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Abstract

This thesis explores the challenges of implementing an instruction cache side-
channel attack on an ARM platform. The information leakage through the instruc-
tion cache is formally discussed using information theoretic metrics. A successful
Prime+Probe instruction cache side-channel attack against RSA is presented,
recovering 967/1024 secret key bits by observing a single decryption using a syn-
chronous spy process. Furthermore, an unsuccessful attempt is made at decoupling
the spy from the victim. Finally, the current state of countermeasures against soft-
ware based cache side-channel attacks are summarised.
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Chapter 1

Introduction

Information security has been a hot topic for as long as people have had secrets.
Over time, techniques to share these secrets securely have evolved from simple rid-
dles into rigorous mathematical systems with proofs and bounds on their security.

For many years there has been an unending struggle between the designers of
crypto-systems and the people who want to break them. The crypto-community’s
goal is to always stay one step ahead of the attackers. They do so by actively break-
ing each others’ systems, publishing the results and, most importantly, suggesting
ways to defend against the attacks they find.

In more recent years, as crypto-systems become more robust against classi-
cal cryptanalysis, researchers have been looking at alternative ways to break and
improve the security of crypto-systems by looking outside the pure mathematics
of the system and into their actual implementation in real world usage, this is
side-channel analysis.

1.1 Side-Channels

In cryptology, a side-channel is defined as unintentional leakage of information
through a secondary channel. It is important to understand that side-channels
can be completely separate from the mathematical security of the crypto-system.
Even provably secure systems may be susceptible to side-channel analysis, owning
to the fact that side-channel analysis usually attack the implementation of the
system, and not only the mathematics upon which the system’s security is based.

To give an example, most modern crypto-systems are implemented on comput-
ers. When executed on a computer, calculations take time, processors use power
and memory changes state. This information may in turn be used to infer certain
properties of the plain-text or even actual bits of the key of a crypto-system as it
is run. Because of this, side-channels and related attacks have become a popular

1



2 CHAPTER 1. INTRODUCTION

topic of study over the last few decades.
One of the earlier results in side-channel analysis is the attack by Bleichen-

bacher in 1998 [13]. In this attack an arbitrary message of RSA Laboratories’
PKCS#1 v1.5 is decrypted by the use of about 1000000 queries to a padding
oracle. Bleichenbacher showed that this oracle could be created by observing
how the receiver rejects a chosen cipher text. The attack works by observing the
error-messages or even simply the delay of a decryption operation and uses this
information to piece together the unencrypted message. Bleichenbacher’s attack is
a side-channel attack because it uses the details about how the decryption process
is implemented to break the system.

Another example is a template attack on the Digital Signature Algorithm
(DSA) by Howgrave and Smart [26]. In their article, they show that if it is possible
to extract some bits of information about the nonce used by the DSA, it will be
possible to extract the complete key within reasonable time. Howgrave’s article
does not show how one can extract such information, but more recent work has
successfully implemented the attack using side-channel analysis [2].

1.1.1 Micro-Architectural Side-Channels

A special class of side-channels is based on the micro-architecture of the computers
on which the crypto-systems are run. These kinds of attacks analyse and exploit
the way a computer’s CPU, cache and other hardware work together to execute a
crypto-system.

The main focus of this thesis will be on micro-architectural (MA) side-channel
attacks that use the CPU’s Level 1 instruction cache to gain information about
the crypto-system, introduced below.

Many classes of MA side-channels are already known and this is an active field
of study, see for instance [1, 2, 3, 15, 39]. The main classes of known micro-
architectural side-channels are outlined below.

Timing Analysis

Pure timing attacks are among the simplest side-channels to understand. They
work by measuring the time it takes to complete certain parts of a crypto-system,
for which the computational time depends on the value of the secret input, usually
the secret key. Kocher [27] showed how this information could be used to extract
information from common implementations of RSA, the Diffie–Hellman key ex-
change protocol and the Digital Signature Standard, and the results may easily be
adapted for other systems.

The existence of this side-channel forces implementers to ensure that the timing
profiles of sensitive code are either fixed or sufficiently random.
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Data Cache Analysis

Data cache attacks [9, 15] apply another strategy to infer information about the
secret keys of a crypto-system, namely by observing how the CPU’s data cache
operates when the CPU is executing sensitive code.

Three kinds of data cache attacks exist: Trace-driven attacks rely on being
able to determine whether any given memory access is a cache hit or cache miss1
as the process is executing. This information may then be used to infer parts of
the secret key based on, for instance, the table look-up patterns in some software
implementations of AES, cf. [6].

Timing based data cache attacks rely on timing profiles instead of a cache trace.
An attacker measures the total time of an operation and makes inferences as to
how many cache hits or misses occur during the operation. This kind of attack
is based on statistical inference and thus usually requires a much larger sample
than a trace-driven attack, but it may in turn be used for remote attacks over a
network. Acıiçmez et al. do exactly this in [9] where they use a data cache timing
attack to remotely break a popular implementation of AES.

The third type of data cache attacks has been named access-driven and works
by observing which cache sets (see section 2.1) the crypto-application uses, but
does not care about the exact order as is done in a trace-driven attack. Armed
with this knowledge, the attacker can infer which elements in the look-up tables
are accessed by the cipher and from that information deduce parts of the private
input.

Branch Prediction Analysis

Branch prediction analysis (BPA) [3, 4, 5] is another MA side-channel that was
introduced by Acıiçmez et al. in 2006 and is based on the Branch Prediction Unit
(BPU) of the processor. The BPU is a piece of hardware that tries to predict ahead
of time where the execution of a program will branch off to. That is, whether a
conditional statement will evaluate to true or false. This kind of prediction is
needed because modern processors often use a technique called pipe-lining, which
is outside the scope of this thesis. Let us suffice to say that a failure to correctly
predict a branch will cause execution to stall while the pipeline recovers.

There are, as with cache attacks, several different attack strategies in BPA.
The most noteworthy is Simple BPA (SBPA) [5] which attempts to discover the
result of any and all branches in the attacked code. When it was introduced in late
2006, it was shown that SBPA could potentially be used to extract the complete
private key from simple implementations of RSA in one iteration.

1Cache architecture and terms like cache hit or cache miss are defined in section 2.1.
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The attack in [5] utilises a spy process that continuously forces the BPU to
expect that no branches will be taken. Thus, whenever a branch is taken the
process stalls while the pipeline recovers. It is this delay that is measured and
ultimately used to infer the private input.

Instruction Cache Analysis

The instruction cache (I-cache) side-channel is a natural continuation of SBPA, as
both are concerned with analysing the execution flow of the crypto-application.
However, whereas SBPA is concerned with the predictions of the BPU, I-cache
attacks analyse how code is being loaded into the CPU’s instruction cache.

Instruction cache attacks are based on a simple and powerful assumption: Any
two distinct pieces of code will likely be loaded into different parts of the instruction
cache. This assumption, which is often true in practice, allows us to follow the
execution flow of the application as it is run.

In short, an I-cache attack utilises a spy-process that runs parallel to the at-
tacked code on the same physical CPU core. This spy process monitors the in-
struction cache and notes whenever certain patterns of code are loaded into the
cache. Based on this information it is possible to infer which code of the crypto-
process was actually run. Together with a careful analysis of the crypto-process,
this information may be used to piece together the secret key, or other sensitive
information.

An important point to mention is that both SBPA and I-cache analysis attack
code where execution flow is dependent on the input to the system. Unfortunately,
this is often the case: Popular implementations of RSA, DSA and more have been
known to have key-dependent flow, cf. [2, 4, 5, 8]. Any implementation of a system
in which the execution flow is dependent on secret state may be vulnerable to these
attacks.

Shared Functional Units

The final known micro-architectural side-channel arises due to the fact that on
some systems, where two threads may run simultaneously on a single processor
core2, the two threads must share the use of certain circuits. For instance, if
simultaneous threads share a integer multiplier unit this may create a side-channel
[7, 10]. As processor manufacturers make more optimizations in terms of area to
concurrency, it is likely that we will see more side-channels of this kind.

An attack using these functional units will attempt to follow the instruction
flow of the algorithm in much the same way as SBPA and I-cache analysis.

2This is called Simultaneous Multi-Threading (SMT) and is discussed further in section 2.4.
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1.2 Thesis Statement
In this master thesis we will try to build on the work by Acıiçmez and others
and attempt to implement an instruction cache side-channel attack on an ARM
system. With exception to the work of Köpf et al. in [32], there has been little
published research regarding micro-architectural side-channel analysis on ARM
platforms, as much of the published work rely directly or indirectly on instructions
and technology that is not as easily accessible on ARM platforms.

It is the intention of this thesis to explore the potency and difficulties of im-
plementing an instruction cache side-channel on ARM platforms.

1.3 Thesis Structure
In chapter 2 we will cover the necessary background from previous work and give
a short introduction to cache architecture.

Next, chapter 3 will cover the framework we will use to analyse the information
leakage in the side-channels we will explore.

Chapters 4–6 will contain our main results, in which we delve into the practical
analysis of several side-channels. Here, we present both positive results chapters 4
and 5 and a negative result in chapter 6.

Finally, in chapter 7 we recite the current state of countermeasures to protect
against cache based side-channels before we summarise and conclude our results
in chapter 8.



Chapter 2

Background Material

In this chapter we will explain in further detail what a cache is and how we are
able to use the instruction cache (I-cache) as a side channel.

2.1 Cache Architecture

In computer architecture, a cache is a fast memory component that is located
between the processor(s) (CPU) and the main memory (RAM). The need for a
cache has arisen from an increasing inequality in the relative speed of processors
and memory technology. In short, as processors have become faster and faster,
memory technology has fallen behind. The solution to this problem has been to
place a small portion of very fast (expensive) memory between the processor and
the main memory to temporarily store frequently used data. This is the cache. A
high level layout of CPU memory architecture is shown in figure 2.1.

On modern computers, there are generally 2–3 levels of cache. Level 1 (L1) is
the smallest and fastest and usually split into the L1-I and L1-D cache1, one for
instructions and one for data. Level 2 (L2) is slightly slower and larger and, on
some platforms, Level 3 (L3) offers yet another layer that is bigger and slower.

The idea is that when the CPU needs to access the memory, it will first check
if the required data is in the L1 cache, then check L2, then L3. If the data is not
found on either level, it is loaded into the caches from the main memory. Thus, if
the same data needs to be accessed again it will be retrieved much faster.

The exact architecture for the caches of processors are as diverse as the proces-
sor manufacturers and models themselves. There are, however, some similarities

1What we are describing is often referred to as a Harvard architecture. It allows the CPU to
access instructions and data along separate paths. In contrast, a von Neumann architecture has
only one data path shared between instructions and data.

6
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Physical Core

L1- Cache

L2- Cache

L3- Cache

L2- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Physical Core

L1- Cache

Main Memory

Figure 2.1: Typical CPU memory layout. Each physical core has its own L1 cache.
A group of cores typically share an L2 cache. Multiple core groups share the L3
cache (if present).
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and key terms which will be defined in this section. Most of the material in this
section is adapted from [20].

Definition 1. The atomic amount of memory that may be loaded into the cache
is called a cache line.

If you are to access a 32-bit integer that is not currently in the cache, the
cache will load one or more cache lines such that all 4 bytes of the integer are now
residing in the data cache. This is done completely analogously for the instruction
cache. If you are to execute a piece of code not currently in the cache, a multiple
of full cache lines will need to be loaded into the cache.

Definition 2. A memory access is called a cache hit if the memory to be loaded
is already residing in the cache. An access that is not a cache hit is called a cache
miss.

Definition 3. A memory object (logical data stored in memory) whose size would
fit into N cache lines is called cache unaligned if an access to the object would
cause N + 1 cache lines to be loaded into the cache. A memory location that is
not cache unaligned is called cache aligned.

Again looking at the same integer as above. If the memory location of this
integer is aligned such that the first two and last two bytes reside in different
cache lines, then both cache lines will need to be loaded into the cache before the
CPU can access the memory.

Definition 4. The set associativity of the cache is a measure of how many valid
cache lines any one memory location may be loaded into. This set of cache lines
is called a cache set. In a fully associative cache, any memory location may be
loaded into any cache line. In an N-way associative cache, a memory location may
be mapped into one of exactly N fixed locations. A 1-way associative cache is
called directly mapped.

Definition 5. When a cache line is loaded into a cache set that is full, another
cache line has to be evicted to a higher level memory. The algorithm used to choose
which cache line to evict is called the replacement policy. The most commonly used
policy is to evict the Least Recently Used (LRU) cache line.

2.2 The Instruction Cache
In the instruction cache the memory containing the machine code to be executed
is loaded. Conversely, the data to be processed is loaded into the data cache. The
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Cache size: 32KB
Associativity: 2-way
Cache line size: Fixed, 64 bytes
Replacement policy: Least Recently Used (LRU)

Table 2.1: Example cache features from an ARM CORTEX A15MP, L1 instruction
cache.

reason for this split is the locality property of both code and data. In general,
computer programs access both the instructions and the data they process such
that recently used memory will probably be used again in the near future. Program
code shows an even stronger locality than data due to loop structures, functions
etc. Thus, caching the instructions from slower memory will, in general, result
in much faster execution. Furthermore, relatively few instructions may operate
on large amounts of data. In this case, the separation of the L1 caches may
drastically improve performance as the instructions will not need to be fetched
repeatedly from higher order memory.

To give an example: Say we are to run the code given in listing 1. How would
this code be loaded into the cache? Notice the functions multiply and square.
These functions will probably be mapped into different cache sets when loaded
into the cache. Now, if we assume a cache with 24 cache sets, the corresponding
mapping could turn out like shown in figure 2.2 on the following page. Keep in
mind that the cache sets could just as easily overlap.

1 def pow( base, exponent )
2 multiplier = base
3 result = 1
4 for bit in exponent:
5 if bit == 1:
6 result = multiply(result, multiplier)
7 multiplier = square(multiplier)
8

9 return result;

Listing 1: Pseudocode for a simple square and multiply exponentiation algorithm.
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(a) multiply

(b) square

Figure 2.2: Example mapping of the functions multiply and square into the
corresponding cache sets in an I-cache with 24 cache sets.



2.3. THE SPY PROCESS 11

2.3 The Spy Process

The basic idea of an I-cache trace attack is that the instruction cache is shared
between the different execution contexts. This is a property that can be exploited.
As shown in [39] it is possible to use cache access patterns to send information
across security borders, and it is a similar idea that is the basis of all cache attacks:
Information about the crypto-system will leak through the cache access patterns.

The spy process in figure 2.3 on the next page is taken from [2] and shows a
spy process monitoring the instruction cache. It works by first aligning the code
to that of one cache set. It is then executed in such a way that it will fill one cache
set with inert code and measure how long it takes to fill the entire set, using the
rdtsc instruction on x86 platforms. Finally, it repeats the procedure for all cache
sets. An attack utilising this kind of cache spy is referred to as a Prime+Probe
attack in the literature.

The idea is that, if no code (other than the spy itself) has accessed a particular
cache set, then the instructions stored in that set will be loaded and executed
quickly. If, however, another process has accessed that particular cache set in the
meantime, the spy’s instructions need to be fetched from a higher level memory and
the code will execute significantly slower. This difference is measurable and it is
this difference that is the physical observable in the instruction cache side-channel.

2.4 Simultaneous Multi-Threading

Another point that must be mentioned is the concept of Simultaneous Multi-
Threading (SMT). SMT is a technique employed by some processor manufacturers2
to create more logical processor cores on one physical core. They do this by
replicating only some vital components of the processor and share the remaining
components among these logical cores, cf. figure 2.4 on page 13.

SMT is important to instruction cache analysis because the instruction cache
is amongst the components shared between the logical cores in an SMT context.
Thus it is possible to run the spy-process truly concurrently to the crypto-process,
and theoretically we are able to trace the execution flow as it happens.

The alternative is to execute the attack in a simulated multi-threading envi-
ronment (Non-SMT) where each thread is scheduled to run in turn on one physical
core. This second approach, although possible, will incur more noise from thread
context switching.

Most previous work has been concerned with I-cache analysis in an SMT en-
vironment as this greatly simplifies decoupling of the spy from the victim. In this

2Intel markets its SMT technology under the name Hyper-Threading.
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xor %edi , %edi L448 :
mov <bu f f e r addr>, %ecx rdtsc
rdtsc sub %esi , %eax
mov %eax , %es i movb %al , (%ecx ,%edi )
jmp L0 add %eax , %es i
.a l ign 4096 inc %edi
L0 : jmp L1

jmp L64 .rept 49
.rept 59 nop
nop .endr
.endr . . .

L1 : L511 :
jmp L65 rdtsc
.rept 59 sub %esi , %eax
nop movb %al , (%ecx ,%edi )
.endr add %eax , %es i

. . . inc %edi
L64 : cmp <bu f f e r len >, %edi

jmp L128 jge END
.rept 59 jmp L0
nop
.endr

. . .

Figure 2.3: The instruction cache spy-process for x86 platforms from [2]. The
same spy for ARMv7 may be inspected in appendix B.
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Physical Core

L1 - Data 
Cache

L1 - Instruction 
Cache

Logical Core Logical Core

(a) SMT

Physical Core

L1 - Data 
Cache

L1 - Instruction 
Cache

Logical Core

(b) Non-SMT

Figure 2.4: Comparison of SMT vs. non-SMT processors. On an SMT processor,
two or more logical cores share resources.

thesis we will only look at a non-SMT environment which makes the decoupling
of the spy significantly harder, cf. chapter 6.

2.5 Data Analysis

In this section we present the necessary practical tools needed to analyse the timing
measurements of the spy presented in section 2.3.

2.5.1 Vector Quantization

Vector quantization (VQ) [23] is the process of mapping an N -dimensional vector
space down to a finite subset of vectors in the same space, preferably represented
as compactly as possible. It is a very potent preliminary screening technique when
looking for patterns in the presence of noise. Previous work has shown that this
can be very useful when analysing the timing data from the spy-process.

Definition 6. A vector quantization is a mapping Q : RN → C where C is a finite
set of points from RN . Thus C ⊂ RN . The set C is often called a codebook.

The idea behind vector quantization is illustrated in figure 2.5 for the two
dimensional case, but the same structure is valid for higher dimensions.
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Figure 2.5: Example of a vector quantization of R2. The lines partition the vector
space and the dots mark the representative in the codebook for each partition.
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Nearest Neighbour Quantizers

The special class of vector quantizers we are concerned with is called nearest neigh-
bour quantizers or Voronoi quantizers. What identifies a nearest neighbour quan-
tizer is that the partitioning of RN is uniquely determined by the codebook C and
the use of Euclidean distance in RN :

d(x,y) = ‖x− y‖2 =
√

(x− y) · (x− y). (2.1)

Encoding any vector x now becomes a search through C

Enc(x) = arg min
yi∈C

d(x,yi). (2.2)

If x is equidistant from two different codewords yi,yj ∈ C we will simply pick
the one with the smallest subscript, thereby enforcing a well defined map.

2.5.2 Self-Organising Map

In the previous section it was shown how to encode a vector using nearest neighbour
encoding given a predetermined codebook C. The next problem to address will be
how to create such a VQ that best describes a set of training data.

This paper will look at a technique frequently used in signal processing and
pattern recognition, namely using a Self-Organising Map3 (SOM) together with
use of Learning Vector Quantization (LVQ) [16, 28, 29].

The idea behind a SOM is to iteratively improve the VQ based on the training
data.
Two key properties of a SOM are worth mentioning:

1. The algorithm is randomised, thus subsequent executions may yield different
VQs.

2. Codewords that map domains with "similar properties" will tend to be close
together in the topology of the SOM. This is of special interest in pattern
recognition.

Training a SOM

Before the training can commence, two parameters must be chosen: The number
of nodes and a topological structure describing their relationship. Typical struc-
tures include: A one dimensional string of beads (each node being a bead) or

3Also known as a Kohonen Map after its creator.
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various configurations of N -dimensional grids. The most common choice is a two-
dimensional hex-grid (also known as a honeycomb structure), as this configuration
gives each node 6 equidistant neighbours whilst keeping to only two dimensions. If
one is not concerned with grouping similar data together, the layout of the SOM
is unimportant.

Once the topological structure is chosen, a metric d̃(i, j) measuring the dis-
tance between nodes i, j in this space is also needed. We use this to define the
neighbourhood of node i.

Definition 7. The R-neighbourhood of a node i are all nodes j such that:

NR(i) = {j | d̃(i, j) < R}. (2.3)

We further require that

R ≤ R′ ⇒ NR(i) ⊆ NR′(i) (2.4)

and
i ⊆ NR(i) ∀i, R. (2.5)
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(b) After iteration

Figure 2.6: Illustration of a SOM training iteration. After the iteration, the closest
codeword, along with its neighbours are pulled closer to the training vector. This
iteration’s training vector is shown in red, whilst the internal nodes of the SOM
are shown in blue.

The algorithm starts out by assigning to each node a randomly chosen codeword
µi. Then for a number of iterations, a randomly drawn training vector x is chosen,
the node with the closest vector µi is found and all vectors in the R-neighbourhood
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of i are pulled towards x. This process is illustrated in figure 2.6 on the preceding
page. During the initial phase of the training, the neighbourhood radius R is slowly
decreased until NR(i) = {i}. The training may still continue after this point, but
only the closest node i will be affected. It is the additional pull on the neighbours
of i during the initial phase that gives a SOM property 2 as stated above.

We will now introduce the algorithm for training a SOM.

Algorithm 1. Training a SOM.
Given a training set T ∈ RM , the number of iterations N and the SOM configuration

(including the number of nodes n and topological structure of the nodes expressed by
NR(i)).

Furthermore, let α(t), β(r) be two monotonically decreasing functions with range
〈0.0, 1.0]. Likewise, let R(t) be a monotonically decreasing function for the neighbour-
hood radius.

1. For all nodes j assign a random µj from T .

µi
r←− T.

2. Set the time t to zero.
t ← 0.

3. While t < N , repeat

(a) Draw a random training vector.

x
r←− T.

(b) Find the node i with µi closest to x.

i ← argmin
j

(d(x,µj))

(c) For all nodes j

µj ←

{
µj + β(d̃(i, j)) · α(t) · (x− µj) if j ∈ NR(t)(i)

µj otherwise.

(d) Step the time.
t ← t+ 1

The resulting SOM is a codebook C mapping vectors from RM to the set of
integers {0, 1, . . . , n − 1} with a corresponding value µi ∈ RM . For our use case
we wish to label each node in the SOM according to a majority vote amongst the
(labelled) training vectors.
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2.5.3 Learning Vector Quantization

Learning vector quantization (LVQ) is a technique building on the idea of a SOM.
The idea is to further increase the classification power of the vector quantizer
reducing the number of "border cases".

Matching 
label

Different 
label

Training vector x

Window

Figure 2.7: Learning step of LVQ3. Assuming the two closest codewords have
different labels. The codeword with a label matching that of x is pulled closer
to x whilst the codeword with a different label is pushed away. (If x is in the
window.)

The main idea is illustrated in figure 2.7. In short, a labelled training vector x
is randomly chosen from the training data T . Next, find the two closest labelled
codewords µi, µj in the vector quantizer C. Once the two codewords are chosen
we check whether the label of x match the label of either µi or µj. If neither
match, discard x and draw a new training vector.

Otherwise, check if x is "in the window", that is, define a decision border
between the codewords µi and µj and state that if x is in this window, it is a
border case and we continue, otherwise we discard it and draw a new training
vector.

Now, if exactly one of the labels match, we pull the codeword with the correct
label closer to x and push the other away. Otherwise, both labels match and we
pull both closer to x, albeit a little shorter (reduced by a factor ε).

This technique is the third iteration of LVQ as presented by Kohonen [29] and
is thus called LVQ3, formally defined on the facing page.



2.5. DATA ANALYSIS 19

Algorithm 2. Learning Vector Quantization 3
The input to the algorithm is a labelled codebook C, a set of labelled training vectors

T , a window size δ ∈ 〈0.0, 1.0〉, a fall-off factor ε ∈ 〈0.0, 1.0] and the number of training
iterations N .

Let α(t) be a monotonically decreasing function with range 〈0.0, 1.0].

1. t ← 0.

2. While t < N :

(a) Increment counter:
t ← t+ 1.

(b) Choose a random training vector:

x
r←− T.

(c) Find the two closest codewords:

µi,µj ← argmin
µi′ ,µi′∈C

d(µi′ ,x) + d(µj′ ,x) : i′ 6= j′.

(d) If neither labels of µi and µj match the label of x then repeat 2.

(e) Check if x is "in the window":

min

(
d(µi,x)

d(µj ,x)
,
d(µj ,x)

d(µi,x)

)
> δ.

If not, repeat from 2.

(f) If both labels of µi and µj match the label of x then:

µi ← µi + ε · α(t) · [x− µi]
µj ← µj + ε · α(t) · [x− µj ].

And repeat from 2.

(g) If necessary swap µi and µj so that the label of x matches that of µi.

(h) Update µi and µj :

µi ← µi + ε · α(t) · [x− µi]
µj ← µj − ε · α(t) · [x− µj ].

And repeat from 2.



Chapter 3

Theoretical Analysis of the
Side-Channel

This chapter will introduce the theoretical framework for evaluating and comparing
physical side-channels introduced by Standaert et al. in [42]. We start out by
reciting the assumptions underlying the model behind the framework in section
3.1, followed by one of the major theorems of [42] and a brief discussion of how
this may be used to compare side-channels.

3.1 Model Assumptions and Definitions

Firstly, the model in this chapter is based on the following informal axioms, intro-
duced by Micali and Reyzin and here directly quoted from [34]:

1. Computation, and only computation, leaks information
Information may leak whenever bits of data are accessed and computed upon.
The leaking information actually depends on the particular operation per-
formed, and, more generally, on the configuration of the currently active part
of the computer. However, there is no information leakage in the absence of
computation: data can be placed in some form of storage where, when not
being accessed and computed upon, it is totally secure.

2. Same computation leaks different information on different computers
Traditionally, we think of algorithms as carrying out computation. However,
an algorithm is an abstraction: a set of general instructions, whose physical
implementation may vary. In one case, an algorithm may be executed in
a physical computer with lead shielding hiding the electromagnetic radia-
tion correlated to the machine’s internal state. In another case, the same
algorithm may be executed in a computer with a sufficiently powerful inner

20
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battery hiding the power utilised at each step of the computation. As a
result, the same elementary operation on 2 bits of data may leak different
information: e.g., (for all we know) their XOR in one case and their AND in
the other.

3. Information leakage depends on the chosen measurement
While much may be observable at any given time, not all of it can be observed
simultaneously (either for theoretical or practical reasons), and some may be
only observed in a probabilistic sense (due to quantum effects, noise, etc.).
The specific information leaked depends on the actual measurement made.
Different measurements can be chosen (adaptively and adversarially) at each
step of the computation.

4. Information leakage is local
The information that may be leaked by a physically observable device is
the same in any execution with the same input, independent of the com-
putation that takes place before the device is invoked or after it halts. In
particular, therefore, measurable information dissipates : Though an adver-
sary can choose what information to measure at each step of a computation,
information not measured is lost. Information leakage depends on the past
computational history only to the extent that the current computational
configuration depends on such history.

5. All leaked information is efficiently computable from the computer’s internal
configuration
Given an algorithm and its physical implementation, the information leakage
is a polynomial-time computable function of (1) the algorithm’s internal con-
figuration, (2) the chosen measurement, and possibly (3) some randomness
(outside anybody’s control).

Following these axioms we will now introduce the necessary notation from [34]
needed to discuss the framework by Standaert.

Definition 8. An abstract virtual-memory computer, or abstract computer for
short, consists of a collection of special Turing machines, which invoke each other
as subroutines and share a special common memory. Each element of an abstract
computer is called an abstract memory Turing machine (abstract VTM).

A = (A1, . . . , An)

All input and output to the abstract VTM’s are arbitrary binary strings. It is
important to stress that abstract computers and abstract VTM’s are not physical
devices, they are only representations of logical computations.
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Definition 9. A physical VTM is a tuple, P = (L,A) where A is an abstract
VTM and L is a leakage function as defined below. If A = (A1, A2, . . . , An) is an
abstract computer and Pi = (Li, Ai), then Pi is a physical implementation of Ai
and P = (P1, . . . , Pn) is a physical implementation of A.

Example 1. An abstract VTM could be the calculation performed by a crypto-
graphic primitive. Taking RSA as an example, an abstract computer would be the
operation

c ≡ me (mod n)

whilst the physical VTM would be physical realisations of these operations each
having a different leakage function. Example physical VTMs:

1. The Multiply-Square exponentiation algorithm in software.
2. The Montgomery Multiplication algorithm in software.
3. A smart card’s signing hardware.

Definition 10. The leakage function L(CA,M,R) models the leakage from a phys-
ical realisation of an abstract VTM. It takes three inputs:
− CA, the internal configuration of the abstract VTM A.
− M , the setting of the apparatus used to measure the physical observable.
− R, a random string to model the randomness of the measurement.

3.2 Framework
In this section we will introduce the framework of Standaert et al. [42] for analysing
the information leakage from physical side-channels. The framework is modelled
around recovering well defined parts of the key, but, as mentioned in the original
article, any secret information that can be modelled by the leakage function can
be analysed using the framework.

3.2.1 Attack Model

The attack model is illustrated in figure 3.1 on the next page. The attack is divided
into two phases. Informally phase one is where the adversary tries to approximate
the probability distribution (pdf) of the leakage function for a part of the key. In
phase two, this pdf is used for exploitation.

This paper is concerned about the evaluation of the side-channel itself and not
on comparing how efficient different adversaries are at extracting the information.
Therefore this section will present the necessary background to compare the leakage
between different implementations. [42] also covers comparing the efficiency of
different adversaries, but that is outside the scope of this thesis.
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Figure 3.1: Intuitive description of a side-channel key recovery attack ([42] p.6).
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3.2.2 Information Theoretic Metrics

As briefly mentioned, the goal of the adversary in phase one of the attack is to
approximate the leakage function for a part of the key, we model this partial key
information as the key class a key belongs to.

Definition 11. Let k ∈ K be key from the key set of a cryptographic abstract
computer EK. Let γ : K → S be a mapping from the key set to a set of key classes,
such that |S| � |K|.

An example: γ : K → {0, 1} could partition the key set to keys starting with 0
or 1 respectively.

Next, define a key recovery adversary AEK,L(τ,m, q) as an algorithm using at
most τ time, m memory and q queries to the target computer. The adversary’s
goal is to guess the correct key class s = γ(k), using both the black box information
(e.g. cipher-text and/or known plain-texts) and physical information leaked from
the side-channel(s) of the physical computer (EK, L).

The adversary returns an ordered set g = (g1, g2, . . . , g|S|) which is a permuta-
tion of the key classes in S.

Definition 12. The o-th order success rate of the adversary is defined as

Succsc−kr−o,SAEK,L
(τ,m, q) = Pr[Expsc−kr−oAEK,L

= 1] (3.1)

Where Expsc−kr−oAEK,L
is successful if and only if s is in the first o elements of g.

Experiment Expsc−kr−oAEK,L
:

k
r←− K

s = γ(k)

g ← AEK,L

ifs ∈ (g1, . . . , go)

return 1

else

return 0

For the remainder of this paper we will use order o = 1.

Definition 13. The asymptotic success rate of an adversary AEK,L is the limit of
its success rate as q goes to infinity.

Succsc−kr−o,SAEK,L
(τ,m, q →∞).
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3.2.3 Conditional Entropy

This section will introduce Shannon’s conditional entropy as a metric to measure
the amount of information leaked from a side-channel.

The setup is as follows, let Lq be a stochastic variable of the side-channel
leakage observations and let lq = (l1, l2, . . . , lq) be a realisation of this variable.

Entropy defined by Shannon [41], is a measure of the information contained in
a message, it is used as a tool in for instance data compression. Intuition yields
that predictive data have low entropy, whilst completely random data have high
entropy.

More formally, Shannon defines the entropy of a discrete stochastic variable X
as:

H[X] = −
∑
x∈X

Pr(x) · log2 Pr(x) (3.2)

Now, we are concerned with the entropy for the distribution of Pr(S | Lq) as
it would help us decide on the difficulty of determining a key class s given an
observation vector lq.

Shannon already defines this conditional entropy.

H[X | Y ] = −
∑
x∈X

∑
y∈Y

Pr(x, y) · log2 Pr(x | y) (3.3)

= −
∑
x∈X

∑
y∈Y

Pr(x) · Pr(y | x) · log2 Pr(x | y)

= −
∑
x∈X

Pr(x)
∑
y∈Y

Pr(y | x) · log2 Pr(x | y) (3.4)

= −
∑
y∈Y

Pr(y)
∑
x∈X

Pr(x | y) · log2 Pr(x | y) (3.5)

Now, define the conditional entropy matrix

Hq
S =

(
hqs,s∗

)
s,s∗∈S (3.6)

where
hqs,s∗ = −

∑
lq

Pr(lq | s) · log2 Pr(s∗ | lq). (3.7)

S is a discrete stochastic variable of the previously targeted key class S.
Also, note that:

H[S | Lq] = −
∑
S

Pr(s)
∑
lq

Pr(lq | s) · log2 Pr(s | lq) = E
s
(hs,s) (3.8)

is exactly Shannon’s conditional entropy from (3.4).
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Finally, we define the mutual information as,

I(S,Lq) = H[S]−H[S | Lq]. (3.9)

Mutual information is a measure of how much of the information in S is reflected
in Lq.

It is important to note that in general, we do not know the probability distribu-
tion of Pr(Lq | S), but rather we estimate the probability distribution P̂r(L̃q | S)
using a practical number of samples.

3.3 Measuring the Information Leakage

Before we recite one of the theorems of [42] that will be the climax of this chapter,
we must first define a few more concepts.

Definition 14. A first-order Bayesian side-channel adversary (choosing only one
key class from S) is an adversary that always selects arg max s∗ Pr(s∗ | lq).

Definition 15. An approximated leakage distribution Pr(L̃q | S) is considered
sound if the asymptotic success rate of a first-order Bayesian side-channel adver-
sary is one.

Theorem 1. Assuming independent leakages for the different queries in a side-
channel attack, an approximated leakage probability distribution P̂r(L̃q | S) is
sound if and only if the conditional entropy matrix evaluated in an unbounded
exploitation phase is such that the diagonal element is the smallest in every row
of the approximated entropy matrix Ĥq

S . That is,

arg min
s∗

ĥqs,s∗ = s,∀s ∈ S. (3.10)

Proof. Let s be the target key class, and (lq)p = (lq,1, lq,2, . . . , lq,p) be p realisations
of a q-queries leakage vector Lq.

Now, a Bayesian adversary using targeting s using the leakage data (lq)p will
be successful if and only if

s = arg max
s∗

P̂r(s∗ | (l̃q)p)

s = arg max
s∗

P̂r((l̃q)p) | s∗) · Pr(s∗)

P̂r((l̃q)p)
.
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Assume that Pr(s∗) is uniformly distributed. Note that since P̂r((l̃q)p)) only de-
pends on the correct key class s it is independent of s∗. This yields,

s = arg max
s∗

P̂r((l̃q)p) | s∗).

Since we assume that each measurement in (l̃q)p is independent, we may rewrite
the above as:

s = arg max
s∗

p∏
i=1

P̂r(l̃q,i | s∗).

Now, as we are looking at an unbounded exploitation phase (asymptotic attack),
the number of leakage vectors p is not bounded and the measurement vector (l̃q)p
is in fact a trace from the real probability distribution Pr(Lq, | s). Therefore as
p → ∞ each unique leakage vector in lq ∈ (l̃q)p will repeat p · Pr(lq | s) times.
Thus, an asymptotic attack is successful if and only if:

s = arg max
s∗

∏
lq

P̂r(lq | s∗)p·Pr(lq |s)

s = arg max
s∗

∏
lq

(
P̂r(lq | s∗)Pr(lq |s)

)p
s = arg max

s∗

∏
lq

P̂r(lq | s∗)Pr(lq |s)

s = arg max
s∗

∏
lq

P̂r(s∗ | lq)Pr(lq |s)

s = arg max
s∗

∑
lq

Pr(lq | s) · log2 P̂r(s∗ | lq)

s = arg min
s∗

−
∑
lq

Pr(lq | s) · log2 P̂r(s∗ | lq). (3.11)

Now, we can observe that the sum (3.11) equals that of (3.7) save for the approx-
imated probability in the logarithmic factor. Thus, it exactly matches how the
conditional entropy is estimated in practice. Therefore, if the previous condition
holds for all key classes s, the Bayesian side-channel is asymptotically successful
and vice versa.

Remark In practice, Pr(s | lq) is estimated as:

P̂r(s | lq) =
P̂r(lq | s) · Pr(s)∑
s∗ P̂r(lq | s∗) · Pr(s∗)

. (3.12)
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3.4 Consequences of Theorem 1
It turns out that under certain conditions1 theorem 1 suffices to discuss the security
of a side-channel. More formally the conditions are when |S| = 2. and the leakage
function L(CA,M,R) = L′(CA,M) + L′′(R) where L′′(R) ∼ N(0, σ). That is
the randomness in the leakage function is Gaussian with mean 0 and standard
deviation σ.

This gives rise to the following two lemmas [42].

Lemma 1. In a key recovery side-channel attack exploiting a univariate Gaussian
leakage distribution of a single query. The residual entropy of a Bayesian attack
choosing between exactly two target key classes is a monotonously decreasing
function of the single query (hence multi query) success rate against s.

Proof. Let us consider univariate Gaussian leakage and let |S| = 2. Now, without
loss of generality, assume the distribution of the correct key class s to have mean 0
and that of the wrong key class to have mean δ. The standard deviation in either
case is σ.

Now, assuming a Bayesian adversary, the success rate for the attack will be

Succsc−kr−1,sAEK,L
(δ, σ) =

∫ δ/2

−∞
Nx(0, σ)dx

where
Nx(µ, σ) =

1

σ
√

2π
· exp

(
−(x− µ)2

2σ2

)
.

The corresponding residual entropy equals

hs,s(δ, σ) = −
∫ ∞
−∞

Nx(0, σ) · log2

Nx(0, σ)

Nx(0, σ) + Nx(δ, σ)
dx

Define a change of variables first u = x/σ then z = δ/σ:

Succsc−kr−1,sAEK,L
(δ, σ) =

∫ δ/2σ

−∞
Nu(0, 1) du

hs,s(δ, σ) = −
∫ ∞
−∞

Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(δ/σ, 1)
du

Succsc−kr−1,sAEK,L
(z) =

∫ z/2

−∞
Nu(0, 1) du

hs,s(z) = −
∫ ∞
−∞

Nu(0, 1) · log2

Nu(0, 1)

Nu(0, 1) + Nu(z, 1)
du.

1Standaert et al. also considers more general assumptions, but this is unnecessary for our
discussion.
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Finally, observe that the success rate is a monotonously increasing function of z
and that the residual entropy is a decreasing function of z, which concludes the
proof.

Furthermore, in a multivariate leakage distribution the following lemma holds
if each leakage component shares the same standard deviation.

Lemma 2. In a key recovery side-channel attack exploiting a multivariate Gaus-
sian leakage distribution with independent leakage samples having the same stan-
dard deviation. The residual entropy of a Bayesian attack choosing between exactly
two target key classes is a monotonously decreasing function of the single query
(hence multi query) success rate against s.

The proof of lemma 2 is similar to that of lemma 1 and is outlined in [42].
One can therefore conclude that in the case of Gaussian noise and a key class

size of 2, the higher the conditional entropy H[S | Lq] the lower the success rate
of a Bayesian adversary will be.



Chapter 4

Proof of Concept

In this section we aim to answer the following questions:
1. Is it possible to use the instruction cache as a side-channel on an ARM plat-

form?
2. What (if any) are the added challenges of attacking an ARM platform as

compared to previous work on x86?
In order to answer both questions, a prototype experiment will be performed.

In short this experiment attempts to solve the problem:

1 if ( bit == 1 ) {
2 foo();
3 }

Observing an execution of the code above, determine whether the function
foo() was called. This should be determined by observing the instruction cache
exclusively.

30
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4.1 Summary of the Target Platform

The platform used for all experiments in this paper is presented in the table below.

Platform
Hardware: Hardkernel Odroid X
Hardware Revision: 0.4 20120808
Operating System: ARM ARCH Linux
Kernel Version: 3.8.13.21-2-ARCH #1 SMP PREEMPT
Kernel Build Date: Thu Apr 24 19:25:30 MDT 2014

Details
Chipset: Samsung Exynos 4412
Processor: 4x Cortex-A9 Quad Core 1.4Ghz
L1 (Data): 32 KB per core
L1 (Instruction): 32 KB per core
L2: 1 MB
Main Memory: 1005 MB
Cache Line Size: 32 bytes

L1 Instruction Cache Details
Associativity 4
Cache Sets 256
Replacement Policy: Random Round Robin

Table 4.1: Important platform parameters.

Note on Random Round Robin

The fact that the L1-I cache uses a Random Round Robin1 (RRR) replacement
policy introduces extra noise into the measurements. As can be seen in figure 4.1
this causes cache-misses to bleed into subsequent observations in a seemingly ran-
dom manner. In a Least Recently Used or First In First Out replacement pattern,
we would expect the cache to be completely filled with the spy’s instructions after
one iteration, which is not the case for RRR.

What is actually happening is that the spy, when trying to access an instruc-
tion which is not currently in the cache, will evict a random cache line from the
relevant cache set. This cache line may very well contain another part of the spy’s

1Random Round Robin replacement will evict a pseudo randomly chosen cache line from a
cache set.
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Figure 4.1: The figure show part of a raw timing measurement on the target
platform. The bleeding of cache misses into subsequent measurements is clearly
visible in the excerpt. More white denote longer access time.

instructions. Thus, we could get two or even more cache misses as a result of one
alien cache line in the cache set, or even subsequent measurements as shown in
figure 4.1.

Luckily, the use of RRR replacement is of minor consequence for the success
of the attack as its effect on the measurement is easily removed by letting the spy
run for more rounds between each measurement, thus eventually evicting all alien
cache lines.

4.1.1 Timing on ARM

One of the first challenges in implementing the instruction cache side-channel on
ARM is getting access to accurate high-precision timing. How to access these
timing registers differ between different versions of ARM CPUs. This paper will
limit itself to discussing timing on a Cortex A9. Similar, if not identical, procedures
can be followed on both older and newer cores.

On x86 the core local cycle count is easily readable through the RDTSC-instruction.
On ARMv7 there is no specialised instruction to retrieve the cycle count. Instead
we have to use the more general MRC-instruction to read from the performance
cycle count register (CCNT). Unfortunately, access to this register is disabled by
default at the lowest privilege level. It is, however, possible to enable access to
this register, even to user space, from a higher privilege level.

The timing data in this paper are all measured using the MRC-instruction from
user-space after enabling access to it from a loadable kernel module. Source code
for enabling user-space timing is available in appendix A.

It is possible that some platforms already expose or will expose the CCNT reg-
ister in the future as all that is needed to expose it is to run a small number
of instructions from a higher privilege level during boot or from a driver/module
running in privileged mode.
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Please note that restricted access to the performance timing register is not
sufficient in itself to close the instruction cache side-channel. It may be possible
for an attacker to get sufficiently accurate timing from other sources.

4.2 Method
For simplicity, the experiment in this section will simulate ideal conditions where
the spy is always run immediately after the function in question. Also, in order to
clear the noise introduced by the RRR replacement policy, the spy is run for 25
iterations prior to the call to foo 2.

The timing data was sampled using a loop like the one shown below, where
input is an arbitrary bit string.

1 for (int bit : input ) {
2 run_spy( 25 ); // Populate the cache, not measured
3 if ( bit == 1 ) {
4 foo();
5 }
6 run_spy( 1 ); // measured.
7 }

Throughout this section, we are considering a 2-target attack, i.e. |S| = 2.
We are at any given time only considering one bit of information. The measured
output from the leakage function L̃256 is a 256 dimensional vector of timing data.
Each component measures a predetermined cache set as a positive integer, with
all values above 255 clamped to 255. Parts of the data in L̃256 will be discarded
as explained below.

Now, the attack was executed as follows:

Preparation step

1. Generate training data by running the spy on known input (10 separate in-
stances measuring 10000 iterations for each s ∈ {0, 1}).

2. Cull dead cache sets, see section 4.2.1.
3. Create and train a SOM using the reduced training data.
4. Tune the resulting VQ using the LVQ3 algorithm.

Exploitation step

1. Run the spy on "unknown" input.
2In this experiment the function foo is actually cos(·) from the standard C-library.
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2. Reduce dimensions to the previously determined cache sets.
3. Encode the input using the previously trained VQ.
Finally, the result is compared to the "unknown" input.

4.2.1 Culling Dead Data

As we are measuring every cache set, we expect to see a lot of measurements that
do not carry any information about the correct key class. Rather, we expect these
dead cache sets to slow down and even hamper our analysis. Below, we present
two methods to identify the live cache sets prior to building the vector quantizer.

Timing Mean and the Central Limit Theorem

As can be seen in figure 4.2 on page 36, the mean timing value of the cache sets
show a clear tendency of being a good metric to identify information bearing cache
sets. However, as the variance of the timings can be quite large, relying purely on
the mean could result in a too conservative culling.

Luckily, the problem could be taken directly from undergraduate textbook. By
the central limit theorem: The estimated mean will follow a Gaussian distribution,
x̄ ∼ N(µ, σ√

n
), where n is the number of measurements. We can therefore use a

simple two-sided test to check if the means are equal. If the difference is significant,
we use that cache set, otherwise we discard it.

In the practical results below, we use this metric to cull dead data.

Mutual Information

Mutual information is another metric that can be used for this purpose. Simply
by choosing the cache sets with the highest mutual information as the live. Note,
however, that choosing too few cache sets could potentially hamper the analysis
in cases where the target process is at an unusual alignment, explained in the next
section.

In our experiments, we tried using only the cache sets carrying mutual informa-
tion larger than 0.1. Doing so, however, yielded poorer results than using culling
according to the central limit theorem. Thus, great care has to be made when
using this as a culling mechanism as even a little information may help the final
result.

4.3 Theoretical Analysis
In this section we aim to analyse the quality of the information in the side-channel
proposed above. This is separate from the actual implementation of the exploita-
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tion step: Here we aim to formally evaluate the side-channel according to the
framework presented in chapter 3, whilst the success rate and details of the ex-
ploitation step is presented in section 4.4 on page 42. Thus this section answers
the question "Can we exploit the information leaked from the side-channel?"

Initial Analysis

Firstly, let us consider the mean and variance for the timing of each cache set,
presented in figures 4.2 and 4.3.

For small functions we do not expect much of the cache to be polluted, thus
culling cache sets that do not carry information should greatly ease the later anal-
ysis. Another noteworthy point is that the mean values seen in figure 4.2 are from
several independent executions of the crypto-process. Further inspection into the
raw data reveals that the cache set footprint seems to vary between different ex-
ecutions of the program, this is due to a technique called address space layout
randomisation. In short the OS will randomise where in memory it loads the
executable. This is done to increase the difficulty of certain buffer overflow ex-
ploits. The rearranged data will, however, still retain alignment to memory page
boundaries, which is sufficient for our analysis3.

Furthermore, as can be seen in figure 4.3, there is clearly a lot of noise in the
measurements. Additionally, the data set where are known cache misses seems to
have a slightly higher variance than the sets without a forced cache miss.

The source of this variance becomes more clear once we take a look at the distri-
bution of the measurements in a single cache set. Below, cache set 148 was chosen
as a candidate seeming to carry significant mutual information. A histogram of
the data is shown in figure 4.4. There appear to be 3–4 distinct peaks where most
access time measurements reside. This is most likely a product of one or more
cache misses in the measurement for this cache set, or even instances where the
memory system has had to access lower level memory than L2. Recall that the L1
instruction cache in this experiment has random round robin replacement, so we
expect some randomness in the number of cache misses.

Another, perhaps even more interesting point is that not all measurements of
s = 0 seem to result in a cache hit. This could be a result of various effects, such
as OS-ticks, hardware interrupts, preemptive scheduling of other processes etc.

3The cache set-alignment boundary on this platform is 2 · PageSize, we will therefore have
only two separate footprints.
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Figure 4.2: Plot shows mean value for spy measurements per cache set. Cache sets
with frequent cache misses are clearly visible.

Figure 4.3: Plot shows the variance of spy measurements per cache set.
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Figure 4.4: Histogram of cache access measurements for cache set 148.
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Estimating Pr(Lq | S)

For simplicity, we will only consider the univariate distribution of the measurement
in cache set 148. The results for other cache sets are presented in table 4.2 on
page 40 and we cannot assume that they are independent, but separate analysis
should still yield a lot of information of the side-channel.

After measuring the 100000 samples for each s ∈ S, the estimated probability
distribution P̂r(L̃q | S) is easily estimated using a frequency table. The result is
presented in figure 4.5. The access time axis is cropped at 120 as the the probability
of access times longer than that tend towards zero.

Furthermore, the distribution P̂r(L̃q | S) is used to calculate P̂r(S | L̃q) using
the formula (3.12) on page 27. The results are shown in figure 4.6. For mea-
surements between 20–120 there is a trend that may be used to determine s. As
expected, measurements outside the range of commonly observed values yield un-
predictable results.

Entropy

Shannon’s conditional entropy for the measurements of cache set 148 is presented
below.

First, the conditional entropy matrix is calculated from (3.6):

Ĥ1
S,148 =

[
0.44568 3.33847
3.41892 0.44405

]
.

Thus, from theorem 1 on page 26 it is clear that the estimated probability
distribution of P̂r(Lq | S) for cache set 148 is sound.

Unfortunately, as the noise in our measurements is not Gaussian, the lemmas
of chapter 3 do not apply. However, we may still calculate the mutual information
of S that we have captured by our estimation of Pr(Lq | S).

H[S | L̃q] = E
s
(ĥs,s) = 0.44487.

H[S] = 1

Which yields the mutual information:

I(S | L̃q) = 0.55513.

The results for the remaining cache sets are shown in table 4.2 on page 40. In
this experiment all but one of the cache sets have sound approximations for L̃q,
but cache sets having mutual information less than 0.01 have been omitted for
compactness.
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Figure 4.5: Estimated probability distribution P̂r(L̃q | S).

Figure 4.6: Estimated probability distribution P̂r(S | L̃q).
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Cache set I(S, L̃q)

0 Not Sound
4 0.0125
5 0.0131
6 0.0129
7 0.1745
8 0.0183
9 0.1673
11 0.1685
12 0.0104
13 0.0156
15 0.1580
16 0.0156
18 0.0158
19 0.0335
20 0.4681
21 0.0294
22 0.0137
26 0.0110
27 0.1822
28 0.1826
29 0.0183
30 0.0719
31 0.0609
32 0.1190
33 0.1324
36 0.0521
40 0.0121
41 0.0118
42 0.0111
43 0.0160
45 0.0109
46 0.0116
75 0.0135
76 0.0128
77 0.0114

Cache set I(S, L̃q)

78 0.0120
82 0.0139
84 0.0116
85 0.0115
86 0.0103
87 0.0148
88 0.0172
89 0.0245
90 0.0703
91 0.0762
92 0.0615
93 0.0522
94 0.0515
95 0.0369

132 0.0290
133 0.0263
134 0.0256
135 0.3335
136 0.0317
137 0.3259
138 0.0195
139 0.3305
140 0.0199
141 0.0260
142 0.0222
143 0.3289
144 0.0304
145 0.0160
146 0.0274
147 0.0685
148 0.5551
149 0.0456
150 0.0289
151 0.0191
152 0.0216

Cache set I(S, L̃q)

153 0.0113
154 0.0265
155 0.3425
156 0.3483
157 0.0187
158 0.0153
159 0.0120
160 0.3231
161 0.3116
168 0.0281
169 0.0271
170 0.0240
171 0.0280
172 0.0229
173 0.0218
174 0.0232
175 0.0169
176 0.0128
203 0.0279
204 0.0269
205 0.0235
206 0.0249
207 0.0186
208 0.0169
209 0.0176
210 0.0251
211 0.0197
212 0.0227
213 0.0239
214 0.0217
215 0.0173
216 0.0175

Table 4.2: Cache sets with mutual information I(S, L̃q) > 0.01.
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Remarks on Cache Set 0 As can be seen in table 4.2 cache set 0 seems to be
a special case as the only cache set that is not sound. This is because we store
the measurements in unsigned bytes and clamp all data exceeding this to 255. For
cache set 0 all data seem to violate this constraint, therefore, cache set 0 has mean
255 and variance 0, regardless of the value of s. We have been unable to isolate the
cause of this, but it is of no practical importance as cache set 0 is automatically
culled.

Conclusion

After looking at the data in table 4.2 we conclude that there is exploitable infor-
mation in in the side-channel. As expected, there are certain cache sets that carry
significantly more information about S than others and are the primary contribu-
tors to the leakage in the side-channel. Also, as will be shown in the next section,
this leakage is more than enough to create an adversary with significant advantage.
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4.4 Practical Results
As is seen in table 4.3 the success rate of this experiment was over 97%.

Input parameters
SOM Dimensions: 25
Training samples: 10 x 10000 measurements per key class
Challenge samples: 10000

Results
Classification Rate on Training Data: 0.973
Classification Rate on Challenge Data 0.972

Table 4.3: Results of experiment.

From this we conclude that the first order success rate of this adversary is:

Succsc−kr−1,sAE{0,1},L
= 0.972. (4.1)

Thus we have created an adversary with advantage:

Adv(AE{0,1}) = |P (AE{0,1} → 1 | s = 1)− 1/2| = 0.472. (4.2)

Since both SOM and LVQ are randomised algorithms the exact hit-rates vary
between subsequent runs.

For completeness, visualisations of an extract of the raw timing data are shown
in figure 4.7 on the facing page.

4.5 Conclusion
It is clear from the experiment above that we are able to determine whether a
function was called with a significant advantage in this ideal context. The theo-
retical analysis shows that there is exploitable information in the signal exposed
by the instruction cache, and the practical attack succeeds with a good advantage.
Next up is trying the attack on an implementation of an actual crypto-system.



4.5. CONCLUSION 43

(a) Function not called.

(b) Function called.

(c) Alternating pattern.

Figure 4.7: Visualisations of the raw timing data. Cache sets are shown along
the horizontal axis, and subsequent runs along the vertical axis. The "keys" are
"000000...", "111111..." and "010101..." for (a), (b) and (c) respectively. In (b)
and (c) it is possible to see more vertical lines in the than in (a), this is the pattern
we are searching for. In (c) the striping pattern from the alternating key is clearly
visible even to the naked eye. (Depending on the quality of the printout this may
not be clearly visible, if that is the case please consult the electronic copy of the
thesis.).



Chapter 5

Synchronous Attack on RSA

In this chapter we perform the next logical step and employ the same procedure
as in the previous chapter, only against an implementation of an actual crypto-
system. We will target a trivial implementation of RSA, using the multiply-square
algorithm, which is unfortunately still encountered in the wild, despite being vul-
nerable to a plethora of known attacks.

The work presented in this chapter is essentially combining parts of [1], [2] and
[8] to implement an effective attack.

5.1 Method

As mentioned, we will be attacking an implementation of the multiply-square
algorithm. This algorithm, although repeatedly shown to be vulnerable against an
array of side-channel attacks is still in use in common crypto-software. GnuPG [48]
and some configurations of OpenSSL [2] still use this technique. In this experiment
we have implemented the algorithm ourselves using OpenSSL’s BIGNUM library.
Key generation and other facilities are taken from the OpenSSL library.

The phases of the attack are very similar to the proof of concept in the previous
section:

Preparation step

1. Generate 100 random, known RSA-keys.
2. Observe and measure 1 decryption of a random message for each key.
3. Cull dead cache sets, see section 4.2.1.
4. Create and train a SOM using the reduced training data.
5. Tune the resulting VQ using the LVQ3 algorithm.

44
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Exploitation step

1. Generate 1 random challenge RSA-key.
2. Observe and measure 1 decryption of a random message for the challenge key.
3. Reduce dimensions to the previously determined cache sets.
4. Encode the measurements using the previously trained VQ.
The spy function is identical to that in the previous chapter and is listed in

appendix B. The full source code for the decryption algorithm is available in
appendix C and shows how we call the spy from within the crypto-process.

5.2 Results and Discussion
In this section we present the formal analysis followed by the practical results.

5.2.1 Formal Analysis

As before, we used the mean access time as the metric to exclude cache sets
from the training data. This operation identified 239 out of the 256 cache sets
as information carriers. We also note that the variance of all cache sets is much
higher in this second experiment as compared to the previous chapter. This is not
unexpected as the functions we are measuring are much larger and run significantly
longer than the simple experiment in the previous chapter. The mean and variance
of each measurement is presented in figures 5.1 and 5.2 on the next page.

For the formal analysis, we again follow the framework presented in chapter 3.
As before we are looking at a two-target attack, S = {0, 1}. The mutual infor-
mation is plotted in table 5.1 on page 48. Furthermore, the estimated probability
distributions P̂r(L̃q | S) and P̂r(S | L̃q) for cache set 241, which has the highest
mutual information, are shown in figures 5.3 and 5.4 on page 47.

From the data presented thus far there are a few interesting observations: When
comparing the data from this chapter to that of chapter 4 we notice that the
variance is higher, there are fewer cache sets with high mutual information and
there are more cache sets that appear to carry some information.

Despite this, the information is sufficient to create an effective adversary as
will be shown in the next section.

5.2.2 Practical Results

As seen in table 5.2 the success rate of this experiment was over 94%. And we
conclude that the first order success rate of this adversary is:

Succsc−kr−1,sAE{0,1},L
= 0.944. (5.1)
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Figure 5.1: Plot shows mean value for spy measurements per cache set. Differences
in the mean access time of individual cache sets are visible, but there is no clear
trend as in figure 4.2.

Figure 5.2: Plot shows the variance of spy measurements per cache set.
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Figure 5.3: Estimated probability distribution P̂r(L̃q | S).

Figure 5.4: Estimated probability distribution P̂r(S | L̃q).



48 CHAPTER 5. SYNCHRONOUS ATTACK ON RSA

Cache set I(S, L̃q)

0 Not Sound
15 0.0308
26 0.0119
27 0.0114
28 0.0162
29 0.0382
30 0.0334
31 0.0753
34 0.0137
35 0.0141
38 0.0883
47 0.0166
59 0.0340
61 0.0128
62 0.1606
66 0.0397
68 0.1432
69 0.0427
72 0.0191
73 0.0154
74 0.0129
75 0.0136
76 0.0176
77 0.1432
78 0.0141
79 0.0450
80 0.0136
81 0.0580
83 0.1294
84 0.0135
85 0.0339
88 0.0177
91 0.0380
92 0.0183
93 0.0149

Cache set I(S, L̃q)

95 0.0443
97 0.0110
98 0.0178
99 0.1232

100 0.0482
101 0.3144
102 0.0714
103 0.0205
104 0.0167
105 0.0522
106 0.0175
107 0.0248
108 0.0195
109 0.1562
110 0.0600
112 0.0251
113 0.2757
114 0.0309
118 0.0175
119 0.0300
126 0.0100
143 0.0140
154 0.0163
155 0.0138
156 0.0168
157 0.0334
158 0.0296
159 0.0373
166 0.0388
187 0.0186
189 0.0221
190 0.2840
191 0.0118
194 0.0229
196 0.2978

Cache set I(S, L̃q)

197 0.0368
200 0.0199
201 0.0150
203 0.0125
204 0.0162
205 0.2655
206 0.0222
207 0.0246
208 0.0104
209 0.1039
211 0.2517
212 0.0227
213 0.0269
216 0.0105
219 0.0162
223 0.0209
225 0.0115
226 0.0184
227 0.0818
228 0.0288
229 0.3942
230 0.0672
231 0.0158
232 0.0109
233 0.0266
234 0.0121
235 0.0173
236 0.0199
237 0.2613
238 0.0330
240 0.0232
241 0.3797
242 0.0396
247 0.0123

Table 5.1: Cache sets with mutual information I(S, L̃q) > 0.01.
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Thus this adversary has advantage:

Adv(AE{0,1}) = |P (AE{0,1} → 1 | s = 1)− 1/2| = 0.444. (5.2)

Input parameters
SOM Dimensions: 25
Training samples: 100 x 1 measurements of a ∼ 1024 bit key
Challenge sample: 1 x 1024 bit key

Results
Classification Rate on Training Data: 0.926
Classification Rate on Challenge Data: 0.944
Correct bits recovered: 967/1024

Table 5.2: Results of experiment.

5.3 Conclusion
The significance of the leakage in this section cannot be stressed enough. By
observing one decryption operation, we are able to extract 967 bits of the secret
key.

Although this experiment is performed under ideal conditions, previous work
has shown that similar results have been easily expanded to more sophisticated
attacks, cf. [2, 5, 8, 18, 26, 48].

However, the attack in its current form has a significant drawback: It relies on
the ability to inject code into the decryption function. It is with this in mind that
we move on to the next chapter, where we attempt (and fail) to implement a spy
that is truly decoupled from the target process.



Chapter 6

Attempting an Asynchronous
Attack

In order to make the attack more practical, the next logical step is to try to
decouple the spy from the victim. This has been successfully implemented in the
literature for simultaneous multi-threading (SMT) platforms, cf. [2]. It is, for the
reasons stated below, a very different exercise on ARM.

6.1 Alterations to the Spy

In this setting the spy is no longer called from within the crypto-process, rather it
runs in a different process scheduled to run on the same core1.

As ARM Cortex A9 does not use simultaneous multi-threading (SMT), we
rely on the operating system’s preemptive scheduler to pause the execution of the
crypto-process and start the spy.

6.2 Method

For this experiment, we start two separate processes on the same core, one is re-
peatedly running the spy, and the other is repeatedly performing RSA-decryptions
of random messages using the same simple modular version of the multiply-square
algorithm as shown in appendix C, only without the explicit calls to the spy.

The decryption process is started first, then the spy measuresN samples, finally
the spy exits normally and the decryption process is killed.

1We ensure that the processes are forced to run on the same core using the taskset utility
on Linux.

50
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6.3 Discussion of Results

The results of this experiment are negative, first and foremost stomped by the
problem of sampling frequency.

We started our analysis by checking how often we expect our spy to be sched-
uled, based on the timing of mod_multiply and mod_square2. These timing mea-
surements are an average of 1000000 samples and are listed in table 6.1. All in all,
this looks very promising. We expect that, if the spy and decryption process are
alternately scheduled at every OS-tick, we should sample around one measurement
per multiply or square. This, however, is not the case in practice.

Operation Time [performance-ticks]
OS tick 36548
mod_multiply 38198
mod_square 40776

Table 6.1: Timings of operations in an unstressed environment.

We found that in practice, the spy is only scheduled to run after what appears
to be every 4–5th OS tick. This effectively means that we are not measuring which
operation is happening right now, but rather, if there has been a mod_multiply
run in the last 4–5 operations. Assuming the key is random, this means we are
ideally only able to learn when there are two or more consecutive 0’s in the key.
Which might be of some use, but not what we set out to measure. There is also
added noise from the instructions run by the OS kernel during context-switching
in addition to the regular sources observed in the previous experiments.

In addition, we have had a problem with combining the data in the measure-
ments into a coherent whole. The OS sometimes (after a few hundred measure-
ments) decide to leave our process unscheduled for few hundred ticks. This gives
rise to the need to patch together partial information from several measurements,
and in our experiment the data simply does not align satisfactory using either of
a number of techniques ranging from brute force to more sophisticated multiple
sequence alignment algorithms [17] adapted from genome research.

Thus, after much deliberation and many dead ends, we conclude that this
experiment is a failure, and that an alternate strategy is needed to implement the
side-channel with an asynchronous spy on a non-SMT platform.

2mod_multiply and mod_square return a · b (mod p) and a · a (mod p) respectively.
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6.4 Suggested Future Work
The main reason for this experiment’s failure is the need for higher resolution
sampling. One way to do this, as hinted in the published literature, is to combine
I-cache analysis with an exploit on OS scheduling. One such exploit was discovered
by Tsafrir in 2007 [19], but this has since been fixed [35]. If, however, it is possible
to influence the current Linux scheduler, or that of another operating system, to
reliably schedule the spy-process at a sufficient frequency, this attack may still
become practical.

Another technique that may give sufficient sampling resolution is to schedule
the spy function as an interrupt instead of an actual process. If this can be done
reliably it may be even better than leaving it to the OS. Further research into the
feasibility and practicality of this approach is required. Unfortunately we are not
able to do so in the time allotted for this paper.

6.5 Alternate Asynchronous Attack
A recent work by Yarom and Falkner [48] introduces a variant of the Prime+Probe
attack used in this paper called Flush+Reload. It is a more directed attack that
utilises shared memory pages between the spy and the victim. Instead of filling the
cache with the spy’s code as is done in the Prime-phase of Prime+Probe, the
spy Flushes carefully chosen cache lines from all cache levels. Later the spy will
attempt to Reload each cache line and determine whether it is fetched from main
memory or not. Flush+Reload has since been used several related attacks, cf.
[12, 47].

For our purpose, Flush+Reload (or variants thereof) overcome the challenge
of sampling resolution as the higher level caches are shared amongst different
physical cores even on ARM. On the other hand this technique comes with a new
challenge: The cache eviction instructions require super user privileges, unless the
same functionality may be obtained using other legal operations.

Another possibility could be to attempt a Prime+Probe attack against the
L2 cache which is shared amongst different physical cores. The L2 and L3 caches
are generally small on embedded devices, which could make this a viable option.



Chapter 7

Countering I-Cache Analysis

This chapter will present the current state of countermeasures against software-
based cache side-channels. These countermeasures include changes to both hard-
ware and software and summarise the work in [2, 7, 21, 30, 31, 36, 37, 45].

7.1 Software Transformations

7.1.1 Avoiding Key-Dependent Control Paths

The most intuitive defence against I-cache analysis is to avoid creating key-dependent
control flow. The idea is to replace any patterns similar to:

1 if (x != 0)
2 var = foo();
3 /*else
4 var = bar();*/ // Optional

where x is dependent on the secret input, with a fixed control flow.
This can be enforced in several different ways. One way is to always perform

all sensitive calculations, but only use the result for the case where the conditional
statement would have branched.

1 res[0] = foo();
2 res[1] = bar(); // Optional
3 var = res[ x != 0 ];

A downside with to technique is that it will always decrease the performance
of the application.

Another similar technique is to replace the functions altogether, and use pre-
computed values stored in tables instead. Note, however, that this may make the
code susceptible to a data-cache attack, cf. [37, 40].
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It is important to stress that this countermeasure is prone to human error if
done manually. Even if executed correctly at a point in the code, there is no guar-
antee that other functions or subroutines are not key-dependent. Sensitive control
flow must be avoided at all levels of the software stack for this countermeasure to
be successful.

7.1.2 Cache Conscious Layout

Cache conscious layout [2] is most easily enforced on the compiler or OS level,
but may also be implemented by a developer using alignment flags. Doing so
requires accurate knowledge of the cache layout of the target platform. It works
by mapping sensitive functions to the same cache sets, thus making it difficult
for an adversary to distinguish between them. Note however, that an adversary
who is able to measure the cache at a sufficiently high frequency may be able
to distinguish between security sensitive functions by analysing the cache access
patterns even inside critical functions.

7.1.3 Cryptographic Obfuscation

Another quite recent development that may be used to close the instruction cache
side-channel is what is known as program obfuscation. In a recent paper Garg
et al. [21] proposed a candidate for indistinguishability obfuscation.

Indistinguishability obfuscation is a notion of security stating that given the
obfuscated version of two equivalent programs C0, C1, an adversary is unable to
distinguish between them. This also implies that the adversary is unable learn
anything from tracing the program.

A simple argument runs like this: Assume C0 is an implementation of a pro-
gram that does not leak information. Whilst C1 is an equivalent program that
does leak information. Let iO(C0), iO(C1) be the obfuscated versions of C0, C1

respectively. If an adversary is unable to distinguish between iO(C0), iO(C1), she
cannot learn anything useful about the leakage from C1, as this knowledge would
let her distinguish between the program.

It should be noted that program obfuscation is a field that still require more
research. Also, program obfuscation has much more ambitious aims than counter-
ing simple side-channel analysis. Nonetheless, we argue that a securely obfuscated
program would by necessity also be protected against instruction cache analysis.

7.1.4 Cache Flushing

Acıiçmez et al. [2] also tested full and partial cache flushing as a defence against
cache analysis on non-SMT platforms. However, more recent work has shown that
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cache analysis may be used to target lower level caches as well [48]. Cache flushing
may still be a viable defence on platforms utilising exactly one logical core and the
countermeasure is implemented at the OS level.

Full cache flushing would invalidate the complete cache on context switching.
This would still reduce the performance of all processes on the system, but to a
much smaller extent than disabling the cache completely.

Partial cache flushing would have a smaller impact on performance, but comes
with other difficulties. The idea is to flush only the cache-sets that may leak
information. Thus, the crypto-process must be analysed beforehand to identify
critical code-sections. All cache sets mapping a critical sections would then need
to be flushed when the crypto-process switches out.

7.2 Hardware Support

7.2.1 Disable Caching

A rather trivial countermeasure is to simply disable/remove the cache altogether.
This, however, has a tremendous negative impact on the performance of the whole
system. Acıiçmez et al. [2] measured a performance decrease to 0.001 of the base-
line1. This is not a viable countermeasure in practice.

7.2.2 Cache Partitioning

Another approach, closely related to cache usage in real time systems, cf. [36], is to
partition the cache itself so that different processes/security levels map to disjoint
sets in the cache [38]. The idea is to deny unprivileged code access to sensitive cache
sets, thereby effectively closing the cache side-channel. Given hardware support
for physical partitioning of the caches, this could close the cache side-channel even
across virtualisation boundaries.

Cache partitioning requires hardware and instruction set support, and is not
currently available in general purpose hardware. Another issue with this counter-
measure is that partitioning gives each process less cache to work with and will
significantly decrease the performance of memory intensive applications.

Furthermore, this countermeasure would not protect against attacks relying on
internal cache collisions in the crypto-process, cf. [9].

1For RSA-decryptions with a 2048 bit key
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7.2.3 Alternate Cache Architectures

The final hardware countermeasures we will present are the partition locked cache
(PLcache) and random permutation cache (RPcache) introduced by Wang and Lee
[45] and further improved by Kong et al. [30].

Wang et al. designed the caches to protect against two known data cache attacks
against RSA and AES [45]. Kong et al. later showed that adapted attacks could
circumvent the protection offered by the PLcache and RPcache [31], but later
published amendments that improve the security of both architectures [30].

Both cache architectures require a developer to identify critical sections of an
application’s address space, whether data or instructions, and handle the loading
of these sections using special instructions.

PLcache + Preloading

The idea behind a locked partition cache (PLcache) is similar to the cache par-
titioning introduced by Percival in [38]. Critical sections are locked in the cache
such that these cache lines cannot be evicted. This requires the cache to be large
enough to fit the critical sections in the cache.

To give an example, in the case of software implementations of AES it is com-
mon to replace the expensive round calculations with precomputed look-up tables.
Accesses to these tables are key-dependent and opens a data cache side-channel, cf.
[9, 37]. To defend against such attacks the crypto-process would need to preload
all the look-up tables, lock them in the cache and perform the encryption(s), before
finally unlocking the cache lines.

The preloading is an important step and should not be skipped, as shown by
Kong et al. [30, 31].

Implementation Details A PLcache may be implemented by adding one bit
L to every cache line to mark whether this line is locked, and replacing the cache
logic to that described in figure 7.1 on the facing page.

Limitations There are some limitations to the PLcache that should be men-
tioned:
1. The PLcache is ill-suited as a secure instruction cache because of the latency

involved in preloading, cf. [30].
2. Small caches will result in a non-trivial performance overhead as locking parts

of the cache will effectively reduce the cache available to rest of the system.
3. Caches so small that the whole critical set cannot be held in memory at once

may still be vulnerable to cache analysis attacks as the preconditions are
voided.
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Figure 7.1: Cache access handling procedure of PLcache.

4. In order to perform preemptive scheduling, the OS will need to do bookkeeping
on the critical sections of each process. It would then have to unlock and reload
the critical sections when a sensitive process is rescheduled.

5. Cache line locking should be a privileged operation as a malicious process could
potentially lock down the whole cache. Thus choking memory performance.

RPcache + Informing Loads

The random permutation cache (RPcache) functions quite differently from the
other countermeasures discussed so far. The idea is to randomise the signal re-
ceived by an attacker so he can learn nothing from it. We must still identify and
mark the critical sections of the code.
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Details The most major change to the cache is the addition of two or more
indirection tables. The point of this is to add a virtualisation layer on the cache
set mapping per process. This cache set mapping is further randomised according
to the rules outlined in figure 7.2 on the next page. Each cache line is tagged with
the process-id of the owning process and a permutation table index P .

This is best explained by an example:

Example 2. The platform has two separate permutation levels, 0 and 1. A mem-
ory location R is marked as sensitive and loaded into the cache in set S. This
means that R’s permutation table index is one: PR = 1.

Some time later, we attempt to load another memory location D from a dif-
ferent process. This access uses the unprivileged permutation table, PD = 0, and
happens to map to the same cache set as R, namely S, where R is next up for
eviction.

Now, instead of evicting R, we select a random cache set S ′ and insertD into S ′,
mercilessly evicting whatever cache line was up for eviction in S ′. Furthermore, we
swap the mappings of S and S ′ in the unprivileged permutation table and update
the cache lines with PX = 0, so that subsequent accesses to the other entries
already in the cache will still result in cache hits.

Furthermore, in order to be secure, it is required that the architecture supports
informing loads [30, 33], which means that the process performing the load can
issue a special load instruction to receive an interrupt if the access resulted in a
cache miss. The need for this feature was determined by Kong et al. in [31] where
they showed that timing driven attacks could still succeed on a RPcache without
informing loads.

Informing loads must be actively used by the sensitive application to ensure
that it is not vulnerable to timing attacks, for instance by reloading critical data
into the cache, cf. [30].

Another important point to mention is that the use of informing loads may ease
implementations of defences against new cache vulnerabilities as new mitigations
may be patched into the software initiated by the interrupts.
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Chapter 8

Conclusion

This master thesis has managed to reproduce an instruction cache side-channel
attack based on several attacks from the literature. With this attack we were able
to extract 967 of 1024 bits of an RSA key from observing a single decryption.

Although we were unable to make the spy completely decoupled from the vic-
tim, we are convinced that this was due to lack of resources on our part, and not
due to the feasibility of the problem.

The ARM architecture does, however, introduce challenges that are not present
on x86, namely that timing and cache eviction are privileged operations. In ad-
dition, the lack of simultaneous multi-threading makes decoupled attacks more
difficult.

Furthermore, it is a key point to stress that the results in this and related
papers are still applicable across virtualisation borders. This is of interest to
situations where a secure process may share cache with a non-secure process, cf.
ARM TrustZone [11]. Great care must be shown to not introduce information
leakage at any level of the caches.

8.1 Remaining Work

As previously mentioned, there is still remaining work along the research vector
of asynchronous L1-instruction cache attacks on ARM. Ideas that need further
consideration include: Using existing OS facilities to schedule the spy more reliably
either as an interrupt or as a special process. It should also be investigated whether
an unsecured OS may schedule a spy with sufficient sample resolution when running
alongside a secure OS in a virtualised environment.

Other remaining work include implementing more sophisticated attacks, as for
instance that of [2]. However, it should be noted that this would probably not
introduce any new results. As we show in this paper, there is indeed leakage.
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Thus, known attacks already demonstrated on x86 should also be applicable to
ARM platforms assuming the issue of sampling resolution can be addressed.

The last remaining work that we will mention is further analysis into the ef-
ficiency and power-per-area of the alternate cache designs presented in section 7.
More specifically the PLcache and RPcache, which seem to be the most promising
countermeasures against cache side-channel attacks.
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Appendix A

Using Performance Timing on
Cortex A9

The code below is adapted from stackoverflow.com1.
In order to enable access to the cycle count register, the following code must

be run from an elevated privilege level (Kernel space or above) once on each CPU
core.

1 // program the performance-counter control-register:
2 asm volatile ("MCR p15, 0, %0, c9, c12, 0\t\n" :: "r"(0x00000017));
3

4 // Enable the CCNTR register:
5 asm volatile ("MCR p15, 0, %0, c9, c12, 1\t\n" :: "r"(0x80000000));
6

7 // Clear overflow status flag:
8 asm volatile ("MCR p15, 0, %0, c9, c12, 3\t\n" :: "r"(0x80000000));
9

10 // Enable user-mode access to the performance counters
11 asm volatile ("MCR p15, 0, %0, C9, C14, 0\n\t" :: "r"(1));
12

13 // Disable counter overflow interrupts (just in case)
14 asm volatile ("MCR p15, 0, %0, C9, C14, 2\n\t" :: "r"(0x80000000));

1http://stackoverflow.com/a/3250835/2430032
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Once access to the register is enabled any process can read the current cycle
count using follwing code.

1 inline unsigned int get_cyclecount()
2 {
3 unsigned int value;
4 // Read CCNT Register
5 asm volatile ("MRC p15, 0, %0, c9, c13, 0\t\n": "=r"(value));
6 return value;
7 }



Appendix B

Assembly Code of The Spy

Below is an excerpt from the assembly code for the spy process written in ARM
assembly. It is automatically generated by a Python script that can be found in
electronic appendix, available on DAIM. The header file asm_defines.h defines the
constant CACHE_SETS.

1 /*This file was generated with parameters:
Cache size: 32768 bytes ,

3 Cache line size:
32 bytes and cache associativity: 4*/

5
/* AUTOMATICALLY GENERATED */

7 #include "asm_defines.h"

9 .text
.globl spy_loop_abs

11
/*void spy_loop_abs( abs_t * raw_timings , unsigned long N)*/

13
spy_loop_abs:

15
/* R0 holds argument raw_timings */

17 /* R1 holds argument N which is number of rounds */
/* R2 holds current measurement */

19 /* R3 holds previous measuremnt */

21 /* PROLOG */
/* Start */

23 MOV R2, #CACHE_SETS
MUL R1, R1, R2

25
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MOV R2, #RAW_T_SIZE
27 MLA R1, R1, R2, R0 /* R1 = R1*R2 + R0 */

29 /* Save first timing. */
MRC p15 , 0, R3, c9, c13 , 0

31 .balign 8192
L00000:

33 B L00256
.rept 7

35 NOP
.endr

37 L00001:
B L00257

39 .rept 7
NOP

41 .endr
L00002:

43 B L00258
.rept 7

45 NOP
.endr

47 L00003:
B L00259

49 .rept 7
NOP

51 .endr
/*(... snip ...)*/

53 L01021:
MRC p15 , 0, R2, c9, c13 , 0

55 CMP R2, R3
SUBLE R3, R3, R2

57 SUBGT R3, R2, R3
STR R3, [R0], #4

59 MRC p15 , 0, R3, c9, c13 , 0
B L00254

61 NOP
L01022:

63 MRC p15 , 0, R2, c9, c13 , 0
CMP R2, R3

65 SUBLE R3, R3, R2
SUBGT R3, R2, R3

67 STR R3, [R0], #4
MRC p15 , 0, R3, c9, c13 , 0



71

69 B L00255
NOP

71 L01023:
MRC p15 , 0, R2, c9, c13 , 0

73 CMP R2, R3
SUBLE R3, R3, R2

75 SUBGT R3, R2, R3
STR R3, [R0], #4

77 MRC p15 , 0, R3, c9, c13 , 0
CMP R0, R1 /* This is ok, since we are only

79 comparing for whole cache sets.*/
BLO L00000

81 B END
END:

83
/* EPILOG */

85
MOV pc, lr



Appendix C

Multiply-Square Algorithm

Below is the actual C-code for the implementation of RSA used in the experiments
of chapter 5 and 6. types.h defines the type raw_t, asm_defines.h defines the
constant CACHE_SETS.

simple-rsa.h
#pragma once

#include <openssl/bn.h>
#include "types.h"

5

#ifdef __cplusplus
extern "C" {
#endif

10 void mod_exp( BIGNUM *ret, const BIGNUM *base, const BIGNUM *exponent,
const BIGNUM *mod , raw_t *raw_data);

void rsa_decrypt( BIGNUM *plaintext, const BIGNUM *ciphertext,
const BIGNUM *n, const BIGNUM *d , raw_t *raw_data);

15 #ifdef __cplusplus
};
#endif
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simple-rsa.c
#include "simple_rsa.h"
#include "asm_defines.h"
#define RESET_SAMPLES 25
static raw_t resetbuffer[RESET_SAMPLES*(CACHE_SETS)];

5

extern void spy_loop_abs( raw_t * raw_timings, unsigned long N);

void rsa_decrypt( BIGNUM *plaintext, const BIGNUM *ciphertext,
const BIGNUM *n, const BIGNUM *d , raw_t *raw_data) {

10 mod_exp( plaintext, ciphertext, d, n , raw_data);
}

void mod_exp( BIGNUM *ret, const BIGNUM *base, const BIGNUM *exponent,
const BIGNUM *mod , raw_t *raw_data) {

15 int nbits, i;
BIGNUM *multiplier;
BN_CTX *ctx;

multiplier = BN_dup( base );
20 BN_one(ret); // OK, even if base == ret, as we made a copy above.

ctx = BN_CTX_new();
BN_CTX_init(ctx);

25 i = 0;
nbits = BN_num_bits(exponent);
while ( i < nbits ) {

// Reset ownership
spy_loop_abs( resetbuffer, RESET_SAMPLES );

30

if ( BN_is_bit_set(exponent, i) ) {
BN_mod_mul(ret, ret, multiplier, mod, ctx);

}

35 BN_mod_sqr(multiplier, multiplier, mod, ctx);
// Measure
spy_loop_abs( raw_data + i*(CACHE_SETS), 1 );
++i;

}
40 BN_clear_free(multiplier);

BN_CTX_free(ctx);
}
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