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ABSTRACT

We construct an invariant of 2-knots akin to the Jones polynomial of a knot. To
achieve this, we adopt a new point of view on the foundations of diagrammatic 2-knot
theory, and introduce a series of ideas to address questions in 2-knot theory which we
consider to be of fundamental significance.
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SAMMENDRAG

Vi konstruerer en invariant av 2-knuter beslektet med Jones polynomet av en knute.
For å oppn̊a dette, fremmer vi et nytt synspunkt p̊a den diagramatiske 2-knuteteoriens
grunnlag, og introduserer en rekke idéer for å besvare spørsmål innen 2-knuteteori som
vi anser som fundamentale.
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CHAPTER 1

INTRODUCTION

1.1. An invariant for 2-knots akin to the Jones
polynomial of a knot

The discovery of the Jones polynomial in the 1980s revolutionised knot theory. It
led swiftly to the resolution of long-standing conjectures [7], and forged deep links
between knot theory and other fields.

In this thesis, we construct an invariant for 2-knots akin to the Jones polynomial for
knots. As far as we are aware, no indication of this construction has been anticipated
in the literature, even to the smallest degree. It may therefore come as quite a surprise.

We believe that our invariant can be a profound point of departure for fusing 2-knot
theory and other fields, and moreover that it can lead to significant progress within
2-knot theory itself. This we leave as a challenge for future work.

In the course of constructing the invariant, we have been led to reflect deeply upon
several points in 2-knot theory which we feel to be fundamental, and to introduce a
series of new ideas thereafter. We feel these ideas to be of independent significance.

1.2. What is 2-knot theory?

In a nutshell, a 2-knot is a knotted sphere. Whilst knots live an R3, 2-knots live in R4.
Just as in ordinary knot theory, the fundamental question in 2-knot theory is: when
can a 2-knot be unknotted to a sphere? More generally, when are a pair of 2-knots
isotopic to one another?

The model for the construction of our invariant is Kauffman’s construction of the
Jones polynomial [11]. This proceeds by first associating a monomial to each possible
smoothing of a knot into a collection of disjoint circles, and summing them to obtain a
polynomial. This polynomial, known as the bracket polynomial of a knot, is invariant
under the R2 and R3 moves. Modifying the bracket polynomial by equipping the knot
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1. Introduction

with an orientation and making use of the writhe, we arrive at a polynomial which is
invariant under all three Reidemeister moves. This is the Jones polynomial.

This approach is fundamentally diagrammatic. It is not the knot itself which is
significant, but rather its associated diagram, namely the combinatorial information
of how its projection to a plane is built up of arcs and crossings.

Our approach to 2-knot theory is similarly diagrammatic. Rather than a 2-knot
itself, it is the combinatorial information of how its projection to R3 is built up of
planes and crossings. There are, however, important choices to be made in placing
the diagrammatic theory of 2-knots on a firm foundation. The way we approach this
is one of the technical innovation of the thesis.

1.3. The key ideas

We consider the following aspects of this thesis to be the heart of our work. As far as
we are aware, none of these have previously been considered, and we consider all of
them to be fundamental constructions in 2-knot theory.

1.3.1. A cubical approach

Throughout this thesis, we take a cubical approach to both knot theory and 2-knot
theory. This appears to be novel even for ordinary knot theory, where either simplicial
or smooth approach has been universally followed. The overwhelming majority of prior
work in 2-knot theory has been carried out in a smooth setting: we refer the reader
to the books [1], [2], [3] and [6] for an overview of much of the previous work that has
been carried out in 2-knot theory.

A significant reason for our choice to work with cubes in 2-knot theory rather than
a smooth setting, is that it allows us to define the notion of isotopy of 2-knots in an
intuitive way, analogous to Reidemeister’s original simplicial definition of an isotopy
of knots [9]. We are then able to arrive at the cornerstone of a diagrammatic approach
to 2-knot theory, that a pair of 2-knots are isotopic if and only if one can be obtained
by the other by a sequence of Homma-Nagase-Roseman moves (see [4], [5] and [10]
for the original papers), by means of a straightforward combinatorial argument. As a
warm up, we demonstrate how to carry out a cubical version of Reidemeister’s proof
that a pair of knots are isotopic if and only if one can be obtained from the other by
a sequence of Reidemeister moves.

The principal reason for our choice to work with cubes rather than simplices, is
that we consider the gluing of cubes at their faces to be much easier to work with in
practise than the gluing of tetrahedra. At first sight, this may not seem particularly
conceptual, but in fact we regard this to be a fundamental advantage of cubes over
simplices or other shape: if one looks at the difference between gluing cubes and
gluing simplices from a sufficiently abstract perspective, the pleasant properties of
gluing cubes along faces do have a conceptional explanation (endnote: this is not
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1.3. The key ideas

something I have looked into myself, but it comes from a universal property of the
category of �.)

1.3.2. Avoiding working too locally

In knot theory, one typically constructs diagrammatic invariants by focusing upon
crossings. That is to say, it is a local structure of a knot at its crossings that is
fundamental.

Whilst working on this thesis, we came to realise that a na”ive attempt to construct
diagrammatic invariants of 2-knots in a similar way breaks down. It is a mistake to
focus only on the possible ways in which planes can cross one another: It is not, for
instance, possible to define a good notion of smoothing of a crossing in a 2-knot in
this way.

Instead, it is vital to consider how planes can actually cross one another in a knotted
cube. A näıve approach to smoothing crossings of a 2-knot, as in the previous para-
graph, simply does not make any sense when considered in this light: it is impossible
in general for the local smoothings to match up coherently.

This led us to realise that the way in which the Homma-Nagase-Roseman moves
have been presented and worked with in all existing literature on 2-knot theory that
we are aware of, is not appropriate for the construction of the kind of invariant which
we are interested in in thesis. It is necessary to consider how these moves can arrive
in a knotted cube. Especially with the saddle move, it took us a considerable time to
arrive at the correct configuration.

We consider this shift away from working to locally in 2-knot theory, to be one of
the most important innovations in this thesis.

1.3.3. Smoothing

Making crucial use of this realisation, we are able to define a natural notion of smooth-
ing of a double plane crossing in a 2-knot. As far as we know, it has not previously
been considered.

It is not, however, at all obvious how to go further to define a notion of smoothing of
a triple point crossing. Such a notion must meet the requirement of being compatible
with the corresponding double plane crossings. Nevertheless, we introduce in this
thesis a notion of smoothing of a triple point crossing which we consider to be the
correct one.

This is one of the most important aspects of this thesis. All proceeding work on
diagrammatic 2-knot theory which we are aware of, does not truly take into account
triple point crossings. It is vital to find invariants which see the triple point crossings,
because it is this that is likely to lead to the deepest connections between 2-knot
theory and other fields.
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1. Introduction

1.3.4. Making use of a little categorical algebra

With our notion of surgery at hand, we are able to smooth a 2-knot into a collection
of disjoint unknotted pieces. Crucially, however, these may not be spheres. Any
orientable surface can appear.

An innovation in our approach to an invariant of 2-knots which we consider to be
highly significant, is that we do not merely count the number of disjoint surfaces
that appear, as is the case with the bracket polynomial of a knot. Instead we make
use of the classification of surfaces: we count the number of disjoint surfaces of each
possible genus. To do this, we assign, to each possible smoothing of a 2-knot, not an
ordinary menomial, but a gadget with an extra layer of structure: a categorification
of a menomial. Summing these menomial, we arrive not at an ordinary polynomial,
but a categorified version, which we refer to as a 2-polynomial.

1.3.5. Arriving at an invariant

In this way, we can associate a 2-polynomial to a 2-knot. In order for it to be an
invariant of a 2-knot, it must be invariant under the Homma-Nagase-Roseman moves,
which it is not at this point. To obtain an actual invariant involves three steps.

We consider the effect of the four Homma-Nagase-Roseman moves upon smoothing,
in an analogous way to which we consider the effect of smoothing crossings upon the
bracket polynomial in ordinary knot theory. Some of the resulting pieces match up,
leading us to impose relations which our 2-polynomial must satisfy. These relations
are considerably more complicated than those which arise in defining the bracket
polynomial of a knot, and we consider it an interesting challenge for future work to
understand the algebra of these relations better.

Unlike in ordinary knot theory, however, some of the pieces do knot match up.
This leads us to a new idea, which we consider to be one of the most important in the
this thesis. We introduce two supplementary kinds of surgery which we allow to be
performed on a smooth 2-knot. One, coming from the saddle move, involves replacing
some of the faces of a cylinder with the remaining ones. The other, coming from the
triple point move, involves a more complicated configuration. To keep track of these
surgeries, we introduce two new kinds of variables into our 2-polynomial, and adjust
the relations we impose upon it accordingly.

Finally, we introduce a natural notion of writhe of an oriented 2-knot. This allows
us to modify our 2-polynomial in such a way that it is an invariant under the bubble
move. The resulting 2-polynomial is our 2-knot invariant. It is invariant under all
four of the cubical Homma-Nagase-Roseman moves.

4



1.4. Analogies between the Reidemeister moves and the Homma-Nagase-Roseman moves

1.4. Analogies between the Reidemeister moves and
the Homma-Nagase-Roseman moves

Intriguingly, we have come to realise that there does not seem to be a direct relation-
ship between the Reidemeister moves in knot theory and the Homma-Nagase-Roseman
moves in 2-knot theory.

The bubble move, for instance, may first be thought to be analogous to an R2
move, since taking an intersection with an orthogonal plane gives exactly an R2 move.
However, it in many ways corresponds more closely to an R1 move: it introduces a
double plane crossing, just as an R1 move introduces a crossing. This is reflected in
the fact that we make use of a notion of writhe to modify our 2-polynomial in such a
way that it is invariant under the bubble move, just as we make use of the writhe of
a knot to modify the bracket polynomial in such a way that it is invariant under the
R1 move.

It is the saddle move that behaves more like an R2 move. However, the analogy is
not perfect: the writhe of a 2-knot is not the same before and after a saddle move,
whereas the writhe of a knot is unchanged under the R2 move.

The triple point move may first be thought to be analogous to an R3 move, again
since taking an intersection with an orthogonal plane gives exactly an R3 move. How-
ever, it is again more akin to an R1 move: we introduce a triple point crossing. Unlike
an R1 move, however, the writhe of a 2-knot is unchanged by a triple point move.

It is the tetrahedral move that behaves more like an R3 move. We were in fact
inspired by this analogy when carrying out the proof that our 2-polynomial invariant
is invariant under the tetrahedral move.

1.5. How to read the thesis

An interesting practical aspect of our work on this thesis has been that we have worked
throughout with the 3D graphics program Blender. We highly recommend that the
thesis be read in conjunction with exploring the blender files corresponding to the
figures: it is very difficult to acquire a good feeling for the more complicated cubical
configurations from a 2D image.

To be able to work effectively in three dimensions is something that we feel will
come to be increasingly important in several fields of mathematics. We feel that a
3D graphics tool such as Blender can be extremely useful in this regard. We feel it
highly unlikely that we would have been able to carry out the parts of this work that
concern triple points without the use of Blender.
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CHAPTER 2

SQUARE REIDEMEISTER MOVES

As a prelude to our investigation of the Homma-Nagase-Roseman move in the next
chapter, we introduce in this chapter the notion of a square move in ordinary knot
theory, and define cubical versions of the Reidemeister moves. Defining an isotopy
of knots by means of the two possible square moves, we explain how to prove, by a
combinatorial argument, Reidemeister’s theorem that a pair of knots are isotopic if
and only if one can be obtained from the other by a sequence of Reidemeister moves.

2.1. Square moves and isotopy

2.1.1. Triangle move

2.1.1.1. In Reidemeister’s original simplicial approach to knot theory (see [8] and
[9]), isotopy of knots is defined by means of a triangle move. Given a solid triangle in
R3, two of the edges of which are arcs of a knot, and which no other arcs of the knot
intersect, a triangle move replaces these two arcs with the third edge of the triangle,
or vice versa.

2.1.1.2. An isotopy of knots is then defined to be a sequence of triangle moves. This
corresponds exactly to how we manipulate knots in practise, except that we restrict
ourselves to working rigidly with triangles rather than arbitrary deformations.
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2.1.2. Square moves

2.1.2.1. We shall instead take a cubical approach to knot theory. The notion of
a triangle move is replaced by a notion of square move. However, when working
cubically, it turns out that we do not have only one square move to consider, but two,
as we shall now explain.

2.1.2.2. Given a solid square in R3, three of the edges of which are arcs of a knot,
and which no other arcs of the knot intersect, the first square move replaces these
three arcs with the fourth edge of the square, or vice versa.

2.1.2.3. Given a solid square in R3, two of the edges of which are arcs of a knot,
and which no other arcs of the knot intersect, the second square move replaces these
two arcs with the two other edges of the square, or vice versa.

We will refer to this type of square move as the corner square move.

2.1.2.4. We define a pair of knots to be isotopic if we can obtain one from the other
through a sequence of square moves.

2.1.3. How do these moves arise?

2.1.3.1. There are two simple ways in which we can manipulate a square.

2.1.3.2. In the first manipulation, we extrude a small part of the side of the square
in one of the two following ways.

8
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2.1.3.3. These manipulations give rise to the first square move. We can view them
as replacing a small part of one side with three other sides, as demonstrated below.

2.1.3.4. In the second manipulation, we make an indention in one corner of the
square in the following way.

2.1.3.5. This manipulation gives rise to the second square move. We can view it as
replacing a small corner with the opposite corner, as demonstrated below.

2.2. The cubical Reidemeister moves

2.2.1. What are the cubical Reidemeister moves?

2.2.1.1. The cubical R1 move consists of replacing a configuration of arcs in the
diagram of a knot as depicted below

by the following arcs.

9



2. Square Reidemeister moves

2.2.1.2. There are two variants of the cubical R2 move. The first consists of replac-
ing a configuration of arcs in the diagram of a knot as depicted below

by the following arcs.

And the second consists of replacing a configuration of arcs in the diagram of a knot
as depicted below

by the following arcs.

2.2.1.3. The cubical R3 move consists of replacing a configuration of arcs in the
diagram of a knot as depicted below

by the following arcs.

10
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2.2.1.4. We have only illustrated the cubical Reidemeister moves above with a rep-
resentative case. If we change the over and under crossings, we obtain variants of the
moves.

2.2.2. How to obtain the cubical Reidemeister moves from square
moves?

2.2.2.1. The R1 move can be obtained by two square moves as illustrated below.

2.2.2.2. The R2 move can be obtained by a square move as demonstrated below.

2.2.2.3. The R3 move can be obtained by a square move as illustrated below.

2.2.2.4. Thus the cubical Reidemeister moves arise as square moves. We now outline
a proof that, conversely, every projection of a square move to a knot diagram can be
obtained by a sequence of cubical Reidemeister moves.

The key point is that, after subdivision, every projection of a square move affecting
at least two arcs is one of the following:

11



2. Square Reidemeister moves

The first of these is exactly an R2 move, and the third is exactly an R3 move.
The second is what is sometimes known as an R0 move, namely a manipulation of a
diagram which does not affect the crossing information.

The R1 move arises in a similar way by considering square moves involving a single
arc.

2.2.2.5. The pictures below indicate how we subdivide to obtain the configurations
above. An inductive argument based upon this would treat configurations in which
more arcs are involved.
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CHAPTER 3

CUBICAL
HOMMA-NAGASE-ROSEMAN MOVES

We introduce the notion of a cube move, and cubical versions of the Homma-Nagase-
Roseman moves. As discussed in the introduction, a vital aspect of this thesis is that
we do not work as locally as previous authors: we consider how the moves can arise
in a knotted cube.

3.1. Cube moves and isotopy

3.1.1. Cube moves

3.1.1.1. In the previous chapter, we saw that there are two square moves in ordinary
knot theory, corresponding to the two possible ways of manipulating a square. In 2-
knot theory, there are similarly several cube moves, corresponding to the different
ways of manipulating a cube.

3.1.1.2. Given a solid cube in R4, some of the faces of which are planes of a 2-knot,
and which no other planes of the 2-knot intersect, a cube move involves replacing
these planes with the other faces of the cube. However, we can only do this if we can
obtain the new faces by a manipulation of the initial ones.

3.1.1.3. The first variant of the cube move arises by replacing one of the two con-
figurations below with the other.

15



3. Cubical Homma-Nagase-Roseman moves

Here five faces are replaced by one, or vice versa.

3.1.1.4. The second variant of the cube move arises by replacing one of the two
configurations below with the other.

16



3.1. Cube moves and isotopy

Here four faces are replaced by two, or vice versa.

3.1.1.5. The third variant of the cube move arises by replacing three faces with the
remaining three in one of the following two ways.

Firstly, we replace one of the two configurations below with the other.

17



3. Cubical Homma-Nagase-Roseman moves

Secondly, we replace one of the two configurations below with the other.

18



3.1. Cube moves and isotopy

3.1.1.6. We define a pair of 2-knots to be isotopic if we can obtain one from the
other through a sequence of cube moves.

3.1.1.7. Just as in ordinary knot theory, we feel that this notion of isotopy of 2-knots
is intuitive, corresponding exactly, up to rigidifying, to how one would manipulate a
2-knot in practise.
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3. Cubical Homma-Nagase-Roseman moves

3.1.2. How do these moves arise?

3.1.2.1. The cube moves as described above arise by considering the possible ways
to manipulate a cube.

Firstly, we extrude regions in one face of a cube. In other words, we take a small
part of the face and either stretch it away from the cube or into the cube. Both cases
are demonstrated below.

This manipulation gives rise to the first cube move described above.

Secondly, we make edge indentions as follows.
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3.1. Cube moves and isotopy

This manipulation gives rise to the second cube move described above.

Thirdly, we make indentations in the cube as follows.

This manipulation gives rise to the first of the two variants of the third cube move
described above.

Lastly, we make corner indentions as depicted below.
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3. Cubical Homma-Nagase-Roseman moves

This manipulation gives rise to the second of the two variants of the third cube
move described above.

3.1.3. A non-cube move

3.1.3.1. Replacing four faces of a cylinder with the missing two, or vice versa, is
not a valid cube move. The four faces of the cylinder cannot be deformed to become
the missing two. In other words, this replacement does not arise via a manipulation
of a cube.
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3.2. The cubical Homma-Nagase-Roseman moves

Nevertheless, this procedure of replacing four faces with the missing two or vice
versa, will play a crucial role later in the thesis.

3.2. The cubical Homma-Nagase-Roseman moves

3.2.1. What are the cubical Homma-Nagase-Roseman moves?

3.2.1.1. The cubical Homma-Nagase-Roseman moves are the projections of cube
moves to a 2-knot diagram which cannot be subdivided into configurations involving
fewer planes.

3.2.1.2. We focus in this thesis only on those configurations which involve two or
more planes. It is not yet clear to us how to understand the smooth Homma-Nagase-
Roseman moves involving a branch point from a cubical perspective, and leave this
as a challenge for future work. Given an understanding of branch points in a cubical
setting, we are however convinced that the 2-polynomial we construct later in this
thesis can be adapted to take them into account, and to be invariant under the
Homma-Nagase-Roseman moves involving them.

3.2.1.3. The cubical bubble move consists of replacing one of the two following con-
figuration by the other.
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3. Cubical Homma-Nagase-Roseman moves

In words, the bubble move involves pushing a face of an open cube through a plane.
By an open cube we mean a cube with only one missing face.

3.2.1.4. The cubical saddle move consists of replacing one of the two following
configuration by the other.
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3.2. The cubical Homma-Nagase-Roseman moves

In words, the saddle move involves again a cube crossing a plane, but notice that
the first configuration has a saddle, namely it is split into two cubes. Crucially, both
ends of the cube are open. Therefore we cannot reduce this move to a sequence of
bubble moves.

3.2.1.5. The cubical triple point move consists of replacing one of the two following
configuration by the other.
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3. Cubical Homma-Nagase-Roseman moves

In words, the triple point move involves the crossing of two cubes and a plane.
In the first configuration, all the elements cross at a point, whilst in the second
configuration there is no such point. Again, since the green cube is open in both ends,
the configuration cannot be simplified by a bubble move involving it. Similarly, the
red cube has tunnels with missing faces, and is thereby locked in place.

3.2.1.6. The cubical tetrahedral move consists of replacing one of the two following
configuration by the other.
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3.2. The cubical Homma-Nagase-Roseman moves

In words, the tetrahedral move involves the first configuration of the triple point
move together with an additional cube, depicted in yellow. In the first configuration,
the yellow cube surrounds the triple point, whilst it does not in the second. Again,
the open faces of the yellow cube lock it in place.

3.2.1.7. We have only illustrated the cubical Homma-Nagase-Roseman moves above
with a representative case. If we take into account the different possibilities for break-
ing the crossing planes, we obtain variants of the moves.
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3. Cubical Homma-Nagase-Roseman moves

3.2.2. How to obtain the cubical Homma-Nagase-Roseman
moves from cube moves?

3.2.2.1. The bubble move can clearly be obtained by a cube move. We replace the
five faces of the open cube with the missing one.

3.2.2.2. The saddle move can be obtained by a cube move involving replacing the
three faces in the middle, where two are an opposite pair, with the missing three faces.

3.2.2.3. The triple point move can be obtained by a cube move in much the same
manner as the bubble move, the only difference being that the cube move takes place
around a double plane crossing.

3.2.2.4. Finally, the tetrahedral move can be obtained by a cube move, again in
much the same manner as the bubble move and the triple point move, the difference
being that instead of taking place around a double plane crossing, it takes place
around a triple point crossing.

3.2.3. Illustrations of how to use the cubical
Homma-Nagase-Roseman moves

Consider the following configuration.

This is reducible by two bubble moves to an unknotted cube. For a more compli-
cated example, consider the following configuration.
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3.2. The cubical Homma-Nagase-Roseman moves

This can first be reduced by a triple point move, and then by a bubble move. We
obtain with the following construction.

3.2.4. The Homma-Nagase-Roseman moves after subdivision

We conjecture that all cube moves can be obtained by sequence of Homma-Nagase-
Roseman moves after subdivision. Even if this conjecture was incorrect, we consider
the restriction of 2-knot theory to the moves we have described to be interesting and
important in its own right.
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CHAPTER 4

SMOOTHING A 2-KNOT

We first recall how to smooth crossings in ordinary knot theory. Then we explain that
a näıve attempt to adapt this procedure to smooth double plane crossings in 2-knot
theory runs into problems. Lastly we describe how to smooth double plane crossings
and crossings which include triple points.

4.1. How to smooth a double crossing of a 2-knot?

4.1.1. How to smooth a crossing of a knot?

4.1.1.1. The crucial ingredient in the construction of the Jones polynomial in ordi-
nary knot theory via Kauffman’s bracket polynomial is smoothing of crossings.

4.1.1.2. There are two possibilities when smoothing the following crossing.

(1) Replace these three arcs with two arcs as follows.

(2) Replace these three arcs with two arcs as follows.
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4. Smoothing a 2-knot

4.1.1.3. There are two possibilities when smoothing the following crossing.

(1) Replace these three arcs with two arcs as follows.

(2) Replace these three arcs with two arcs as follows.

4.1.2. States of a knot

4.1.2.1. If we smooth all the crossings of a knot, we obtain a collection of disjoint
circles.

4.1.2.2. If a knot has n crossings, then there are 2n possible ways to smooth all the
crossings, since there are two choices for each crossing.

4.1.2.3. A state of a knot is one of the 2n collections of disjoint circles that we
obtain by smoothing its crossings.

4.1.3. A näıve approach to smoothing a double plane crossing

4.1.3.1. At first, it may seem that there is an obvious way to proceed for 2-knots
without any triple points. There are two possible ways that two planes can cross each
other, and they are depicted below.
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4.1. How to smooth a double crossing of a 2-knot?

Given one of these two configurations it seems natural to smooth the crossing by
doing one of the following.

Firstly, replace these three planes with two planes as follows.
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4. Smoothing a 2-knot

Alternatively, replace these three planes with two planes as follows.

4.1.4. The näıve approach does not work

4.1.4.1. This is not a good approach. The problem comes from the fact that no
matter how much we zoom in on a figure, we have to take into account that the planes
are part of cubes. Therefore we have one of the two following configurations.
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4.1. How to smooth a double crossing of a 2-knot?

If we try to follow the näıve approach, we obtain configurations which are not valid
in a cubical setting. For instance, the following one.
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4. Smoothing a 2-knot

4.1.4.2. As discussed in the introduction, we take an alternative approach to smooth-
ing a 2-knot.

4.1.5. Possible double crossing configurations

4.1.5.1. There are two possibilities depicted below.
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4.1. How to smooth a double crossing of a 2-knot?

4.1.5.2. Crucially, we do not mean by these pictures that the 2-knot that we are
working with looks exactly like this in this part of it. There may be other planes
interacting with these, causing for example obstructions to applying a bubble move.

4.1.6. How to use surgery to smooth a double plane crossing of a
2-knot

4.1.6.1. Another way of looking at smoothing a crossing in ordinary knot theory,
is that a type of surgery is used. First we cut the piece that is not broken, and then
we glue the four pieces in one of two ways, as illustrated below.

The same applies for the other type of crossing.

4.1.6.2. Our notion of smoothing of double plane crossings in 2-knot theory is in-
spired by this perspective. If a cube and a plane cross in one of the two ways described
above, we smooth the crossing via a form of surgery as follows. First we cut out a
small gap around where the pieces intersect. We obtain the following configuration.
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4. Smoothing a 2-knot

We then glue edges together in one of the two following ways.
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4.1. How to smooth a double crossing of a 2-knot?

Finally, we tidy up the surgery to obtain a valid cubical configuration. We obtain
the following two final configurations.
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4. Smoothing a 2-knot

4.2. How to smooth a crossing with triple points?

When smoothing the crossings of the triple point configuration below, we first consider
only two of the cubes, here for example the red and the green. Split them up and
glue them in the aforementioned way, but respect where it intersects the remaining
blue plane.

After we have done this we have to cut and glue in the last part, namely the
blue plane in this picture. It is crucial to not only consider the new configurations
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4.2. How to smooth a crossing with triple points?

we obtain from the first round of surgery: the last surgery has to respect the other
double crossings as well. This ensures that no matter which double crossing we start
with, namely if we start with the red and green, the red and blue, or the green and
blue, the end result will be the same.

After a surgery on a configuration with triple points, there will be holes where the
triple points used to be. We simply fill in these holes after having carried out the
above procedure.
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CHAPTER 5

ORIENTABILITY AND A NOTION OF
WRITHE FOR 2-KNOTS

We first describe how to fix an orientation for 2-knots and explain how the approach
used for ordinary knots will run into problems. Then we describe how to find the sign
of a crossing and the notion of writhe for 2-knots.

5.1. Orientability of a 2-knot

5.1.1. How to orient a 2-knot?

5.1.1.1. Orienting a knot in ordinary knot theory is easily done by choosing a di-
rection and following it around the knot.

5.1.1.2. To näıvely fix an orientation by starting with an orientation on one face
and following it arbitrarily around the cube, does not work for 2-knots. A face will
not then have a unique orientation.

5.1.1.3. We therefore choose a path around the cube, passing once through each
face, in addition to choosing a start orientation. Following our choice of orientation
along this path equips each face with an orientation.

5.1.1.4. Let us consider the possible ways in which a cube and a plane which cross
one another can be oriented. The orientation of the plane is of no consequence,
since we can rotate the figure to obtain an arbitrary orientation of the plane without
changing the orientation of the cube. The cube has four possible orientations when it
is broken, and four when it is not. However, the possibilities are pairwise equal after
rotation and we are therefore left with the following four possible orientations.
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5. Orientability and a notion of writhe for 2-knots
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5.1. Orientability of a 2-knot

5.1.2. Orienting a 2-knot example

5.1.2.1. Let us consider how to equip the following 2-knot with an orientation.
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5. Orientability and a notion of writhe for 2-knots

Let us call this example the convoluted hoover. We have to make a choice of ori-
entation for the big cube and then choose to follow a path. Here we choose to travel
along the top half of the cube by going over the top and into the hole on the back
side and down and into the hole on the front side. Then one possible orientation we
can obtain is the following.

5.2. The writhe of a 2-knot

5.2.1. The sign of a crossing

5.2.1.1. The sign of a crossing is +1 if we have one of the two following crossings.
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5.2. The writhe of a 2-knot

5.2.1.2. The sign of a crossing is −1 if we have one of the two following crossings.
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5. Orientability and a notion of writhe for 2-knots

5.2.1.3. To find the sign of a triple point crossing, we ignore the triple point and
find the sign for each pair of double crossing. In other words, fix an orientation, then
look at all the combinations of two cubes that intersect independently.
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5.2. The writhe of a 2-knot

5.2.2. Writhe of a 2-knot

5.2.2.1. We define the writhe of a 2-knot, which we denote by ω(K), as follows.

ω(K) =
∑

crossings C

sign(C)

5.2.2.2. The writhe of the unknot is 0, since it has no crossings.

5.2.2.3. When using the orientation from 5.1.2.1, the writhe of the convoluted
hoover is −3: each crossing has sign −1.

49





CHAPTER 6

2-BRACKET POLYNOMIAL OF
2-KNOTS

We first define a gadget which we refer to as a 2-bracket polynomial of a 2-knot. We
then show that this 2-bracket polynomial is invariant under the saddle move.

6.1. How to arrive at 2-bracket polynomial of 2-knots?

6.1.1. The 2-bracket polynomial

6.1.1.1. We shall denote the 2-bracket polynomial of a 2-knot K by 〈K〉.

6.1.1.2. When performing a surgery, we may obtain a cylindrical configuration
which cannot be part of an orientable surface (without boundary). We allow our-
selves to replace this cylinder with its two missing faces.

To keep track of these manipulations, we introduce a new variable γ. We then
define the 2-bracket polynomial of the 2-knot after we have replaced the cylinder with
its two missing faces to be the 2-bracket polynomial before we made the replacement
multiplied by γ.

The other configuration that may occur consists of two parallel planes which are
each connected in the same way to four planes which have a gap between two opposite
corners. Then we can replace this configuration with a disconnected cylinder that
corresponds to the four planes. This configuration occurs after a surgery on the triple
point and this manipulation has been applied to simplify the configuration σAB which
occurs in our discussion of a triple point later.

To keep track of this kind of manipulation, we introduce a new variable λ. Each
time we perform it, we multiply the 2-bracket polynomial by λ.
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6. 2-bracket polynomial of 2-knots

6.1.1.3. We define 〈K〉 inductively to be an expression in two variables A and B,
beginning with defining 〈K〉 = 1, and then proceeding as follows.

(1) If we replace a crossing as depicted below by the second configuration depicted
below we multiply by A.

We also multiply by A if we replace a crossing as depicted below by the second
configuration depicted below.
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

(2) If we replace a crossing as depicted below by the second configuration depicted
below we multiply by B.
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6. 2-bracket polynomial of 2-knots

We also multiply by B if we replace a crossing as depicted below by the second
configuration depicted below.
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

6.1.1.4. We impose the following relations.

(1) A2γ = Aγ

(2) AB〈K〉 = −BA〈K ′〉 where K and K ′ are symmetric configurations

(3) B2 = B
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6. 2-bracket polynomial of 2-knots

The necessity of these relations will become apparent when we discuss the invariance
of the 2-bracket polynomial under the saddle move.

6.1.2. How to denote the surfaces obtained when evaluating a
2-bracket

6.1.2.1. A 2-bracket of complete smoothing of a 2-knot consists of a disjoint col-
lection of orientable surfaces of arbitrary genus, not only spheres. To take this into
account, we evaluate this 2-bracket to be the formal sum of the following.

(1) For the surfaces of genus 0, the following loop.

1

dnumber of surfaces of genus 0

(2) For the surfaces of genus 1, the following loop.

s

dnumber of surfaces of genus 1

(3) For the surfaces of genus 2, the following loop.

s2

dnumber of surfaces of genus 2

(4) And so on.

We allow ourselves only sum two loops if their dots have the same label.

6.1.2.2. To simplify, we adopt the following notation (we will not come across sur-
faces with genus more than 26).

(1) We assign a instead of the following loop,

1

d
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

a2 instead of the following loop,

1

d2

and so on.

(2) We assign b instead of the following loop,

s

d

b2 instead of the following loop,

s

d2

and so on.

(3) We assign c instead of the following loop,

s2

d

c2 instead of the following loop,

s2

d2

and so on.

(4) Et cetera.
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6. 2-bracket polynomial of 2-knots

6.1.3. Invariance under the saddle move

6.1.3.1. We now prove that the 2-bracket polynomial 〈K〉 is unchanged under the
cubical saddle move.

6.1.3.2. We first make the calculations for the first part of the saddle move. We
concentrate on one crossing at a time and get the following configurations.

(1) The following configuration we denote by αA and multiply by A,

From this configuration, when we do the surgery on the second crossing, we get
one of the two following cases.

(1.1) First we multiply the following configuration by A.

58



6.1. How to arrive at 2-bracket polynomial of 2-knots?

Notice that we have a cylinder which we can replace with the two missing
faces as follows.

We call this configuration αAA, but we also have to multiply by the un-
known γ to account for the cylinder replacement.

(1.2) Then we multiply the following configuration by B.

Notice that we can simplify it by doing a cube move.
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6. 2-bracket polynomial of 2-knots

After this we can reduce the piece we got from the last manipulation as
follows.

We call this configuration αAB.

(2) We denote the following configuration by αB and multiply it by B.
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

From this configuration, when we do the surgery on the second crossing, we get
one of the two following cases.

(2.1) First we multiply the following configuration by A.

Notice that we can simplify it by doing a cube move.
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6. 2-bracket polynomial of 2-knots

After this we reduce the piece we got from the last manipulation as follows.

We call this configuration αBA.

(2.2) Then we multiply the following configuration by B.
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

Notice that we can do the cube move which replaces three faces where two
are an opposite pair, with the other three missing faces as follows.

We call it αBB.

We are thus left with the 2-bracket polynomial below.

〈saddle1〉 = AαA +BαB

= A(Aγ〈αAA〉+B〈αAB〉) +B(A〈αBA〉+B〈αBB)

= A2γ〈αAA〉+ AB〈αAB〉+BA〈αBA〉+B2〈αBB〉

6.1.3.3. We then make the calculations for the second part of the saddle move. We
only have one crossing which results in the following calculations.
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6. 2-bracket polynomial of 2-knots

(1) We multiply the following configuration by A.

Notice that we can simplify by replacing the cylinder with its two missing faces,
as follows.

We have to multiply this with γ and we call the configuration βA.

(2) We multiply the following configuration by B.
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6.1. How to arrive at 2-bracket polynomial of 2-knots?

Notice that we can simplify by replacing the three faces, where two are an
opposite pair, with the other three faces as follows.

We call this configuration βB.

Then we are left with the 2-bracket polynomial as follows.

〈saddle2〉 = Aγ〈βA〉+B〈βB〉

6.1.3.4. Observe that αAA = βA and αBB = βB. Also notice that αAB is symmetric
to αBA. This gives us the following three relations.
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6. 2-bracket polynomial of 2-knots

(1) A2γ = Aγ

(2) AB = −BA if we have symmetric configurations

(3) B2 = B

We know these hold from 6.1.1.4.

6.1.4. The 2-bracket polynomial of some 2-knots

6.1.4.1. The 2-bracket polynomial 〈K〉 of the unknot is 1.

6.1.4.2. The 2-bracket polynomial of the convoluted hoover from 5.1.2.1 is as fol-
lows.

〈Convoluted hoover〉 = A3ab+B3a+ 2A2Ba+ A2Bab2 + 3AB2ab

See Appendix A for the calculations and corresponding configurations.
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CHAPTER 7

2-POLYNOMIAL INVARIANT OF
2-KNOTS

We modify the 2-bracket polynomial of a 2-knot to obtain a gadget which we refer
to as the 2-polynomial of a 2-knot. We then prove that it is invariant under the four
cubical Homma-Nagase-Roseman moves.

7.1. How to arrive at a 2-polynomial of 2-knots?

7.1.1. The 2-polynomial

7.1.1.1. We define the 2-polynomial of a 2-knot to be

J(K) = v−ω(K)〈K〉,

where v = Aaγ +B and the following relations hold.

(1) v−2A2γ = v−1Aγ

(2) v−2AB〈K〉 = −v−2BA〈K ′〉 where K and K ′ are symmetric configurations

(3) v−2B2 = v−1B

(4) 2A2γ = A2

(5) ABγλ = AB

The reason for these relations will become apparent when we discuss the invariance
of the 2-polynomial of a 2-knot under the Homma-Nagase-Roseman moves.
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7. 2-polynomial invariant of 2-knots

7.2. Invariance under the bubble move

7.2.1. Writhe in the setting of the bubble move

7.2.1.1. The writhe of the first part of the bubble move is as follows.

ω(bubble1) = 1

7.2.1.2. The writhe of the second part of the bubble move is as follows.

ω(bubble2) = 0

7.2.2. The 2-bracket polynomial of the bubble move

7.2.2.1. Since we only have one crossing in the first part of the bubble move, we
have two states, which are as follows.

(1) The first state we multiply by A and is depicted below.

Notice that this configuration contains a closed cube which we can remove while
multiplying the polynomial by a. Then we are left with the following configu-
ration.
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7.2. Invariance under the bubble move

Also notice that we can replace a cylinder with its two missing faces and multiply
by γ. Then we obtain the following configuration.

Let us call this configuration δ1.

(2) The second state we multiply by B and is depicted below.
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7. 2-polynomial invariant of 2-knots

Notice that this configuration can be simplified by a cube move as follows.

We call this configuration δ2.

This leaves us with the calculation as below.

〈bubble1〉 = Aaγ〈δ1〉+B〈δ2〉

7.2.2.2. Since the second part of the bubble move has no crossings and we only
have the following configuration.
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7.2. Invariance under the bubble move

We call this ε.

7.2.2.3. Observe that δ1 = δ2 = ε, so let us call them collectively for δ. As the
second part of the bubble move has no crossings, we have that 〈bubble2〉 = 〈δ〉 = 1.

7.2.3. The 2-polynomial of the bubble move

7.2.3.1. We deduce that we have the following 2-polynomial for the first part of the
bubble move.

J(bubble1) = v−ω(bubble1)〈bubble1〉
= v−ω(bubble1)(Aaγ〈δ1〉+B〈δ2〉)
= v−1(Aaγ〈δ〉+B〈δ〉)
= v−1(Aaγ +B)〈δ〉
= (Aaγ +B)−1(Aaγ +B)〈δ〉
= 〈δ〉

7.2.3.2. We deduce that we have the following 2-polynomial for the second part of
the bubble move.

J(bubble2) = v−ω(bubble2)〈bubble2〉
= v−ω(bubble2)〈δ〉
= v0〈δ〉
= 〈δ〉

7.2.3.3. Thus J(bubble1) = J(bubble2) and the 2-polynomial is invariant under the
bubble move.
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7. 2-polynomial invariant of 2-knots

7.3. Invariance under the saddle move

7.3.1. Writhe in the setting of the saddle move

7.3.1.1. The writhe of the first part of the saddle move is as follows.

ω(saddle1) = 2

7.3.1.2. The writhe of the second part of the saddle move is as follows.

ω(saddle2) = 1

7.3.2. The 2-bracket polynomial of the saddle move

7.3.2.1. We have already shown that 〈K〉 is not changed by the saddle move in
6.1.3.4.

7.3.3. The 2-polynomial of the saddle move

7.3.3.1. We deduce that we have the following 2-polynomial for the first part of the
saddle move.

J(saddle1) = v−ω(saddle1)〈saddle1〉
= v−2(A2γ〈αAA〉+ AB〈αAB〉+BA〈αBA〉+B2〈αBB〉)
= v−2A2γ〈αAA〉+ v−2AB〈αAB〉+ v−2BA〈αBA〉+ v−2B2〈αBB〉

7.3.3.2. We deduce that we have the following 2-polynomial for the second part of
the saddle move.

J(saddle2) = v−ω(saddle2)〈saddle2〉
= v−1(Aγ〈βA〉+B〈βB〉)
= v−1Aγ〈βA〉+ v−1B〈βB〉

7.3.3.3. Since we have that αAA = βA, αBB = βB, αAB and αBA are mirror images,
and the relations from 7.1.1.1, we get the following.

J(saddle1) = v−2A2γ〈αAA〉+ v−2AB〈αAB〉+ v−2BA〈αBA〉+ v−2B2〈αBB〉
= v−1Aγ〈βA〉+ v−2AB〈αAB〉 − v−2AB〈αAB〉+ v−1B〈βB〉
= v−1Aγ〈βA〉+ v−1B〈βB〉
= v−ω(saddle2)〈saddle2〉
= J(saddle2)

7.3.3.4. Thus J(saddle1) = J(saddle2) and the 2-polynomial is invariant under the
saddle move.
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7.4. Invariance under the triple point move

7.4. Invariance under the triple point move

7.4.1. Writhe in the setting the triple point move

7.4.1.1. To find the writhe of the first part of the triple point move, notice that
the red and green cube only intersect once, and therefore the sign is either +1 or −1
depending on the orientation. Also notice that once the orientation is fixed, the green
cube will intersect the blue plane in the same manner as it intersect the red cube. It
will therefore have the same sign for these two crossings. This means that the writhe
of the green cube crossings is either +2 or −2. The sign obtained from the red cube
crossing the blue plane is either +1 or −1 depending on the orientation. Thus the
writhe of this triple point is either +3, +1, −1 or −3.

7.4.1.2. To find the writhe of the second part of the triple point move, notice that
it does not have any triple points, but that the green cube still crosses the red once
and in the same manner as it crosses the blue plane. Thus the writhe is still either
+3, +1, −1 or −3.

7.4.1.3. Thus we conclude that ω(triple1) = ω(triple2).

7.4.2. The 2-bracket polynomial of the triple point move

7.4.2.1. We start with gluing the green and red cubes together, and then glue in
the blue plane, being careful to respect the double plane crossings of the plane with
each cube.

7.4.2.2. The first part of the triple point move has the following calculations.

(1) We denote the following configuration by σA and multiply it by A.
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7. 2-polynomial invariant of 2-knots

From this configuration, when we glue in the plane, we get one of the two
following configuration.

(1.1) First we multiply the following configuration by A.

After doing some manipulations and replacing two cylinders with their
corresponding two missing faces, we get the following.
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7.4. Invariance under the triple point move

Let us call this configuration σAA. We also have to multiply by 2γ since we
replaced two cylinders. Notice that σAA consists of three open cubes and a
plane connected to a torus with one missing face and a cube with tunnels
and two missing faces.

(1.2) Then we multiply the following configuration by B.

After replacing a cylinder with its two missing faces and also replacing two
parallel faces which has two disconnected corners with the corresponding
disconnected cylinder, we obtain the following configuration.

75



7. 2-polynomial invariant of 2-knots

Let us call this σAB. We also have two multiply by γ and λ to account
for the cylinder operations we performed. Notice that σAB consists of a
open cube, a cube with two missing faces, a torus with a missing face and
a plane connected to two open cubes.

(2) We denote the following configuration by σB and multiply it by B.

From this configuration, when we glue in the plane, we get one of the two
following configurations.

(2.1) First we multiply the following by A.
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7.4. Invariance under the triple point move

After replacing a cylinder with its two missing faces, we can split the cube
with two missing faces such that it becomes two open cubes. Then we
obtain the following configuration.

Let us call this σBA. We also have to multiply by γ because of the cylinder
replacement. Notice that σBA consists of two open cubes, a complete cube
and a plane connected to a cube with tunnels and 4 open faces. Since it
contains a complete cube, we can remove it and multiply by a.

(2.2) Then we multiply the following configuration by B.
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7. 2-polynomial invariant of 2-knots

After performing a cube move manipulation, we have the following.

Let us call this σBB. Notice that this configuration consist of a cube, a
cube with tunnels and 4 open faces, and a plane connected to two open
cubes. Again we can remove the cube and multiply by a instead.

Thus we are left with the following 2-bracket polynomial for the first part of the
triple point move.

〈triple1〉 = A〈σA〉+B〈σB〉
= A(A2γ〈σAA〉+Bγλ〈σAB〉) +B(Aaγ〈σBA〉+Ba〈σBB〉)
= 2A2γ〈σAA〉+ ABγλ〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉
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7.4. Invariance under the triple point move

7.4.2.3. The second part of the triple point move has the following calculations.

(1) We denote the following configuration by ρA and multiply it by A.

From this configuration, when we glue in the plane, we get one of the two
following configuration.

(1.1) First we multiply the following by A.

Let us call it ρAA. Notice that ρAA consists of three open cubes and a plane
connected to a torus with one missing face and a cube with tunnels and
two missing faces. Also notice that this means σAA = ρAA.
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7. 2-polynomial invariant of 2-knots

(1.2) Then multiply the following configuration by B.

Let us call it ρAB. Notice that ρAB consists of a open cube, a cube with
two missing faces, a torus with a missing face and a plane connected to
two open cubes. Also notice that this means σAB = ρAB.

(2) We denote the following configuration by ρB and multiply it by B.

From this configuration, when we glue in the plane, we get one of the two
following configurations.

(2.1) First we multiply the following configuration by A.
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7.4. Invariance under the triple point move

After replacing a cylinder with the two missing faces, we have eliminated
one hole in the plane. Then we obtain the following configuration.

Let us call it ρBA. We also have to multiply by γ because of the cylinder
replacement. Notice that ρBA consists of two open cubes, one complete
cube and a plane connected to a cube with tunnels and 4 open faces. The
complete cube can be removed by multiplying by a instead. Also notice
that this means σBA = ρBA.

(2.2) Then multiply the following configuration by B.
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7. 2-polynomial invariant of 2-knots

Let us call it ρBB. Notice that this configuration consist of a cube, a cube
with tunnels and 4 open faces, and a plane connected to two open cubes.
The cube can again be removed by multiplying by a instead. Also notice
that this means σBB = ρBB.

This leaves us with the following bracket polynomial for the second part of the
triple point move.

〈triple2〉 = A〈ρA〉+B〈ρB〉
= A(A〈ρAA〉+B〈ρAB〉) +B(Aaγ〈ρBA〉+Ba〈ρBB〉)
= A2〈ρAA〉+ AB〈ρAB〉+BAaγ〈ρBA〉+B2a〈ρBB〉
= A2〈σAA〉+ AB〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉

7.4.3. The 2-polynomial of the triple point move

7.4.3.1. We deduce that we have the following 2-polynomial for the first part of the
triple point move.

J(triple1) = v−ω(triple1)〈triple1〉
= v−ω(triple1)(2A2γ〈σAA〉+ ABγλ〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉)

7.4.3.2. We deduce that we have the following 2-polynomial for the second part of
the triple point move.

J(triple2) = v−ω(triple2)〈triple1〉
= v−ω(triple2)(A2〈σAA〉+ AB〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉)
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7.5. Invariance under the tetrahedral move

7.4.3.3. Since we have that ω(triple1) = ω(triple2) and the relations in 7.1.1.1, we
get the following.

J(triple1) = v−ω(triple1)(2A2γ〈σAA〉+ ABγλ〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉)
= v−ω(triple2)(A2〈σAA〉+ AB〈σAB〉+BAaγ〈σBA〉+B2a〈σBB〉)
= J(triple2)

7.4.3.4. Thus J(triple1) = J(triple2) and the 2-polynomial is invariant under the
triple point move.

7.5. Invariance under the tetrahedral move

7.5.1. Writhe in the setting of the tetrahedral move

7.5.1.1. To find the writhe of the first part of the tetrahedral move notice that the
green cube only intersects the other components once and in the same manner once
the orientation is set. Thus the writhe of the green cube crossings is either +3 or −3
depending on the orientation. We also notice that the yellow cube cross the red cube
three times and will have the same sign for two of the crossings. The writhe when
only considering the red and yellow cube is then either +1 or −1. The sign where the
yellow cube crosses the blue plane will be the same as for the two crossings between
the yellow and red cube. Therefore we have that the writhe when only considering
the blue, yellow and red is either +2 or −2. That leaves the sign we obtain when the
red cube crosses the blue plane, and this is either +1 or −1. Thus ω(tetrahedral1) is
either ±6, ±4, ±2 or 0.

7.5.1.2. To find the writhe of the second part of the tetrahedral move notice that
the green cube still only intersects the other components once and in the same manner
once the orientation is set. So the writhe is either +3 or −3. We also notice that
the yellow cube only cross the red cube the two times where the sign is the same
now. Thus the writhe when only considering the red and yellow cube is then either
+2 or −2. The sign where the yellow cube crosses the blue plane will still be the
same as for when it crosses the red cube. Therefore we have that the writhe, when
only considering the blue, yellow and red, is either +3 or −3. That leaves the sign
when the red cube crosses the blue plane, and that still is either +1 or −1. Thus
ω(tetrahedral2) is either ±7, ±5 or ±1.

7.5.2. The 2-bracket polynomial of the tetrahedral move

7.5.2.1. Observe that the only difference between the two configuration in the tetra-
hedral move is where the yellow cube crosses around the triple point. We can therefore
simplify the configurations without losing any information. The simplified configura-
tions we will use to find the 2-bracket polynomial, are depicted below.
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7. 2-polynomial invariant of 2-knots

7.5.2.2. We start by performing the surgery to the triple point which the yellow
cube crosses in the first part of the tetrahedral move. Then we see that after a bubble
move they are in fact the same configuration.

7.5.2.3. The first part of the tetrahedral move has the following calculations.

(1) We denote the following configuration by τA and multiply it by A.
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7.5. Invariance under the tetrahedral move

From this configuration we get one of the two following configurations.

(1.1) First we multiply the following configuration by A.

Let us call it τAA. After simplifying this configuration, we get the following.
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7. 2-polynomial invariant of 2-knots

Notice that we can reduce the yellow cube with a bubble move.

(1.2) Then we multiply the following configuration by B.

Let us call it τAB. After simplifying this configuration, we get the following.
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7.5. Invariance under the tetrahedral move

Again notice that we can reduce the yellow cube with a bubble move.

(2) We denote the following configuration by τB and multiply it by B.

From this configuration, we get one of the two following configurations.

(2.1) First we multiply the following configuration by A.

87



7. 2-polynomial invariant of 2-knots

Let us call it τBA. After simplifying this configuration, we get the following.

Notice that again there is nothing stopping us from reducing the yellow
cube by a bubble move.

(2.2) Then multiply the following configuration by B.
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7.5. Invariance under the tetrahedral move

Let us call it τBB. After simplifying this configuration, we get the following
configuration.

Again notice that the yellow cube can be reduced by a bubble move.

This gives us the following 2-bracket polynomial for the first part of the tetrahedral
move.

〈tetrahedral1〉 = A〈τA〉+B〈τB〉
= A(A〈τAA〉+B〈τAB〉) +B(A〈τBA〉+B〈τBB〉)
= A2〈τAA〉+ AB〈τAB〉+BA〈τBA〉+B2〈τBB〉

7.5.2.4. The second part of the tetrahedral move has the following calculations.
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7. 2-polynomial invariant of 2-knots

(1) We multiply the following configuratoin by A.

From this configuration, we get one of the two following.

(1.1) First we multiply the following by A.

Notice that this configuration is equal to τAA, which means we can simplify
in the same way.

(1.2) Then multiply the following configuration by B.
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7.5. Invariance under the tetrahedral move

Notice that this configuration is equal to τAB, we can therefore simplify in
the same way.

(2) We multiply the following configuration by B.

From this configuration, we get one of the two following.

(2.1) First we multiply the following configuration by A.
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7. 2-polynomial invariant of 2-knots

Notice that this configuration is equal to τBA, which means we can simplify
in the same way.

(2.2) Then multiply the following configuration by B.

Notice that this configuration is equal to τBB, we can therefore simplify in
the same way.

This gives us the following 2-bracket polynomial for the second part of the tetrahe-
dral move.

〈tetrahedral2〉 = A(A〈τAA〉+B〈τAB〉) +B(A〈τBA〉+B〈τBB〉)
= A2〈τAA〉+ AB〈τAB〉+BA〈τBA〉+B2〈τBB〉
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7.6. Conclusion and an example

7.5.2.5. We observe that 〈tetrahedral1〉 = 〈tetrahedral2〉.

7.5.3. The 2-polynomial of the tetrahedral move

7.5.3.1. The 2-polynomial of the tetrahedral move is as follows.

J(tetrahedral1) = J(tetrahedral1 after surgery)

= J(tetrahedral1 after surgery and bubble move)

7.5.3.2. Since the 2-polynomial is invariant under the bubble move, we have the
following calculation.

J(tetrahedral2) = J(tetrahedral2 after surgery)

= J(tetrahedral1 after surgery and bubble move)

7.5.3.3. Thus J(tetrahedral1) = J(tetrahedral2) and the 2-polynomial is invariant
under the tetrahedral move.

7.6. Conclusion and an example

7.6.1. In conclusion

We have proven that if a pair of oriented 2-knots K and K ′ are isotopic, then J(K) =
J(K ′). In other words, the 2-polynomial of a 2-knot is an invariant.

7.6.2. Examples

7.6.2.1. We have that the 2-polynomial of the unknot is 1, since ω(K) = 0 and
〈K〉 = 1.

7.6.2.2. We calculated in 5.2.2.3 that the writhe of the convoluted hoover is −3,
and in 6.1.4.2 that its bracket polynomial is the following.

〈Convoluted hoover〉 = A3ab+B3a+ 2A2Ba+ A2Bab2 + 3AB2ab

We conclude that the 2-polynomial of the convoluted hoover is given by the follow-
ing.

J(Convoluted hoover) = v−ω(Convoluted hoover)〈Convoluted hoover〉
= v3(A3ab+B3a+ 2A2Ba+ A2Bab2 + 3AB2ab)
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APPENDIX A

CALCULATING THE 2-BRACKET
POLYNOMIAL OF THE CONVOLUTED

HOOVER EXAMPLE

The convoluted hoover has three crossings, and we shall perform the surgery on all of
them. All the configurations obtained in the calculation of the 2-bracket polynomial
for the convoluted hoover example are illustrated from two angles in this appendix.
Below you can see the alternating convoluted hoover depicted from the first angle.

The alternating convoluted hoover from the opposite angle is as follows.
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A. Calculating the 2-bracket polynomial of the convoluted hoover example

A.1. Pictures after surgery on the first crossing

First we perform the surgery on the crossing between the large dark blue tunnel and
the lighter blue one. We denote by sA the following configuration, which is illustrated
from the two angles.
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A.1. Pictures after surgery on the first crossing

The other configuration we get for this surgery, we denote by sB and is depicted
from the two angles below.
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A. Calculating the 2-bracket polynomial of the convoluted hoover example

From this first surgery, we obtain the following calculation.

〈Convoluted hoover〉 = A〈sA〉+B〈sB〉

Both sA and sB are still knotted, thus it will be necessary to do a second round of
surgery.

A.2. Pictures after surgery on the second crossing

There are two possible results of the second surgery for each of the configurations in
the last section. We therefore end up with four possible configurations.

Pictures after surgery on the second crossing of sA

First we continue with the surgery on sA. Then the first possible configuration, after
being simplified by a couple of cube moves, is depicted below.
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A.2. Pictures after surgery on the second crossing

Let us call it sAA. The other possible configuration obtained from the surgery on
sA, after being simplified by a cube move, is the configuration depicted below.
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A. Calculating the 2-bracket polynomial of the convoluted hoover example

Let us call it sAB.

Pictures after surgery on the second crossing of sB

Now we perform the surgery on the second crossing of sB. Then the first possible
configuration is depicted below.
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A.2. Pictures after surgery on the second crossing

Let us call it sBA. Observe that inside there is a cubical torus. We can remove
this torus and multiply the remaining configuration by b. Then we call the remaining
configuration sBA2. The other possible configuration obtained from the surgery on
the second crossing of sB, is depicted below.
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A. Calculating the 2-bracket polynomial of the convoluted hoover example

Let us call this sBB.

Where are we after the second surgery?

After the surgery is performed on the second crossing, we obtain the following calcu-
lations.

〈Convoluted hoover〉 = A〈sA〉+B〈sB〉
= A(A〈sAA〉+B〈sAB〉) +B(A〈sBA〉+B〈sBB〉)
= A2〈sAA〉+ AB〈sAB〉+BAb〈sBA2〉+B2〈sBB〉
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A.3. Pictures after surgery on the third crossing

The configurations we obtain after the surgery on the two crossings, are still knotted.
We must therefore apply surgery to the third and last crossing in those cases.

A.3. Pictures after surgery on the third crossing

There are again two possible configurations for each of the four in the last section.
We end up with eight possible states. These configurations will only be shown from
one angle.

Pictures after surgery on the third crossing of sAA

The first possible state we obtain by performing the last surgery on sAA and it is
depicted below.

Let us call this state sAAA. Observe that this configuration consists of one torus
inside a cube. The second possible state we obtain from the surgery on sAA, after
applying a couple of cube moves, is depicted below.

105



A. Calculating the 2-bracket polynomial of the convoluted hoover example

Let us call this state sAAB. Observe that this configuration consist of just a cube.

Pictures after surgery on the third crossing of sAB

The first possible state we obtain from the last surgery on sAB, after being simplified
by some cube moves, is depicted below.

Let us call this state sABA. Observe that this configuration consists of just one cube.
The second possible state we obtain from the surgery on sAB, is depicted below.
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A.3. Pictures after surgery on the third crossing

Let us call this state sABB. Observe that this configuration consists of a cube inside
the hole of a torus.

Pictures after surgery on the third crossing of sBA

The first possible state we obtain from the last surgery on sBA, after a cube move, is
depicted below.

Let us call this state sBAA. Observe that this configuration consists of two tori
inside a cube. The second possible state we obtain from the surgery on sBA, after two
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A. Calculating the 2-bracket polynomial of the convoluted hoover example

cube moves, is depicted below.

Let us call this state sBAB. Observe that this configuration consists of a torus inside
a cube.

Pictures after surgery on the third crossing of sBB

The first possible state we obtain from the last surgery on sBB, after a cube move, is
depicted below.

Let us call this state sBBA. Observe that this configuration consists of a torus inside
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A.3. Pictures after surgery on the third crossing

a cube. The second possible state we obtain from the surgery on sBB, after a couple
of cube moves, is depicted below.

Let us call this state sBBB. Observe that this configuration consists of just one
cube.

Where are we after the third surgery?

After this last surgery, we continue where we left the calculations in the last section.
Then we obtain the following 2-bracket polynomial.

〈Convoluted hoover〉 = A2〈sAA〉+ AB〈sAB〉+BA〈sBA〉+B2〈sBB〉
= A2(A〈sAAA〉+B〈sAAB〉) + AB(A〈sABA〉+B〈sABB〉)

+BA(A〈sBAA〉+B〈sBAB〉) +B2(A〈sBBA〉+B〈sBBB〉
= A3ab+ A2Ba+ ABAa+ AB2ab+BA2ab2 +BABab

+B2Aab+B3a

= A3ab+B3a+ 2A2Ba+ A2Bab2 + 3AB2ab

This completes the calculation of the 2-bracket polynomial of the convoluted hoover
example.
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APPENDIX B

EXAMPLES OF 2-KNOTS

B.1. Generating 2-knots

We feel that the convoluted hoover is a prototypical example of a 2-knot with only
double plane crossings, akin to the trefoil in ordinary knot theory. The way in which
the tunnels interact, seem to be fundamental in obtaining 2-knottedness. In this
appendix we explain how to modify the convoluted hoover to obtain two infinite
families of 2-knots.

B.2. The convoluted double hoover

The convoluted double hoover is an extension of the convoluted hoover example in
Appendix A. After the first enlarged dark blue part in the convoluted hoover, it
reduces back down to become smaller than the light blue tube before it again enlarges
in a second hoover part. Below you find the convoluted double hoover from four
angles.
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B. Examples of 2-knots
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B.3. The convoluted hoover with an extra tunnel

This example has 5 crossing, which means it has 25 = 32 possible end states, if it
cannot be reduced by some combination of Homma-Nagase-Roseman moves along the
way.

This example can be generalised to include an arbitrary number of hoovers.

B.3. The convoluted hoover with an extra tunnel

This example is simply put, the convoluted hoover example from Appendix A with
an extra tunnel running through it. The important thing is that the tunnel is larger
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B. Examples of 2-knots

than the small dark blue tunnel, but smaller than the light blue, such that the new
purple tunnel gets locked in. The new tunnel is in fact locked since we can not apply
any sequence of Homma-Nagase-Roseman moves to reduce it. Below you find the
configuration from four different angles.
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B.3. The convoluted hoover with an extra tunnel

This example has 5 crossing as well, which means it too has 25 = 32 possible
end states, if it cannot be reduced by some combination of Homma-Nagase-Roseman
moves along the way.

This example can be generalised to include an arbitrary number of tunnels.
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