : vector<double> dens i ty (num phases , 1000 .0) ;

dens i ty [1] = 8 0 0 . 0 ;

APPENDIX A. TEST DRIVERS 104

41 double v i s c a r r [] = {muw∗ c e n t i ∗Poise , muo∗ c e n t i ∗Poise } ;
s td : : vector<double> v i s c o s i t y (v i s c a r r , v i s c a r r + s i z e o f (

v i s c a r r) / s i z e o f (double)) ;
43 double p o r o s i t y = 0 . 5 ;

Saturat ionPropsBas ic : : RelPermFunc re l pe rm func =
Saturat ionPropsBas ic : : Quadratic ;

45

IncompPropert iesBas ic props (num phases , r e l pe rm func , dens i ty
, v i s c o s i t y , poros i ty , 1∗m i l l i ∗darcy , g r id . dimensions ,
num ce l l s) ;

47 IncompPropertiesShadow shadow props (props) ;

49 const double g rav a r r [] = {grav x , grav y , grav z } ;
const double ∗grav = &grav a r r [0] ;

51 s o l v e g rav i ty co lumn = (fabs (dens i ty [1]− dens i ty [0]) > 0 .0)
&& (fabs (grav x)+fabs (grav y)+fabs (grav z) > 0 .0) ;

s td : : vector<double> omega ;
53

double in j e c t edF lu idAbso lu t e = srcVol ;
55 double poreVolume = dz∗dx∗dy∗ p o r o s i t y /(nx∗ny∗nz) ;

double in j e c t edF lu idPoreVo l = in j e c t edF lu idAbso lu t e /poreVolume
;

57 std : : vector<double> s r c (num cel l s , 0 . 0) ;
s r c [0] = in j ec t edF lu idPoreVo l ;

59 s r c [num cel l s −1] = −i n j e c t edF lu idPoreVo l ;

61 FlowBCManager bcs ;

63 LinearSolverUmfpack l i n s o l v e r ;
IncompPrope r t i e s In t e r f a c e ∗ prop po in t e r ;

65 prop po in t e r = (IncompPrope r t i e s In t e r f a ce ∗) &shadow props .
usePermeab i l i ty (&perm [0]) ;

IncompTpfa p s o l v e r (gr id , ∗ prop po inter , l i n s o l v e r , grav , NULL,
src , bcs . c bc s ()) ;

67

WellState w e l l s t a t e ;
69

std : : vector<double> porevo l ;
71 Opm: : computePorevolume (gr id , props . p o r o s i t y () , porevo l) ;

73 const double t o l e r a n c e = t o l ;
const i n t max i t e r a t i on s = 50 ;

75 Opm: : TransportSolverTwophaseReorder t r a n s p o r t s o l v e r (gr id , ∗
prop po inter , grav , to l e rance , max i t e ra t i ons , s o l v e r type ,
verbose) ;

77 const double comp length = comp length days ∗day ;
const double dt = t ime s t ep days ∗day ;

79 const i n t num time steps = comp length /dt ;

105 APPENDIX A. TEST DRIVERS

81 TwophaseState s t a t e ; s t a t e . i n i t (gr id , 2) ;

83 std : : vector<int> a l l c e l l s (num ce l l s) ;
f o r (i n t c e l l = 0 ; c e l l < num ce l l s ; ++c e l l) {

85 a l l c e l l s [c e l l] = c e l l ;
}

87 s t a t e . s e t F i r s t S a t (a l l c e l l s , ∗ prop po inter , TwophaseState : :
MinSat) ;

89 std : : vector<int > : : i t e r a t o r i t = p r i n t p o i n t s . begin () ;
f o r (i n t i = 0 ; i < num time steps ; ++i) {

91 p so l v e r . s o l v e (dt , s ta te , w e l l s t a t e) ;
t r a n s p o r t s o l v e r . s o l v e (&porevo l [0] , &s r c [0] , dt , s t a t e) ;

93 i f (s o l v e g rav i ty co lumn) t r a n s p o r t s o l v e r . so lveGrav i ty (&
porevo l [0] , dt , s t a t e) ;
}

95 }
catch (const std : : except ion &e) {

97 std : : cer r<<”Program threw an except ion : ”<<e . what ()<<”\n” ;
throw ;

99 }

Listing A.3: The C++ program used to run the 3D numerical tests in Section
3.2.4.

APPENDIX A. TEST DRIVERS 106

Bibliography

Aarnes, J. E., Gimse, T., and Lie, K.-A. (2007). An introduction to the
numerics of flow in porous media using matlab. Geometrical Modeling,
Numerical Simulation, and Optimization: Industrial Mathematics at SIN-
TEF, pages 265–306.

Aziz, K. and Settari, A. (1979). Petroleium Reservoir Simulation. Applied
Science Publishers, Essex, UK.

Bear, J. (1972). Dynamics of Fluids in Porous Media. Dover Publications.

Binmore, K. G. (1977). Mathematical Analysis: A Straightforward Approach.
Cambridge University Press, Cambridge, England.

Brent, R. (1973). Algorithms for Minimization without Derivatives. Prentice-
Hall, Englewood Cliffs, NJ.

Buckley, S. and Leverett, M. (1942). Mechanism of fluid displacement in
sands. Transactions of the AIME, 146(01):107–116.

Chavent, G. and Jaffre, J. (1982). Mathematical Models and Finite Elements
for Reservoir Simulation, volume 17 of Studies in Mathematics and Its
Applications. North Holland.

Coats, K. (2000). A note on impes and some impes-based simulation models.
SPE Journal, 5(03):245–251.

Courant, R., Friedrichs, K., and Lewy, H. (1928). Über die partiellen dif-
ferenzengleichungen der mathematischen physik. Mathematische Annalen,
100(1):32–74.

Dake, L. P. (1978). Fundamentals of Reservoir Engineering, volume 8 of
Developments in Petroleum Science. Elsevier, The Hague, Netherlands, 17
edition.

107

BIBLIOGRAPHY 108

Darcy, H. (1856). Les Fontaines Publiques de la Ville de Dijon. Dalmont,
Paris.

Dekker, T. (1969). Finding a zero by means of successive linear interpola-
tion. In Dejon, B. and Henrici, P., editors, Constructive Aspects of the
Fundamental Theorem of Algebra, pages 37–48. Wiley-Interscience.

Dowell, M. and Jarratt, P. (1972). The Pegasus method for computing the
root of an equation. BIT Numerical Mathematics, 12(4):503–508.

Eymard, R., Gallouët, T., and Herbin, R. (2003). Finite Volume Methods,
volume 7 of Handbook of Numerical Analysis. North Holland.

Fagin, R. (1966). A new approach to the two-dimensional multiphase reser-
voir simulator. SPE Journal, 6(02):175–182.

Green, D. and Willhite, G. (2003). Enhanced Oil Recovery, volume 6 of SPE
Textbook Series. Society of Petroleum Engineers, Richardson, Texas, USA.

Jain, S. (2013). Ch. 9 - hydrological property of rocks. In Fundamentals of
Physical Geology, pages 215–218. Springer India, New Delhi, Delhi, India.

Jenny, P., Tchelepi, H. A., and Lee, S. (2009). Unconditionally convergent
nonlinear solver for hyperbolic conservation laws with s-shaped flux func-
tions. Journal of Computational Physics, 228(20):7497–7512.

Kincaid, D. and Cheney, W. (2002). Ch. 3 - solution of nonlinear equations.
In Numerical Analysis - Mathematics of Scientific Computing, pages 74–
138. Brooks Cole, Pacific Grove, California, 3 edition.

Kwok, F. and Tchelepi, H. A. (2007). Potential-based reduced newton algo-
rtihm for nonlinear multiphase flow in porous media. Journal of Compu-
tational Physics, 227:706–727.

Lie, K.-A. and Mallison, B. T. (2013). Mathematical models for oil reservoir
simulation. Encyclopedia of Applied and Computational Mathematics.

Lie, K.-A., Nilsen, H. M., Rasmussen, A. F., and Raynaud, X. (2013). Fast
simulation of polymer injection in heavy-oil reservoirs based on topological
sorting and sequential splitting. SPE Journal.

MacDonald, R. (1970). Methods for numerical simulation of water and gas
coning. SPE Journal, 10(04):425–436.

109 BIBLIOGRAPHY

Molenaar, J. (1995). Multigrid methods for fully implicit oil reservoir simu-
lation. Proceedings Copper Mountain Conference on Multigrid Methods.

Morris, J. (1983). Computational Methods in Elementary Numerical Analy-
sis. Wiley, New York.

Natvig, J. R. and Lie, K.-A. (2008). Fast computation of multiphase flow
in porous media by implicit discontinuous galerkin schemes with optimal
ordering of elements. Journal of Computational Physics, 227(24):10108–
10124.

Natvig, J. R., Lie, K.-A., and Eikemo, B. (2006). Fast solvers for flow in
porous media based on discontinuous galerkin methods and optimal re-
ordering. Copenhagen, Denmark. Eds., P.J. Binning et al.

Norsk Regnesentral (2003). SAIGUP Study.

OPM (2014). The open porous media initiative.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. Series
in Computational Methods in Mechanics and Thermal Sciences. McGraw-
Hill.

Ridders, C. (1979). A new algorithm for computing a single root of a real con-
tinuous function. IEEE Transactions on Circuits and Systems, 26(11):979–
980.

SPE10 (2000). SPE comparative solution project.

Spillette, A., Hillestad, J., and Stone, H. (1973). A high-stability sequential
solution approach to reservoir simulation. In Fall Meeting of the Society of
Petroleum Engineers of AIME, Dallas, Texas, USA. Society of Petroleum
Engineers, Society of Petroleum Engineers.

Tzimas, E., Georgakaki, A., Garcia, C., and S.D., P. (2005). Enhanced oil
recovery using carbon dioxide in the european energy system. European
Comission - Joint Research Centre.

Wang, X. and Tchelepi, H. A. (2013). Trust-region based solver for nonlin-
ear transport in heterogeneous porous media. Journal of Computational
Physics, 253:114–137.

Weber, H.-J. and Arfekn, G. B. (2003). Essential Mathematical Methods for
Physicists. Academic Press, San Diego, USA.

BIBLIOGRAPHY 110

Younis, R. M. (2011). Modern Advances in Software and Solution Algorithms
for Reservoir Simulation. PhD thesis, Stanford University, Stanford, CA.

Younis, R. M., Tchelepi, H. A., and Aziz, K. (2010). Adaptively localized
continuation-newton; reservoir simulation nonlinear solvers that converge
all the time. SPE Journal, 15(2):526–544.

	Abstract
	Sammendrag
	Preface
	Introduction
	Flow in Porous Media
	Introduction to Petroleum Reservoirs
	Porous media
	Driving Mechanisms of Production

	Petroleum Reservoir Modeling
	The Continuity Equation
	Fluid Models

	Numerical Methods
	Sequential Splitting
	The Pressure Equation
	The Transport Equation
	Mathematical Model

	The Finite-Volume Method
	Pressure Solver
	Transport Solver
	Reordering
	Root Finders

	Numerical Results
	Test Procedure
	The OPM Package

	Test Cases
	Case A: Quarter Five Spot
	Case B: Tarbert 2D
	Case C: Upper Ness 2D
	Case D: Three-Dimensional Domain

	Convergence Tests

	Discussion
	Two-Dimensional Domains
	Case A - Large Grid Cells
	Case A - Small Grid Cells
	Case B and C

	Three-Dimensional Domain
	Convergence Tests
	Initialized Precise Trust Region
	Implementation
	Numerical Results

	Conclusion
	Further Work

	Appendices
	Test Drivers

