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A B S T R A C T

Stochastic dual dynamic programming (SDDP) has become a popular
algorithm used in practical long-term scheduling of hydro power sys-
tems. The SDDP algorithm is significantly more computationally de-
manding than most heuristic-based scheduling methods, but can be
designed to take advantage of parallel processing. This thesis presents
a novel parallel scheme for the SDDP algorithm, where the stage-wise
synchronization point traditionally used in the backward iteration of
the SDDP algorithm is either partially or fully relaxed. The proposed
scheme was tested on a realistic model of a Norwegian water course,
proving that the partial synchronization point relaxation significantly
improves parallel efficiency.
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S A M M E N D R A G

Stochastic dual dynamic programming (SDDP) har blitt en populær
algoritme til bruk i langtidsplanlegging innen vannkraft. SDDP-algoritmen
er betydelig mer ressurskrevende enn de fleste heuristikk-baserte plan-
leggingsmetoder, men algoritmen er egnet for parallellprosessering.
Tradisjonell parallellisering av denne algoritmen har synkronisering
mellom hvert tidssteg i bakoveriterasjonen. Den foreslåtte måten å
parallellisere på fjerner denne synkroniseringen helt eller delvis. Den
er testet på en realistisk modell av et norsk vassdrag, og resultatene
viser at ved å delvis fjerne synkroniseringspunktene øker den paral-
lelle effektiviteten betydelig.
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Part I

I N T R O D U C T I O N

The first part aims at giving the reader an understand-
ing of the motivation and the application of hydro power
scheduling.
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1
I N T R O D U C T I O N

The goal of optimal long-term hydro power scheduling (LTHS) is es-
sentially to find the optimal operation strategy, which in this paper
means to find the strategy that minimizes the expected cost of exter-
nal energy sources used to meet a certain demand, while all relevant
physical and legislative constraints are met. By operation strategy we
typically mean how much water to store in the reservoirs contra how
much water to be used for production at any given time. Other factors
include unknown future water inflow into the reservoir and variable
energy prices. The scheduling period has to be long enough to re-
flect storage capability of the reservoirs, and the time resolution fine
enough to capture the basic hydro system constraints. That is, if the
scheduling period is too short the reservoir storage levels are never
challenged, and if the time resolution is not fine enough factors such
as maximum production levels, variable inflow and energy prices
might get too inaccurate. The LTHS problem can be formulated as
an optimization problem with three characteristic properties. Firstly,
it is dynamic in time due to the ability to store water in hydro reser-
voirs. That is, there is a link between reservoir discharge decisions
taken at a given time and the future cost of operating the system. If
more water is used for production today we naturally have less water
for tomorrow which means future cost might be higher. Secondly, it
is stochastic since the future inflow to reservoirs are unknown. And
finally, the hydro system normally involves multiple reservoirs. Since
future hydro inflow is unknown, todays optimal decision depends on
what might happen in the future. The future also depends on choices
made today, as future reservoir levels are influenced by the produc-
tion amount today.

Numerous solution strategies has been applied to the LTHS prob-
lem. One algorithm proposed over 50 years ago, using Stochastic Dy-
namic Programming (SDP) [16], which fully discretizes the planning
horizon in time, different inflow scenarios and various reservoir stor-
ages. This causes a so called “curse of dimensionality” which makes
computational effort increase exponential with the number of reser-
voirs. In spite of its shortcoming, models based on SDP are widely
used by the power market participants, e.g. in the Nordic power mar-
ket. These models are based on some kind of reservoir aggregations
and depend on heuristics to address the multi-reservoir aspect in a
realistic manner.

In order to avoid the dimensionality problem of the SDP algorithm
an approach known as stochastic dual dynamic programming (SDDP)

3
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4 introduction

Figure 1: Schematic view of a hydro system.

was presented in [12]. Currently, SDDP seems to be the state-of-the-
art method for solving the LHTS problem in regions where hydro
power is the dominant technology for production of electric power. In
SDDP one avoids having to fully discretize the state space. SDDP is a
sampling-based variant of multi-stage Benders decomposition, where
an outer future cost function is constructed iteratively for each time-
stage by adding Benders cuts. Thus the problem can be decomposed
into small linear programming (LP) problems that can be solved in-
dependently, which in turn makes it suitable for parallel processing.
SDDP is the algorithm used in this paper. An efficient hydro power
scheduling algorithm is important because these are used for weekly
(sometimes even close to daily) scheduling in hydro power compa-
nies today. Thus, it is problematic if the algorithm takes several days
to run.

Figure 1 shows a simplified hydrothermal system, consisting of 4

hydro modules, each with a reservoir storage, inflow and production
amount. The operation strategy typically consists of deciding how
much water that should be used to produce energy at any given time.
This means balancing the water levels maintained in the water reser-
voirs such that spillage and deficit is avoided, while producing energy
when the cost of using alternative energy sources is high, as shown
in figure 2.

Some parallel implementation of SDDP has already been done, i.e.
[15], but in this work there has been looked at a subtle difference.
Where [15] synchronized the backward cycle at each stage, the paral-
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Figure 2: Decision process of hydrothermal systems. [15]

lel algorithm looked at in this paper partially and fully relaxes these
synchronization points.
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Part II

T H E O RY

This part gives an introduction to the mathematical theory
used in this paper.
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2
T H E O RY

2.1 the sddp algorithm

2.1.1 History

Initially, hydrothermal operation system planning was solved by SDP
(Stochastic Dynamic Programming) [16], where the states variables
was fully discretized in time, inflow scenarios and reservoir levels,
which causes computational effort to increase exponentially. This has
later been addressed by SDDP (Stochastic Dual Dynamic Program-
ming), which introduces sampling to deal with the dimensionality of
the stochastic variables.

2.1.2 Model Description

The problem consists of a hydro system, which could consists of sev-
eral modules, each having a reservoir, a power system, and maximum
production capacity and a demand of energy within some time frame
that has to be met. This energy could be attained either by producing
energy in the hydro system by emptying the reservoir or by buy-
ing external energy from other energy sources. A planning horizon
could span over several years. The wanted result is the production
policy that will meet the demand at the lowest expected cost over the
planning horizon. Water inflow is unknown and is simulated through
some sort of distribution.

Mathematically this can be formulated as

min E

{
T∑

t=1

cTt xt −φ(VT )

}
, (1)

where xt is a vector of all decision variables at time t, ct are a vector
of the costs associated with the decision variables. φ(VT ) is the value
of the remaining water in the reservoirs at the end of the planning
horizon. The expectation is to be taken over all stochastic variables,
which in this paper is only in inflow, but could also be uncertainty in
demand and energy prices.

The idea is to discretize the planning horizon into stages, say weeks,
and then solve one stage at a time, using the reservoir storage at the
end of one stage as the initial reservoir at the next stage. At all future
stages water inflow is unknown, so one is interested in testing several
different inflow-scenarios as the consequence of a decision at time t
depends on the inflow at a later time. For example, if future inflow

9
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10 theory

is high, one may want to release water to produce energy now, as to
avoid spillage at a later stage and thus have wasted potential energy.
If future inflow is low, emptying the reservoir now might remove the
opportunity to produce energy at a later time when the price of en-
ergy is higher. The uncertainty of future inflow must be addressed.
This is done by simulating several different inflow-scenarios at each
stage (samples generated from a distribution). Thus, the entire prob-
lem is divided in both time and inflow-scenarios, as in figure 5, where
the sub problem at a given time and inflow scenario is called state.

The sub problem at each state is to minimize the expected total cost,
which again can be divided into current cost and future cost, where
current cost is the cost of buying external energy to meet the current
demand in the period between the beginning of this stage until the
end of this stage, while the future cost is the expected cost of buying
external energy to meet the current demand from the end of this
stage until the end of the planning horizon, given the reservoir levels
at the end of this stage. The more water used today means lower cost
today, but it also means lower reservoir levels at the end of this stage
which again causes higher future cost. The problem is this to find the
optimal production level with minimize the total cost.

The future cost as a function of states variable (reservoir levels) at
a stage is initally unknown and is piecewise approximated iteratively
by simulation for a better and better approximation.

2.1.3 Dual Dynamic Programming Scheme

The future cost can as mentioned be piecewise linearly approximated.
The idea is the following: We initially run the simulation where the
future cost is set to zero. By running the simulation we can find some
measure of the value of water at a given stage. Based on these val-
ues we give an estimate to the future cost in the preceding stage. Then
we run the simulation again with a better approximation of the fu-
ture cost, gain new information of water value, and get even better
approximation of the future cost. This continues until convergence is
reached.

Figure 3: A single cut in the future cost function [12].

[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]



2.1 the sddp algorithm 11

Figure 4: Several cuts of the future cost function [12].

In a simplified scenario with only one hydro module, the future
cost function will look something like in figures 3 and 4. The lower
the reservoir level is at the end of current week, the more money we
have to expect to use to meet future energy demands. Energy prices
will increase the more energy is bought, which means that the FCF
will not be linear. We can however make a linear approximation, idea
illustrated in figures 3 and 4. If we imagine an arbitrary solution in
some state with a (thus far) optimal reservoir level x, which will result
in the simulation at the cost y. We can get the slope around this point
by taking the derivative at this point. By having the slope and a point
(x,y), we have one addition to the FCF. This is referred to as a cut. By
running several simulations with different inflow scenarios we will
get different cuts, and the more cuts we get the better approximation
to the FCF we get, as seen in figure 4.

If we have more than one hydro module, all these ideas will be the
same but in multiple dimensions.

Because the marginal energy prices is non-decreasing with the amount
of energy bought, the FCF is convex. This means that the linear ap-
proximation will always be lower or equal to the actual function. This
fact is used to get a lower bound on the solution which will be used
as a convergence criteria.

The whole problem is solved iteratively, consisting of a forward and
a backward cycle, where each iteration gives a better approximation
to the FCF. The forward-cycle produces the initial inflow-scenarios
and initial reservoirs at all stages, as illustrated in figure 6.

2.1.4 Forward Cycle

Each state is solved to find the current optimal solution given the
inflow scenario and the cuts created so far, to get the initial reservoir
for the next stage. This cycle is also used to find an upper limit Zmax

for the optimal solution. Assuming equal probability for the different
inflow scenarios, Zmax is found by taking the weighted sum over the
current cost of all stages,

Zmax =
1

n

∑
i

∑
j

current cost in stage i and inflow scenario j,
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Figure 5: Notation.

Figure 6: Forward cycle dependency.

where n is the number of inflow scenarios. This is an upper limit as
it is a possible solution. However, because of the sampling, there is
some uncertainty to this estimation of the upper limit of the total cost.
Therefore a confidence interval on this estimation is calculated.

2.1.5 Backward Cycle

Backward cycle is used to create the approximation for the future
cost function. At each state a Benders cut is created, and used as a
constraint in all states at the preceding stage. At each state a fixed
number of inflow scenarios are created, where the weighted results
of the LP-problems is used to generated one Benders cut. Zmin is also
found in the backward cycle as the objective value of the optimal so-
lution in the first stage. This is a minimum as the FCF-approximation
will always be less than or equal to the true future cost. As in [12], a
solution is said to be found when Zmin lies inside a 95% confidence
interval for Zmax.
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2.1 the sddp algorithm 13

Figure 7: Backward cycle dependency. A Benders Cut is created at each state
in stage k and used in all states at stage k− 1. This is usually re-
ferred to as cut sharing and is a central part of the SDDP-algorithm.
[9]

2.1.6 The Scheduling Problem

2.1.6.1 Problem formulation

The scheduling problem can be formulated as described in [8] and
restated below:

αt(xt) = Evt
{min[Zt(ut) +αt+1(xt+1)]}

Subject to:

xt+1 = ft(xt, vt,ut)

gt+1(xt+1) 6 0

ht(ut) 6 0

where:
αt(xt) expected value of operation cost from end of stage t to T assuming optimal operation

E expected value with respect to all possible inflow sequences vt
Zt(ut) operation cost at stage t associated with decision ut

ut decision variables for stage t

xt reservoir storage at the beginning og stage t

vt inflow during stage t

T number of time stages in scheduling period

ft(xt, vt,ut) state transition equation

gt+1(xt+1) constraints on the state variables in stage t+ 1

ht(ut) constraints on the decision variables.
αt(xt) is the Future Cost Function and is unknown, and is approx-

imated with Benders Cuts. These cuts takes form as additional con-
straints in the LP-problem. The operation cost Zt(ut) is the cost of
energy from external energy sources. The decision variables ut are
mainly three for each hydro module. One for the amount of water in
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a specific reservoir, one for the amount of water used for production
in a reservoir, and one for possible spillage in a reservoir. Some more
decision variables are added, which will be addressed later.

Each stage can be divided into even smaller stages, (i.e. weeks di-
vided into days), but where the inflow samples are still generated
weekly, such that one LP-problem still is a deterministic problem
within a week, and where each day has its own variables. That is, one
reservoir has seven variables for each of reservoir storage, production
and spillage. One for each day. The modelling presented here is sim-
ilar to what is formulated in hydro power scheduling tools used by
producers in the Nordic power market [5]. See appendix for complete
examples of LP-problems.

The slope of a cut is obtained by using the shadow prices of the LP-
solution in the state after the current state. This means we first have
to solve for week two to get a cut for week one. However we first
need to solve for week one to get an initial reservoir for week two.
This creates a problem where we first solve with no cuts, then create
cuts, then solve again with the new cuts, then creates additional cuts,
and keep repeating to get a better and better approximation to the
FCF and closer to an optimal solution. We say convergence is reached
when an upper bound and a lower bound of the optimal solution are
sufficiently close. The upper bound of the solution is found by taking
the weighted average of the current cost over all states. This is an
upper bound because it is a possible solution. And a possible solution
have to be an upper bound of the best possible solution. The lower
bound is found by taking the objective value at the first stage. This is
a lower bound since it is the sum of current cost now and proposed
future cost from the FCF which will always be a lower bound to the
actual future cost.

2.2 lp-formulation

As described earlier, for a given realization of inflows and a week t,
the decomposition in the SDDP algorithm leads to a LP-problem for
week t which is formulated as the follows.

2.2.1 Objective Function

The objective function, Minimize

J = α+
∑
j

cjyj (2)

where α denotes the future expected cost, yj the amount of external
energy bought from thermal unit j, and cj the cost associated with
it. Each thermal unit j has an associated cost and capacity. Thermal
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2.2 lp-formulation 15

units are used as the source of energy that can be bought to meet the
demand.

2.2.2 Energy Balance

Energy balance, which is that the sum of total energy produced plus
the sum of external energy bought equals the demand.

∑
i

pix
i
d +
∑
j

yj = d (3)

Where xid is the volume of water discharged for module i, pi is a
constant which determines the amount of energy produced per vol-
ume water discharged for module i and d is the demand of energy
that has to be met.

2.2.3 Water Balance

For each hydro module we get a water balance equation which asserts
that total inflow of water + initial reservoir levels - discharge of water
= remaining reservoir level. The inflow to a hydro module consists
of both natural inflow (the stochastic variable) and inflow from the
discharge and spillage from hydro modules that are located upstream
of this module, as illustrated in the hydro topology in figure 1.∑

j∈Ji

(xjd + xjs) − x
i
d − xis + x

i
end = ai + x

i
init. (4)

where xinit is the initial reservoir level, xd is the discharge level, Ji is
the space of hydro modules leading into module i, xs is the spillage
levels, xend is the reservoir level at the end and ai is inflow to reser-
voir i, which is a stochastic variable in the overall problem. However,
for each decomposed LP-problem, ai is known.

2.2.4 Cuts

The cuts used to create the FCF-approximation are represented as
constraints in the LP-problem. These cuts also create a lower bound
on the actual future cost. The more of these cuts we have the better
approximation we get. A single cut takes the form

α−
∑
i

φi
jx

i
end > bj, (5)

where α is the variable that represents the future cost in the objective
function (see equation 2), φi

j is the slope for module i in cut j, and bj
the constant from cut j. See figures 3 and 4 for illustrations.
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2.2.5 Variable Limits

We have physical limits associated with the hydro system. There is
a minimum ximin and maximum ximax reservoir water levels and
a maximum discharge xmax

d level within a week. There is a also a
maximum capacity ymax

j for the thermal units. For all other variables
the lower limit is 0 and the upper limit is∞.

2.2.6 Summary

The complete LP-problem is thus
Minimize

J = α+
∑
j

cjyj (6)

Subject to∑
i

pix
i
d +
∑
j

yj = d (7)

∑
j∈Ji

x
j
d − xid − xis + x

i
end = a+ xiinit (8)

α−
∑
i

φi
jx

i
end > bi (9)

ximin 6 xiend 6 ximax (10)

xmin
d 6 xd 6 xmax

d (11)

0 6 yj 6 y
max
j (12)

.

2.2.7 Inflow Sampling

Inflow Samples are in this project generated by using a single set of
30 inflow scenarios that spans over 52 weeks, and creating a normal
distribution of this as in [7]. This may cause negative inflow-samples,
which may lead to LP-problems that are impossible to solve. This is
fixed by creating additional variables in the LP-problem, a variable
that represents an external source of water, but when used gives a
very high cost in the objective function, such that it is only used when
no other option is viable.

The modified water balance for a module i then becomes

xiinit +
∑
j∈Ji

x
j
d − xid − xis + x

i
end + xie = a, (13)

where xie is the amount of external energy bought for module i. To
assure that this is only used when no other option is viable, this vari-
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2.3 intrastage time resolution 17

able is assigned a high cost in the objective function, which modified
will take this form

J = α+
∑
j

cjyj +
∑
i

Mxie, (14)

where M has to be large enough so that xie > 0 only when no other
possible solution is viable.

2.3 intrastage time resolution

It is also of interest to use a lower time resolution within one problem.
That is, instead of just dividing one week into seven days, creating
seven different LP-problems, we can model that with a larger LP-
problem. If we look at days instead of weeks for example, we get
seven power balances (a daily demand that has to be met), and seven
water balances for each hydro module.

2.4 planning horizon water value

At the end of the planning horizon we want some way to assert value
to remaining water, so the optimal solution does not always cause
empty reservoirs at the last stage. The longer the planning horizon,
the less impact this approximation has to the optimal policy at first
stag. In this paper this is done by first running the simulation with
no value asserted to the water at the end of the planning horizon,
then by looking at the marginal water values of that solution, we use
the average of the marginal water value at the same day at the earlier
years. This causes a good enough approximation for this work.

2.5 lp-relaxation

For each iteration the list of cuts grows proportionally with the num-
ber of iterations, which causes larger LP-problems which takes longer
to solve. For increased efficiency, the actual LP-problem is initially
solved with no cuts, then the cut which is most violated is added
to the LP-problem and re-solved. This is done until no cuts are vi-
olated. A cut is said to be violated when α −

∑
iφ

j
ix

i
end < b, so

by most broken we mean that given a solution {xi}, the cut j where
α−
∑

iφ
j
ix

i
end − b. has the lowest value.

2.6 convergence

By running the forward iteration we get a proposed possible solution
for each inflow scenario at each state, as illustrated in 6. As this solu-
tion is a viable solution, it represents an upper bound on the optimal
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solution, as an optimal solution by definition is the minimum of all
the possible viable solutions. This upper bound J+is calculated by
taking the sum of the average cost over all states at one stage (see 5).
That is,

J+ =
1

NS

T∑
t=1

NS∑
s=1

NM∑
j=1

ctsj y
ts
j . (15)

As the approximation of the future cost function is a lower bound of
the actual future cost, the value of the objective function at the first
stage becomes a lower bound J− of the total cost. That is,

J− = α1 +
∑
j

c0,0
j y0,0

j . (16)

We say that the solutions has converged when the lower bound is suf-
ficiently close to the upper bound. This is chosen to be, as in [12], to
be when the lower bound is inside a 95% confidence interval of the
upper bound. Because of the stochastic inflow, the upper bound cal-
culated above is actually only an estimate of the upper bound. Thus
we create a confidence interval around this estimate by using the es-
timated variance

s2 =
1

NS − 1

T∑
t=1

NS∑
s=1

NM∑
j=1

(ctsj y
ts
j − J+)2. (17)

A 95% confidence interval around J+ is then given by[
J+ − 1.965s, J+ + 1.965s

]
. (18)

Convergence is therefore said to be reached if lower bound J− lies
inside this interval.
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Part III

PA R A L L E L S O L U T I O N

The parallel solution explained
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PA R A L L E L S O L U T I O N

A parallel implementation means having several processors collabo-
rate to solve a single problem. There are two major challenges when
implementing an algorithm in parallel; 1) Being able to break down
the algorithm into several parts, where the parts can run independent
of each other (in parallel). 2) Minimizing the communication between
processors since this has a significant cost attached to it.

Two important metrics in parallel computing is efficiency and speedup,
which measures the quality of the parallel algorithm. Speedup SP is
defined as the factor which runtime has increased from the sequen-
tial execution, p1

pc
, where pc is the runtime with c cores. Efficiency is

defined as the ratio between the number of processors NP and the
speedup, NP

SP
.

As illustrated in figured 6 and 7, at each stage all the LP-problems
are independent of each other. An obvious way to run this in parallel
thus seems to be to calculate on stage at a time, sending one state to
one processor, and advance to the next stage when this stage is done.
In the forward cycle, one stage depends of the preceding stage, as the
water level at the optimal solution of the preceding stage is used at
initial reservoir levels at the current stage.

For the backward cycle, all the cuts created at one stage are used
at a preceding stage. These cuts are used to approximate the future
cost function. We can improve parallelism by simplifying this approx-
imation to lessen the dependencies on stages calculated by other pro-
cessors. This thus however mean that not all cuts are needed at all
times from a mathematical point of view, it just comes at a cost of
potentially worse approximation of the future cost function. One way
could be to wait for all the cuts of the next stage, before starting of
the previous stage. This does create a synchronization point, which
leads to less efficient parallel solution. This mean that at each stage,
all the processors have to wait for all the states at the next stage before
starting on the previous stage.

We use a master processor to designate the decomposed LP prob-
lems to a set of slave processors. The forward iterations is performed
along NS forward samples (illustrated in figure 6). For each time
stage in the backward iterations, the NB backward realizations are
considered for each of the NS states obtained from the previous for-
ward iteration. Thus, it is clear that the backward iteration is more
computationally demanding, as it needs to solve NB as many LP
problems as in the forward iteration. In other parallel implementa-
tions of SDDP applied to the LTHS problem, there seems to be (at

21
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least) two synchronizations points; between stages in both the for-
ward and backward iterations. This has been reduced to 1 synchro-
nization point in this work, only the forward is necessary.

3.1 forward iteration

The forward iteration has to be completed before the backward-cycle
starts, so we get a synchronization points in between the two cycles.
Furthermore, within one inflow scenario the state at t used the solu-
tion at stage t− 1 as its initial reservoir levels. Thus, all of the NS LP
problems formulated in each stage can be solved in parallel. However,
due to the time-sequential coupling along scenario samples in the for-
ward iteration, one cannot expect speedup in the forward iteration if
NP > NS. The designation of LP problems in the forward cycle is
illustrated in figure 8.

3.2 backward iteration

For each evaluated state in a stage t in the backward iteration, a cut
created for stage t− 1 by averaging contributions from the LP prob-
lems solved corresponds to the NB realizations of inflow. Each new
inflow realization will in practice introduce a modest change in the
LP-problems right-hand side. Thus, the LP problem can normally be
solved within a relatively low number of simplex iterations, if the pre-
vious solution basis is available. In this work, the advantage of warm-
starting LP-problems in the backward iteration was appreciated by
letting a designated processor solve allNB problems origination from
a given initial state. Allowing the NB samples from a given state to be
divided between different processors could add flexibility to the par-
allel processing scheme, but one would lose some of the warm-start
advantage. We have focused on limiting the communication between
the processors, and thus, the communication of warm start basis was
not considered. Due to the linearity of the model, a cut created from
sample s1 in stage t− 1 is valid for all states in that stage. Although
convenient from an implementation point of view, it is not mathe-
matically necessary to wait for all processors to create a cut for stage
t− 1 before continuing backwards in time to construct cuts for stage
t− 2. Each additional cut considered for stage t gives a better approx-
imation to the future cost function. However, waiting for all cuts to
be created forces all processors to be synchronized at each stage in
the backward iteration. In presented work, this stage-wise synchro-
nization point in the backward iteration is relaxed, allowing each pro-
cessors to wait for NW cuts, where NW 6 NS. By setting NW = 1

we fully relaxed the stage-wise synchronization point, and no pro-
cessors is unused at any time during the backward cycle. By setting
NW = NS we have full synchronization earlier. For 1 < NW < NS
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we have partial synchronization. The cost of not waiting for all cuts
may be slower convergence, as in more iterations needed before con-
vergence is reached. Different values of NW has been tested in this
paper. The designation of LP problems from master to slave is illus-
trated in figure 9 for NW = 1 and 10 for NW = NS.

The synchronization points after each stage are removed. This way
processor time are utilized more efficiently, as each processor does
not have to wait for others to have finished before proceeding. The
cost is that having less cuts might mean a reduced approximation to
the future cost function, which in turn might lead to more iterations
needed before having reached convergence. The question is whether
using processors more efficiently outweigh the negative effect from
having a lower amount of cuts at each stage. All other parts of the
algorithm is described as above.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 8: Parallel forward cycle delegation.
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3.3 communication

The exact amount of data transferred between processors is explained
here.

3.3.1 Slave to Master

In the forward cycle, the slave has to send the reservoir solutions to
the master to be used as initial reservoir for the next stage. It also has
to send the current cost as described in equation 2 which is used to
calculate the upper bound, as described in chapter 2. This is NM + 1

numbers, as each hydro module has a reservoir, and the current cost
is a single data.

In the backward cycle, the slave sends the new cut it has generated,
which consists of NM + 1 data, as described in chapter 2.

3.3.2 Master to Slave

From master to slave, all new cuts that the master has received for the
stage since the last time it sent data to that slave for that stage. A slave
locally stores all cuts it has ever received. This amount will vary, but
on average it will almost equal the number of inflow scenarios NS

per iteration per stage, as all cuts created will sooner or later be trans-
ferred to the slave, except for the last iteration. It is worth noting that
this is the only part of the algorithm where communication actually
increases with the number of processors.

In the forward cycle, the master also has to send the initial reservoir
to the slave, which is NM data.

So the average total amount of data from master to all slaves in
one iteration is NS(NM + 1)TNSl, since we will have (NSNM) cuts
created for each stage, T stages, which will be sent to NSl number of
slaves.
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3.4 hardware and libraries

All results have been obtained on the Linux cluster Kongull which
consists of 93 compute-nodes, each equipped with 2x 6-core 2.4 GHz
AMD processors and 24 GiB The cluster operating system is CentOS
5.4. For more details see [2]. To solve LP-problems an open source
simplex solver from the Coin-CLP library [1] was used. The solver
uses the dual-simplex algorithm. For parallel communication MPI-
library OpenMPI has been used.

3.5 mpi

For message passing between processors MPI was used. MPI has sev-
eral ways to transfer messages between processors. For this algorithm
it is important that the processors does not have to wait for a match-
ing receive post to continue what they are doing. That is, we want
a processor to initiate a send without having to wait for the mas-
ter processor to actually be ready to receive before continuing doing
other stuff. MPI_Isend serves this purpose, while the standard receive
function MPI_recv was used for receiving messages. The function
MPI_Wait were used where it was necessary to make sure messages
were not overwritten before they were sent. MPI_Wait, MPI_Probe
and MPI_Iprobe were used to wait for a message or test if there are
pending messages to be received.

3.6 details of implementation on message passing

There were some key challenges of the implementation of message
passing.

It was important to minimize the idle times by implementing a
way to trigger a send post without having to wait for a matching
receive post before continuing to do calculations. For example, the
master processor has to be able to trigger a send post to a slave that
is not yet ready to receive that message, without having to wait for
the slave to be ready to receive the message before continuing. We
want a slave to receive a new problem immediately after finishing the
previous problem. We also want a slave to be able to start on a new
problem before a master necessarily have received the solution to the
old problem. The MPI library has a built in support for this, which is
called nonblocking message passing (MPI_Isend and MPI_Irecv).

Another key challenge is the selection of which slave to send the
next problem. Even though we want to be able to delegate new prob-
lems to slaves that are currently busy, we do not want to delegate
more than one problem to an already busy slave, as we want to send a
problem to the slave that is most likely to be ready to solve that prob-
lem first, which will be more uncertain the more jobs that are already
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in queue. The function MPI_Waitany from the standard MPI library
should in theory work quite well for this purpose, but a slower than
expected performance was experienced (which probably has some-
thing to do with buffered messages). This was solved by creating a
FIFO queue of slaves, which was initiated with two instances of every
slave. Every time the master delegates a new problem, it’s delegated
to the first in queue. Every time the master receives a message from a
slave, it is added back into the queue. This asserts that a slave never
has more than two jobs assigned.

In summary, from a slave point of view, the implementation is:
1.) Receive a message with MPI_Recv.
2.) Solve delegated problem.
3.) Send new message with MPI_Isend.

From the master point of view it is the following,

while There is a problem to be solved do Delegate a problem to
first slave in queue with MPI_Isend

if A slave has sent a message then
Receive message with MPI_Recv and add slave to queue.

end if
end while
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

Figure 9: Parallel backward cycle delegation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 10: Parallel backward cycle delegation.
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Part IV

V E R I F I C AT I O N O F C O R R E C T N E S S

The parallelization breaks the deterministic nature of the
algorithm, because which and how many cuts evaluated
at any given state is random (as a result of small fluctua-
tions in computing times), the process of verifying that the
parallelization works correctly is non-trivial. The way it is
done here is by presentation of various results given by
parallelized algorithm and showing that it makes sense.
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4
P R E S E N TAT I O N O F S O L U T I O N

4.1 hydro topology

The hydro system investigated was the one in Nea-Nidelva, which
consists of 12 hydro modules. The hydro topology is shown in figure
11 and the modelling of individual hydro modules are illustrated in
Figure 12.

31
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Figure 11: Hydro topology.
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Figure 12: Hydro module illustration, see table 1 for more information.

M Reservoir capacity (Mm3)

P Max power (MW)

Q Max discharge (m3/s)

E Energy equivalence (kWh/m3)

tr Yearly average inflow (Mm3/year)

Table 1: Hydro module description. Only values used in this paper are ex-
plained.

4.2 inflow, demand and thermal cost profile

The inflow data that has been used to generate inflow samples can
be seen in figure 13, and the inflow samples generated can be seen
in figure 14. As can be seen, the variance is somewhat lower in the
generated samples than in the original data.

Figure 16 shows the demand for energy (load) and how it varies
throughout the year. Figure 15 shows the marginal cost profile for
thermal energy. Both the load and thermal cost profile are chosen
rather arbitrarily, but chosen such that the total yearly demand ex-
ceeds the energy produced from the hydro system alone to avoid a
trivial solution.

4.3 verification of correctness

Usually, verification of the parallel implementation being correct con-
sists of verifying that it gives the same exact result as the sequen-
tial implementation. However, this parallel implementation has some
non-deterministic aspects which are impossible to reproduce. The
amount of cuts used by a processor at one stage can differ since
the time spent by one processor at one state is not deterministic, the
actual outcome can change. Thus the verification done here is by il-
lustrating various results and see that they look sensible. Another
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Figure 13: Inflow data used to generate inflow samples.

Figure 14: Generated inflow samples

Figure 15: Cost profile of thermal energy.

thing worth mentioning is that a sequential implementation for this
algorithm was never made. Sequential here means running one two
processors, one acting as master. But for all practical purposes this
would equal the algorithm run at a single a processor.

4.4 settings

All solutions presented in this section is acquired with the following
settings. - 12 Processors (11 slaves)
- Planning horizon of 3 years where one stage is one week, in total
156 stages
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- 7 intraweek stages (days)
- Full synchronization
- Generated inflow samples as presented in Figure 14

- Hydro topology as seen in Figure 11

- Thermal cost profile as seen in Figure 15

- Demand profile as seen in Figure 16

- Initial reservoir set to 60% of reservoir capacity

Figure 17 shows the reservoirs levels for the final solution. As can
be seen, the reservoir levels are high in the season where inflow is
high, and then is gradually emptied such that it is almost empty right
before the inflow becomes high again the next year. This is what to
be expected in a good solution.

Figure 18 shows the usage of external water sources (as described
in Chapter 2).

Figure 19 shows the total energy produced at each stage, and in Fig-
ure 20 it’s illustrated together with the demand profile. As expected,
the production follows the demand curve quite closely.

Every week a demand of energy has to be met, either by producing
it from the hydro system or by buying thermal energy. The marginal
thermal energy prices increase with the amount bought, so a ten-
dency of a good solution should be that the amount of thermal energy
bought should be relatively stable. Because of the increasing marginal
prices, if a large amount is bought one week, and a small amount an-
other week, there would probably have been better to store more of
the water in the the first week to be used in the latter. As can be seen
in Figure 21 the solution seem to follow this structure. The oddities
that can be found can also arises at spring flow when the amount of
water exceeds the capacity so that storing more water would increase
risk of spillage such that expected profit may suffer.

A similar aspect should be that the marginal value of the water at
one module (which is the shadow price of the reservoir variable in
the LP-problem), should be relatively constant over the whole period.
As can be seen in Figure 23 and 22, this seems ok. The different mod-
ules differ in marginal values both because they differ in efficiency,
but also because of their relative position to each other. A module up-
stream of another module must have a higher marginal water value.

As can be seen in figure 23, the 0 and 100 percentile varies some-
what at the end of the planning horizon. This is caused by the incom-
plete assertion of water values at the end of the planning horizon, as
described in chapter 2. The system seems reasonably well balanced,
have a rather flat power price (marginal cost of power) and water
values.
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4.5 verification of algorithm efficiency

Some testing of the algorithm efficiency has been done, and com-
pared to known existing algorithms.

Figure 24 shows exactly how much of the computational time that
is spent solving the LP-problems. This is known to be at 80-90% for
implementations used in the industry today. Since this implementa-
tion is somewhat less efficient we might get somewhat better parallel
results than can be obtained in a more efficient implementation.

Figure 25 shows the amount of time spent in the forward cycle vs
the time spent in the backward cycle. As 12 LP problems are solved
for each state in the backward iteration, and only one LP problem for
each state in the forward iteration, one could in theory see more than
90% of the time used in the backward iteration. The main factor that
this is not the case is most likely because of the warm-starting of the
LP-problems that is exploited in the backward iteration.
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(a) Weekly demand profile.

(b) Daily demand profile.

(c) Complete demand profile for one year.

Figure 16: Demand profiles.
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Figure 17: Reservoir solutions, average, 0 and 100 percentile.

Figure 18: Usage of external water sources.

Figure 19: Total energy produced.
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Figure 20: Total energy produced vs demand.

Figure 21: Average, 0 and 100 percentile of energy marginal cost.

Figure 22: Average marginal water values for the different modules.
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Figure 23: Average, 0 and 100 percentile for marginal water value of a single
module.

Figure 24: Time spent LP-solving.
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Figure 25: Proportion of time spent in forward and backward cycle.
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Part V

R E S U LT S

This part contains the results of two case studies with dif-
ferent values of the number inflow scenarios and back-
ward samples.
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R E S U LT S

Two case studies have been done with different values of inflow sce-
narios NS and backward samples NB, as shown in Table 2. These
settings are similar to those being used in many operational models.
The maximum number of processors deliberately does not exceed NS

as there is not implemented a way to calculate one state on two pro-
cessors, such that any amount of processors above NS will not be
very effective in the forward iteration. For both cases we have experi-
mented with different numbers of processors and the number of cuts
to wait for NW at each stage.

The optimal speedup is usually equal to the number of cores that
its run on. On c processors the best one can usually hope for is a
program that run a factor of c faster. However, in this particular prob-
lem, one can in theory see a “super optimal” speedup. When relaxing
the synchronization points one LP problem at a particular state could
have less cuts, which means potentially faster solution times. If the
cuts abandoned would not be active cuts, such that convergence is
reached in the same amount of iterations we could see super opti-
mal speedup. This can be seen in for the simulations with few pro-
cessors and relaxed synchronization points. By relaxing the synchro-
nization points, one gets less idle time for the processors, but might
get slower convergence. As these simulations have been done with a
master-slave setup, speedup and efficiency here has been measured
as a function of the number of slaves, not the number of processors.
Sequential runtime is here defined as the one run on two processors
as no separate sequential implementation has be done. In the par-
allel algorithm there are typically two bottlenecks, communication
between the processors, and synchronization. With synchronization
points, one forces the processors to be at the same place in the al-
gorithm at the same time, and since the problems delegated (that is,
solving the LP-problems) can vary in solution times, this may cause
processors to wait for each other.

As seen in Figure 27 and 26, with full synchronization the average
idle time spent for a slave is as high as 45 percent, while the average
time spent communicating is as low as 3 percent. This means that it is

NS NB Max no. processors

Case 1 71 12 72

Case 2 200 50 144

Table 2: The two cases that has been simulated.

45

[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]



46 results

Figure 26: Average time spent on communication and idle time for a slave
on case 2 with 144 processors and Nmin = 200.

Figure 27: Average time spent on communication and idle time for a slave
on case 2 with 144 processors and Nmin = 1.
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Figure 28: Number of iterations until convergence is reached for case 1 with
72 processors.

the synchronization that is the bottleneck for this implementation. On
the other hand, by completely relaxing the synchronization points, we
see in Figure 27 and 26 that the idle time is reduced from 45 percent
to 3 percent. The downside is that more iterations are needed to reach
convergence, as can be seen in Figure 28 and 29.

this is because on average fewer new cuts are used, as seen in Fig-
ure 37. By partial synchronization we also see in Figure 37 that the
average number of cuts are drastically increased while the idle time
is only slightly increased. This causes for the best solution times.

As seen in figures 31 and 33, removing the synchronization points
is very effective until the number of processors get too high relative
to the number of forward inflow scenarios. At some point the num-
ber of cuts at each iteration is so low that it nearly doubles the it-
erations needed before convergence, which results in severely lower
speedup. This thus however lead to the thought that partially relaxing
the synchronization points, which specifically means that wee force
each processors to wait for a specific amount of cuts between 1 and
the number of inflow scenarios NS, might be optimal. The idea is
that waiting for 2 cuts instead of 1 cut will barely affect computa-
tional time at all, while having a relatively large chance of affecting
number of iterations needed, while waiting for the 60th cut instead of
the 59th cut will have a lower chance of affecting number of iterations
needed. In addition, as seen in Figure 30, there is a variation in time
spent solving different LP problems. And with full synchronization,
when one processor spends more time solving one LP-problem, all
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Figure 29: Number of iterations until convergence is reached for case 2 with
144 processors.

the other processor have to wait for that one to finish. So trying to
force the slaves to wait for a number in between might be the optimal
solution, which is confirmed in Figures 32 and 34.
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Figure 30: Average, 0 and 100 percentile for solution times in the backward
iteration.

Figure 31: Speedup for case 1.
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Figure 32: Efficiency for case 1 with 72 processors.

Figure 33: Speedup for case 2.
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Figure 34: Efficiency for case 2 with 144 processors.
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(a) nmin = 1. (b) nmin = 15.

(c) nmin = 30. (d) nmin = 45.

(e) nmin = 71.

Figure 35: Convergence for different values of nmin in case 1.
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(a) nmin = 1. (b) nmin = 50.

(c) nmin = 100. (d) nmin = 150.

(e) nmin = 200.

Figure 36: Convergence for different values of nmin in case 2.
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(a) nmin = 1. (b) nmin = 30.

(c) nmin = 50. (d) nmin = 1.

Figure 37: Average number of cuts received where nmin has been varied.
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C O N C L U S I O N

A parallel scheme for the SDDP algorithm used in long term hydro
power scheduling has been proposed. Where earlier proposed par-
allel schemes have included synchronization points at each stage in
the backward iteration, this paper challenges this by either partially
or fully removing the synchronization points, at the cost of possible
slower convergence measured in the number of iterations needed be-
fore convergence is reached. Two case studies have been done with
different values for the number of inflow scenarios and the number of
inflow samples in the backward iteration. The case studies have been
done on a realistic model of a Norwegian water course. The results in
both case studies indicate a significant increase in parallel efficiency
by removing the synchronization points, especially in some of the
cases done with partial synchronization, where in the most extreme
cases the efficiency have more than doubled.

The case study reflect a simplified version of operational data, both
in terms of system size and physical details being modeled. However,
we believe that the presented case study results demonstrate a signif-
icant potential for improvement in parallel efficiency of operational
SDDP models.

57

[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]



[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]



B I B L I O G R A P H Y

[1] Coin-clp. https://projects.coin-or.org/Clp. Accessed: 2014-
05-03.

[2] Kongull hardware. https://www.hpc.ntnu.no/display/hpc/

Kongull+Hardware. Accessed: 2014-05-03.

[3] L. A. Barosso. Distributed processing in stochastic multi-stage
hydroscheduling. In In proc. of Hydro Scheduling in Competive Elec-
tricity Markets, 2008.

[4] V. L. de Matos and E. C. Finardi. A computational study of
a stochastic optimization model for long term hydrothermal
scheduling. International Journal of Electrical Power and Energy
Systems, 43:1443–1452, 2012.

[5] A. Gjelsvik, M. Belsnes, and A. Haugstad. An algorithm for
stochastic medium-term hydrothermal scheduling under spot
price uncertainty. Power System Computation Conference, 1999.

[6] A. Gjelsvik, B. Mo, and A. Haugstad. An algorithm for stochastic
medium-term hydrothermal scheduling under spot price uncer-
tainty. Power System Computation Conference, 1999.

[7] Anders Gjelsvik. Stokastisk tilsigsmodell for driftsplanlegging.
1992.

[8] A. Helseth, B. Mo, and G. Warland. Long-term scheduling of
hydro-thermal power systems using scenario fans. 2010.

[9] G. Infanger and D. P. Morton. Cut sharing for multistage stochas-
tic linear programs with interstage dependency. Mathematical
Programming, 75:241–256, 1996.

[10] J. W. Labadie. Optimal operation of multireservoir systems:
State-of-the-art review. Journal of Water Resources Planning and
Management, 130:93–111, 2004.

[11] O.Wolfgang, A. Haugstad, B. Mo, A. Gjelsvik, I. Wangensteen,
and G. Doorman. Hydro reservoir handling in norway before
and after deregulation. Energy, 34:1642–1651, 2009.

[12] M. Pereira, N. Campodonico, and R. Kelman. Application of
stochastic dual dp and extensions to hydrothermal scheduling.
1999.

59

[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]

https://projects.coin-or.org/Clp
https://www.hpc.ntnu.no/display/hpc/Kongull+Hardware
https://www.hpc.ntnu.no/display/hpc/Kongull+Hardware


60 bibliography

[13] M. V. F. Pereira. Optimal stochastic operations scheduling of
large hydroelectric system. Electrical Power and Energy Systems,
11(3):161–169, 1989.

[14] M. V. F. Pereira and L. M. V. G. Pinto. Stochastic optimization of a
multireservoir hydroelectric system: A decomposition approach.
Water Resources Research, 21(6):779–792, 1985.

[15] Roberto J. Pinto, Carmen L. T. Borges, and Marie E.P Maceira.
An efficient parallel algorithm for large scale hydrothermal sys-
tem operation planning. 2013.

[16] S. Stage and Y. Larsson. Incremental cost of water power. Trans.
Am. Inst. Electr. Eng., 80:461–364, 1961.

[17] A. Turgeon and R. Charbonneau. An aggregation-
disaggregation approach to long-term reservoir management.
Water Resources Research, 34:3585–3594, 1998.

[ October 15, 2014 at 22:06 – classicthesis version 1.0 ]


	Abstract
	Sammendrag
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Introduction
	1 Introduction

	Theory
	2 Theory
	2.1 The SDDP Algorithm
	2.1.1 History
	2.1.2 Model Description
	2.1.3 Dual Dynamic Programming Scheme
	2.1.4 Forward Cycle
	2.1.5 Backward Cycle
	2.1.6 The Scheduling Problem

	2.2 LP-formulation
	2.2.1 Objective Function
	2.2.2 Energy Balance
	2.2.3 Water Balance
	2.2.4 Cuts
	2.2.5 Variable Limits
	2.2.6 Summary
	2.2.7 Inflow Sampling

	2.3 Intrastage Time Resolution
	2.4 Planning Horizon Water Value
	2.5 LP-relaxation
	2.6 Convergence


	Parallel Solution
	3 Parallel Solution
	3.1 Forward Iteration
	3.2 Backward Iteration
	3.3 Communication
	3.3.1 Slave to Master
	3.3.2 Master to Slave

	3.4 Hardware and Libraries
	3.5 MPI
	3.6 Details of Implementation on Message Passing


	Verification of correctness
	4 Presentation of solution
	4.1 Hydro Topology
	4.2 Inflow, Demand and Thermal Cost Profile
	4.3 Verification of Correctness
	4.4 Settings
	4.5 Verification of algorithm efficiency


	Results
	5 Results

	Conclusion
	6 Conclusion
	Bibliography


