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A B S T R A C T

In this thesis we are considering finite dimensional algebras. We

prove that any basic and indecomposable finite dimensional al-

gebra A over an algebraically closed field k is isomorphic to a

bound quiver algebra. Furthermore, if A is hereditary we prove

that it is isomorphic to a path algebra. Finally, we prove that a

path algebra is of finite representation type if and only if the un-

derlying graph of the quiver is a Dynkin diagram. This is done

using reflection functors, which were first introduced by Bern-

stein, Gel’fand, Ponomarev in [4].
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S A M M E N D R A G

I denne oppgaven studerer vi endelig-dimensjonale algebraer.

Vi beviser at enhver basisk og ikke-dekomponerbar endelig-

dimensjonal algebra A over en algebraisk lukket kropp k er iso-

morf med en bundet quiver-algebra. Videre, hvis A er hereditær

beviser vi at den er isomorf med en veialgebra. Til slutt beviser

vi at en veialgebra er av endelig representasjonstype hvis og

bare hvis den underliggende grafen til quiveret er et Dynkin di-

agram. Vi bruker refleksjonsfunktorer, først introdusert av Bern-

stein, Gel’fand, Ponomarev (cf. [4]), til å bevise dette.
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I N T R O D U C T I O N

The main goal of this thesis is to prove Gabriel’s theorem, which

states that the path algebra of a quiver Q is of finite representa-

tion type if and only if the underlying graph of Q is a Dynkin

diagram.

The proofs of some well-known and basic results are skipped

to avoid writing a textbook in abstract algebra. The reader is

supposed to be familiar with some general concepts and results

from basic abstract algebra, but we will start by recalling some

important notions and results from the module theory in Chap-

ter 1. We next introduce the concepts of quivers, path algebras

and representations of quivers in Chapter 2. These concepts are

important tools when studying algebras and modules. We will

see that the representations of a quiver Q can be used to visu-

alise modules of the path algebra of Q. In Chapter 3 we will see

that different algebras are isomorphic to path algebras, or path

algebras modulo some ideal. In Chapter 4 we will introduce re-

flection functors and a quadratic form of a quiver, which will be

important in proving Gabriel’s theorem.

Throughout this thesis k will denote an algebraically closed

field, and an algebra A will denote a finite dimensional k-algebra

with an identity.
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1
P R E L I M I N A R I E S

In this chapter we will build a basis to be used throughout the

thesis. We will recall some important notions, and create a solid

foundation of useful results.

1.1 M O D U L E S

Definition 1.1.1. Let A be an algebra, and M 6= (0) a left A-

module. The module M is indecomposable if M = M1
⊕

M2 im-

plies M1 = (0) or M2 = (0). The module M is called a simple

A-module if M 6= (0) and for any submodule N ⊂ M either

N = M or N = (0). The module M is called semisimple if it is a

direct sum of simple A-modules.

Our first result is a well-known result stating that a module

satisfying some finiteness condition on its chain of submodules

can be uniquely written as a direct sum of submodules. This

result is called the Krull-Remak-Schmidt theorem, and stresses the

importance of indecomposable submodules. We will not prove

this theorem here (cf. [3]).

Theorem 1.1.2 (Krull-Remak-Schmidt). Let M 6= (0) be a noethe-

rian and artinian module, that is there is no strictly ascending or de-

scending infinite chain of submodules of M. Then M can be written

uniquely (up to permutations and isomorphisms) as a direct sum of

indecomposable submodules of M.

3



4 P R E L I M I N A R I E S

Now, let us introduce some special class of algebras called ba-

sic algebras. Let A be an algebra. By Theorem 1.1.2 the algebra A

can be decomposed uniquely as a left A-module as follows:

A A ' P1
⊕

P2
⊕
· · ·

⊕
Pn,

where Pi is some indecomposable submodule of A A.

Definition 1.1.3. An algebra A is called basic if Pi 6' Pj whenever

i 6= j.

Definition 1.1.4. Let A be an algebra. Then A is of finite repre-

sentation type if there exist only a finite number of isomorphism

classes of indecomposable finitely generated left A-modules.

Our next two notions are free modules and projective modules.

As we will see later a projective module is a generalization of a

free module.

Definition 1.1.5. Let A be an algebra, and let F be an A-module.

The module F is a free module if F is isomorphic to a direct sum

of copies of A.

Definition 1.1.6. Let A be an algebra, and let P be an A-module.

The module P is said to be projective if for every A-epimorphism

g : X → Y and every A-homomorphism f : P → Y, there exists

an A-homomorphism h : P → X such that gh = f . That is, the

following diagram commutes:

P

∃h

||

f

��
X

g
// Y // 0

It is easily observed that a direct sum of projective modules is

again a projective module.
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Lemma 1.1.7. Let A be an algebra, and let F be a free A-module. Then

F is a projective A-module.

Proof. Consider the following diagram:

A

ji ��
h′i

��

F =
n⊕

i=1
A

pi

UU

f
��

∃h

wwX
g

// Y // 0

where ji is the natural inclusion of A into coordinate i of F and

pi is the projection of coordinate i of F onto A. Since A is clearly

projective as an A-module such a map h′i must exist. Then h =
n⊕

i=1
hi, where hi = h′i ◦ pi, so F is projective.

Lemma 1.1.8. Let A be an algebra, and let P be an A-module. Then

P is a projective module if and only if there exists a free module F such

that F ' P
⊕

Q for some A-module Q.

Proof. Suppose P is a projective A-module. Let g : F → P be an

epimorphism, where F is a free A-module. Let f : P→ P be the

identity map, denoted by 1P. Since P is projective there exists a

homomorphism h : P→ F such that gh = 1P.

P

∃h

}}

1P

��
F

g
// P // 0

Then we get F = Im h
⊕

ker g, and h must be a monomorphism.

That implies Im h ' P, and hence F ' P
⊕

ker g.

Suppose there exists a free A-module F such that F ' P
⊕

Q.

That is, there exists a φ : F → P
⊕

Q, where φ is an isomorphism.
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Let g : X → Y be an epimorphism and f : P→ Y be a homomor-

phism of A-modules. By Lemma 1.1.7 the module F is projective

since F is free. Hence, there exists a homomorphism h : F → X

such that gh = ( f , 0)φ. Since φ is an isomorphism we obtain

ghφ−1 = ( f , 0). Consider the natural inclusion i : P → P
⊕

Q.

We get that ghφ−1i = ( f , 0)i = f . Hence, P is a projective A-

module.

F
φ

//

∃h

��

P
⊕

Q

( f ,0)

��

P? _
i

oo

f

{{
X

g
// Y

Before we continue we need to establish some notation on

idempotent elements. Let e1, e2 ∈ A be idempotents. Then e1, e2

are called orthogonal if e1e2 = e2e1 = 0, and an idempotent e ∈ A

is said to be primitive if e 6= e1 + e2 for any nonzero, orthog-

onal idempotents e1, e2 ∈ A. It is clear that the left A-module

Aei is indecomposable if and only if ei is a primitive idempo-

tent. If a set of primitive, orthogonal idempotents in an alge-

bra A is such that they sum up to the identity of A we say that

this set is complete. If {e1, . . . , en} is a complete set of primitive

orthogonal idempotents in A A we get that it is isomorphic to

Ae1
⊕ · · ·⊕ Aen.

Lemma 1.1.9. Let A be an algebra, {e1, . . . , en} a complete set of

primitive orthogonal idempotents in A, and A A = Ae1
⊕ · · ·⊕ Aen

be a decomposition of A A into indecomposable submodules. Then ev-

ery projective left A-module P can be decomposed in the following

way: P = P1
⊕ · · ·⊕ Pt, where Pj is indecomposable and isomorphic

to some Aes for every j ∈ {1, . . . , t}.
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Proof. Let P be a projective module. Then by Lemma 1.1.8

there exists some free module F such that F = P
⊕

Q, for

some A-module Q. By our assumption and the definition of

a free module we must have F =
n⊕

i=1
(Aei)

m ' P
⊕

Q =

P1
⊕ · · ·⊕ Pt

⊕
Q1
⊕ · · ·⊕Qs for some m and some s. Since

each Aei and each Pj is indecomposable the result follows from

Theorem 1.1.2.

Definition 1.1.10. Let A be an algebra, and let L, M, N be A-

modules. Consider the short exact sequence:

0 −→ L u−→ M r−→ N −→ 0.

The above short exact sequence is said to split if there exists a

homomorphism v : N → M such that rv = 1N.

Note that a short exact sequence splits if and only if there ex-

ists a homomorphism s : M → L such that su = 1L or equiva-

lently M = Im u
⊕

ker s = Im v
⊕

ker r.

Lemma 1.1.11. Let A be an algebra. Let L, M, P be A-modules such

that the following is a short exact sequence

0 −→ L
f−→ M

g−→ P −→ 0. (1)

If P is a projective A-module, then the short exact sequence splits.

Proof. Suppose P is projective. Consider the identity map

1P : P→ P. By the definition of a projective module there exists

a homomorphism h : P → M such that gh = 1P. Hence, the

short exact sequence (1) splits.
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1.2 R A D I C A L S

Definition 1.2.1. Let A be an algebra. The radical of A is the in-

tersection of all maximal left ideals in A. We denote it by rad A,

or simply r.

The radical of an algebra A is a left ideal as an intersection of

left ideals. We will see later that r is actually a two-sided ideal

in A.

Proposition 1.2.2. Let A be an algebra. For any a ∈ A the following

are equivalent:

(i) a ∈ rad A

(ii) 1− xa is left invertible for all x ∈ A

(iii) aS = (0) for any simple A-module S.

Proof. (i) ⇒ (ii): Let a ∈ rad A, and suppose by contradiction

that there exists some x ∈ A such that 1− xa is not left invertible.

Now, consider the ideal A(1− xa). Since 1− xa is not invertible

we get A(1 − xa) ⊂ A, that is, A(1 − xa) is a proper ideal in

A. Then there must exist some maximal ideal M in A such that

A(1− xa) ⊆ M. This implies 1− xa ∈ M. Since a ∈ rad A we get

by the definition of a radical that a ∈ M, which implies xa ∈ M.

But this would imply that 1 = (1− xa) + xa ∈ M, which is a

contradiction since M is maximal. Hence, 1− xa is left invertible

for all x ∈ A.

(ii) ⇒ (iii): Suppose there exists a simple A-module S such

that aS 6= (0). Then there must exist some nonzero s ∈ S such

that as 6= 0. Now, consider the left A-module Aas, and note that

(0) ⊂ Aas ⊆ S. Since S is simple we get Aas = S. Hence, there

exists an x ∈ A such that xas = s, which implies (1− xa)s = 0.



1.2 R A D I C A L S 9

Now, since 1− xa is left invertible, we get that s = 0. This is a

contradiction, so 1− xa is non-invertible.

(iii)⇒ (i): Suppose aS = (0) for any simple A-module S. Let

M be a maximal ideal in A. Then A/M is a simple left A-module,

so a(A/M) = (0) by the assumption. Denote by 1A + M the

identity element of A/M. In particular, a(1A + M) = 0, which

implies that a + M = 0. Then we get that a ∈ M, and hence

a ∈ rad A, since M was a randomly chosen maximal ideal in

A.

The next few notions and results will help us see that r =

rad A is actually a two-sided ideal in A.

Definition 1.2.3. Let A be an algebra, and M an A-module. Then

the annihilator of M is the set Ann(M) = {a ∈ A | am =

0 for all m ∈ M}.

Note that Ann(M) is a two-sided ideal in A.

Corollary 1.2.4. Let A be an algebra. Then r = rad A =
⋂
S

Ann(S),

where the intersection is taken over all the simple A-modules.

Proof. Follows directly from Proposition 1.2.2.

Hence, r = rad A is a two-sided ideal in A as an intersection

of two-sided ideals.

Lemma 1.2.5 (Nakayama’s lemma). Let A be an algebra, M a

finitely generated A-module, and I ⊆ rad A be an ideal in A. If

IM = M, then M = (0).

Proof. Let M be a finitely generated A-module and let I ⊆ rad A

be an ideal such that IM = M. Let {m1, . . . , mt} be a minimal

set of generators of M. Then for m1 ∈ M = IM we can write

m1 =
t

∑
i=1

λimi, where λi ∈ I. Hence, m1 − λ1m1 = (1− λ1)m1 =
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t
∑

i=2
λimi. Since λ1 ∈ I ⊆ rad A we have by Proposition 1.2.2 that

1− λ1 is left invertible. Let u ∈ A be such that u(1− λ1) = 1A.

Then m1 =
t

∑
i=2

(uλi)mi. If t > 1 this implies that {m2, . . . , mt}

generates M, which is a contradiction. Hence t = 1 and m1 = 0,

which implies M = (0).

Note that any algebra is an artinian ring.

Lemma 1.2.6. Let A be an algebra. Then r = rad A is nilpotent.

Proof. Consider the following descending chain of ideals in A:

A ⊇ r ⊇ r2 ⊇ · · · ⊇ ri ⊇ · · ·

Since A is artinian, there exists an m ∈N such that rm = rm+1 =

r · rm. Since r is an A-module, and rm ⊆ r is an ideal in A Lemma

1.2.5 implies that rm = (0), so r is nilpotent.

Our next result is a well-known result called the Wedderburn-

Artin theorem. We state it here without proof (cf. [5]).

Theorem 1.2.7 (Wedderburn-Artin Theorem). For any algebra A

the following are equivalent:

(i) The right A-module AA is semisimple.

(ii) Every right A-module is semisimple.

(iii) The left A-module A A is semisimple.

(iv) Every left A-module is semisimple.

(v) rad A = 0.

(vi) The algebra A is isomorphic to a finite direct sum of matrix rings

over k.

An algebra A satisfying one of the equivalent statements of

Theorem 1.2.7 is called a semisimple algebra.
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Corollary 1.2.8. Let rad A be the radical of an algebra A.

(i) If I is a two-sided nilpotent ideal in A, then I ⊆ rad A.

(ii) If A/I is semisimple, then I = rad A.

Proof. (i): Let I be a two-sided nilpotent ideal in A, that is, Im =

0 for some m > 0. Let x ∈ I and a ∈ A. Then ax ∈ I, and

(ax)r = 0 for some 0 < r ≤ m. Hence, (1 + ax + (ax)2 + · · ·+

(ax)r−1)(1 − ax) = 1. Then by Proposition 1.2.2 we get x ∈

rad A since I ⊆ A. This implies I ⊆ rad A, since x was some

random element in I.

(ii): Suppose A/I is semisimple. Then rad(A/I) = (0) by

Theorem 1.2.7. We know from (i) that I ⊆ rad A, we are going

to show that our assumption implies rad A ⊆ I. Consider the

canonical homomorphism φ : A → A/I. The homomorphism

φ sends rad A to rad(A/I), which is zero. Let a ∈ rad A. Then

φ(a) = 0, so a + I = (0). Hence a ∈ I, so rad A ⊆ I.

Next we define the radical of a module.

Definition 1.2.9. Let A be an algebra, and let M be a left A-

module. The radical of M is the intersection of all maximal sub-

modules of M. We denote it by rad M.

Our next result is a collection of basic properties of a radical.

Proposition 1.2.10. Let A be an algebra. Suppose L, M and N are

finite dimensional left A-modules.

(i) An element m ∈ M belongs to rad M if and only if f (m) =

0 for every f ∈ HomA(M, S), where S is any simple left A-

module.

(ii) rad(M
⊕

N) = rad M
⊕

rad N.
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(iii) If f ∈ HomA(M, N) we get f (rad M) ⊆ rad N.

Proof. (i): Let f ∈ HomA(M, S), where S is any simple left A-

module. If f = 0 it is clear that f (m) = 0 for any m ∈ M, so

suppose f 6= 0. Since Im f 6= (0) is a submodule of S we must

have Im f = S since S is simple. Hence, f is an epimorphism.

Let K = ker f . Then M/K ' S since f is an epimorphism. In

particular, M/K is simple, so K is a maximal submodule of M.

Suppose m ∈ rad M. Then we must have m ∈ K, and we get

f (m) = 0. Conversely, suppose m ∈ M such that f (m) = 0 for

every f ∈ HomA(M, S). Then we have m ∈ ⋂
f

ker f , where the

intersection is taken over all f ∈ HomA(M, S). For a submodule

L of M we have that L is a maximal submodule of M if and only

if M/L is a simple module. So for a maximal submodule L of

M we have M/L ' S ' M/ ker f for some f ∈ HomA(M, S).

Hence, L = ker f for some f , and m ∈ rad M.

(ii): Follows from (i) since for an f ∈ HomA(M
⊕

N, S)

we have f = ( f1, f2), where f1 ∈ HomA(M, S), and f2 ∈

HomA(N, S).

(iii): Let m ∈ rad M. Consider a map g ∈ HomA(N, S),

where S is a simple left A-module. Then by (i) we have that

f (m) ∈ rad N if and only if g f (m) = 0. Since g f ∈ HomA(M, S)

we get by (i) that g f (m) = 0. Then f (m) ∈ rad N, and hence

f (rad M) ⊆ rad N.

Lemma 1.2.11. Let A be an algebra, and rad A = r. Let M be a

finitely generated left A-module. Then rad M = rM.

Proof. Our approach here is to prove that both rM ⊆ rad M and

rad M ⊆ rM.

Let m ∈ M, a ∈ A and consider the homomorphism fm : A→

M defined by fm(a) = am. Suppose a ∈ rad A. Then it follows
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from Proposition 1.2.10 (iii) that fm(a) = am ∈ fm(rad A) ⊆

rad M, and hence rM ⊆ rad M.

Observe that r(M/rM) = (0), and then one easily verifies

that M/rM is a left module of A/r. Consider the mapping from

(A/r, M/rM) into M/rM given by

(a + r)(m + rM) = am + rM,

for a ∈ A, m ∈ M. Since A/r is semisimple Theorem 1.2.7 im-

plies that M/rM is semisimple. That is,

M/rM ' S1
⊕
· · ·

⊕
Sn,

where Si is a simple left A-module for i ∈ {1, . . . , n}. The rad-

ical of any simple module is zero, and therefore Proposition

1.2.10 (ii) implies rad(M/rM) = (0). Consider the canonical

homomorphism π : M → M/rM. By Proposition 1.2.10 we

get π(rad M) ⊆ rad(M/rM) = (0). That is, rad M ⊆ ker π =

rM.

1.3 L O C A L A L G E B R A S

Definition 1.3.1. An algebra A is called local if the set of all non-

invertible elements in A is a two-sided ideal.

Lemma 1.3.2. Let A be an algebra and r = rad A. Consider the alge-

bra B = A/r. Then for any idempotent η = g + r in B there exists

an idempotent e ∈ A such that e + r = g + r. We say that the idem-

potents of B are lifted modulo r.

Proof. Cf. [1]

Proposition 1.3.3. An algebra A is local if and only if 0 and 1 are the

only idempotents of A.
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Proof. Suppose A is local. Let e ∈ A be an idempotent. Then e2 =

e, and hence e(e− 1) = 0. Now we get three possible situations.

Either

(i) e is invertible, and hence e = 1,

(ii) e− 1 is invertible, and then e = 0, or

(iii) both e and e− 1 are non-invertible. Now, since A is local,

this implies that e− (e− 1) = 1 is non-invertible, which is

a contradiction.

Hence, 0 and 1 are the only idempotents of A.

Conversely, suppose 0 and 1 are the only idempotents of A.

Consider the algebra A/r, which is semisimple. Then by Theo-

rem 1.2.7 there exist n1, . . . , nt ∈ N such that A/r =
t⊕

i=1
Mni(k),

where Mni(k) is the matrix ring of ni × ni-matrices over k. Let

Ini denote the identity element in Mni(k), and consider the el-

ement e = (In1 , 0, . . . , 0) ∈ A/r which is clearly idempotent.

Then by Lemma 1.3.2 we get that e = a + r for some idempotent

a ∈ A. By our assumption we get possibilities: either e = 0 + r

or e = 1 + r. That is, e is either the zero element or the identity

element of A/r. But if t ≥ 2 the element e is neither the zero ele-

ment nor the identity element. Hence we must have t = 1. Then

set n1 = n. This implies A/r = Mn(k). Suppose n ≥ 2. Then

consider the element

e′ =



1 0 . . . 0

0 0 . . . 0
...

... . . . ...

0 0 . . . 0


in A/r. The element e′ is an idempotent in A/r. Then again, by

Lemma 1.3.2 we must have that either e′ = 0 + r or e′ = 1 + r,
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that is either the zero element or the identity element of A/r.

But e′ is neither the zero element or the identity element of A/r,

and hence we must have n = 1. This implies A/r ' k. Then, as

a left A-module A/r is simple, because dimk A/r = 1. Hence, r

is a maximal left ideal in A. Similarly, r is a maximal right ideal

in A. Then r is the only maximal left ideal and the only maximal

right ideal of A by the definition of the radical of an algebra.

Let a ∈ A be a non-invertible element. That is, there exists no

two-sided inverse of a. However, suppose there exist b1, b2 ∈ A

such that b1a = 1 and ab2 = 1. Then b2 = 1 · b2 = (b1a)b2 =

b1(ab2) = b1 · 1 = b1. Hence a is invertible, which is a contra-

diction. That is, either there exists no b ∈ A such that ba = 1

or there exists no b ∈ A such that ab = 1. Suppose there ex-

ists no b ∈ A such that ba = 1. Then consider the left ideal

I = (a) = {a′a | a′ ∈ A}. Observe that I = A would imply

1 ∈ I, which is a contradiction. Hence I ⊂ A. Thus I ⊆ r, which

implies a ∈ r. Similarly, one can show that if there exists no

b ∈ A such that ab = 1, then a ∈ r. Hence, every non-invertible

element in A is in r. Now, what remains is to show that r is con-

tained in the set of all non-invertible elements in A. Let c ∈ A

be an invertible element. Suppose c ∈ r. Now, this causes 1 ∈ r,

which is a contradiction. Hence the set of all non-invertible ele-

ments in A form a two-sided ideal, and A is local.

Lemma 1.3.4. Let A be an algebra, and let e ∈ A be a nonzero idem-

potent. Then

(i) for a left A-module M we have HomA(Ae, M) ' eM as left

eAe-modules.

(ii) EndA(Ae) ' eAe as algebras.
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Proof. (i): Let f ∈ HomA(Ae, M). Consider the k-linear map

φ : HomA(Ae, M)→ eM

defined by f 7→ f (e) = f (e2) = e f (e). It is easily verified that

φ is a homomorphism of left eAe-modules. Now consider the k-

linear map φ′ : eM→ HomA(Ae, M) defined by (φ′(em))(ae) =

aem for a ∈ A and m ∈ M. This map can easily be shown to be a

well-defined homomorphism of eAe-modules. Observe that

φ(φ′(em)) = (φ′(em))(e) = em,

so φ′ is an inverse of φ.

(ii): Follows directly from (i) by setting M = Ae.

Lemma 1.3.5. Let A be an algebra and M an A-module. Then M is

indecomposable if and only if its endomorphism ring EndA(M) is a

local ring.

Proof. Suppose M ' N
⊕

K, where N, K 6= (0) are A-modules.

Then EndA(M) contains the projection of N
⊕

K onto the first

direct summand. This projection is an idempotent, it is nonzero,

as N 6= (0) by assumption, and it is not 1 since K 6= (0). Hence,

EndA(M) is not local by Proposition 1.3.3.

Conversely, suppose EndA(M) is not local. Then by Proposi-

tion 1.3.3 it contains a non-trivial idempotent f : M → M. We

then claim that M = ker f
⊕

Im f . Let m ∈ M. Observe that

f (m− f (m)) = f (m)− f 2(m) = f (m)− f (m) = 0, so that m−

f (m) ∈ ker f . Then we have that m = (m − f (m)) + f (m), so

M = ker f + Im f . Now we need to show that ker f ∩ Im f = (0).

Let m ∈ ker f ∩ Im f . This implies f (m) = 0 and that there exists

an m′ ∈ M such that f (m′) = m. Then m = f (m′) = f 2(m′) =

f (m) = 0. Hence ker f ∩ Im f = (0), and M = ker f
⊕

Im f .



1.3 L O C A L A L G E B R A S 17

Lemma 1.3.6. Let A be an algebra. An idempotent e ∈ A is a primi-

tive idempotent if and only if eAe is a local algebra.

Proof. Let e be a primitive idempotent in A. It is clear that e

is primitive if and only if the module Ae is indecomposable.

Then by Lemma 1.3.5 we have that EndA(Ae) is local. Hence,

by Lemma 1.3.4 we get that eAe is local.

Suppose the idempotent e is not primitive in A. Then we want

to show that eAe is not local. Since e is not primitive e = e1 + e2

for some nonzero, orthogonal idempotents e1, e2 ∈ A. It is clear

that ee1e ∈ eAe. Observe that

(ee1e)2 = (ee1e)(ee1e) = ee1(e1 + e2)e1e = ee3
1e = ee1e,

so ee1e is an idempotent in eAe. Then we need to check if ee1e

equals either 0 or e. Observe that

ee1e = (e1 + e2)e1(e1 + e2) = e3
1 = e1 6= 0,

and e1 6= e since e2 6= 0. So eAe is not local by Proposition 1.3.3.

The next result classifies all the indecomposable, projective A-

modules of an algebra A.

Lemma 1.3.7. Let A be an algebra, {e1, . . . , en} be a complete set of

primitive, orthogonal idempotents in A, and let P be an A-module.

Then P is an indecomposable, projective A-module if and only if P '

Aei for some i ∈ {1, . . . , n}.

Proof. Suppose P ' Aei for some i ∈ {1, . . . , n}. Consider the de-

composition A A =
n⊕

i=1
Aei of A as a left A-module. The module

A A is clearly free, and hence by Lemma 1.1.8 the module Aei is

a projective A-module for every i. By Lemma 1.3.4 we have that

EndA(Aei) ' ei Aei. Since ei is a primitive idempotent Lemma
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1.3.6 implies that EndA(Aei) is local. Then, by Lemma 1.3.5 the

module Aei is an indecomposable A-module. So, P ' Aei is an

indecomposable, projective A-module.

Now, let P be an indecomposable projective A-module. Then

by Lemma 1.1.9 we have P = P1
⊕ · · ·⊕ Pt, where Pj ' Aes for

some s for every j ∈ {1, . . . , t}. Since P is indecomposable t = 1,

and P ' Aes for some s.
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2.1 Q U I V E R S A N D PAT H A L G E B R A S

In this section we will introduce some geometrical elements

called quivers, and based on these quivers we will construct

some special algebras called path algebras. As we will see in

Chapter 3 quivers and path algebras provide a convenient way

to visualize more general algebras.

Definition 2.1.1. A quiver Q = (Q0, Q1) is an oriented graph

where Q0 denotes the set of vertices and Q1 denotes the set of

arrows. We always assume both Q0 and Q1 finite sets. That is,

we are only considering finite quivers.

We often denote a quiver Q = (Q0, Q1) simply by Q. To each

arrow α of Q1 we associate a pair of numbers (s, t), where s(α)

denotes the source of α, which is the vertex where α starts, while

t(α) denotes the target of α, which is the vertex where α ends. A

subquiver Q′ of Q is a quiver having Q′0 ⊆ Q0 and Q′1 ⊆ Q1, and

for any α : i → j ∈ Q1 such that α ∈ Q′1 we have that s′(α) = i

and t′(α) = j.

Let i be a vertex in Q0. We say that i is a sink in Q if every

arrow α directly connected to i has t(α) = i. Similarly, i is called

a source in Q if s(α) = i for every arrow α directly connected to

i.

Definition 2.1.2. A path in Q = (Q0, Q1) is either

19
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(i) an oriented sequence of arrows p = αnαn−1 · · · α1, where

t(αm) = s(αm+1), m = 1, . . . , n− 1. These paths are called

the non-trivial paths.

(ii) ei for each i ∈ Q0. These are called the trivial paths. We

define s(ei) = i = t(ei).

A path p is called a cycle if s(p) = t(p). A quiver with cycles

is called cyclic, while a quiver which contains no cycles is called

acyclic. The underlying graph Q of a quiver is obtained from the

quiver by forgetting about the direction of the arrows. A quiver

Q is said to be connected if Q is connected, that is, if there is a

path from any point to any other point of the graph.

Definition 2.1.3. Let Q be a quiver. The path algebra kQ is the

algebra having as its underlying vector space the vector space

with basis all the paths of Q. The elements of kQ are finite sums

of the form ∑
i

ai pi, where ai ∈ k and pi is a path in Q.

In order to define the product of two basis elements of the

path algebra kQ, we first need to define the function Kronecker

delta.

Definition 2.1.4. The Kronecker delta is a function of two vari-

ables, defined as follows:

δij =


0 if i 6= j

1 if i = j

Now we are ready to define the product of two basis elements

of a path algebra kQ. Given two paths pi = αnαn−1 . . . α1, pj =

βmβm−1 . . . β1 of kQ. Then the product is

pi pj = δt(pj)s(pi)
αnαn−1 . . . α1βmβm−1 . . . β1.
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That is, the product of pi and pj is the concatenation of the two

paths if t(βm) = s(α1) and zero otherwise. Hence, the trivial

paths ei of kQ are orthogonal idempotents of kQ for every i ∈ Q0.

We will now see that the set of all trivial paths of a path algebra

is in fact a complete set of primitive orthogonal idempotents.

Theorem 2.1.5. Let Q be a finite quiver having n vertices. Then the

set {ei | i ∈ Q0} is a complete set of primitive orthogonal idempotents

of kQ.

Proof. We have already seen that the ei’s are orthogonal idem-

potents. We need to show that ei is also a primitive idempotent.

Let e be an idempotent of eikQei. Now, study the form e must

take. We know that e must be a linear combination of trivial and

non-trivial paths starting and ending at i. That is, e = ω + bei,

where ω is some linear combination of cycles of length ≥ 1 go-

ing through i, b ∈ k. Since e is an idempotent we get

0 = e2 − e = ω2 + (2b− 1)ω + (b2 − b)ei.

For this to be true we must have ω = 0 and b2 = b. That is, b = 0

or b = 1. In the case of b = 0 we get e = 0, and in the case of

b = 1 we get e = ei. Hence, 0 and ei are the only idempotents

of eikQei. Then by Proposition 1.3.3 the algebra eikQei is local,

which by Lemma 1.3.6 implies that ei is a primitive idempotent.

Let p be a path in Q. Let s(p) = i, t(p) = j, where i, j ∈ Q0.

We must show that (e1 + · · ·+ en)p = p = p(e1 + · · ·+ en):

(e1 + · · ·+ en)p = ej · p = p,

p(e1 + · · ·+ en) = p · ei = p.

Hence,
n
∑

i=1
ei = 1kQ, so {e1, . . . , en} is a complete set of primitive,

orthogonal idempotents of kQ.
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In general, we say that an algebra A is indecomposable if A can

not be written as a direct sum of two non-zero algebras. We will

now see that the decomposition of an algebra is closely related

to its idempotents. An idempotent e satisfying ae = ea for every

a ∈ A is called central.

Lemma 2.1.6. An algebra A is indecomposable if and only if A does

not contain any non-trivial central idempotents.

Proof. If there exists such a non-trivial central idempotent e in

A, then the A-modules Ae and A(1 − e) can be shown to be

algebras, and A ' Ae
⊕

A(1− e) is a non-trivial decomposition

as algebras.

Suppose A = A1
⊕

A2, where A1, A2 are non-zero algebras.

Consider the elements e1 = (1, 0) and e2 = (0, 1) in A. Then

e1 + e2 = 1A, so e1, e2 are non-trivial orthogonal idempotents in

A. Moreover, for any a = (a1, a2) ∈ A we have ae1 = (a1, 0) =

e1a and ae2 = (0, a2) = e2a, so e1, e2 are non-trivial central idem-

potents of A.

Lemma 2.1.7. Let A be an algebra, and let {e1, . . . , en} be a complete

set of primitive orthogonal idempotents. Then A is indecomposable if

and only if {1, . . . , n} 6= I ∪ J for some non-empty, disjoint sets I, J

such that for i ∈ I, j ∈ J we have ei Aej = (0) = ej Aei.

Proof. Suppose two such sets I, J exist. Let c = ∑
j∈J

ej. Since both

I, J are non-empty we have that c 6= 0, 1. It is clear that c is an

idempotent in A, since the ej’s are orthogonal idempotents. Also,
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observe that cei = 0 = eic for every i ∈ I and cej = ej = ejc for

every j ∈ J. Now, let a ∈ A. Then,

ca =

∑
j∈J

ej

 a =

∑
j∈J

eja

 · 1 =

∑
j∈J

eja

∑
j∈J

ej + ∑
i∈I

ei


= ∑

j,k∈J
ejaek =

∑
j∈J

ej

∑
k∈J

aek


=

∑
i∈I

ei + ∑
j∈J

ej

∑
k∈J

aek

 = a

∑
k∈J

ek

 = ac,

using our assumption. So, c is a non-trivial central idempotent

in A, and A is decomposable by Lemma 2.1.6.

Suppose A is decomposable. Then there exists a central, non-

trivial idempotent c ∈ A by Lemma 2.1.6. Observe that

c = 1 · c · 1 =

(
n

∑
i=1

ei

)
c

 n

∑
j=1

ej

 =
n

∑
i,j=1

eicej =
n

∑
i=1

eicei.

Let ci = eicei. The element ci is an idempotent in ei Aei. Since ei

is a primitive idempotent we have that ei Aei is local by Lemma

1.3.6. Then by Proposition 1.3.3 the elements 0 and ei are the only

idempotents of ei Aei. Hence, ci = ei or ci = 0. Now, let I = {i |

ci = 0} and J = {j | cj = ej}. Since c 6= 0, 1 we have that both

I, J are non-empty sets, and the sets are clearly disjoint. Observe

that for i ∈ I, j ∈ J we have eic = 0 = cei and ejc = ej = cej.

Then, since c is central we have ei Aej = ei Acej = eicAej = (0)

and ej Aei = ejcAei = ej Acei = (0).

We will now see what requirements that need to be fulfilled

in order for a path algebra to be indecomposable.

Theorem 2.1.8. Let Q be a finite quiver. The path algebra kQ is inde-

composable if and only if Q is a connected quiver.
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Proof. Suppose Q is not connected. Then there exists some con-

nected subquiver Q′ of Q. Let Q′′ denote the subquiver of Q hav-

ing Q′′0 = Q0 \Q′0. Then neither Q′ nor Q′′ is empty. Let p ∈ kQ.

Then either p ∈ kQ′ or p ∈ kQ′′. Let i ∈ Q′0 and j ∈ Q′′0 . Suppose

p ∈ kQ′, then ej p = 0, and clearly ej pei = 0. That is, there are no

paths from i to j in kQ′. Now, suppose p ∈ kQ′′. Then pei = 0,

and ej pei = 0. Hence, there are no paths from i to j in kQ′′. This

implies ejkQei = (0). Similarly, one can show that eikQej = (0).

By Lemma 2.1.7 the path algebra kQ is decomposable.

Now, let Q be a connected quiver. Suppose by contradic-

tion that kQ is decomposable. Then by Lemma 2.1.7 the set of

vertices of Q splits into two non-empty, disjoint sets Q′0, Q′′0
such that Q0 = Q′0 ∪ Q′′0 . Also, for i ∈ Q′0, j ∈ Q′′0 we have

eikQej = (0) = ejkQei. Since Q is connected and Q′0, Q′′0 are non-

empty we can find i, j such that there exists an arrow α : i → j

(or α : j → i). Then α = ejαei is a non-zero element in ejkQei,

which is a contradiction. Hence, kQ is indecomposable.

Theorem 2.1.9. Let Q be a finite quiver and A be an algebra. Let

φ0 : Q0 → A and φ1 : Q1 → A be two maps satisfying the following

conditions:

(i) 1A = ∑
i∈Q0

φ0(i), φ2
0(i) = φ0(i) and φ0(i)φ0(j) = 0 for all

i 6= j, i, j ∈ Q0,

(ii) for α : i → j, α ∈ Q1, i, j ∈ Q0 we have φ1(α) =

φ0(j)φ1(α)φ0(i).

Let {ei | i ∈ Q0} be the set of trivial paths of kQ. Then there exists a

unique algebra homomorphism φ : kQ → A such that φ(ei) = φ0(i)

for any i ∈ Q0 and φ(α) = φ1(α) for any α ∈ Q1.

Proof. Let φ0, φ1 be two maps satisfying (i) and (ii), and let

|Q0| = n. Since {e1, . . . , en} ∪ Q1 generates kQ, the maps φ0 and
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φ1 induce a map φ : kQ → A. We need to show that φ is in fact

a unique algebra homomorphism. We then need to check that

φ preserves the identity of kQ and that it preserves the prod-

ucts in kQ, and we need to show that φ is actually unique. Let

αn . . . α2α1 be a path in kQ. Since φ is respecting φ1 we get that

φ(αn . . . α2α1) = φ(αn) · · · φ(α2)φ(α1)

= φ1(αn) · · · φ1(α2)φ1(α1).
(2)

Hence, φ preserves the products of kQ. Equation (2) also

shows uniqueness of φ, since for any homomorphism ψ and

any path αn . . . α2α1 ∈ kQ we would have ψ(αn . . . α2α1) =

φ1(αn) · · · φ1(α2)φ1(α1) = φ(αn . . . α2α1). Now we need to show

that φ preserves the identity.

φ(1kQ) = φ( ∑
a∈Q0

ea) = ∑
a∈Q0

φ(ea) = ∑
a∈Q0

φ0(a) = 1A.

So, φ preserves the identity, and hence φ is a unique algebra

homomorphism.

We will now define an important ideal in the path algebra kQ.

Definition 2.1.10. Let Q be a finite quiver. Let J = {all linear

combinations of non-trivial paths}.

Lemma 2.1.11. Let Q be a finite and connected quiver, and |Q0| = n.

The set J is an ideal in kQ, and kQ/J ' kn.

Proof. First we need to prove that J is an ideal in kQ. Let

a′ = a′1α1 + · · ·+ a′mαm ∈J for some m, b′ = b′1e1 + · · ·+ b′nen+

lin.comb. of non-trivial paths ∈ kQ. Recall that the concatena-

tion of two non-trivial paths is either zero or a non-trivial path.

Hence,

a′b′ = (a′1b′1 + · · ·+ a′1b′n)α1 + · · ·+ (a′mb′1 + · · ·+ a′mb′n)αm

+ lin.comb. of non-trivial paths ∈J
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Hence, J is a right ideal of kQ. Proving that J is also a left

ideal is done similarly.

Consider the map φ : kQ→ kn such that

φ(a1e1 + a2e2 + · · ·+ anen + lin. comb. of non-trivial paths)

= (a1, a2, . . . , an),

where ai ∈ k for i = 1, . . . , n. We need to show that φ is a ring

homomorphism, that φ is an epimorphism and that ker φ = J .

Consider a, b ∈ kQ, where a = a1e1 + · · ·+ anen+linear com-

bination of non-trivial paths, b = b1e1 + · · ·+ bnen+linear com-

bination of non-trivial paths.

φ(a + b) = φ((a1 + b1)e1 + · · ·+ (an + bn)en

+ lin.comb. of non-trivial paths)

= (a1 + b1, . . . , an + bn)

= (a1, . . . , an) + (b1, . . . , bn)

= φ(a) + φ(b)

φ(ab) = φ(a1b1e1 + · · ·+ anbnen

+ lin.comb. of non-trivial paths)

= (a1b1, . . . , anbn)

= (a1, . . . , an)(b1, . . . , bn)

= φ(a)φ(b)

So, φ is a ring homomorphism. Now we need to check that φ is

actually an epimorphism.

Consider an element (x1, . . . , xn) ∈ kn. Now we need to look

for an element x in kQ such that φ(x) = (x1, . . . , xn). Consider

the element x = x1e1 + · · · + xnen in kQ. Observe that φ(x) =

(x1, . . . , xn), so φ is an epimorphism.

The last thing we need to do is to show that ker φ = J . Let

a = a1e1 + · · ·+ anen+linear combination of non-trivial paths be
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an element in kQ. Suppose φ(a) = (0, . . . , 0). This would imply

a1 = · · · = an = 0, which implies a ∈ J . Hence, ker φ = J ,

and kQ/J ' kn.

The ideal J is called the arrow ideal of kQ.

2.2 A D M I S S I B L E I D E A L S A N D B O U N D Q U I V E R A L G E -

B R A S

In this chapter we are going to study bound quiver algebras, which

are path algebras modulo some ideal. In general, we do not re-

quire for the path algebra to be finite dimensional when study-

ing these types of algebras, but in order for the bound quiver

algebra to be finite dimensional we need the quotient to satisfy

some requirements. In particular, the quotient needs to be an

admissible ideal.

Definition 2.2.1. Let Q be a finite quiver and J be the arrow

ideal of the path algebra kQ. A two-sided ideal I in kQ is called

admissible if

J m ⊆ I ⊆J 2

for some m ≥ 2.

If I is an admissible ideal of kQ then (Q, I) is said to be a bound

quiver and the quotient algebra kQ/I is said to be a bound quiver

algebra.

Theorem 2.2.2. Let Q be a finite quiver, and let I be an admissible

ideal of kQ. The set {ei = ei + I | i ∈ Q0} is a complete set of

primitive orthogonal idempotents of the bound quiver algebra kQ/I.

Proof. Consider the canonical homomorphism φ : kQ → kQ/I.

Since φ(ei) = ei we know by Theorem 2.1.5 that {ei = ei + I | i ∈
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Q0} is a complete set of orthogonal idempotents. What remains

is to show that ei is a primitive idempotent for every i ∈ Q0.

By Lemma 1.3.6 we need to show that 0 and ei are the only

idempotents of the algebra ei(kQ/I)ei. Let e be an idempotent in

ei(kQ/I)ei. We know that e must take the form e = bei + ω + I,

where b ∈ k and ω is some linear combination of cycles of length

≥ 1 through i. Since, by assumption, e is an idempotent we get

e2 − e = ω2 + (2b− 1)ω + (b2 − b)ei ∈ I. (3)

Since I is an admissible ideal we know by definition that I ⊆

J 2, where J is the arrow ideal of kQ. Hence, we must have

b2 − b = 0 in (3). This implies either b = 0 or b = 1.

Suppose b = 0. Then e = ω + I, and hence ω is an idempotent

in kQ/I. We also know that J m ⊆ I for some m ≥ 2, since I is

an admissible ideal. This implies ωm ∈ I, that is, ω is nilpotent

in kQ/I. Since ω is both an idempotent and nilpotent we must

have that ω ∈ I, and hence e = 0 in kQ/I.

Suppose b = 1. Then e = ei + ω + I, or ei − e = −ω + I.

Now, both ei and e are idempotents in ei(kQ/I)ei, and since ei is

the identity of ei(kQ/I)ei we get that ei − e is an idempotent in

ei(kQ/I)ei. Hence, ω is an idempotent in kQ/I. By the same ar-

guing as in the previous case, ω is also nilpotent in kQ/I. Hence,

ω ∈ I, and consequently e = ei.

Theorem 2.2.3. Let Q be a finite quiver, and let I be an admissible

ideal in kQ. Then the bound quiver algebra kQ/I is indecomposable if

and only if Q is a connected quiver.

Proof. If Q is not connected, then the path algebra kQ is de-

composable by Theorem 2.1.8. Then we have a non-trivial cen-

tral idempotent c ∈ kQ by Lemma 2.1.6, and by the proof of

Lemma 2.1.7 the idempotent c is a sum of trivial paths in Q. Let
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γ = c + I ∈ kQ/I. Then γ is a central idempotent in kQ/I, and

we need to check if it is trivial. Since I ⊆ J 2 we must have

c /∈ I, because otherwise I would contain a path of length zero.

Hence, γ is not the zero element in kQ/I. Suppose γ = 1 + I.

Then 1 − γ ∈ I. But this again implies that I contains a path

of length zero, which is contradicts I ⊆ J 2. Hence, γ is a non-

trivial central idempotent in kQ/I, and kQ/I is decomposable

by Lemma 2.1.6.

Let Q be connected, and suppose by contradiction that kQ/I

is decomposable. Then the proof is similar to the proof of Theo-

rem 2.1.8.

Next we will see how the radical of a bound quiver algebra is

connected to the arrow ideal.

Lemma 2.2.4. Let Q be a finite quiver, let J be the arrow ideal of kQ

and I an admissible ideal of kQ. Then rad(kQ/I) = J /I.

Proof. By the definition of an admissible ideal we have J m ⊆ I.

Hence, (J /I)m = (0), so J /I is a nilpotent ideal in kQ/I.

Then by Corollary 1.2.8 J /I ⊆ rad(kQ/I). By Lemma 2.1.11

we have that (kQ/I)/(J /I) ' kQ/J ' k
⊕ · · ·⊕ k. Then,

again by Corollary 1.2.8 we get J /I = rad(kQ/I).

Corollary 2.2.5. For each l ≥ 1, we have radl(kQ/I) = (J /I)l.

Corollary 2.2.6. The k-vector space rad(kQ/I)/ rad2(kQ/I) =

(J /I)/(J /I)2 'J /J 2.

2.3 R E P R E S E N TAT I O N S O F Q U I V E R S

Definition 2.3.1. A representation (V, f ) of a quiver Q = (Q0, Q1)

over a field k is a collection of k-vector spaces {Vi}i∈Q0 and k-

linear maps fα : Vi → Vj for each arrow α : i → j. We always
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assume that dimk Vi < ∞ for all i ∈ Q0. That is, we are only

considering finite dimensional representations.

Definition 2.3.2. Let Q be a finite quiver and V =

(Vi, fα)i∈Q0,α∈Q1 be a representation of Q. Let p = αt . . . α1 be

a non-trivial path from i to j in kQ. Then we have a k-linear map

from Vi to Vj defined as follows:

fp = fαt · · · fα1 .

Let Q be a quiver, and V = (Vi, fα)i∈Q0,α∈Q1 denote its rep-

resentation. We will now see what the corresponding represen-

tation of the bound quiver (Q, I) looks like, where I is an ad-

missible ideal in the path algebra kQ. Let W = (Wi, gα)i∈Q0,α∈Q1

denote the representation of (Q, I). Then Wi = Vi for all i ∈ Q0,

while the linear maps are bound by I. That is, if ρ = αt . . . α1 ∈ I

we have that

gρ = gαt · · · gα1 = 0.

Definition 2.3.3. Let V = (Vi, fα)i∈Q0,α∈Q1 and V′ =

(V′i , f ′α)i∈Q0,α∈Q1 be two representations of a quiver Q. A homo-

morphism h : V → V′ is a collection of linear maps hi : Vi → V′i
for every i ∈ Q0, such that for all α : i → j ∈ Q1 the following

diagram commutes:

Vi hi

//

fα

��

V′i

f ′α

��
Vj hj

// V′j

That is, hj ◦ fα = f ′α ◦ hi.

Definition 2.3.4. Let V be a representation of some quiver Q.

Then the representation V is called an indecomposable representa-

tion of Q if V = V′
⊕

V′′ implies V′ = (0) or V′′ = (0) for any

representations V′, V′′ of Q.
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If Q is a finite and connected quiver, there exists a connection

between the isomorphism classes of representations of a bound

quiver (Q, I) and the isomorphism classes of finite dimensional

left kQ/I-modules. We will describe the connection here, how-

ever we will get a deeper understanding of it in section 2.4.

Lemma 2.3.5. Let Q be a finite and connected quiver. Then there ex-

ists a one-to-one correspondence between the isomorphism classes of

representations of a bound quiver (Q, I) and the isomorphism classes

of finite dimensional left kQ/I-modules.

Proof. Let A = kQ/I, n = |Q0| and let {e1, . . . , en} be a complete

set of primitive orthogonal idempotents in A. For α ∈ Q1, let

α = α + I be the corresponding element in A.

First, we will see that every representation corresponds to a

unique finite dimensional A-module. Given a representation of

(Q, I), say V = (Vi, fα)i∈Q0,α∈Q1 , the corresponding A-module

is M =
⊕

i∈Q0

Vi. Now we need to check that M actually has an

A-module structure, and we need to show that M is annihilated

by I. Let m = (v1, . . . , vn) be an element of M. The action of the

basis elements ei and α of A on m is defined as follows:

eim = (0, . . . , vi, . . . , 0) for all i ∈ Q0

αm = (0, . . . , fα(vi), . . . , 0),

where the nonzero element in αm is placed in the j-th coordinate

(α : i → j), and fα is the linear map from Vi to Vj in the rep-

resentation V. Hence it is easy to see that M has an A-module

structure. Let ρ ∈ I. It is clear that ρm = (0) by the way the basis

elements of A act on m.

Conversely, let M be a finite dimensional left A-module. Then

the corresponding representation V = (Vi, fα)i∈Q0,α∈Q1 has Vi =

ei M as its vector space at vertex i. Consider α : i→ j ∈ Q1. Then
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fα : Vi → Vj is given by left multiplication with α = α + I. That

is, fα(eim) = αeim for any element m ∈ M. Since M is an A-

module, fα is a k-linear map. Let ρ =
n
∑

x=1
bxωx ∈ I, where bx ∈ k

and ωx = αx,s · · · αx,2αx,1 is a path from a to b in Q. Then

fρ(eam) =
n

∑
x=1

bx fωx(eam)

=
n

∑
x=1

bx fαx,s · · · fαx,1(eam)

=
n

∑
x=1

bxαx,s · · · αx,1eam

=

(
n

∑
x=1

bxαx,s · · · αx,1

)
eam

= ρeam

= 0

It can easily be shown that this correspondence is one-to-one.

We will see in Chapter 3 that every basic and indecomposable

algebra can be represented as a bound quiver algebra. Therefore

this connection makes representations of quivers an important

tool in studying modules of algebras.

By Lemma 2.3.5 it is clear that the simple kQ/I-modules must

correspond uniquely to some representation of (Q, I). It can

be shown that the representations corresponding to the simple

kQ/I-modules are the following. For each i, j ∈ Q0 let S(i) de-

note the representation (S(i)j, φα), where

S(i)j =


0 if j 6= i

k if j = i

and

φα = 0 for all α ∈ Q1.
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Throughout the thesis, we choose to let S(i) denote the sim-

ple representation, having vector spaces and linear maps as de-

scribed, of all quivers Q having Q as its underlying graph. We

are aware that this is a small abuse of notation.

2.4 C AT E G O R I E S A N D F U N C T O R S

Definition 2.4.1. A category C consists of

(i) a collection of objects, Obj(C ),

(ii) for each pair B, C ∈ Obj(C ) a set of morphisms

HomC (B, C) such that for each B, C, D ∈ Obj(C ) there is a

composition map

HomC (C, D)×HomC (B, C)→ HomC (B, D)

(g, f ) 7→ g ◦ f
(4)

satisfying the following:

(a) for each object B ∈ Obj(C ) there exists a morphism

1B ∈ HomC (B, B) such that

1B ◦ f = f for all f ∈ HomC (D, B)

g ◦ 1B = g for all g ∈ HomC (B, C)
(5)

(b) the associative law is satisfied, that is ( f ◦ g) ◦ h =

f ◦ (g ◦ h) for every triple h ∈ HomC (B, C), g ∈

HomC (C, D), f ∈ HomC (D, E) of morphisms.

Example 2.4.2. Here we present some examples of categories.

Let A be an algebra, Q a finite and connected quiver and I an

admissible ideal in kQ.

(i) The category of left A-modules, denoted Mod A. The ob-

jects of this category are left A-modules, while the mor-

phisms are A-homomorphisms.
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(ii) The category of finitely generated left A-modules, de-

noted mod A. The objects of this category are finitely

generated left A-modules, while the morphisms are A-

homomorphisms.

(iii) The category of representations of the bound quiver (Q, I),

denoted repk(Q, I). The objects of this category are repre-

sentations of (Q, I) over k, and the morphisms are homo-

morphisms of representations.

(iv) The category of representations of the quiver Q, denoted

repk Q. The objects of this category are representations of

Q over k, and the morphisms are homomorphisms of rep-

resentations.

Definition 2.4.3. Let C be a category. A category D is a subcate-

gory of C if Obj(D) ⊆ Obj(C ), and for every pair B, C ∈ Obj(D)

we have HomD (B, C) ⊆ HomC (B, C), and the composition in

D is the restriction of the composition in C . The category D is

a full subcategory of C if HomD (B, C) = HomC (B, C) for every

pair B, C ∈ Obj(D).

Definition 2.4.4. Let C and D be two categories. A covariant func-

tor (or simply functor) F : C → D associates to each B ∈ Obj(C )

an object F(B) ∈ Obj(D), and to each morphism f : B→ C in C

a morphism F( f ) : F(B)→ F(C) in D such that

(i) F(g ◦ f ) = F(g) ◦ F( f ) for all composable f , g ∈ C ,

(ii) F(1D) = 1F(D) for all D ∈ Obj(C ).

Definition 2.4.5. A category C is preadditive if HomC (B, C) is an

abelian group for all B, C ∈ Obj(C ) and the composition map
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HomC (C, D)×HomC (B, C)→ HomC (B, D) is bilinear. That is,

for f , f1, f2 ∈ HomC (C, D) and g, g1, g2 ∈ HomC (B, C) we have

( f1 + f2) ◦ g = ( f1 ◦ g) + ( f2 ◦ g),

f ◦ (g1 + g2) = ( f ◦ g1) + ( f ◦ g2).

If A is a commutative algebra and HomC (B, C) is an A-

module for all B, C ∈ Obj(C ) and the composition map is A-

bilinear, then the category C is called an A-category.

Definition 2.4.6. Let C and D be two preadditive (A-)categories.

Then a functor F : C → D is an additive (A-)functor if the map

F : HomC (B, C) → HomD (F(B), F(C)) is a homomorphism of

groups (A-modules) for all pairs B, C ∈ Obj(C ).

Definition 2.4.7. Let C and D be two k-categories, and F : C →

D be a functor. Then F is called k-linear if F is additive, and

for all objects A, B ∈ Obj(C ) the map F : HomC (A, B) →

HomD (F(A), F(B)) is a k-linear map.

Definition 2.4.8. Let C and D be two categories and F : C → D

be a functor. Then F is an equivalence of categories if there exists a

functor H : D → C such that H ◦ F ' idC and F ◦ H ' idD .

The one-to-one correspondence from Lemma 2.3.5 can now be

expressed as an equivalence of categories.

Theorem 2.4.9. Let A = kQ/I, where Q is a finite and connected

quiver, and I is an admissible ideal in kQ. Then there exists a k-linear

equivalence of categories

F : mod A→ repk(Q, I).

Proof. In Lemma 2.3.5 we described a one-to-one correspon-

dence between the isomorphism classes of finitely generated

A-modules and the isomorphism classes of representations of
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the bound quiver (Q, I). Now we need to define the functors

F : mod A → repk(Q, I) and H : repk(Q, I) → mod A such that

we get an equivalence of categories.

The action of F and H on the objects of mod A and repk(Q, I),

respectively, are as in Lemma 2.3.5. We only need to define their

actions on the morphisms of the respective categories.

Let B, C ∈ mod A, and φ : B → C be an A-homomorphism.

We now want to define a morphism F(φ) : F(B) → F(C) of

repk(Q, I).

B
φ

//

F

��

C

F

��
F(B) // F(C)

Let i ∈ Q0, and consider the element x = xei ∈ Bei. Then

we have φ(x) = φ(xei) = φ(xe2
i ) = φ(xei)ei = φ(x)ei ∈ Cei.

Hence the restriction of φ to Bei, let us call it φi, is a k-linear

map from Bei to Cei. We then define F(φ) = (φi)i∈Q0 . Let

F(B) = (Vi, fα)i∈Q0,α∈Q1 and F(C) = (V′i , f ′α)i∈Q0,α∈Q1 . Consider

α : i → j ∈ Q0. We then need to check that f ′αφi = φj fα. Let

x ∈ Bei. Then

φj fα(x) = φj(αx) = αφ(x) = αφi(x) = f ′αφi(x).

Now, it is not too hard to verify that the functor F is k-linear.

Let V = (Vi, fα)i∈Q0,α∈Q1 , V′ = (V′i , f ′α)i∈Q0,α∈Q1 be two objects

in repk(Q, I), and let (φi)i∈Q0 be a homomorphism of represen-

tations. We now want to define an A-homomorphism

H(φ) : H(V)→ H(V′).

V
(φi)i∈Q0 //

H

��

V′

H

��
H(V) // H(V′)
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We know that H(V) =
⊕

i∈Q0

Vi and H(V′) =
⊕

i∈Q0

V′i as k-vector

spaces, and hence there exists a k-linear map

φ = (φi)i∈Q0 : H(V)→ H(V′).

To complete the proof we need to show that φ is an A-

homomorphism. It is trivially checked that for any x, y ∈ H(V)

we have φ(x + y) = φ(x) + φ(y). To finish the proof we only

need to check if φ(ωx) = ωφ(x) for every ω = ω + I ∈ A,

x ∈ H(V). It is enough to consider one coordinate of x, say xi

for some i ∈ Q0. We have that

φ(ωxi) = φ fω(xi) = φj fω(xi) = f ′ωφi(xi) = ωφ(x).

Hence φ is an A-homomorphism. One can easily verify that the

functor H is k-linear.

Using the definition of the functors, observe that FH '

idrepk(Q,I) and that HF ' idmod A, and hence F is an equivalence

of categories.

Corollary 2.4.10. Let A = kQ, where Q is a finite, connected and

acyclic quiver. Then there exists a k-linear equivalence of categories

F : mod A→ repk Q.

Proof. Since Q is acyclic, the path algebra A = kQ is finite di-

mensional. Hence the result follows from setting I = (0) in The-

orem 2.4.9.

Let A be an algebra. The next result describes the indecom-

posable projective left A-modules in terms of its corresponding

representations.

Lemma 2.4.11. Let (Q, I) be a bound quiver and let A = kQ/I. For

an i ∈ Q0, let P(i) = Aei denote the corresponding indecomposable

projective left A-module.
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(i) Let (P(i)j, φα) denote the corresponding representation of the

left module P(i). Then P(i)j is the k-vector space with basis

ej Aei for every i, j ∈ Q0, that is the set of all paths from i to

j. Consider an arrow α : j→ l ∈ Q1, where j, l ∈ Q0. Then the

k-linear map φα : P(i)j → P(i)l is given by left multiplication

with α = α + I.

(ii) Let (P′(i)j, φ′α) denote the representation corresponding to

rad P(i). Then P′(i)j = P(i)j for j 6= i, P′(i)i is the k-vector

space with basis all cylces through i. The k-linear map φ′α = φα

for any arrow α starting in j 6= i and φ′α = φα

∣∣∣
P′(i)i

for any

arrow starting in i.

Proof. Follows from the functor defined in Theorem 2.4.9.
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In the previous chapter we saw that representations of quivers

are useful tools for visualising modules. In this chapter we will

see that quivers can also be used for visualising algebras.

3.1 B A S I C A L G E B R A S A N D PAT H A L G E B R A S

The main purpose of this section is to show that any basic and

indecomposable algebra A is isomorphic to a bound quiver al-

gebra.

We start by associating to each basic and indecomposable al-

gebra A a quiver QA. We call this quiver the ordinary quiver of A,

and it is defined as follows:

(i) The vertices of QA are defined by considering a set of prim-

itive orthogonal idempotents of A, say {e1, e2, . . . , en}. The

vertices are in one-to-one correspondence to the idempo-

tents of A, so that (QA)0 = {1, . . . , n}.

(ii) Given two vertices i, j ∈ (QA)0. The arrows α : i → j

of QA are in one-to-one correspondence to the vectors in

some basis of the k-vector space ej(rad A/ rad2 A)ei.

Note that since A is a finite dimensional algebra, QA is a fi-

nite quiver. The quiver QA does not depend on the chosen set

of primitive orthogonal idempotents. We will see later why we

chose to define the vertices and arrows of QA in this way. It will

turn out to be quite convenient.

39
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Lemma 3.1.1. Let A be a basic and indecomposable algebra. Then the

ordinary quiver QA of A is connected.

Proof. Suppose QA is not connected. Then (QA)0 splits into two

non-empty disjoint sets I, J such that for i ∈ I, j ∈ J there is no

arrow α : i → j or α : j → i. It can be shown that ei Aej = (0) =

ej Aei (cf. [1]). Hence A is decomposable by Lemma 2.1.7, which

is a contradiction. It follows that QA must be connected.

We will now see that if a basic and indecomposable algebra A

is isomorphic to kQ/I for some quiver Q and some admissible

ideal I, then Q = QA.

Lemma 3.1.2. Let Q be a finite and connected quiver, I an admissible

ideal of the path algebra kQ and A ' kQ/I. Then Q = QA.

Proof. By Theorem 2.2.2 the set {ei = ei + I | i ∈ Q0} is a com-

plete set of primitive orthogonal idempotents of kQ/I. That is,

by the way the vertices of QA were defined, the vertices of QA

are in a one-to-one correspondence with the vertices of Q. Con-

sider the way we defined the arrows of QA. These arrows are in

a one-to-one correspondence with the arrows of Q by Corollary

2.2.6. Since a quiver is uniquely defined by its sets of vertices

and arrows we conclude that Q = QA.

Lemma 3.1.2 explains why we chose to define the vertices and

the arrows of QA the way we did. The next theorem is the main

theorem of this section.

Theorem 3.1.3. Let A be a basic and indecomposable algebra. Then

there exists an admissible ideal I in kQA such that A ' kQA/I.

Proof. Our approach here will be to construct a homomorphism

φ : kQA → A, to show that φ is onto, and that ker φ is an admis-

sible ideal I in kQA.
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By Theorem 2.1.9 we know that there exists a unique algebra

homomorphism φ : kQA → A if we can find two maps

φ0 : (QA)0 → A, φ1 : (QA)1 → A satisfying some condi-

tions. So we first need to construct such maps φ0, φ1. For each

arrow α : i → j in (QA)1, choose xα ∈ rad A such that the

set {xα + rad2 A | α ∈ (QA)1} forms a basis of the algebra

ej(rad A/ rad2 A)ei. Let φ0 be defined by φ0(i) = ei for all

i ∈ (QA)0, and let φ1 be defined by φ(α) = xα for all α ∈ (QA)1.

Now we need to check that φ0, φ1 satisfies condition (i) and

(ii) of Theorem 2.1.9. By the way φ0 was defined and by The-

orem 2.1.5, the elements φ0(i) form a complete set of primitive

orthogonal idempotents in A, hence condition (i) of Theorem

2.1.9 is satisfied. If α : i → j we have φ0(j)φ1(α)φ0(i) = ejxαei =

xα = φ1(α), so condition (ii) of Theorem 2.1.9 is satisfied. Then

by Theorem 2.1.9 there exists a unique algebra homomorphism

φ : kQA → A that respects φ0 and φ1.

Now we need to show that the homomorphism φ just con-

structed is a surjective homomorphism. Since the image of φ,

Im φ, is generated by the set {ei, xα | i ∈ (QA)0, α ∈ (QA)1}, it

follows from the classical Wedderburn-Malcev Theorem (cf. [5])

that φ is surjective.

Lastly, we need to show that ker φ is an admissible ideal in

kQA. Let J be the arrow ideal in kQA. Because of the way φ was

constructed we know that φ(J ) ⊆ rad A, and hence φ(J l) ⊆

radl A for every l ≥ 1. Since rad A is nilpotent radm A = (0)

for some m ≥ 1, and hence J m ⊆ ker φ. Next we claim that

ker φ ⊆J 2. Let x ∈ ker φ. Now, study the form x takes.

x = ∑
i∈(QA)0

biei + ∑
α∈(QA)1

bαα + j, (6)

where bi, bα ∈ k, {ei | i ∈ (QA)0} is the set of trivial paths in kQA

and j ∈ J 2. In order for our claim to hold we must show that
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bi = bα = 0 for any i ∈ (QA)0, α ∈ (QA)1. Since x ∈ ker φ we

must have

0 = φ(x) = ∑
i∈(QA)0

biφ0(i) + ∑
α∈(QA)1

bαxα + φ(j).

We know that xα ∈ rad A for all α ∈ (QA)1 by the definition of

φ, so we get that

∑
i∈(QA)0

biei = − ∑
α∈(QA)1

bαxα − φ(j) ∈ rad A.

Since rad A is nilpotent by Lemma 1.2.6, and since {ei = ei +

I | i ∈ (QA)0} is a set of primitive orthogonal idempotents by

Theorem 2.2.2, we get that bi = 0 for every i ∈ (QA)0. Hence,

∑
α∈(QA)1

bαxα = −φ(j) ∈ rad2 A.

and,

∑
α∈(QA)1

bα(xα + rad2 A) = 0

in rad A/ rad2 A. But, by construction, the set {xα + rad2 A | α ∈

(QA)1} is a basis of ei(rad A/ rad2 A)ej. Hence, we must have

bα = 0. Now, since ba = bα = 0 we see from equation (6) that

x = j ∈ J 2, and since x was some arbitrary element in ker φ,

we get that J m ⊆ ker φ ⊆J 2. Hence, the ideal I = ker φ is an

admissible ideal in kQA.

3.2 H E R E D I TA R Y A L G E B R A S

In section 3.1 we saw that any basic, indecomposable algebra

A is isomorphic to a bound quiver algebra. We will here study

which requirements that need to be fulfilled for a basic and inde-

composable algebra A to be isomorphic to a path algebra. That

is, under which circumstances is A isomorphic to kQ for some
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finite, connected, acyclic quiver Q? We will here see that A is of

this form if and only if it is hereditary.

Definition 3.2.1. An algebra A is called left hereditary if every left

ideal of A is projective as an A-module.

A right hereditary algebra is defined similarly. A well-known

result from homological algebra states that in the case of a left

and right noetherian algebra, an algebra is left hereditary if and

only if it is right hereditary. In particular, this applies to all the

algebras we will consider, and therefore we will just call them

hereditary.

Lemma 3.2.2. Let A be a hereditary algebra. Then every submodule

of a free A-module is isomorphic to a direct sum of left ideals in A.

Proof. Let L be a free A-module, and let {eλ | λ ∈ Λ} be its basis.

Consider a submodule M of L. We then need to show that M is

isomorphic to a direct sum of left ideals in A. We may assume,

without loss of generality, that the index set Λ is a well-ordered

set. Then for each λ ∈ Λ, let Lλ =
⊕
µ<λ

Aeµ. Observe that L0 = 0

and Lλ+1 = Aeλ
⊕

Lλ. Let x ∈ M ∩ Lλ+1. Then x is of the form

x = aeλ + y, where a ∈ A, y ∈ Lλ, and this representation is

unique. Thus, we may define an A-homomorphism

fλ : M ∩ Lλ+1 → A

given by x 7→ a. Hence, we can construct a short exact sequence

0 −→ M ∩ Lλ −→ M ∩ Lλ+1
fλ−→ Im fλ −→ 0 (7)

Because Im fλ is a left ideal in A, it is projective since A is hered-

itary. Then by Lemma 1.1.11 the short exact sequence (7) splits.

Hence, there exists an f ′λ : Im fλ → M ∩ Lλ+1 such that

M ∩ Lλ+1 = ker fλ

⊕
Im f ′λ.
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Then there exists a submodule Nλ of M ∩ Lλ+1 such that Nλ '

Im f ′λ and

M ∩ Lλ+1 = ker fλ

⊕
Nλ = M ∩ Lλ

⊕
Nλ.

We start by proving that M = ∑
λ∈Λ

Nλ = N, and then we will

complete the proof by proving that this sum is direct. Since L =⋃
λ∈Λ

Lλ we have for each x ∈ L a least λ ∈ Λ such that x ∈ Lλ+1.

Denote this index by µx. Suppose by contradiction that N ⊂ M,

that is, N is a proper subset of M. Then there exists an element

x ∈ M such that x /∈ N. Let µ denote the least µx such that

x ∈ M, but x /∈ N. Choose an element y such that µy = µ. Then

y ∈ M, but y /∈ N. Hence, y ∈ M ∩ Lµ+1, and y takes the form

y = u + v, where u ∈ M ∩ Lµ, v ∈ Nµ. Therefore u = y− v ∈ M.

Since y was chosen such that y /∈ N we must have u /∈ N to

avoid a contradiction. But since u ∈ M ∩ Lµ we get that µu < µ,

so u ∈ N. This is a contradiction, so M = N, or M = ∑
λ∈Λ

Nλ.

Now, what remains is proving that M = ∑
λ∈Λ

Nλ is a direct

sum. Suppose x1 + · · · + xn = 0 for xi ∈ Nλi . We can assume,

without loss of generality, that λ1 < · · · < λn. We must show

that then xi = 0 for every i. We get that x1 + · · ·+ xn−1 = −xn ∈

(M ∩ Lλn)∩ Nλn = (0), so xn = 0. Continue similarly to see that

xi = 0 for every i. Hence, M =
⊕

λ∈Λ
Nλ.

Proposition 3.2.3. Let A be an algebra. The following are equivalent:

(i) The algebra A is hereditary.

(ii) Every submodule of a projective left A-module is projective.

(iii) The radical r = rad A is a projective left A-module.

Proof. Here we will only prove (i) ⇒ (ii) and (ii) ⇒ (iii). For

the proof of (iii)⇒ (i), see [2].
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(i) ⇒ (ii): Suppose A hereditary. Let P be a projective left A-

module, and let Q ⊆ P be a submodule of P. We want to show

that Q is a projective module. By Lemma 1.1.8 there exists a free

module F and some A-module R such that F = P
⊕

R. Hence,

P is a submodule of the free module F. Since Q is a submodule

of P we must have that Q is a submodule of F as well. Then by

Lemma 3.2.2 we have Q ' I1
⊕ · · ·⊕ In, where Ij is a left ideal

in A for j = 1, . . . , n. The ideals Ij are all projective modules

since A is hereditary. Hence, Q is a projective module.

(ii) ⇒ (iii): Suppose every submodule of a projective left A-

module is projective. Then we need to find a projective left mod-

ule P such that r ⊆ P is a submodule. The radical r ⊆ A is an

ideal in A, and hence r is an A-module. Consider A A, that is

A considered as a left A-module. Then r is a submodule of A A.

Since A A is a projective left A-module, r is a projective left A-

module.

Lemma 3.2.4. Let A be an basic, indecomposable and hereditary alge-

bra. Then the ordinary quiver QA of A is acyclic.

Proof. By Lemma 3.1.1 we have that QA is connected, so we can

find i, j ∈ (QA)0 such that there exists an arrow α : i → j. Then

by definition we get that ej(r/r2)ei 6= (0). Let α be a nonzero

element in ejrei. Then we have a nonzero A-homomorphism

fα : Aei → Aej

defined by left multiplication with α.

Since Aej is an indecomposable projective module Proposi-

tion 3.2.3 implies that Im fα is projective. Hence the short exact

sequence

0→ ker fα → Aei → Im fα → 0
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splits by Lemma 1.1.11, and Aei ' ker fα
⊕

Im fα. Since Aei is

indecomposable and Im fα 6= (0) we must have ker fα = (0).

Hence, fα is a monomorphism. Since A is basic we know that fα

is not an isomorphism.

Now suppose there exists a cycle in QA going through i.

Then clearly f = fαt · · · fα1 is a monomorphism since fαs is a

monomorphism for every s ∈ {1, . . . , t}. That is, f : Aei → Aei

is a monomorphism, but not an isomorphism, which is a contra-

diction. Therefore, QA is acyclic.

Lemma 3.2.5. Let Q be a finite, connected and acyclic quiver. Then

the path algebra kQ is hereditary.

Proof. By Proposition 3.2.3 it is enough to show that r = rad(kQ)

is a projective kQ-module.

It is clear that r = r · 1kQ = r(e1 + · · ·+ en) = re1
⊕ · · ·⊕ ren.

Now, if we can show that rei is projective for every i ∈ {1, . . . , n}

we get that r is projective. The set of all non-trivial paths start-

ing in i, B = {p | s(p) = i}, is a basis of rei. Let α1, . . . , αt be

the arrows in Q1 such that s(αj) = i for j = 1, . . . , t. Then any

element p ∈ B is of form p = qαj, j ∈ {1, . . . , t}, where q is any

path satisfying s(q) = t(αj). Hence we have

rei =
t⊕

j=1

kQet(αj)
αj '

t⊕
j=1

kQet(αj)
.

Since kQ = kQ · 1kQ = kQ(e1 + · · ·+ en) = kQe1
⊕ · · ·⊕ kQen

as a kQ-module, we get from Lemma 1.1.8 that kQei is a projec-

tive module for i = 1, . . . , n. Hence, rei is a projective module for

every i as a direct sum of projective modules. So, r is projective,

and hence kQ is hereditary by Proposition 3.2.3.

Lemma 3.2.6. Let Q be a finite, connected and acyclic quiver and

I ⊆ kQ an admissible ideal. Then kQ/I is not hereditary if I 6= (0).
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Proof. Let A = kQ/I. We identify with each of the idempotents

ei ∈ A the residue class of the trivial path at i, ei = ei + I. In

Lemma 2.4.11 we saw that the indecomposable projective mod-

ules P(i) = Aei can be described in terms of its corresponding

representation in the following way: P(i) = (P(i)j, φα). The k-

vector space P(i)j is the k-vector space having as its basis all

paths ω = ω + I where ω ∈ kQ is a path from i to j. Let

α : j→ l ∈ Q1. Then the k-linear map φα : P(i)j → P(i)l is given

by left multiplication with α = α + I. The dimension of ejkQei,

dimk(ejkQei), equals the number of paths from i to j in Q, denote

this number by ω(i, j). Hence dimk ejP(i) = ω(i, j)− dimk ej Iei.

We are going to use this equation to prove that if A is hereditary

we must have I = (0).

If A is hereditary, suppose by contradiction that I 6= (0). Since

Q is acyclic we can number the vertices of Q in such a way that

if there exists an arrow from x to y we have x > y. (Such a num-

bering is called an admissible numbering.) Then there is a least

number i such that there exists some j ∈ Q0 with ej Iei 6= (0).

By Lemma 2.4.11 we get that rad P(i) 6= (0). Since A is heredi-

tary rad A is projective by Proposition 3.2.3. Hence rad P(i) is

projective, and then by Lemma 1.1.9 we get that rad P(i) '

P(j1)n1
⊕ · · ·⊕ P(jt)nt for some t ≥ 1, where j1, . . . , jt ∈ Q0 and

n1, . . . , nt ∈ N. It can be shown that {j1, . . . , jt} is the set of all

successors of i, that is, all vertices which is such that there exists

an arrow α : i → js, s ∈ {1, . . . , t}. This implies that i > js, and

by the minimality of i we know that ej Iejs = (0). It is also possi-

ble to show that ns is the number of arrows from i to js in Q1 for

s = 1, . . . , t. We have that

dimk ejP(js) = dimk ej Aejs = ω(js, j),
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for every j and every s. It follows that

dimk ej(rad P(i)) =
t

∑
m=1

nm dimk ejP(jm) =
t

∑
m=1

nmω(jm, j)

= ω(i, j) > ω(i, j)− dimk ej Iei = dimk ejP(i)

which is a contradiction since rad P(i) ⊆ P(i). Hence, I = (0).

Theorem 3.2.7. Let A be a basic and indecomposable algebra. Then

A ' kQA if and only if A is hereditary.

Proof. Suppose A is hereditary. By Theorem 3.1.3 we get A '

kQA/I for some admissible ideal I in kQA. Since A is heredi-

tary, basic and indecomposable Lemma 3.1.1 and Lemma 3.2.4

implies that QA is finite, connected and acyclic. Then I = (0) by

Lemma 3.2.6, and thus A ' kQA.

Conversely, suppose A ' kQA. Then A is hereditary by

Lemma 3.2.5.
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4.1 D Y N K I N D I A G R A M S

In this thesis certain quivers will be of particular interest. We

will be particularly interested in the quivers whose underlying

graph is a Dynkin diagram. As we will see in section 4.4 a

path algebra is of finite representation type if and only if its

underlying graph is a Dynkin diagram. We will present the

Dynkin diagrams here.

An •
1

•
2

•
3

. . . •
n− 2

•
n− 1

•
n

n ≥ 1

Dn

•
1

•
2

•
3

•
4

. . . •
n− 2

•
n− 1

•
n

n ≥ 4

E6 •
1

•
2

•
4

•
3

•
5

•
6

49
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E7 •
1

•
2

•
4

•
3

•
5

•
6

•
7

E8 •
1

•
2

•
4

•
3

•
5

•
6

•
7

•
8

We shall see in Theorem 4.2.8 that the requirements for a path

algebra to be of finite representation type only depends on the

underlying graph of the path algebra. It follows that the orienta-

tion of the underlying quiver is insignificant. Motivated by this

fact we will now describe a way to express different quivers hav-

ing the same underlying graph.

Definition 4.1.1. Let Q = (Q0, Q1) be a finite and connected

quiver having n vertices. For every vertex i ∈ Q0, let σiQ =

Q′ = (Q′0, Q′1) be the quiver having Q′0 = Q0, but all arrows in

Q1 having i either as its source or target are reversed in Q′1. De-

note the set of vertices having i either as its source or target by

Ei. There exists a bijection Q1 → Q′1 such that each α ∈ Q1 corre-

sponds to some α′ ∈ Q′1, where α′ is described in the following

way:

(i) if s(α) 6= i and t(α) 6= i, then t(α′) = t(α) and s(α′) = s(α),

(ii) if s(α) = i or t(α) = i, then s(α′) = t(α) and t(α′) = s(α).

We call the quiver Q′ = σiQ the reversed quiver of Q with respect

to vertex i.
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In the proof of Lemma 3.2.6 we defined an admissible num-

bering of the vertices of a quiver. We will now study a further

property of the admissible numbering. Let a1, . . . , an be an ad-

missible numbering of the vertices of an acyclic quiver Q, hav-

ing ai < aj for i < j. Then we have that

(i) a1 is a sink in Q, and

(ii) ai is a sink in σai−1 . . . σa1 Q for every 2 ≤ i ≤ n.

The set {a1, . . . , an} is called an admissible sequence of sinks in Q.

Note that {a1, . . . , an} is an admissible sequence of sinks in Q if

and only if a1, . . . , an is an admissible numbering. Similarly, we

have that

(i) an is a source in Q, and

(ii) ai is a source in σai+1 . . . σan Q for every 1 ≤ i ≤ n− 1.

The set {an, . . . , a1} is then called an admissible sequence of sources

in Q.

4.2 R E F L E C T I O N F U N C T O R S

Motivated by the previous section we now define some functors,

called right reflection functors and left reflection functors, between

the category of representations of a quiver Q and the category

of representations of the reversed quiver with respect to some

sink/source of Q.

Definition 4.2.1. Let Q be a finite and connected quiver, let a

be a sink in Q and Q′ = σaQ. Let Ea = {α1, . . . , αn}. The left

reflection functor S+a : repk Q → repk Q′ is a functor defined as

follows. Let V = (Vi, fα)i∈Q0,α∈Q1 be an object in repk Q. Then

S+a (V) = W = (Wi, gα)i∈Q′0,α∈Q′1
, where
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(i) Wi = Vi for all i 6= a. To define Wa, first consider the

mapping h :
⊕

αi∈Ea

Vs(αi)
→ Va defined by h(v1, . . . , vn) =

fα1(v1) + · · ·+ fαn(vn). Then Wa = ker h.

Vs(α1)
fα1

!!... Va

Vs(αn)

fαn

==

(ii) gα = fα for all α /∈ Ea. If α ∈ Ea then gα = π ◦ ι, where π is

the projection and ι the embedding defined by the follow-

ing sequence:

Wa
ι−→

⊕
αi∈Ea

Vs(αi)
π−→ Vs(α)

Let φ = {φi}i∈Q0 : V → V′ be a morphism in repk Q, where

V = (Vi, fα)i∈Q0,α∈Q1 and V′ = (V′i , f ′α)i∈Q0,α∈Q1 . Then S+a (φ) is

defined to be ρ = {ρi}i∈Q0 : S+a (V) = W → S+a (V′) = W ′,

where ρi = φi for all i 6= a, and ρa is the unique k-linear map

such that the following diagram commutes:

0 //Wa
ι //

ρa

��

⊕
α∈Ea

Vs(α)
h //

⊕
α∈Ea

φs(α)

��

Va

φa

��
0 //W ′a

ι′ // ⊕
α∈Ea

V′s(α)
h′ // V′a

In a similar way we define the right reflection function S−a :

Definition 4.2.2. Let Q′ be a finite and connected quiver, let a be

a source in Q′ and Q = σaQ′. Let Ea = {α1, . . . , αn}. The right

reflection functor S−a : repk Q′ → repk Q is a functor defined as

follows. Let W = (Wi, gα)i∈Q′0,α∈Q′1
be an object in repk Q′. Then

S−a (W) = V = (Vi, fα)i∈Q0,α∈Q1 , where
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(i) Vi = Wi for all i 6= a. Consider the mapping h̃ : Wa →⊕
αi∈Ea Wt(αi)

defined by h̃(w) = (gα1(w), . . . , gαn(w)).

Then Va =
⊕

αi∈Ea

Wt(αi)
/ Im h̃ = coker h̃.

Wt(α1)

... Wa

gα1
aa

gαn}}
Wt(αn)

(ii) fα = gα for all α /∈ Ea. If α ∈ Ea, then fα = τ ◦ ν, where

τ is the projection and ν the embedding defined by the

following sequence:

Wt(α)
ν−→

⊕
αi∈Ea

Wt(αi)
τ−→ Va

Let φ′ = {φ′i}i∈Q′0
: W → W ′ be a morphism in repk Q′, where

W = (Wi, gα) and W ′ = (W ′i , g′α). Then S−a (φ′) is defined to be

ρ′ = {ρ′i}i∈Q′0
: S−a (W) = V → S−a (W ′) = V′, where ρ′i = φ′i

for all i 6= a, and ρ′a is the unique k-linear map such that the

following diagram commutes:

Wa
h̃ //

φ′a

��

⊕
α∈Ea

Wt(α)
h //

⊕
α∈Ea

φ′t(α)

��

Va //

ρ′a

��

0

W ′a
h̃′ // ⊕

α∈Ea

W ′t(α)
h′ // V′a // 0

Note that S+/−
a (V1

⊕
V2) = S+/−

a (V1)
⊕ S+/−

a (V2). Since the

definitions of the reflection functors S+a and S−a are quite tech-

nical we will illustrate them with a small example.

Example 4.2.3. Consider the quiver Q : 1
α1−→ 2

α2−→ 3. Observe

that vertex 3 is a sink in Q and vertex 1 is a source in Q. Let Q′ =
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σ3Q, Q′′ = σ1Q. Let S+3 : repk Q → repk Q′ be the left reflection

functor at the sink 3 and S−1 : repk Q → repk Q′′ be the right

reflection functor at the source 1. Consider the representation

V : k
1k−→ k

1k−→ k.

Then

S+3 (V) : k
1k−→ k 0←− 0,

and

S−1 (V) : 0 0←− k
1k−→ k.

We will now study some further properties of the functors S+a
and S−a . Before stating the first result regarding the properties of

these functors we will make an important observation.

Let a be a sink in a finite and connected quiver Q. Then a is

clearly a source in the reversed quiver σaQ. Hence there exists a

functor S−a S+a : repk Q→ repk Q. To study how this functor acts

on the objects of repk Q we construct for each object V in repk Q

a morphism of functors

ia
V = ((ia

V)1, . . . , (ia
V)n) : S−a S+a (V)→ V,

where n = |Q0|. We shall now describe how to construct ia
V , and

later we will use some properties of this morphism to gain infor-

mation about our functors S−a and S+a .

Let S+a (V) = W, and S−a (W) = U. For a vertex i 6= a we

get by the definition of S+a and S−a that Ui = S−a (Wi) = Wi =

S+a (Vi) = Vi, and therefore we set

(ia
V)i = 1Vi .

In the case of i = a we first observe from Definition 4.2.1 and

Definition 4.2.2 that Im h̃ = Wa = ker h.

Wa
h̃−→

⊕
α∈Ea

Vs(α)
h−→ Va
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Hence S−a S+a (Va) = S−a (Wa) = coker h̃ =
⊕

α∈Ea

Vs(α)/ Im h̃ =⊕
α∈Ea

Vs(α)/ ker h. We then take (ia
V)a to be the natural mapping

(ia
V)a :

⊕
α∈Ea

Vs(α)/ ker h→ Va.

Now, one should verify that ia is actually a natural transforma-

tion. Some properties of ia are collected in the next result.

Proposition 4.2.4. Let Q be a finite and connected quiver and

V = (Vi, fα)i∈Q0,α∈Q1 an object in repk Q. Consider the morphism

ia
V : S−a S+a (V)→ V just defined. Then

(i) ia
V is a monomorphism.

(ii) if ia
V is an isomorphism, then the dimensions of the vector space

Wi = S+a (Vi) is

dim Wi =


−dim Va + ∑

α∈Ea

dim Vs(α) for i = a,

dim Vi for i 6= a.

(8)

(iii) the object coker ia
V is concentrated at vertex a, that is

(coker ia
V)i = 0 for i 6= a, while (coker ia

V)a = Va/ Im(ia
V)a.

(iv) V ' S−a S+a (V)
⊕

coker ia
V as representations.

(v) if the object V has the form S−a (X) for some X ∈ Obj(repk Q′),

where Q′ = σaQ, then ia
V is an isomorphism.

Proof. (i): We examine if ker ia
V = (0). In order for an element

V ∈ repk Q to be in the kernel of ia
V we must have Vi = (0) for

every i 6= a. It is easy to see that ker(ia
V)a = (0), and hence ia

V is

a monomorphism.
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(ii): Suppose ia
V is an isomorphism. This implies that

dim Va = dimS−a S+a (Va) = dim

⊕
α∈Ea

Vs(α)/ ker h


= dim ∑

α∈Ea

Vs(α) − dim ker h

= dim ∑
α∈Ea

Vs(α) − dim Wa.

Since it is obvious that dim Wi = dim Vi for i 6= a from the defi-

nition the result follows.

(iii): We have that (coker ia
V)i = Vi/ Im(ia

V)i. Hence for i 6= a

we have that (coker ia
V)i = (0) since (ia

V)i = 1Vi for i 6= a. Yet for

i = a we have (coker ia
V)a = Va/ Im(ia

V)a.

(iv): Observe that we have a short exact sequence

0 −→ S−a S+a (V)
ia
V−→ V −→ coker ia

V −→ 0.

The above short exact sequence splits, and hence V '

S−a S+a (V)
⊕

coker ia
V .

(v): Let V = S−a (X). We need to show that in this case ia
V is

an epimorphism. It can be shown that V and S−a S+a (V) have the

same dimension when considered modules by Corollary 2.4.10.

Then, since ia
V is a monomorphism by (i) we get that ia

V is an

epimorphism, and hence an isomorphism.

Similarly, for a source a we can construct a morphism of func-

tors

pa
V : V → S+a S−a (V).

Let S−a (V) = W and S+a (W) = U. We set

(pa
V)i = 1Vi
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for i 6= a. When i = a we have that S+a S−a (Va) = S+a (Wa) =

ker h = Im h̃ =
⊕

αi∈Ea

Vt(αi)
/ ker h̃. Then we take (pa

V)a to be the

mapping

(pa
V)a : Va →

⊕
αi∈Ea

Vt(αi)
/ ker h̃.

Then, considering the proof of Proposition 4.2.4 it is not difficult

to show that the following result holds.

Proposition 4.2.5. Let Q be a finite and connected quiver and V =

(Vi, fα)i∈Q0,α∈Q1 be an object in repk Q. Consider the morphism pa
V :

V → S+a S−a (V) just defined. Then

(i) pa
V is an epimorphism.

(ii) if pa
V is an isomorphism, then the dimension of the vector space

Wi = S−a (Vi) is

dim Wi =


−dim Va + ∑

α∈Ea

dim Vt(α) for i = a,

dim Vi for i 6= a.

(iii) the object ker pa
V is concentrated at vertex a.

(iv) V ' S+a S−a (V)
⊕

ker pa
V as representations.

(v) if the object V has the form S+a (X) for some object X ∈ repk Q′,

where Q′ = σaQ, then pa
V is an isomorphism.

We are now going to use Proposition 4.2.4 and Propostion

4.2.5 to prove the next result regarding the properties of S+a and

S−a .

Theorem 4.2.6. Let Q be a finte and connected quiver and let V =

(Vi, φα) ∈ repk Q be an indecomposable representation.

(i) If a is a sink in Q we have to possible cases:
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(a) S+a (V) = 0 if and only if V ' S(a).

(b) S+a (V) is an indecomposable representation in repk Q′,

where Q′ = σaQ, S−a S+a (V) = V and the dimension of

the vector space Wi = S+a (Vi) is

dim Wi =


−dim Va + ∑

α∈Ea

dim Vs(α) for i = a,

dim Vi for i 6= a.

(9)

(ii) If a is a source in Q we have two possible cases:

(a) S−a (V) = 0 if and only if V ' S(a).

(b) S−a (V) is an indecomposable representation in repk Q′,

where Q′ = σaQ, S+a S−a (V) = V and the dimension of

the vector space Wi = S−a (Vi) is

dim Wi =


−dim Va + ∑

α∈Ea

dim Vt(α) for i = a

dim Vi for i 6= a.

(10)

Proof. (i): Let V ∈ repk Q be an indecomposable object, and

let a be a sink in Q. By Proposition 4.2.4 (iv) we have V '

S−a S+a (V)
⊕

coker ia
V , but V is indecomposable by assumption,

which implies that either

(a) V = coker ia
V . Then by Proposition 4.2.4 (iii) we get Vi =

(0) for every i 6= a, and since V is indecomposable we

must have Va ' k. That is V ' S(a). It is also clear by the

definition of S+a that if V ' S(a) then S+a (V) = (0).

Or,

(b) V = S−a S+a (V). It is then clear that since coker ia
V = (0)

the morphism ia
V is an epimorphism, and by Proposition
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4.2.4 (i) the morphism ia
V is a monomorphism, so ia

V is an

isomorphism. Hence, by Proposition 4.2.4 (ii) the dimen-

sion of S+a (Vi) = Wi is as given in (9). Let W = S+a (V),

we want to show that W is indecomposable. By Propo-

sition 4.2.5 (v) the morphism pa
V : W → S+a S−a (W) is

an isomorphism. Suppose W = W1
⊕

W2. Then V =

S−a (W) = S−a (W1)
⊕ S−a (W2). Since V is indecomposable

we must have that one of the terms is (0), suppose without

loss of generality that S−a (W2) = (0). Then we have that

pa
V(W2) ⊂ S+a S−a (W2) = S+a (0) = (0), which implies that

W2 = (0), and W is indecomposable.

(ii): Proven the same way as (i).

Corollary 4.2.7. Let Q be a finite and connected quiver, and let

{a1, . . . , an} be an admissible sequence of sinks.

(i) For any 1 ≤ i ≤ n, let S(ai) ∈ repk(σai−1 · · · σa2σa1 Q). Then

the representation S−a1
· · · S−ai−1

(S(ai)) is either (0) or an inde-

composable object in repk Q.

(ii) Let V ∈ repk Q be an indecomposable object, and

S+an · · · S
+
a2
S+a1

(V) = (0). Then for some i we have

V ' S−a1
S−a2

. . . S−ai−1
(S(ai))

as representations.

Proof. Follows directly from consecutive use of Theorem 4.2.6.

Our next result states that once we have classified the inde-

composable objects of repk Q, for a finite, connected and acyclic

quiver Q, we have a way to classify the indecomposable objects

of all categories repk Q′, where Q′ is some quiver having the

same underlying graph as Q.
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Theorem 4.2.8. Let Q and Q′ be two finite, connected and acyclic

quivers with no multiple arrows having the same underlying graph

Q.

(i) There exists an admissible sequence of sinks {a1, . . . , an} in Q

such that σan · · · σa2σa1 Q = Q′.

(ii) Let ind Q and ind Q′ be complete sets of indecomposable ob-

jects in respectively repk Q and repk Q′. Let M ⊂ ind Q

be the set of objects of the form S−a1
S−a2
· · · S−ai−1

(S(ai)) for

1 ≤ i ≤ n and M′ ⊂ ind Q′ be the set of objects of the

form S+an · · · S
+
ai+1

(S(ai)) for 1 ≤ i ≤ n. Then the func-

tor S+an · · · S
+
a2
S+a1

sets up a one-to-one correspondence between

ind Q \M and ind Q′ \M′.

Proof. (i): It is sufficient to consider two quivers Q and Q′

that differ at only one arrow, say α. Since, in particular, Q

is connected and contains no multiple arrows it is clear that

Q/〈α〉 splits into two connected quivers. Let Q̃ be the compo-

nent of Q/〈α〉 containing the vertex t(α) with respect to Q. Let

{a1, . . . , an} be an admissible sequence of sinks in Q̃, and there-

fore also in Q. Observe that in σan · · · σa1 Q̃ we have changed the

direction of each arrow in Q̃ twice, except from the direction of

α which has been changed only once. Hence σan · · · σa1 Q = Q′.

(ii): Let {a1, . . . , an} be an admissible sequence of sinks in

Q such that σan · · · σa1 Q = Q′ (which we know exists by (i)).

Then {an, . . . , a1} is an admissible sequence of sources in Q′. Let

φ+
i = S+ai

· · · S+a2
S+a1

and φ−i = S−ai
· · · S−an−1

S−an for i = 1, . . . , n.

To prove (b) we now want to show that

φ+
n : ind Q \M → ind Q′ \M′

is both injective and surjective.
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Suppose V1, V2 ∈ ind Q \M such that φ+
n (V1) = φ+

n (V2). We

want to show that this implies V1 = V2. By Corollary 4.2.7 (ii)

we get that φ+
i (V) 6= (0) for any 1 ≤ i ≤ n. Hence, by repeated

use of Theorem 4.2.6 (i)(b) we get S−an φ+
n (V1) = S−an φ+

n (V2),

which implies φ+
n−1(V1) = φ+

n−1(V2). By proceeding similarly

we get S−a1
S+a1

(V1) = S−a1
S+a1

(V2), which implies V1 = V2 by The-

orem 4.2.6. Hence φ+
n is injective.

Now, let W ∈ ind Q′ \M′. Then again, by repeated use of The-

orem 4.2.6, we have that φ−i (W) is an indecomposable object in

repk σai · · · σan Q′ for 1 ≤ i ≤ n. In particular, φ−1 (W) ∈ repk Q.

Consecutive use of Theorem 4.2.6 gives φ+
n (φ

−
1 (W)) = W.

Hence φ+
n is onto.

The proof can be extended to quivers with multiple arrows.

In particular, Theorem 4.2.8 implies that if kQ is of finite repre-

sentation type, then kQ′ is of finite representation type for every

Q′ having Q as its underlying graph.

Next we will introduce some combination of reflection func-

tors that takes the category repk Q into itself. These functors are

called Coxeter functors.

Definition 4.2.9. Let Q be an finite, connected and acyclic quiver

and let {a1, . . . , an} be an admissible sequence of sinks in Q. Let

C+, C− : repk Q→ repk Q denote the functors S+an · · · S
+
a2
S+a1

and

S−a1
· · · S−an−1

S−an respectively. The functors C+, C− are called the

Coxeter functors of repk Q.

Let us check that C+, C− are well-defined. That is, we need

to check that they do not depend on the choice of admissible

numbering. First, observe that if both vertices ai and aj are sinks

in some quiver Q, then there is no arrow joining ai and aj, and

thus the functors S+ai
and S+aj

commute. That is, S+ai
S+aj

= S+aj
S+ai

.
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Now, let {a1, . . . , an} and {a′1, . . . , a′n} be two admissible se-

quences of sinks in a quiver Q. Suppose a1 = a′m. Then a′m is

a sink in Q. Hence, there is no arrow adjoining a′m and a′i for

a′i < a′m by the definition of an admissible numbering. This im-

plies that there is also no arrow adjoining a1 and a′i for a′i < a′m,

which by consecutive use of the observation in the previous

paragraph implies that S+a′m · · · S
+
a′1

= S+a′m−1
· · · S+a′1S

+
a1

, and more

generally S+a′n · · · S
+
a′m
· · · S+a′1 = S+a′n · · · S

+
am+1
S+am−1

· · · S+a′1S
+
a1

. The

same argument can be applied to the vertices a2, . . . , an to ob-

tain S+a′n · · · S
+
a′1
= S+an · · · S

+
a1

. This shows that C+ is well-defined.

The same type of argument can be used to prove that C− is well-

defined.

4.3 Q U A D R AT I C F O R M O F A Q U I V E R

In this section we introduce some notions and prove some re-

sults needed for the proof of Gabriel’s Theorem. Throughout

this section, let Q denote a finite, connected and acyclic quiver,

and x = (xi) denote a vector in Qn, where n = |Q0| and i ∈ Q0,

unless stated otherwise. We start by introducing some notation

on vectors.

Definition 4.3.1. A vector x is called

(i) integral if xi ∈ Z for all i ∈ Q0.

(ii) positive if x is not the zero vector, and xi ≥ 0 for all i ∈ Q0.

If a vector x is positive we write x > 0. We write x < 0 if x

is non-positive.

Definition 4.3.2. The quadratic form qQ of a quiver Q is defined by

qQ(x) = ∑
i∈Q0

x2
i − ∑

α∈Q1

xs(α)xt(α).
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Let 〈 , 〉 : Qn ×Qn → Q be the corresponding symmetric bilin-

ear form given by

〈x, y〉 = ∑
i∈Q0

xiyi −
1
2 ∑

α∈Q1

(xs(α)yt(α) + xt(α)ys(α)).

In this thesis we will only apply the quadratic form qQ to in-

tegral vectors, in particular dimension vectors, which are to be

defined later. So in our case, qQ is an integral quadratic form.

Remark 4.3.3. (i) Observe that qQ(x) = 〈x, x〉. This is also clear

by the definition of a bilinear form.

(ii) The bilinear form 〈 , 〉 is called symmetric because 〈x, y〉 =

〈y, x〉.

The next definition collects some classifications of the

quadratic form qQ.

Definition 4.3.4. The quadratic form qQ is called

(i) positive definite if qQ(x) > 0 for every x 6= 0.

(ii) positive semidefinite if qQ(x) ≥ 0 for every x ∈ Zn.

(iii) weakly positive if qQ(x) > 0 for all x > 0.

Definition 4.3.5. A vector x is called a root of qQ if qQ(x) = 1.

The quadratic form qQ will be very important in the proof

of Gabriel’s Theorem. In fact, if qQ is positive definite, there is a

one-to-one correspondence between the positive roots of qQ and

the isomorphism classes of indecomposable objects of repk Q.

We will study this one-to-one correspondence later.

Lemma 4.3.6. If qQ is a weakly positive integral quadratic form on

Zn, then it has only finitely many positive roots.

Proof. Cf. [1].
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Definition 4.3.7. Let ζa : Qn → Qn be the linear transformation

defined for each a ∈ Q0 by

(ζa(x))i =


xi for i 6= a,

−xa + ∑
α∈Ea

xe(α) for i = a,

where e(α) is the vertex connected to α that is not a. The linear

transformation ζa is called a reflection at a.

For every a ∈ Q0 denote by ea the vector in Qn such that

(ea)i =


0 for i 6= a

1 for i = a

.

Observe that ζa(ea) = −ea for every a ∈ Q0.

Corollary 4.3.8. The reflection at a can be expressed in the following

way: ζa(x) = x− 2〈x, ea〉ea.

Proof. Can be easily verified from the definition of 〈 , 〉.

Proposition 4.3.9. Let ζa be a reflection. Then

(i) ζa is a group homomorphism.

(ii) 〈ζa(x), ζa(y)〉 = 〈x, y〉 for all x, y ∈ Zn.

(iii) ζ2
a = 1, and thus ζa is an automorphism of Qn.

Proof. (i): Simply verify.

(ii): We use Corollary 4.3.8:

〈ζa(x), ζa(y)〉 = 〈x− 2〈x, ea〉ea, y− 2〈y, ea〉ea〉

= 〈x, y〉 − 2〈y, ea〉〈x, ea〉 − 2〈x, ea〉〈ea, y〉

+ 4〈x, ea〉〈y, ea〉 · 1

= 〈x, y〉.
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(iii): We use Corollary 4.3.8:

ζ2
a(x) = ζa(x− 2〈x, ea〉ea) = ζa(x)− 2〈x, ea〉ζa(ea)

= x− 2〈x, ea〉ea + 2〈x, ea〉ea

= x.

Definition 4.3.10. The subgroupW of the automorphism group

on Qn generated by the reflections ζa for every a ∈ Q0 is called

the Weyl group of qQ. A root x of qQ is called a Weyl root if there

exists an ω ∈ W such that x = ω(ea) for some a ∈ Q0.

The next result shows that the quivers Q having qQ positive

definite is of special interest for us.

Theorem 4.3.11. Let Q be a quiver, not necessarily acyclic. Then qQ

is positive definite if and only if Q is a Dynkin diagram.

Proof. The proof is divided into four parts. In the first part we

investigate the shape of Q, then in part two we establish a new

quadratic form, which we will use in part three and four to in-

vestigate the size of Q.

(i) Let Q be a quiver, such that Q has one of the following

graphs as a subgraph.

G1 •
1

•
1

G2 •
1

•
1

•
1

. . . •
1

•
1

•
1

G3

•
1

•
1

•
1

•
1

•
2
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G4

•
1

•
1

•
2

•
2

. . . •
2

•
2

•
1

•
1

The numberings of the vertices of G1, G2, G3, G4 are cho-

sen such that we can construct a vector y ∈ Q|Q0| having

qQ(y) ≤ 0. The vector y is constructed in the following

way: let the number on each vertex be the element in the

corresponding coordinate of y, and let the remaining coor-

dinate be filled with zeroes. Then, as predicted, qQ(y) ≤ 0,

and qQ is neither positive definite nor positive semidefi-

nite. Since we are searching for the cases where qQ is pos-

itive definite this tells us quite a lot about the shape of Q.

We can conclude by considering G1 and G2 that Q must

be acyclic, from G3 we find that each vertex can not have

more than three edges, and from G4 we see that there can

not be more than one vertex having three edges. Hence Q

must be of form

•
x1

•
x2

. . . •
xp−1

•
xp

•
a

•
ys

•
ys−1

. . . •
y2

•
y1

•
zr

•
zr−1

•
zr−2

. . . •
z2

•
z1

(11)

where p, s, r ∈ Z+ ∪ 0.
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(ii) For each t ≥ 0 consider the quadratic form in t + 1 vari-

ables x1, . . . , xt+1:

Ct(x1, . . . , xt+1) = −x1x2 − · · · − xtxt+1

+ x2
1 + · · ·+ x2

t +
t

2(t + 1)
x2

t+1

=
t

∑
i=1

i
2(i + 1)

(
xi+1 −

i + 1
i

xi

)2

.

From the above formula it can be observed that Ct is posi-

tive semidefinite, that the dimension of the null space of Ct

is 1 and that for any nonzero vector v such that Ct(v) = 0

we have that all coordinates of v are nonzero.

(iii) Let x1, . . . , xp, y1, . . . , ys, z1, . . . , zr, a be the vertices of Q, as

in the graph (11). Let x = (x1, . . . , xp), y = (y1, . . . , ys) and

z = (z1, . . . , zr). Then, by part (ii),

qQ(x, y, z, a) = Cp(x1, . . . , xp, a) + Cq(y1, . . . , ys, a)

+ Cp(z1, . . . , zr, a)

+

(
1− p

2(p + 1)
− s

2(s + 1)
− r

2(r + 1)

)
a2.

We now want to investigate what requirements the inte-

gers p, s, r need to fulfill in order for the quadratic form

qQ to be positive definite. Since Ct is positive semidefinite

it is clear that qQ is positive semidefinite if and only if
p

2(p+1) +
s

2(s+1) +
r

2(r+1) < 1. From part two of the proof

we know that if Ct(v) = 0 all coordinates of v is nonzero.

Hence, qQ is positive definite if and only if p
2(p+1) +

s
2(s+1) +

r
2(r+1) < 1, which is equivalent to 1

p+1 +
1

s+1 +
1

r+1 > 1.

(iv) Suppose without loss of generality that p ≤ s ≤ r, and

let δ = 1
p+1 +

1
s+1 +

1
r+1 . Suppose δ > 1, we then want to

study the possible values of p, s, r. We can see immediately
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that we must have p ≤ 2 for δ > 1. Hence we have the

following cases:

(a) p = 0, s and r arbitrary positive integers. Then graph

(11) coincides with the Dynkin diagram An for n ≥ 1.

(b) p = 1, s = 1 and r ≥ 1. Then the graph (11) coincides

with the Dynkin diagram Dn for n ≥ 4.

(c) p = 1, s = 2 and r = 2, 3, 4. Then the graph (11)

coincides respectively with the Dynkin diagrams E6,

E7 and E8.

Corollary 4.3.12. Let Q be a quiver whose underlying graph is a

Dynkin diagram. Then the integral quadratic form qQ has only finitely

many positive roots.

Proof. By Theorem 4.3.11 we get that qQ is positive definite. It is

clear that if qQ is positive definite, then it is in particular weakly

positive. Then by Lemma 4.3.6 we get that qQ has only finitely

many positive roots.

Lemma 4.3.13. If the quadratic form qQ is positive definite, then the

Weyl groupW is finite.

Proof. Let S1 denote the set of all positive roots of qQ, and con-

sider the map f : W → Sn
1 defined by ω 7→ (ωea)a∈Q0 . The

map f can be shown to be well-defined. Observe that f (ω) = 0

implies that column a of ω must be (0) for every a, that is

ker f = (0). Hence, f is injective. Since qQ is positive definite the

set S1 is finite by Corollary 4.3.12, and henceW is finite since f

is injective.
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Lemma 4.3.14. Let Q be a quiver whose underlying graph is a

Dynkin diagram, let x be a positive root of qQ, and let a be a vertex

of Q0. Then either ζa(x) is positive or x = ea.

Proof. Since x is a root of qQ we have that qQ(x) =

〈x, x〉 = 1. Then by Proposition 4.3.9 (ii) we get qQ(ζa(x)) =

〈ζa(x), ζa(x)〉 = 〈x, x〉 = 1, and hence ζa(x) is also a root of

qQ. By Theorem 4.3.11 the quadratic form qQ is positive definite,

and hence:

qQ(x± ea) = 〈x± ea, x± ea〉 = qQ(x) + qQ(ea)± 2〈x, ea〉

= 1 + 1± 2〈x, ea〉 = 2(1± 〈x, ea〉) ≥ 0.

This implies −1 ≤ 〈x, ea〉 ≤ 1. Since 〈x, ea〉 ∈ Z we only have

three possibilities; 〈x, ea〉 = 1, 〈x, ea〉 = 0 or 〈x, ea〉 = −1. If

〈x, ea〉 = 1 we get that qQ(x− ea) = 0, which implies x = ea.

Now, if 〈x, ea〉 ≤ 0 we have that ζa(x) = x− 2〈x, ea〉 > 0 since

x > 0.

In particular, the previous lemma shows that if Q is a quiver

whose underlying graph is a Dynkin diagram, the reflection ζa

sends roots of qQ onto roots of qQ.

Let Q be a quiver, and let a1, . . . , an be some numbering of

its vertices. An element c = ζan · · · ζa1 of the Weyl group W is

called a Coxeter transformation. Since ζ2
ai
= 1 we have that c−1 =

ζa1 · · · ζan .

Lemma 4.3.15. Let Q be a quiver whose underlying graph is a

Dynkin diagram, and let c be its Coxeter transformation. Then

(i) there exists no nonzero vector x ∈ Qn such that c(x) = x.

(ii) if x 6= 0, then there exists some integer s ≥ 0 such that the

vector cs−1(x) > 0, but cs(x) < 0. Also, there exists some

integer t ≥ 0 such that c−t−1(x) > 0, but c−t(x) < 0.
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Proof. (i): Suppose by contradiction that x 6= 0 is such that

c(x) = x. By the definition of the reflections ζa for a ∈ Q0, the

reflections ζan , . . . , ζa2 do not change the a1th coordinate of x, so

we have that (ζa1(x))a1 = (c(x))a1 = xa1 . Hence, ζa1(x) = x. The

same argument holds for 1 ≤ i ≤ n, that is ζai(x) = x. Then by

Corollary 4.3.8 we get ζai(x) = x− 2〈eai , x〉eai = x. Hence, we

must have 〈eai , x〉 = 0 for all i ∈ {1, . . . , n}. Since eai 6= 0 it is

clear by the definition of 〈 , 〉 that x = 0, which is a contradic-

tion.

(ii): By Theorem 4.3.11 the quadratic form qQ is positive def-

inite. Then by Lemma 4.3.13 the Weyl groupW is finite. Hence

there must exist some integer h such that ch = 1. Suppose all

the vectors x, c(x), . . . , ch−1(x) are positive. Then clearly y =

x + c(x) + · · · + ch−1(x) is positive, and in particular nonzero.

Then observe that c(y) = y, which contradicts (i). Hence there

exists a least integer s such that cs−1(x) > 0 and cs(x) < 0,

0 ≤ s ≤ h− 1. Similarly, find the integer t as required.

Lemma 4.3.16. Let Q be a quiver whose underlying graph is a

Dynkin diagram, and let c be its Coxeter transformation. Let x denote

a positive root of the quadratic form qQ. Then

(i) c(x) < 0 if and only if x = ζ1 · · · ζi−1(ei) for some 1 ≤ i ≤ n.

We denote pi = ζ1 · · · ζi−1(ei).

(ii) c−1(x) < 0 if and only if x = ζn · · · ζi+1(ei) for some 1 ≤ i ≤

n. We denote qi = ζn · · · ζi+1(ei).

Proof. (i): Suppose c(x) = ζn · · · ζ1(x) is not a positive vector.

Then there must exist a least integer 1 ≤ i ≤ n such that

ζi−1 · · · ζ1(x) > 0, but ζi · · · ζ1(x) < 0. By the remark follow-

ing Lemma 4.3.14 we have that ζ1(x) is a root of qQ. Preceding

similarly we get that ζi−1 · · · ζ1(x) is a root. Since, by assump-
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tion, ζi · · · ζ1(x) < 0 we must have ζi−1 · · · ζ1(x) = ei by Lemma

4.3.14. Hence

x = (ζi−1 · · · ζ1)
−1(ei) = ζ1 · · · ζi−1(ei).

Now suppose x = ζ1 · · · ζi−1(ei). Then c(x) =

ζn · · · ζiζi−1 · · · ζ1ζi−1 · · · ζ1(ei). The reflection ζi is the only

reflection affecting the element in coordinate i, and ζi appears

only once. Hence c(x) = −ei < 0.

(ii): The proof is the similar to the proof of (i).

We can use the last two results to collect all positive roots

of the quadratic form of a quiver whose underlying graph is

a Dynkin diagram. This will become important because of the

predicted one-to-one correspondence between these roots and

the isomorphism classes of indecomposable objects of repk Q.

Proposition 4.3.17. Let Q be a quiver whose underlying graph is a

Dynkin diagram, and let c be its Coxeter transformation.

(i) Let mi denote the least integer such that c−mi−1(pi) < 0, where

pi is as in Lemma 4.3.16. Then the set

{c−s(pi) | 1 ≤ i ≤ n, 0 ≤ s ≤ mi}

equals the set of all positive roots of qQ.

(ii) Let ni denote the least integer such that cni+1(qi) < 0, where qi

is as in Lemma 4.3.16. Then the set

{ct(qi) | 1 ≤ i ≤ n, 0 ≤ t ≤ ni}

equals the set of all positive roots of qQ.

Proof. (i): Observe that since c−s(pi) =

(ζn · · · ζ1)
−sζ1 · · · ζi−1(ei) > 0 we must have c−s(pi) = ei.
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Hence it is clear that c−s(pi) is a positive root of qQ. Then it

remains to show that all positive roots of qQ is of this form.

Let x be a positive root of qQ. By Lemma 4.3.15 there exists

some integer s such that cs−1(x) > 0, but cs(x) < 0. Hence,

recalling the remark following Lemma 4.3.14, it is clear that

cs−1(x) is also a positive root of qQ. Then by Lemma 4.3.16 we

get c(cs−1(x)) = cs(x) < 0 if and only if cs−1(x) = pi for some

1 ≤ i ≤ n. Hence we must have x = c−s+1(pi), and s− 1 ≤ mi.

(ii): The proof is similar to the proof of (i).

4.4 G A B R I E L’ S T H E O R E M

Now we are almost ready to state and prove Gabriel’s theorem.

We only need one last definition, and a few more results.

Definition 4.4.1. Let V = (Vi, fα)i∈Q0,α∈Q1 be a representation

of a finite, connected and acyclic quiver Q. The dimension vector

dim V is defined to be

dim V =


dim V1

...

dim Vn

 ∈ Zn,

where n = |Q0|.

Using the above definition and the notation established in the

previous section, we will now reformulate Theorem 4.2.6. This

reformulation connects the reflection functors and S+/−
a and the

reflections ζa for a sink/source a.

Theorem 4.4.2. Let Q be a finite, connected and acyclic quiver, and let

V = (Vi, fα)i∈Q0,α∈Q1 be an indecomposable representation in repk Q.

(i) If a is a sink in Q we have two possible cases:
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(a) S+a (V) = 0 if and only if V ' S(a) and dim S+a (V) 6=

ζa(dim V) < 0.

(b) S+a (V) is indecomposable and dim S+a (V) = ζa(dim V).

(ii) If a is a source in Q we have two possible cases:

(a) S−a (V) = 0 if and only if V ' S(a) and dim V 6=

ζa(dim V) < 0.

(b) S−a (V) is indecomposable and dim S−a (V) = ζa(dim V).

Corollary 4.4.3. Let Q be a finite, connected and acyclic quiver, let

{a1, . . . , an} be an admissible sequence of sinks and let V be an in-

decomposable object in repk Q. Let mj = ζaj · · · ζa1(dim V) and

Wj = S+aj
· · · S+a1

(V).

(i) If b ≤ i ≤ n and mi > 0, then mb > 0, Wb is an indecompos-

able object in repk Q and dim Wb = mb.

(ii) If c(dim V) > 0, then C+(V) is an indecomposable object in

repk Q and dim (C+(V)) = c(dim V).

Proof. (i): Let b ≤ i ≤ n and suppose mi = ζai · · · ζa1 > 0.

Suppose mb < 0. This would imply mi < 0 since ζai · · · ζab+1

leave the coordinates a1, . . . , ab unchanged. This is a contradic-

tion, and it is clear that we must have mb > 0. The fact that

Wb is indecomposable in repk Q and that dim Wb = mb follows

from consecutive use of Theorem 4.4.2.

(ii): Follows from (i) by setting i = n.

A similar statement holds for {a1, . . . , an} an admissible se-

quence of sources.

The next two results will be indispensable in our proof of

Gabriel’s Theorem.
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Lemma 4.4.4. Let Q be a quiver such that the path algebra kQ is

of finite representation type. Then the quadratic form qQ is positive

definite.

Tit’s proof. Consider the representations V = (Vi, fα)i∈Q0,α∈Q1 ∈

repk Q having dim V = x = (xi)i∈Q0 and let |Q0| = n. Then

Vi ' kxi for all i ∈ Q0. If we fix a basis on each vector space

Vi the representation V is completely determined by the set of

matrices {Mα}α∈Q0 , where Mα is the matrix corresponding to

the linear map fα : Vs(α) → Vt(α). Let gi denote any non-singular

xi × xi-matrix over k and let Bi be the fixed basis of Vi. Then

gi takes the basis Bi to some other basis B′i of Vi. Consider the

diagram

Vs(α)
Mα //

gs(α)

��

Vt(α)

gt(α)

��
Vs(α) Vt(α)

(12)

Let M be the manifold of all sets of matrices Mα over k for α ∈

Q1, and let G be the group of all sets of non-singular matrices gi

over k for i ∈ Q0. By diagram (12) it is clear that the action of

G on M must be M′α = gt(α)Mαg−1
s(α). The group G permutes the

elements of M. Let Mα be an element of M. Then G makes Mα

move in a fixed path, this path is called the orbit of Mα, or Mα’s

orbit in G.

We next claim that two objects of repk Q with the given dimen-

sion vector x are isomorphic if and only if the sets of matrices

{Mα}α∈Q1 corresponding to them lie in the same orbit in G. Let

V, V′ be objects in repk Q such that dim V = x = dim V′. Then
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Vi ' V′i ' kxi for all i ∈ Q0. It is clear that V ' V′ if and only if

the following diagram commutes for every α ∈ Q1.

Vs(α)
Mα //

gs(α)

��

Vt(α)

gt(α)

��
Vs(α)

M′α // Vt(α)

(13)

That is, V ' V′ if and only if M′α = gt(α)Mαg−1
s(α), which means

Mα and M′α are in the same orbit of G. Since this holds for every

α ∈ Q1 that proves the claim.

By assumption the path algebra kQ is of finite representa-

tion type, which implies by Corollary 2.4.10 that there are only

finitely many isomorphism classes of indecomposable represen-

tations in repk Q. In particular there are only finitely many iso-

morphism classes of indecomposable representations V having

dimension vector dim V = x. Hence we get by the above claim

that the elements of M are divided into only a finite number of

orbits in G.

Consider G0 ⊂ G, where G0 = {λIx1 , . . . , λIxn | λ ∈ k∗}. Ob-

serve that for g ∈ G0 we get M′α = gt(α)Mαg−1
s(α) = λλ−1Mα =

Mα for all α ∈ Q1. Hence, G0 acts on M as the identity.

We get an onto morphism from G to each of the Mα’s orbits

in G, so dim M ≤ dim G. Since G0 acts on M as the identity we

actually get dim M ≤ dim G − 1. This argument requires the

representations to be over an infinite field. The argument holds

anyway, but requires further arguments. We have that dim G ≤

∑
a∈Q0

x2
a, while dim M = ∑

α∈Q1

xs(α)xt(α). Hence, by the above,

∑
α∈Q1

xs(α)xt(α) ≤ dim G− 1 ≤ ∑
a∈Q0

x2
a − 1.
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This shows qQ(x) ≥ 1 > 0 for x 6= 0. Now, what remains is to

show that qQ(x) ≥ qQ(|x|) to conclude that qQ is positive defi-

nite. Observe that

qQ(x) ≥ qQ(|x|)⇔ ∑
α∈Q1

xs(α)xt(α) ≤ ∑
α∈Q1

∣∣∣xs(α)

∣∣∣∣∣∣xt(α)

∣∣∣ .

The latter clearly holds, so qQ is positive definite.

Lemma 4.4.5. Let Q be a quiver whose underlying graph is a Dynkin

diagram. Then the mapping V → dim V is a one-to-one correspon-

dence between the set of isomorphism classes of indecomposable objects

in repk Q and the positive roots of qQ.

Proof. Let Q be a Dynkin diagram, {a1, . . . , an} be an admissible

numbering of the vertices of Q and let V be an indecomposable

object in repk Q such that dim V = x. We start by showing that x

is a positive root of qQ, before we show that the mapping is both

injective and surjective.

By Theorem 4.3.11 the quadratic form qQ is positive defi-

nite. Hence there exists a least integer s such that cs−1(x) =

(ζan · · · ζa1)
s−1(x) > 0, but cs(x) < 0 by Lemma 4.3.15 (ii). This

implies that there must exist some least 0 ≤ t ≤ n − 1 such

that ζat · · · ζa1cs−1(x) > 0, but ζat+1 · · · ζa1cs−1(x) < 0. Now,

by consecutive use of Corollary 4.4.3 (ii) we get that C+(V),

(C+)2(V), . . . , (C+)s−1(V) are indecomposable objects in repk Q

and that

dim (C+)j(V) = cj(x)

for every j ≤ s − 1. Observe that ζat · · · ζa1cs−1(x) =

ζat · · · ζa1dim (C+)s−1(V) > 0. Hence V′ =

S+at
· · · S+a1

(C+)s−1(V) is an indecomposable object of

repk(σat · · · σa1 Q) and

dim V′ = dim (S+at
· · · S+a1

(C+)s−1(V)) = ζat · · · ζa1cs−1(x)
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by Corollary 4.4.3 (i). By the way t was chosen it is clear that

ζat+1(dim V′) < 0, and hence V′ ' S(at+1) by Theorem 4.4.2

(i)(a). Then clearly dim V′ = ζat · · · ζa1cs−1(x) = eat+1 and

x = c−s+1ζa1 · · · ζat(eat+1) = c−s+1pat+1
. Then by Proposition

4.3.17 the vector x = dim V is a positive root of qQ. Hence the

mapping V → dim V sends an indecomposable object of repk Q

to a positive root of qQ.

Next, let us show that the mapping is injective. We know

that V′ = S+at
· · · S+a1

(C+)s−1(V) is indecomposable, and in

particular V′ ' S(at+1). Then Theorem 4.2.6 implies V '

(C−)−s+1S−a1
· · · S−at

(S(at+1)). Observe that the integers s, t only

depend on the vector x = dim V. Then if V, W are two non-

simple indecomposable representations having dim V = x =

dim W we get that

S+at
· · · S+a1

(C+)s−1(V) ' S(at+1) ' S+at
· · · S+a1

(C+)s−1(W),

and hence

V ' (C−)−s+1S−a1
· · · S−at

(S(at+1)) 'W.

If V, W are two simple representations having dim V = x =

dim W it is obvious that V 'W. Thus the map is injective.

The last step is to show that the mapping is surjective. Let

x be a positive root of qQ. We then need to show that x is the

dimension vector of some indecomposable representation V. By

Proposition 4.3.17 the vector x = c−spai+1
= c−sζa1 · · · ζai(ei+1)

for some integers s, i. Then the indecomposable representation

V = (C−)sS−a1
· · · S−ai

(S(ai+1)) satisfies dim V = x.

The proof of Gabriel’s Theorem will be closely connected to

the previous results.
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Theorem 4.4.6 (Gabriel’s Theorem). Let Q be a quiver. The path

algebra kQ is of finite representation type if and only if the underlying

graph Q of Q is a Dynkin diagram.

Proof. Let Q be a quiver whose underlying graph is a Dynkin

diagram. Then qQ has only finitely many roots by Corollary

4.3.12, which implies that there are only finitely many isomor-

phism classes of indecomposable objects in repk Q by Lemma

4.4.5. By Corollary 2.4.10 this implies that the path algebra kQ

has only finitely many indecomposable finitely generated left

kQ-modules, so kQ is of finite representation type.

Suppose kQ is of finite representation type. Then by Lemma

4.4.4 the quadratic form qQ is positive definite. This implies by

Theorem 4.3.11 that the underlying graph Q of Q is a Dynkin

diagram.
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