
Simulations of CO2 Migration with a 
Fully-Integrated VE Model on the GPU

Guro Seternes

Master of Science in Physics and Mathematics

Supervisor: Helge Holden, MATH
Co-supervisor: Knut-Andreas Lie, SINTEF

Department of Mathematical Sciences

Submission date: Januar 2015

Norwegian University of Science and Technology



 



i

Abstract

The reduction of carbon dioxide emissions is becoming an increasing global
priority and is the subject of many current research projects. One of the
possible solutions is geological carbon storage, in which CO2 is captured and
injected into geological underground reservoirs for permanent storage. An
assessment of the associated CO2 leakage risks is crucial when evaluating
potential storage sites. By simulating the movement of CO2 during and in
the aftermath of the injection we can determine these risks. In this thesis we
present a CO2 migration simulator made for this purpose.

There are often great uncertainties in the available geological data required
to make realistic simulations. This means that one has to be able to evaluate
multiple scenarios within a relatively short time frame, putting performance
requirements on the simulator. Because the temporal and spatial scales in
question are very big, the full 3D models commonly applied in the related
branch of oil and gas simulators are too computationally demanding. Thus,
our simulator is based on a 2D VE model. What sets our simulator apart
from other VE-based simulators, is that we include non-linearized CO2 prop-
erties. This means that the vertical integrals which constitute the VE model
are no longer trivial expressions, they must be ”fully-integrated”. Through
GPU acceleration we implement a simulator that runs just as fast as other
CPU-based VE simulators, in spite of the tedious numerical integrations.
The benefits of GPU-acceleration are emphasized when simulating on large
domains. Moreover we make a comparison study with a VE-based simulator
in which the CO2 properties are linearized. The optimization potential and
different optimization strategies directed at the GPU implementation of the
numerical integrations are also elaborated.
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Sammendrag

Karbondioksidniv̊aet i atmosfæren v̊ar er i ferd med å n̊a et kritisk punkt.
Å redusere utslippene av denne klimagassen blir en stadig viktigere oppgave
for verdensamfunnet og er et høyaktuelt tema innenfor mange forskningsfel-
ter. Et mulig bidrag for å løse dette problemet er karbonfangst og -lagring,
hvor man fanger CO2 og sprøyter det inn i underjordiske geologiske reser-
voarer. Denne lagringen innebærer en risiko for CO2-lekkasje, hvilket be-
tyr at det er viktig å gjøre en grundig utredning av potensielle reservoarer.
Ved å simulere bevegelsesmønsteret til CO2 b̊ade under og etter injeksjons-
fasen kan man kartlegge risikoen for lekkasje. Dette er formålet for CO2-
migrasjonssimulatoren som vi presenterer i denne oppgaven.

Det er generelt mye usikkerhet tilknyttet de geologiske dataene man an-
vender for å kunne lage realistiske simuleringer. P̊a bakgrunn av dette
må man kunne evaluere flere ulike senariorer innenfor en relativt liten tid-
sramme, noe som setter begrensinger for kjøretiden til simulatoren. Tids- og
størrelsesperpektivet for denne typen simuleringer er mye større enn for simu-
leringer av samme art som brukes i forbindelse med olje- og gassutvinning.
Dette betyr at de fulle 3D-modellene som vanligvis brukes der er uegnet for
v̊art problem, ettersom de krever altfor mye datakraft for å oppfylle tidsbe-
grensingen. V̊ar simulator er derfor basert p̊a en 2D VE- modell. Det som
skiller v̊ar simulator fra andre tilsvarende VE-simulatorer er at vi inkluderer
ikke-lineære egenskaper for å beskrive CO2-en. Dette innebærer at de ver-
tikale integraltermene som ligger til grunn for VE-modellen ikke lenger er
trivielle. Ved hjelp av ”GPU acceleration” implementerer vi en simulator
som er vel s̊a rask som andre CPU-baserte VE-modeller, til tross for den
omstendelige numeriske integrasjonen. Fordelene ved å anvende en GPU blir
enda klarere n̊ar vi kjører simuleringer p̊a store modeller. Videre presen-
terer vi en sammenligningsstudie mellom v̊ar simulator og en simulator med
lineariserte CO2-egenskaper. Vi diskuterer ogs̊a optimaliseringspotensialet
for v̊ar simulator, samt ulike optimaliseringsstrategier med hensyn p̊a den
numeriske integrasjonen.
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Chapter 1

Introduction

The amount of anthropogenic carbon dioxide in our atmosphere is reaching
a critical level. There is scientific consensus that the average global tem-
perature on earth has a clear correlation to the concentration of greenhouse
gases in the earth’s atmosphere. Thus, it is believed that the most abundant
greenhouse gas, CO2, is one of the main causes of global warming and the
resulting climate changes. The consequences of the ongoing climate changes
are not purely environmental: they include poverty, economic development,
human health and agriculture. Reduction of CO2 has therefore become a
high priority for the UN and there are now many research projects dedicated
at finding new strategies to resolve this problem. In this thesis, we will look
at one such promising strategy, namely CO2 sequestration.

Simulating Carbon Dioxide Sequestration CO2 sequestration refers
to the capture and permanent storage of CO2 with the objective of reduc-
ing the level of CO2 in the atmosphere. This approach is considered a good
option for handling CO2 emissions in the transition phase before renewable
energy sources hopefully will dominate. The idea is to capture CO2 dur-
ing combustion and exhaustion processes and then transport the CO2 to a
suitable storage site where it can be injected. The injection procedure is
closely related to enhanced oil and gas recovery, where water and (or) gas
are introduced into a reservoir. Hence, the associated technology is familiar
and it is compatible with the existing energy infrastructure. From an eco-
nomical point of view CO2 storage is also considered realizable [4], especially
for petroleum companys, where there is an extra economic incentive due to
carbon taxation. Deep saline aquifers are considered to be prime candidates
for underground or geological storage due to their large capacities and wide
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2 CHAPTER 1. INTRODUCTION

geological spread [15, 16, 32].

Before attempting to go through with the CO2 sequestration technology, it
is crucial to assess the associated risks of leaks. This is the motivation for
studying and simulating the behavior of CO2 during both the injection phase
and, even more so, the following migration phase. Different underground
formations have different geological properties and their storage potential
can be assessed using numerical simulations. Because of large uncertainties
in the geology, a fast simulator is required to evaluate multiple scenarios
within a short time frame [35].

The system we will study can be described as two-phase flow in heterogeneous
porous media, where the two phases are the intruding CO2 and the water
already residing in the formation.

Vertical Equilibrium Model Permeable subsurface formations extend
much more in the horizontal direction than in the vertical direction. The lat-
eral extent is often many kilometers, while the vertical extent is in the range
of meters to tens of meters. This means that the flow in the horizontal di-
rection, on the time scales of interest for CO2 sequestration, is usually much
greater than the vertical one. In the formation, there is a boundary separat-
ing the saline aquifer with higher permeability from the aquitard with lower
permeability. By the law of tangent flow, the flow in the higher permeability
region tends toward the direction parallel to the interface [44]. Also, due to
the character of the fluids in question, there is a strong vertical segregation.

These properties indicate that it may be wise to concentrate on the horizontal
flow movement. Thus, we make an assumption of vertical equilibrium (VE)
allowing us to reduce the problem down to two dimensions. We will do this by
means of vertical integration, where the original three-dimensional equations
are integrated along the vertical direction. Through vertical integration, we
obtain a new set of equations with new parameter functions that depend on
the vertical distribution of the fluids.

The VE model is not a new concept, it has been used for 150 years or so to
simplify systems of flow in porous media [37, 3]. With the great development
of computer resources in the last decades, this semi-analytical approach has
mostly been set aside. However, this model has recently been used as a
means to simulate gravity-driven CO2 migration [44]. The problem with
CO2 simulation, in contrast to oil and gas recovery, is that the scales are
very large, both with respect to time and space. As already mentioned,
the formation can span many kilometers, possibly hundreds, and the time



3

perspective for these migration processes can be thousands of years. This
makes it challenging to make full three-dimensional (3D) simulations that
are fast enough. One is often forced to compromise the vertical and lateral
resolution for speed. For this reason, the two-dimensional (2D) VE model
may be a better candidate. Several studies have shown that the VE models
match their 3D counterpart [35, 40, 12]. In fact, in some situations the VE
model produces more accurate results due to the overly coarse resolution
required for 3D simulations.

Application of the VE model to our two-phase system will leave us with a set
of two equations: a pressure equation and a transport equation. There are
numerous papers which discuss the details of this system, see for example [23]
and [21]. One of the strengths of the VE formulation is that it preserves in-
formation about geological heterogeneity. In addition, the resulting equation
system has a stronger decoupling than the corresponding 3D system.

Sharp-Interface Models Many VE simulators make an assumption of a
sharp interface between the injected CO2 and the formation water. This fur-
ther simplifies the equation system, as some of the vertical integration terms
in the VE model become trivial, which again increases the computational
efficiency. However, we may loose some information. A main objective for
this thesis is to explore the limitations of the popular sharp-interface model.
We will apply a more extensive framework where we instead make a more re-
alistic, smooth approximation of the transition zone between the two phases,
see Figure 1.1. Many of the components in this framework are based on the
paper by Nilsen et al. [41]. As we will see, this new framework complicates
the mathematical model as the integrated terms are no longer trivial. Con-
sequently, the number of required computations increases substantially. We
intend to compensate for this increased computational cost by implementing
the simulator on a GPU.

Fully-Integrated Model on a GPU Through the last decade, what is
known as GPU-accelerated computing, has become a big phenomenon in the
fields of science, engineering and enterprise. The term refers to the coupling
between the CPU and the graphics processing unit (GPU) used to accelerate
the performance of a computer application. GPU hardware is highly parallel
and can perform similar operations on large amounts of data. The key to
GPU-accelerated computing is to offload compute-intensive portions of an
application to the GPU, such as numerical integration. Thus, through GPU-
acceleration, we can implement a simulator for the smooth-approximation
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Figure 1.1: Fraction of CO2 as a function of depth. On the left, the transition
zone between the two phases is smooth, while on the right they are separated by
a sharp interface.

model, which has more than comparative performance to the sharp-interface
CPU simulators. At least our aim will be to implement a GPU simulator with
decent performance, not only with respect to outrunning the sharp-interface
solvers but perhaps more importantly with respect to utilization of the GPU
capacity.

For the comparison study of the two approaches, we will use an explicit
sharp-interface simulator from the open-source Matlab Reservoir Simulation
Toolbox (MRST) [1].



Chapter 2

Background

2.1 Mathematical Model

To be able to analyze the system of fluids arising in an aquifer when CO2 is
injected, we have to build a mathematical model. This includes developing
a valid mathematical description of the physics of the reservoir as well as
establishing a set of governing equations. As mentioned in the introduction,
our system involves multiple phases, but we will start by looking at a single
phase and later advance the analysis to include multiple phases.

2.1.1 Law of Mass Conservation

A starting point for the mathematical model is the law of mass conservation.
The principle of conservation of mass is quite simple; for a restricted region
of space, the change of mass of a particular substance must equal the amount
of mass that either leaves or enters the region. If we denote this restricted
region or volume by Ω and the boundary by ∂Ω, the mathematical equation
for conservation of mass reads

∂m

∂t
=

∫
Ω

∂ρ

∂t
dV = −

∮
∂Ω

ρv · n dA+

∫
Ω

q dV. (2.1)

Here, m represents the mass of the substance in the volume unit, v is the
mass flow rate, ρ is the fluid density and n is the unit vector normal to
the surface ∂Ω in the outward direction. The variable q is any source or
sink within the volume. If q indicates internal changes to the system, our
equation is known as a balance equation or transport equation. Contrary, if

5



6 CHAPTER 2. BACKGROUND

the sources and sinks originate from known external sources or do not exist,
the mass is locally conserved and thus, Equation (2.1) may be referred to as
a conservation law.

Since we have a porous medium, the fluid will not fill the entire volume, and
thus, the mass in (2.1) can not be described by integrating over the density
alone. To account for this factor in the conservation law, we introduce the
porosity function φ, which gives the fraction of the sample volume that is
occupied by pore space. Keeping in mind that the medium in question may
not be homogeneous, the porosity function will depend on spatial location,
φ = φ(x).

If we apply the divergence theorem to Equation (2.1) and make an assump-
tion of sufficient smoothness, we will arrive at the differential form

∂(ρφ)

∂t
+∇ · (ρu) = q, (2.2)

where the flux ρv · n has been reduced to ρu.

2.1.2 Darcy’s law

Mass conservation alone does not allow for a unique solution for the single-
phase system. We must also study the basic forces involved in the movement
of fluids in a porous medium. Darcy’s law is a key equation for determining
the flow characteristics,

u = −k

µ
(∇p− ρg) , (2.3)

where u represents the flux, k is the permeability, p is the pressure, µ is the
viscosity and g indicates the gravitational acceleration. Permeability is a
measure of the ability of a porous material to allow fluids to pass through it,
and will depend on the type of rock. We will assume that the permeability
can be decomposed into a horizontal permeability tensor and a scalar vertical
permeability [45]. Thus, k can be expressed by the block matrix(

k‖ 0
0 kz

)
.

By Equations (2.2) and (2.3) we have established a mathematical model for
a system of single-phase flow in a porous medium.
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2.1.3 Two-phase Flow Equations

We can extend the equation system presented above to describe two-phase
flow if we take into consideration the interactions between the two phases. In
particular in the areas where the fluids meet and create fluid-fluid interfaces
at the pore scale. In such systems, one of the fluids will have a tendency to
be more attracted to the solid. This is known as the wetting fluid. In our
case this will be the formation water, which is known as brine and thus, CO2

will be referred to as the non-wetting fluid. At the depths in question, the
CO2 will be in a supercritical dense phase.

Darcy and the Mass Conservation Law

Seeing as we now have two phases, we need to adjust the mass term ρφ in
(2.2), since the volume of the pores is now shared. We include the variable
sα, which is known as the fluid saturation, defined as the fraction of pore
space occupied by the phase α = {w, n}, where 0 ≤ sα ≤ 1. The two fluids
fill the pore space completely:

sn + sw = 1. (2.4)

Therefore, the expression φsα now gives the volume fraction occupied by each
phase. The mass conservation for the multiphase system becomes

∂(ραφαsα)

∂t
+∇ · (ραuα) = qα, α = {w, n}, (2.5)

i.e., the mass of each phase is conserved.

In the multiphase system, the fluids will inhibit each other from flowing.
We account for this in Darcy’s law by introducing the relative permeability
function kr,α = kr,α(sα). This function describes the reduced flow of phase α,
caused by the pore-occupation of another phase β. The function is assumed
algebraic and to depend only on the saturation and the saturation history.
Thus, (2.3) becomes

uα = −kkrα
µα

(∇pα + ραg) = −kλα (∇pα − ραg) , (2.6)

where we have introduced the mobility function λα(sα) ≡ kr,α(sα)

µα
.

Another physical property of the porous medium which needs to be taken into
consideration is capillary pressure. This is defined as the pressure difference
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between the two different phases inside the rock,

pcap = pn − pw. (2.7)

When a non-wetting fluid is injected into a rock filled with a resident wetting
fluid, the pores in the rock are affected by this pressure difference and will
start deforming, followed by destabilization of the pore interfaces. If the
capillary pressure becomes high enough, it will exceed what is known as the
capillary entry pressure, pcap,i. This is the level at which the non-wetting CO2

starts displacing the wetting brine, forcing it to leave the region through the
bottom boundary, implying a change in saturation. Thus, the saturation
depends on the capillary pressure. As a consequence, we can establish a
relationship between capillary pressure and saturation. There does not exist
an exact analytic expression for this relationship. However, we can create a
mapping or an algebraic function, pcap(sw), based on data from experimental
measurements. This function may depend on the saturation history. A
typical curve representing measurement data relating CO2 and brine is shown
in Figure 2.1.

The four equations (2.4) - (2.7) form a complete model for two-phase, im-
miscible flow, provided that explicit parameterizations are given for pcap and
krα, and proper initial and boundary conditions are given [45].

2.1.4 Vertical Integration

As mentioned in the introduction, the mathematical model describing CO2

injection in permeable subsurface formations is well suited for a dimensional
reduction. This is because the flow movement in the vertical direction is
negligible in comparison to the horizontal one. It should be noted that when
making this assumption, we rely on the fact that the complete gravity-driven
segregation between the resident brine and the CO2 occurs ”quickly”. This
is reasonable as the buoyancy forces are strong [2]. For the time scales we
are considering, this process can be regarded as instantaneous. Our system
of governing equations can thus be reduced to two dimensions by vertical
integration over the thickness of the formation. If we were to consider short-
term or small-scale processes, the VE assumption might not be appropriate.

Modelling the Aquifer

The multiphase aquifer consisting of brine and CO2 is trapped between two
formations of very low permeability. The top cover of the formation is re-
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Figure 2.1: Primary drainage capillary pressure as a function of saturation, based
on data measurements from Berea sandstone [24], where the saturation of the wet-
ting fluid sw has been normalized. The capillary pressure is a decreasing function
of the wetting saturation.

ferred to as a caprock. There may be great variations in the topography of
the caprock, but on a large scale we can consider it flat. We have a layered
system of two main fluid zones visualized in Figure 2.2. This gravity-driven
segregation is due to a high density contrast between the two fluids. The
bottom region, consisting of the denser brine, stretches from the bottom, B,
defined by ζB(x, y) to the interface I at ζI(x, y, t). In this region we have
the saturations sb = 1 and sc = 0, where b and c indicate brine and CO2,
respectively. Above this interface we have a region with a mix of CO2 and
brine.

Capillary Fringe

In the top region, the saturation values will be varying with depth, with
0 < sc < 1− sb,res and sb,res < sb < 1, where sb,res is the residual saturation
of brine. When a fluid, such as CO2, is injected into a formation of a denser
resident fluid, such as brine, some of the brine will remain in the pore space
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Figure 2.2: Diagram of an aquifer indicating the different interfaces used in vertical
integration.

of the newly created CO2 region. This brine can not be pushed out and is
termed residual brine. The corresponding level of saturation is then sb,res.
One may also think of residual saturation as the fraction of the phase that
cannot be recovered. We will use the term capillary fringe to describe the
part of the mixed top region where the brine saturation ranges from full to
residual, see Figure 2.3 (left).

Sharp-Interface Model

The capillary-fringe model may be simplified by making a sharp-interface
approximation. The vertical distribution is then re-interpreted as two zones
with constant saturation, separated by the interface at hT,I . This model is
illustrated in the right part of Figure 2.3. As we will see later, this sim-
plifies the vertical integration procedure, resulting in a less computationally
demanding simulator. In many cases this approximation will be sufficient, es-
pecially considering the limited knowledge we have about large-scale aquifers.
In MRST there is a module called MRST-co2lab, which is a toolbox for mod-
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Figure 2.3: Diagram showing how the brine saturation sb increases with depth z.
The residual saturation sb,res is marked on the horizontal axis and the interface
depth hT,I (see Figure 2.2) is marked on the vertical axis. In the left figure we
have a capillary fringe model, while the right figure depicts a sharp-interface ap-
proximation. The capillary fringe represents the smooth transition phase between
the two phases, discussed in the introduction.

elling and simulating trapping and isolation of CO2 [1]. Inside this toolbox
there are many simulators based on mathematical models with varying com-
plexity. It includes both implicit and explicit solvers, compressible models
and linear and non-linear approximations of the CO2 properties. We will fo-
cus on one of the more basic implementations, namely a sharp-interface simu-
lator with explicit time discretization. By making a comparison between the
MRST-co2lab sharp-interface simulator and our capillary-fringe based model,
we can evaluate the strengths and weaknesses of the two approaches.

Integration Procedure

Before proceeding with the vertical integration, we make some additional
simplifications. We assume that fluids and solid are incompressible and de-
compose the gravitational force; g = g‖ + gez and ∇ = ∇‖ + ∂zez, where
the ‖ indicates the two-dimensional vector composed by the components x
and y. The ez component is pointing downwards, such that z is interpreted
as depth. Integrating (2.5) from top to bottom gives

∂

∂t

[∫ ζB

ζT

sαφ dz

]
+∇‖ ·

[∫ ζB

ζT

uα dz

]
=

[∫ ζB

ζT

qα dz

]
. (2.8)

The vertically integrated terms in (2.8) are in the literature referred to as
coarse-scale variables [44]. We take a variable defined in 3D, which is our so-
called fine scale, and try to find a valid 2D representation, hereby eliminating
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the vertical component. One alternative is to compress it into some kind
of averaged variable, which can by done by vertical integration. Another
alternative is to find a reference depth and sample the variable here. Through
these transformations we may lose some information, but the reduction in
computational requirements is significant. More details about the limits of
the vertical equilibrium model can be found in [14] .

From now on, the fine-scale variables will keep lower-casing, while the coarse
or upscaled variables will be denoted by upper-case symbols. We start by
looking at the integrated flow vector

Uc =

∫ ζB

ζT

uc dz =

∫ ζI

ζT

uc dz,

where the last equality is due to the absence of CO2 in the bottom region. We
suppose that the pressure at the top of the formation is known, this will be
our coarse pressure variable PT . If we choose to neglect the capillary fringe
for a moment, implying a sharp interface located at hT,I(x, y), the pressure
distribution for our system in hydrostatic equilibrium is given by

p(x, y, z, t) ={
PT (x, y, t) + ρcg [z − ζT (x, y, t)] ζT ≤ z ≤ ζI ,

PT (x, y, t) + ρcg [ζI(x, y)− ζT (x, y)] + ρbg [z − ζI(x, y)] ζI ≤ z ≤ ζB.

Through this equation we derive the gradient of pressure for the top region:

∇‖pc(x, y, ζT ≤ z ≤ ζI , t) = ∇‖PT − ρcg∇‖ζT .

Recalling the expression for uα given in (2.6) leads us to a new expression
for the coarse velocity:

Uc =

∫ ζI

ζT

uc dz = −
(
∇‖PT − ρcg∇‖ζT − ρcg‖

) ∫ ζI

ζT

λ‖(sc)k‖ dz

Similarly, we find the coarse velocity for brine to be

Ub =

∫ ζB

ζT

ub dz = −
(
∇‖PT − ρcg∇‖ζT + ∆αρg∇‖ζI − ρbg‖

) ∫ ζB

ζT

λ‖(sb)k‖ dz,
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where ∆αρ = ρb − ρc. We define the coarse mobilities Λc and Λb:

Λc =

∫ ζI

ζT

λ‖(sc)k‖ dzK−1,

Λb =

[∫ ζI

ζT

λ‖(sb)k‖ dz +

∫ ζB

ζI

λ‖(1)k‖ dz

]
K−1, (2.9)

K =

∫ ζI

ζT

k‖ dz.

We wish to find an expression for Uc on the form

Uc = −
(
∇‖PT − ρcg∇‖ζT − ρbg‖

)
Λc(Sc)K,

where Λc will be a function of the coarse scale variable Sc defined as

Sc =
1

Φ

∫ ζT

ζI

φ(z)sc(z) dz. (2.10)

We recognize (2.10) as the first term in (2.8) divided by the coarse-scale
porosity:

Φ =

∫ ζT

ζB

φ(z) dz.

Fine-Scale Saturation

As stated in the preceding section, we want to reconstruct the vertical distri-
bution Λc from the coarse variable Sc. From the definition made in (2.9), we
identify sc as the only unknown parameter since the expression for the mo-
bility function λ‖ is known. To find the relation between sc and Sc, we need
to the apply the function pcap(sb) = pcap(1 − sc), relating capillary pressure
and saturation, introduced in Section 2.1.3. By the definition of capillary
pressure in (2.7) we have

pcap = pc − pb,

for our aquifer. We now define z′ as a new vertical component, representing
depth below the top surface so that z′ = 0 at ζT (x, y). If we let H denote
the full height of the sample so that H = ζB − ζT , and denote the pressure
at the bottom of the aquifer by pB, we have

pcap = pc − pb = PT + gρcz
′ − [pB − gρb(H − z′)] . (2.11)

A diagram illustrating this new coordinate system is depicted in Figure 2.4.
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Figure 2.4: Diagram of the aquifer illustrating the new coordinate system.

We define h as the depth of the interface separating the two regions, i.e.,
h = ζI − ζT . Thus, h is the maximum depth with non-zero CO2 saturation.
The interface is known as the capillary interface, and here the pressure is
equal to the entry pressure pcap,i, introduced in Section 2.1.3. Writing pcap,i
in terms of Equation (2.11), we get

pcap,i = PT − pB + hg(ρc − ρb) + gρbH.

Through this relation we may now express pcap in terms of the known value
pcap,i. Thus, we arrive at an expression for fine-scale capillary pressure

pcap = pcap,i + g(ρc − ρb)(z′ − h).

The capillary pressure curve, pcap(sb), is a monotonically decreasing function
of water saturation. Consequently, it has an inverse mapping or function
known as the capillary-saturation function sb = sb,cap(pcap). Thus, we now
have an expression for the fine-scale saturation

1− sc(z′) = sb(z
′) = sb,cap(pcap) = sb,cap (pcap,i + g(ρc − ρb)(z′ − h))) ,

in which the only unknown is the variable h. Hence we are able to express
Λc as a function of h.

Relating h and S

We have still not answered our initial question of finding a relation between
Λc and Sc. If we go back to the definition made in (2.10), we can make the
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following approximation

Sc =
1

Φ

∫ ζI

ζT

φ(z)sc(z) dz ≈ φ

φH

[∫ h

0

sc(z
′)dz′

]
= f(h), (2.12)

where we have assumed constant porosity, implying Φ = φH. This means
we have a direct relation between Sc and h. We can now choose to express
Λc as a function of h or Sc. As a consequence, Equation (2.8) is left with
only two unknowns, the top pressure PT and Sc or h:

Φ
∂Sc
∂t

+∇ ·Uc(Sc, PT ) = Qc or
∂f(h)

∂t
+∇ ·Uc(h, PT ) = Qc, (2.13)

where Qc =
∫ ζI
ζT
qc dz. Likewise, for brine we have

Φ
∂Sb
∂t

+∇ ·Ub(Sb, PT ) = Qb. (2.14)

By our definition of the coarse saturation in (2.10), Sα will be bounded
between 0 and 1 and sum to one, i.e.,∑

α

Sα = 1. (2.15)

Consequently, we may replace the saturation Sb in Equation 2.14 with 1−Sc,
and we are left with an upscaled system of two equations with two unknowns.

The fine-scale and coarse-scale relations have been resolved for our VE model.
An overview of all the dependencies is depicted by the dependence tree in
Figure 2.5. In the common sharp-interface approximation, the transition be-
tween fine-scale and coarse-scale becomes fairly simple. The coarse mobility
integrals in (2.9) are simple to evaluate as the saturation-dependent fine-scale
mobilities, λα(s), are constant and k is often approximated by an average.
This is also the case for the relation between saturation and interface height,
described by Equation (2.12). In contrast, our capillary-fringe approximation
requires complete numerical integration of the fine-scale quantities, where all
the fine-scale dependencies take part. A characterization of the different
fine-scale functions will be given in Section 2.1.6.

2.1.5 Solving the Vertically Integrated System

There are many ways to solve the final system of vertically integrated two-
phase flow equations derived in the previous section. We saw in Equation
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Figure 2.5: Dependence tree for the various coarse and fine-scale variables in our
VE model.

(2.13) that we could choose between h and S as our primary variable. This
is also true for other variables. Instead of the top pressure PT , we could solve
for the average pressure. See [44] for a discussion of different methods and
simplifications for manipulating these two-phase flow equations.

We will choose Sc and PT as our primary variables. For our governing equa-
tions, we start by transforming Equations (2.13) and (2.14) into an equation
system consisting of one pressure equation and one transport equation. This
is done by summing the equations, using (2.15) to eliminate the temporal
derivative:

∇ ·Ub(Sb, PT ) +∇ ·Uc(Sb, PT ) = Qb +Qc.

If we now introduce the following new variables

U = Ub + Uc, Q = Qb +Qc, Λ = Λb + Λc, Fα = ΛαΛ
−1, (2.16)
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we can rewrite our pressure equation as

∇ ·U =Q

U =−KΛ
[
∇‖pT − Fcρcg∇‖ζT − (Fcρc + Fbρb)g‖

− Fb∆αρg∇‖h− Fbρbg∇‖ζT
]
. (2.17)

Ub and Uc can be expressed in terms of U as follows

Uc = Fc

[
U + KΛb∆αρ

[
g(∇‖h+∇‖ζT ) + g‖

] ]
Ub = Fb

[
U−KΛc∆αρ

[
g(∇‖h+∇‖ζT ) + g‖

] ]
, (2.18)

which will prove useful when evaluating the fluxes in Section 2.2.3. Incorpo-
rating the total velocity U into (2.13), we get the transport equation:

Φ
∂Sc
∂t

+∇ ·
[
FcU + KΛbFc∆αρ

[
g(∇‖h+∇‖ζT ) + g‖

] ]
= Qc. (2.19)

The final system of governing equations given by (2.17) and (2.19) is known
as a fractional-flow formulation.

2.1.6 Fine-Scale Model Properties

Relative Permebility

For the fine-scale relative permeability function kr,α(sα), we use a Corey-type
approximation [29]. The Corey correlation is a power law in the wetting
saturation sb. If we define the effective saturation se as

se =
sb − sb,res
1− sb,res

, (2.20)

the Corey correlations read

kr,c(sc) = k̂r,c(se) = kec(1− se)Nc , kr,b(sb) = k̂r,b(se) = keb(se)
Nb , (2.21)

where keb and kec are end-point coefficients. The exponents Nc and NB de-
pend on the heterogeneity in the distribution of pore sizes. Large values
indicate a relatively heterogeneous media, while small values correspond to
homogeneous media. The Corey model has the favorable properties

kr,c(sc,res) = 0, kr,c(1− sb,res) = kec ,

kr,b(sb,res) = 0 and kr,b(1) = keb ,

implying that the phases become immobile when they reach a level of residual
saturation. A schematic of one set of Corey curves is given in Figure 2.6.
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Figure 2.6: Example of a Corey approximation with end-point coefficients, keb =
0.85, kec = 0.2142 and Nc = Nb = 3.. The residual brine saturation sb,res, is set
to 0.1. The mobility of brine is increasing with the saturation and when we reach
the maximum brine saturation at sb = 1, the brine phase has reached its peak
mobility. We find the same relationship between sc = 1 − sb and kr,c, only here
the highest level of mobility is much lower because of the smaller value pf the
end-point coefficient.

Relationship Between Saturation and Capillary Pressure

As mentioned earlier, the existing dependence between saturation and cap-
illary pressure, pcap(sw), is a part of our model. The shape of the pcap(sw)
curve will take a different form depending on whether we have a drainage
or an imbibition process. Drainage is the displacement process in which
an invading non-wetting fluid displaces a wetting fluid, whereas imbibition
occurs when a wetting fluid displaces a non-wetting fluid. In our model,
the injected non-wetting CO2 displaces the wetting brine, corresponding to
a drainage process. In 1966, Brooks and Corey [7] presented the capillary
pressure function for the drainage case as follows,

pcap(sw) = C ′s−1/γ
e , (2.22)

where se is the normalized saturation given in (2.20). The constant C ′ is a
scaling parameter and γ is known as the pore size distribution index. We
will use γ = 2. This approximation assumes that the initial saturation of
CO2 is equal to zero.

The Brooks-Corey model has been shown to hold for many different rock
types and has been widely accepted in the petroleum industry. Theoretical
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development in later years has shown that this model, once considered as
empirical, has a solid theoretical basis as well [34]. From (2.22), we derive
the following inverse function

sw,cap(pcap) = max

[(
C

C + pcap

)2

, sw,res

]
, (2.23)

where C is on the form βg∆αρH, for 0 ≤ β < 1. Figure 2.7 shows the
saturation as a function of depth z′, with different values of β. We can see
that for β = 0 the saturation distribution resembles a sharp-interface model.

Leverett-J Approximation

The Brooks and Corey approximation in (2.22) disregards the dependency
between capillary pressure and permeability. We may include this effect by
applying the dimensionless Leverett J-function:

J(sw) =
pcap(sw)

√
K/φ

σcos(θ)
, (2.24)

where θ is the contact angle and σ is the surface tension. The purpose of
this function is to use known capillary-pressure data from one rock to ap-
proximate the data of comparable rocks with different permeability, porosity
and wetting properties [33]. This is achieved through extrapolation. By re-
arranging (2.24) we get a new expression for the fine-scale capillary pressure

pcap(sw) = J(sw)

√
φ

K
σcos(θ) = C−1

p J(sw).

The inverse mapping between capillary pressure and saturation for the Lev-
rett J approximation takes the form

sw,cap(pcap) = J−1(Cp pcap)

J−1(Cp pcap) = max

[(
1

1 + Cp pcap

)2

, sw,res

]
. (2.25)

The purple curve in Figure 2.7 shows the saturation distribution in terms of
a Leverett J approximation.
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Figure 2.7: Examples of saturation distributions for h = 0.6H, H = 85. The
saturation values have been computed using the inverse capillary pressure functions
in (2.25) and (2.23). The scaling parameter in the latter equation, C = βg∆αρH,
is varying in β. We can see that the height of the capillary fringe scales with β and
when β = 0 we have a sharp-interface approximation. The parameters in Equation
2.25 have been set to σcos(θ) = 30 mPa, ρ = 0.1 and K = 100 mD.

Hysteresis

Due to what is known as hysteresis or, in other terms, the effect of irre-
versibility, both the capillary pressure curve and the relative permeability
curve will depend on the saturation history. The hysteresis effect takes place
after the injection phase is completed. During injection, CO2 migrates up-
wards, away from the injection wells, towards the top of the formation. This
is caused by buoyancy forces. When the injection stops, CO2 will continue
migrating upwards and the leading edge of the CO2 will continue to displace
brine. Conversely, the trailing edge will be subject to an imbibition process,
where brine is displacing CO2, leaving a fraction of the CO2 disconnected in
the form of blobs or bubbles. This is referred to as the snap-off effect, and the
CO2 becomes effectively immobile or trapped [30]. As the plume migrates
towards the top, a trail of residual, immobile CO2 is left behind. An illustra-
tion of this effect is given in Figure 2.8. Thus, in the post-injection phase, the
expression for fine-scale permeability (2.21) and fine-scale capillary pressure
(2.22) must be reconstructed to incorporate this effect.
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Figure 2.8: Schematic of the trail of residual CO2 that is left behind because of
snap-off as the plume migrates upward during the postinjection period. Figure
taken from [30].

When making a sharp-interface approximation, the incorporation of hystere-
sis is quite simple. The original model of two different saturation zones only
has to be extended to include three zones: maximum CO2 concentration,
residual CO2 concentration and no CO2. For capillary-fringe models it is
more complex. The fine-scale capillary pressure functions have to be recon-
structed frequently, as they will depend on the saturation history. Of course,
the saturation history will vary across the formation, meaning that the recon-
structions must be made locally. One way of handling this is to use tabulated
values as described in [41]. The inclusion of hysteresis is outside the scope of
this thesis, but it is an interesting topic for future research.

2.2 Numerical Method

We have established the primary variables and the corresponding equation
set for our simulator in the previous sections. There is now the choice of
method; whether to use a numerical or analytical approach, or a combina-
tion of these. For a numerical approach, which is our choice, there is the
question of implicit versus explicit methods. The most common discretiza-
tion practice in the field of reservoir simulation is the fully implicit method
with phase-based upstream-mobility weighting with a two-point flux approx-
imation [42]. However, as we aim at taking full advantage of the parallel
nature of the GPU, an explicit scheme may be a better choice because they
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typically map better to the GPU architecture. We will thus turn to a sequen-
tial splitting method, which has been shown to produce satisfactory results
for incompressible sharp-interface models [43]. This method is an extension
of the implicit pressure, explicit saturation (IMPES) method, which has been
very popular within research on CO2 migration [42].

2.2.1 Sequential Splitting and IMPES

In the IMPES method, the parabolic pressure equation is solved by an im-
plicit method, where we treat all the other variables in the equation explicitly,
eliminating the nonlinearities. This means that the current pressure of the
reservoir is computed using either the initial data or the results from the
previous time step. The transport or saturation equation is then solved by
an explicit solver, where the pressure from the previous step is considered
a constant, rather than a variable. Due to its explicit nature, the IMPES
method is conditionally stable and therefore requires relatively small time
steps. In particular, if the rock permeability is very heterogeneous, the cap-
illary pressure will affect the path of fluid flow substantially, putting very
strong restrictions on the time steps for the transport solver [31].

Because of the physical character of our system, the implicit pressure compu-
tation is far more time consuming than the explicit saturation computation.
Furthermore, the pressure changes less rapidly in time than the saturation
in a two-phase flow system [10]. Based on these two properties, it seems
reasonable to take larger time steps for the pressure equation, while keeping
the smaller stability-preserving time step for the saturation equation. This
reduces the computational cost, which is especially beneficial for problems
with a large temporal scale, such as ours. This procedure is known as a
sequential splitting method or an improved IMPES method, and is discussed
in [10]. The time step restriction for the saturation equation will be adaptive
and further details on this control strategy will be given in Section 2.2.4.

2.2.2 CPU and GPU Division

As already mentioned, the pressure equation requires an implicit method.
Implicit methods are difficult to parallelize because the solution of one cell
depends on the solution of all the other cells in the domain. Mathemati-
cally speaking this means solving a system of linear equations. Algorithms
traditionally used for solving matrix systems are sequential in nature, and
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thus, not very suitable for the GPU. In recent years there has been a lot of
effort focused on creating fast implicit solvers on the GPU. These approaches
include application of the parallel cyclic reduction algorithm [53] and appli-
cation of new generation CUDA tools such as CUBLAS [9]. However, this is
outside the field of interest for this thesis, and we resort to MRST’s routine
for solving the pressure equation. Our focus will be on the GPU implemen-
tation of the explicit saturation computation. For the spatial discretization,
we will apply a finite volume method on a structured Cartesian grid. The
basis for this choice is the GPU hardware, which works very well with these
types of structured grids.

2.2.3 Finite-Volume Method

For our system of partial differential equations in (2.17) and (2.19) we apply a
finite-volume method. This means that we divide our domain Ω into smaller
sub-domains or cells, hereby creating a meshed geometry. Instead of looking
at point-wise values, as is customary in finite-difference methods, we look
at cell averages. The average value Si,j(t) of S(x, y, t) in the rectangle x ∈[
xi− 1

2
, xi+ 1

2

]
, y ∈

[
yj− 1

2
, yj+ 1

2

]
is defined as

Si,j(t) =
1

∆x∆y

∫ y
i+1

2

y
i− 1

2

∫ x
i+1

2

x
i− 1

2

S(x, y, t) dx dy.

We rewrite (2.19) to fit the standard form of the transport equation

ΦSt + f(S)x + g(S)y = Q, (2.26)

where f and g represent the fluxes in the x- and y-directions, respectively.
We have cut the subscript c to simplify notation. Imposing the conservation
law on integral form to (2.26), we get

d

dt

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

Φ(x, y)S(x, y, t) dx dy =

−
∫ y

j− 1
2

y
j+1

2

[
f(S(xi+ 1

2
, y, t))− f(S(xi− 1

2
, y, t))

]
dy

−
∫ x

i− 1
2

x
i+1

2

[
g(S(x, yj+ 1

2
, t))− g(S(x, yj− 1

2
, t))
]

dx

+

∫ y
j+1

2

y
j− 1

2

∫ x
i+1

2

x
i− 1

2

Q(x, y, t) dx dy
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We define the numerical approximation of the fluxes over the cell edges

Fi± 1
2
,j(t) ≈

1

∆y

∫ y
j+1

2

y
j− 1

2

f(S(xi± 1
2
, y, t)) dy

Gi,j± 1
2
(t) ≈ 1

∆x

∫ x
i+1

2

x
i− 1

2

g(S(x, yj± 1
2
, t)) dx,

and end up with the following expression

d

dt
Si,j(t)V

p
i,j =−∆y

[
Fi+ 1

2
,j(t)− Fi− 1

2
,j(t)

]
−∆x

[
Gi,j+ 1

2
(t)−Gi,j− 1

2
(t)
]

+ (∆x∆y)Qi,j(t). (2.27)

Here V p
i,j = Φi,j∆x∆y is the pore volume of cell (i, j). To simplify notation

we use the term Li,j(S(t)) to represent the flux terms and Q̃i,j for the source
term:

Li,j(S(t)) = ∆y
[
Fi+ 1

2
,j(t)− Fi− 1

2
,j(t)

]
+ ∆x

[
Gi,j+ 1

2
(t)−Gi,j− 1

2
(t)
]

Q̃i,j = (∆x∆y)Qi,j(t).

Discretizing (2.27) in time from t to t+ ∆t by applying the first-order Euler
method, results in the scheme

Sn+1
i,j = Sni,j −

∆t

V p
i,j

[
Li,j(S

n) + Q̃i,j

]
, (2.28)

where Sni,j represents the numerical approximation of Si,j(n∆t).

Upstream Mobility Weighting

Reservoir simulation schemes typically employ single-point upstream mobil-
ity weighting when approximating convective fluxes for multi-phase flow. In
a single-point upstream method, a one-sided approximation is used for the
derivative, where the direction of the local flow determines from which side
we make the approximation. As an example, we consider the x-direction and
look at cell (i, j). If the velocity in the x-direction is positive, meaning that
the flow is going from left to right, we say that the left cell is the upstream
cell.

For the numerical approximation of the fluxes in (2.19), we will apply the
upstream principle to the coarse phase mobilities Λα. The direction of the
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flow of CO2 and brine determines the upwind cell. In our system, the up-
stream direction of the two phases must be determined independently. As
we can see from (2.18), the flow velocities depend on the mobility and the
total velocity U. If we assume that the total velocity U is known, the di-
rection of the velocity of one phase depends solely on the mobility of the
other phase. Therefore, if we know the upwind direction of one phase, we
can determine the other. We look at the one-dimensional case and study
the cells or columns in the x-direction, see Figure 2.9. We want to find
the flux across the interface between cell (i, j) and cell (i, j + 1). Defining

Figure 2.9: Diagram showing two adjacent columns in the vertical equilibrium
model, where ζi,j is equal to the top surface ζT evaluated at the centroid of cell
(i, j). The value of ∆b helps determine the upstream cell for the flux evaluations.

∆b = (ζi,j+hi,j)−(ζi+1,j+hi+1,j), where ζi,j is the depth of the top surface ζT
evaluated at the centroid of cell (i, j). Since the total velocity is known, we
can find the direction of one phase by evaluating ∆b · (U ·x). In our example
(Figure 2.9), the x-component of the velocity U is positive, meaning the total
flow is going from left to right and ∆b > 0. From the diagram it is clear that
the CO2 will move from left to right as it is the lighter fluid. A complete sum-
mary of the evaluation procedure is described in pseudocode in Algorithm 1.
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Algorithm 1: Pseudocode for upwind flux evaluation

if ∆b ·U ≥ 0 then
if U ≥ 0 then

Λc
i+ 1

2
,j

= Λc
i,j

else
Λc
i+ 1

2
,j

= Λc
i+1,j

end

if U + KΛc
i+ 1

2
,j

∆αρ
[
g(∇‖h+∇‖ζT ) + g‖

]
> 0 then

Λb
i+ 1

2
,j

= Λb
i,j

else
Λb
i+ 1

2
,j

= Λb
i+1,j

end

else
if U ≥ 0 then

Λb
i+ 1

2
,j

= Λb
i,j

else
Λb
i+ 1

2
,j

= Λb
i+1,j

end

if U + KΛc
i+ 1

2
,j

∆αρ
[
g(∇‖h+∇‖ζT ) + g‖

]
> 0 then

Λc
i+ 1

2
,j

= Λc
i,j

else
Λc
i+ 1

2
,j

= Λc
i+1,j

end

end

Source Term

The source term can be discretized as follows,

Q̃i,j = max(q, 0) + Fc min(q, 0),

where Fc is known as the fractional flow function which we recognize from
(2.16). Hence if we have a source, i.e., q is positive, then the amount of CO2

in the cell is increasing. If q is negative, we have a sink, and the amount of
CO2 that leaves the cell has to be scaled by the fractional flow.
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2.2.4 CFL Condition

To guarantee stability in explicit time integration schemes, it is important
that the numerical domain of dependence contains the physical domain of
dependence of the PDE. This restriction is known as the Courant-Friedrichs-
Levy (CFL) condition, and is applicable for any explicit finite volume or
finite difference method. In general, this condition ensures that information
propagates according to the physical speeds of the problem. These speeds
are directly correlated with the fluxes. It must be stressed that the CFL
condition only provides a necessary, and not sufficient, condition for stability.

Coats Time Stepping

Coats [13] derives a stability criterion for the IMPES method. The criterion
is suitable for multiphase flow in multiple dimensions and can be applied
to structured and unstructured grids. The time-step selector depends on
gravitational, capillary and viscous forces and takes into consideration all
possibilities of cocurrent and countercurrent flow configurations.

For the explicit part of IMPES, the conditional stability criteria for each cell
(i, j) takes the form

Ri,j∆t

V p
i,j

< 1,

where ∆t is the maximum stable time step and Ri,j is a function composed
by the reservoir and fluid properties. The global time step will be taken as
the minimum stable time step of the cells.

For simplicity, we will study the one-dimensional case. In 1D, Equation
(2.28) becomes

V p
i

∆t
(Sn+1

i − Sni ) = −
[
Fi+ 1

2
,j − Fi− 1

2
,j

]
. (2.29)

Since we are using an upwind method to approximate the fluxes F , we may
rewrite (2.29),

V p
i

∆t
(Sn+1

i − Sni ) = −
[
Fi+ 1

2
(Sni+1, S

n
i )− Fi− 1

2
(Sni , S

n
i−1)
]
,

emphasizing that the flux function depends only on the saturation values of
the two adjacent cells. For stability analysis, a constant-coefficient, linear
difference equation is needed. We introduce the error at step n as εni =



28 CHAPTER 2. BACKGROUND

Sni −S∗ni , where S∗ni represents the exact solution. The evolution of the error
in time can then be expressed:

V p
i

∆t
(εn+1
i − εni ) =

[
Fi+ 1

2
(S∗ni+1, S

∗n
i )− Fi+ 1

2
(Sni+1, S

n
i )
]

−
[
Fi− 1

2
(S∗ni , S

∗n
i−1)− Fi− 1

2
(Sni , S

n
i−1)
]
. (2.30)

Recognizing that Fi+ 1
2
(S∗ni+1, S

∗n
i ) = Fi+ 1

2
(Sni+1− εni+1, S

n
i − εni ), we can derive

the first terms of two Taylor series:
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Inserting these two expression into (2.30) gives
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By assuming locally constant derivatives, that is,
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=
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,

∂Fi− 1
2

∂Si
=
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2
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,

we have ai + ci = bi. We may also conclude that ai, bi, ci ≥ 0, seeing as
∂F

i+1
2

∂Si
≤ 0,

∂F
i− 1

2

∂Si
≥ 0 for all cases of cocurrent and countercurrent flow

[13]. Applying von Neumann stability analysis [38], results in the stability
condition

∆t

V p
i

(ai + bi + ci) ≤ 2

ai + ci ≤ bi.

Expressing this criteria in terms of the partial derivatives we get

∆t

V p
i

[
∂Fi+ 1

2

∂Si
−
∂Fi+ 1

2

∂Si+1

]
≤ 1.

We recall that for our equation, the flux function F is given in (2.18). Thus,
to calculate the term

∂Fi+ 1
2

∂Si
−
∂Fi+ 1

2

∂Si+1

,
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we must differentiate this equation. The partial derivative of Fi will be taken
with respect to the upwind cell. Consequently, one may suspect that the final
expression may differ for the four possibilities of cocurrent and countercurrent
flow. However, the final result holds for all four cases:

∂Fi+ 1
2

∂Si
−
∂Fi+ 1

2

∂Si+1

=
Λc

ΛbΛ
|Ub,i|Λ′b +

Λb

ΛcΛ
|Uc,i|Λ′c + K∆ρgΛb

Λc

Λ

2

∆x
. (2.31)

The same analysis can be applied for multidimensional flow, resulting in
additional contributions to Ri on the same form as (2.31).

2.3 GPU Programming

The explicit numerical scheme derived in the previous section has a highly
parallel character and is therefore well suited for a GPU implementation.
Implementations of explicit schemes for conservation and balance laws, such
as ours, have been found to benefit significantly from GPU acceleration [25,
39, 6, 8].

When the GPU was created, its main purpose was to improve the graphic
experience in game consoles. Within this wealthy industry there was a great
demand for powerful and inexpensive hardware that was highly parallel and
could offer high data throughput. The GPU architecture was built upon
these two properties to optimize graphics rendering. In the beginning, the
functionality was limited to accelerating the memory-intensive work of tex-
ture mapping and rendering polygons. In the early 2000’s, the programmable
shader was introduced, giving the user more control and abilities to manip-
ulate data. This trend continued, and as the GPU obtained more and more
CPU-like capabilities, in particular in the field of matrix and vector oper-
ations, scientists and engineers gained interest [48]. These new capabilities
made it possible to program algorithms for non-graphical applications on the
GPU, as long as they were suitable for parallelization. Since then the GPU
has been a key tool for accelerating scientific computations which require a
high number of computations.

2.3.1 Solving the Saturation Equation on the GPU

As outlined in the introduction, we intend to use the GPU to accelarate our
simulator. Two completed master projects have shown that sharp-interface
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CO2 simulators can be accelerated by means of a GPU [49, 19]. Thus, there
is strong reason to believe that this is the case for our simulator as well.

The meshes used for aquifer modelling are large and each time step requires
many computations per cell. This is especially true for the capillary-fringe
approximation, which involves multiple numerical integrations. Thus, we
have a very compute-intensive algorithm, which is ideal for GPU acceleration
if it can implemented in parallel. The numerical method we have considered is
based upon explicit temporal discretization. This means that each unknown
can be computed independently. In particular, each cell can compute its
coarse or vertically integrated values independent of its neighboring cells.
Consequently, the cells can be solved in arbitrary order, making an ideal
case for parallel computing. Since the solution is evolving in time, high
throughput is desirable and thus, GPUs are very well suited for the job.

2.3.2 Understanding the NVIDIA GPU

For our GPU implementation we target NVIDIA GPUs with its program-
ming platform named CUDA (Compute Unified Device Architecture) [46].
Starting with the basic terminology, the CPU and its memory are referred
to as the host and the GPU and its memory constitute the device. When
we make a program that is both serial (host) and parallel (device), we are
dealing with what is referred to as heterogeneous computing. This term refers
to a system that uses more than one kind of processor. A function running
on the device is a kernel. The kernel executes the same code on a large batch
of parallel threads, and each thread has its own ID so it can make control
decisions and access the right addresses. The key to CUDA’s efficiency is
that it can launch thousands of threads at the same time and thereby hide
latency. The platform is designed to give transparent scalability, meaning
that code written for systems existing today should be equally compatible
with the accelerated systems of the future. Whether CUDA lives up to this
ideal in practice is debatable.

Device Architechture

A GPU consists of several streaming multiprocessors (SM), each of these
contain a number of scalar cores or thread blocks. The individual thread
blocks either execute identical instruction sets or ”sleeps”. The instructions
are executed in groups of 32 threads called a warp, and there is a limit to
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the number of warps that can be active on each SM. This limit depends on
the device properties.

Memory Hierarchy

To be able to set up, and especially optimize, a GPU code, it is essential to
understand the CUDA memory model. The device memory has several layers
illustrated in Figure 2.10. On the bottom level, we have the thread specific or
local memory, which has the lifetime of the thread. On the next level, we have
the on-chip shared memory which is shared among many threads. The group
sharing this memory unit belong to the same thread block. This feature al-
lows cooperation between threads on the same block, which is advantageous
as the threads can share results, hence we can avoid computational redun-
dancy. The block-level cooperation also gives us the ability to synchronize
threads. On the top level, we have global or device memory which is accessi-
ble by all the threads. The shared memory is faster than the global memory
by an order of magnitude, and has about 20-30 times lower latency and ten
times higher bandwidth. This property is important to keep in mind when
building a CUDA application.
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Figure 2.10: Illustration of the CUDA memory model taken from NVIDIA [46].

Blurred Image Example

For a better understanding of how to utilize shared memory and to give
a pointer on how our code can benefit from it, we give a simple example.
To create a simple blurring effect on a black and white image, each pixel
is replaced by an average of the eight neighboring pixels. This is a very
parallel process and thus a perfect task for the GPU, where each thread is
assigned one pixel. A naive approach would be for each thread to import
the neighboring pixel values from global memory into its local memory and
compute the average. This means that each pixel value would be copied from
global to local memory nine times, which clearly is not very efficient. If we
instead make a domain decomposition where we divide the image into small
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square tiles that fit into shared memory, then each thread within the tile only
has to copy a single pixel value from global memory. All the pixels on the
edge of the tile will depend on pixels outside the tile, thus we add a halo of
pixels of length one outside the tile, see illustration in Figure 2.11. The halos
will be overlapping. Before the threads can start the average computation,
the threads must be synchronized.

Figure 2.11: Domain decomposition for blurred image computation on the GPU.
The image block in the shared memory is enlarged. The halo is marked in purple
and the pixel values required for blurring the encircled pixel are shown in pink.
The entire image is represented by the grid in the background.

2.3.3 Single versus Double Precision

From the beginning, the NVIDIA GPUs have emphasized single-precision
arithmetics. While most of the newer GPUs support both single- and double-



34 CHAPTER 2. BACKGROUND

precision, the double-precision comes with a big performance reduction. The
great speed tradeoff when using double-precision motivates the use of single-
precision whenever it is found to be sufficient.



Chapter 3

A Fully-Integrated VE
Simulator

We have established the mathematical framework and given an insight into
GPU programming in the previous chapter, and we can now begin to under-
stand the implementation. A presentation of the implementation will be the
starting point of this chapter. We will also test the accuracy of our implemen-
tation by running the simulator on a problem for which there is an existing
numerical solution. Next, we will approach the main question of this the-
sis, namely, to what degree do a sharp-interface and a capillary-fringe based
simulation differ? Lastly, we will evaluate the performance of our code; how
much are we benefitting from the GPU hardware? How large can the sim-
ulation domains be before we exhaust the GPU? Does our implementation
have an optimization potential?

3.1 Implementation

Keeping in mind that the capillary-fringe model, with full numerical inte-
gration, was unknown territory in terms of implementation, our initial focus
was simply to write a code that worked. Thus, some of the initial imple-
mentation choices concerning the numerical integrations might not be ideal.
The improvements that were made later, at a more mature stage, will be
elaborated in the optimization section.

35
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3.1.1 Outline of the Algorithm

The fully-integrated VE simulator can be divided into two main parts, the
MRST-co2lab pressure solver performed on the CPU and our saturation
solver, which is mainly comprised by a set of CUDA kernels running on
the GPU. Although the saturation solver is GPU based, it requires a C++
interface for data initialization, allocation and some transport which is run
on the CPU. Figure 3.1 shows the program flow, where the steps performed
on the CPU are marked in blue. As the yellow box indicates, the pressure
is not updated on every iteration, in agreement with the sequential splitting
method discussed in Section 2.2.1. The GPU sub steps, marked in purple,
represent the four kernels that form the GPU program.

Figure 3.1: Flow chart showing the steps of the simulator. The CPU part of the
implementation is marked with blue, while the part running on the GPU is marked
with purple. Each purple box represents a kernel on the GPU.

3.1.2 The GPU Program

The GPU implementation is inspired by the shallow water simulator made
by Brodtkorb et al. [6], which also aims at solving a PDE by implementing
an explicit finite-volume scheme on the GPU. Although the shallow water
simulator is more advanced due to a higher order scheme, it has many similar
components. In particular, the implementation of the flux and time-step
reduction kernels can be adapted to fit our scheme. On the GPU we will
always work on a rectangular domain, regardless of the shape of the physical
domain. This facilitates the domain decomposition required for the flux
kernel, see Figure 3.3. The program is implemented in single-point precision
to achieve higher performance. Because of the uncertainties in the underlying
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mathematical model and in the adaptation of the model to fit a numerical
scheme, the use of single precision is justified. We will revisit this topic in
Section 3.2.2, where the justification will become more clear.

Coarse Mobility Kernel

The first step of the saturation solver is the computation of the coarse mobil-
ities Λc and Λb for each cell. These are found by approximating the definite
integrals given in Equation (2.9). The numerical approximation is made by
applying the trapezoidal rule, i.e.,∫ h

0

sc(z
′)k(z′) dz ≈ 1

2

N∑
k=1

(z′k+1 − z′k)
[
sc(z

′
k+1)k(z′k+1) + sc(z

′
k)k(z′k)

]
.

The geological 3D data sets that we apply, which include the permeability
values k, have a very coarse resolution in the vertical direction. Typically
there are only 5 or 6 cells. Since the mobility integral includes a saturation
evaluation as well, we refine the cells in the initial 3D grid so that we can
use shorter subintervals (zk+1 − zk), allowing us to capture the variations in
saturation sc(z). We make the simple implementation choice of assigning one
thread to each cell. For each cell, the value of h is different. Thus, we have two
options for the choice of interval lengths in the trapezoidal method. We can
either have an equal number of intervals N , or equal interval lengths (zk+1−
zk), for all cells. We choose the latter approach, preserving the numerical
precision over the cells. However, this choice makes it difficult to get a good
computational load balance on the GPU. The threads on the GPU work in a
Single Instruction Multiple Data (SIMD) fashion, within the aforementioned
warps of 32 threads. Consequently, if there is divergent branching within a
warp, this will serialize the code. Thus, one should avoid different execution
paths inside a warp. In this kernel, the number of evaluations per thread
will be varying as N is varying, leaving many threads idle for long periods of
time. An illustration of this problem is shown in Figure 3.2.

3.1.3 Flux Kernel

In this kernel the flux Uc is computed. Because of the upwind-scheme, the
computation of the flux of one cell depends on the values of the adjacent cells.
For example, for the east face of the cell (i, j), we need information about
the cell (i+1, j) to determine which cell is upwind. This should be exploited.
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Figure 3.2: One-dimensional representation of the integration intervals for cells
within a warp. As we can see, the number of intervals and thus, the number of
computations for each thread, is varying. All threads within this warp have to
wait for thread (i, j) to finish.

Along the same lines as the blurred image example given in Section 2.3.2, we
make a domain decomposition of our global domain into smaller overlapping
rectangular subdomains, where the pixels have been replaced with cells. A
visualization is given in Figure 3.3. Since we have a stencil with a radius
of one, each subdomain needs a local halo of one cell. Each subdomain is
assigned to a group of threads belonging to the same block, where each thread
is assigned one cell. For each cell, there are four fluxes to compute; north,
south, east and west. However, since the cells share faces, we choose to only
compute the northern and eastern fluxes, saving computational effort.

To better understand the implementation we divide our local grid into two
layers: block and tile, see explanation in Figure 3.3. Each thread in the same
block loads the data of its cell from the global memory and stores it in the
shared memory, so that these values are available to all the threads in the
block. Based on the data now residing in the shared memory, each thread
in the inner region can determine the upwind cell. Once the upwind cell is
found, the flux and the maximum time step for this cells’ face are computed.
By Coats [13], the time-step computation also depends on the upstream
cell. We reuse the shared memory previously used to store the total flux U
to minimize the shared memory use per block. After the fluxes have been
computed, the next step is for each cell to perform the spatial discretization,
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Figure 3.3: Global domain with halo and subdomain with local halo represented
graphically. The yellow dots show the flux computations required for one cell. The
subdomain is divided into two layers; the tile, which is the inner region, marked
in light purple, and the block, which is the entire subdomain. All cells in the tile
region are able to compute their fluxes based on the information of the cells in the
block.

that is, compute the value Li,j for insertion into the time integration scheme
(2.28). The final step of this kernel is a local time-step reduction. The
maximum time step of each cell is collected in a shared memory block and
we perform a local reduction. The resulting single time step value is then
stored in an array residing in global memory.

3.1.4 Time-Step Reduction Kernel

This kernel performs a reduction on the global array consisting of the local
time-step values collected from each of the thread blocks, as described in the
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previous section. The reduction algorithm outlined in the NVIDIA guide
[27], was implemented with small modifications.

3.1.5 Time Integration Kernel

In this kernel we evolve the time step. The computed Li,j values and the
coarse saturation values Snc of the preceding time step, are imported from
global memory. We then perform the Euler time integration using the time
step computed in the reduction kernel, to obtain the new coarse saturation,
Sn+1
c . Before proceeding to the next iteration, we need to compute the new

interface height hn+1. We will consider three different algorithms for the
computation of this quantity: a ”brute force” method, Newton’s method
and the bisection method .

Brute Force

In Section 2.1.4, we saw that the coarse saturation and the interface height
are related by the integration equation (2.12). Our unknown h is in the upper
integration limit and also a part of the integrand sc(z),

sc(z) = 1− sb,cap (pcap,i + g(ρc − ρb)(z′ − h))) .

To make the integrand independent of h, we make a change of variables
z̃ = z′ − h, which gives the following integral

Sc =
1

H

∫ h

0

1− sb,cap (pcap,i − gz̃(ρc − ρb)) dz̃. (3.1)

To compute h, we once again apply the trapezoidal rule. We keep integrat-
ing until the trapezoidal sum reaches the value of Sn+1

c , starting with coarse
intervals and refining when we get close. The idea behind this procedure
is described in pseudocode in Algorithm 2, where we have left out the re-
finement step, which is constructed in a similar manner. This kernel is also
subject to a performance penalty caused by bad load balancing between the
threads.
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Algorithm 2: Pseudocode for computation of the new interface height hn+1.

sum = 0
z̃ = 0
dz = interval length
previous sc = computeSaturation(z̃)
while sum < H · Sn+1

c do
z̃ = z̃ + dz
current sc = computeSaturation(z̃)
sum = sum+ 0.5 · dz · (current sc + previous sc)
previous sc = current sc

end

hn+1 = z̃

Newton’s Method

Another alternative is to apply Newton’s method, which is a derivative-based
root-finding algorithm. We can reformulate our problem as a root-finding
problem, F (h) = 0,

F (h) = Sc −
1

H

∫ h

0

sc(z̃) dz̃, (3.2)

F ′(h) = −sc(h)

H
,

where the integral in F (h) is evaluated using the trapezoidal rule. Newton’s
method is then defined as follows,

hi+1 = hi −
F (h)

F ′(h)
. (3.3)

The convergence rate of Newton’s method is highly dependent on the starting
point h0. Thus the initial guess must be chosen carefully. One strategy is to
use the h from the previous time step hn as the first guess, as for most cells
the interface height h will not vary to much between consecutive time steps.

Bisection Method

The bisection or interval halving method is a reliable, but relatively slow,
root-finding method for a function F (h). It is the simplest and slowest mem-
ber of the group of bracketing methods. The idea is that one starts with an
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interval [a, b] for which F (a) and F (b) have opposite signs. By the interme-
diate value theorem, there must be at least one root between a and b. The
bisection method then evaluates the function F at the midpoint c = (a+b)

2
.

Depending on the sign of F (c), the search interval is cut in half. If F (c)
and F (b) have opposite signs, the root belongs to the subinterval [c, b], while
if F (c) and F (a) have opposite signs, the root belongs to the subinterval
[a, c]. This procedure is repeated until one reaches the desired accuracy. If
the initial interval [a, b] is big, the method requires many iterations to reach
convergence as it only gains one ”bit” of accuracy per iteration.

For the initial implementation, we choose the method outlined in Algorithm
2 to solve for the updated interface height hn+1, but we will revisit both New-
ton’s method and the bisection method in the optimization process described
in Section 3.3.2.

When h exceeds the cell height H

If CO2 starts filling the whole cell, the height of the capillary interface h
will exceed the full height of the formation H, meaning that the capillary
fringe is disappearing. Thus, the value h no longer has the same physical
interpretation as before. When this happens, the numerical integrations
performed in the coarse mobility kernel and in the time integration kernel
need to be adjusted. For the former kernel, the adjustment is simply setting
the upper integration limit to max(h,H), for the latter kernel it is more
complex because of the change of variables made in (3.1). With the new
variable z̃, the integration path starts with the capillary fringe, i.e., at the
point where sc = 0. For the brute-force approach, we need to shift the
integral when h exceeds H, see Figure 3.4. Following the figure, we see that
when we reach z̃ = H, we need to cut off some of the initially integrated
values shown in red, while continuing to integrate the blue part. This way,
the ”while” condition in Algorithm 2 is evaluated to be true for the correct
hn+1 = z̃ value. For Newton’s method and the bisection method, we keep
the expression given in (3.2) for hi ≤ H, while for hi > H we get

F (h) = Sc −
1

H

∫ h

h−H
sc(z̃) dz̃,

F ′(h) = − 1

H
(sc(h)− sc(h−H)) .
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Figure 3.4: Illustration of the necessary shift so that Algorithm 2 finds the correct
z̃ = hn+1 corresponding to the updated saturation Sc

n+1. The rectangles show
the integration area. In the left figure we have the actual CO2 distribution with
the correct h. In the middle we see that when there is no shift, the numerically
computed h values will be incorrect. On the far right we have the shift solution,
where the red area is cut off and the blue area is added. The thick black line
represents the capillary fringe, see Figure 2.3.

Cells Outside the Domain and Boundary Cells

Since we are bound to a rectangular domain, there will usually be many cells
outside the actual domain, see the illustration in Figure 3.5. These cells will
be marked by a zero height H. In the initialization step we identify all sub-
domains in which none of the cells belong to the actual domain. By creating
a grid mask, we make sure that no thread block is assigned to these dead
sub-domains. We will use a no-flow boundary condition, which means that
no fluid is allowed to leave the domain. This means that for all cell faces on
the boundary, the fluxes are set to zero.

Data Movement and Communication Between the CPU and the
GPU

The transfer speed or bandwidth between the GPU and the CPU is, by far,
the slowest and is a potential bottleneck for the overall system performance.
Therefore we wish to minimize this data transport as much as possible by
keeping all intermediate data on the GPU. This means that parts of the code
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Figure 3.5: The real aquifer domain versus the rectangular GPU domain.

that exhibit low parallelism, and would run just as fast on the CPU, are run
through kernels on the GPU to avoid data transfer. With this in mind, the
geological reservoir data and the variables are first initialized on the host
and then copied over to the device, where they remain throughout the entire
computation. There are two repeated data movements between the host and
the device through the course of a simulation: the time step, taking place
at every iteration, and the interchange of the pressure p and the interface
height h between the pressure and saturation solvers, taking place at every
”outer” iteration, see Figure 3.1.

3.2 Numerical Results

For the main part of our results we use the Johansen formation as our test
case. The Johansen formation is located offshore the south-west coast of
Norway and has been considered a potential site for large-scale CO2 storage.
The reason for selecting this test case is that there exists a geological model
based on available seismic and well data. This model has been developed as
part of the MatMoRA project, and has been published online by SINTEF
[50]. There have been several simulation projects revolved around this model,
see for example [18, 20, 22].

The top part of Figure 3.6 depicts the shape of the Johansen formation.
We can observe that there is a large fault in the left part of the formation.
This means that there will be no flow across the fault line, which must be
taken into consideration in the implementation. The bottom part shows the
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permeabilty distribution. In Figure 3.7, the thickness of the formation is
shown as a surface plot in 2D. Note the orientation of the formation in this
plot. We will keep this orientation in all subsequent 2D plots. This plot also
demonstrates the Cartesian grid which we are using, with 81× 100 cells.

3.2.1 General Description of Simulation Set-Up

We will simulate the early migration phase of a CO2 plume with a single
injection point. The CO2 injection well will be placed in the top layer of
the formation, close to the fault, at the coordinate (51, 51) indicated by a
red line and a red square in Figures 3.6 (bottom) and 3.7, respectively. The
injection period will last for TI = 100 years, unless specified otherwise. The
rate of injection of supercritical CO2 is set to 1.4 · 104m3 per day. The
migration period, TM , will be varying. We let the totalt time be denoted
by TT = TI + TM . The pressure is updated at even intervals by the MRST
pressure solver. Values for some of the constant parameters are given in
Table 3.1.

Table 3.1: Values for various constant parameters applied in the simulation.

µb µc ρb ρc sb,res sc,res keb kec
(cP) (cP) (kg/m3) (kg/m3) - - - -

0.3086 0.057 975.86 686.54 0.1 0.2 0.85 0.2142
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Figure 3.6: The Johansen formation. In the top figure, the shape of the formation
is plotted. The values on the colorbar indicate the depth in meters. On the bottom,
the permeability distribution is plotted in the unit millidarcy. The injection point
is indicated by the red line.
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Figure 3.7: Illustration of the thickness distribution of the Johansen formation.
The values on the colorbar show the thickness in meters. The fault in the reservoir
is marked by the long black line, while the injection point is indicated by the red
coordinate.
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3.2.2 Verification of Simulator

To verify that the fully integrated GPU simulator is working correctly, we
modify it so that it represents a sharp-interface model. We then compare
the results with the MRST-co2lab sharp-interface simulator, where we have
disabled the hysteresis. This particular simulator has been applied to the
Johansen formation in an article by Ligaarden and Nilsen [35]. In this paper,
a similar study is presented, where they make a comparison between a sharp-
interface model and a full 3D model.

To convert the capillary-fringe model into a sharp-interface model, we make
the following modifications

• Set the constant C in the expression for the relative permebility (2.23),
equal to zero. We refer to Figure 2.7 illustrating that this conforms
with a sharp-interface model.

• Set the permeability k‖ along the z-direction to a constant value, k‖(z) =
K
H

, i.e., the average permeabilty.

To provide a solid verification, we let the MRST simulator run for TI = 100
years with injection followed by two years of migration, TM = 2 years. This
assures that we have many cells filled with CO2 at varying levels. The data
is then used to initiate the GPU simulator and we let the two simulators run
up to TT = 130 years with identical time steps. The time-step computation
is based on Coats [13] and is performed in MRST, where the time step has
been scaled by a CFL coefficient of 0.5. The pressure is updated every two
years.

From the plots in Figure 3.8 we see that before starting iterations on the
GPU, the lower floating-point precision of the GPU solver is evident. In the
right plot we have an absolute error e ∼ 10−1, and on the left we have plotted
the volume of the CO2 columns ∼ 106. Thus, the relative error is of order
er ∼ 10−7, which is reasonable as the MRST solver is using double precision,
while the GPU is limited to single precision. In Figure 3.9 we see that the
error increases slowly with time, and after 43 time steps the relative error is
around er ∼ 10−6, which is still acceptable.

Time Step Sensitivity

When running the two simulators with the sharp-interface approximation
from time TT = 0 to TT = 100, i.e., the full injection period, the relative
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Figure 3.8: Surface plot showing the volume of the CO2 columns at TT = 102
years on the left. On the right, absolute difference between the volume of CO2 in
the MRST solver and the GPU solver at TT = 102 years, before any iterations on
the GPU.

Figure 3.9: Absolute difference between the volume of CO2 in the MRST solver
and the GPU solver. On the left, after three timesteps, TT = 104, and on the
right, after 43 time steps, TT = 130.

error turned out to be quite large. In this test the time steps were computed
independently by Coats formula in the two simulators. In the top left plot in
Figure 3.10 we see that the absolute error or discrepancy is e ∼ 400 in some
cells. In these cells the volume of CO2 ∼ 105, thus we have a relative error
(discrepancy) er ∼ 10−3, which is quite large. The error distribution also has
a special geometric shape, as opposed to the ”salt-and-pepper” distribution
in the preceding plots. On the right, we have plotted the real error. We
see that there is an inner circle around the injection well where the GPU
simulator overestimates and an outer circle where it underestimates. After
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further investigation, we find that this tendency starts at TT = 60 years,
after 96 time steps, see the bottom plot in Figure 3.10. This coincides with
the point at which the size of the time steps start differing. Before we reach
TT = 58 years, the relative difference between the time steps in the two
simulators is ∼ 10−6. After this point the GPU simulator computes larger
time steps, which differ from the MRST time steps by an order of er ∼ 10−3.
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Figure 3.10: On the top, absolute difference (left) and real difference (right) be-
tween the volume of CO2 in the MRST solver and the GPU solver after TT = 100
years. On the bottom an equivalent plot at TT = 60 years.

Even though the total integration time TT is the same, the size of the time
step seems to have an impact on the result. We try to confirm this hypothesis
in two ways. First, we run the same simulation with identical time steps,
resulting in an error of ∼ 10−6. The results are shown in Figure 3.11. Second,
we run the MRST simulator with varying CFL-coefficient and investigate the
effect. Referring to Figure 3.12 (left), where we have visualized the result
of adjusting the CFL-coefficient from the initial 0.50 to 0.49, we observe the
exact same geometrical pattern as in Figure 3.10. We have also plotted the
maximum relative error as a function of the CFL coefficient in 3.12 (right).
Clearly the simulator is sensitive to variations in the time step size. An
important question then is ”why do the two simulators compute different
time steps in the first place?” At the critical point, TT = 58 years, MRST
finds the minimum time step in a cell with Λc = 10−15, that is, a cell with
a very small amount of CO2. Because of the reduced precision, no CO2 has
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reached this cell in the GPU simulator and by Coats formula [13] it will not
contribute to the time step. Hence, the GPU simulator will find a minimum
time step in a different cell, with a value that is larger than this.

Figure 3.11: Absolute difference between the volume of CO2 in the MRST solver
and the GPU solver starting from TT = 0 to TT = 100, run with identical timesteps.

Figure 3.12: On the left, absolute difference between the volume of CO2 when
MRST is run with two different CFL coefficients, 0.50 and 0.49. The total simu-
lation time is TT = 100. On the right, the maximum relative error is plotted for
varying CFL numbers for the same simulation set-up. The two plots confirm that
variations in the time step has an impact on the simulation results.
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Comments on the Verification Procedure

The verification made above gives a good indication that the numerical
scheme is implemented correctly on the GPU, which is not a given, and
also demonstrates the impact of using single-precision. However, it does not
provide a solid verification with respect to the accuracy of the problem the
simulator is intended to solve. As an example, consider the accuracy of the
numerical integrations. When we evaluate the coarse mobilities and solve
for the updated h by performing numerical integration on a sharp-interface
model, the achieved accuracy will be independent on the the number of
subintervals or evaluation points. The only thing that matters, in terms of
accuracy, is that the last subinterval has the right length ∆z, see Figure
3.13. Therefore, increasing or decreasing the number of evaluations or ap-
plying more accurate numerical quadratures will have no effect. Thus, to
evaluate the accuracy of the numerical integration procedures, a different
type of comparison must be made. We will leave this analysis for future
work.

Figure 3.13: Illustration of the trapezoidal rule for integral approximation applied
to a capillary-fringe model (left) and a sharp-interface model (right). For the
capillary-fringe model, the size of ∆z affects the numerical accuracy, while for the
sharp-interface model, the only thing that will affect the accuracy is the length of
the last interval ∆zN .
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3.2.3 Sharp Interface and Capillary Fringe Compari-
son

Now that we have verified our implementation, we can start investigating
the differences between a sharp-interface and fully-integrated or capillary-
fringe model. From now on all sharp-interface simulations will be run by
MRST-co2lab, while the capillary-fringe simulations will be performed by
our GPU simulator.

In our tests we let the migration period last for TM = 400 years. For the
presentation of the results we have chosen to plot the saturation distribution
of CO2, which lies in the range [0, 1− sb,res] = [0, 0.9], as this range is more
intuitive and gives a better indication of the spread. In Figure 3.14 we see
the result of running this simulation with a sharp-interface model with con-
stant or averaged permeability. The black stapled box indicates the area of
the domain which we will focus on in the comparisons. We will run many
different versions of the capillary-fringe model where we vary different pa-
rameters, such as the permeabilty and the fine-scale functions, to highlight
the strengths and weaknesses of the sharp-interface model.

The tests will be divided into two main groups. In the first one, the mobility
approximation is a linear function of saturation, while in the second group
it is cubic. The different test scenarios are given in Tables 3.2 and 3.3.

Capillary Fringe with Linear Mobility

For our linear mobility simulations, we use the Corey relative permeability
approximation introduced in Section 2.1.6, where the exponents Nc and Nb

are set to 1, such that λc ∝ sc. The different simulation runs with linear
mobility are summarized in Table 3.2 and the corresponding plots are given
in Figures 3.15 and 3.19.
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Figure 3.14: CO2 saturation distribution for the sharp-interface simulator run for
TT = 500 years.

Table 3.2: An overview of the different simulator test cases run with linear mobility.

Simulation Permeability Fine-scale Capillary Pressure
Model Description

1 constant Brooks-Corey Eq. (2.23) with C = 0.1g∆αρH
2 constant Brooks-Corey Eq. (2.23) with C = 0.4g∆αρH
3 constant Leverett J Eq. (2.25) with σ cos(θ) = 50mPa
4 varying Brooks-Corey Eq. (2.23) with C = 0.1g∆αρH
5 varying Brooks-Corey Eq. (2.23) with C = 0.4g∆αρH
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Figure 3.15: Sharp-interface simulator versus the capillary-fringe simulator with
linear mobility, when running for TT = 500 years. The plots show the difference in
CO2 saturation between the two simulators, i.e., SSI

c − SCF
c . From top to bottom

we have simulations 1-3 whose descriptions are given in Table 3.2. The right plot
on the bottom shows the distribution of K

φ .
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Capillary Fringe Effect For the simulations run with a constant or aver-
aged permeability, we see that the capillary fringe has an impact. The results
are shown in Figure 3.15, where the difference between the sharp-interface
(SI) model and the capillary-fringe (CF) model is plotted, i.e., SSI

c −SCF
c . In

the two top plots we see that the effect of the capillary fringe increases with
the parameter C. This is expected as C is proportional to the length of the
capillary fringe. In the bottom plot, the Leverett J approximation (left) is
plotted alongside a surface plot of K

φ
(right). The areas where the variation

in K
φ

is strong, such as the dark blue area, are reflected in the saturation
distribution. Thus, the Leverett J relative permeability approximation cap-
tures the rock properties of the formation, as intended. Also, if we look at
the magnitude of the discrepancy, our capillary-fringe hypothesis fits well
with the Levrett-J result. In Figure 2.7 we see that the Levrett-J capillary
fringe lies right between the other two.

With regards to the shape of the plots, the capillary fringe model seems
to spread the CO2 more out. The difference plots in 3.15 have a negative
blue contour indicating that in the periphery there is a higher level of SCFc .
How can we explain this difference in the migration pattern? If we study
two identical cells with equal coarse saturation Sc, the height h will differ
between the two models. This is depicted by the curves in Figure 3.16.
The interface height h of the capillary fringe model will always be higher,
meaning that the CO2 in this cell will be mobile at lower depths. Depending
on the topography of the formation, this may affect the results. To better
understand the influence of the topography, we recall Figure 2.9 from the
theory on upstream mobility weighting in Chapter 2. The flow between two
adjacent cells was dependent on the length ∆b = (ζi,j+hi,j)−(ζi+1,j+hi+1,j),
where ζi,j was the depth of the top surface ζT evaluated at the centroid of
cell (i, j). If the depth ζi,j + hi,j in a CO2-filled cell is lower than the depth
of the top surface in the adjacent cell, the CO2 will not flow there.

To demonstrate that this effect is present in our case, we study a 1D snapshot
of simulation 2 at an early stage, see Figure 3.17 (top). Because of the
”parabolic” shape of the top surface caused by a fold in the formation, the
sharp-interface CO2 becomes trapped, limited by its short h-value. This
type of geological structure is referred to as a structural trap. In Figure 3.17
(bottom) we show an extension of the same 1D intersection at a later point in
time, where the same situation is occurring on the left. We also observe that
on the right side, the capillary-fringe model has migrated further as a result
of the structural trapping observed in the first snapshot. Thus, every time
the CO2 comes across this type of top-surface curvature, the sharp-interface
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model will decelerate migration. In conclusion, for simulation scenarios with
undulating topographies, in which the mobility is estimated to be linear, the
sharp-interface model will underestimate the CO2 migration radius.

Figure 3.16: Saturation distribution for the capillary-fringe model and the sharp-
interface model with equal coarse saturation, SCFc = SSIc = 0.6. For the former
model, the height h ≈ 80, while for the latter h ≈ 60.



3.2. NUMERICAL RESULTS 59

Figure 3.17: 1D intersection of the formation at x = 48, which is very close to the
injection point, (51, 51). The vertical axis shows the actual depth below the surface
in meters. The two beige lines indicate the top and bottom of the formation. Here
we study simulation 2 where the snapshots are taken at TT = 6 years (top) and
TT = 80 years (bottom). The stapled frame indicates the location of the top plot.
In both images, the smaller sharp-interface h inhibits migration past folds in the
top surface.



60 CHAPTER 3. A FULLY-INTEGRATED VE SIMULATOR

Varying Permeability versus Constant Permeability The MRST

-co2lab sharp-interface simulator also supports permeability integration.
This feature is designed to capture vertical permeability variations, while
still ignoring the vertical saturation variations. We can evaluate this fea-
ture by running this version of the sharp-interface simulator alongside the
capillary-fringe simulator with varying permeability. In Figure 3.18, we see
the saturation distribution of the sharp-interface simulator with permeability
integration. This plot is not distinguishable from Figure 3.14 with the naked
eye, but there is a difference. The comparison plots given in Figure 3.19 im-
ply that the sharp-interface simulator succeeds in capturing the permeability
variations. In the left part of the figure we see the difference between the
two models when varying permeability is taken into account. These plots
resemble the plots in Figure 3.15. On the right, we see the difference when
the permeability integration is disabled in the sharp-interface model. Here
the discrepancy between the two models is much greater. This weakness of
the permeability-averaged sharp-interface model was also found in the study
by Ligaarden and Nilsen [35].

Figure 3.18: CO2 saturation distribution for the sharp-interface simulator with
permebility integration. The simulation is run for TT = 500 years.
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Figure 3.19: Sharp-interface simulator versus the capillary-fringe simulator with
heterogeneous vertical permeability distribution. The plots show the difference in
CO2 saturation between the two simulators SSI

c −SCF
c , after running for TT = 500

years. The top and bottom figures show simulations 4 and 5, respectively, whose
descriptions are given in Table 3.2. On the left, both simulators are run with
varying permeabililty. On the right, only the capillary-fringe model is run with
varying permeability.

Capillary Fringe with Cubic Mobility

We continue with the Corey approximation for relative permeability, but
now we apply the cubic form, thus λc ∝ s3

c . The various simulation runs are
summarized in Table 3.3. For this case, the dissemblance between the two
models is a lot greater and the main differences can be identified without
plotting the difference, see for example Figure 3.20 where we have plotted
simulation 7. From this plot we see that the coarse saturation distribution
is more smudged and the spread has a slightly smaller radius. For a more
quantitative inspection, the difference between the two models SSI

c − SCF
c , is

given in Figure 3.21. On the left, two cases of Brooks-Corey with constant
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permeability (simulations 6 and 7). The small frames on the right show the
corresponding simulations with varying permeability (simulations 9 and 10).
These frames are almost identical, confirming our earlier observation with
regards to the validity of the permeability integration option in MRST. This
figure also shows that not only the pattern of the cubic mobility simulation is
different, but also the magnitude. Here the difference is quite large, around
0.25 at the most (outside the colorbar), compared to 0.09 for the linear
mobility in Figure 3.15.

In contrast to the linear-mobility simulations, the CO2 in the cubic-mobilty
simulation migrates less than the sharp-interface CO2. Near the injection
point there is a dark blue negative area indicating that the SCFc level is much
higher here. We will attempt to explain this phenomenon in the following
paragraph.

Table 3.3: An overview of the different simulation test cases run with cubic mo-
bility.

Simulation Perm. Fine-scale Capillary Pressure
Model Description

6 constant Brooks-Corey Eq. (2.23) with C = 0.1g∆αρH
7 constant Brooks-Corey Eq. (2.23)with C = 0.4g∆αρH
8 constant Levrett J Eq. (2.25) with σ cos(θ) = 50mPa
9 varying Brooks-Corey Eq. (2.23) with C = 0.1g∆αρH
10 varying Brooks-Corey Eq. (2.23)with C = 0.4g∆αρH



3.2. NUMERICAL RESULTS 63

Figure 3.20: Capillary-fringe simulator run with cubic mobility. Here we show the
coarse saturation distribution for simulation 7 after TT = 500 years. More details
on this simulations is given in Table 3.3.
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Figure 3.21: Sharp-interface simulator versus the capillary-fringe simulator with
cubic mobility. The plots show the difference in CO2 saturation between the two
simulators, that is, SSI

c − SCF
c , after running for TT = 500 years. The left frames

show simulations 6 and 7, where the permeability is kept constant. The right
frames show their variational permeability counterpart (simulations 9 and 10).
More detailed descriptions of these simulations are given in Table 3.3.

Linear Mobility versus Cubic Mobility From the results above we can
draw some important conclusions. The extent of the capillary fringe has a big
influence on the results. It appears that the magnitude of any discrepancy
between the two models scales with the height of the capillary fringe. Thus,
when the fringe is high, the sharp-interface approximation is quite poor. An-
other interesting observation is that the cubic and linear mobilities produce
different results. This can be explained by looking at the relative permeabil-
ity as a function of the two different saturation distributions: Brooks-Corey
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and sharp interface. We recall Figure 3.16 where we plotted the saturation
distribution for the two different simulators with equal Sc. In Figure 3.22,
these distributions serve as input to cubic and linear permeability functions.
For the sharp-interface distribution, the relative permeability curve will be
the same, regardless of the exponent of the relative permeability function.
For the Brooks-Corey saturation distribution, on the other hand, the expo-
nent has an impact. The rate of motion for the CO2 is controlled by the
upscaled mobility Λc. The upscaled mobility is proportional to the vertical
integral of the curves in this figure, see Equation (2.9). Clearly, if we integrate
curve 1 along z′, this quantity will be smaller than the reciprocal integrals
for curves 2 and 3. Based on the plots on the left in Figure 3.21, the effect of
this reduced mobility seems to be critical for the cubic-mobility simulation.
It leads to a reduced migration distance in some regions, particularly on the
left half of the plots, where there is a positive area. Contrary, in the upper
right corner of the plots, close to the coordinate position (52, 58), there is
a small area where it seems the capillary-fringe CO2 has migrated further.
For further insight we inspect the topography in this region. In Figure 3.23
we have plotted an intersection of the final result at x = 52. The situation
presented in this plot is familiar, underneath the fold the coarse saturation
is approximately equal for the two models. However, because of the greater
h-value corresponding to the capillary-fringe model, the CO2 is free to ad-
vance further. Thus, when the mobility is estimated to be on a cubic form, it
is difficult to determine whether the sharp-interface model will overestimate
or underestimate the spread of CO2. The only thing we can say for sure is
that if we have a flat surface, then sharp-interface modelled CO2 will drift
further away from the injection point.
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Figure 3.22: The sharp-interface (s.i.) and capillary-fringe (B-C) saturation dis-
tributions plotted in Figure 3.16 serve as input to linear and cubic relative per-
meability functions. For the expressions of these functions, we refer to Equation
(2.21), derived in the mathematical background chapter, where the exponents are
set to 1 and 3. If curves 1 and 2 are integrated along the z′ axis, the result is the
same. For curve 3 the result will be smaller.
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Figure 3.23: On the left, a 1D intersection of the formation at x = 52. The
location is indicated by the stapled black line in the right plot, which is a replicate
of the coarse-saturation plot in 3.21. The vertical axis shows the actual depth
below the surface in meters. The two beige lines indicate the top and bottom
of the formation. Here we study simulation 7 at the end of the simulation when
TT = 500. The shorter sharp-interface h inhibits migration when the top surface
is undulating.

3.3 Performance Evaluation

A direct comparison of the runtimes of the MRST solver and the GPU solver
is a bit like comparing apples and oranges, with respect to performance.
First of all, the two solvers do not solve the exact same problem as they
apply different models and use different grids. The MRST uses an unstruc-
tured grid as opposed to the structured Cartesian grid applied in the GPU
implementation. Secondly, they are implemented in two quite diverse pro-
gramming languages. CUDA/C++ is a low-level language that generates
relatively optimized machine code, while MATLAB is a high-level language
which, in general, comes with a performance penalty. Lastly, they apply
different levels of floating-point precision. However, for practical purposes, a
rough runtime comparison is useful. If we run a simulation of 250 time steps
and isolate the execution time of the saturation solvers, the times are 0.60s
for the unoptimized GPU solver and 4.4s for the MRST solver. Thus, with
the help of GPU-acceleration we can simulate a more advanced model within
a smaller time frame. The Johansen grid, with the domain size of 81× 100,
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is a relatively small grid in terms of the GPU capacity and we expect even
greater performance gains for larger grids. We will look deeper into this in
the next section, where we will discuss the absolute performance of the GPU.

3.3.1 Absolute Performance

To fully exploit the GPU’s computational capabilities, the domain needs
to be of a certain size. By studying the absolute performance for different
domain sizes in terms of cells, we can determine this size. For the absolute
performance and optimization testing we will use the Utsira formation, which
has been a CO2 injection site since 1996. A visualization of the formation
is given in Figure 3.24. For more details on the geological properties of the
formation and the ongoing CO2 storage project, we refer the reader to [36, 5].
The data set we are using is taken from the CO2 storage atlas distributed by
the Norwegian Petroleum Directorate [17, 26]. The formations in this atlas
are typically much larger than the Johansen formation.

The Utsira allows for large domains in terms of cells, which is ideal for
performance testing. We place 15 wells at different locations and let them
inject CO2 into the formation for TI = 200 years followed by TM = 800 years
of migration, before running the tests. This scenario with 15 wells placed
at random is perhaps not very realistic, but it ensures that the GPU has
a sufficient workload. In Figure 3.25 we see the saturation distribution of
the Utsira formation at TT = 1000 years. As we can see, at this point, the
majority of the cells contain CO2, which is our intention.

The maximum resolution supported by the Utsira data set is 219 × 840.
To obtain models with higher resolution, we interpolated the data from the
biggest Utsira data set in MATLAB. However, when we reached a domain
size that exceeded 418× 1680 MATLAB ran out of memory. Our solution to
this problem was to tile replications of the Utsira domain. An example of the
replicated grid is given in Figure 3.26. This domain is clearly not realistic,
but it serves for our purpose of absolute performance testing, where our main
concern is the number of cells that the GPU can process.
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Figure 3.24: Plot depicting the shape of the Utsira formation. The colorbar indi-
cates the depth below the surface.

Figure 3.25: CO2 distribution for the Utsira formation after injecting CO2 for 200
years followed by 800 years of migration. There are 15 different injection points.
This will be the basis case for the performance testing.
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Figure 3.26: An example of a replicated Utsira grid used to create large domains
required for the absolute performance testing.
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In Figure 3.27 we have plotted the absolute performance for increasing reso-
lution of the Utsira formation. It is clear that for small domains the GPU’s
processing capabilities are not exploited. When we hit a domain size of
2400 × 600 ≈ 1.6 million cells, the graph stabilizes and we have hit maxi-
mum performance. At this point we manage to occupy the GPU hardware
fully and overheads become insignificant. The absolute performance results
prove that with the GPU we can simulate on large aquifers with acceptable
resolution. Note that although the rectangular grid size is 2400 × 600, the
actual number of active cells is lower since, as we can see in Figure 3.25, the
physical domain is not rectangular.

Figure 3.27: Absolute performance for the Utsira test case with fifteen wells shown
in Figure 3.25. We run the simulator for 200 time steps and report the GPU time.
We see that at 1.6 million cells, we hit the peak performance.

Hardware Specifications

For the testing we ran our simulator on a NVIDIA Tesla k20 graphics card.
This GPU has a peak single precision floating point performance of 3.52
Tflops and the core clock runs at 706 MHz. The memory bandwidth is 208
GB per second and the total number of CUDA cores is 2496 divided among
13 streaming multiprocessors. It has a reasonable sized global memory of 4.7
GiB.
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3.3.2 Optimizing Performance

The objective of this thesis was first of all to make a GPU simulator that
could perform the complete vertical integration, but secondly, it was also a
priority to achieve good performance. Although our simulator outperforms
the MRST-co2 simulator, this does not mean that our code is optimal. Even
an elementary GPU implementation of a parallel problem will likely increase
performance. In this section we will discuss the optimization potential and
the optimzation effort made on our GPU implementaion. Central points will
be how we identified the performance bottlenecks and how we adressed the
associated problems. Optimizing a parallel program is not a trivial task, and
the intricate GPU architecture does not make it easier. It is important to
ensure that the parallel algorithm is efficient before turning to GPU-specific
optimizations. If say, the algorithms we apply are not well balanced with
respect to parallelism, then tuning the GPU will not make much difference.

When making GPU-specific optimization we need to think about memory
with respect to location and access patterns as well as transfers. At the same
time we have to expose as much parallelism as possible, not only within the
GPU hardware, where both thread level and multiprocessor level need to
be taken into account, but also between the CPU and GPU. For the ker-
nels, there are three main factors that affect the performance: instruction
throughput, memory throughput and latencies. NVIDIA provides a perfor-
mance profiling tool called Visual Profiler. This tool analyzes the code and
provides many performance metrics, giving a great insight to the application
and helps identify performance bottlenecks.

Kernel Work Division

The first step for code optimization is to identify which kernels take up the
majority of the computational time. There is no sense in spendig great
optimization effort on a kernel which is responsible for 1% of the execution
time. The results provided by Visual Profiler, given in Table 3.4, show that
the time integration kernel is dominating. If we study the work division of
comparable codes, this is quite surprising. For the shallow water simulator
[6], which solves a related problem, the flux kernel is, without question, the
most time consuming, with 87.5%. In this simulator, the time integration
kernel only takes up 12% of the exectution time. The same trend is presented
in the master thesis on the sharp-interface GPU simulator [49]. The cause
of this inconsistency lies in the added complexity in our time integration
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kernel. In our implementation, the time integration kernel has to perform
an additional task, namely the numerical computation of hn+1, described in
Section 3.1.5.

Table 3.4: Runtime percentage for the four different kernels.

Coarse mobility Flux Time-step red. Time integration
25.4% 11.6% 0.6% 62.3%

Optimizing the Time Integration Kernel

From the results in Table 3.4, the time integration kernel is a clear opti-
mization priority. The time-consuming part of this kernel is undoubtedly
the computation of hn+1. Our first approach was to investigate the corre-
sponding brute force algorithm, which is quite slow as it requires very many
evaluations due to the refinement step. However, the biggest problem is that
it does not map well to the GPU architecture. As suspected, there is a lot of
branch divergence, especially for the while-statement in Algorithm 2, where
60% of the executions are divergent. The top chart in Figure 3.28 shows the
consequences of the varying loop size; the threads are inactive about 50%
of the time. This is a poor result if we compare it to a kernel with a more
”ideal” execution distribution, shown in the bottom chart. Not only is there
a bad load balance in the warps but this also affects the blocks. The top chart
in Figure 3.29 shows that there is substantial variation in the execution time
of the different multiprocessors. Optimally, the work distribution should re-
semble the bottom chart, where an optimized code example is presented.
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Figure 3.28: Percentage of thread execution cycles devoted to executing instruc-
tions in the indicated class. On the top, the time integration kernel in our simu-
lator. On the bottom, an optimized matrix multiplication implementation taken
from the CUDA toolkit samples [47]. Note the great difference in the percentage
value of the inactive threads bar on the right.



3.3. PERFORMANCE EVALUATION 75

Figure 3.29: Work distribution among the streaming multiprocessors (SMs). On
the top, the time integration kernel in our simulator. On the bottom, an optimized
matrix multiplication implementation taken from the CUDA toolkit samples [47].
We see that our simulator has an uneven work-load distribution which puts con-
straints on the performance.
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Newton Optimization

An alternative algorithm is Newton’s method derived in Equation (3.3). The
convergence of Newton’s method is highly dependent on the starting point h0.
When testing this method with the proposed initial starting point h0 = hn,
the convergence is good for most cells. However problems arise when the
saturation gap between two consecutive time steps is big. When this happens,
Newton can overshoot h, such that we may end up in an area where the
denominator F ′(h) in Newton’s method evaluates to zero, that is

F ′(h) =
1

H
(sc(h−H)− sc(h)) = 0 ⇐⇒ sc(h−H) = sc(h). (3.4)

A visualization of this problem is given in Figure 3.30.

Figure 3.30: Behavior of the Newton method when solving for hn+1 for one of
the cells in the Utsira simulation with Sc = 0.63 and H = 47.9. On the left
h0 = hn = 30 and we see that within three iterations we reach hn+1 = 46.6. On
the right we have a bad initial guess with h0 = hn = 3 and we see that Newton
overshoots h on the first iteration so that h1 is above the red line, where Newton’s
method terminates.

We can avoid this stationary point by putting a restriction on hi, such that
we do not end up in this ”undefined” area. Based on (3.4), we need to
find out when sc(h −H) = sc(h). If we study the sc(z̃) curve illustrated in
Figure 3.31, this occurs when sc(h−H) = 1− sb,res. Hence, we need to solve
sc(lcap) = 1 − sb,res, where the quantity lcap can be recognized as the height
of the capillary fringe. Once we have found the value of lcap, then we can for
example set hi = min(hi, H + lcap − 0.1). Although with this approach we
avoid the zero division, Newton now encounters a different form of instability,
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Figure 3.31: The saturation curve sc(z̃). When h − H = lcap, then sc(h − H) =
sc(h) = 1− sb,res and the derivative in Newton’s method will evaluate to zero.

Figure 3.32: Behavior of the Newton method with the restriction hi = max(hi, H+
lcap−0.1). Here we solve for hn+1 for a cell in the Utsira simulation with Sc = 0.63
and H = 47.9. We start with a bad initial guess; h0 = hn = 3 and we see that
Newton becomes very unstable.

see Figure 3.32. Since the derivative F ′(h) is a very small number, Newton
makes a big jump.

Based on the analysis above, clearly Newton struggles when we have an
overshoot caused by a bad initial guess. However, the root of the problem
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seems to be related to the area around H + lcap. This phenomenon can be
explained by studying the function F (h), which we for simplicity restate here,

F (h) = Sc −
1

H

∫ h

0

sc(z̃) dz̃ ≈ Sc − S∗c,h h ≤ H, (3.5)

F (h) = Sc −
1

H

∫ h

h−H
sc(z̃) dz̃ ≈ Sc − S∗c,h h > H,

where we have introduced the variable S∗c,h to denote the numerical approxi-
mation for the integral term. From the plot of F (h) given in Figure 3.33, we
see that for large values of h the gradient is very small, which makes Newton
unstable. We may also observe that the gradient is quite small for very small
h, which can explain why small initial estimates of h0 can result in very large
overshoots, as demonstrated in the above examples in Figures 3.30 and 3.32.

Figure 3.33: The function F(h) applied in Newtons method (3.3), derived in Equa-
tion (3.5). We see that when h > 50, the gradient becomes very small causing
problems for Newton’s method. Here Sc = 0.63 and H = 47.9.

Robust Newton Optimization

We have established that Newton’s method has great difficulties converging
for some cases. The question is, can we still benefit from this method? If
we could filter out the problem cases, we could use a different algorithm
on these cells, while performing Newton on the remaining ”normal” cells.
This attractive solution presents a new challenge: how can we identify the
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problem cases beforehand? From the examples above it appears to be difficult
to predict Newton’s behaviour. For instance a large change in saturation can
be problematic as this implies that hn+1 will differ a lot from the initial guess
h0 = hn. We can also face problems when the saturation is relatively stable,
but very high. In these cells h will lie in the area around F ′(h) = 0, where
the gradient is very small which possibly leads to divergence. Thus, we find
that the best solution is to simply set an iteration limit for Newton’s method.
This means that we run Newton’s method on all cells and flag the cells that
do not converge within the chosen iteration limit. The flagged cells must
then be processed by an alternative algorithm run by a new kernel. In the
histograms in Figure 3.34, we show the convergence rate for the CO2 filled
cells at two different points in time, TT = 20 and TT = 1000. After 1000
years, we see that the percentage of cells that converges within two iterations
is much higher than after 20 years. This is because at TT = 1000, we are
in a much more stable phase of the simulation, where h does not vary so
much between consecutive time steps. For both points in time, 90% of the
cells converge within three iterations. By increasing the number of iterations
to six we achieve a small percentage increase. The decision with respect to
where we set the iteration limit will depend on the cost of an additional
Newton iteration versus the cost of solving this cell by another method.

Figure 3.34: Number of iterations required for Newton’s method to converge. The
y axis gives the percentage of the CO2 filled cells that has converged within the
indicated number of iterations. In the left frame at TT = 20 years, and on the
right TT = 1000 years. The tolerance is set to 10−6.

To sort the remaining flagged cells, that is, those cell that do not converge
within the iteration limit, we follow the approach outlined in [52]. We create
two new arrays of equal length: the index array containing the linear indexes
of the cells and the flag array containing only zeros. After running Newton’s
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method in the time integration kernel we update the flag array by placing
a 1 at the linear index of the non-convergent cells. The index array is then
compacted using a CUDPP[28] kernel, resulting in a new array where the
first contigious elements are the indexes of the non-convergent cells.

Figure 3.35: The time integration kernel identifies the non-convergent cells and up-
dates the corresponding linear index in the flag array. Next, the CUDPP compact
kernel stores the flagged indexes contigiously in an array.

We can now proceed with a new kernel to find the updated h-values of the
cells whose indexes are now stored in the index array. For these cells we
propose the bisection method, introduced in Section 3.1.5. This method
converges slowly, but it is reliable. Since this kernel only is responsible for
about 10% of the cells, we can assign a group of threads to each cell. More
specificly, we will assign one warp to each cell and attempt to increase per-
formance by computing the integral in (3.5) in parallel. For every iteration
of the bisection method, each thread will be assigned a part of the integral
in (3.5). The threads store their partial integral sum in shared memory and
we perform a shared memory reduction to compute the total value of the
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integral.

Figure 3.36: Illustration of how to compute the integral part of the function F (h)
in parallel. Each thread within a warp is assigned a part of the integral, indicated
by the stapled lines. The thread then stores its computed partial sum in shared
memory, marked in pink. After this we run a parallel reduction on the shared
memory.

We make an additional optimization for the integral in (3.5), which has to
be computed at every iteration for both Newton’s method and the bisection
method. Since hi will not change too much between iterations, especially
for the final iterations of Newton’s method, we are in practice recomputing
parts of the integral on every iteration. To exploit this we store the value of
S∗c,hi from the previous iteration and add and subtract from this sum with
respect to the new integration limits of hi+1. When we implement this for
the bisection method we make an adjustment where each cell is assigned two
warps instead of one. The first one takes care of the new lower integration
limit, while the second one takes care of the upper integration limit.

With the above optimization, the added cost of running an extra iteration
of Newton’s method becomes minimal. Thus, we set the iteration limit to 6
based on the graphs in Figure 3.34. Note that if the derivative in Newton’s
method becomes zero, the iteration loop is terminated and the cell is auto-
matically flagged. The implementation of the ”robust Newton optimization”
results in a new program flow pictured alongside the original flow in Figure
3.37.
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Figure 3.37: The segment of the program flow affected by the robust Newton
optimization before and after. Each blue box represents a CUDA kernel. With
the new optimization, we have added two new kernels as a consequence of the cell
division in the optimization approach.

Simpson Optimization

Inspite of the thoughtful implementation design, the performance gain of the
robust Newton’s method was marginal. Isolated, the new time integration
kernel applying Newton’s method is much faster than the original one. It
runs about twice as fast, depending on the stage of the simulation. However,
the bisection method is a performance killer. Requiring up to 30 iterations to
reach convergence, the increased amount of computational resources per cell
(64 threads) is simply not enough. Increasing the number of threads is not
an option as this will require thread syncronization which comes with a cost
and the overhead associated with each iteration will be higher. Also, for large
domains, there might not be enough threads to supply each flagged cell with
more than 64 threads. Thus, at this point we have three options; we can
either attempt to decrease the number of required iterations, decrease the
time for each iteration or abandon the bisection method and search for other
robust methods. We choose option number two, decreasing the execution
time per iteration.
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Simpson’s method is an alternative numerical integration method to the
trapezoidal rule∫ b

a

f(x) dx ≈ b− a
6

[f(a) + 4f(a+ b) + f(b)] .

This method also comes in an extended version known as the composite
Simpson’s rule [11], in which the interval [a, b] is split up into n subintervals
where Simpson’s rule is applied to each subinterval. This approach gives
a better approximation for functions which are not smooth over the entire
interval, such as ours. For smooth functions, Simpson’s method typically
has a faster convergence rate than the trapezoidal method. By implement-
ing Simpson’s method we can thus increase the size of the subintervals in
the numerical integration, whilst maintaining the same precision level. For
our implementation, Simpsons’s method is applicable for the coarse-mobility
kernel, which we recall also performs a numerical integration, as well as the
bisection and time integration kernels. Replacing the trapezoidal rule with
Simspon’s rule resulted in a total speed-up of 1.25 for the Utsira test case
with resolution 103×416. The new distribution of the execution time among
the kernels is given in Table 3.5.

Table 3.5: Runtime percentage for the six different kernels in the optimized im-
plementation.

Coarse mob. Flux Time-step red. Time int. CUDPP Bisection
15% 30.6% 1.6% 17% 0.8% 35%

Optimization Summary

It has proved to be challenging to optimize the time integration kernel or,
more accurately, the computation of the updated h value. The achieved
speed-up of 1.25, based on analysis and code improvents directed at the nu-
merical integrations, is not particularly high. It is likely that a comparable
speed-up would be achieved by applying other known optimization practices
which have proved successfull for similar GPU implementations. Examples of
this include early-exit optimization [52] and optimal block size configuration,
both of which were found beneficial for the shallow-water GPU implementa-
tion [6] and the sharp-interface GPU implementation [49]. However, we chose
to pursue the numerical integrals because these are the new components in-
troduced by the capillary-fringe model. An inspection of these components
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is much more valuable for future development of capillary-fringe based sim-
ulators. Although our optimization effort did not bare great fruits for our
implementation, we have laid the groundwork for future implementations.
From the results in Table 3.5, it is clear that the bisection method, applied
to the flagged cells, should be an optimization priority for future work.



Chapter 4

Concluding Remarks

The main purpose of this work was to develop a more comprehensive VE-
based simulator for studying the movement of CO2 injected into a saline
aquifer. In contrast to many VE simulators, which model the transition
zone between CO2 and brine as a sharp-interface, our simulator applies a
smooth approximation known as a capillary fringe. To obtain comparable
runtimes for the more computationally-demanding smooth approximation,
our simulator was implemented on a GPU. The new simulator allowed us
to evaluate the sharp-interface model and check when the two modelling
assumptions produce different results.

4.1 Summary

Simulation Behaviour We found three main factors which affect the be-
havior of the simulations. Firstly, if the mobility is assumed to be a cubic
function of saturation, which is typical for a highly heterogenous media, the
rate of CO2 movement for the capillary-fringe model will be much lower than
the sharp-interface model. Based on this fact, one may think that the sharp-
interface model will always overestimate the migration radius of the CO2.
However, as we experienced, this is not necessarily true, which leads us to
our next discovery: If we have an undulating top-surface, the CO2 can become
structually trapped inside top-surface ”pockets”, where it will remain until it
reaches a certain saturation level which allows it to overflow the pocket. An
analogy to this is a river that runs down into a ditch and will not flow further
until the ditch has been filled up with water. The required saturation level
for CO2 to overflow is unequal for the two simulators because of differences
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in the underlying mathematical model. Thus, in the sharp-interface model,
with a higher saturation requirement for overflow, the CO2 will be stuck in-
side the pockets for longer periods of time, slowing down the advancement
of the plume front. The effect of the topography is present regardless of the
degree of the mobilty function. For a linear mobility approximation, where
the mobility rate will be equivalent for the two models, the capillary-fringe
modelled CO2 will spread out more if there is structural trapping. The third
factor among our findings involves the height of the capillary fringe. If the
height is assumed to be high, this will amplify any discrepancy between the
two simulators. In other words, the discrepancy between the two models is
proportional to height of the capillary fringe.

Performance Through GPU acceleration we managed to create a capillary-
fringe based simulator which showed no disadvantage in terms of speed.
Based on numerous previous studies documenting the GPU’s effect on explicit
schemes for conservation laws, this was expected. Thus, a more interesting
aspect is the level of hardware utilization. When profiling the GPU code
to identify possible optimizations, we found several performance issues. The
main cause of these issues was that the numerical integrals, introduced by
the capillary-fringe model, did not map so well to the GPU architecture.
As is common practice for GPU implementations of finite-volume grids, we
assigned one thread to each cell. However, this lead to an imbalance be-
tween the threads as the workload corresponding to the multiple numerical
integrals was proportional to the CO2 content of the cells. This problem
proved to be difficult to solve. By making some changes, mostly with respect
to the numerical methods applied, we achieved a small improvement. This
included replacing the trapezoidal rule with the more accurate Simpson’s
rule for the numerical integration. Further, we replaced the stable, but slow,
”brute force” algorithm, used to solve the updated interface height h with a
combination of two classic root-finding algorithms. For the majority of the
cells we applied the fast, but slightly unstable, Newton method and for the
rest the slow, but robust, bisection method. We believe there is still consid-
erable potential for optimizing the capillary-fringe related parts of the GPU
program.

We have also showed that the GPU simulator is capable of simulating on large
aquifer models, such as the Utsira formation, while retaining an acceptable
resolution.
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4.2 Further Research

The results from this thesis has provided a basis for research on more intricate
VE models. There is still work to be done. The topics of future research can
be divided into four different categories.

Model Expansion Although our model formulation includes the effects
of a non-linear mobility, a non-linear relationship between capillary pressure
and saturation and a varying permeability distribution, there are still many
simplifications. As already pointed out, we have not incorporated the effect
of hysterisis which can cause residual trapping. Other important properties
which should be taken into account are compressibilty and dissolution. For
further insight into these effects we refer to [41]. In conclusion there are
many possibilties to expand the mathematical model.

Code Optimization With respect to code efficiency we first suggest look-
ing at some standard optimization routines, such as the early-exit and block
configuration optimizations presented earlier. Secondly, one should address
the biggest performance bottleneck, which is the computation of the updated
h value. One option is to continue on the path we have laid out, where the
cells are sorted into two different groups based on the convergence of New-
ton’s method. Here we suggest attacking the bisection method, either by
finding a smart way to reduce the initial interval [a, b] of the method, reduc-
ing the number of required iterations, or considering other robust bracketing
methods with higher convergence. Another option is to try to manipulate
Newton’s method so that convergence is guaranteed. One may also attempt
to group the cells with equivalent interface heights in the same block. This
way one can reduce the number of divergent execution paths, maximizing
the number of active threads.

Numerical Accuray Evaluation When verifying the accuracy of our sim-
ulator we made some simplifications to our method so that it represented a
sharp-interface simulator. We then made a comparison with the results of
the MRST-co2lab sharp-interface simulator. As discussed, this test does not
give us any information about the accuracy of the numerical integration
procedures. An assessment of this aspect would require a different type of
numerical analysis, as there is no other ”correct” simulator to compare with.
One would have to implement several different integration algorithms and
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measure the differences between these implementations with a varying num-
ber of evaluation points. This analysis is valuable as it might find that a high
accuracy is not necessary which would increase performance - or it could be
the other way around.

New Applications With a fast fully-integrated VE-based simulator at
hand one can gain further insight into how the formation properties influ-
ence the migration pattern. For example, one can look deeper into the effects
of top-surface morphology. We know that often there are great uncertainties
in the available geological data for potential injection sites. In the paper of
Syversveen et al. [51], the effects of variations in top-surface morphology are
assesed through statistical analysis. Here, numerous top-surface morpholo-
gies are created stochastically and by running a CO2 migration simulation on
the different realisations one can examine if the uncertainties have an impact.
We propose an equivalent study applying our simulator instead.
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