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Abstract

The aim of this thesis is to investigate how well the bivariate ACER func-
tion compares to the traditional copula approach using univariate ACER and
Gumbel marginals. Using time series of different lengths, we intend to answer:
Which one of the two marginals yields the highest accuracy with the least
amount of data?

Results show that there is high agreement between the distribution of the bi-
variate ACER functions and the distribution of the copula models with ACER
marginals for all time series. The distribution of the copula models with Gum-
bel marginals display great discrepancies to the distribution of the bivariate
ACER functions. These disagreements are greatest for short time series, and
decrease as the time series become longer.
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Introduction

Man can believe the impossible,
but man can never believe the
improbable.
- Oscar Wilde, 1891.

Extreme value theory is a branch of statistics dealing with the extremes of a
distribution, both minimum or maximum, relative to the expected value of it’s
distribution. The main idea behind this theory is to model and calculate the
probability of events that occur rarely from a large data set. Important appli-
cations of extreme value theory is e.g. portfolio adjustment in the insurance
industry, risk assessment in the financial markets, and for structural design in
the case of extreme weather conditions.

When studying the extremes of two or more processes, each individual
process can be modeled using well developed univariate techniques, but there
are strong arguments for also studying the extreme value inter-relationship.
First, this may be because the combination of the processes themselves are of
greater interest than each individual process; second, there is potential for data
from one variable to inform inferences on each of the others. Examples of this
may include the relationship between different stock values or wave heights and
wind speeds.

Many have tried to model and estimate a function describing the depen-
dence structures between extreme values of multiple processes. However, there
are no estimation tools that grant us the possibility to decide on the joint distri-
bution of the multivariate extremes from a given data set, with high accuracy.

For this reason, copula theory have been proposed. But even in the case of
bivariate extreme value copulas, there is, due to the features of the dependence
function, an infinite number of models. Furthermore, the copula approach is
fairly ad hoc, meaning there is no theoretical justification for choosing one
particular copula over the other.

As a result of this, it is of considerable interest to see how the concept
of average conditional exceedance rate (ACER), developed during the last few
years at the Norwegian University of Science and Technology, can be extended
to several dimensions, in our case, to two. By the ACER function, we obtain a
method for nonparametric statistical estimation of the exact bivariate extreme
value distribution given by a bivariate time series.
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2 CHAPTER 1. INTRODUCTION

The objective of this thesis is to investigate how the empirically estimated
bivariate ACER surface holds up to the standard bivariate extreme value cop-
ula approach. Specifically, we will look at how the bivariate ACER function
compares to the copula approach using the Gumbel-logistic, Asymmetric lo-
gistic, Negative logistic and Asymmetric negative logistic dependence models
in a Pickands copula representation. Applying these results, we adopt asymp-
totically consistent extreme value marginals based on the univariate ACER
functions and fitted Gumbel distributions.

The two approaches will be tested on both synthetic and real world data.
The synthetic data sets have been created to gain further insight into the
described methods, as the amount of data in real world data sets usually are
limited. Therefore a total of four data sets consisting of 10, 25, 50 and 100
years of data have been produced from the same distribution. By comparing
the sub-asymptotic distribution of the time series and the fitted copulas, we
may conclude which of the two marginal approaches yield the best accuracy
when observations are scarce.

In the two following chapters, an introduction to the theory that is consid-
ered relevant for the method presented in this project is given. The focus of
Chapter 2 is directed towards the construction of the univariate and bivariate
ACER method through a cascade of conditioning approximations. Further-
more, we develop expressions for the confidence interval of the ACER function
and return level, i.e. the levels expected to be exceeded during a given time
period. In Chapter 3 we evaluate the well developed classical asymptotic the-
ory for multivariate extremes, and introduce copula representation by Sklar’s
Theorem. Based on the relationship between copulas and extreme value cop-
ulas, stated by Pickands, we introduce the four dependence functions that are
used in the analysis and calculate their functional form using univariate ACER
and Gumbel marginals.

Chapter 4 gives an introduction to the five data sets that are being analyzed
with the given methods. The data sets are summarized by both tables and
figures.

Motivated by the previous chapters, we apply both the bivariate ACER and
copula methods to the data. By doing this, we are able to answer which one
of the copula approaches fit the sub-asymptotic distribution of the evaluated
time series the best, and hence which copula approach is the preferred extreme
value procedure to limited time series. This is done in Chapter 5.

The project is rounded off with some concluding remarks in Chapter 6.
As part of the work of this project, the synthetic data sets were created in

R while the copula models were implemented by modification of the MATLAB
code developed by Oleh Karpa. The R code and the modifications done to the
MATLAB code can be found in the Appendix. To reduce the length of this
report and increase readability, all MATLAB code and data sets can be found
in a Dropbox folder by following the link in the Appendix.
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The ACER distribution

It’s impossible that the
improbable will never happen.
- Emil J. Gumbel, 1958.

In this chapter, we first construct a sequence of nonparametric distribution
functions that converge to the exact extreme value distribution for a given time
series. We then extend this method for prediction of extreme value statistics
to the bivariate case.

To fully comprehend this and the next chapter, the reader should have a
basic understanding of extreme value theory. This is beautifully explained in
[1].

2.1 The Univariate ACER Distribution

The ACER-method, or Average Conditional Exceedance Rates, is a novel
method for estimation of extreme values in time series. The difference between
this and the original GEV-method, is that the ACER is of no need of indepen-
dent data points, but is rather conditioned on a sufficient amount of preceding
points in use. The sufficient amount of data points needed in the condition
varies from data set to data set.

Cascade of Conditioning Approximations

Consider a stochastic process Z(t) that have been observed over a time
period (0, T ). We assume the values X1, ..., XN , derived from the process,
are allocated to the discrete times t1, ..., tN in the time interval (0, T ). Our
objective is to find the distribution of the extreme value MN = maxN{Xj ; j ∈
{1, ..., N} ⊂ N}, and then estimate P (η) = Prob(MN ≤ η) for large values of η.
An underlying assumption is to consider exceedances of the individual random
variables Xj above a given treshold, just as in classical extreme value theory.

3



4 CHAPTER 2. THE ACER DISTRIBUTION

By the definition of P (η) it follows that

P (η) = Prob(XN ≤ η, ..., X1 ≤ η)

= Prob(XN ≤ η|XN−1 ≤ η, ..., X1 ≤ η) · Prob(XN−1 ≤ η, ..., X1 ≤ η)

= Prob(X1 ≤ η)

N∏
j=2

Prob(Xj ≤ η|Xj−1 ≤ η, ..., X1 ≤ η). (2.1)

Instead of assuming independence between the Xj ’s, we can assume it to
have a k-step memory, i.e. a dependence on the k previous data point(s). Using
this, we may approximate Eq. (2.1):

P (η) ≈ Pk(η)

:=

N∏
j=k

Prob(Xj ≤ η|Xj−1 ≤ η, ..., Xj−k+1 ≤ η)

·
k−1∏
j=2

Prob(Xj ≤ η|Xj−1 ≤ η, ..., X1 ≤ η) (2.2)

· Prob(X1 ≤ η),

where P (η) = PN (η). Note that a k -step memory approximation does not lead
to a k-th order Markov chain, while a one-step approximation is not a Markov
approximation.

If k = 1, we have that

P (η) ≈ P1(η) : =
N∏
j=1

Prob(Xj ≤ η)

=

N∏
j=1

(1− α1j(η)), (2.3)

where α1j(η) = Prob(Xj > η), j = 1, ..., N . The approximation of Eq. (2.3),
assuming independent data, can be written as

P (η) ≈ F1(η) := exp

−
N∑
j=1

α1j(η)

 , η → ∞,

which expresses the approximation that the amount of exceedance events poses
a non-stationary Poisson process.

Further, we may rewrite Eq. (2.2) using the same assumption, to be

P (η) ≈ Pk(η) =

N∏
j=k

(1− αkj(η))

k−1∏
j=1

(1− αjj(η)), (2.4)

where αkj(η) = Prob(Xj > η|Xj−1 ≤ η, ..., Xj−k+1 ≤ η), for j ≥ k ≥ 2,
denotes the probability of exceedance conditional on k − 1 previous nonex-
ceedances. From Eq. (2.4), it is further obtained that

P (η) ≈ Fk(η) := exp

−
N∑

j=k

αkj(η)−
k−1∑
j=1

αjj(η)

 , η → ∞, (2.5)
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where Fk(η) → P (η) as k → N with FN (η) = P (η) for η → ∞.
For the approximations Fk(η) to have any practical use, it is assumed there

is a cut-off value kc satisfying kc << N such that Fkc
(η) = FN (η). We choose

an arbitrary k -value of interest, k << N such that
∑k−1

j=1 αjj(η) is effectively
negligible compared to

∑N
j=k αkj(η). Using this simplification we rewrite Eq.

(2.5) as

Fk(η) = exp

−
N∑

j=k

αkj(η)

 , k ≥ 1. (2.6)

As discussed in [12], we can understand Eq. (2.6) by interpreting the expres-
sions

∑N
j=k αkj(η) as the expected effective number of independent exceedance

events provided by conditioning on k − 1 previous observations.
We introduce the univariate average conditional exceedance rate (ACER)

of order k as:

εk(η) =
1

N − k + 1

N∑
j=k

αkj(η), k = 1, 2, ....

For the underlying process Z(t) there are typically two practical scenarios.
Firstly, we may consider it to be a stationary process or rather an ergodic
process, i.e. a process that will not change its statistical properties over time,
and the properties may be found from a single, sufficiently long sample of
the process. Secondly, we may view Z(t) as a process depending on certain
parameters whose variation in time can be modeled as an ergodic process. For
each set of parameter values, the prerequisite is that Z(t) can be modeled as an
ergodic process. As discussed in [9], it is this scenario that opens for modeling
of long-term statistics.

We continue by presenting some details concerning the numerical estimation
of εk(η) for k ≥ 2:

Akj = 1{Xj > η,Xj−1 ≤ η, ..., Xj−k+1 ≤ η}, j = k, ..., N, k = 2, 3, ...,

and

Bkj = 1{Xj−1 ≤ η, ..., Xj−k+1 ≤ η}, j = k, ..., N, k = 2, 3, ..., (2.7)

where 1{ϑ} is the indicator function of some event ϑ. This yield

αkj =
E[Akj(η)]

E[Bkj(η)]
, j = k, ..., N, k = 2, 3, ...,

where E[·] is the expectation operator. Assuming an ergodic process, we may
write εk(η) in terms of akj(η) and bkj(η), these being realized values of Akj(η)
and Bkj(η). We obtain

εk(η) = lim
N→∞

∑N
j=k akj(η)∑N
j=k bkj(η)

.
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From Eq. (2.7), we clearly see that the limiting value as η increases, is equal
to 1. This results in

lim
η→∞

ε̃k(η)

εk(η)
= 1,

where

ε̃k(η) =

∑N
j=k E[Akj(η)]

N − k + 1
. (2.8)

Using ε̃k(η) yield correct estimates for the function when η is at extreme levels,
which is our main goal.

As a side note, Eq. (2.8) is also relevant for non-stationary time series.
This can be shown by

P (η) ≈ exp

−
N∑

j=k

αkj(η)


= exp

−
N∑

j=k

E[Akj(η)]

E[Bkj(η)]


≈

η→∞
exp

−
N∑

j=k

E[Akj(η)]

 .

If the time series of interest can be split into K blocks containing Ci indices for
block no. i, where i = 1, ...,K, such that E[Akj(η)] remains roughly constant
in each block and

∑
j∈Ci

E[Akj(η)] ≈
∑

j∈Ci
akj(η) for a sufficient amount of

η values, then
∑N

j=k E[Akj(η)] ≈
∑N

j=k akj(η). It follows that

P (η) ≈ exp {−(N − k + 1)ε̂k(η)} ,

where

ε̂k(η) =
1

N − k + 1

N∑
j=k

akj(η).

We may interpret εk(η)(N −k+1) as the average number of clusters exceeding
η separated by at least k − 1 nonexceedances, where a cluster is defined as a
maximum number of consecutive exceedances above η.

For a wide range of systems, it is legitimate, [11], to assume the tail of the
ACER function to be modeled as

ε̃k(η) ≈ qk(η) exp {−ak(η − bk)
ck} , η > η1, (2.9)

for constants ak, bk and ck with a slowly varying function qk(η) compared to the
exponential function it is multiplied with, and η1 is the tail marker. In general
the function qk(η) is not a constant, but its variation in the tail region is often
sufficiently slow to allow for its replacement by a constant, called qk. As this
assumption fails in the lower values, we need to specify a tail marker, η1, for
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where the assumption may hold. This value may be found by visual inspection
of the ACER plot, from where the function starts behaving on the form of
Eq. (2.9). Another option is to apply the algorithm used in the univariate
ACER program, [8]. As the form of Eq. (2.9) should hold above a chosen η1,
choosing a higher tail marker should not affect the estimates to a large extent,
but variance is increased as there is a decrease in points. Choosing a lower tail
marker would, on the other hand, put to much emphasis on lower levels.

Confidence Intervals for Return Levels

It is of interest to estimate a confidence interval for the ACER function,
εk(η). Assuming a stationary time series, the sample standard deviation ŝk(η)
can be estimated by the formula

ŝk(η)
2 =

1

R− 1

R∑
r=1

(
ε̂
(r)
k (η)− ε̂k(η)

)2
,

where R is the sample size, ε̂(r)k (η) is the ACER function estimate from real-
ization no. r and ε̂k(η) =

∑R
r=1 ε̂

(r)
k (η)/R.

Now, assuming independent samples and R large enough (R ≥ 20), the 95%
confidence interval for εk(η) can be computed as

CI±(η) = ε̂k(η)±
1.96 ŝk(η)√

R
.

For non-stationary time series we may use a different approach. We assume
that the amount of conditional exceedances over the threshold η constitute a
Poisson process, therefore the variance of the estimator Êk(η) of ε̃k(η), where

Êk(η) =

∑N
j=k Akj(η)

N − k + 1
,

is

Var[Êk(η)] = ε̃k(η).

Again, the 95% confidence interval for ε̃k(η), as well as for εk(η), can be
computed as

CI±(η) = ε̂k(η)

(
1± 1.96√

(N − k + 1)ε̂k(η)

)
.

Return Levels

To estimate return levels, it is first necessary to find an expression for the
return level ηp. The return level ηp satisfies the relation P (ηp) = 1− p, where
P (·) denotes the distribution of the yearly maximum, which correspond to a
return period T = (1/p). This probability approximates to

P (ηp) = 1− p ≈ exp {−Nε̃k(ηp)}
= exp {−Nqk exp {−ak(ηp − bk)

ck}} ,
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where qk(η) is assumed constant, and N is the total number of data from 1
year. The parameters ak, bk, ck and qk are estimated using data of one year
block sizes, i.e. all observations during a year is viewed as a realization of the
same process.

To simplify notation we replace the approximation symbol with the equality
sign, define d = ln(qk) and drop subscripts on parameters. The resulting
simplification yield

1− p = exp {−N exp {d− a(ηp − b)c}} ,

while solving for ηp give

ηp = b+

[
d− ln(− ln(1− p)) + ln(N)

a

] 1
c

.

2.2 The Bivariate ACER Distribution

We encounter several challenges when evaluating the extension from the
univariate to the bivariate case of extreme value statistics. Primarily, there
is no generalization of the univariate extreme value theorem, see [1], to the
bivariate case. A solution to this have been to adopt a copula to represent the
joint distribution. There is a range of different copulas available to use, but a
common flaw is that they are rather ad hoc.

It is therefore interesting to note that the ACER concept can be extended to
several dimensions, and in this case, the bivariate. This was originally derived
in [10].

Cascade of Conditioning Approximations

We consider a bivariate stochastic process Z(t) = (X(t), Y (t)) with depen-
dent component processes, that have been observed over a time interval (0, T ).
Further we assume that the values Z1 = (X1, Y1), ..., ZN = (XN , YN ) are dis-
tributed on the discrete times t1, ..., tN in (0, T ). The goal is to find the joint
distribution function, i.e.

X̂N = max
j=1,...,N

{Xj} ŶN = max
j=1,...,N

{Yj},

ẐN = (X̂N , ŶN ).

Note that ẐN does not need to be an observed vector from the original data
set. As in the univariate case, we also wish to estimate P (ξ, η) = Prob(X̂N <

ξ, ŶN < η) for large values of ξ and η.
To ease the notation, we use ζ := (ξ, η) with component wise ordering

relationship for Zi, i.e. Zi ≤ ζ means (Xi ≤ ξ, Yi ≤ η). In addition we
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introduce the event Ckj(ζ) = {Zj−1 ≤ ζ, ..., Zj−k+1 ≤ ζ} of k − 1 consecutive
component wise nonexceedances (k ≥ 2). By the definition of P (ξ, η) we have

P (ξ, η) = P (ζ) = Prob(CN+1,N+1(ζ))

= Prob(ZN ≤ ζ|CNN (ζ)) · Prob(CNN (ζ))

=

N∏
j=2

Prob(Zj ≤ ζ|Cjj(ζ)) · Prob(C22(ζ)). (2.10)

We may simplify Eq. (2.10) by assuming that all observed data are indepen-
dent. This implies that all conditionings can be neglected.

In general, the variables Zj are statistical dependent in a componentwise
sense. Therefore, Eq. (2.10) may be written, by only conditioning on more
than k − 1 previous data points and where k = 1, ..., N and j ≥ k, as:

P (ξ, η) =

N∏
j=k

Prob(Zj ≤ ζ|Ckj(ξ, η)) · Prob(Ckk(ξ, η)). (2.11)

Notice that both data set need to be conditioned on k values each.
Further, for k ≤ i ≤ N , we introduce the notation

αkj(ξ; η) := Prob(Xj > ξ|Ckj(ξ, η)),

βkj(η; ξ) := Prob(Yj > η|Ckj(ξ, η)),

γkj(ξ, η) := Prob(Zj > ζ|Ckj(ξ, η)).

Using this notation, the approximation of the first term of Eq. (2.11) is found
to be

N∏
j=k

Prob(Zj ≤ζ|Ckj(ξ, η)) ≈

exp

−
N∑

j=k

(αkj(ξ; η) + βkj(η; ξ)− γkj(ξ; η))

 ; ξ, η → ∞,

while the second term of the equation is found to be

Prob(Ckk(ξ, η)) ≈ exp

−
k−1∑
j=1

(αjj(ξ; η) + βjj(η; ξ)− γjj(ξ; η))

 ; ξ, η → ∞.

Collecting the terms yield

P (ξ, η) ≈ Pk(ξ, η)

= exp

−
N∑

j=k

(αkj(ξ; η) + βkj(η; ξ)− γkj(ξ; η)) (2.12)

−
k−1∑
j=1

(αjj(ξ; η) + βjj(η; ξ)− γjj(ξ; η))

 ; ξ, η → ∞.
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Based on the definition of P (ξ, η) and the properties of the conditional proba-
bility, the set {Pk(ξ, η)}Nk=1 converges to the target distribution P (ξ, η) of the
extreme value MN as k increases.

For practical and application purposes we make the assumption that there
is an effective ke satisfying ke << N such that P (ξ, η) = Pke

(ξ, η). Further,
we assume that

∑k−1
j=1 (αjj(ξ; η) + βjj(η; ξ) − γjj(ξ; η)) is negligible compared

to
∑N

j=k(αkj(ξ; η) + βkj(η; ξ) − γkj(ξ; η)). This lead to the approximation of
Eq. (2.12)

P (ξ, η) ≈ Pk(ξ, η)

≈ exp

−
N∑

j=k

(αkj(ξ; η) + βkj(η; ξ)− γkj(ξ; η))

 ; ξ, η → ∞, (2.13)

resulting in the conclusion that it is sufficient, for the estimation of the bivariate
extreme value distribution, to calculate {αkj(ξ; η) + βkj(η; ξ)− γkj(ξ; η)}Nj=k.

Empirical Estimation of the ACER Function

It is now appropriate to introduce the concept of k’th order bivariate ACER
function as follows

Ek(ξ, η) =
∑N

j=k (αkj(ξ; η) + βkj(η; ξ)− γkj(ξ, η))

N − k + 1
, k = 1, 2, ....

For N >> k, we may write Eq. (2.13) as

P (ξ, η) ≈ exp {−(N − k + 1)Ek(ξ, η)} ; ξ, η → ∞. (2.14)

Further details on the numerical estimation of the ACER function are ap-
propriate. We introduce a set of random functions. For k = 2, ..., N and
k ≤ j ≤ N , let

Akj(ξ; η) = 1 {Xj > ξ ∩ Ckj(ξ, η)} ,
Bkj(η; ξ) = 1 {Yj > η ∩ Ckj(ξ, η)} ,
Gkj(ξ, η) = 1 {Zj > ζ ∩ Ckj(ξ, η)} ,
Ckj(ξ, η) = 1 {Ckj(ξ, η)} ,

where 1{ϑ} is the indicator function of some event ϑ.
From the definitions stated above, we may see that

αkj(ξ; η) =
E[Akj(ξ; η)]

E[Ckj(ξ, η)]
, βkj(η; ξ) =

E[Bkj(η; ξ)]

E[Ckj(ξ, η)]
, γkj(ξ; η) =

E[Gkj(ξ; η)]

E[Ckj(ξ, η)]
,

where E[·] denotes the expectation operator.
Assuming ergodicity of the process Z(t) = (X(t), Y (t)), then Ek(ξ, η) =

(αkk(ξ; η) + βkk(η; ξ) − γkk(ξ, η)) = ... = (αkN (ξ; η) + βkN (η; ξ) − γkN (ξ, η)),
and it may be assumed that

Ek(ξ, η) = lim
N→∞

∑N
j=k (akj(ξ; η) + bkj(η; ξ)− gkj(ξ, η))∑N

j=k ckj(ξ, η)
, (2.15)
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where akj(ξ; η), bkj(η; ξ), gkj(ξ; η) and ckj(ξ; η) are realizations of Akj(ξ; η),
Bkj(η; ξ), γkj(ξ; η) and Ckj(ξ; η), respectively.

Obviously, limξ,η→∞ E[Ckj(ξ, η)] = 1. Therefore,

lim
ξ,η→∞

Ẽk(ξ, η)
Ek(ξ, η)

= 1,

where

Ẽk(ξ, η) = lim
N→∞

∑N
j=k (E[Akj ] + E[Bkj ]− E[Gkj ])

N − k + 1
. (2.16)

Using the modified bivariate ACER function Ẽk(ξ, η) for k ≥ 2 , some advan-
tages are achieved. The modified function is easier to use for non-stationary
or long-term statistics than Ek(ξ, η), and since we are only interested in the
values of the ACER functions at the extreme levels, we may use any function
providing correct predictions of the ACER function at these extreme levels.

Confidence Intervals for Return Levels

Provided multiple realizations of the time series Z(t), or a time series that
can be appropriately sectioned into several records, e.g. several annual, the
sample estimate of Ek(ξ, η) would be

Êk(ξ, η) =
1

R

R∑
r=1

Ê(r)
k (ξ, η),

where R is the amount of realizations, the index (r) refers to realization number
r, and Ê(r)

k (ξ, η) is the estimate of the stationary time series using Eq. (2.15)
or of the non-stationary time series using Eq. (2.16). The standard deviation
of the sample ŝk(ξ; η) can then be estimated using the formula

ŝk(ξ; η)
2 =

1

R− 1

R∑
r=1

(
Ê(r)
k (ξ, η)− Êk(ξ, η)

)2
. (2.17)

Assuming independent realizations, Eq. (2.17) can be used to create a 95%
confidence interval

CI±(ξ, η) = Êk(ξ, η)± τ · ŝk(ξ, η)√
R

where τ = t−1 ((1− 0.95)/2, R− 1) is the corresponding quantile in the Stu-
dent’s t-distribution with R− 1 degrees of freedom.

Return Levels

From the definition of Ek(ξ, η), the product Ek(ξ, η) · (N − k+1) represents
the expected number of the bivariate observations Zj = (Xj , Yj) where their
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components exceed the corresponding levels ξ and η, and follow after at least
k − 1 previous simultaneous nonexceedances. As a result of this, the product
captures the spatial and temporal dependence structure of the bivariate time
series. Thus, high quantiles of the bivariate extreme value distribution should
potentially be obtained.

The joint T -year return period contour related to the event that either X̂N

or ŶN or both are exceeded is presented by

1− F 1yr(ξT , ηT ) =
1

T
, (2.18)

where F 1yr(ξ, η) is the joint distribution function of the annual maxima. As-
suming the observations of the bivariate process are collected over a period
ny,

F 1yr(ξ, η) = exp

{
−N − k + 1

ny
Ek(ξ, η)

}
. (2.19)

Combining Eq. (2.18) and (2.19) yield the T -year return levels (ξT , ηT ) as a
solution of

Ek(ξT , ηT ) = − log

(
1− 1

T

)
ny

N − k + 1
. (2.20)

By Eq. (2.20), it is clear that the empirically estimated k-th order bivariate
ACER function does not contain enough information for estimation of quantiles
outside its observed period, i.e. if the observation period is 10 years, the
function will only contain enough information to make an estimate of the 10
year return values, with high uncertainty. In addition, the behavior of the
bivariate ACER function as a continuous function with two variables can not
be decided using the data. As a result of this, a sub-asymptotic functional
form of the bivariate ACER surface can perhaps be achieved using a copula
representation of a bivariate extreme value distribution.



3

Classical Extreme Value Theory

It seems that the rivers know
the theory. It only remains to
convince the engineers of the
validity of this analysis.
- Emil J. Gumbel, 1958.

In this chapter we give an introduction to classical extreme value theory for
both the univariate and the multivariate cases relevant for the analysis. Fur-
thermore, a brief introduction to copula theory is given followed by a step-by-
step calculation of the copula models used in the analysis.

For the multivariate state, we focus on the bivariate case. This enables us
to illustrate the key concepts while keeping notation simple.

3.1 The Univariate Generalized Extreme Value
Distribution

Again our objective is to find the distribution of the extreme value MN =
maxN{Xj ; j ∈ {1, ..., N} ⊂ N}, where we consider the X1, . . . , XN to be a se-
quence of independent random variables collected from a common distribution
function F . In application, the Xi usually represent values measured on a gen-
eral time scale, e.g. hourly wind levels. MN then represent the maximum value
of the process over N observations. If N is the total amount of observations in
a year, MN corresponds to the annual maxima.

Estimating P (z) = Prob(MN ≤ z) for large values of z may be derived
exactly for all values of N ,

P (z) = Prob(X1 ≤ z, ...., XN ≤ z)

= Prob(X1 ≤ z) · Prob(X2 ≤ z) · ... · Prob(XN ≤ z)

= (F (z))N .

In practice, we might not have the distribution function F , but the Extreme
Value Theorem, also known as the Fisher-Tippett-Gnedenko Theorem provides
an asymptotic result.

13
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Theorem 1 ([1, page. 46]). If there exist a sequence of constants {aN > 0}
and {bN} such that

Prob {M∗
N ≤ z} = Prob

{
MN − bN

aN
≤ z

}
→ G(z) as N → ∞,

where G is a non-degenerate distribution function, then G belongs to one of the
following families:

I : G(z) = exp
{
− exp

[
−
(
z−b
a

)]}
, −∞ < z < ∞;

II : G(z) =

{
0,

exp
{
−
(
z−b
a

)−α
}
,

z ≤ b;
z > b;

III : G(z) =

{
exp

{
−
[
−
(
z−b
a

)α]}
,

1,

z < b;
z ≥ b;

(3.1)

for parameters a > 0, b and, in case of families II and III, α > 0.

In words, Theorem 1 states that the rescaled sample maxima M∗
N converge

in distribution to one of the three distributions otherwise known as the Gum-
bel, Fréchet and Weibull families. Each of them includes a location and scale
parameter, b and a, respectively; while the Fréchet and Weibull also have a
shape parameter, α.

By doing simple reformulations of these three distributions, it is possible to
combine them into a single family of models known as the Generalized Extreme
Value distribution, or GEV for short. The GEV distribution is written on the
form

G(z) = exp

{
−
[
1 + ξ

(
z − µ

σ

)]−1/ξ
}
, (3.2)

where {z : 1 + ξ(z − µ)/σ > 0}, and the parameters satisfy −∞ < µ <
∞, σ > 0 and −∞ < ξ < ∞. The three parameters corresponding to the
location parameter, µ; the scale parameter, σ; and the shape parameter, ξ.
The shape parameter decides which of the three extreme value distributions
the GEV distribution correspond to. For ξ > 0 the GEV distribution become
the Fréchet distribution, while for ξ < 0 the Weibull distribution is obtained.
The subfamily of the GEV family for ξ = 0 is interpreted as ξ → 0, which yield
the Gumbel family.

Empirical Estimation of the GEV distribution

Modeling extremes of a time series are solved by dividing the observations
into sequences of length n, for some large value n, generating a series of block
maxima, Mn,1, . . . ,Mn,m where the assumption of independent observations
may be assumed. Furthermore, the GEV distribution may then be fitted using
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maximum likelihood estimation. When ξ 6= 0, the log-likelihood becomes

`(µ, σ, ξ) = −m log σ − (1 +
1

ξ
)

m∑
i=1

log

[
1 + ξ

(
zi − µ

σ

)]

−
m∑
i=1

log

[
1 + ξ

(
zi − µ

σ

)]−1
ξ

(3.3)

provided that

1 + ξ

(
zi − µ

σ

)
> 0, i = 1, . . . ,m.

In the Gumbel case, i.e. ξ = 0, the log-likelihood becomes

`(µ, σ) = −m log σ −
m∑
i=1

(
zi − µ

σ

)
−

m∑
i=1

exp

{
−
(
zi − µ

σ

)}
. (3.4)

Maximizing both Eq. (3.3) and (3.4) with respect to the (µ, σ, ξ) leads to the
maximum likelihood estimate for the entire GEV distribution family.

Return Levels

The return level, zp, which is exceeded by the annual maximum in any
particular year with probability p, may be found by inverting Eq. (3.2). Es-
timates of extreme quantiles of the annual maximum distribution will then be
calculated using

zp =

{
µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
,

µ− σ log {− log(1− p)} ,
for ξ 6= 0,
for ξ = 0,

(3.5)

where G(zp) = 1 − p. As quantiles enable probability models to be expressed
on the scale of data, the relationship of the GEV model to its parameters
are interpreted in terms of the quantile expressions of Eq. (3.5). Defining
yp = − log(1− p), such that

zp =

{
µ− σ

ξ

[
1− y−ξ

p

]
,

µ− σ log yp,

for ξ 6= 0,
for ξ = 0,

it follows that, if zp is plotted against yp on a logarithmic scale, the plot is
linear if ξ = 0. If ξ < 0 the plot is convex, and if ξ > 0 the plot is concave.

3.2 Multivariate Extremes

Suppose (X1, Y1), (X2, Y2), ... is a sequence of vectors that are independent
versions of a random vector having distribution function F (x, y). We base
the characterization of the extremal behavior of multivariate extremes on the
limiting behavior of block maxima. Consider

Mx,n = max
i=1,...,n

{Xi}, My,n = max
i=1,...,n

{Yi},
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M n = (Mx,n,My,n), (3.6)

where M n is the vector of componentwise maxima. The index i, for which the
maximum of the Xi sequence occurs, need not be the same as that of the Yi

sequence, i.e. M n does not have to be an observed vector from the original
series.

The asymptotic theory of multivariate extremes begins with an analysis of
M n in Eq. (3.6) as n → ∞. We may simplify the problem by considering {Xi}
and {Yi} separately as sequences of independent, univariate random variables.
Furthermore, we can therefore apply standard univariate extreme value results
to both components. This means we may gain some simplicity by assuming
the Xi and Yi variables to have known marginal distributions. In case the
assumed marginal distribution is wrong, marginal distributions whose extremal
properties are determined by the univariate characterizations, can always be
transformed into the standard form.

Representations are particularly easy if we assume both Xi and Yi to have
a standard Fréchet distribution, i.e.

F (z) = exp

{
−1

z

}
, z > 0.

To obtain standard univariate results for each margin, we should consider the
re-scaled vector

M ∗
n =

(
max

i=1,...,n
{Xi}/n, max

i=1,...,n
{Yi}/n

)
. (3.7)

This representation leads to the following theorem that gives a characterization
of the limiting joint distribution of M ∗

n, as n → ∞.

Theorem 2 ([1, page. 144]). Let M∗
n = (M∗

x,n,M
∗
y,n) be defined by Eq. (3.7),

where the (Xi, Yi) are independent vectors with standard Fréchet marginal dis-
tributions. Then if

Prob
{
M∗

x,n ≤ x,M∗
y,n ≤ y

} d→ G(x, y), (3.8)

where G is a non-degenerate distribution function, G has the form

G(x, y) = exp{−V (x, y)}, x > 0, y > 0, (3.9)

where

V (x, y) = 2

∫ 1

0

max

(
w

x
,
1− w

y

)
dH(w), (3.10)

and H is a distribution function on [0, 1] satisfying the mean constraint∫ 1

0

wdH(w) =
1

2
. (3.11)

The family of distributions that arise as limits in Eq. (3.8) is termed the
class of bivariate extreme value distributions. Theorem 2 implies that the class
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of bivariate extreme value distributions is in one-to-one correspondence with
the set of distribution functions H on [0, 1] satisfying Eq. (3.11).

If H is differentiable with density h, Eq. (3.10) is simplified to be

V (x, y) = 2

∫ 1

0

max

(
w

x
,
1− w

y

)
h(w)dw.

However, H does not need to be a differentiable function. For example, if
H is a measure that places mass 0.5 on w = 0 and w = 1, the constraint in Eq.
(3.11) is trivially satisfied, and Eq. (3.10) becomes

V (x, y) = x−1 + y−1.

The corresponding bivariate extreme value distribution turn into

G(x, y) = exp
{
−(x−1 + y−1)

}
, x > 0, y > 0.

By using this property in Eq. (3.9), we obtain

Gn(x, y) = G(n−1x, n−1y),

for n = 2, 3, 4, .... This implies that if (X,Y ) have distribution G, then apart
from the rescaling by n−1, Mn also have distribution G. Therefore G possesses
a multivariate version of the max-stability property.

Even though Theorem 2 provides a complete characterization of bivariate
limit distributions, the possible limit of classes are only constrained by Eq.
(3.11). Basically, any distribution function H on [0, 1] satisfying the mean
constraint of Eq. (3.11), gives rise to a valid limit in Eq. (3.8). This leads to
complications as the limit family has no finite parametrization. One possible
solution is to use Copulas.

3.3 Copulas

Copulas are the most general, margin-free description of the dependence
structure of a multivariate distribution. Let (U, V ) be a pair of random vari-
ables, uniformly distributed on the interval [0, 1]. The joint distribution of
(U, V ), found by

C(u, v) = Prob(U ≤ u, V ≤ v),

where u, v ∈ [0, 1], is called a copula. The link between bivariate copulas and
bivariate distributions is provided by Sklar’s theorem:

Theorem 3 (Sklar’s Theorem (bivariate case) [2, page 134]). Let FXY be a
joint distribution function with marginals FX and FY . Then there exists a
bivariate copula C such that

FXY (ξ, η) = C(FX(ξ), FY (η)). (3.12)

for all reals ξ and η. If FX and FY are continuous, then C is unique; other-
wise, C is uniquely defined on Range(FX)× Range(FY ). Conversely, if C is a
bivariate copula and FX and FY are distribution functions, then the function
FXY given by Eq. (3.12) is a joint distribution with marginals FX and FY .
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Since copulas represent an important tool in describing the structure of
multivariate distributions, it is helpful to show the connection between classi-
cal multivariate extreme value theory and copulas, as stated in Definition 1.

Definition 1 (Extreme Value Copula [2, page. 192]). A bivariate copula C
satisfying the relationship

Ct(u, v) = C(ut, vt),

for all t > 0, is called an Extreme Value copula.

The use of extreme-value bivariate copulas is highly facilitated by the repre-
sentation introduced by Pickands, [13], stating: a copula C is an extreme-value
copula if, and only if, there exists a real-value function D on the interval [0,1]
such that

C(FX(ξ), FY (η)) = exp

{
log(FX(ξ)FY (η))D

(
log(FX(ξ))

log(FX(ξ)FY (η))

)}
, (3.13)

for FX(ξ) and FY (η) ∈ [0, 1]. The function D is called Pickands dependence
function. The properties of the dependence function include:

1. D(0) = D(1) = 1

2. max(t, 1− t) ≤ D(t) ≤ 1 for all 0 ≤ t ≤ 1

3. D is convex.

The notation of Eq. (3.13) may be simplified to

C(FX(ξ), FY (η)) = exp

{
−(x+ y)D

(
x

x+ y

)}
, (3.14)

where x = − log(FX(ξ)) and y = − log(FY (η)).
Depending on the choice of dependence function, different parametric dif-

ferentiable and non-differentiable models may be considered. In this thesis we
will consider four differentiable dependence functions: two of which have 1
parameter, and two with 3 parameters.

The logistic or Gumbel-logistic dependence model, derived by Gumbel [4],
is written as

D
(

x

x+ y

)
=

1

x+ y
[xr + yr]

1
r , (3.15)

where r ≥ 1. Independence is obtained when r approaches 1, while complete
dependence is revealed if r tends to infinity.

The asymmetric version of the Gumbel-logistic dependence model known
as the Asymmetric logistic model was developed by Tawn [14] and is given as

D
(

x

x+ y

)
=

1

x+ y

(
[(φx)r + (θy)r]

1
r − φx− θy

)
+ 1, (3.16)

where r > 1 and 0 < θ, φ < 1. When θ = φ = 1 the Asymmetric logistic
model is equivalent to the Gumbel-logistic model. Independence is attained
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when either r = 1, φ = 0 or θ = 0, while complete dependence is achieved when
φ = θ = 1 and r tends to infinity.

The model obtained by Galambos, [3], is called the Negative logistic depen-
dence function,

D
(

x

x+ y

)
= 1− (x−r + y−r)

− 1
r

x+ y
, (3.17)

with the only parameter constraint given as r > 0. Independence is obtained
in the limit as r approaches zero, while complete dependence is obtained as r
tends to infinity.

The last dependence model, named the Asymmetric negative logistic, is
acquired from Joe, [7], and given as

D
(

x

x+ y

)
= 1− ((φx)−r + (θy)−r)

− 1
r

x+ y
, (3.18)

where the parameter constraints are r > 0 and 0 < θ, φ < 1. As the Asym-
metric logistic dependence function, when θ = φ = 1 the Asymmetric negative
logistic model is equivalent to the Negative logistic model. Independence is
obtained in the limit as either r, θ or φ approaches zero. Complete dependence
is obtained in the limit when φ = θ = 1 and r tends to infinity.

3.4 Calculation of Pickands Result

Gumbel Marginals

Consider the result of Pickands, as seen in Eq. (3.14), and the marginal
extreme value distributions FX(ξ) and FY (η) given by the univariate Gumbel
distribution seen in Eq. (3.1) (Type I), i.e.

FX(ξ) = exp

{
− exp

[
−
(
ξ − µξ

σξ

)]}
,

FY (η) = exp

{
− exp

[
−
(
η − µη

ση

)]}
.

Evaluating each part of Eq. (3.14) yield:

x = − log(FX(ξ)) = exp

[
−
(
ξ − µξ

σξ

)]
= g(ξ)

and

x+ y = − log(FX(x))− log(FY (y))

= exp

[
−
(
ξ − µξ

σξ

)]
+ exp

[
−
(
η − µη

ση

)]
= g(ξ) + g(η)

resulting in

Hxy(ξ, η) = exp

{
− (g(ξ) + g(η)) · D

(
g(ξ)

g(ξ) + g(η)

)}
. (3.19)
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Our goal now is to compare the copula approach to the bivariate extreme
value distribution of the data. As we have seen from Eq. (2.14), this can be
expressed through the bivariate ACER function.

As the ACER function measures the probability of non-exceedances given
k − 1 previous non-exceedances over the time of the observations ny, we need
to use the annual form of the ACER function if we are to compare the bivariate
ACER function to the Gumbel copula approach. This is given in Eq. (2.19),
i.e.

F 1yr(ξ, η) = exp

{
−N − k + 1

ny
Ek(ξ, η)

}
.

By doing so, the functional form of the bivariate ACER surface can be obtained
by

F 1yr(ξ, η) = HXY (ξ, η),

equivalent to

Ek(ξ, η) =
(

ny

N − k + 1

)
· (g(ξ) + g(η)) · D

(
g(ξ)

g(ξ) + g(η)

)
.

Inserting the Gumbel-logistic dependence function in the argument above,
the functional form of the bivariate ACER surface becomes

Ek(ξ, η) =
(

ny

N − k + 1

)
· [g(ξ)r + g(η)r]

1
r , (3.20)

while inserting the Asymmetric logistic dependence function yield

Ek(ξ, η) =
(

ny

N − k + 1

)
·
(
[(φg(ξ))r + (θg(η))r]

1
r + (1− φ)g(ξ) + (1− θ)g(η)

)
.

(3.21)

Using the Negative logistic dependence function, the functional form be-
comes

Ek(ξ, η) =
(

ny

N − k + 1

)
·
(
g(ξ) + g(η)−

[
g−r(ξ) + g−r(η)

]− 1
r

)
, (3.22)

and by applying the Asymmetric negative logistic dependence function, we get

Ek(ξ, η) =
(

ny

N − k + 1

)
·
(
g(ξ) + g(η)−

[
(φg(ξ))−r + (θg(η))−r

]− 1
r

)
.

(3.23)

ACER Marginals

Staying true to classical extreme value theory, we continue using the annual
adaptation of the ACER function in both the univariate and bivariate case. The
annual univariate ACER marginals are then given by

F 1yr(ξ) = exp

{
−N − k + 1

ny
εk(ξ)

}
,

F 1yr(η) = exp

{
−N − k + 1

ny
εk(η)

}
,

(3.24)
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where the sub-asymptotic functional form of the univariate ACER function is
defined to be εk(ξ) = qk exp{−ak(ξ − bk)

ck}, with similar result for εk(η).
Using the annual univariate ACER functions, each part of Eq. (3.14) be-

comes:

x = − log(FX(ξ)) =
N − k + 1

ny
εk(ξ),

and

x+ y = − log(FX(x))− log(FY (y))

=
N − k + 1

ny
εk(ξ) +

N − k + 1

ny
εk(η)

=

(
N − k + 1

ny

)
(εk(ξ) + εk(η)),

resulting in

Hxy(ξ, η) = exp

{
−
(
N − k + 1

ny

)
(εk(ξ) + εk(η)) · D

(
εk(ξ)

εk(ξ) + εk(η)

)}
.

Using the annual form of the ACER function as given in Eq. (2.19), the
functional form of the bivariate ACER surface can be obtained by

Ek(ξ, η) = (εk(ξ) + εk(η)) · D
(

εk(ξ)

εk(ξ) + εk(η)

)
. (3.25)

By applying the Gumbel-logistic dependence function in the argument above,
the functional form of the bivariate ACER surface emerge as

Ek(ξ, η) = [εrk(ξ) + εrk(η)]
1
r , (3.26)

while inserting the asymmetric version, namely the Asymmetric logistic depen-
dence function, yield

Ek(ξ, η) = [(φεk(ξ))
r + (θεk(η))

r]
1
r + (1− φ)εk(ξ) + (1− θ)εk(η). (3.27)

By inserting the Negative logistic dependence function, we need to compare

Ek(ξ, η) = εk(ξ) + εk(η)−
[
ε−r
k (ξ) + ε−r

k (η)
]− 1

r , (3.28)

and finally, by using the Asymmetric negative logistic dependence function, we
get

Ek(ξ, η) = εk(ξ) + εk(η)−
[
(φεk(ξ))

−r + (θεk(η))
−r
]− 1

r . (3.29)

3.5 Optimizing Parameters

The optimized parameters r∗, φ∗ and θ∗ are found by minimizing the mean
square error function, which is simplest explained by considering the non-
asymmetric and asymmetric cases individually.
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In the non-asymmetric case, r∗ is found by minimizing:

F (r) =

Nη∑
j=1

Nξ∑
i=1

w′
ij

(
log
(
Êk(ξi, ηj)

)
− log

(
NAk(ξi, ηj)

))2

, (3.30)

where Nη, Nξ are numbers of levels η and ξ, respectively, at which the ACER
function have been empirically estimated, NA is the functional form of the bi-
variate ACER surface in one of the non-asymmetric cases, and w′

ij = wij/
∑∑

wij

where

wij =
(
log
(
CI+(ξi, ηj)

)
− log

(
CI−(ξi, ηj)

) )−2

, (3.31)

are the normalized weight factors prioritizing the most reliable estimates. The
optimization problem with the objective function defined in Eq. (3.30) is writ-
ten as {

F (r) → min;
{r} ∈ S, (3.32)

with the constraint domain

S =
{
{r} ∈ R | r ∈ [1,+∞)

}
, (3.33)

in the Gumbel-logistic case, and

S =
{
{r} ∈ R | r ∈ [0,+∞)

}
, (3.34)

in the Negative logistic case.
Using one of the asymmetric dependence functions, the optimized parame-

ters r∗, φ∗ and θ∗ are found by minimizing the mean square error function:

F (r, φ, θ) =

Nη∑
j=1

Nξ∑
i=1

w′
ij

(
log
(
Êk(ξi, ηj)

)
− log

(
Ak(ξi, ηj)

))2

, (3.35)

where A is the functional form of the bivariate ACER surface in one of the
asymmetric dependence function cases. The constrained optimization problem
becomes {

F (r, φ, θ) → min;
{r, φ, θ} ∈ S,

with the constraint domain

S =
{
{r, φ, θ} ∈ R3 | θ, φ ∈ [0, 1]; r ∈ [1,+∞)

}
, (3.36)

for the Asymmetric Logistic case, and

S =
{
{r, φ, θ} ∈ R3 | θ, φ ∈ [0, 1]; r ∈ [0,+∞)

}
, (3.37)

in the Asymmetric Negative Logistic case.



4

The Data

In the following chapter, the data sets being analyzed by the bivariate ACER
function and copula methods are being presented. The data used in this project
are a total of four synthetic time series and one real world data set. The
synthetic data sets are Gaussian time series. The reason for choosing Gaussian
time series is the relationship between the Gaussian and Gumbel distribution:
The asymptotic limiting distribution of the rescaled maxima of the Gaussian
distribution is Gumbel distributed. The fifth data set, the real world time
series, consists of wind level measurements from two locations on the Norwegian
coast.

These five data sets are used to test the empirically estimated bivariate
ACER function and the represented copula models real world applicability.

In this thesis, Gaussian time series have been generated using the time series
theory and R-code found in the Appendix, section A, while the real world data
set is obtained from www.eklima.no.

4.1 Synthetic Time Series

The generated Gaussian data sets are created with the α and β variables of
Eq. (A.1) to be 0.6 and 0.7, and a Pearson correlation coefficient between a1t
and a2t to 0.9. The amount of data have been generated to simulate hourly
observations with mean 0 and standard deviation 1 over periods of 10, 25, 50
and 100 years. This results in a total of 87600, 219000, 438000 and 876000
data points, respectively, with the statistics seen in Table 4.1.

Figure 4.1 depicts four scatter plots of the synthetic data sets. These figures
confirm high correlation for all the four pairs, and calculation of the Pearson
correlation coefficient yields approximately 0.88 for all data sets, roughly as
intended.

23
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Table 4.1: The minimum, mean, maximum and standard deviation of the four
Gaussian time series.

Type X Y
min -5.25 -5.54
mean 0.00 0.00
max 5.17 6.10
sd 1.25 1.40

(a) 10 years

Type X Y
min -5.38 -6.63
mean 0.00 0.00
max 5.70 6.58
sd 1.24 1.40

(b) 25 years

Type X Y
min -5.64 -6.88
mean 0.00 0.00
max 6.10 6.42
sd 1.24 1.39

(c) 50 years

Type X Y
min -7.70 -7.44
mean 0.00 0.00
max 6.29 7.13
sd 1.25 1.40

(d) 100 years

(a) 10 years (b) 25 years

(c) 50 years (d) 100 years

Figure 4.1: Plot of the Gaussian X time series vectors against the Gaussian Y
time series vectors, for the four time series.
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4.2 Wind Levels

The fifth data set for the methods used in this project are wind speed levels
collected by the Norwegian Meteorological Institute, [5], over a time period of
29 years. These are being measured on two adjacent weather stations, namely
Obrestad and Utsira Fyr (station number 44080 and 47300, respectively), see
Figure 4.2.

Figure 4.2: Map of the part of Norway indicating the locations from where
data were collected. South: Obrestad Fyr, North: Utsira Fyr. Map obtained
from www.google.no/maps.

The maximum wind gust was recorded 10 meters above the ground, four
times a day, over a time period stretching from 01.01.1983 to 31.12.2013 - a
total of 29 years. This has resulted in 1460 data points being registered per
year, a total of 42340 data points from each station during the observation
period. A brief statistical summary of the windspeed measurements from the
two locations is given in Table 4.2.

https://www.google.no/maps
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Table 4.2: The minimum, mean, maximum and standard deviation of the wind-
speed measurements from Obrestad and Utsira Fyr. All values in [m/s].

Type Obrestad Fyr Utsira Fyr
min 0 0
mean 6.99 8.32
max 32.58 30.58
sd 4.00 4.57

These values may be seen in context to their respective locations. The val-
ues obtained from Utsira Fyr are on average greater than those from Obrestad
Fyr, which may be because Utsira Fyr is situated in the Norwegian Sea, while
Obrestad Fyr is located on the Norwegian coast. In addition, it is worth noting
that the wind gust levels are higher in the winter months as seen in Figure 4.3.

(a) Obrestad Fyr (b) Utsira Fyr

Figure 4.3: Scatterplots of the wind levels from both locations, showing the
wind speed levels with respect to the months, over a period of 29 years.

Furthermore we check the correlation of the two data sets. Plotting the
two data sets from each location against each other, we obtain Figure 4.4. The
figure clearly shows a high correlation of the observed wind level data, and the
Pearson correlation coefficient is calculated to be 0.74.
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Figure 4.4: Coupled observations of Wind speed data observed at Obrestad
and Utsira Fyr station, all in [m/s].
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Analysis

Prediction is very difficult,
especially about the future.
- Niels Bohr.

In this chapter, the synthetic and real-world data sets that were introduced in
Chapter 4 are being analyzed. This is done using the empirically estimated
bivariate ACER function and the presented copula functions with asymptoti-
cally consistent marginal extreme value distributions based on the univariate
ACER function and fitted Gumbel distribution. We solve this task by using
the MATLAB code found in the Appendix. The four Gaussian time series with
the same underlying distribution are the first data sets to be analyzed, followed
by the real world data set obtained from the county of Rogaland.

It is worth noting that the logistic and Negative logistic copula approaches,
in both the symmetric and asymmetric case, will yield the same result, i.e. the
Gumbel-logistic and Asymmetric logistic model allows r ≤ 1 as well. The proof
may be found in [6]. As a result of this, the Negative logistic models will not
be plotted in the countour plots of the surfaces.

5.1 Synthetic Data

10 years

Using the ACER method on the 10 year Gaussian data set, we first deter-
mine which ACER function, ε̂k(ξ), that is appropriate. A way to do this
is to plot the ACER function for an increasing number of k’s, and when
ε̂k(ξ) ≈ ε̂k+1(ξ) in the tail, we have convergence, making the k’th ACER func-
tion a good choice. We proceed with plotting the cascade of ε̂1(ξ), ..., ε̂24(ξ)
and ε̂1(η), ..., ε̂24(η), as seen in Figure 5.1 and 5.3, respectively. We regard
k = 24 as the final converged result, as ε̂24(ξ) ≈ ε̂k(ξ) in the tail for all values
of k > 24.

Figure 5.1 and 5.3 show temporary dependence between consecutive data,
but a complete convergence of all ε̂k(ξ) and ε̂k(η) in the tail. As we are dealing
with stationary data we may plot the autocorrelation function of the time
series to check the set of correlation coefficients between the series and lags
of itself over time. The autocorrelation and partial autocorrelation plots may

28
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be found in Figure 5.2 and 5.4. Figure 5.2a and 5.4a clearly show that the
autocorrelations are significant for a large number of lags for both data sets,
but as Figure 5.2b and 5.4b illustrate, the autocorrelations at lag 2 and above
are merely due to the propagation of the autocorrelation at lag 1.

1 1.5 2 2.5 3 3.5 4 4.5
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R
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k=8

k=12

k=24

Figure 5.1: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 10 year Gaussian X data set.
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Figure 5.2: The ACF and PACF plot of the synthetic 10 year Gaussian X data
set.
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Figure 5.3: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 10 year Gaussian Y data set.
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Figure 5.4: The ACF and PACF plot of the synthetic 10 year Gaussian Y data
set.

The obvious choice, for both data sets, is to choose the first ACER function,
i.e. ε̂1(ξ) and ε̂1(η). This will allow us to use all the data available, reducing
the uncertainty of the estimations.



32 CHAPTER 5. ANALYSIS

The resulting cascade of estimated bivariate ACER surfaces, Êk(ξ, η), is seen
in Figure 5.5. As all ACER functions converge, the upper most surface, i.e.
that of k = 1, is partly overwritten by the subsequent surfaces corresponding
to greater k-values in the area of convergence. This is seen in Figure 5.5 as a
purple tail. This further strengthens our choice of k-value.

The figure also shows that the cross-section of the surfaces at the high values
of ξ gives the univariate ACER estimates for the X data set whilst the cross
section at a high value of η gives the univariate ACER function for the Y data
set.

Figure 5.5: Comparison of the bivariate ACER surface estimates for k =
1, 2, 4, 8, 12 and 24 degrees of conditioning for the 10 year Gaussian X and
Y data set, on a logarithmic scale.

We continue by fitting the univariate ACER and Gumbel distribution.
To fit the ACER function, we first calculate the empirical estimation of the

ACER function and then fit the asymptotic ACER model seen in Eq. (2.9) to
these values. This procedure is thoroughly described in [12].

The Gumbel marginals are fitted with maximum likelihood using the block
maximum values. Each block consists of all the observations done in one year,
culminating in 10 annual maxima.

To be able to compare the two marginal values we may set the annual
univariate ACER distribution found in Eq. (3.24) equal to the Gumbel distri-
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bution seen in Eq. (3.1) (Type I), i.e.

exp

{
−N − k + 1

ny
εk(ξ)

}
= exp

{
− exp

[
−
(
ξ − µξ

σξ

)]}
.

Solving for εk(ξ) yields

εk(ξ) =
ny

N − k + 1
exp

[
−
(
ξ − µξ

σξ

)]
.

The same procedure is used to transform the cumulative distribution of the
extreme values, i.e. F (xi) =

i
n+1 . The calculations are as follows:

exp

{
−N − k + 1

ny
εk(ξi)

}
=

i

n+ 1

εk(ξi) =
−ny

N − k + 1
log

(
i

n+ 1

)
.

The result of this distribution fitting is seen in Figure 5.6. As we see, there is
limited agreement between the adapted ACER function and the fitted Gumbel
distribution using the 10 maximum values. This mismatch suggest that the
approaches will yield different sub-asymptotic distributions. The inequality
between the two lines are calculated to be 5.08 · 10−5 and 1.03 · 10−5 in the far
end of the tail for the X and Y data set, respectfully. This indicates that the
calculated return values will be very different from each other.

We extend the analysis by estimating parameters of optimal fit between the
bivariate ACER model and the copula approaches using the Gumbel-logistic,
Asymmetric logistic, Negative logistic and Asymmetric negative logistic depen-
dence functions. The optimal estimates obtained are presented in Table 5.1.

Table 5.1: Optimal parameters of the Gumbel-logistic (GL), Asymmetric lo-
gistic (AL), Negative logistic (NL) and Asymmetric negative logistic (ANL)
fit with Gumbel and ACER marginals with their respective minimized mean
square error (MSE) for the Gaussian 10 year data.

Marginal Model Parameters MSE

Gumbel

GL r = 1 0.0936
AL r = 3.03, φ = 0, θ = 0.53 0.0936
NL r = 0.03 0.0936

ANL r = 0.03, φ = 0.37, θ = 0.43 0.0936

ACER

GL r = 1.45 0.0052
AL r = 2.36, φ = 0.58, θ = 0.77 0.0048
NL r = 0.73 0.0053

ANL r = 1.64, φ = 0.57, θ = 0.78 0.0048

The table shows, in the Gumbel case, that all copula models give the same
minimized mean square error, implying that the asymmetric copula models
should not yield a better fit than the non-asymmetric copulas. Furthermore,
as r = 1 in the Gumbel-logistic, φ = 0 in the Asymmetric logistic and r ≈ 0
in the Negative logistic cases, the copula models using Gumbel marginals will
imply independence.
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Figure 5.6: Plot of the empirically estimated ACER functions, the fitted uni-
variate ACER function, the annual maximum and the fitted Gumbel distribu-
tion for the synthetic 10 year Gaussian data set.
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For the copula models with ACER marginals, there is a slight decrease in
the calculated minimized mean square error when using asymmetric copula
models. These copulas also give a much smaller mean square error than the
copula models using Gumbel marginals. The parameters of the Gumbel-logistic
and Negative logistic models indicate, in contrast to the copulas using Gumbel
marginals, a dependence between the data.

The contour plot of the bivariate extreme value copula models using the
optimal estimated parameters and the bivariate ACER functions are found in
Figure 5.7. Note that the Gumbel-logistic and the Asymmetric logistic copula
models with Gumbel marginals return the same contour line, resulting in a
purple line.
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Figure 5.7: Contour plot of the empirically estimated bivariate ACER (Ê1)
surface, optimized Gumbel-logistic (GL) and optimized Asymmetric logistic
(AL) surfaces using Gumbel and ACER marginals for the 10 year Gaussian
data set. The red boxes indicate levels on a logarithmic scale.
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Figure 5.7 shows that the copula models with ACER marginals follow the
empirically estimated bivariate ACER functions with high accuracy for the -3.3
level. For the levels -3, -3.2 and -3.4 however, the contour lines show a small
misfit. Despite this, the overall fit of the ACER copula contour lines fit the
empirically data very well, and also capture the dependence structure of the
data.

For all levels, it is clear that the copula models with the fitted Gumbel
marginals badly reflect the distribution of the data. In addition, the Gumbel
copula approach does not capture the dependence structure of the empirically
bivariate ACER functions. Furthermore, based on Figure 5.7, we see that
the estimated return values from each marginal copula approach will yield
completely different values.

Comparing the return values of GLG, GLACER and ALACER is done by
looking at Figure 5.8. We discard the ALG model due to equality between the
GLG and ALG.

The return values have been collected and combined into Table 5.2 to give
a more accurate representation of the return values. In this table we have
discarded the return values gotten from the ALACER as they are the same as
the GLACER model.

Table 5.2: Estimated 10, 25, 50 and 100 year return values for the Gumbel-
logistic copula models with ACER and Gumbel marginals fitted based on the
Gaussian 10 year synthetic data.

Return GLGumbel GLACER

period X Y X Y
10 5.19 5.98 5.37 6.30
25 5.48 6.36 5.66 6.71
50 5.70 6.64 5.88 7.01
100 5.91 6.92 6.09 7.31

Figure 5.8 and Table 5.2 shows the same tendency observed in Figure 5.7,
i.e. the approaches using different marginal distribution clearly yield different
return values.
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Figure 5.8: Contour plot of the return period levels for the optimized Gumbel-
logistic (GL) and Asymmetric logistic (AL) surfaces with Gumbel and ACER
marginals with respect to the 10 year Gaussian data. The red and blue boxes
indicate return levels in years.
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25 years

We continue with the analysis of the 25 year Gaussian data set, where we
will follow the same procedure as in the previous subsection. The cascade of
ACER functions, ε̂1(ξ), ..., ε̂24(ξ) and ε̂1(η), ..., ε̂24(η), are plotted and found in
Figure 5.9 and 5.11.

Figure 5.9 and 5.11 show a marginal temporarily dependence between con-
secutive data. In both cases, convergence of ε̂k(ξ) and ε̂k(η), for all presented
values of k, is achieved in the tail.

The corresponding autocorrelation and partial autocorrelation plots may
be found in Figure 5.10 and 5.12. Figure 5.10a and 5.12a clearly show that
there are significant autocorrelations for a large number of lags for both data
sets, but as Figure 5.10b and 5.12b reveal, the autocorrelations at lag 2 and
above are only due to the propagation of the autocorrelation at lag 1.

The clear choice, for both data sets, is to choose the first ACER function,
i.e. ε̂1(ξ) and ε̂1(η). This will allow us to use all the data available, lowering
the uncertainty of the estimations.

Figure 5.13 shows a cascade of estimated bivariate ACER surfaces, Êk(ξ, η),
for k = 1, 2, 4, 8, 12 and 24 degrees of conditioning. As all ACER functions
converge, the upper most surface, i.e. that of k = 1, is partly overwritten
by the subsequent surfaces corresponding to greater k-values in the area of
convergence. This is seen in Figure 5.13 as a purple area.
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Figure 5.9: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 25 year Gaussian X data set.
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Figure 5.10: The ACF and PACF plot of the synthetic 25 year Gaussian X
data set.
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Figure 5.11: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 25 year Gaussian Y data set.
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Figure 5.12: The ACF and PACF plot of the synthetic 25 year Gaussian Y
data set.

Proceeding with the first ACER function, ε̂1(ξ), we compare the fit of the
univariate marginals to the data at hand. The result of the distribution fitting
is seen in Figure 5.14. As we see, there is an overall good agreement between
the adapted ACER function and the fitted Gumbel distribution using the 25
maximum values. Comparing the tails of the univariate lines, there is a high
agreement in the Y case. For the lines in the X case, there is a difference of
approximately 6 ·10−7 between the two distribution lines. Despite being small,
the differences between the two lines in both plots may result in different return
values for the two methods for large return periods, e.g. for the 100 year return
value. As the observed maximums in the 25 year data set is not comparable to
the estimated 100 year return value, Figure 5.14 gives a bad representation of
the differences in higher return levels.

We continue with estimating the parameters for optimal fit between the
empirical bivariate ACER values and the four copula models. The estimates
are given in Table 5.3.

The result of the parameter estimation shows, in the Gumbel marginal case,
a slight decrease in the minimized mean square error when using an asymmetric
copula model. In addition, the φ parameter is, in both asymmetric copula
models, set to 0.15, while the θ parameter is set to 1. I.e. the asymmetric
models have an optimal fit when we introduce asymmetry. Evaluating the
copula models with ACER marginals, the table shows that there is a general
consent between the four logistic models. They have approximately the same
dependence parameter r, and the φ and θ parameters, in the asymmetric cases,
seem to be close to 1. In addition, there is no reduction in the calculated mean
square error for the asymmetric models. This indicate that the asymmetric
copula models should be roughly equal to the non-asymmetric copulas when
plotted in a countour plot.
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Figure 5.13: Comparison of the bivariate ACER surface estimates for k =
1, 2, 4, 8, 12 and 24 degrees of conditioning for the 25 year Gaussian X and Y
data set, on a logarithmic scale.

Table 5.3: Optimal parameters of the Gumbel-logistic (GL), Asymmetric lo-
gistic (AL), Negative logistic (NL) and Asymmetric negative logistic (ANL)
fit with Gumbel and ACER marginals with their respective minimized mean
square error(MSE) of the Gaussian 25 year data.

Marginal Model Parameters MSE

Gumbel

GL r = 1.06 0.0205
AL r = 6.96, φ = 0.15, θ = 1 0.0175
NL r = 0.25 0.0207

ANL r = 6.71, φ = 0.15, θ = 1 0.0175

ACER

GL r = 1.54 0.0015
AL r = 1.55, φ = 1, θ = 0.96 0.0015
NL r = 0.81 0.0015

ANL r = 0.82, φ = 1, θ = 0.97 0.0015

The corresponding contour plot of these optimal fitted analytical bivariate
extreme value models together with the empirically estimated bivariate ACER
functions are found in Figure 5.15.
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Figure 5.14: Plot of the empirically estimated ACER functions, the fitted
univariate ACER function, the annual maximum and the fitted Gumbel distri-
bution for the synthetic 25 year Gaussian data set.
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Figure 5.15 shows a high equality between the empirically estimated bi-
variate ACER functions and the copula models with ACER marginals. The
prediction of roughly equal contour lines for the copula models with ACER
marginals also seem to hold up. Moreover, there is an increase in compatibility
between the asymmetric copula model with Gumbel marginals and the bivari-
ate ACER functions due to an improved dependence structure. Despite this,
all Gumbel marginal copulas yields contour lines that slightly differ in the Y
dimension compared to the bivariate ACER functions.
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Figure 5.15: Contour plot of the empiricaly estimated bivariate ACER (Ê1)
surface, optimized Gumbel-logistic (GL) and optimized Asymmetric logistic
(AL) surfaces using Gumbel and ACER marginals for the 25 year Gaussian
data set. The red boxes indicate levels on a logarithmic scale.
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We continue with plotting the return value plot as seen in Figure 5.16. In
this figure we compare the return values of the copula models with different
marginal distribution to each other. The models graphed in Figure 5.16 are
chosen based on the similarities and differences between the countour lines
observed in Figure 5.15.

The 10, 25, 50 and 100 year return values are obtained and arranged into
Table 5.4. Due to similarities, the GLG and GLACER are used.

Table 5.4: Estimated 10, 25, 50 and 100 year return values for the Gumbel-
logistic copula models with ACER and Gumbel marginals fitted based on the
Gaussian 25 year synthetic data set.

Return GLGumbel GLACER

period X Y X Y
10 5.34 6.10 5.31 6.12
25 5.66 6.51 5.61 6.49
50 5.90 6.81 5.84 6.76
100 6.14 7.10 6.06 7.04

Figure 5.16 and Table 5.4 show that there is now a much greater agreement
between the two copula approaches than previously observed. The differences
between the return values are growing, but these values are utmost 0.08 and
0.06 for the X and Y case, respectfully.
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Figure 5.16: Contour plot of the return period levels for the optimized Gumbel-
logistic (GL) and Asymmetric logistic (AL) surfaces with Gumbel and ACER
marginals with respect to the 25 year Gaussian data set. The red and blue
boxes indicate return levels in years.
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50 years

We advance this analysis by looking at the 50 year Gaussian data set. The
cascade of ACER functions, ε̂1(ξ), ..., ε̂24(ξ) and ε̂1(η), ..., ε̂24(η), are plotted
and displayed in Figure 5.17 and 5.19.

Both Figure 5.17 and 5.19 show a marginal temporarily dependence between
consecutive data, but a full convergence of ε̂k(ξ) and ε̂k(η), for all presented
values of k, is achieved in the tail.

In addition, the autocorrelation and partial autocorrelation plots found in
Figure 5.18a and 5.20a show that the autocorrelations are significant for a large
number of lags for both data sets, but as Figure 5.2b and 5.4b illustrates, the
autocorrelations at lag 2 and above are merely due to the propagation of the
autocorrelation at lag 1.

For both data sets, we choose the first ACER functions, i.e. ε̂1(ξ) and ε̂1(η),
with the added benefit of allowing us to use all available data, reducing the
uncertainty of the estimations.

Figure 5.21 shows the cascade of empirically estimated bivariate ACER
surfaces, Êk(ξ, η). As all ACER functions converge, the upper most surface, i.e.
that of k = 1, is partly overwritten by the subsequent surfaces corresponding
to greater k-values in the area of convergence. This is seen in Figure 5.5 as a
purple tail, and further strengthens our choice of k-value.
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Figure 5.17: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 50 year Gaussian X data set.
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Figure 5.18: The ACF and PACF plot of the synthetic 50 year Gaussian X
data set.
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Figure 5.19: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 50 year Gaussian Y data set.
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Figure 5.20: The ACF and PACF plot of the synthetic 50 year Gaussian Y
data set.

We move ahead by plotting the univariate fitted marginals. These are
seen in Figure 5.22. The lines clearly show a high agreement between the two
distributions in both the X and Y data set. In this case, we see a misfit between
the two methods in the beginning of the tail. This may indicate discrepancies
between the distributions of the copula approaches and the sub-asymptotic
distribution of the bivariate ACER values, for low return levels. Again we see
a slight difference in the far end of the tail of the marginal fit for the Y data.
This difference is found to be 1.5 · 10−7. Although smaller than the differences
for the 25 year data set, this difference might culminate in different return
values for large return periods. In the X data case, the fit of both the ACER
function and the Gumbel distribution fit does seem to match perfectly in the
far end of the tail. This indicates a high agreement between the two marginals
when estimating 50 year return values.

We further present the parameters for optimal fit between the empirically
estimated bivariate ACER function and the four copula models in Table 5.5.
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Figure 5.21: Comparison of the bivariate ACER surface estimates for k =
1, 2, 4, 8, 12 and 24 degrees of conditioning for the 50 year Gaussian X and Y
data set, on a logarithmic scale.

Table 5.5: Optimal parameters of the Gumbel-logistic (GL), Asymmetric lo-
gistic (AL), Negative logistic (NL) and Asymmetric negative logistic (ANL)
fit with Gumbel and ACER marginals with their respective minimized mean
square error (MSE) for the Gaussian 50 year data set.

Marginal Model Parameters MSE

Gumbel

GL r = 2.81 0.1113
AL r = 3.63, φ = 1, θ = 0.82 0.1112
NL r = 2.04 0.1112

ANL r = 2.70, φ = 1, θ = 0.85 0.1111

ACER

GL r = 1.50 0.0009
AL r = 1.60, φ = 0.95, θ = 0.86 0.0009
NL r = 0.77 0.0009

ANL r = 0.95, φ = 0.89, θ = 0.81 0.0009
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Figure 5.22: Plot of the empirically estimated ACER functions, the fitted
univariate ACER function, the annual maximum and the fitted Gumbel distri-
bution for the synthetic 50 year Gaussian data set.
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Table 5.5 reveals that the asymmetric models yield an insignificant decrease
in the minimized mean square error, in both marginal cases. In addition, the
φ and θ parameters are close to 1 for all asymmetric copula models indicating
a resemblance between the asymmetric and non-asymmetric copula models.
Furthermore, the dependence parameters are significantly different from 1 and
0 for the logistic and negative logistic families, respectively.

The corresponding contour plot of these optimal fitted analytical bivariate
extreme value models together with the empirically estimated bivariate ACER
functions are found in Figure 5.23.
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Figure 5.23: Contour plot of the empirically estimated bivariate ACER (Ê1)
surface, optimized Gumbel-logistic (GL) and optimized Asymmetric logistic
(AL) surfaces using Gumbel and ACER marginals for the 50 year Gaussian
data set. The red boxes indicate levels on a logarithmic scale.

Figure 5.23 shows high agreement between the empirically estimated bi-
variate ACER functions and the copula models with ACER marginals. It is
obvious that the dependence structure of the Gumbel marginal copula models
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are different than that of the data. This is due to the nature of our parameter
optimization as the dependence structure is sacrificed to decrease mean square
error. Despite this, there is a high consensus between the Gumbel marginal
copula and the empirically estimated bivariate ACER approach in the tails.

Furthermore, we see that the difference between the distribution of the
Gumbel marginal copula and the distribution of the observed time series in the
Y dimension, are decreasing in the -3.1 to -3.4 levels, and then increasing in
-3.7 level.

These differences are also noticeable in the return value plot found in Figure
5.24. In this figure we compare the return values of the three copula models
GLG, ALG and GLACER. We further collect the return values and combine
them into Table 5.6.

Table 5.6: Estimated 10, 25, 50 and 100 year return values for the Gumbel-
logistic copula models with ACER and Gumbel marginals fitted based on the
Gaussian 50 year synthetic data set.

Return GLGumbel GLACER

period X Y X Y
10 5.31 5.95 5.34 6.01
25 5.61 6.29 5.63 6.35
50 5.83 6.54 5.85 6.60
100 6.01 6.79 6.06 6.85

Comparing the estimated return values using the copula models with 50
years of hourly data shows that both copula approaches yield very similar
return values for all return periods. In fact, the difference in the X case is at
most 0.05, while the difference in the Y case is 0.06, consistently. In addition,
these differences are even smaller than those observed between the estimated
return values for the 25 year data set, indicating a higher agreement between
the two methods.
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Figure 5.24: Contour plot of the return period levels for the optimized Gumbel-
logistic (GL) and Asymmetric logistic (AL) surfaces with Gumbel and ACER
marginals with respect to the 50 year Gaussian data. The red and blue boxes
indicate return levels in years.
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100 years

We complete the analysis of the synthetic data sets by considering the 100
year Gaussian time series. Following the same pattern as in the previous sub-
sections, the cascade of ACER functions, ε̂1(ξ), ..., ε̂24(ξ) and ε̂1(η), ..., ε̂24(η),
are plotted and found in Figure 5.25 and 5.27.

Both figures show a marginal temporarily dependence between consecutive
data. In both cases, convergence of ε̂k(ξ) and ε̂k(η), for all presented values of
k, is achieved in the tail.

The corresponding autocorrelation and partial autocorrelation plots are
found in Figure 5.26 and 5.28. Figure 5.26a and 5.28a clearly show that there
are significant autocorrelations for a large number of lags for both data sets,
but as Figure 5.26b and 5.28b reveal, the autocorrelations at lag 2 and above
are due to the propagation of the autocorrelation at lag 1. The self-evident
choice, for both data sets, is to choose the first ACER function, i.e. ε̂1(ξ) and
ε̂1(η).

Figure 5.29 shows the cascade of estimated bivariate ACER surfaces, Êk(ξ, η),
for k = 1, 2, 4, 8, 12 and 24 degrees of conditioning. This figure also suggests
using the first ACER function.
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Figure 5.25: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 100 year Gaussian X data set.
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Figure 5.26: The ACF and PACF plot of the synthetic 100 year Gaussian X
data set.
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Figure 5.27: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the 100 year Gaussian Y data set.
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Figure 5.28: The ACF and PACF plot of the synthetic 100 year Gaussian Y
data set.

We move ahead by plotting the univariate fitted marginals. These are seen
in Figure 5.30. The figure shows a high degree of agreement between the
two fitted copula models. Despite this, the figures clearly show a mismatch
between the fitted ACER and Gumbel marginals in the far tail for both data
sets. Further inspection reveals this difference to be 2.09·10−07 and 1.84·10−07,
i.e. approximately the same error as the inequality found in the univariate fit
for the 50 year synthetic data set.

We continue our analysis by finding the parameters for best fit between the
empirically estimated bivariate ACER function and the four copula models.
These parameters are presented in Table 5.7.

Table 5.7: Optimal parameters of the Gumbel-logistic (GL), Asymmetric lo-
gistic (AL), Negative logistic (NL) and Asymmetric negative logistic (ANL)
fit with Gumbel and ACER marginals with their respective minimized mean
square error (MSE) for the Gaussian 100 year data.

Marginal Model Parameters MSE

Gumbel

GL r = 1 0.0242
AL r = 8.34, φ = 0.06, θ = 0.29 0.0240
NL r = 0.03 0.0242

ANL r = 0.03, φ = 0.52, θ = 0.50 0.0242

ACER

GL r = 1.52 0.0003
AL r = 1.59, φ = 1, θ = 0.87 0.0003
NL r = 0.79 0.0003

ANL r = 0.86, φ = 1, θ = 0.88 0.0003

It is evident from Table 5.7 that there is no reason favoring the asymmetric
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Figure 5.29: Comparison of the bivariate ACER surface estimates for k =
1, 2, 4, 8, 12 and 24 degrees of conditioning for the 100 year Gaussian X and Y
data set, on a logarithmic scale.

above the non-asymmetric copula models as they yield the same minimized
mean square error, when using both fitted Gumbel and ACER marginals. Ad-
ditionally in the case using Gumbel marginals, these copula models obtain
parameters that indicate independence. Using ACER marginals, we see that
the dependence parameter stays approximately the same for the asymmetric
and non-asymmetric cases and the φ and θ parameters are roughly equal to 1.

The corresponding contour plot of these optimal fitted analytical bivariate
extreme value copulas is found in Figure 5.31 together with the empirically
estimated bivariate ACER functions.
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Figure 5.30: Plot of the empirically estimated ACER functions, the fitted
univariate ACER function, the annual maximum and the fitted Gumbel distri-
bution for the synthetic 100 year Gaussian data set.
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Figure 5.31: Contour plot of the empirically estimated bivariate ACER (Ê1)
surface, optimized Gumbel-logistic (GL) and optimized Asymmetric logistic
(AL) surfaces using Gumbel and ACER marginals for the 100 year Gaussian
data set. The red boxes indicate levels on a logarithmic scale.

Figure 5.31 shows high agreement between the empirically estimated bi-
variate ACER functions and the copula models with ACER marginals. More-
over, we see that the distribution of the Gumbel marginal copulas fit the sub-
asymptotic distribution of the 100 year synthetic data better than previously
observed. Despite this, it is obviously a mismatch between the distributions
of the Gumbel marginal copulas in the Y dimension and the distributions of
the observed time series. These differences do however seem to decrease as
the return levels increase. The dependence structure of this copula approach
also seem to be improved from previously, but its still not entirely equal to the
observed values.

This result is also noticeable in the return value plot found in Figure 5.32.
We gather the values representing the 10, 25, 50 and 100 year return period,
and combine them into Table 5.8. The models shown in Figure 5.32 are chosen
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based on the similarities and differences between the countour lines observed
in Figure 5.31.

Table 5.8: Estimated 10, 25, 50 and 100 year return values for the Gumbel-
logistic copula models with ACER and Gumbel marginals fitted based on the
Gaussian 100 year synthetic data set.

Return GLGumbel GLACER

period X Y X Y
10 5.31 6.00 5.28 6.03
25 5.62 6.39 5.57 6.38
50 5.85 6.68 5.78 6.63
100 6.08 6.96 5.99 6.88

Comparing the estimated return values using the copula models with their
respective marginal distributions shows that both copula approaches yield very
similar return values for all return periods. As the return period increases, the
return value obtained by the ACER marginal copulas are slightly lower than
those given by the Gumbel marginal copulas. However, this is expected by
noticing the Gumbel and ACER lines in Figure 5.30. Despite this, the two
copula approaches yield fairly consistent results, disagreeing the most in the
100 year return period with 0.08 and 0.09 for the X and Y data set, respectfully.
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Figure 5.32: Contour plot of the return period levels for the optimized Gumbel-
logistic (GL) and Asymmetric logistic (AL) surfaces with Gumbel and ACER
marginals with respect to the 100 year Gaussian data. The red and blue boxes
indicate return levels in years.
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5.2 Wind Levels

Finally, we consider the wind levels obtained from the two lighthouses in
the county Rogaland. Determining the appropriate ACER functions, ε̂k(ξ) and
ε̂k(η), is done by looking at Figure 5.33 and 5.34. As we are dealing with a time
series that are considered as non-stationary time series, the autocorrelation and
partial autocorrelation function will not be of any help when determining the
appropriate ACER function. We regard the incident k = 24, corresponding to
conditioning the ACER function on wind levels recorded up to six days earlier,
to be the final converged result. This is both supported by the ACER plots,
as well as the knowledge that a storm rarely stays in the same place over a
greater period.
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Figure 5.33: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the Obrestad-lighthouse data set.

By visual inspection of Figure 5.33 and 5.34, we see a significant temporary
dependence between subsequent wind levels, but the cascade of ACER func-
tions obviously converge in the tail. Therefore ε̂1(ξ) and ε̂1(η) are chosen to
proceed with.

The corresponding estimated bivariate ACER surfaces Êk(ξ, η) are observed
in Figure 5.35. The converged ACER functions are plotted in a descending
order, leading to overwriting of the surfaces corresponding to lower k-value.
The cross-section of the surfaces at the high values of the wind level ξ gives the
univariate ACER estimates for the measurements from Oberstad lighthouse
while the cross section at a high value of the wind level η gives the univariate
ACER function for the measurements from the Utsira lighthouse.
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Figure 5.34: Comparison of the ACER estimates for k = 1, 2, 4, 8, 12 and 24
degrees of conditioning for the Utsira-lighthouse data set.

We proceed to check how well the fit of the univariate marginals are com-
pared to the data at hand. In Figure 5.36, we plot the empirically estimated
univariate ACER functions, the fitted univariate ACER line, the annual maxi-
mum of the data set and the fitted Gumbel distribution for both the Obrestad
and Utsira data set. This figure reveals an overall high disagreement between
the two fitted lines, which indicates a poor agreement when comparing the sub-
asymptotic distributions. Further inspection reveals the difference in the far
end of the tail to be 2.13 ·10−5 and 1.21 ·10−5 for the Obrestad and Utsira data
set, respectfully. These values are slightly less than the differences between the
lines when evaluating the 10 year Gaussian data, implying that we may see the
same behaviour when estimating the return values.

Moving forward, we estimate the parameters of optimal fit between the
bivariate ACER model and the four copula approaches using different depen-
dence models. The optimal estimates obtained are presented in Table 5.9.
This table clearly shows that the complicated asymmetric copula models yield
little benefit compared to the symmetric copula models for both marginal ap-
proaches. Furthermore, the optimal parameters of the copula models with
Gumbel marginals show an optimal fit when assuming the data to be indepen-
dent. Directing our focus to the estimated φ and θ parameters, we see that
these are estimated to be 0. Inserting the parameters into Eq. (3.21) and
(3.23), we obtain Eq. (3.20) and (3.22), respectfully. I.e. we attain the copula
models with Gumbel-logistic and Negative logistic dependence functions.

Using ACER marginals, we see that the φ and θ parameters of the asym-
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Figure 5.35: Comparison of the bivariate ACER surface estimates for k =
1, 2, 4, 8, 12 and 24 degrees of conditioning for the wind level data set, on a
logarithmic scale.

metric models are close to 1. In addition, the dependence parameter r is fairly
equal in both the asymmetric and non-asymmetric models, indicating resem-
blance between the two cases.

Table 5.9: Optimal parameters of the Gumbel-logistic (GL), Asymmetric lo-
gistic (AL), Negative logistic (NL) and Asymmetric negative logistic (ANL)
fit with Gumbel and ACER marginals with their respective minimized mean
square error (MSE) for the wind levels data set.

Marginal Model Parameters MSE

Gumbel

GL r = 1 0.1052
AL r = 1, φ = 0, θ = 0 0.1052
NL r = 0.01 0.1052

ANL r = 0.01, φ = 0, θ = 0 0.1052

ACER

GL r = 1.41 0.0014
AL r = 1.50, φ = 0.78, θ = 1 0.0014
NL r = 0.68 0.0014

ANL r = 0.78, φ = 0.78, θ = 1 0.0014

Using these optimal estimated parameters, we plot the contour values of
the empirically estimated bivariate ACER functions together with the contour
lines of the copula models. These may be viewed in Figure 5.37.
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Figure 5.36: Plot of the empirically estimated ACER functions, the fitted
univariate ACER function, the annual maximum and the fitted Gumbel distri-
bution for the wind level data set.
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As a result of the optimized parameters, the Gumbel-logistic and Asymmet-
ric logistic copula models obtain the same values and hence the same contour
line.
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Figure 5.37: Contour plot of the empirically estimated bivariate ACER (Ê1)
surface, optimized Gumbel-logistic (GL) and optimized Asymmetric logistic
(AL) surfaces using Gumbel and ACER marginals for the wind level data set.
The red boxes indicate levels on a logarithmic scale.

Figure 5.37 shows a high equality between the empirically estimated bivari-
ate ACER functions and the copula models with ACER marginals. We also
see that the two different copula models using the ACER marginals yield the
same values culminating in the same contour lines.

It is obvious that the contour lines of the Gumbel marginal copulas poorly
match the contour points of the bivariate ACER. The Gumbel approach does
not capture the sub-asymptotic distribution of the wind levels, and in addition
we see that the dependence structure of the copula models also indicate a
different dependence structure between the data than observed.
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This mismatch is also observed in the return value plot found in Figure
5.38. Here we plot the Gumbel-logistic copula model with different marginal
distributions. This is due to their simplicity and equality to the more complex
asymmetric copula models.

We gather the estimated return values and place them in Table 5.10. From
both Figure 5.38 and Table 5.10 we see a huge difference between the two
copula approaches. The difference between the two copula models starts at
around 0.7 and 0.5 for the Obrestad and Utsira locations. This discrepancy
escalates to approximately 2.3 for both locations when the return value period
reaches 100 years.

Table 5.10: Estimated 10, 25, 50 and 100 year return values for the Gumbel-
logistic copula models with ACER and Gumbel marginals fitted based on the
wind level data set. All values in [m/s].

Return GLGumbel GLACER

period Obrestad Utsira Obrestad Utsira
10 29.64 29.78 28.92 29.27
25 32.04 31.79 30.74 30.58
50 33.82 33.28 32.06 31.51
100 35.59 34.77 33.33 32.39

Matching this case to the synthetic data sets, we see a clear resemblance
between this real world data set and the 10 year synthetic data set. The
differences between the univariate marginal fits are approximately the same
and the difference in return values show the same tendency.
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Figure 5.38: Contour plot of the return period levels for the optimized Gumbel-
logistic (GL) surface with Gumbel and ACER marginals with respect to the
wind level data. The red and blue boxes indicate return levels in years.
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Conclusion

In this report, a description of the bivariate ACER method has been given using
a cascade of conditioning approximations that converge to the exact extreme
value distribution, with the latent statistical uncertainty, of the data analyzed.
It is obvious from the theory that the empirically estimated bivariate ACER
method does not provide enough information to estimate high quantiles in
the joint distribution, and the behaviour of the bivariate ACER function as a
continuous function of two variables can not be decided using the data.

As a result of this, a sub-asymptotic functional form of the ACER surface
have been approximated using a copula representation of the bivariate extreme
value distribution with marginal extreme value distributions based on the fit-
ted univariate ACER function. In comparison to this procedure, a traditional
copula approach using Gumbel marginals has also been done. These Gumbel
marginals have been fitted using maximum likelihood estimation with the data
sets annual maximum values. To further test the different copula approaches
we introduced four dependence functions, namely the Gumbel-logistic, Asym-
metric logistic, Negative logistic and Asymmetric negative logistic.

As we are dealing with extreme value statistics of limited time series, the
best way to judge a fitted extreme value method is to check how it fits the
sub-asymptotic distribution of the evaluated time series.

The analysis of the stationary synthetic time series in Chapter 5 shows
that there is a high level of agreement between the distribution of the empiri-
cally estimated bivariate ACER methods and the copula representations with
univariate ACER marginals in all dimensions. The copula approaches with
ACER marginals also captures a high degree of the dependence structure in
the evaluated time series.

Analysis further show that there are discrepancies between the bivariate
ACER method and the Gumbel marginal copulas. These consists of the Gum-
bel marginal copula approaches lack to match the sub-asymptotic distribution
of the data, and their inability to capture the dependence structures of the
time series. These disagreements are greatest when we are evaluating short
time series. For longer time series, these differences decrease.

Analysis of the unstationary real world time series consisting of wind levels
yield the same results. Despite consisting of 29 years, there are great inequal-
ities between the distributions of the two marginal copula approaches. Again
the copula approaches with ACER marginals provides the best fit to the sub-
asymptotic distribution of the time series, while the Gumbel approach display
a limited fit.
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This leads to the conclusion that the copula approach using the novel uni-
variate ACER method as marginal distributions will be a great improvement
to the traditional approach using Gumbel marginals, when data are limited.
Specifically, the adaptation of the univariate ACER method to the ACER func-
tions is not as vulnerable to limited time series as fitting a Gumbel distribution
using the traditional extreme value theory approach of blocking. Being able
to make use of more data, the ACER marginal copula approach is not lim-
ited to the maximum likelihood approach which yields parameters with great
uncertainty when few data points are available.

Furthermore, choosing which one of the four optimized dependence func-
tions to continue with, was made insignificant as all four models with identical
marginal distribution gave an approximately similar fit and return values. I.e.
there was no reason to pick the more complicated Asymmetric logistic and
Asymmetric negative logistic above the Gumbel-logistic or the Negative logis-
tic dependence function.
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Appendix

In this appendix we first show how synthetic data are generated using time
series, followed by the R code produced to create the synthetic data. Further-
more, the optimization of parameters and copula representation are presented
in MATLAB code.

A.1 Generation of Synthetic Time Series

Theory

As we wish to simulate two time series, we want control of certain aspects and
properties of these. Using Vector Autoregressive models (VAR) as discussed in
[15], we start with the model

Xt = αXt−1 + a1t,

Yt = βYt−1 + a2t,
(A.1)

where a1t and a2t are white noise, i.e. Gaussian distributed with 0 mean and
standard deviation equal to 1.

To create these two time series with a given correlation, we need to fix
the correlation between the white noise vectors. This is done by generating
a1t and a2t from the multivariate normal distribution with a given correlation
coefficient, ρ. Furthermore, the two time series are generated with a given
burn in period of 10% of the process’ length, and the correlated white noise is
inserted into each process.
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R Code

1 l i b r a r y (MASS)
l i b r a r y ( s t a t s )

3

# --------------------------- #
5 # -- User specified values -- #

# --------------------------- #
7 days = 365

years = 10
9 n = 24∗days∗ years # Amount of generated data

BurnIn = 0 .1 ∗n # Burn in value
11 rho = 0.90 # Correlation factor

alpha = 0 .6
13 beta = 0 .7

15 s e t . seed (1 ) # For reproducibility

17 # ---------------------------- #
# - Generating Gaussian data - #

19 # ---------------------------- #
# Evaluates Eq. (A.1) in the rapport.

21

eps = mvrnorm(n+BurnIn , mu=c (0 , 0 ) , Sigma=cbind ( c (1 , rho ) , c ( rho , 1 ) ) )
23

X_norm = arima . sim ( l i s t ( ar=alpha ) ,n , innov=eps [ BurnIn+1:n , 1 ] ,
25 s t a r t . innov=eps [ 1 : BurnIn , 1 ] )

27 Y_norm = arima . sim ( l i s t ( ar=beta ) ,n , innov=eps [ BurnIn+1:n , 2 ] ,
s t a r t . innov=eps [ 1 : BurnIn , 2 ] )

Listing A.1: Gaussian synthetic time series.
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A.2 MATLAB Code

Below, the edited MATLAB code are found. Note that it is only the scripts
that have been changed from the original code written by Oleh Karpa that are
being displayed in this appendix. In addition, the optimization scripts used for
the Negative logistic and the Asymmetric negative logistic dependence function
are virtually the same as the Gumbel-logistic and Asymmetric logistic, and
therefore only the two previously mentioned are displayed. All MATLAB code
are being displayed in the Dropbox folder accessible from http://goo.gl/v55Qfo.

f unc t i on [ L o g i s t i c_marg ] = . . .
2 Log i s t i c_Gumbel_marg ( marginal_X, marginal_Y,N, k , yrs , r )

% Description:
4 % Calculates Eq. (3.20) in the project.

% Innputs:
6 % - marginal_X, marginal_Y: Vectors containg the univariate

% Gumbel distributions.
8 % - r: Estimated optimal value for the dependence parameter.

constant = ( yrs / (N−k+1) ) ;
10 f o r j = 1 : numel ( marginal_Y)

f o r i = 1 : numel ( marginal_X)
12 Log i s t i c_marg ( j , i ) = constant . ∗ ( ( ( marginal_X( i ) ) .^ ( r ) . . .

+(marginal_Y( j ) ) .^ ( r ) ) .^(1 / r ) ) ;
14 end

end
16

end

Listing A.2: The Gumbel-logistic dependence function with Gumbel marginals.

1 f unc t i on [ Asymmetric_Log i s t i c_marg ] = . . .
Asymmetric_Log i s t i c_Gumbel_marg ( marginal_X, marginal_Y,N, k , yrs , r ,

phi , theta )
3 % Description:

% Calculates Eq. (3.21) in the project.
5 % Innputs:

% - marginal_X, marginal_Y: Vectors containg the univariate
7 % Gumbel distributions.

% - r, phi ,theta: Estimated optimal value of the parameters.
9 constant = ( yrs / (N−k+1) ) ;

f o r j = 1 : numel ( marginal_Y)
11 f o r i = 1 : numel ( marginal_X)

Asymmetric_Log i s t i c_marg ( j , i ) = . . .
13 constant . ∗((1−phi ) ∗marginal_X( i )+(1−theta ) ∗marginal_Y( j )+ . . .

( ( phi ∗marginal_X( i ) ) .^ ( r )+( theta ∗marginal_Y( j ) ) .^ ( r ) ) .^(1 / r ) )
;

15 end
end

17

end

Listing A.3: The Asymmetric logistic dependence function with Gumbel
marginals.

f unc t i on [ L o g i s t i c_marg ] = . . .
2 Log i s t i c_ACER_marg ( marginal_X, marginal_Y, r )

% Description:
4 % Calculates Eq. (3.26) in the project.

% Innputs:

http://goo.gl/v55Qfo
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6 % - marginal_X, marginal_Y: Vectors containg the univariate
% ACER distributions.

8 % - r: Estimated optimal value for the dependence parameter.
f o r j = 1 : numel ( marginal_Y)

10 f o r i = 1 : numel ( marginal_X)
Log i s t i c_marg ( j , i ) = ( ( ( marginal_X( i ) ) .^ ( r ) . . .

12 +(marginal_Y( j ) ) .^ ( r ) ) .^(1 / r ) ) ;
end

14 end

16 end

Listing A.4: The Gumbel-logistic dependence function with ACER marginals.

f unc t i on [ Asymmetric_Log i s t i c_marg ] = . . .
2 Asymmetric_Log i s t i c_ACER_marg ( marginal_X, marginal_Y, r , phi , theta )

% Description:
4 % Calculates Eq. (3.27) in the project.

% Innputs:
6 % - marginal_X, marginal_Y: Vectors containg the univariate

% ACER distributions.
8 % - r, phi ,theta: Estimated optimal value of the parameters.

f o r j = 1 : numel ( marginal_Y)
10 f o r i = 1 : numel ( marginal_X)

Asymmetric_Log i s t i c_marg ( j , i ) = . . .
12 ((1−phi ) ∗marginal_X( i ) + (1− theta ) ∗marginal_Y( j ) + . . .

( ( phi ∗marginal_X( i ) ) .^ ( r ) + ( theta ∗marginal_Y( j ) ) .^ ( r ) )
.^(1 / r ) ) ;

14 end
end

16

end

Listing A.5: The Asymmetric logistic dependence function with ACER
marginals.

1 f unc t i on [ f i n_so l , fmin , pos , so l , W] = . . .
Optim_Bivar_Log i s t i c_Gumbel_marg (biACER, CI , marginal_X, marginal_Y

,N, k , yrs , ro )
3

% Description:
5 % Optimizes the r parameters of Eq. (3.20) in the

% rapport by minimizing the mean square error function seen in
7 % Eq. (3.30) under the constraints described in Eq. (3.33).

% Innputs:
9 % - biACER: Values of the bivariate ACER estimates.

% - CI: Confidence interval of the biACER.
11 % - marginal_X, marginal_X: Vectors containg the marginal Gumbel

% distributions.
13 % Output:

% - fin_sol: Vector of final optimized parameters.
15 % - fmin: Minimum F-statistic using the optimized parameters.

% - sol: A matrix containing solutions on each row , using
different

17 % optimizing methods.
% - pos: The row -number of the sol -matrix where the optimal

parameters
19 % giving the minimum F-statistic is given.

% - W: The normalized weights , calculated in Eq. (3.31).
21

23 CI_plus = biACER + CI ;
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CI_minus = biACER − CI ;
25

W = ( log (CI_plus )−l og (CI_minus ) ) .^(−2) ;
27

pos_index = W>0;
29 r e a l_index = imag (W)~=0;

i f ~isempty ( pos_index )
31 W = abs (W) ;

e l s e i f ~isempty ( r e a l_index )
33 W = abs (W) ;

end
35 % Normalizing weights to have sum(w)=1

W = W/sum(sum(W) ) ;
37 c l e a r pos_index r e a l_index cond i t i on ;

39 % 1) Global 3 param LOG -level constraint optimization
F_t e s t = @(x )sum ( . . .

41 sum ( . . .
W. ∗ ( l og (biACER) − . . .

43 l og ( L o g i s t i c_Gumbel_marg ( marginal_X, marginal_Y , . . .
N, k , yrs , x (1 )+x (2) ) ) ) .^2 ) ) ; %x = [r]

45

s o l = 100∗ ones (3 , 3 ) ;
47

49 warning o f f a l l ;

51 F1 = F_t e s t ;

53 n ln ineq = @(x ) [ ] ;
n lneq = @(x ) [ ] ;

55 non l i n f cn = @(x ) dea l ( n ln ineq (x ) , nlneq (x ) ) ;

57 opt s t_logGloba l = opt imset ( ’ Display ’ , ’ o f f ’ , . . .
’ Algorithm ’ , ’ i n t e r i o r −point ’ , . . .

59 ’MaxFunEvals ’ , 10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .
’TolX ’ , 1e−12, ’TolFun ’ , 1e−12) ;

61

[ s o l ( 1 , 1 : 2 ) ,~ ] = fmincon (F1 , [ 1 / sq r t (1 − ro ) 1/ sq r t (1− ro ) ] , . . .
63 [ ] , [ ] , [ ] , [ ] , . . .

[ 0 . 5 0 . 5 ] , . . . % Lower constraints
65 [ I n f I n f ] , . . . % Upper constraints

non l in f cn , opt s t_logGloba l ) ;
67 s o l ( 1 , 3 ) = F_t e s t ( s o l ( 1 , 1 : 2 ) ) ;

i f any ( imag (sum( s o l ( 1 , : ) ) ) )
69 s o l ( 1 , : ) = 100∗ ones (1 , 3 ) ;

end
71 c l e a r F1 opt s t_logGloba l n ln ineq nlneq non l i n f cn ;

73 % 2) Global 3 param LOG -level Least Squares constraint
% optimization

75

F2 = @(x ) sq r t ( . . .
77 sum ( . . .

W. ∗ ( l og (biACER) − . . .
79 l og ( L o g i s t i c_Gumbel_marg ( marginal_X, marginal_Y , . . .

N, k , yrs , x (1 )+x (2) ) ) ) .^2 ) ) ; %x = [r]
81

opt s t_log_a l l = opt imset ( ’ Display ’ , ’ o f f ’ , . . .
83 ’ Algorithm ’ , ’ t rus t−reg ion−r e f l e c t i v e ’ , . . .

’MaxFunEvals ’ , 10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .
85 ’TolX ’ , 1e−12, ’TolFun ’ , 1e−12) ;
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[ s o l ( 2 , 1 : 2 ) ,~ ] = l s qnon l i n (F2 , [ 1 / sq r t (1 − ro ) 1/ sq r t (1 − ro ) ] , . . .
87 [ 0 . 5 0 . 5 ] , . . . % Lower constraints

[ I n f I n f ] , . . . % Upper constraints
89 opt s t_log_a l l ) ;

s o l ( 2 , 3 ) = F_t e s t ( s o l ( 2 , 1 : 2 ) ) ;
91 i f any ( imag (sum( s o l ( 2 , : ) ) ) )

s o l ( 2 , : ) = 100∗ ones (1 , 3 ) ;
93 end

c l e a r F2 opt s t_log_a l l ;
95

[ fmin , pos ] = min ( s o l ( : , 3 ) ) ;
97 f i n_s o l = s o l ( pos , 1 : 2 ) ;

99

end

Listing A.6: Optimization function for the Gumbel-logistic dependence
function with Gumbel marginals.

f unc t i on [ f i n_so l , fmin , pos , so l , W] = . . .
2 Optim_Bivar_Asymetric_Log i s t i c_Gumbel_marg (biACER, CI , marginal_X,

marginal_Y,N, k , yrs , ro )
% Description:

4 % Optimizes the r, fi and teta parameters of Eq. (3.21) in the
% rapport by minimizing the mean square error function seen in

6 % Eq. (3.35) under the constraints described in Eq. (3.36).
% Innputs:

8 % - biACER: Values of the bivariate ACER estimates.
% - CI: Confidence interval of the biACER.

10 % - marginal_X, marginal_X: Vectors containg the marginal
% Gumbel distributions.

12 % Output:
% - fin_sol: Vector of final optimized parameters.

14 % - fmin: Minimum F-statistic using the optimized parameters.
% - sol: A matrix containing solutions on each row , using

different
16 % optimizing methods.

% - pos: The row -number of the sol -matrix where the optimal
parameters

18 % giving the minimum F-statistic is given.
% - W: The normalized weights , calculated in Eq. (3.31).

20

CI_plus = biACER + CI ;
22 CI_minus = biACER − CI ;

24 W = ( log (CI_plus )−l og (CI_minus ) ) .^(−2) ;

26 pos_index = W>0;
r e a l_index = imag (W)~=0;

28 i f ~isempty ( pos_index )
W = abs (W) ;

30 e l s e i f ~isempty ( r e a l_index )
W = abs (W) ;

32 end
% Normalizing weights to have sum(w)=1

34 W = W/sum(sum(W) ) ;
c l e a r pos_index r e a l_index cond i t i on ;

36

% 1) Global 3 param LOG -level constraint optimization
38 F_t e s t = @(x )sum ( . . .

sum ( . . .
40 W. ∗ ( l og (biACER) − . . .
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l og ( Asymmetric_Log i s t i c_Gumbel_marg ( marginal_X , . . .
42 marginal_Y,N, k , yrs , x (1 ) , x (2 ) , x (3 ) ) ) ) .^2 ) ) ;

% x = [r fi teta]
44

s o l = 100∗ ones (3 , 4 ) ;
46

warning o f f a l l ;
48

F1 = F_t e s t ;
50

n ln ineq = @(x ) [ ] ;
52 nlneq = @(x ) [ ] ;

non l i n f cn = @(x ) dea l ( n ln ineq (x ) , nlneq (x ) ) ;
54

opt s t_logGloba l = opt imset ( ’ Display ’ , ’ o f f ’ , . . .
56 ’ Algorithm ’ , ’ i n t e r i o r −point ’ , . . .

’MaxFunEvals ’ , 10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .
58 ’TolX ’ , 1e−12, ’TolFun ’ , 1e−12) ;

[ s o l ( 1 , 1 : 3 ) ,~]= fmincon (F1 , [ 1 / sq r t (1 − ro ) 0 . 5 0 . 5 ] , [ ] , [ ] , [ ] , [ ] , . . .
60 [ 1 0 0 ] , . . . % Lower constraints

[ I n f 1 1 ] , . . . % Upper constraints
62 non l in f cn , opt s t_logGloba l ) ;

i f any ( imag (sum( s o l ( 1 , : ) ) ) )
64 s o l ( 1 , : ) = 100∗ ones (1 , 4 ) ;

end
66 s o l ( 1 , 4 ) = F_t e s t ( s o l ( 1 , 1 : 3 ) ) ;

c l e a r F1 opt s t_logGloba l n ln ineq nlneq non l i n f cn ;
68

% 2) Global 3 param LOG -level Least Squares constraint
optimization

70

F2 = @(x ) sq r t (sum(W. ∗ ( . . .
72 l og (biACER) − . . .

l og ( Asymmetric_Log i s t i c_Gumbel_marg ( marginal_X , . . .
74 marginal_Y, N, k , yrs , x (1 ) , x (2 ) , x (3 ) ) ) ) .^2 ) ) ;

% x = [r fi teta]
76

opt s t_log_a l l = opt imset ( ’ Display ’ , ’ o f f ’ , . . .
78 ’ Algorithm ’ , ’ t rus t−reg ion−r e f l e c t i v e ’ , . . .

’MaxFunEvals ’ , 10000 , ’ MaxIter ’ , 1 0 0 0 0 , . . .
80 ’TolX ’ , 1e−12, ’TolFun ’ , 1e−12) ;

[ s o l ( 2 , 1 : 3 ) , ~ ] = l s qnon l i n (F2 , [ 1 / sq r t (1 − ro ) 0 . 5 0 . 5 ] , . . .
82 [ 1 0 0 ] , . . . % Lower constraints

[ I n f 1 1 ] , . . . % Upper constraints
84 opt s t_log_a l l ) ;

i f any ( imag (sum( s o l ( 2 , : ) ) ) )
86 s o l ( 2 , : ) = 100∗ ones (1 , 4 ) ;

end
88 s o l ( 2 , 4 ) = F_t e s t ( s o l ( 2 , 1 : 3 ) ) ;

c l e a r F2 opt s t_log_a l l ;
90

[ fmin , pos ] = min ( s o l ( : , 4 ) ) ;
92 f i n_s o l = s o l ( pos , 1 : 3 ) ;

94

end

Listing A.7: Optimization function for the Asymmetric logistic dependence
function with Gumbel marginals.
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236

% ------------------------------------------------------- %
238 % ------------------ TRADITIONAL EV --------------------- %

% ------------------------------------------------------- %
240

242 % ----- Univariate fit ----- %
dataX = max(X) ; % Extract the maximum yearly value

244 dataY = max(Y) ; % for both time series.

246 % Parameters for Gumbel:
parmhat_X = e v f i t (−dataX ) ; % mu sigma

248 parmhat_Y = e v f i t (−dataY ) ; % mu sigma

250 % Calculates the cumulative distribution of the observed maxima
so r t ed_data_X = so r t ( dataX ) ;

252 so r t ed_data_Y = so r t ( dataY ) ;
F_x = [ ] ;

254 F_y = [ ] ;
f o r i =1:numel ( dataX )

256 F_x( i ) = −(yrs_X/ ( Npoints−k_cho i s e +1) ) ∗ l og ( i / ( numel ( dataX )+1) ) ;
F_y( i ) = −(yrs_Y/ ( Npoints−k_cho i s e +1) ) ∗ l og ( i / ( numel ( dataY )+1) ) ;

258 end

260 x_va l s_X = l i n s p a c e (min (min (blXtmp) ,min ( dataX ) )−eps , . . .
max(max(blXtmp) ,max( dataX ) )+eps ,N_X) ;

262 x_va l s_Y = l i n s p a c e (min (min (blYtmp) ,min ( dataY ) )−eps , . . .
max(max(blYtmp) ,max( dataY ) )+eps ,N_Y) ;

264

Gumbel_f i t_X = yrs_X∗gumb_uni ( x_va l s_X,−parmhat_X(1) , . . .
266 parmhat_X(2) ) . / ( Npoints−k_cho i s e +1) ;

Gumbel_f i t_Y = yrs_Y∗gumb_uni ( x_va l s_Y,−parmhat_Y(1) , . . .
268 parmhat_Y(2) ) . / ( Npoints−k_cho i s e +1) ;

270 acer_f i t_Xtmp_k = ep s i l o n (x_va l s_X, f i n_s o l_X) ;
acer_f i t_Ytmp_k = ep s i l o n (x_va l s_Y, f i n_s o l_Y) ;

272

274 % Univariate plot
f i g u r e

276 c l f
semi logy (blXtmp , acerXtmp , ’ ∗k ’ , ’ MarkerSize ’ , 4 )

278 hold on
semi logy (x_va l s_X, acer_f i t_Xtmp_k , ’ k ’ )

280 hold on
semi logy ( so r t ed_data_X, F_x , ’ or ’ , ’ MarkerSize ’ , 4 )

282 hold on
semi logy (x_va l s_X, Gumbel_f i t_X, ’ r ’ )

284 x l ab e l ( ’ \ x i ’ )
y l ab e l ( ’ACER^x_1(\ x i ) ’ )

286 l egend ( ’ \ ep s i l o n_1(\ x i ) ’ , ’ACER f i t ’ , ’ Annual maxima ’ , ’GUMBEL f i t ’ )
e d i t p l o t 3 3 ;

288

f i g u r e
290 c l f

semi logy (blYtmp , acerYtmp , ’ ∗k ’ , ’ MarkerSize ’ , 4 )
292 hold on

semi logy (x_va l s_Y, acer_f i t_Ytmp_k , ’ k ’ )
294 hold on

semi logy ( so r t ed_data_Y, F_y , ’ or ’ , ’ MarkerSize ’ , 4 )
296 hold on

semi logy (x_va l s_Y, Gumbel_f i t_Y, ’ r ’ )
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298 x l ab e l ( ’ \ eta ’ )
y l ab e l ( ’ACER^y_1(\ eta ) ’ )

300 l egend ( ’ \ ep s i l o n_1(\ eta ) ’ , ’ACER f i t ’ , ’ Annual maxima ’ , ’GUMBEL f i t ’ )
e d i t p l o t 3 3 ;

302

% Refit the marginal distributions
304 Gumbel_f i t_X = gumb_uni ( b l_X,−parmhat_X(1) , parmhat_X(2) ) ;

Gumbel_f i t_Y = gumb_uni ( b l_Y,−parmhat_Y(1) , parmhat_Y(2) ) ;
306

acer_f i t_X = ep s i l o n ( b l_X, f i n_s o l_X) ;
308 acer_f i t_Y = ep s i l o n ( b l_Y, f i n_s o l_Y) ;

310

312

314 % ----- Dependence functions ----- %
% Here we find the optimal parameter(s) of the dependence

316 % functions under their respective constraints , using Gumbel
% and ACER marginals. They are then being fitted with the

318 % parameters.

320 % Gumbel -Logistic dependence function
[ f i n_s o l_g_l , ~ ,~ , s o l_g_l , ~ ] = . . .

322 Optim_Bivar_Log i s t i c_Gumbel_marg (ACER_hat_mean , CI_BI , . . .
Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X, ro ) ;

324

[ f i n_s o l_a_l , ~ ,~ , s o l_a_l , ~ ] = . . .
326 Optim_Bivar_Log i s t i c_ACER_marg (ACER_hat_mean , CI_BI , . . .

ace r_f i t_X, acer_f i t_Y, ro ) ;
328

330 % Asymmetric Logistic dependence function
[ f i n_s o l_g_al , ~ ,~ , s o l_g_al , ~ ] = . . .

332 Optim_Bivar_Asymetric_Log i s t i c_Gumbel_marg (ACER_hat_mean , . . .
CI_BI , Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X, ro ) ;

334

336 [ f i n_s o l_a_al , ~ ,~ , s o l_a_al , ~ ] = . . .
Optim_Bivar_Asymetric_Log i s t i c_ACER_marg (ACER_hat_mean , . . .

338 CI_BI , acer_f i t_X, acer_f i t_Y, ro ) ;

340 % Negative Logistic dependence function
[ f i n_s o l_g_nl , ~ ,~ , s o l_g_nl , ~ ] = . . .

342 Optim_Bivar_Negative_Log i s t i c_Gumbel_marg (ACER_hat_mean , . . .
CI_BI , Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X) ;

344

[ f i n_s o l_a_nl , ~ ,~ , s o l_a_nl , ~ ] = . . .
346 Optim_Bivar_Negative_Log i s t i c_ACER_marg (ACER_hat_mean , . . .

CI_BI , acer_f i t_X, acer_f i t_Y) ;
348

% Asymmetric Negative Logistic dependence function
350 [ f i n_s o l_g_anl , ~ ,~ , s o l_g_anl , ~ ] = . . .

Optim_Bivar_Asymetric_Negative_Log i s t i c_Gumbel_marg ( . . .
352 ACER_hat_mean , CI_BI , Gumbel_f i t_X, Gumbel_f i t_Y , . . .

Npoints , k_cho i se , yr s_X) ;
354

356 [ f i n_s o l_a_anl , ~ ,~ , s o l_a_anl , ~ ] = . . .
Optim_Bivar_Asymetric_Negative_Log i s t i c_ACER_marg (ACER_hat_mean

, . . .
358 CI_BI , acer_f i t_X, acer_f i t_Y) ;
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360 % Copula models are being calculated with their respective
% parameter values.

362

% Gumbel -Logistic dependence function
364 Log i s t i c_Gumbel_f i t = . . .

L o g i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , . . .
366 k_cho i se , yr s_X, f i n_s o l_g_l (1 )+f i n_s o l_g_l (2 ) ) ;

368 Log i s t i c_ACER_f i t = . . .
L o g i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

370 f i n_s o l_a_l (1 )+f i n_s o l_a_l (2 ) ) ;

372 % Asymmetric Logistic dependence function
Asymmetric_Log i s t i c_Gumbel_f i t = . . .

374 Asymmetric_Log i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .
Npoints , k_cho i se , yr s_X, f i n_s o l_g_a l (1 ) , f i n_s o l_g_a l (2 ) , . . .

376 f i n_s o l_g_a l (3 ) ) ;

378 Asymmetric_Log i s t i c_ACER_f i t = . . .
Asymmetric_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

380 f i n_s o l_a_a l (1 ) , f i n_s o l_a_a l (2 ) , f i n_s o l_a_a l (3 ) ) ;

382 % Negative Logistic dependence function
Negative_Log i s t i c_Gumbel_f i t = . . .

384 Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .
Npoints , k_cho i se , yr s_X, f i n_s o l_g_nl (1 )+f i n_s o l_g_nl (2 ) ) ;

386

388 Negative_Log i s t i c_ACER_f i t = . . .
Negat ive_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

390 f i n_s o l_a_nl (1 )+f i n_s o l_a_nl (2 ) ) ;

392 % Asymmetric Negative Logistic dependence function
Asymmetric_Negative_Log i s t i c_Gumbel_f i t = . . .

394 Asymmetric_Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X , . . .
Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X, f i n_s o l_g_anl (1 ) , . . .

396 f i n_s o l_g_anl (2 ) , f i n_s o l_g_anl (3 ) ) ;

398 Asymmetric_Negative_Log i s t i c_ACER_f i t = . . .
Asymmetric_Negative_Log i s t i c_ACER_marg ( acer_f i t_X , . . .

400 acer_f i t_Y, f i n_s o l_a_anl (1 ) , f i n_s o l_a_anl (2 ) , f i n_s o l_a_anl (3 ) ) ;

402 % Contour fit
% Here we make optimal scales for the contour plot.

404 % The optimal models are then being fitted by running
% the marginals for the computed interval.

406 m1 = max(max( log10 (ACER_hat_mean) ) ) ;
m2 = max(max( log10 ( Lo g i s t i c_Gumbel_f i t ) ) ) ;

408 m3 = max(max( log10 ( Asymmetric_Log i s t i c_Gumbel_f i t ) ) ) ;
m4 = max(max( log10 ( Negative_Log i s t i c_Gumbel_f i t ) ) ) ;

410 m5 = max(max( log10 ( Asymmetric_Negative_Log i s t i c_Gumbel_f i t ) ) ) ;
m6 = max(max( log10 ( Lo g i s t i c_ACER_f i t ) ) ) ;

412 m7 = max(max( log10 ( Asymmetric_Log i s t i c_ACER_f i t ) ) ) ;
m8 = max(max( log10 ( Negative_Log i s t i c_ACER_f i t ) ) ) ;

414 m9 = max(max( log10 ( Asymmetric_Negative_Log i s t i c_ACER_f i t ) ) ) ;
a = (min ( [m1, m2, m3, m4, m5, m6, m7, m8, m9 ] ) ) ;

416

c l e a r m1 m2 m3 m4
418 m1 = min (min ( log10 (ACER_hat_mean) ) ) ;

m2 = min (min ( log10 ( Lo g i s t i c_Gumbel_f i t ) ) ) ;
420 m3 = min (min ( log10 ( Asymmetric_Log i s t i c_Gumbel_f i t ) ) ) ;
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m4 = min (min ( log10 ( Negative_Log i s t i c_Gumbel_f i t ) ) ) ;
422 m5 = min (min ( log10 ( Asymmetric_Negative_Log i s t i c_Gumbel_f i t ) ) ) ;

m6 = min (min ( log10 ( Lo g i s t i c_ACER_f i t ) ) ) ;
424 m7 = min (min ( log10 ( Asymmetric_Log i s t i c_ACER_f i t ) ) ) ;

m8 = min (min ( log10 ( Negative_Log i s t i c_ACER_f i t ) ) ) ;
426 m9 = min (min ( log10 ( Asymmetric_Negative_Log i s t i c_ACER_f i t ) ) ) ;

b = (max ( [m1, m2, m3, m4, m5 ] ) ) +0.1 ;
428

c l e a r m1 m2 m3
430 v1 = l i n s p a c e ( a , ( b+a ) / 2 ,8) ;

v2 = l i n s p a c e ( ( b+a ) / 2 ,b , 5 ) ;
432 v = [ v1 , v2 ( 2 : end ) ] ;

c l e a r a b v1 v2
434

stepX = bar_l ev_X(2)−bar_l ev_X(1) ;
436 blx = [ bar_l ev_X( 1 : end−1)−0.5 , ( bar_l ev_X( end ) −0.5) : stepX : . . .

bar_l ev_X( c e i l ( numel ( bar_l ev_X)/ 2) ) + bar_l ev_X( end ) ] ;
438 c l e a r stepX

stepY = bar_l ev_Y(2)−bar_l ev_Y(1) ;
440 bly = [ bar_l ev_Y( 1 : end−1) , bar_l ev_Y( end ) : stepY : . . .

bar_l ev_Y( c e i l ( numel ( bar_l ev_Y)/ 2) ) + bar_l ev_Y( end ) ] ;
442 c l e a r stepY

444

446 acer_f i t_X = ep s i l o n ( blx , f i n_s o l_X) ;
acer_f i t_Y = ep s i l o n ( bly , f i n_s o l_Y) ;

448 Gumbel_f i t_X = gumb_uni ( blx ,−parmhat_X(1) , parmhat_X(2) ) ;
Gumbel_f i t_Y = gumb_uni ( bly ,−parmhat_Y(1) , parmhat_Y(2) ) ;

450

452 % Refitting:
% Gumbel -Logistic dependence function

454 Log i s t i c_Gumbel_f i t = . . .
L o g i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , . . .

456 k_cho i se , yr s_X, f i n_s o l_g_l (1 )+f i n_s o l_g_l (2 ) ) ;

458 Log i s t i c_ACER_f i t = Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .
f i n_s o l_a_l (1 )+f i n_s o l_a_l (2 ) ) ;

460

% Asymmetric Logistic dependence function
462 Asymmetric_Log i s t i c_Gumbel_f i t = . . .

Asymmetric_Log i s t i c_Gumbel_marg ( . . .
464 Gumbel_f i t_X, Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X , . . .

f i n_s o l_g_a l (1 ) , f i n_s o l_g_a l (2 ) , f i n_s o l_g_a l (3 ) ) ;
466

Asymmetric_Log i s t i c_ACER_f i t = . . .
468 Asymmetric_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

f i n_s o l_a_a l (1 ) , f i n_s o l_a_a l (2 ) , f i n_s o l_a_a l (3 ) ) ;
470

% Negative Logistic dependence function
472 Negative_Log i s t i c_Gumbel_f i t = . . .

Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .
474 Npoints , k_cho i se , yr s_X, f i n_s o l_g_nl (1 )+f i n_s o l_g_nl (2 ) ) ;

476 Negative_Log i s t i c_ACER_f i t = . . .
Negative_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y, . . .

478 f i n_s o l_a_nl (1 )+f i n_s o l_a_nl (2 ) ) ;

480 % Asymmetric Negative Logistic dependence function
Asymmetric_Negative_Log i s t i c_Gumbel_f i t = . . .

482 Asymmetric_Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X , . . .
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Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X, f i n_s o l_g_anl (1 ) , . . .
484 f i n_s o l_g_anl (2 ) , f i n_s o l_g_anl (3 ) ) ;

486 Asymmetric_Negative_Log i s t i c_ACER_f i t = . . .
Asymmetric_Negative_Log i s t i c_ACER_marg ( acer_f i t_X, . . .

488 acer_f i t_Y, f i n_s o l_a_anl (1 ) , f i n_s o l_a_anl (2 ) , f i n_s o l_a_anl (3 ) ) ;

490

492 % Contour plot
% We plot the optimal bivariate ACER , HR , ANL and NL methods.

494 % We further add a text -box with the levels on a logarithmic
% scale and a legend.

496 C = [ v (5 ) , v (7 ) , v (8 ) , v (9 ) ] ;

498 f i g u r e ;
c l f

500 f o r i i = 1 : numel (C)
CtableACER{ i i } = contourc ( bar_l ev_X, bar_l ev_Y , . . .

502 l og10 (ACER_hat_mean) , [C( i i ) C( i i ) ] ) ;
CtableACER{ i i } ( : , CtableACER{ i i } ( 1 , : )==C( i i ) ) = [ ] ;

504 i f ~isempty (CtableACER{ i i })
p l o t (CtableACER{ i i } ( 1 , : ) ,CtableACER{ i i } ( 2 , : ) , ’ . ’ , . . .

506 ’ Color ’ , ’ k ’ , ’ LineWidth ’ ,2 , ’ Markers ize ’ ,10)
end

508

hold on
510

CtableL_G_f i t { i i } = contourc ( blx , bly , . . .
512 l og10 ( Lo g i s t i c_Gumbel_f i t ) , [C( i i ) C( i i ) ] ) ;

CtableL_G_f i t { i i } ( : , CtableL_G_f i t { i i } ( 1 , : )==C( i i ) ) = [ ] ;
514 i f ~isempty ( CtableL_G_f i t { i i })

p l o t ( CtableL_G_f i t { i i } ( 1 , : ) , CtableL_G_f i t { i i } ( 2 , : ) , ’− ’ , . . .
516 ’ Color ’ , [ 0 1 0 ] , ’ LineWidth ’ , 1 . 5 )

end
518 hold on

520 CtableAL_G_f i t { i i } = contourc ( blx , bly , . . .
l og10 ( Asymmetric_Log i s t i c_Gumbel_f i t ) , [C( i i ) C( i i ) ] ) ;

522 CtableAL_G_f i t { i i } ( : , CtableAL_G_f i t { i i } ( 1 , : )==C( i i ) ) = [ ] ;
i f ~isempty (CtableAL_G_f i t { i i })

524 p lo t (CtableAL_G_f i t { i i } ( 1 , : ) , CtableAL_G_f i t { i i } ( 2 , : ) , . . .
’− ’ , ’ Color ’ , [ 1 0 1 ] , ’ LineWidth ’ , 1 . 5 )

526 end
hold on

528

CtableL_A_f i t { i i } = contourc ( blx , bly , . . .
530 l og10 ( Lo g i s t i c_ACER_f i t ) , [C( i i ) C( i i ) ] ) ;

CtableL_A_f i t { i i } ( : , CtableL_A_f i t { i i } ( 1 , : )==C( i i ) ) = [ ] ;
532 i f ~isempty ( CtableL_A_f i t { i i })

p l o t ( CtableL_A_f i t { i i } ( 1 , : ) , CtableL_A_f i t { i i } ( 2 , : ) , ’− ’ , . . .
534 ’ Color ’ , [ 0 1 1 ] , ’ LineWidth ’ , 1 . 5 )

end
536 hold on

538 CtableAL_A_f i t { i i } = contourc ( blx , bly , . . .
l og10 ( Asymmetric_Log i s t i c_ACER_f i t ) , [C( i i ) C( i i ) ] ) ;

540 CtableAL_A_f i t { i i } ( : , CtableAL_A_f i t { i i } ( 1 , : )==C( i i ) ) = [ ] ;
i f ~isempty (CtableAL_A_f i t { i i })

542 p lo t (CtableAL_A_f i t { i i } ( 1 , : ) , CtableAL_A_f i t { i i } ( 2 , : ) , . . .
’− ’ , ’ Color ’ , [ 0 0 1 ] , ’ LineWidth ’ , 1 . 5 )

544 end
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end
546 xlim ( [ min (min (CtableACER{1}) )−1 bar_l ev_X( end ) +1])

ylim ( [ min (min (CtableACER{1}) )−1 max(max(CtableACER{1}) ) +1])
548

550 f o r i i = 1 : numel (C)
text (max(CtableACER{ i i } ( 1 , : ) ) ,min (CtableACER{ i i } ( 2 , : ) ) , . . .

552 horzcat ( num2str (C( i i ) , ’ %10.2g ’ ) ) , . . .
’ Hor izontalAl ignment ’ , ’ Right ’ , ’ FontSize ’ ,22 , ’FontName ’ , . . .

554 ’ Times New Roman ’ , ’ BackgroundColor ’ , [ 0 . 9 4 0 .87 0 . 8 7 ] , . . .
’ Edgecolor ’ , [ . 7 . 7 . 7 ] ) ;

556 end

558 l egenda = legend ( . . .
horzcat ( [ ’ $\hat {\mathcal {E}}_{ ’ num2str ( k_cho i s e ) ’ }$ ’ ] ) , . . .

560 horzcat ( [ ’ $\mathcal { ’ ’GL}_{G}$ ’ ] ) , . . .
horzcat ( [ ’ $\mathcal { ’ ’AL}_{G}$ ’ ] ) , . . .

562 horzcat ( [ ’ $\mathcal { ’ ’GL}_{ACER }$ ’ ] ) , . . .
horzcat ( [ ’ $\mathcal { ’ ’AL}_{ACER }$ ’ ] ) , . . .

564 ’ Locat ion ’ , [ 0 . 5 2 5 0 .9596 0 .01 0 . 0 1 ] , ’ Or i enta t i on ’ , ’ h o r i z on t a l ’ ) ;
s e t ( legenda , ’ I n t e r p r e t e r ’ , ’LaTex ’ )

566 x l ab e l ( ’ \ x i ’ , ’ FontSize ’ ,26)
y l ab e l ( ’ \ eta ’ , ’ Rotation ’ ,0 , ’ FontSize ’ ,26)

568 ed i t p l o t 3 3

570 c l e a r i i p r e c i s i o n X_mesh Y_mesh CtableACER CtableACER_r e a l . . .
CtableAL_f i t CtableGL_f i t CtableGL_hat CtableGL_MOM

572

574 % Return contour level plot
% Here we plot a contour plot of the GL and AL method using

576 % Gumbel and ACER marginals. We further add a text -box with
% the levels yearly scale and a legend.

578

stepX = bar_l ev_X(2)−bar_l ev_X(1) ;
580 blx = [ bar_l ev_X( 1 : end−1) , bar_l ev_X( end ) : stepX : . . .

bar_l ev_X( c e i l ( numel ( bar_l ev_X)/ 2) ) + bar_l ev_X( end ) ] ;
582 c l e a r stepX

stepY = bar_l ev_Y(2)−bar_l ev_Y(1) ;
584 bly = [ bar_l ev_Y( 1 : end−1) , bar_l ev_Y( end ) : stepY : . . .

bar_l ev_Y( c e i l ( numel ( bar_l ev_Y)/ 2) ) + bar_l ev_Y( end ) ] ;
586 c l e a r stepY

588

acer_f i t_X = ep s i l o n ( blx , f i n_s o l_X) ;
590 acer_f i t_Y = ep s i l o n ( bly , f i n_s o l_Y) ;

Gumbel_f i t_X = gumb_uni ( blx ,−parmhat_X(1) , parmhat_X(2) ) ;
592 Gumbel_f i t_Y = gumb_uni ( bly ,−parmhat_Y(1) , parmhat_Y(2) ) ;

594 % Refitting:
% Gumbel -Logistic dependence function

596 Log i s t i c_Gumbel_f i t = . . .
L o g i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .

598 Npoints , k_cho i se , yr s_X, f i n_s o l_g_l (1 )+f i n_s o l_g_l (2 ) ) ;

600 Log i s t i c_ACER_f i t = . . .
L o g i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

602 f i n_s o l_a_l (1 )+f i n_s o l_a_l (2 ) ) ;

604 % Asymmetric Logistic dependence function
Asymmetric_Log i s t i c_Gumbel_f i t = . . .

606 Asymmetric_Log i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .
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Npoints , k_cho i se , yr s_X, f i n_s o l_g_a l (1 ) , f i n_s o l_g_a l (2 ) , . . .
608 f i n_s o l_g_a l (3 ) ) ;

610 Asymmetric_Log i s t i c_ACER_f i t = . . .
Asymmetric_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

612 f i n_s o l_a_a l (1 ) , f i n_s o l_a_a l (2 ) , f i n_s o l_a_a l (3 ) ) ;

614 % Negative Logistic dependence function
Negative_Log i s t i c_Gumbel_f i t = . . .

616 Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X, Gumbel_f i t_Y , . . .
Npoints , k_cho i se , yr s_X, f i n_s o l_g_nl (1 )+f i n_s o l_g_nl (2 ) ) ;

618

Negative_Log i s t i c_ACER_f i t = . . .
620 Negative_Log i s t i c_ACER_marg ( acer_f i t_X, acer_f i t_Y , . . .

f i n_s o l_a_nl (1 )+f i n_s o l_a_nl (2 ) ) ;
622

% Asymmetric Negative Logistic dependence function
624 Asymmetric_Negative_Log i s t i c_Gumbel_f i t = . . .

Asymmetric_Negative_Log i s t i c_Gumbel_marg (Gumbel_f i t_X , . . .
626 Gumbel_f i t_Y, Npoints , k_cho i se , yr s_X, f i n_s o l_g_anl (1 ) , . . .

f i n_s o l_g_anl (2 ) , f i n_s o l_g_anl (3 ) ) ;
628

Asymmetric_Negative_Log i s t i c_ACER_f i t = . . .
630 Asymmetric_Negative_Log i s t i c_ACER_marg ( acer_f i t_X , . . .

ace r_f i t_Y, f i n_s o l_a_anl (1 ) , f i n_s o l_a_anl (2 ) , f i n_s o l_a_anl (3 ) ) ;
632

634 f i g u r e ;
c l f

636 f o r i i = 1 : numel ( pr )
CtableL_G_f i t { i i } = contourc ( blx , bly , L o g i s t i c_Gumbel_f i t , . . .

638 [ l e v e l ( i i ) l e v e l ( i i ) ] ) ;
CtableL_G_f i t { i i } ( : , CtableL_G_f i t { i i } ( 1 , : ) == l e v e l ( i i ) ) = [ ] ;

640 i f ~isempty ( CtableL_G_f i t { i i })
p l o t ( CtableL_G_f i t { i i } ( 1 , : ) , CtableL_G_f i t { i i } ( 2 , : ) , ’− ’ , . . .

642 ’ Color ’ , [ 0 1 0 ] , ’ LineWidth ’ , 1 . 5 )
end

644 hold on

646 CtableAL_G_f i t { i i } = contourc ( blx , bly , . . .
Asymmetric_Log i s t i c_Gumbel_f i t , [ l e v e l ( i i ) l e v e l ( i i ) ] ) ;

648 CtableAL_G_f i t { i i } ( : , CtableAL_G_f i t { i i } ( 1 , : ) == l e v e l ( i i ) ) = [ ] ;
i f ~isempty (CtableAL_G_f i t { i i })

650 p lo t (CtableAL_G_f i t { i i } ( 1 , : ) , CtableAL_G_f i t { i i } ( 2 , : ) , . . .
’− ’ , ’ Color ’ , [ 1 0 1 ] , ’ LineWidth ’ , 1 . 5 )

652 end
hold on

654

CtableL_A_f i t { i i } = contourc ( blx , bly , L o g i s t i c_ACER_f i t , . . .
656 [ l e v e l ( i i ) l e v e l ( i i ) ] ) ;

CtableL_A_f i t { i i } ( : , CtableL_A_f i t { i i } ( 1 , : ) == l e v e l ( i i ) ) = [ ] ;
658 i f ~isempty ( CtableL_A_f i t { i i })

p l o t ( CtableL_A_f i t { i i } ( 1 , : ) , CtableL_A_f i t { i i } ( 2 , : ) , ’− ’ , . . .
660 ’ Color ’ , [ 0 1 1 ] , ’ LineWidth ’ , 1 . 5 )

end
662 hold on

664 CtableAL_A_f i t { i i } = contourc ( blx , bly , . . .
Asymmetric_Log i s t i c_ACER_f i t , [ l e v e l ( i i ) l e v e l ( i i ) ] ) ;

666 CtableAL_A_f i t { i i } ( : , CtableAL_A_f i t { i i } ( 1 , : ) == l e v e l ( i i ) ) = [ ] ;
i f ~isempty (CtableAL_A_f i t { i i })

668 p lo t (CtableAL_A_f i t { i i } ( 1 , : ) , CtableAL_A_f i t { i i } ( 2 , : ) , . . .
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’− ’ , ’ Color ’ , [ 0 0 1 ] , ’ LineWidth ’ , 1 . 5 )
670 end

end
672

f o r i i = 1 : numel ( pr )
674 s i z eL_G_f i t = s i z e ( CtableL_G_f i t { i i }) ;

s i z eL_A_f i t = s i z e ( CtableL_A_f i t { i i }) ;
676 min_s i z e_f i t = min ( s i z eL_G_f i t (2 ) , s i z eL_A_f i t (2 ) ) ;

x_upper ( i i ) = f i nd ( abs ( CtableL_G_f i t { i i } ( 2 , 1 : min_s i z e_f i t ) − . . .
678 CtableL_A_f i t { i i } ( 2 , 1 : min_s i z e_f i t ) ) >=0.001 ,1 , ’ l a s t ’ ) ;

x_upper ( i i ) = CtableL_G_f i t { i i } (1 , x_upper ( i i ) ) ;
680 x_lower ( i i ) = f i nd ( abs ( CtableL_G_f i t { i i } ( 1 , 1 : min_s i z e_f i t ) − . . .

CtableL_A_f i t { i i } ( 1 , 1 : min_s i z e_f i t ) ) >=0.001 ,1 , ’ f i r s t ’ ) ;
682 x_lower ( i i ) = CtableL_A_f i t { i i } (1 , x_lower ( i i ) ) ;

684 y_upper ( i i ) = f i nd ( abs ( CtableL_G_f i t { i i } ( 1 , 1 : min_s i z e_f i t ) − . . .
CtableL_A_f i t { i i } ( 1 , 1 : min_s i z e_f i t ) ) >=0.001 ,1 , ’ f i r s t ’ ) ;

686 y_upper ( i i ) = CtableL_G_f i t { i i } (2 , y_upper ( i i ) ) ;
y_lower ( i i ) = f i nd ( abs ( CtableL_G_f i t { i i } ( 2 , 1 : min_s i z e_f i t ) − . . .

688 CtableL_A_f i t { i i } ( 2 , 1 : min_s i z e_f i t ) ) >=0.001 ,1 , ’ l a s t ’ ) ;
y_lower ( i i ) = CtableL_G_f i t { i i } (2 , y_lower ( i i ) ) ;

690 t ex t ( x_upper ( i i ) −1.1 , y_lower ( i i ) , . . .
horzcat ( num2str (1 /(1−exp ( − l e v e l ( i i ) ∗ . . .

692 ( Npoints−k_cho i s e +1)/ yrs_X) ) , ’ %10.4g ’ ) ) , . . .
’ Hor izontalAl ignment ’ , ’ Right ’ , ’ FontSize ’ , 2 2 , . . .

694 ’FontName ’ , ’ Times New Roman ’ , . . .
’ BackgroundColor ’ , [ 0 . 8 7 0 .92 0 . 9 8 ] , ’ Edgecolor ’ , [ . 7 . 7 . 7 ] ) ;

696 t ex t ( x_lower ( i i ) , y_upper ( i i ) −1 . 1 , . . .
horzcat ( num2str (1 /(1−exp ( − l e v e l ( i i ) ∗ . . .

698 ( Npoints−k_cho i s e +1) / yrs_X) ) , ’ %10.4g ’ ) ) , . . .
’ Hor izontalAl ignment ’ , ’ Right ’ , ’ FontSize ’ ,22 , ’FontName ’ , . . .

700 ’ Times New Roman ’ , ’ BackgroundColor ’ , [ 0 . 9 4 0 .87 0 . 8 7 ] , . . .
’ Edgecolor ’ , [ . 7 . 7 . 7 ] ) ;

702 end

704

l egenda = legend ( . . .
706 horzcat ( [ ’ $\mathcal { ’ ’GL}_{G}$ ’ ] ) , . . .

horzcat ( [ ’ $\mathcal { ’ ’AL}_{G}$ ’ ] ) , . . .
708 horzcat ( [ ’ $\mathcal { ’ ’GL}_{ACER}$ ’ ] ) , . . .

horzcat ( [ ’ $\mathcal { ’ ’AL}_{ACER}$ ’ ] ) , . . .
710 ’ Locat ion ’ , [ 0 . 5 2 5 0 .9596 0 .01 0 . 0 1 ] , ’ Or i enta t i on ’ , ’ h o r i z on t a l ’ ) ;

s e t ( legenda , ’ I n t e r p r e t e r ’ , ’LaTex ’ )
712 x l ab e l ( ’ \ x i ’ )

y l ab e l ( ’ \ eta ’ , ’ Rotation ’ , 0 )
714 ed i t p l o t 3 3

c l e a r i i p r e c i s i o n

Listing A.8: The part of the BiMAIN.m file that have been edited.
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