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Abstract

In reliability theory, there are often data missing due to censoring. Such incomplete
datasets are usually di�cult to analyse. The exact value of the censored data is not
known, but some information exists. That is, the value is higher than the censoring
limit if the data is right censored, or lower for left censoring. Statistical analysis
methods assume complete data, thus the censored data needs to be estimated. The
missing values are replaced with �ctional values, found by di�erent methods, making
the dataset a �ctional complete dataset. To get good results from the analysis, the
estimated values of the missing data should be as close to the original data as
possible. In this thesis, the goal has been to analyse censored data from split-
plot design. A design performed in split-plot manner induces correlation among
observations. Two censoring methods have been tested; the quick and dirty method
and the maximum likelihood method combined with multiple imputation. In the
latter, the variance of the di�erent parts of split-plot design were estimated, and
then used to estimate the e�ects of the factors. Some of the factors, the ones
that seem to be of less importance, must be removed for maximum likelihood and
multiple imputation to create the variances. If done carefully, the analysis gives
information of the factors with most in�uence. The performances of the methods
are evaluated through three examples, and two di�erent types of censoring, right
and left censoring. Numerical results are obtained from implementations in the
programming language R.

The results in this thesis show that both methods give good estimates for the e�ects
of the factors. However, the quick and dirty method is not a safe method if there
are many censored observations or a big gap between the censoring limit and the
true value of the censored observations. The outcome of this thesis indicate that
multiple imputation using the maximum likelihood estimator is the most accurate
and safe method.
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Sammendrag

I pålitelighetsteori er det ofte at data mangler på grunn av sensurering. Slike ufull-
stendige datasett er vanligvis vanskelige å analysere. Den nøyaktige verdien av
sensurerte data er ikke kjent, men noe informasjon �nnes. Det vil si at verdien er
høyere enn sensureringsgrensen dersom dataene er høyre sensurert, eller lavere for
venstre sensurering. Statistiske analysemetoder antar komplette data, dermed må
sensurerte data estimeres. Manglende verdier er erstattet med �ktive verdier, funnet
ved ulike metoder, slik at datasettet blir et �ktivt komplett datasett. For å få gode
resultater fra analysen, bør de estimerte verdiene av de manglende observasjonene
være så nær den opprinnelige verdien som mulig. I denne oppgaven har målet vært
å analysere sensurerte data fra splitt-plott design. Et design på splitt-plott form in-
duserer korrelasjon mellom observasjoner. To sensurerings metoder har blitt testet;
quick og dirty metoden og sannsynlighetsmaksimeringsmetoden kombinert med mul-
tippel imputering. I sistnevnte ble variansen av de forskjellige delene av splitt-plott
designet beregnet, og deretter brukt til å estimere e�ektene av faktorene. Noen av
faktorene, de av mindre betydning, fjernes fra sannsynlighetsmaksimeringsmetoden
og multippel imputering for å skape avvikene. Hvis det gjøres nøye, gir analysen
informasjon om faktorene med mest inn�ytelse. Metodene evalueres gjennom tre
eksempler, og to forskjellige typer sensurering, høyre og venstre sensurering. Nu-
meriske resultater oppnås fra implementeringer i programmeringsspråket R.

Resultatene i denne avhandlingen viser at begge metodene gir gode estimater for
e�ektene av faktorene. Imidlertid er quick og dirty metoden ikke en trygg metode
dersom det er mange sensurerte observasjoner eller et stort gap mellom sensurerings
grensen og den sanne verdien av de sensurerte observasjonene. Utfallet av denne
avhandlingen tyder på at multippel imputering med maksimal sannsynlighetsesti-
mator er den mest nøyaktige og trygge metoden.
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Chapter 1

Introduction

All industrial experiments are split-plot experiments.

This provocative remark has been attributed to the famous industrial statistician
Cuthbert Daniel, by Box et al. (2005)[1] in their book on design of experiments.
Split-plot experiments were introduced by Fisher (1925) and their importance in
industrial experimentation is highly recognized.

Experimental design helps create a design that assures gaining desired informa-
tion. The interest is often focused on the e�ects of the process in an experimental
design, where the design is constructed to �gure out these e�ects and their con-
tribution to the experiment. When performing experiments, resources are rarely
unlimited, nor in amount of time or money. An experimental design in split-plot
manner saves resources, by means of limiting the amount of runs necessary to con-
duct the experiment.

Methods for dealing with censoring in experimental design have been tested by
Sue-Chu[2] and Støtvig[3], among others. The conclusion is that multiple imputation
with maximum likelihood gives the best estimations. The quick and dirty approach
is concluded unsafe, although it may give a pointer to which e�ects that have the
most in�uence on a product. In this thesis, both of these methods are tested. The
desired result is whether or not the most signi�cant e�ects in an experiment can
be found if the dataset has some censored data. The datasets used in calculations
are (1) an experiment about the uniformity in a single-wafer plasma etching pro-
cess, (2) modi�cation of the surface characteristics of a security paper with plasma
treatment from Bisgaard et. al. and (3) the well known Box and Jones' optimal
formulation of a cake mix. These were chosen since the analyses are known, which
makes it easy to compare the results in this thesis to the original estimates. The
experiments are not typical censoring experiments, that is, the limits are set arbi-
trarily. However, the datasets are not too large, thus the censored values are easily
found manually. The censoring of the datasets produces arti�cial censored datasets,
since there is no natural way of censoring when doing this experiment. For example,
for the cake mix experiment, one could say the taste of the cake was "o�-the-charts",
since the right censoring limit is set to 6, when the scale is 1-7.

Conditional distributions are assumed appropriate for missing data where the
failure time is not observed. Di�erent variances concerning the censored split-plots
are estimated and used in the scaled truncation which is combined with multiple
imputation. This creates estimates for the censored data. The methods were im-
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plemented in the programming language R, using both own code and embedded
functions available in R. The R package lm was used to estimate all the e�ects of
the factors for both the original and the quick and dirty censored dataset. Censoring
of the datasets was done with the R package censReg, and this was used to esti-
mate the e�ects of the factors for the maximum likelihood and multiple imputation
method. For the truncation, the package truncnorm and the function rtruncnorm
were used.

Chapter 2 concerns the basic theory used in the procedure in this thesis, i.e.
the linear regression model, di�erent types of censoring and the maximum likelihood
method for the exponential distribution are de�ned. Then, multiple imputation and
truncation are introduced. Chapter 3 is devoted to split-plot design and split-plot
design with mirror image pairs. The multivariate normal distribution and simulating
dependent values are also included in this chapter. The three examples are presented
in Chapter 4. In Chapter 5 follows the description of the software, as well as the
two methods used, after a quick introduction to the previous work. The results are
described in Chapter 6, followed by a discussion in Chapter 7 and a conclusion in
Chapter 8.

The estimated coe�cient of every factor for each example is listed in Ap-
pendix A. That is, the original estimate, the result of the calculations for the max-
imum likelihood with multiple imputation and the result of the quick and dirty
method. Appendix B contains the code for Example II. The code used for deriving
the results in the other examples is very similar to this, thus they are omitted.
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Chapter 2

Theory

2.1 Linear regression model

A regression model is a statistical technique for modelling the relationship between
a response variable and one, or more, explanatory variables. The response variable
depends on the explanatory variables, thus it is called the dependent variable. Re-
gression analysis estimates the regression function, which describes how the response
variable is related to the explanatory variables. The regression variable is called the
independent variable.

The regression of a random variable y on the variables x, is the expectation of
y given the values of x, that is E(y|x). The linear regression model is expressed as
follows

E(y|x) = β0 + β1x1 + β2x2 + . . .+ βkxk + ε, (2.1)

where y is the response variable, x1, x2, . . . , xk are the explanatory variables, β0, β1,
β2, . . . , βk are the regression coe�cients and ε is the random error. Here, the er-
rors are usually assumed uncorrelated and distributed by N(0, σ2). The regression
coe�cients determines to what extent each explanatory variable contributes to the
response. Most commonly, the least square method is used for estimating the un-
known β's.

2.2 Censoring

To test how well a product works, or its lifetime, experiments are run on several units
of the product. Such experiments can not run forever, that is, there must be some
limiting conditions, called censoring. Limiting conditions can be time, economical
reasons, loss of an object due to withdrawal from the study and so on. Thus, there
are di�erent types of censoring.
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Type I censoring

A sample of n units are tested in the interval from time zero, t0, until the experiment
is stopped at time tk. Failures, or experiences, after time tk are not observed. The
experiencing of the event is random, but the total duration of the experiment is
�xed.

Type II censoring

A sample of n units are observed until failure of the �rst r units. The r is predeter-
mined, such that r ≤ n. Since the experience of the event is random, the duration
of the experiment is also random.

Right, left and interval censoring

Censoring is divided into three main categories. Right censoring occurs when there
are still functioning units after the experiment is terminated. These are omitted
from the analysis, i.e. censored. If some units have failed before the start of the
experiment, they become left censored. When the censored data points lie between
two values, i.e. the observed data lie outside this interval, the data is interval
censored. In this thesis, right censoring and left censoring are considered.

2.3 The maximum likelihood

The maximum likelihood method[2] is a method for estimating the parameters of a
statistical model. It consists of maximizing the likelihood function. The likelihood
function is the joint density of the independent random variables taken from a
probability distribution. When estimating the likelihood, the log-likelihood is often
maximized, �nding the estimates for the parameters when the derivative of the
log-likelihood function is set to zero.

As an example, let T1, T2, ..., Tn be n independent random variables from the
probability distribution f(t, θ), where θ is a single parameter of the distribution.
The likelihood function is given by

L(θ) =
n∏
i=1

f(ti, θ).

If the Ti's are exponentially distributed random variables with probability density
function

f(t, θ) =
1

θ
e−

t
θ .

With n observations, the likelihood function is given by

L(θ) =
n∏
i=1

1

θ
e−

ti
θ =

1

θn

n∏
i=1

e−
ti
θ .

Taking the natural logarithm gives the log-likelihood,
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l(θ) = lnL(θ) = −nln(θ)−
∑n

i=1 ti
θ

.

Further, the derivative with respect to θ is set equal to zero,

∂l(θ)

∂θ
= −n

θ
+

∑n
i=1 ti
θ2

= 0.

Then θ̂, the estimate of θ, is found,

θ̂ =

∑n
i=1 ti
n

.

2.4 The maximum likelihood for right censored data

When dealing with censored data, the maximum likelihood has to be altered. Let
f(t, θ) denote the probability density function, F (t, θ) the distribution function and
S(t, θ) the survival function. The probability that a unit survives the time interval
(0, t) is de�ned by

S(ti, θ) = P (T > ti) =

∫ ∞
ti

f(u, θ)du = F (∞, θ)− F (ti, θ) = 1− F (ti, θ).

Assume that n units are tested, and r units fail in the time interval. Let the lifetime
and censoring be given as (Yi, δi), where

Yi =

{
Ti, δi = 1 for uncensored data

min(Ti, Ci), δi = 0 for right censored data,

where Ci is the censored time. If a unit fails at τi, the contribution to the likelihood
is the density at the duration; Li = f(τi, θ). If a unit is still functioning, the lifetime
exceeds τi; Li = S(τi). The likelihood can be written as follows,

L(θ) =
n∏
i=1

Li(θ) =
∏
δi=1

f(τi, θ)
∏
δi=0

S(τi, θ) =
r∏
i=1

f(τi)
δi

n∏
i=r+1

S(τi)
1−δi .

2.5 The maximum likelihood for left censored data

The probability for the left censored observation is

P (T ≤ ti) = F (ti, θ)− F (−∞, θ) = F (ti, θ),

where the cumulative distribution function is

F (ti, θ) = 1− S(ti, θ).

Say r units have failed, where some units started before the study began. The
likelihood function is then de�ned as
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L(θ) =
∏
δi=1

f(ti, θ)
∏
δi=0

F (ti, θ),

where

δi =

{
1 for complete observations

0 for left censored observations,

which is equivalent to

L(θ) =
r∏
i=1

f(ti, θ)
n∏

i=r+1

F (ti, θ).

2.6 Multiple imputation

Many datasets are not complete. They miss some values, for example due to errors
occurring while collecting them, or there was no value to observe at some points.
This creates problems and limitations for analysis. Imputation is used to �ll in
missing data with credible data. Multiple imputation was proposed by Rubin[4],
where missing values are replaced by m imputed values to create a complete dataset.
Each complete dataset is then analysed by standard procedures, and the results are
combined to produce estimates. The m imputed values are drawn from a truncated
distribution. It is a Monte Carlo technique and the missing values are replaced
by m > 1 simulated values. A disadvantage of the multiple imputation is that it
requires more work in both implementation and analysing the results. In this thesis,
the number of imputations is set to 5.

The method for repeated-imputation inference has the following procedure:
A generic scalar quantity Q is to be estimated. The Q can, for example, represent
the mean, correlation or odds ratio. Let Y denote the data. The data is split into
two parts; the observed data, Yobs, and missing data Ymis. As if complete data
were available, let Q̂ = Q̂(Yobs, Ymis) denote the statistic to estimate Q. Also, let
σ2 = σ2(Yobs, Ymis) denote the squared standard error. Thus, the normal approxi-
mation

Q̂−Q√
σ2
∼ N(0, 1)

is appropriate when dealing with complete data. The Ymis does not have any data.
Suppose m > 1 independent simulated imputations Y

(1)
mis, ...Y

(m)
mis are conducted.

The imputed data estimates Q̂(k) = Q̂(Yobs, Y
(k)
mis) and their estimated variances

σ2(k) = σ2(Yobs, Y
(k)
mis), for k = 1, ...,m are calculated. The overall estimate of Q is

then the average

Q̄ = m−1
∑

Q̂(k).

The standard error for Q̄ can be found when calculating the between-imputation
variance Vb = (m− 1)−1

∑
(Q̂(k) − Q̄)2 and the within-imputation variance

Vi = m−1
∑
σ2(k) . The estimated total variance is
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VT = (1 +m−1)Vb + Vi,

where tests and con�dence intervals are based on the t-approximation

Q̂−Q√
VT
∼ tν ,

with degrees of freedom

ν = (m− 1)

[
1 +

Vi
1 +m−1Vb

]2
.

The VT will reduce to Vi if Ymis carries no information about Q, given that the
imputed data estimated Q̂(k) is identical. Thus, the relative increase in variance
provoked by missing data is r = (1−m−1)Vb/Vi. The rate of missing information in
the system is λr/(1 + r), which combined with the equations above gives

λ =
r + 2/(ν + 3)

1 + r
.

Multiple imputation is a simple and very general method that can be imple-
mented to any data. The validity of this method is dependent on how the impu-
tations Y

(1)
mis, ..., Y

(m)
mis are generated. If the imputations are created arbitrarily, it is

not likely to obtain valid inferences in general. The imputations should on average
give reasonable values for the missing data, and the variance should be within an
appropriate degree of uncertainty.

Single imputation is not used in this thesis, since this method only considers
one estimation. Doing multiple estimations and taking the mean of the results,
seems more appropriate to get a more accurate estimation. This is based on the
work of Sue-Chu[2] and Støtvig[3], where both concludes that multiple imputation
with the maximum likelihood method produces the best estimates for censored data
in experimental design.

2.7 Truncation

Truncation is described in Sue-Chu[2]. In mathematics, truncation limits the number
of digits in a number by discarding the least signi�cant decimals. Statistical trunca-
tion refers to measurements that have been cut o� at some value. When restricting
the domain of the probability distribution, a truncated distribution is created. The
cut of the domain creates a truncated sample. In this thesis, truncation is used to
restrict the possible values for the estimates of the censored observations, created
by multiple imputation.

As stated, when truncation is applied to a probability distribution, it leads to
a new distribution. Let X be a random variable with distribution function F (x),
and let Y be a new random variable having the distribution of X truncated to the
semi-open interval (a, b]. Thus Y has the distribution function

FY (y) =


0, : y ≤ a,
F (y)−F (a)
F (b)−F (a)

: a < y ≤ b,

1 : y > b.

7



Scaled truncation, combined with multiple imputation, can generate X for a
potentially censored value. After restricting the domain of the probability function,
the probability density of the random variable is needed. Let y = (a, b] be the
restricted domain. Then

f(y|a < Y ≤ b) =
g(y)

F (b)− F (a)
,

where

g(y) =

{
f(y) : a < y ≤ b,
0 : otherwise.

The truncated distribution with right censoring at a will then be

f(y|Y > a) =
g(y)

1− F (y)
,

where g(y) = f(x) for a < y and g(x) = 0 otherwise.

8



Chapter 3

Split-plot design and the

multivariate normal distribution

3.1 Experimental design

Experimental design allows us to �gure out how the response, or the output, re-
sponds when the settings of the input variables in a system are intentionally changed.
Through an experiment, an investigator learns how the input variables a�ect the
performance of a system, which provides a basis for choosing the optimal input
settings. The motivation behind performing an experiment is often to identify sig-
ni�cant factors. When performing an experiment, the factors are the input, i.e. the
explanatory variables of a regression model. The response is the desired outcome.
The levels describe the amount of magnitude of each factor in the di�erent com-
binations, and for a two-level experiment, they are usually denoted as "high" and
"low". An experiment considering f factors and l levels is expressed as a lf factorial
design.

When the number of factors increases, the number of runs in the experiment
also increases. One way to reduce this number, is to choose a fraction of the total
runs, to be used in the estimation. This selection is preferably chosen such that the
main e�ects and the lower order interactions can be estimated, thus the higher order
interactions are assumed negligible. This procedure is called a fractional factorial
design. In the case of a two-level fractional factorial design, the notation becomes
2f−g, where g is the number of generators. The fraction is denoted by 2−g = 1

2g
.

If the experimental design of levels in a factor equals the design of an interaction
between other factors, the factor is said to be a generator of the design.

As an illustration on experimental design, say that an experiment with three
important factors is investigated at two levels. Table 3.1 shows the design of the
experiment, with factors A, B and C, and the response for each run of the experi-
ment.

9



Table 3.1: A 23 experimental design.

Run no. A B C Value
1 - - - y1
2 + - - y2
3 - + - y3
4 - - + y4
5 + + - y5
6 + - + y6
7 - + + y7
8 + + + y8

An estimate for the main e�ect of A is found by taking the di�erence between the
mean response at the high level and the mean response at the low level of the factor.

A =
y2 + y5 + y6 + y8

4
− y1 + y3 + y4 + y7

4
.

When preforming an experiment with more than one factor, interactions between
two or more factors should be investigated. Interaction means that the e�ects of
one factor may depend on the level of other factors. An estimate for the two factor
interaction between A and B is found by adding the positive combinations of A and B
and taking the average, before subtracting the average of the negative combinations
of the two factors. From the design in Table 3.1, this interaction can be found by

AB =
y1 + y4 + y5 + y8

4
− y2 + y3 + y6 + y7

4
.

Calculating the e�ect of the other factors and higher order interactions can be done
by similar procedures.

Table 3.2 shows a 24−1 experimental design. In this case there are four factors,
but one of them is set to be a generator. Thus, the level of this factor, in each run, is
decided by the levels of other factors. Here, D = ABC, that is, the level of factor D
is based on the interaction of all the other factors.

Table 3.2: A 24−1 experimental design.

Run no. A B C D
1 - - - -
2 + - - +
3 - + - +
4 - - + +
5 + + - -
6 + - + -
7 - + + -
8 + + + +

Furthermore, available degrees of freedom are used to estimate e�ects, i.e. the
error cannot be estimated. Thus, normal probability plot is used to evaluate the
e�ects.
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3.2 Split-plot design

Split-plot designs are described in Box and Jones[5], and are used for process and
product optimization. Typically some of the factors are hard to change, that is,
a complete randomization of the experiments is di�cult, if not impossible, to con-
duct. Split-plotting can also occur (1) when two or more process steps are involved,
(2) in robust product design experimentation and (3) when it is of interest to esti-
mate some factors with higher precision than others, where the latter is then handled
as subplot factors.

The subplot factors are easy to change, and are changed according to a design
matrix called subplot design. The whole-plot factors are hard to change, thus they
are changed less frequently according to a second design matrix called whole-plot
design. For a randomly chosen level combination of the whole-plot factors, a design
in the subplot factors is run in random order. That is, the total number of runs is
the number of whole-plot level combinations times the number of runs in the design
for the subplot factors.

When designing an experiment, it is crucial that the number of runs is at
an acceptable level. In order to achieve this economy in the process, a two level
experimental plan is often used.

The linear statistical model[6] for the basic split-plot design in which observa-
tions are taken on s split-plots in the i'th whole-plot can be written as

yij =
m∑
k=1

xijkβk + uij, j = 1, 2, ..., s, i = 1, 2, ..., n,

i.e. an extension of eq. (2.1). Here, yij is the observed response value, the xijk are
the m di�erent control variables, the βk are the m �xed unknown parameters, and
uij is the unobservable random error. These errors consist of two components, a ran-
dom element associated with the i'th whole-plot, say εwi , and a second independent
random element associated with the j'th subplot in the i'th whole-plot, say εsij, i.e.
eij = εwi + εsij. The ε

w
i and εsij are assumed to be iid with zero mean and variances

σ2
w ≥ 0, σ2

s > 0 respectively. These assumptions imply

Eeijei′j′ =


σ2
w + σ2

s if i = i′ and j = j′,

σ2
w if i = i′ and j 6= j′,

0 if i 6= i′.

The observations within each whole-plot is correlated. Thus, the analysis of split-
plot design is generally based on the generalized least squares method.

The whole-plot e�ects contain a whole-plot error. An important characteristic
of split-plot arrangements is that the subplot e�ects, and all their interactions with
the whole-plot e�ects, are estimated with the same smaller subplot error. It follows
that if the data from a split-plot arrangement are analysed graphically, two separated
plots are needed.

If one is to investigate a two-level experiment, it is convenient to present "low"
by a negative sign (-) and let a positive sign (+) represent "high". Then orthogonal
factor columns are obtained and the coe�cients are easily computed.
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3.3 Split-plot design with mirror image pairs

Each split-plot dataset is divided into two parts, as described in Tyssedal and
Kulachi[7]. One property of the split-plot design with mirror image pairs (SPMIP) is
that it divides the estimated e�ect into two orthogonal subspaces, separating subplot
main e�ects and subplot by whole-plot interactions from the rest.

SPMIP designs have a design matrix that can be written as follows[
W S
W −S

]
,

where

[
W
W

]
contains the whole-plot factors and

[
S
−S

]
the subplot factors.

When using mirror image pairs, it is possible to construct half factorial design
matrices; one with the mean, and the other with the di�erence between two response
observations. The mean provides information about the whole-plot e�ects and pos-
sibly subplot by subplot interactions, and the di�erence provides information about
the subplot e�ects and interactions between subplot and whole-plot e�ects. For the
full factorial design, with four subplots per whole-plot, there will be three matri-
ces, the whole-plot is the mean of all observations for each whole-plot combination,
and the subplot e�ects are now separated in two matrices by di�erent combinations
within the whole-plot.

In this thesis, three types of examples are used. The �rst is a half factorial
design, where only the combinations that give a high level are present, i.e. the
interaction ABCDE is positive for all the experiments. There are two subplots per
whole-plot in this design. The second is a 25 split-plot experiment with two subplot
per whole-plot. For these �rst two cases, half factorial design method, Section 3.3.1,
is used in the calculations. For the third example, there are four subplots per whole-
plot, thus full factorial design method, Section 3.3.2, is appropriate.

3.3.1 SPMIP - Half factorial design

A cup-cake tray producer wants to �nd the best recipe to use in the cup-cake trays.
The desired size of the cupcakes has already been found, and each cup in the tray
is �lled accordingly. The batter is a factory �nished batter, where one just adds
egg and water. The producer also wants to include baking cocoa. These three
ingredients, [A, B, C], are the hard-to-change factors, while time and temperature,
[D, E], are the easy-to-change factors. The batter will be made in large batches.
The cupcakes are then given to a class in primary school, and rated by them, from
1 to 10, where 10 dictates the best cupcakes. The design of the experiment and the
response are shown in Table 3.3.

To make a half factorial design, half of the data must be removed. In Table 3.3,
the subplot factor E is set as a generator, E=ABCD, and only the runs that give a
high level combination of the interaction between the �ve factors, ABCDE=I, are
used in the half factorial design. There are two split-plot observations, yi1 and yi2,
for each whole-plot, i.e. i = 1, 2, . . . , 8. If the yi1 and yi2 are the response from a
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Table 3.3: The half factorial design of the cup-cake example.

E: + -
Recepie A B C D: + -
(1) + + + 7 9
(2) + - - 1 3
(3) - + - 7 10
(4) - - + 3 6

E: + -
D: - +

(5) + + - 8 4
(6) + - + 4 9
(7) - + + 9 1
(8) - - - 6 8

split-plot with mirror image pairs, and

Zw
i =

yi1 + yi2
2

Zs
i =

yi1 − yi2
2

, (3.1)

then yi1 is a function of the contributions from the whole-plot factors, the whole-plot
noise, the main e�ect of the subplot factors and their interaction, the subplot noise
and the interaction between subplot and whole-plot. The yi2 is the same function
of the whole-plot factors and the whole-plot noise, but the subplot main e�ects and
the interactions between the subplot and the whole-plot e�ects have the opposite
sign and cancels out when they are added. The subplot interactions have the same
sign in yi1 and yi2 and are therefore not cancelled out.

The two matrices are made from the complete dataset with the above equations,
eq. (3.1), where the system of equations in Zw

i gives the whole-plot matrix, W, and
Zs
i gives the subplot matrix, S. The level of each factor for the di�erent runs will,

just like the response, be put into the two equations. This tells which factors are
whole-plot e�ects, and which factors are subplot e�ects, since they otherwise cancel
out. The signs for each interaction column are derived by entry-wise multiplication
of the signs of the constituent main e�ects. Linear models can be used to estimate
the e�ect for both the whole-plot analysis and the subplot analysis, with subplot by
whole-plot interactions included.

When the mirror image pairs, eq. (3.1), are applied to a dataset with two sub-
plots per whole-plot, the number of rows in the matrices are halved. The whole-plot
matrix is shown in Table 3.4, and Table 3.5 shows the subplot matrix. The matrices
contain a system of linear equations which can be analysed to obtain information of
the factors.
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Table 3.4: The whole-plot matrix for the cup-cake example.

A B C AB AC BC DE Response
+ + + + + + + 8.0
+ - - - - + + 2.0
- + - - + - + 8.5
- - + + - - + 4.5
+ + - + - - - 6.0
+ - + - + - - 6.5
- + + - - + - 5.0
- - - + + + - 7.0

Table 3.5: The subplot matrix for the cup-cake example.

D E AD BD CD AE BE CE Response
+ + + + + + + + -1.0
+ + + - - + - - -1.0
+ + - + - - + - -1.5
+ + - - + - - + -1.5
- + - - + + + - 2.0
- + - + - + - + -2.5
- + + - - - + + 4.0
- + + + + - - - -1.0

3.3.2 SPMIP - Full factorial design

Lets consider a 25 split-plot design with four subplots per whole-plot. Table 3.6
shows the setup of the subplots within one whole-plot. Here the level, denoted high
or low, shows which combination that is considered high, ABCDE=I, and which is
considered low, ABCDE=-I.

Table 3.6: Table.

D E Level
- - yi1 high
+ + yi2 high
+ - yi3 low
- + yi4 low

When applying the mirror image pairs in this case, the following equations are used,

Zw
i1 =

yi1 + yi2
2

Zw
i2 =

yi3 + yi4
2

Zs
i1 =

yi1 − yi2
2

Zs
i2 =

yi3 − yi4
2

. (3.2)
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The whole-plot e�ects for the full factorial design are found by taking the mean

of the four set-ups for each combination of the factors, that is, �nding
Zw
i1 + Zw

i2

2
from eq. (3.2). The system of equations gained by this are combined to a whole-
plot matrix, here denoted as W. The subplot e�ects are divided in two matrices,

S+ and S−. To �nd the e�ects in S+, the system of equations from
Zw
i1 − Zw

i2

2
are used. Matrix S+ contains whole-plot by subplot interactions. The information

in S− is gathered from
Zs
i1 + Zs

i2

2
and

Zs
i1 − Zs

i2

2
, where both contain one subplot

factor, interactions between whole-plot and subplot, and whole-plot interactions by
subplot. Both of the subplot matrices contain subplot factors with the same error,
which allows them to be plotted together in the same plot.

Full factorial experiments can be expensive and time-consuming, with f factors, l
levels and R replications, the number of testes to be performed is Rlf . In a fractional
factorial experiment, some test combinations are eliminated. This means some in-
formation is lost, but if the experiment is planned well, only the e�ects that are
believed to be unimportant are removed. Then a compromise between total infor-
mation, experiment costs and experimental value is made. Higher order interactions
are unlikely to have engineering meaning or to show statistical signi�cance. Thus
the full factorial experiment can give information that is not meaningful.

3.4 Analysis of SPMIP designs

In the following, w and s are used to denote whole-plot and subplot main e�ects
respectively. Due to the way split-plot experiments are executed, there are two
variance regimes. The form of the covariance matrix of the responses is given as

V =


C 0 . . . 0

0 C . . . 0
...

...
. . .

...
0 0 . . . C

 ,
here C corresponds to each whole-plot and is a symmetric matrix on the form

C =


σ2
w + σ2

s σ2
w . . . σ2

w

σ2
w σ2

w + σ2
s . . . σ2

w
...

...
. . .

...
σ2
w σ2

w . . . σ2
w + σ2

s

 ,
where σ2

w and σ2
s are the between whole-plots and within whole-plot variances.

The two responses yi1 and yi2 have a common part that consists of a possible
constant, whole-plot e�ects, whole-plot by whole-plot and subplot by subplot inter-
actions and a whole-plot error εwi . The part that di�ers consists of subplot main
e�ects and whole-plot by subplot interactions and the subplot errors, εsi1 and ε

s
i2.

Consider an experiment that �ts with the half factorial design method. Let the

error part in Zw
i be denoted by uwi = εwi +

εsi1 + εsi2
2

, and the error part in Zs
i denoted
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by usi =
εsi1 − εsi2

2
. Then, Zw

i , where i = 1, 2, . . . , n/2, are all independent with the

same variance. This also applies to Zs
i .

3.5 The multivariate normal distribution

Every observation in a split-plot experiment is dependent on one or more of the
other observations. If each whole-plot contains 2b subplots, where b is the number
of subplot factors, then each observation is dependent on 2b−1 observations. In the
case of censoring, the censored value can be estimated by means of the observations
it depends on. Thus, the multivariate normal distribution can be used to estimate
the censored values. Multivariate analysis is described in Rencher and Christensen[8].

If a random variable y, with mean µ and variance σ2, is normally distributed
its density is given by

f(y) =
1√

2πσ2
e−(y−µ)

2/2σ2

, −∞ ≤ y ≤ ∞,

for the univariate normal distribution case. The density for the multivariate normal
distribution case is similar. If y has a multivariate normal distribution with mean
vector µ and covariance matrix Σ, the density is given by

g(y) =
1

(
√

2π)p|Σ|1/2
e−(y−µ)TΣ−1(y−µ)/2, (3.3)

where p is the number of variables. When y has density eq. (3.3), y is distributed
as Np(µ,Σ).

3.5.1 Conditional distribution

Let the observation vector be partitioned into two subvectors denoted by y and x,
where y is n×1 and x is m×1. Then the expectation and covariance matrix become

E

(
y

x

)
=

(
µy

µx

)
, cov

(
y

x

)
=

[
Σyy Σyx

Σxy Σxx

]
,

i.e.

(
y

x

)
is

Nn+m

[(
µy

µx

)
,

(
Σyy Σyx

Σxy Σxx

)]
.

If y and x are dependent, Σyx 6= 0, the conditional distribution of y given x, f(y|x),
is multivariate normal with

E(y|x) = µy + ΣyxΣ
−1
xx (x− µx), (3.4)

cov(y|x) = Σyy −ΣyxΣ
−1
xxΣxy.

Note that E(y|x) is a vector of linear functions of x, and cov(y|x) is a matrix that
is independent of x.

In this thesis, y are the censored observations and x are the observed values
that y depends on. One special case of this distribution is included in this section.
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Conditional distribution on the bivariate case

Let y1 and y2 be dependent. The conditional distribution of y1 given by y2, f(y1|y2),
is then multivariate normal with

E(y1|y2) = µy1 + Σy1y2Σ
−1
y2y2

(y2 − µy2),

cov(y1|y2) = Σy1y1 − Σy1y2Σ
−1
y2y2

Σy2y1 .

3.6 Simulation of multivariate truncated Gaussian

distribution

When performing multiple imputation for censored data, there is a need to generate
data from truncated distributions. A plausible scenario that can occur is that every
observation within a whole-plot combination is censored. Chopin[9] shows how to
simulate such values.

Let X = (X1, . . . , Xd) be a d-dimensional Gaussian vector with mean µ and
covariance matrix Σ, and let [ai, bi] be d intervals, where bi may be either a real
number or ∞. The distribution of X, conditional on the event that Xi ∈ [ai, bi],
i = 1, . . . , d, is usually called a truncated Gaussian distribution.

Truncation in the bi-dimensional case with semi-�nite intervals

Consider the simulation of X = (X1, X2) ∼ N2(µ,Σ), subject to X1 ≥ a1 and
X2 ≥ a2, i.e. for some truncation points a1 and a2. Without loss of generality, set

µ = (0, 0)T , Σ =

[
1 ρ
ρ 1

]
, and assume that a1 ≥ a2; if necessary, swap components

to impose the last condition. The joint density of the considered truncated density
is, up to a constant:

p(x1, x2) ∝ exp{− 1

2ν2
(x21 + x22 − 2ρx1x2)} × I(x1 ≥ a1;x2 ≥ a2), (3.5)

where ν2 = 1 − ρ2. The conditional distribution of X2|X1 = x1 is a univariate
Gaussian N(ρx1, ν

2) truncated to X2 ≥ a2, which is denoted TN[a2,∞)(ρx1, ν
2). The

marginal density of X1 is

ρ(x1) ∝ ϕ(x1)Φ

(
ρx1 − a2

ν

)
I(x1 ≥ a1).

Here ϕ is the unit Gaussian probability density function, ϕ(x) = exp(−x2/2)/
√

2π,
and Φ is the cumulative distribution function.

To derive a proposal distribution for eq. (3.5), Φ(·) is derived with a simpler
expression derived from the two following straightforward inequalities:

1

2
≤ Φ(x) ≤ 1 for x ≥ 0,

Φ(x) ≤ c(x0)ϕ(x) for x ≤ x0 ≤ 0,
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where c(x0) = min(
√
π/2,−1/x0), for x0 < 0, c(0) =

√
π/2. In split-plot exper-

iments, the ρ will always be positive. There are then two relevant cases, S+ and
M+, for estimating the censored values. Here 'S' stands for 'Simple', and 'M' for
'Mixture'.

Case S+

Let ρ ≥ 0 and ρa1 − a2 ≥ 0. Simulate jointly (X1, X2):
sample X1 ∼ TN[a1,∞)(0, 1), X2|X1 = x1 ∼ N(ρx1, ν

2), and accept if X2 ≥ a2;
otherwise repeat.

Case M+

Let ρ ≥ 0 and ρa1 − a2 < 0. If component 1 is selected, draw
X1 ∼ TN[a2/ρ,∞)(0, 1), X2|X1 = x1 ∼ N(ρx1, ν

2), and accept simulated pair (x1, x2)
if x2 ≥ a2. Otherwise, draw X1 ∼ TN[a1,a2/ρ](θ, ν

2), and accept with probability

χ

(
a2 − ρx1

ν

)
/d

(
a2 − ρa1

ν

)
.

Here θ = ρ(a2 + λν), d(x0) = max(
√
π/2, χ(−x0)) and χ(x) = eλxΦ(−x)/ϕ(x),

where λ is an optimal value, in terms of minimum acceptance rate. Chopin proposes
to let λ equal 0.68. Upon acceptance, complete with

X2|X1 = x1 ∼ TN[a2,∞)(ρx1, ν
2).
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Chapter 4

The examples

In this thesis, three datasets have been considered. These experiments were con-
ducted to �nd out which factors were the most important for the outcome of the
product. To �nd the e�ects of the factors for each matrix, the embedded function
lm, linear models, in R is used. Every coe�cient has 1 degree of freedom, and since
all the degrees of freedom are used, the residuals are 0. The factors with the highest
e�ects, in absolute value, are the most important for the experiment.

4.1 Example I

Example I[10] is a 25−1 split-plot experiment that considers the factors a�ecting
uniformity in a single-wafer plasma etching process. There are three hard-to-change
factors on the etching tool: A, the electrode gap, B, the gas �ow and C, the pressure.
The factors time and radio frequency power, denoted D and E respectively, are easy
to change from run to run. The design generator is E = ABCD. Table 4.1 shows
the design and the resulting uniformity data.

The experimental design is expanded to include all interactions between the
factors. These are seperated in whole-plot and subplot factors:

WI = [A, B, C, AB, AC, BC, DE], SI = [D, E, AD, AE, BD, BE, CD, CE].
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Table 4.1: The 25−1 split-plot experiment for the plasma etching tool.

E: - +
A B C D: - +
+ + + 70.31 81.03
+ - - 35.67 51.15
- + - 41.80 37.01
- - + 40.32 43.34

E: - +
D: + -

+ + - 48.67 91.09
+ - + 38.08 62.46
- + + 41.03 31.99
- - - 41.07 40.85

The estimated e�ects for all the factors and interactions are shown in Table 4.2.
Here the �rst row shows the e�ects for all the factors. The following rows show the
interactions e�ects, and the value of the intercept is placed last. The factors A, B,
E and interactions AB and AE have the largest e�ects. The others seem to have no
signi�cant impact on the outcome of the product.

Table 4.2: The e�ects from the whole-plot and subplot analysis of Example I.

A B C D E
20.1312 11.2488 2.6562 -4.1388 10.2462

A 14.6862 3.6688 -6.0112 13.0038
B -1.2088 -2.7238 -0.4188
C 3.7388 -2.9762
D 0.6738

Intercept: 49.7419

Figure 4.1(a) shows the normal probability plot of the estimated e�ects for
the whole-plot factors. Notice that factors A, B and the AB interaction have large
e�ects compared to the others. Figure 4.1(b) shows the normal probability plot of
the subplot e�ects. Only the main e�ect of E and the interaction AE are large.

From these plots it is easy to see that the factors that are most important for
the outcome of the product are: the electrode gap, the gas �ow, the interaction
between these two, the radio frequency power and the interaction between the latter
and the electrode gap.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 4.1: Normal plot of the original e�ects of Example I.
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4.2 Example II

Table 4.3 contains the design and response for a plasma-treated paper experiment
from Bisgaard et. al.[11]. There are four whole-plot factors A, B, C, D and one
subplot factor, E. The factor A is pressure, B is the power, C is the gas �ow rate
and D is the gas type. Factor E, paper type, is the easy-to-change factor. The
response is the "wettability" of the paper measured as the contact angle between
the paper and a water droplet placed on the paper right after the plasma treatment.

Table 4.3: The 25 split-plot experiment for the plasma-treated paper.

A B C D E: - +
- + - - 55.8 62.9
- + - + 25.6 33.0
- - - - 48.6 57.0
- - - + 5.0 18.1
- + + - 47.2 54.6
- + + + 11.3 23.9
- - + - 37.6 43.5
- - + + 13.3 23.7
+ - - + 56.8 56.2
+ - - - 41.2 38.2
+ + - - 53.5 51.3
+ + - + 41.8 37.8
+ + + + 49.5 48.2
+ + + - 48.7 44.4
+ - + - 47.2 44.8
+ - + + 47.5 43.2

The expanded experiment includes the following whole-plot and subplot factors:

WII = [A, B, C, D, AB, AC, BC, AD, BD, CD, ABC, ABD, ACD, BCD, ABCD],

SII = [E, AE, BE, CE, DE, ABE, ACE, ADE, BCE, BDE, CDE, ABCE, ABDE,

ACDE, BCDE, ABCDE].

The results of the analysis of Example II are shown in Table 4.4. All interactions
with factor E, except the interaction between A and E are very small. Thus, these
e�ects are negligible. The factors A, D and the interaction AD are much higher than
the other e�ects. Therefore, they will in�uence most on the result of the experiment.
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Table 4.4: The e�ects from the whole-plot and subplot analysis of Example II.

D E DE
-15.1000 3.1375 1.0250

A 11.8250 16.5626 -5.9000 -0.8125
B 4.2250 -3.3124 -0.3000 -0.1875
C -3.3876 1.6750 -0.1375 0.3250
AB -4.2126 -3.3000 0.1125 0.2750
AC 2.9750 -2.3126 -0.1750 -0.2625
BC -0.8500 1.2374 0.9000 0.8875
ABC 2.8624 6.8500 -0.4375 0.2500

Intercept: 40.9813

Figure 4.2(a) shows the normal probability plot of the estimated e�ects for
the whole-plot factors. The factors D, A and the interaction AD are the largest in
absolute values and do not line up with the rest of the e�ects. Therefore they are
the most important of the whole-plot factors for the result. Figure 4.2(b) shows
the estimated e�ects of the subplot factors. The interaction AE and factor E stand
out as the most in�uential to the result of the experiment. Thus, the outcome of
the wettability depends on the pressure, the gas type, the interaction between these
two, the paper type and the interaction between the latter and the pressure.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 4.2: Normal plot of the original e�ects of Example II.
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4.3 Example III

Example III is taken from a report by Box and Jones[5]. A package-foods manufac-
turer wished to develop an optimal formulation of a cake mix. These cake mixes are
made in large batches, therefore the ingredient factors are hard-to-change. Here A is
the amount of �our, B is the amount of shortening, and C the amount of egg powder
in the mixture. Many packages are produced from one batch, and the individual
packages of cake mix can be baked using di�erent baking times and temperatures.
That is, the subplot factors are temperature and time, denoted D and E respec-
tively, since these are easy-to-change. In the experiment, there were 32 runs. The
responses from this experiment was obtained from a taste panel, measuring how
good the cake tasted, on a scale from 1 - 7.

Table 4.5 shows the original design of Example III and the response. There
are four experiments for each combination of the eight di�erent cake mixtures. The
dataset is complete with no censored observations.

Table 4.5: The original design of Example III.

Recipe E: - - + +
A B C D: - + - + Average

(1) - - - 1.1 1.4 1.0 2.9 1.6
(2) + - - 1.8 5.1 2.8 6.1 3.95
(3) - + - 1.7 1.6 1.9 2.1 1.825
(4) + + - 3.9 3.7 4.0 4.4 4
(5) - - + 1.9 3.8 2.6 4.7 3.25
(6) + - + 4.4 6.4 6.2 6.6 5.9
(7) - + + 1.6 2.1 2.3 1.9 1.975
(8) + + + 4.9 5.5 5.2 5.7 5.325

For the fully expanded experiment, there are in this case two parts of subplot
e�ects. Thus, eq. (3.2) is used. The following shows which factors that belong in
each part of the split-plot, whole-plot and two parts of subplot respectively;

WIII = [A, B, C, AB, AC, BC, ABC],

S−III = [D, E, AD, AE, BD, BE, CD, CE, ABD, ABE, ACD, ACE, BCD, BCE, ABCD, ABCE],

S+
III = [DE, ADE, BDE, CDE, ABDE, ACDE, BCDE, ABCDE].

The e�ects found from the analysis of Example III are shown in Table 4.6.
Factor A has clearly the largest e�ect. The factors C and D are large enough to be
signi�cant. Higher order interactions seem to have negligible impact on the outcome
of the product.
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Table 4.6: The e�ects from the whole-plot and subplot analysis of Example III.

D E DE
1.0438 0.5938 0.0063

A 2.6313 0.2438 0.0688 -0.1438
B -0.3938 -0.8563 -0.2813 -0.0188
C 1.2688 -0.0938 -0.0188 -0.3063
AB 0.1313 -0.1063 -0.0563 0.2813
AC 0.3688 -0.3188 -0.0188 0.0188
BC -0.5313 0.2063 -0.0438 0.0688
ABC 0.2188 0.4313 0.0063 0.0438

Intercept: 3.4781

The e�ect of the whole-plot factors are shown in Figure 4.3(a). The factors A
and C seem to be of most importance for the outcome of the cake. Figure 4.3(b)
shows the subplot e�ects and the factor D stands out as the most signi�cant of these
e�ects. The factor E and interaction BD might in�uence the result.

The e�ects in S+
III are small, and insigni�cant, since they are mainly higher

order interactions.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 4.3: Normal plot of the original e�ects of Example III.

27





Chapter 5

The methods

First, the previous work, leading up to this thesis, is discussed, then the software
used in the calculations is introduced. Thereafter, the layout of the two methods,
maximum likelihood with multiple imputation and the quick and dirty method, are
presented.

5.1 Previous work

The specialising project leading up to this thesis concerns analysing right censored
data from split-plot design with mirror image pairs[12], using the maximum likelihood
and multiple imputation method. If censored datasets are analysed using SPMIP,
the runtime of analysis may be much reduced. The size of the new datasets will be
a fraction of the originals, thus the analysis will have a considerably lower runtime.
Also the problem with correlation between observations will be solved. This was the
motivation for the project.

Through the project, some problems occurred. There is a huge risk that un-
censored data will be censored and lost. Especially information about the subplot
e�ects. For each censored observation, a censoring limit had to be calculated. As
an example, consider an experiment with four subplots per whole-plot. For the
whole-plot, the censoring limit for whole-plot combination i is found by∑4

j=1 yij

4
≥
nc+

∑4−n
j=2 oj

4
= ci, (5.1)

where c is the original censoring limit, oj is the value of observations less than c,
yij are the original response values within whole-plot i, and ci is the new censoring
limit for whole-plot combination i. If this inequality holds for any i, the observation
becomes censored, and ci is set as the censoring limit. This test is done for all i's, thus
this method requires a lot of calculations that can produce errors. The censoring
limit depends on all the observations within each whole-plot. If all of these are
censored, the limit is set to be the original censoring limit. Otherwise the limit is
calculated by means of the observed values.

Now, consider right censoring of an experiment with two subplots per whole-
plot. Let y1 and y2 be two observations within the same whole-plot. If y1 ≥ c and
y2 ≥ c, the whole-plot combination is censored with limit c. If y1 ≥ c and y2 = o,
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the whole-plot combination is censored by c? =
c+ o

2
. The censoring limits for the

subplot e�ects require more work. Let Z1 =
y1 + y2

2
and Z2 =

y1 − y2
2

, such that

Z1 + Z2 = y1. The observation becomes right censored if

y1 ≥ cZ2 = y1 − Z1 ≥ c− Z1

or y1 ≥ oZ2 = y1 − Z1 ≥ o− Z1.

The calculations of the subplot e�ects are likely to produce even larger errors.
This can happen if the di�erence between two dependent observations, both below
the censoring limit, is higher than the di�erence between two censored observations.
The same apply in the case where one observation is censored and the other is
not. This results in that the censoring limit should be set high enough for all the
censored observations to become censored, without loosing any observed values.
Some censored values will not be high enough for this condition, and therefore, their
value must be set equal to a �ctional value.

The computation of the censored data can only handle one censoring limit.
Thus, the limit becomes the lowest of the calculated ci's. This limit might be set
too low, i.e. some observed values are censored, thereby lost.

The motivation for this thesis is to �nd a better method for analysing split-plot
data with censored observations, by means of the variances in the split-plot design.

5.2 R software

R[13] is an open-source statistical programming language which is widely used for
data analysis and statistical computing. The software provides statistical and graph-
ical techniques, with classical statistical tests. The R code for Example II can be
found in Appendix B. It produces helpful graphs, such as showing which distri-
bution �ts the data best, and whether or not the factors included are signi�cant
(Danielplot). A Danielplot is a normal plot of e�ects from a two-level factorial ex-
periment. E�ects that show a linear trend are viewed as insigni�cant. If one or
more e�ects fall out of this linear trend, they are signi�cant.

There are many embedded functions in R. In this thesis, the most used func-
tions are censReg and lm. The censReg-function takes in a dataset with the cor-
responding response values, and sets a censoring limit for the response. It assumes
that the data are from a normal distribution, which sometimes can limit the func-
tion. In this function, the maximum likelihood is calculated by the Newton-Raphson
method. Linear models (lm) can be used to preform regression analysis, where it
returns, among other, the coe�cients of the speci�ed model. In this thesis, it is used
to �nd the e�ects from the uncensored dataset, to compare with our results, and
to estimate the e�ects for the censored cases. The output of the estimates of the
factors in censReg and lm is the coe�cient of the factors. Thus, to �nd the e�ects,
the coe�cient of each term has to be doubled.

When working with the truncated normal distribution, the package truncnorm
with the function rtruncnorm is used. This function generates n random deviates
in a de�ned interval (a, b) from a mean and standard deviation.
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5.3 Censoring with the maximum likelihood and

multiple imputation method

When censored data is analysed with maximum likelihood and multiple imputation,
each part of the split-plot is analysed separately, since they have di�erent error
terms. The upper, or lower, limit should be set where it is natural, i.e. where there
is a big leap between the observed values, or to get some censored values. When
using R to create estimates of the two variances, some factors must be omitted from
censReg. The factors with the smallest coe�cient should be the ones that are left
out. Here, this is done by exhaustive search. Each combination of factors is tested
in censReg, and the factor with the lowest coe�cient is removed. This is done until
every factor is placed after signi�cance. These factors are then brought back if they
in�uence the size of σ̂2

w and σ̂2
s , i.e. makes them smaller. It should be noted that

neither of these variances are allowed to be negative. The following method is based
on the theory from Section 3.5 and 3.6.

Consider an experiment with two subplots per whole-plot. Using multiple im-
putation and drawing from truncated distributions, let yi1 be a censored observation,
and yi2 be observed. The two are dependent, with cov(yi1, yi2) = σ2

w and correlation

ρ =
σ2
w

σ2
w + σ2

s

. After subtracting estimated expected value, there are, for each i, two

noise terms left. Let these be ei1 = εwi + εsi1 and ei2 = εwi + εsi2, where only the latter
can be estimated. Then, ei1 and ei2 are bi-normal distributed, i.e. N2(µ,Σ) where
µ = [ 00 ] and Σ = (σ2

w + σ2
s)
[
1 ρ
ρ 1

]
. When �nding the distribution of ei1 given that

ei1 > c and ei2 = ai2 i.e.

F(ai1) = P(ei1 ≤ ai1|ei1 > c ∩ ei2 = ai2) =
P(c < ei1 ≤ ai1|ei2 = ai2)

P(ei1 > c|ei2 = ai2)
,

which is a truncated normal distribution with mean ρai2 and variance (σ2
w+σ2

s)(1− ρ2).
In other words, the coe�cients are multiplied with their associated levels and

added up with the intercept, to �nd the estimated expected response for each row
of the matrix which is censored. Multiple imputation using normal distribution is
then implemented �ve times for each censored value. When the �ve values for each
censored value are found, these values are substituted into the original response in
place of their associated censored value. Now, there are �ve new sets of responses
and linear models are used to estimate the e�ects of each factor for each of the
sets. The mean of the e�ects of the factors is then calculated to give the estimated
e�ects found by the maximum likelihood and the multiple imputation method. In
the following, let Ks = (n/2)− ks, where n is the number of runs in the experiment
and ks is the number of censored observations in the subplot matrix. The subplot
error can be found by this equation,

σ̂2
s

2
= K1 =

∑Ks
i=1(Z

s
i − E(yij))

2

Ks − ds
, j = 1, 2, (5.2)

where ds is the number of factors used in censReg and K − d > 0. The estimate for

K2 = σ̂2
w +

σ̂2
s

2
is found similarly.
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Next follows the proposed procedure for right censoring of an experiment with
two subplots per whole-plot.

1. Identify the most important subplot main e�ects and whole-plot by subplot
interaction by using censReg.
• Let ds denote the number of subplot factors used in censReg.
• Calculate the estimate Es(yi) with subplot coe�cients and their associ-
ated level for every i.

• If the two dependent observations are not censored, �nd Zs
i =

yi1 − yi2
2

.

• Calculate K1 by eq. (5.2).

2. Use censReg to identify the most important whole-plot main e�ects, the whole-
plot by whole-plot and subplot by subplot interactions.
• Let dw denote the number of whole-plot factors used in censReg.
• Calculate the estimate Ew(yi) with whole-plot coe�cients and their as-
sociated level for every i.

• If the two dependent observations are not censored, �nd Zw
i =

yi1 + yi2
2

.

• Calculate K2 similar to K1.

3. If K2 ≥ K1 and K2, K1 ≥ 0, and both K1 and K2 are fairly small, stop. Else,
recover one factor/interaction in censReg and compute again.

4. Find σ̂2
s , σ̂

2
w and ρ and use both the whole-plot and subplot factors/interactions

to estimate E(yij), j = 1, 2, for all set-ups.
• Calculate Bij = Zij − E(yij) and Aij = ρBij, for those who are not
censored.
• If yi1 ≥ c, yi2 = o, estimate values for yi1 by conditional distribution: let
µ = Ai2, σ =

√
(σ̂2

w + σ̂2
s)(1− ρ2) and α = c − E(yi1), and draw from

the truncated distribution with mean µ and standard deviation σ on the
interval [α,∞) .
• If yi1 ≥ c and yi2 ≥ c, decide a1, a2 and x, from c − E(yij), and check
if M+ or S+ is appropriate. Estimate from truncated distributions ex-
plained in Section 3.6.

5. Create �ve new datasets, and exchange the censored observations with the
estimated values, added to E(yij).
• Apply mirror image pairs on the new datasets, �nd the new estimated
coe�cients and take the mean of each from the �ve datasets. Multiply
the mean coe�cients with 2 to get the e�ects.

32



5.4 The quick and dirty method

The quick and dirty (QnD) method is a censoring method that sets an upper limit,
for right censoring, or a lower limit, for left censoring. Every value greater than this
limit, or lower for the left censoring case, will be put equal to the limit. Then, the
dataset will be complete, and analysed by standard methods for complete data. If
the limit is set such that about half of the values in a complete dataset are censored,
there will be poor estimates for the e�ects of the factors. Furthermore, in the right
censored case, if the highest values in the complete dataset are much higher than
the limit, the estimation of the e�ects will most likely not be the same, or close, to
the original dataset. If the highest values in the complete dataset are close to the
chosen limit, the estimates will be very close to the original estimates.

The method is known to be unstable, but it is included here such that it can
be compared with the other method. It is also an easy method to implement, and is
therefore useful to test in a quick analysis. QnD can also be used to check estimates
found by other methods, by comparing the analyses. If they produce estimates that
are extremely di�erent, one should consider to run the analysis again to ensure good
results.
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Chapter 6

Experiments and results

In the following sections R and L will denote right and left censoring, respectively.
The sets of factors will be indexed after which example they belong to. To reduce the
amount of text, the short term MI, multiple imputation, is used in tables throughout
the thesis.

6.1 Example I - Right censoring

The right censoring limit for Example I is set to 70. There are three observations
that are higher than this limit, i.e. three values are censored. After testing all
possible combinations of factors, these are the ones that acquired the lowest pair of
σ̂2
w and σ̂2

s : WR
I = [A, B, AB], SRI = [E, AE, CD]. The calculated values for

the variances and the correlation are shown in Table 6.1.

Table 6.1: Estimated values for the variances and the correlation for the right cen-
sored data in Example I, for the maximum likelihood with multiple imputation
method.

Whole-plot variance: σ̂2
w 4.8758

Subplot variance: σ̂2
s 8.9809

Correlation: ρ 0.3519

The expected value for the censored observations and the standard deviation
calculated from the values in Table 6.1, are used in the truncation. The estimated
values for the censored observations are shown in Table 6.2. Conditional distribution,
eq. (3.4), is used on the �rst censored value, since observation 10 is dependent on
observation 9 which is not censored. While the theory from Section 3.6 is used on
the two other censored values, given that observation 1 and 2 are dependent and
both censored.

The estimated value of observation 10 di�ers a lot from run to run. This can
in�uence the result for each estimation, but taking the mean of the estimated e�ects
from multiple runs will create a more reliable result. The estimations for run 1 are
very close to the original value. The values for the other runs are not as good as run
1, but they seem reasonable. After �lling in the values from Table 6.2 to create �ve
complete �ctional datasets, the estimated e�ects are calculated. Figure 6.1 shows
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Table 6.2: Estimated values from multiple imputation for the right censored data
in Example I.

Run nr:
Observation 1 2 3 4 5 Original

1 70.0332 70.0534 70.0126 70.2023 70.0955 70.31
2 91.4760 92.3104 91.9745 91.7790 92.4852 81.03
10 84.1512 74.5250 85.6074 78.3539 86.6941 91.09

the normal plot of the right censored e�ects, where (a) shows the whole-plot e�ects
and (b) the corresponding subplot e�ects. The largest whole-plot e�ects are factor
A, B, and the interaction between them, AB. These are also the e�ects that fall o�
the linear trend. The largest subplot e�ects are the interaction AE and factor E.
When looking at the plot of the subplot e�ects, the interaction CD, along with
E and AE, does not lie on the linear trend with the other e�ects. Although this
interaction has a much lower e�ect than the largest, it may in�uence the outcome
of the product.

In the QnD case, the calculations are easy to compute. Figure 6.2 shows the
e�ects after censoring by the QnD method. From the whole-plot e�ects in Fig-
ure 6.2(a) it is easy to see that factor A stands out as the most important factor,
followed by the interaction AB. The e�ect of factor B is still large, but in this case,
it falls onto the linear trend, which makes it harder to decide if it is signi�cant.

The whole-plot e�ects in the QnD case seem to have a more linear trend than
the whole-plot e�ects in Figure 6.1(a). For the subplot e�ects in Figure 6.2(b),
the interaction AE and factor E are the largest, and the interaction AD might be
important for the outcome of the experiment, since it seems to fall slightly o� the
linear trend.

The numerical results for both methods are shown in Table 6.3. The estimates
for the QnD method are consequently lower than those for the estimates found by
maximum likelihood with multiple imputation. Compared to the original estimates
in Table 4.2, the maximum likelihood with multiple imputation gives the best results.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.1: Normal plot of the right censored estimated e�ects of Example I using
multiple imputation.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.2: Normal plot of the e�ects with right censoring by QnD from Example I.
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Table 6.3: Estimated e�ects of the factors from the two methods for right censoring
of Example I.

MI: QnD:
(I) 49.8369 47.7150
A 20.3214 16.0775
B 11.4388 7.1950
C 5.1522 3.8750
AB 14.8764 10.6325
AC 6.1648 4.8875
BC 1.2872 0.0100
DE 3.1698 1.8925
D -1.5850 -2.8425
E 10.4940 6.2700
AD -3.4576 -4.7150
AE 13.2514 9.0275
BD -0.1700 -1.4275
BE -0.1710 -4.3950
CD 3.9864 -0.2375
CE -0.4226 -1.6800

6.2 Example I - Left censoring

For the left censoring of Example I, there is no solution where K2 ≥ K1. Di�erent
limits have been tested, without success. Thus, it is not possible to estimate the
values of the factors e�ects in this case. To get around this, σ̂2

w can be set to a static
value; usually zero. This is omitted in this thesis, since the tested procedure failed
to execute.

In the QnD case, there are no limiting restrictions, thus it can be performed
no matter what. The censoring limit is set to 40, that is, four values are censored.
Figure 6.3 shows the normal plot of the e�ects when left censored by the QnD
method. Figure 6.3(a) shows the whole-plot e�ects and (b) shows the subplot e�ects.
The whole-plot factors A, B and the interaction AB are by far the largest. Thus
these e�ects are the most important. The subplot factor E and the interaction AE
stand out as the most signi�cant subplot factors for the outcome of the product of
Example I.

The values for the estimated coe�cients can be found in Table A.1, Appendix A.
The QnD method for the left censoring case gives the closest estimates to the original
values overall, compared to the values from the right censoring case. A reason for
this is that the left censoring limit is closer to the censored observations original
values, than that of the right censoring case.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.3: Normal plot of the e�ects with left censoring by QnD from Example I.
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6.3 Example II - Right censoring

The right censoring limit for Example II is set to 55. There are �ve observations
censored by this limit. After testing all possible combinations of factors, these are
the ones that acquired the lowest pair of σ̂2

w and σ̂2
s :

WR
II = [A, B, D, AC, AD, ABD, ABCD], SRII = [E, AE, DE, ACE, ADE, BCDE].
The di�erent variances and the correlation are shown in Table 6.4. These values

are used to create an estimate for the uncensored observations.

Table 6.4: Estimated values for the variances and the correlation for the right cen-
sored data in Example II, for the maximum likelihood with multiple imputation
method.

Whole-plot variance: σ̂2
w 9.7756

Subplot variance: σ̂2
s 1.5774

Correlation: ρ 0.8611

The calculations of the multiple imputation give the values for each observa-
tion shown in Table 6.5. These values are set into the censored dataset to create
�ve �ctional complete datasets. Two pairs of observations are estimated based on
Section 3.6 and truncation. For each run, the values obtained through multiple im-
putation are very similar. The last censored observation is estimated by means of
conditional distribution, eq. (3.4). All the estimated values are close to the original
values. This is due to that the censoring limit is close to every censored value.

Table 6.5: Estimated values from multiple imputation for the right censored data
in Example II.

Run nr:
Observation 1 2 3 4 5 Original

1 55.2387 55.0019 55.0057 55.0572 55.1124 55.8
2 60.0856 59.8699 59.7799 59.7815 59.8631 62.9
6 55.9403 55.0221 55.1994 55.4620 58.1196 57.0
17 56.0013 55.7628 56.0069 55.9434 55.8964 56.8
18 55.0859 55.0025 55.1183 55.1436 55.0923 56.2

Regression is used on each of the datasets, and the result for the whole-plot
analysis is shown in Figure 6.4(a), and Figure 6.4(b) shows the corresponding subplot
results. The whole-plot factors A, D and the interaction AD are the largest of the
whole-plot e�ects, and thus the most signi�cant of these. For the subplot factors, the
interaction AE and the factor E stand out as the most signi�cant for the outcome
of the result.

The result of the QnD method is shown in Figure 6.5, with the whole-plot
e�ects in (a), and the subplot e�ects in (b). Just like in Figure 6.4(a), the factors
A, D and the interaction AD stand out as the most important whole-plot factors.
For the subplot e�ects, the interaction AE is the most signi�cant. Factor E is still
the second largest, but here it lies on the linear trend. It is thus not possible to tell
if this factor is signi�cant.

41



(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.4: Normal plot of the right censored e�ects of Example II using multiple
imputation.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.5: Normal plot of the e�ects with right censoring by QnD from Example II.

The estimated coe�cients for both methods can be found in Table A.2, Ap-
pendix A. Compared to the original e�ects, multiple imputation with maximum
likelihood gives the best estimation.
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6.4 Example II - Left censoring

For the left censoring of Example II, the censoring limit is set to 25, that is, six
observations are censored. The factors that creates the pair of σ̂2

w and σ̂2
s with the

lowest acceptible values are:
WL

II = [A, C, D, AC, AD, BD, ABCD], SLII = [AE, DE, ABE, ADE, ABCDE].
Table 6.6 shows numbers for the di�erent variances and the correlation.

Table 6.6: Estimated values for the variances and the correlation for the left censored
data in Example II, for the maximum likelihood with multiple imputation method.

Whole-plot variance: σ̂2
w 7.0372

Subplot variance: σ̂2
s 2.3343

Correlation: ρ 0.7509

There are three whole-plot combinations that are censored in this case. Thus,
the method where both dependent observations are censored, Section 3.6, is used on
each combination. Multiple imputation creates estimates for each censored value,
shown in Table 6.7.

Table 6.7: Estimated values from multiple imputation for the left censored data in
Example II.

Run nr:
Observation 1 2 3 4 5 Original

7 25.2207 25.5315 24.7438 24.8516 25.1883 5.0
8 24.4113 24.9805 24.2776 24.3963 24.5432 18.1
11 6.8982 8.0627 7.0220 8.9404 8.3585 11.3
12 7.6602 8.9095 8.0828 9.3735 8.80711 23.9
15 20.0818 19.7337 22.1194 21.1430 19.7989 13.3
16 22.7173 21.9018 24.1054 23.3482 22.1078 23.7

Notice from Table 6.7 that only the estimates for run 16 are close to the original
value. What is common for all the censored values is that one of the dependent
values are fairly close to the censoring limit, while the other is far away from it.
This in�uences the estimates.

Regression analysis of the arti�cial completed datasets are shown as normal
plots in Figure 6.6. The whole-plot e�ects in Figure 6.6(a) shows that the factor
D and the interaction AD are the most signi�cant. Factor A is the third largest,
but it seems to lie on a linear trend, which makes it uncertain whether or not it is
signi�cant. For the subplot e�ects in Figure 6.6(b), only one subplot e�ect stands
out as signi�cant; the interaction AE.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.6: Normal plot of the left censored estimated e�ects of Example II using
multiple imputation.

The results of the QnD method are shown in Figure 6.7(a), with the whole-plot
e�ects, and in Figure 6.7(b), with the subplot e�ects. The most important whole-
plot factor is the interaction AD, followed by factor D. Factor A also might be of
importance for the outcome of the experiment. For the subplot e�ects, only the
interaction AE seems to be signi�cant.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.7: Normal plot of the estimated e�ects with left censoring by QnD from
Example II.

The estimated coe�cients are listed in Appendix A, Table A.2. Both methods
produces good estimates, but for the most signi�cant factors, QnD gives the poorest
results.
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6.5 Example III - Right censoring

The right censoring limit for Example III is set to 6. Four observations are cen-
sored due to this limit. The following factors create the optimal pair of σ̂2

w and σ̂2
s :

WR
III = [A, B, C, BC], S−

R

III = [D, BD]. All of the factors in S+R

III are left out
during the calculations, since none of them seem to be important for the result of
the experiment.

The estimated variances and the correlation for the right censoring of Exam-
ple III are shown in Table 6.8. Note that the variances are generally smaller than in
the other examples. This is natural since the original data is restricted to a much
smaller interval.

Table 6.8: Estimated values for the variances and the correlation for the right cen-
sored data in Example III, for the maximum likelihood with multiple imputation
method.

Whole-plot variance: σ̂2
w 0.0734

Subplot variance: σ̂2
s 0.2475

Correlation: ρ 0.2288

There are one observation within one of the whole-plots, and three observations
within another, that are censored. The methods of calculation are straight forward
using conditional distribution, eq. (3.4), �rst with three dependent observations for
the single censored, then one for the set with three censored observations. The
results of the multiple imputation are shown in Table 6.9.

Table 6.9: Estimated values from multiple imputation for the right censored data
in Example III.

Run nr:
Observation 1 2 3 4 5 Original

8 7.5878 6.4237 7.0643 6.3209 7.1783 6.1
22 7.1397 7.0891 7.7956 6.7407 6.5224 6.4
23 8.6784 7.1870 6.6056 6.9442 7.2784 6.2
24 6.2343 6.0161 6.3656 6.1624 6.3194 6.6

Some of the estimated values exceed 7, which was the highest score a combina-
tion could gain in the original experiment. As stated, this is not a typical censoring
experiment, thus all the values are acceptable.

The estimated whole-plot e�ects are shown in Figure 6.8(a). Factor A is clearly
signi�cant. Factor C might be important, but it lies closer to the linear trend, thus
it is more di�cult to decide. Figure 6.8(b) shows the subplot e�ects. Factor D and
the interaction BD stand out as the most important of the e�ects. As expected, the
S+R

III e�ects are not signi�cant for the outcome of the product.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.8: Normal plot of the right censored e�ects of Example III using multiple
imputation.

Figure 6.9 shows the results of the QnD method for right censoring of Exam-
ple III. As in Figure 6.8, the whole-plot e�ects from the QnD analysis, Figure 6.9(a),
shows that the factors A and C are the most signi�cant. The same applies to the
subplot e�ects, Figure 6.9(b), where factor D and the interaction BD stand out as
the most important.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.9: Normal plot of the estimated e�ects with right censoring by QnD from
Example III.

The whole-plot gained from the QnD analysis is very similar to the original
estimates. The reason for this is that the censoring limit is close to the original
values. The di�erence between the estimated values in Table 6.9 and the original
values are generally higher than that between the latter and the censoring limit. In
this case, the QnD method provides the best estimates. The numerical results can
be found in Appendix A, Table A.3.
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6.6 Example III - Left censoring

For the left censoring of Example III, the censoring limit is set to 1.6. Five obser-
vations are censored by this limit. The factors used to estimate the optimal pair of
σ̂2
w and σ̂2

s are: WL
III = [A, C, BC], S−

L

III = [D, E, BD, BE, ABCD].

As for the right censoring case, the factors for S+L

III are omitted due to low signi�-
cance. The values for estimated variances and the correlation in the left censoring
case are shown in Table 6.10.

Table 6.10: Estimated values for the variances and the correlation for the left cen-
sored data in Example III, for the maximum likelihood with MI method.

Whole-plot variance: σ̂2
w 0.0275

Subplot variance: σ̂2
s 0.2349

Correlation: ρ 0.1048

All the censored observations are within three whole-plot combinations, with
three observations in one combination, and singles in the others. Eq. (3.4) can there-
fore be used straight forward. The estimated values for the censored observations
are listed in Table 6.11. Just like in Section 6.5, some of the estimated values are
outside the scale. As previously stated, this is allowed, since the experiment is no
ordinary censoring experiment.

Table 6.11: Estimated values from multiple imputation for the left censored data in
Example III.

Run nr:
Observation 1 2 3 4 5 Original

1 0.6179 -0.2167 -1.3438 -0.5575 -0.0242 1.1
2 1.2539 1.2329 1.1162 1.0510 0.7223 1.4
3 0.0387 0.9129 0.8304 0.4496 0.5598 1.0
10 1.4158 1.3008 1.5372 1.5630 1.5179 1.6
25 1.4466 1.5751 1.4308 1.5525 1.1524 1.6

The resulting whole-plot e�ects are shown in Figure 6.10(a), and the subplot
e�ects in Figure 6.10(b). These are very similar to the ones from the right censoring
case, Figure 6.8. The only di�erence is the order of the factors with the linear trend.
Thus, the factors A, C, D and BD are the most important for the outcome of the
product.

The results of the QnD analysis for the left censoring of Example III are shown
in Figure 6.11. The plot of the whole-plot e�ects, Figure 6.11(a), shows that the
factors A and C are the most signi�cant. The corresponding plot of the subplot
e�ects shows that the factor D and interaction BD are the most important.

For both methods, the estimated subplot e�ects are good compared to the
originals. The whole-plots are good as well, but the linear trend di�ers in both
cases. In Figure 6.10(a) factor C stands out from the linear trend, therefore it is
signi�cant for the result. Factor C in Figure 6.11(a) lies closer to the linear trend. In
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.10: Normal plot of the left censored estimated e�ects of Example III using
multiple imputation.

both plots, C is found to be signi�cant. The numerical results are listed in Table A.3
in Appendix A.
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(a) Whole-plot e�ects

(b) Subplot e�ects

Figure 6.11: Normal plot of the estimated e�ects with left censoring by QnD from
Example III.
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Chapter 7

Discussion

In this chapter, the performances of both methods will be summarized for each of
the examples and then evaluated separately.

7.1 Example I

The right limit for the censoring of Example I is set where there is a gap between the
response values. This results in a gap between the censoring limit and most of the
values that become censored. Since this is an experiment with 16 runs, only three
values were censored. Run number 1 and 2 are both censored, and the estimated
values for the �rst, found through multiple imputation, is very close to the original
values. The values for run 2 are much higher than the original, thus not a very
good �t. The estimated values for run number 10 di�ers from one simulation to the
next, and none of them gives as good estimates compared to the two other censored
observations. This is most likely due to that the dependent observation are far below
the censoring limit.

The estimates produced by the maximum likelihood with multiple imputation
method gives the best results for the e�ects. The QnD method creates poorer
estimates, but it still points out the decidedly largest e�ects.

Left censoring on Example I did not work well with the multiple imputation
method. No combination of factors satis�ed the condition K2 ≥ K1. The reason
for this is that dependent observations, in one or more cases, had a big di�erence
between one another. The estimated K1 becomes much larger than K2 for each
tried censoring limit, and the procedure fails to execute. This shows that there
are pitfalls with the proposed procedure. To get around this, a dataset should be
tested before it's analysed. If there are two observations within each whole-plot,
half the di�erence between them should not exceed the mean of the two. There is
no guaranty that the procedure will fail if this condition is violated, but it should
be viewed as a warning.

The QnD method has no restrictions. There is no natural gap to place the
left limit, that is, it was placed to get some censored values. Four values were
censored, and the created estimates are good compared to the original e�ects. This
is expected, since the censoring limit is close to most of the original values.

53



7.2 Example II

Example II is an experiment with 32 runs. The right limit could not be set at a
natural value, thus it was placed to get some censored observations. The limit is
close to all the censored observations original values. It is then obvious that the
QnD method performs well. Maximum likelihood with multiple imputation shows
again that the best estimates are those who are made for whole-plot combinations
where all observations are censored. This method provides good estimates close to
the original values, and the plot of the subplot e�ects are more similar to the original
than the plot found with the QnD method.

In the left censoring case, the limit is placed close to some of the censored
values, and far from the others. Both analysing methods manage to �nd the most
signi�cant e�ects, but none of them give satisfactory results. The linear trends are
harder to separate from the signi�cant values, and especially factor E disappears into
the linear trend and seems to be absolutely not important for the outcome of the
product. The main cause lies probably in that the original values of the dependent
observations have very di�erent sizes.

7.3 Example III

The dataset used in Example III has 32 runs, and the response is restricted from 1
to 7. The censoring limits will therefore lie close to the original values no matter
where they are placed. It is thereby expected that both methods will perform well.

Conditional distribution is used on all the censored values in the right and left
censoring cases. For the maximum likelihood with multiple imputation method this
results in estimated values that vary much from run to run. Yet the mean of the
estimated e�ects is somewhat similar to the original e�ects. The biggest di�erence
lies in the linear trend, which is more conspicuous for the estimated e�ects. As
stated, the censoring limit is close to the original values, thus the QnD method
provides good estimates.

7.4 Censoring with maximum likelihood and

multiple imputation

For all the examples, maximum likelihood with multiple imputation gives good esti-
mates. This is not surprising, considered that the method imputes m values drawn
from a truncated distribution and then uses the average value in computations. In
almost all cases it provided the most signi�cant e�ects that in�uence the outcome of
the experiment. The estimates found by multiple imputation show that if dependent
observations have a big gap between the responses, the results of the analyses are
in�uenced and often results in poorer estimates for the e�ects. On the other hand, if
all observations within a whole-plot combination are censored, the simulated values
vary little from run to run and are usually closer to the original values.

To acquire the lowest set of σ̂2
w and σ̂2

s , in some cases there were used higher
order interactions. Normally, these are considered to be zero, but when testing all
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possible combinations, some of them reduced the size of either σ̂2
w or σ̂2

s .
Even though this procedure seems to work well, there are some pitfalls. If

two censored values are dependent, but lie far apart, the error term is drastically
a�ected. In some cases, like left censoring of Example I, the σ̂2

w becomes negative.
Thus, the procedure in this thesis will fail to estimate values for the factors e�ects.
A condition is proposed in Section 7.1, to check if a dataset should not be analysed
with this method. Also, if the true failure times within a whole-plot lie far apart,
estimates of censored values should not be blindly trusted. Of course, there is no
way to know this beforehand. On the other hand, the analyst should be aware of
cases where one value is far from the censoring limit, while the other is censored.

7.5 Censoring with quick and dirty

The di�erent examples have a di�erent number of censored observations. The fewer
observations censored and the closer the censoring limit is to the original values, the
better the QnD method works.

The QnD method performs well for all the examples. In all the cases, the
censoring limit is either close to the original values or there is a small number
of censored observations. If this is not the case, the QnD method should not be
trusted. This is supported by the left censoring of Example I, Section 6.2, and earlier
research[12]. The methods greatest aspect is that it is fast and easy to implement.
The disadvantage is that it is not possible to know in advance if the results obtained
are satisfactory or not, i.e. there is always a possibility of obtaining poor results.
When this is said, the QnD method is an appropriate method when the number of
resources is limited, and the expected level of accuracy is not strict.
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Chapter 8

Conclusion

In this thesis, it has been investigated how to manage censored data from a split-
plot experiment. Three examples have been tested, all with both left and right
censoring, and two methods have been implemented; the quick and dirty method
and the maximum likelihood with multiple imputation method. The results through
these test show that both methods give reasonable results on every example. Even
though the maximum likelihood method with multiple imputation does not produce
estimates that are very close to the original values, this method is considered the
best of the two tested in this thesis. The number of runs in each experiment and
the number of censored data are comprehensible, thus the computations could be
done manually. If an experiment requires a larger number of runs, and the number of
censored values is kept low, the methods used in this thesis could easily be transferred
with acceptable results.

If a dataset in split-plot manner is censored and a positive variance can be
estimated, then the procedure in this thesis might give a good estimate for the
censored observations. It is not possible to draw a �nal conclusion for the general
case beyond this, since the number of datasets, models and censoring limits should
be incredibly higher to verify these procedures. However, the analysis gives a good
indication of what e�ects that are most important for the outcome of an experiment.
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Appendix A

Numerical results

Table A.1: Coe�cients of the factors for the di�erent estimations of Example I.

Original: MI: QnD:
Right Left Right

W: (I) 49.7419 49.8369 50.8200 47.7150
A 10.0656 10.1607 9.7688 8.0388
B 5.6244 5.7194 5.9213 3.5975
C 1.3281 2.5761 1.4913 1.9375
AB 7.3431 7.4382 6.2650 5.3163
AC 1.8344 3.0824 1.3700 2.4438
BC -0.6044 0.6436 -0.1400 0.0050
DE 0.3369 1.5849 0.1738 0.9463

S: D -2.0694 -0.7925 -2.5338 -1.4213
E 5.1231 5.2470 5.4200 3.1350
AD -3.0056 -1.7288 -2.8425 -2.3575
AE 6.5019 6.6257 5.4238 4.5138
BD -1.3619 -0.0850 -1.5250 -0.7138
BE -0.2094 -0.0855 0.8688 -2.1975
CD 1.8694 1.9932 1.5725 -0.1188
CE -1.4881 -0.2113 -1.0238 -0.8400

59



Table A.2: Coe�cients of the factors for the di�erent estimations of Example II.

Original: MI: QnD:
Right Left Right Left

W: (I) 40.9813 40.7693 41.4239 40.5531 42.6906
A 5.9125 6.0001 5.4699 6.1531 4.2031
B 2.1125 2.0906 0.4963 1.9969 1.3281
C -1.6938 -1.4818 -2.9092 -1.2656 -1.6656
D -7.5500 -7.4624 -7.1074 -7.3094 -5.8406
AB -2.1063 -1.9600 -0.4901 -1.8031 -1.3219
AC 1.4875 1.3999 2.7030 1.2469 1.4594
BC -0.4250 -0.4031 -0.3831 -0.3094 0.4719
AD 8.2813 8.0693 7.8386 7.8531 6.5719
BD -1.6562 -1.5100 -3.2724 -1.3531 -2.4406
CD 0.8375 0.7499 -0.3780 0.5969 0.8656
ABC 1.4312 1.2850 1.3894 1.1281 0.5344
ABD -1.6500 -1.6719 -0.0338 -1.7656 -0.8656
ACD -1.1563 -0.9443 0.0592 -0.7281 -1.1844
BCD 0.6187 0.4725 0.6606 0.3156 1.5156
ABCD 3.4250 3.4469 3.3831 3.5406 2.5281

S: E 1.5688 1.4565 0.5152 1.3031 0.4406
AE -2.9500 -2.8523 -1.8964 -2.6469 -1.8219
BE -0.1500 -0.1819 0.1605 -0.3281 0.1906
CE -0.0688 0.0435 -0.2670 0.1969 -0.3781
DE 0.5125 0.6102 -0.5411 0.8156 -0.6156
ABE 0.0563 0.1028 -0.2542 0.1969 -0.2844
ACE -0.0875 -0.1852 0.1107 -0.3906 0.2219
ADE -0.4063 -0.5185 0.6473 -0.6719 0.7219
BCE 0.4500 0.4819 -0.0949 0.6281 -0.0281
BDE -0.0938 -0.0472 0.2167 0.0469 0.2469
CDE 0.1625 0.0648 -0.0357 -0.1406 -0.1469
ABDE 0.1375 0.1056 -0.1730 -0.0406 -0.2031
ABCE -0.2188 -0.2653 0.3261 -0.3594 0.2594
ACDE -0.1313 -0.0190 0.0670 0.1344 0.1781
BCDE 0.4438 0.3972 -0.1011 0.3031 -0.0344
ABCDE 0.1250 0.1569 0.6699 0.3031 0.6031
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Table A.3: Coe�cients of the factors for the di�erent estimations of Example III.

Original: MI: QnD:
Right Left Right Left

W: (I) 3.4781 3.5478 3.4008 3.4375 3.5188
A 1.3156 1.3853 1.3929 1.2750 1.2750
B -0.1969 -0.2666 -0.1384 -0.1563 -0.2375
C 0.6344 0.6531 0.7011 0.6000 0.5938
AB 0.0656 -0.0041 0.0072 0.1063 0.1063
AC 0.1844 0.2031 0.1176 0.1500 0.2250
BC -0.2656 -0.2844 -0.3346 -0.2313 -0.2250
ABC 0.1094 0.0906 0.1783 0.1438 0.0688

S−: D 0.5219 0.5904 0.5705 0.4938 0.4938
E 0.2969 0.3079 0.3465 0.2813 0.2938
AD 0.1219 0.1904 0.0732 0.0938 0.1500
AE 0.0344 0.0454 -0.0153 0.0188 0.0375
BD -0.4281 -0.4966 -0.4746 -0.4000 -0.4000
BE -0.1406 -0.1517 -0.1714 -0.1250 -0.1375
CD -0.0469 -0.0293 -0.0850 -0.0688 -0.0188
CE -0.0094 -0.0493 -0.0485 -0.0188 -0.0063
ABD -0.0531 -0.1216 -0.0067 -0.0250 -0.0813
ABE -0.0281 -0.0392 0.0027 -0.0125 -0.0313
ACD -0.1594 -0.1418 -0.1212 -0.1813 -0.1875
ACE -0.0094 -0.0493 0.0298 -0.0188 -0.0125
BCD 0.1031 0.0856 0.1601 0.1250 0.0750
BCE -0.0219 0.0180 0.0195 -0.0125 -0.0250
ABCD 0.2156 0.1981 0.1586 0.2375 0.2438
ABCE 0.0031 0.0430 -0.0382 0.0125 0.0063

S+: DE 0.0031 0.0129 -0.0179 3.331e-16 -0.0063
ADE -0.0719 -0.0621 -0.0508 -0.0750 -0.0625
BDE -0.0094 -0.0192 0.0095 -0.0063 4.398e-16
CDE -0.1531 -0.1942 -0.1426 -0.1500 -0.1438
ABDE 0.1406 0.1308 0.1218 0.1438 0.1313
ACDE 0.0094 -0.0317 -0.0012 0.0125 -1.124e-16
BCDE 0.0344 0.0755 0.0050 0.0313 0.0250
ABCDE 0.0219 0.0630 0.0512 0.0188 0.0313
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Appendix B

Code - Example II

The computations for the three examples are very similar. Therefore, only the R
code for Example II is included in this thesis.

library(censReg)

library(FrF2)

library(plyr)

library(truncnorm)

#############################

# Set up the original experiment

A = c(-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

B = c( 1, 1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1,

-1,-1,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1)

C = c(-1,-1,-1,-1,-1,-1,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1,

-1,-1,-1,-1,-1,-1,-1,-1, 1, 1, 1, 1, 1, 1, 1, 1)

D = c(-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,

1,-1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1)

E = c(-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,

-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1)

Y = c(55.8, 25.6, 62.9, 33.0, 48.6, 5.0, 57.0, 18.1, 47.2, 11.3,

54.6, 23.9, 37.6, 13.3, 43.5, 23.7, 56.8, 41.2, 56.2, 38.2, 53.5,

41.8, 51.3, 37.8, 49.5, 48.7, 48.2, 44.4, 47.2, 47.5, 44.8, 43.2)

Ex2 <- as.data.frame(matrix(0,32,6))

colnames(Ex2) = c("A", "B", "C", "D", "E", "Y")

Ex2$A = A

Ex2$B = B

Ex2$C = C

Ex2$D = D

Ex2$E = E

Ex2$Y = Y
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Left = 25 # Left censoring limit

Right = 55 # Right censoring limit

Ex2 <- arrange(Ex2, A, B, C, D)

##########################

# Big dataset - Expand Ex2

#########################

BigEx2<- as.data.frame(matrix(0,nrow(Ex2),32))

colnames(BigEx2) = c("A", "B", "C", "D", "E", "AB", "AC", "BC", "AD", "AE",

"BD", "BE", "CD", "CE", "DE", "ABC", "ABD", "ABE", "ACD", "ACE", "ADE", "BCD",

"BCE", "BDE", "CDE", "ABCD", "ABDE", "ABCE", "ACDE", "BCDE", "ABCDE", "Value")

for ( i in 1:(nrow(Ex2)))

{

A = Ex2$A[i]

B = Ex2$B[i]

C = Ex2$C[i]

D = Ex2$D[i]

E = Ex2$E[i]

BigEx2$A[i] = A

BigEx2$B[i] = B

BigEx2$C[i] = C

BigEx2$D[i] = D

BigEx2$E[i] = E

BigEx2$Value[i] = Ex2$Y[i]

BigEx2$AB[i] = A*B

BigEx2$AC[i] = A*C

BigEx2$BC[i] = B*C

BigEx2$AD[i] = A*D

BigEx2$AE[i] = A*E

BigEx2$BD[i] = B*D

BigEx2$BE[i] = B*E

BigEx2$CD[i] = C*D

BigEx2$CE[i] = C*E

BigEx2$DE[i] = D*E

BigEx2$ABC[i] = A*B*C

BigEx2$ABD[i] = A*B*D

BigEx2$ABE[i] = A*B*E

BigEx2$BCD[i] = B*C*D

BigEx2$BCE[i] = B*C*E

BigEx2$ACD[i] = A*C*D

BigEx2$ACE[i] = A*C*E

BigEx2$ADE[i] = A*D*E
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BigEx2$BDE[i] = B*D*E

BigEx2$CDE[i] = C*D*E

BigEx2$ABCD[i] = A*B*C*D

BigEx2$ABDE[i] = A*B*D*E

BigEx2$ABCE[i] = A*B*C*E

BigEx2$ACDE[i] = A*C*D*E

BigEx2$BCDE[i] = B*C*D*E

BigEx2$ABCDE[i] = A*B*C*D*E

}

E2 <- BigEx2

#############################

# Create whole and sub matrices

Whole <- as.data.frame(matrix(0,(nrow(E2)/2),ncol(E2)))

colnames(Whole) = c("A", "B", "C", "D", "AB", "AC", "AD", "BC", "BD", "CD", "ABC",

"ABD", "ACD", "BCD", "ABCD")

Sub <- as.data.frame(matrix(0,(nrow(E2)/2),ncol(E2)))

colnames(Sub) = c("E", "AE", "BE", "CE", "DE", "ABE", "ACE", "ADE", "BCE", "BDE",

"CDE", "ABCE", "ABDE", "ACDE", "BCDE", "ABCDE")

for(i in 1:(nrow(E2)/2))

{

Whole$A[i] = (E2$A[2*i-1] + E2$A[2*i])/2

Whole$B[i] = (E2$B[2*i-1] + E2$B[2*i])/2

Whole$C[i] = (E2$C[2*i-1] + E2$C[2*i])/2

Whole$D[i] = (E2$D[2*i-1] + E2$D[2*i])/2

Whole$AB[i] = (E2$AB[2*i-1] + E2$AB[2*i])/2

Whole$AC[i] = (E2$AC[2*i-1] + E2$AC[2*i])/2

Whole$AD[i] = (E2$AD[2*i-1] + E2$AD[2*i])/2

Whole$BC[i] = (E2$BC[2*i-1] + E2$BC[2*i])/2

Whole$BD[i] = (E2$BD[2*i-1] + E2$BD[2*i])/2

Whole$CD[i] = (E2$CD[2*i-1] + E2$CD[2*i])/2

Whole$ABC[i] = (E2$ABC[2*i-1] + E2$ABC[2*i])/2

Whole$ABD[i] = (E2$ABD[2*i-1] + E2$ABD[2*i])/2

Whole$ACD[i] = (E2$ACD[2*i-1] + E2$ACD[2*i])/2

Whole$BCD[i] = (E2$BCD[2*i-1] + E2$BCD[2*i])/2

Whole$ABCD[i] = (E2$ABCD[2*i-1] + E2$ABCD[2*i])/2

Whole$Value[i] = (E2$Value[2*i-1] + E2$Value[2*i])/2

Sub$E[i] = (E2$E[2*i-1] - E2$E[2*i])/2

Sub$AE[i] = (E2$AE[2*i-1] - E2$AE[2*i])/2

Sub$BE[i] = (E2$BE[2*i-1] - E2$BE[2*i])/2
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Sub$CE[i] = (E2$CE[2*i-1] - E2$CE[2*i])/2

Sub$DE[i] = (E2$DE[2*i-1] - E2$DE[2*i])/2

Sub$ABE[i] = (E2$ABE[2*i-1] - E2$ABE[2*i])/2

Sub$ACE[i] = (E2$ACE[2*i-1] - E2$ACE[2*i])/2

Sub$ADE[i] = (E2$ADE[2*i-1] - E2$ADE[2*i])/2

Sub$BCE[i] = (E2$BCE[2*i-1] - E2$BCE[2*i])/2

Sub$BDE[i] = (E2$BDE[2*i-1] - E2$BDE[2*i])/2

Sub$CDE[i] = (E2$CDE[2*i-1] - E2$CDE[2*i])/2

Sub$ABCE[i] = (E2$ABCE[2*i-1] - E2$ABCE[2*i])/2

Sub$ABDE[i] = (E2$ABDE[2*i-1] - E2$ABDE[2*i])/2

Sub$ACDE[i] = (E2$ACDE[2*i-1] - E2$ACDE[2*i])/2

Sub$BCDE[i] = (E2$BCDE[2*i-1] - E2$BCDE[2*i])/2

Sub$ABCDE[i] = (E2$ABCDE[2*i-1] - E2$ABCDE[2*i])/2

Sub$Value[i] = (E2$Value[2*i-1] - E2$Value[2*i])/2

}

Wholelm = lm(Value ~ A+B+C+D+AB+AC+BC+AD+BD+CD+ABC+ABD+ACD+BCD+

ABCD, data=Whole) #original whole-plot estimates

Sublm = lm(Value ~ E+AE+BE+CE+DE+ABE+ACE+ADE+BCE+BDE+CDE+ABDE+

ABCE+ACDE+BCDE+ABCDE-1, data=Sub) #original subplot estimates

############################################

# Quick and Dirty - Right censoring

###########################################

QnDRight<- E2

for(i in 1:nrow(QnDRight)) {

if(QnDRight$Value[i] >= Right)

{QnDRight$Value[i] = Right}

next

}

QnDRSub <- Sub

QnDRWhole <- Whole

for(i in 1:(nrow(QnDRight)/2))

{

QnDRSub$Value[i] = (QnDRight$Value[2*i-1] - QnDRight$Value[2*i])/2

QnDRWhole$Value[i] = (QnDRight$Value[2*i-1] + QnDRight$Value[2*i])/2

}

QnDRightlm_S = lm(Value ~ E+AE+BE+CE+DE+ABE+ACE+ADE+BCE+BDE+CDE+ABDE+

ABCE+ACDE+BCDE+ABCDE-1, data=QnDRSub)

QnDRightlm_W = lm(Value ~A+B+C+D+AB+AC+BC+AD+BD+CD+ABC+ABD+ACD+BCD+

ABCD, data=QnDRWhole)
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###################################

# Quick and Dirty - Left censoring

###################################

QnDLeft<- E2

for(i in 1:nrow(QnDLeft)) {

if(QnDLeft$Value[i] <= Left)

{QnDLeft$Value[i] = Left}

next

}

QnDLSub <- Sub

QnDLWhole <- Whole

for(i in 1:(nrow(QnDLeft)/2))

{

QnDLSub$Value[i] = (QnDLeft$Value[2*i-1] - QnDLeft$Value[2*i])/2

QnDLWhole$Value[i] = (QnDLeft$Value[2*i-1] + QnDLeft$Value[2*i])/2

}

QnDLeftlm_W = lm(Value ~A+B+C+D+AB+AC+BC+AD+BD+CD+ABC+ABD+ACD+BCD+

ABCD, data=QnDLWhole)

QnDLeftlm_S = lm(Value ~ E+AE+BE+CE+DE+ABE+ACE+ADE+BCE+BDE+CDE+ABDE+

ABCE+ACDE+BCDE+ABCDE-1, data=QnDLSub)

######################################

# Estimating variance

######################################

censRegRight <- censReg(Value ~ BCDE+AE+A+D+AD+ABCD+ABD+B+AC+DE+ADE+

ACE+E, data = E2, left = -Inf, right = Right) # Right censoring

E2R = coef(censRegRight)

NoWhole = 7 # number of whole factors

NoSub = 6 # number of sub factors

# Sub-plot variance

VarS <- as.data.frame(matrix(0,16, 5))

colnames(VarS) = c("Sub", "No1", "No2", "Diff", "X")

for( i in 1:nrow(VarS))

{

VarS$No1[i] = E2$Value[2*i-1]

VarS$No2[i] = E2$Value[2*i]

SubR = E2R[2]*E2$BCDE[2*i-1] + E2R[3]*E2$AE[2*i-1] + E2R[11]*E2$DE[2*i-1] +

E2R[12]*E2$ADE[2*i-1] + E2R[13]*E2$ACE[2*i-1] + E2R[14]*E2$E[2*i-1]

VarS$Sub[i] = SubR

Diff = (E2$Value[2*i-1] - E2$Value[2*i])/2
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VarS$Diff[i] = Diff

VarS$X[i] = Diff-SubR

VarS$Diff[i] = signif(as.numeric(VarS$Diff[i]), digits=4)

VarS$X[i] = signif(as.numeric(VarS$X[i]), digits=4)

if(VarS$No1[i] >=Right)

{VarS$Diff[i] = "NULL"

VarS$No1[i] = "NULL"

VarS$X[i] = "Cen"

if(VarS$No2[i] >= Right)

{VarS$No2[i] = "NULL"

next}

}

if(VarS$No2[i] >= Right)

{VarS$Diff[i] = "NULL"

VarS$No2[i] = "NULL"

VarS$X[i] = "Cen"

next}

}

# Whole-plot variance

VarW <- as.data.frame(matrix(0,16, 5))

colnames(VarW) = c("Add", "No1", "No2", "Mean", "X")

for( i in 1:nrow(VarW))

{

VarW$No1[i] = E2$Value[2*i-1]

VarW$No2[i] = E2$Value[2*i]

Add = E2R[1] + E2R[4]*E2$A[2*i-1] + E2R[5]*E2$D[2*i-1] + E2R[6]*E2$AD[2*i-1] +

E2R[7]*E2$ABCD[2*i-1] + E2R[8]*E2$ABD[2*i-1] + E2R[9]*E2$B[2*i-1] +

E2R[10]*E2$AC[2*i-1]

VarW$Add[i] = Add

Mean = (E2$Value[2*i-1] + E2$Value[2*i])/2

VarW$Mean[i] = Mean

VarW$X[i] = Mean-Add

VarW$Mean[i] = signif(as.numeric(VarW$Mean[i]), digits=4)

VarW$X[i] = signif(as.numeric(VarW$X[i]), digits=4)

if(VarW$No1[i] >=Right)

{VarW$Mean[i] = "NULL"

VarW$No1[i] = "NULL"

VarW$X[i] = "Cen"

if(VarW$No2[i] >= Right)

{VarW$No2[i] = "NULL"
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next}

}

if(VarW$No2[i] >= Right)

{VarW$Mean[i] = "NULL"

VarW$No2[i] = "NULL"

VarW$X[i] = "Cen"

next}

}

censRegLeft <- censReg(Value ~ AD+D+AE+A+BD+ABCD+C+AC+ADE+ABCDE+DE+

ABE, data = E2, left = Left, right = Inf) # Left censoring

E2L = coef(censRegLeft)

NoWholeLeft = 7 # number of whole factors

NoSubLeft = 5 # number of sub factors

# Sub-plot

VarSLeft <- as.data.frame(matrix(0,16, 5))

colnames(VarSLeft) = c("Sub", "No1", "No2", "Diff", "X")

for(i in 1:nrow(VarSLeft))

{

VarSLeft$No1[i] = E2$Value[2*i-1]

VarSLeft$No2[i] = E2$Value[2*i]

SubL = E2L[4]*E2$AE[2*i-1] + E2L[10]*E2$ADE[2*i-1] +

E2L[11]*E2$ABCDE[2*i-1] + E2L[12]*E2$DE[2*i-1] + E2L[13]*E2$ABE[2*i-1]

VarSLeft$Sub[i] = SubL

Diff = (E2$Value[2*i-1] - E2$Value[2*i])/2

VarSLeft$Diff[i] = Diff

VarSLeft$X[i] = Diff-SubL

VarSLeft$Diff[i] = signif(as.numeric(VarSLeft$Diff[i]), digits=4)

VarSLeft$X[i] = signif(as.numeric(VarSLeft$X[i]), digits=4)

if(VarSLeft$No1[i] <= Left)

{VarSLeft$Diff[i] = "NULL"

VarSLeft$No1[i] = "NULL"

VarSLeft$X[i] = "Cen"

if(VarSLeft$No2[i] <= Left)

{VarSLeft$No2[i] = "NULL"

next}

}

if(VarSLeft$No2[i] <= Left)

{VarSLeft$Diff[i] = "NULL"

VarSLeft$No2[i] = "NULL"

69



VarSLeft$X[i] = "Cen"

next}

}

# Whole-plot

VarWLeft <- as.data.frame(matrix(0,16, 5))

colnames(VarWLeft) = c("Add", "No1", "No2", "Mean", "X")

for( i in 1:nrow(VarWLeft))

{

VarWLeft$No1[i] = E2$Value[2*i-1]

VarWLeft$No2[i] = E2$Value[2*i]

Add = E2L[1] + E2L[2]*E2$AD[2*i-1] + E2L[3]*E2$D[2*i-1] + E2L[5]*E2$A[2*i-1] +

E2L[6]*E2$BD[2*i-1] + E2L[7]*E2$ABCD[2*i-1] + E2L[8]*E2$C[2*i-1] +

E2L[9]*E2$AC[2*i-1]

VarWLeft$Add[i] = Add

Mean = (E2$Value[2*i-1] + E2$Value[2*i])/2

VarWLeft$Mean[i] = Mean

VarWLeft$X[i] = Mean-Add

VarWLeft$Mean[i] = signif(as.numeric(VarWLeft$Mean[i]), digits=4)

VarWLeft$X[i] = signif(as.numeric(VarWLeft$X[i]), digits=4)

if(VarWLeft$No1[i] <=Left)

{VarWLeft$Mean[i] = "NULL"

VarWLeft$No1[i] = "NULL"

VarWLeft$X[i] = "Cen"

if(VarWLeft$No2[i] <= Left)

{VarWLeft$No2[i] = "NULL"

next}

}

if(VarWLeft$No2[i] <= Left)

{VarWLeft$Mean[i] = "NULL"

VarWLeft$No2[i] = "NULL"

VarWLeft$X[i] = "Cen"

next}

}

Df <- as.data.frame(matrix(0,1,4)) # Degrees of freedom

Df[1,1] = NoWhole

Df[1,2] = NoSub

Df[1,3] = NoWholeLeft

Df[1,4] = NoSubLeft

Variance <- as.data.frame(matrix(0,16,4))

colnames(Variance) = c("WholeR", "SubR", "WholeL", "SubL")
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Variance$WholeR = VarW$X

Variance$SubR = VarS$X

Variance$WholeL = VarWLeft$X

Variance$SubL = VarSLeft$X

K <- as.data.frame(matrix(0,1,4))

colnames(K) = c("KWR", "KSR", "KWL", "KSL")

for(m in 1:ncol(Variance))

{

EK = 0

k = 0

for(i in 1:nrow(Variance))

{

if(Variance[i,m] == "Cen")

{k = k +1

next}

EK = (as.numeric(Variance[i,m]))^2 + EK

}

K[1,m] = EK/(nrow(Variance)-k-Df[1,m]) #Estimates K1 and K2

}
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##########################################

# RIGHT CENSORING

##########################################

SigSRight = 2*K$KSR[1] #sigma sqared, sub

SigWRight = K$KWR[1] - (K$KSR[1]) #sigma squared, whole

RhoRight = SigWRight/(SigWRight+SigSRight) #rho

VAR = (SigWRight + SigSRight)*(1-RhoRight^2) #variance

SD = sqrt(VAR) #standard deviation

n = 5 #number of runs

Row <- as.data.frame(matrix(0,nrow(E2), 3))

colnames(Row) = c("Row","Adjust", "Expect")

for(i in 1:nrow(E2))

{

row = E2R[1] + E2R[4]*E2$A[i] + E2R[5]*E2$D[i] + E2R[6]*E2$AD[i] +

E2R[7]*E2$ABCD[i] + E2R[8]*E2$ABD[i] + E2R[9]*E2$B[i] + E2R[10]*E2$AC[i] +

E2R[2]*E2$BCDE[i] + E2R[3]*E2$AE[i] + E2R[11]*E2$DE[i] + E2R[12]*E2$ADE[i] +

E2R[13]*E2$ACE[i] + E2R[14]*E2$E[i]

Row[i,1] = row

adjust = E2$Value[i] - row

Row[i,2] = adjust

Row[i,3] = adjust*RhoRight #Expected value, mean

if(E2$Value[i] >= Right)

{

Row[i,2] = "Cen"

Row[i,3] = "Cen"

next

}

}

################

# Multiple imputation - Conditional distribution

################

# Cen row 2

a = Right - Row[2,1]

mEAn = as.numeric(Row[1,3])

Y1 = rtruncnorm(n, mean = mEAn, sd = SD, a = a, b = Inf)

#################################

# TWO ROWS CENSORED

################################
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rho = RhoRight

nu = 1-rho^2

swap <- function(matrix, row1, row2){

row3 <- matrix[row1,]

matrix[row1,] = matrix[row2,]

matrix[row2,] = row3

return (matrix)

}

t = 4

cens = matrix(0,t,7)

cens[,1] = c(9,10,19,20)

for(i in 1:nrow(cens)){

cens[i,2] = Right - Row[cens[i,1],1]

}

for(i in 1:(nrow(cens)/2)){

if(cens[2*i-1,2] > cens[2*i,2]){

cens <- swap(cens, 2*i-1, 2*i)}

}

for(i in 1:(nrow(cens)/2)){

a2 = cens[2*i-1,2] # Small

a1 = cens[2*i,2] # Large

x = a1*rho - a2

# Case M+

if(x <= 0){

cens[2*i,3:7] = rtruncnorm(n, mean = 0, sd = 1, a = (a2/rho), b = Inf)

for(k in 3:(n+2)){

cens[2*i-1,k] = rtruncnorm(1, mean = rho*cens[2*i,k], sd = nu^2, a = a2, b = Inf)

}

}

# Case S+

if(x >= 0){

cens[2*i,3:7] = rtruncnorm(n, mean = 0, sd = 1, a = a1, b = Inf)

for(k in 3:(n+2)){

cens[2*i-1,k] = rnorm(1, mean = rho*cens[2*i,k], sd = nu^2)

if(cens[2*i-1,k] < a2){

print("Error: New value required")

print(cens[2*i-1,1])

}

}

}
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}

cens <- as.data.frame(cens)

cens <- arrange(cens,cens[,1])

########

v = E2$Value

NEW = matrix(v,32,5) # Make a matrix with 5 colums, and change censored values

for(m in 1:n){

NEW[2,m] = Y1[m] + Row[2,1]

for (j in 1:nrow(cens)) {

NEW[cens[j,1],m] = cens[j,m+2] + Row[cens[j,1],1]

}

}

#####################

# Estimating effects

#####################

MatWR = as.data.frame(matrix(0, (nrow(E2)/2), n))

MatSR = as.data.frame(matrix(0, (nrow(E2)/2), n))

EffectsWR = 0

EffectsSR = 0

for(m in 1:n){

for(i in 1:(nrow(E2)/2)){

MatWR[i,m] = (NEW[2*i -1,m] + NEW[2*i,m])/2

MatSR[i,m] = (NEW[2*i -1,m] - NEW[2*i,m])/2

}

SubR = Sub

SubR$Value = MatSR[,m]

lmS = lm(Value ~ E+AE+BE+CE+DE+ABE+ACE+ADE+BCE+BDE+CDE+ABDE+ABCE+ACDE+

BCDE+ABCDE-1, data = SubR)

WholeR = Whole

WholeR$Value = MatWR[,m]

lmW = lm(Value ~ A+B+C+D+AB+AC+BC+AD+BD+CD+ABC+ABD+ACD+BCD+

ABCD, data = WholeR)

EffectsWR = EffectsWR + (coef(lmW)/5)

EffectsSR = EffectsSR + (coef(lmS)/5)

}
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##########################################

# Left CENSORING

##########################################

SigSLeft = 2*K$KSL[1] #sigma sqared, sub

SigWLeft = K$KWL[1] - (K$KSL[1]) #sigma squared, whole

RhoLeft = SigWLeft/(SigWLeft+SigSLeft) #rho

VARLeft = (SigWLeft + SigSLeft)*(1-RhoLeft^2) #variance

SD = sqrt(VARLeft) #standard deviation

n = 5 # number of runs

RowLeft <- as.data.frame(matrix(0,nrow(E2), 3))

colnames(RowLeft) = c("Row","Adjust", "Expect")

for(i in 1:nrow(E2)){

row = E2L[4]*E2$AE[i] + E2L[10]*E2$ADE[i] + E2L[11]*E2$ABCDE[i] +

E2L[12]*E2$DE[i] + E2L[13]*E2$ABE[i]+ E2L[1] + E2L[2]*E2$AD[i] +

E2L[3]*E2$D[i] + E2L[5]*E2$A[i] + E2L[6]*E2$BD[i] + E2L[7]*E2$ABCD[i] +

E2L[8]*E2$C[i] + E2L[9]*E2$AC[i]

RowLeft[i,1] = row

adjust = E2$Value[i] - row

RowLeft[i,2] = adjust

RowLeft[i,3] = adjust*RhoLeft #Expected value, mean

if(E2$Value[i] <= Left){

RowLeft[i,2] = "Cen"

RowLeft[i,3] = "Cen"

next

}

}

#################################

# TWO ROWS CENSORED

################################

rho = RhoLeft

nu = 1-rho^2

swap <- function(matrix, row1, row2){

row3 <- matrix[row1,]

matrix[row1,] = matrix[row2,]

matrix[row2,] = row3

return (matrix)

}

t = 6

censL = matrix(0,t,7)
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censL[,1] = c(3,4,7,8,15,16)

for(i in 1:nrow(censL)){

censL[i,2] = Left - RowLeft[censL[i,1],1]

}

for(i in 1:(nrow(censL)/2)){

if(censL[2*i-1,2] > censL[2*i,2]){

censL <- swap(censL, 2*i-1, 2*i)}

}

for(i in 1:(nrow(censL)/2)){

a2 = censL[2*i-1,2] # Small

a1 = censL[2*i,2] # Large

x = a1*rho - a2

# Case M+

if(x <= 0){

censL[2*i,3:7] = rtruncnorm(n, mean = 0, sd = 1, a = (a2/rho), b = Inf)

for(k in 3:(n+2)){

censL[2*i-1,k] = rtruncnorm(1, mean = rho*censL[2*i,k], sd = nu^2, a = a2, b = Inf)

}

}

# Case S+

if(x >= 0){

censL[2*i,3:7] = rtruncnorm(n, mean = 0, sd = 1, a = a1, b = Inf)

for(k in 3:(n+2)){

censL[2*i-1,k] = rnorm(1, mean = rho*censL[2*i,k], sd = nu^2)

if(censL[2*i-1,k] < a2){

print("Error: New value required")

print(censL[2*i-1,1])

}

}

}

}

censL <- as.data.frame(censL)

censL <- arrange(censL,censL[,1])

########

v = E2$Value

NEWLeft = matrix(v,32,5) # Make a matrix with 5 colums, and change censored values

for(m in 1:n){

for (j in 1:nrow(censL)) {

NEWLeft[cens[j,1],m] = censL[j,m+2] + RowLeft[censL[j,1],1]

}

}
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#####################

# Estimating effects

#####################

MatWL = as.data.frame(matrix(0, (nrow(E2)/2), n))

MatSL = as.data.frame(matrix(0, (nrow(E2)/2), n))

EffectsWL = 0

EffectsSL = 0

for(m in 1:n){

for(i in 1:(nrow(E2)/2)){

MatWL[i,m] = (NEWLeft[2*i -1,m] + NEWLeft[2*i,m])/2

MatSL[i,m] = (NEWLeft[2*i -1,m] - NEWLeft[2*i,m])/2

}

SubL = Sub

SubL$Value = MatSL[,m]

lmSL = lm(Value ~ E+AE+BE+CE+DE+ABE+ACE+ADE+BCE+BDE+CDE+ABDE+ABCE+ACDE+

BCDE+ABCDE-1, data = SubL)

WholeL = Whole

WholeL$Value = MatWL[,m]

lmWL = lm(Value ~ A+B+C+D+AB+AC+BC+AD+BD+CD+ABC+ABD+ACD+BCD+

ABCD, data = WholeL)

EffectsWL = EffectsWL + (coef(lmWL)/5)

EffectsSL = EffectsSL + (coef(lmSL)/5)

}
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