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Problem description
The Department of Engineering Cybernetics at NTNU has recently established

the Artificial Pancreas Trondheim (APT) research group in cooperation with St

Olavs Hospital and Faculty of Medicine at NTNU. In this assignment you are

to design and assess a control system suitable for APTs approach for glucose

control.

• Give a brief presentation of the glucose and insulin dynamics in humans

with diabetes mellitus type 1 or 2, as well as in humans without diabetes.

Describe extensions of a given mathematical model which can be used for

in-silico studies of control algorithms.

• Select and implement suitable extensions into the existing MATLAB/Simulink-

model.

• Discuss the theoretical aspects of implementing pulsatile intravenous in-

fusion (Skjærvold, 2013) or pulsatile intraperitoneal infusion for the APT

model. This may include possibilities for adaptive control.

• Implement the pulsatile insulin infusion for the APT model. Compare

the controller performance to the control strategies already implemented

(PID and MPC) for intravenous and intraperitoneal infusion sites.

• Discuss the results in terms of clinical relevance and consequences for the

patient
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Abstract
Diabetes is a chronic decease which affect the body’s ability to regulate the

blood glucose level(BGL). Not being able to maintain a steady BGL can lead to

many severe complications. There is done much effort in order to develop a ar-

tificial pancreas. In healthy humans the BGL is regulated mainly trough insulin,

which is secreted in pulses by the beta cells. This is believed to have greater

hypoglycemic effect than normal continuous infusion. In this thesis a method

for controlling the BGL by pulsatile infusion, both with intravenously and in-

traperitoneal approach was described. The pulsatile infusion showed good per-

formance in closed loop simulations. However the effect of giving insulin in a

pulsatile manner was little, giving no oscillation i BGL. In order to draw further

conclusions about the controller, this effect must be included into the model.

An recursive least square scheme was implemented in order to test the possibil-

ity for adaptive control. Both the pulsatile and the normal controller gave about

equal performance regarding online parameter estimation. When there was

small fluctuations present, the online estimation worked in both case. Therefore

it is likely that pulsatile control is more suitable for adaptive control because of

the possibility for oscillations in BGL. In addition a model extension for physical

activity is included into the glucose insulin model.
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Sammendrag
Diabetes er en kronisk sykdom som påvirker kroppens evne til å regulere blod-

sukkeret. Et dårlig regulert blodsukker kan føre til mange alvorlige komplikasjoner.

Det gjøres store anstrengelser for å utvikle en kunstig pankreas. I friske men-

nesker reguleres blodsukkeret hovedsakelig av insulin, som skilles ut i pulser

fra beta cellene i pankreas. Mye tyder på at pulsatil tilførsel av insulin gir større

hypoglykemisk effekt enn hva kontinuerlig tilførsel gjør. I denne oppgaven er

det beskrevet en metode for pulsatile innførsel både intravenøst og intraperi-

tonalt. Metoden fungerte bra i lukket sløyfe simulering, men selve effekten av å

gi insulin pulsatilt var liten, da det gav ingen svinger i blodsukkeret. For å kunne

trekke videre konklusjoner må denne dynamikken implementeres i modellen.

En rekursive minste kvadraters metode ble implementert i modellen for å test

muligheter for adaptiv kontroll. Både den pulsatile og den kontinuerlig inn-

førselen av insulin gav omtrent samme ytelse med tanke på parameter estimer-

ing. Bare når det var små svinger tilstedte i blodsukkeret, konvergerte parame-

terne til riktig verdi. Derfor er det sannsynlig at pulsatil kontroll er mer egent

for adaptive kontroll, da det er antatt at pulsatil insulin innførsel kan gi små

svingninger i blodsukkeret. I tillegg er implementert en utvidelse for fysisk ak-

tivitet i glukose insulin modellen.
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1 Introduction 1

1 Introduction
1.1 Insulin glucose dynamics
All carbohydrates consumed by the body, gets broken down to glucose and is

taken up in the bloodstream for transport, before it can be used for energy

consumption inside the tissue cells. The insulin glucose dynamic is the process

in the human body, which regulates the blood glucose level (BGL) to a steady

level. The hormones which controls most of the process is secreted from the

Islet of Lagerhans, located in the Pancreas.

There are in total around one million Islet of Langerhans, which constitutes

for 1-2% of the total mass of the Pancreas.(Diabetes research institute, n.d.) The

Islet of Langerhans consist of five major endocrine cell types called alpha, beta,

delta, gamma(pp cells) and epsilon cells. The most important cell types for

BGL regulation are alpha and beta cells which secretes glucagon and insulin.

Around 50-80 % are beta cells and 15-20 % are alpha cell (Stefan et al., 1982).

The other three cell types, delta, gamma and epsilon cells secrets the hormones

somatosatin, pancreatic polypeptide and grehlin respectively.

The process start when the increased BGL is detected by the beta cells. This

leads to secretion of insulin. Insulin is a hormone which primarily bounds with

the receptor GLUT 4, which allows the transport of glucose through the cell

membrane, so it can be used for energy consumption inside body cells, or stored

inside liver cells as glycogen. To better regulate the BGL during a meal, the se-

cretion of insulin happens in two faces. The first face is when the brain perceive

a signal for food through either vision or taste. Then the signal is sent from the

brain to the pancreas and insulin is secreted from the beta cells into the hepatic

circulation. The presence of insulin stops the liver from breaking down glyco-

gen to glucose(glycogenolysis). When insulin is absent the liver cells produces

glucose from glycogen to ensure that the BGL do not get to low. When food
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reaches the stomach, hormones from the gastrointestinal organs increases the

sensitivity of glucose for the beta cells. The second phase begins when the nu-

trients get absorbed into the circulation and the secretion of insulin continues.

When all carbohydrates are consumed, the body uses around two hours to get

the BGL to normal.

The storage of glycogen is short term and if the BGl gets to low, alpha cells in the

islet of Langerhans produces the hormone glucagon, which does the opposite of

insulin. Glucagon makes the liver convert glucose from glycogen (glycogenoly-

sis) and can also synthesize glucose from amino acids(gluconeogenesis) if nec-

essary. When fasting for several hours the uptake of glucose in muscle cells is

also minimized and free fatty acids is released from stored fat (lipolysis). When

fasting longer than 12 hours the fatty acids becomes the main source for energy

consumption for every cell in the body except for the brain which consumes glu-

cose from gluconeogenesis on this point. The brain only uses glucose as energy

source and needs a steady supply due to the lack of energy storage.

Figure 1: Glucose-Insulin dynamics.
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A illustration of the process can be seen in figure 1. Besides insulin and glucagon

which drives the main dynamic of the BGl regulation, other stress hormones

contributes as adrenaline, cortisol and growth hormones.

1.2 Diabetes Melitus

Diabetes Mellitus is a chronic disease which affects the ability to control the

BGL properly. There are different types of diabetes, where type 1, type 2 and

gestational diabetes are the most common. The latter one only happens during

pregnancy and is often resolved after the pregnancy but can lead to complica-

tion nevertheless. In 2013 there was estimated that 382 million people have

diabetes melitus and the number is expected to rise to 592 million by year

2035 (Guariguata et al., 2014), where the prevalence for type 2 is expected to

increase the most. An increase in prevalence for diabetes type 2 is often cor-

related with increased prevalence of obesity and it is expected that a healthy

diet, physical activity and keeping a normal body weight can delay the onset

of type 2 diabetes(WHO, 2011). Around 90 % of diabetics have diabetes type

2 (Alberti and Zimmet, 1998). In type 2 diabetes the the body cells do not re-

spond appropriable to insulin. This is treatable with medicine in tablet form or

in some cases, a healthy lifestyle is enough.

Whereas diabetes type 2 is the most common, type 1 is much more severe and

stands for much of the complications connected with diabetes. In 2012 around

1.5 million deaths where directly caused by diabetes, over 80 % of these hap-

pened in low to middle income countries(WHO, 2014). In diabetes type 1 the

beta cells produce to little or nothing insulin at all. Humans with diabetes type

1 needs therefore insulin injection in order to live a normal life.

Diabetes can also take place in intensive care patients. The hormone system

is exposed for much stress when the patient undergoes for example a surgical
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operation which may cause the glucose regulation to fail.

1.2.1 Hypoglycemia

In a healthy human the BGL lies around 4.5-5 mmol/L when fasting, consider-

ing a person with normal bodyweight. When consuming a meal the BGL will

be elevated but will regulated down to normal after two hours. The BGL do

normally not exceed 8 mmol/L. Not being able to proper regulate the BGL can

give both short and long complication.

Hypoglycemia is a condition when the BGL drops under 4.0 mmol/l, but is

often not noticed before it reaches 3.0 mmol/l. This will be life threatening if it

is not treated. In diabetics this happens when a overdose of insulin is injected.

In addition to having little or none insulin secretion diabetics often also have

no secretions of glucagon and therefore no counter regulation. Since the insulin

is injected subcutaneous, it takes some time before the insulin is absorbed into

the bloodstream. Injected insulin cannot be cancelled. Hypoglycemia can be

treated by just administrating glucose, in liquid or solid form. However when a

hypoglycemic situation arises this needs to happen fast before the person goes

into diabetic shock and can not take care of him/her.

1.2.2 Hyperglycemia

The opposite condition of is when the BGL get to high, which is called hyper-

glycaemia. This causes two problems where the most immediately problem is

that most of the energy will come from metabolism of fatty acids instead of

glucose which should be the primary energy source. Over some time the high

level of ketone bodies may lead to diabetic ketoacidosis, which will affect the

blood cells and be fatal if not treated.

The other problem is caused by having to high BGL over time. This can lead

to micro and macro vascular diseases, which do damage to small or lager ves-

sels. The most common complication is neuropathy, which is damage to nerves
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and gives pain or loss of sensation for the specific area. This can lead to am-

putations if it progresses. Another complication is retinopathy, damage on the

retina nerve. This can lead to blindness or visual impairment. Also the kidney,

which have many small blood vessels is vulnerable for high BGl and may lead

to dialysis or kidney transplant. These are all serious complications which are

the result of bad BGl regulation.

1.3 Insulin infusion

1.3.1 Subcutaneous

Patients suffering from diabetes type 1 needs to inject insulin in order to regu-

late their BGL. There are three main sites to administrate insulin, subcutaneous,

intravenous or intraperitoneal. The conventional therapy uses subcutaneous in-

fusion, where the insulin is injected in the lower part of the skin. The most used

method is 3-5 injections daily with an insulin pen, often in context with a meal.

In order to monitor the BGL, 4-8 glucose measurement is recommended.

Another much used method is insulin pumps. This is a safer way to control

the BGL in respect to hypoglycemic incidents. The pump administrates a con-

tinuous basal dose which is meant to keep the BGL stable during fasting. This

dose needs to be calculated for every diabetic and can vary during the day. In

addition the insulin pump gives insulin boluses to compensate for meal distur-

bances. This is controlled by the user. Compared with the insulin pen, the pump

is much more expensive and also has the possibility to fail, because of problem

with the pump itself or if the hose which delivers the insulin is blocked. Insulin

injected subcutaneous gets absorbed through the subcutis before it enters the

blood circulation where it affects the BGL. While the insulin gets absorbed, it

forms a depot in the subcutis. This gives a long delay from injection to the effect

kick in. Since the insulin also breaks down fat tissue, the time delay also varies

a lot. This means that the injection site need to be changed often.
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The absorption is also dependent on other parameters like blood circulation,

temperature and pressure. All this give many uncertainties to the insulin injec-

tion when injected subcutaneous. Therefore good regulation through subcuta-

neous infusion is difficult. The main advantage with subcutaneous infusion is

because the diabetic can without help, easily administrate the insulin dose.

1.3.2 Intravenous

A second way is intravenous injection, where the insulin is administered di-

rectly into the bloodstream through a vein. This yields for the fastest reaction

in respect to insulin action for all the infusion methods. So regarding regulation

intravenous infusion is the best alternative. However there are much harder to

do intravenous injections compared to subcutaneous injections without any as-

sistance. There is also a problem with having a intravenous catheter over time,

because of the danger of forming blood clots, both in the catheter or in the vain.

This is called thrombosis. Intravenous infusion is therefore not very well suited

for daily administration of insulin. However intravenous infusion fits well for

intensive care patients as they are already bedridden and there is health per-

sonnel present to handle the injections.

1.3.3 Intraperitoneal

A third option is intraperitoneal infusion, where the insulin is injected in the

peritoneum. This gives faster and less variable absorption times than subcuta-

neous infusion. Peritoneum is also much closer to pancreas, where the insulin

is normally secreted. The insulin is absorbed in the liver from the hepatic vain

and then entering the peripheral circulation. Only half of the secreted insulin

reaches the peripheral circulation. This makes the insulin concentration smaller

in intraperitoneal injection compared to the other two infusion sites.

It is well established that there is a connection between diabetes and cancer, be-
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cause there are to many cases where cancer and diabetes are diagnosed within

the same individual.(Giovannucci et al., 2010). The exact reason for this is un-

clear but both diseases is associated with obesity, lack of activity and bad a diet.

Since the insulin dosage given in conventional treatment is higher than needed

if secreted from pancreas there is some suspicion that this is a factor for can-

cer as well, but there are currently no evidence that which linking insulin with

cancer.(Home, 2013)

1.4 Artificial pancreas

Because of the extent and seriousness of the complications associated with

diabetes there is much interest in creating a artificial pancreas(AP). A fully

functional AP will be able to have much tighter regulation than the conven-

tional method, insulin pens and insulin pumps have. In addition to reducing

the chances for hypoglycaemic incidents, the long term complications due pro-

longed hyperglycemia will be reduced since the average BGL will be much

lower. The goal of a AP is control the BGL with the same performance as in

healthy persons.

Artificial Pancreas Trondheim is a research group, which is a cooperation be-

tween the department of engineering cybernetics at NTNU, St. Olavs Hospital

and the Faculty of medicine at NTNU, have a goal to develop a artificial pan-

creas, which can be used in a daily life situation or in intensive care treatment.

The AP should manage to keep the BGL around 4.5 mmol/L when fasting and

between 4 mmol/L-8 mol/L when disturbance as activity or meal are intro-

duced.

An AP will consist of a insulin pump together will an glucose sensor. The sta-

bility and robustness of the AP will be depended on the quality of the mea-

surements from the sensor and the performance of the closed loop controller. A



8 1 Introduction

closed loop control algorithm can be designed with or without a model. Mod-

elless control algorithms designs a controller solely based on input and output

data, which in this case is insulin and BGL. With modelless controllers there is

not necessary to know the mathematics behind the process and they are often

quicker to implement. On the other hand they have little predictive power and

they offer little insight about the system dynamics.

Model based approaches are used since they give good understanding of the

system and offers simulation possibilities without using patients. How useful

a model is deepens on its accuracy. A mathematical model is often necessary,

in order to do computer simulations to test closed loop algorithm. APT have

therefore implemented a mathematical model of the glucose insulin dynamics

in MATLAB/SIMULINK(Froyen, 2014).
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2 Extension for the glucose insulin model
2.1 Insulin glucose model
When modelling the glucose insulin dynamics, compartment modelling is the

most used method. In this type of modelling the system is split up in different

compartments in order to describes the exchanges between them. The number

of compartments and how accurate they are described determines the accuracy

of the model. There are many proposed models in the literature with different

complexity. Ackermans linear model (Ackerman et al., 1968) and Bergmans

minimal model (Bergman et al., 1981) is two of the most cited models and de-

scribes the most basic dynamics of the insulin glucose system. Since then there

have been proposed a number of more complex models like hovorka’s model

(Hovorka et al., 2002), Sorensen model(Sorensen et al., 1982) and the UVA/-

Pandova model(Dalla Man, Rizza and Cobelli, 2007) (Dalla Man, Raimondo,

Rizza and Cobelli, 2007). APT chose to implement the latter, since this has got-

ten approval from the Food and Drug administration to be used in preclinical

trials instead of animal testing.

In short the model divides the system into different parts, the gastro-intestinal

tract, liver, glucose system, muscle and adipose tissue, beta cells and the insulin

system. These parts are again divided into one or more compartments for each

depending of complicity. The UVA/pandova model use double subcutaneous

approach, measuring glucose and administrating insulin both subcutaneous.

Therefore the model was extended to also incorporate intraperitoneal insulin

and intraperitoneal glucose measurement. The structure for the intraperitoneal

insulin model was taken from (Matsuo et al., 2003) but because insulin in the

portal vein and insulin in the rest of the blood circulation was not separated,

the parameters to this model structure was found by using measured input out-

put data from (Radziuk et al., 1994). In the intravenous approach insulin is

modelled directly into the plasma which is a simplification but often used. In
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addition dynamics from a glucose sensor from Glucoset was modelled, which is

the sensor APT have been using in their research. The model can do simulations

for diabetes type 1 and 2, and for normal persons with a functional pancreas.

The model is described in detail in (Froyen, 2014).

2.2 Extension for the APT model

2.2.1 Glucagon kinetics

With a mathematical model like this it is always possible to make improvements

by including new dynamics. One extension is to integrate the glucagon kinetics.

This would give far more realistic simulation for normal people and for diabetes

type 2. In diabetes type 1 the glucagon can be used as input in a closed loop

controller to regulate the BGL better. The UVA/PANDOVA model have included

glucagon kinetics into their model.(Dalla Man et al., 2014). The extension is

modelled in one compartment. However the implementation was not done due

to problems with finding right parameters values.

2.2.2 Physical activity

One other extension of the model is to incorporate physical activity. Exercise

affects the body in different ways, for instance increasing heart rate, oxygen

consumption and glucose uptake by the exercising muscles, which will effects

the glucose insulin dynamics.

There is different approaches for modelling the behaviour of exercise in the lit-

erature. A comprehensive model given by (Kim et al., 2007) models the whole

fuel homoeostasis during exercise. This is a compartmental model which di-

vides the body into seven compartments, brain, liver, hearth, gastrointestinal

tract, skeletal muscle, adipose tissue and other tissues. A simpler model pre-

sented by (Roy and Parker, 2007) incorporates the effects of exercise with re-

spect to affecting the rate of glucose uptake, hepatic glucose production and
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removal of insulin from the circulatory system, into Bergman’s minimal model.

Both models uses oxygen consumption as a measurement for exercise.

In (Marc D. Brenton, 2009) there is proposed a mathematical model which

use heart rate to account for exercise. (Man et al., 2009) have used this model

as foundations for three different models and selected one of these through

in silco simulation. Compared to heart rate oxygen consumption gives a more

precise measurement on exercise, but is harder to measure than heart rate. It

was chosen to implement the model from (Man et al., 2009), partly because it

is modelled as an extension to the UVA/Pandova which makes the implementa-

tion easier.

As mention (Man et al., 2009) suggested three different models, model A, B

and C where all model the change in insulin dependent glucose uptake when

exposed to physical exercise but with different accuracy and detail. The most

important difference between the models are that model B dose not take into

count the length or intensity of the exercise, and in model A the difference is

small enough to be neglected. Model C take into count both length and effi-

ciency of intensity and therefore was selected as the best model by the authors.

2.3 Mathematical formulation and implementation

The implementation is done is SIMULINK by changing the block for muscle and

adipose tissue. The exercise affects the insulin dependent glucose utilization

which is previously modelled as followed:

Uid =
(Vm0 + Vmx ·X(t)) ·Gt(t)

Km +Gt(t)
(1)

with
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Ẋ(t) = −p2u ·X(t) + p2u[I(t)− Ib] X(0) = 0 (2)

Where 2 describes the insulin change outside of the cell. In order to model

physical activity the insulin-dependent glucose utilization re-modelled as:

Uid =
Vm0(1 + β · Y (t)) + Vmx(1 + α · Z(t)W (t)(X(t) + Ib)− VmxIb

Km[1− γ · Z(t)W (t)((X(t) + Ib)] +Gt(t)
(3)

with

Ẏ (t) = − 1

THR

· [Y (t)− (HR(t)−HRb)] Y (0) = 0 (4)

Ż(t) = −
[
f(Y (t))

Tin
+

1

Tex

]
Ż(t) + f(Y (t)) Z(0) = 0 (5)

W (t) =

∫ t

0

(HR(t)−HRb)dt for t < tz, else 0 (6)

and

f(Y ) =
( Y
a·HRb

)n

1 + ( Y
a·HRb

)n
(7)

Figure 2 shows how the different functions in the model react when exercise is

simulated. When at rest(basal heart rate) the equation 3 is equal to equation 1.

The basal heart rate is set to 60 beats per minute. Under exercise the heart rate

is 120 beats per minute. The difference between heart rate and basal heart rate

is shown in the first sub plot. The function Y(t) delays this curve in order to

get a more natural increase in heart rate instead of a step. This function again

activates f(Y) which drive Z(t) to one. This represent the activation of the glut-4

receptor. After exercise Y(t) drops fast to zero and forces the function Z(t) to

slowly decay to zero, which is meant to model the increased insulin sensitivity

which follows after exercise. The function W(t) takes into count the intensity

and duration of the exercise.
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Figure 2: Time response for function Z, Y, W and difference in heart rate and basal
heart rate

2.4 Simulation and Result

In order to verify the implementation of the physical activity model, it was cho-

sen to run the same simulations as done in (Man et al., 2009) to compare the

results. (Man et al., 2009) did Euglycemic-hyperinsulinemic Clamp plus exer-

cise, exercise and meal plus exercise. In Euglycemic-hyperinsulinemic Clamp

plus exercise BGL is regulated by glucose infusion. Since glucose infusion is not

implemented in the APT model this simulation was not done.

In the two remaining simulations a basal dose of insulin is given to keep the

BGL constant. The insulin was given intravenous in a open loop manner. The

size of the basal dose was chosen to be 0.9 pmol/kg/min, found by trial and
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error. The reference value for BGL was set to 140 mg/dl or 7,8 mmol/l. There is

two levels of intensity, 90 beats per minute and 120 beats per minute refereed

as mild and moderate exercise respectively. The basal heart rate is set to 60

beats per minute, meaning that mild intensity is 1.5 times of basal heart rate

and moderate exercise is 2 times basal hearth rate. There are also two levels

of duration, 15 min and 30 min, which makes in total 4 combinations. This is

equal in both tests.

Figure 3: Only Exercise.

Figure 3 shows a simulation with exercise starting at t=60. The simulation is

continued 24 hours(1440) min. The sub plot to the left shows the implementa-

tion done in the APT model whereas the right sub-plot is taken from (Man et al.,

2009). As expected the response is pretty much equal since the models are very

similar maybe. There may be differences in parameter values. The result shows

that increased intensity or durations leads to higher insulin dependent glucose

uptake which gives lower BGL. The BGL is affected long after the exercise is

finished This is because the glucose utilization remains elevated also after exer-

cise due to higher insulin sensitivity modelled with the slowly decreasing Z(t)

function. According to the authors of (Man et al., 2009) the insulin sensitivity
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is increased in 22 hours after the exercise.

Figure 4: Meal plus exercise.

In figure 4 the exercise is combined with a meal. The meal contains 85 car-

bohydrates and is consumed from t=30 to t=50. A insulin bolus is given in-

travenously at the same time. Exercise is simulated three hours(180 minutes)

after the meal was eaten. There are included a curve without training to see

how the insulin bolus affects the meal disturbance. The response of the two

models are a little different. This may come from different parameter values.

The UVA/Pandova model have many different parameters sets. The parameters

used in the APT model is the meal value for these set.

The physical activity model gives the possibility to simulate exercise into the

glucose insulin dynamics for diabetes type 1. The model increases the insulin

dependent glucose utilization during exercise. After the exercise the glucose

utilization is still elevated due to the increased insulin sensitivity. The model
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can simulated exercise with different intensity and duration.

2.5 Discussion and Remarks

There are some limitations with the model extension and the simulation. First

of all the exercise is very simplified, only given as one pulse with a constant

hearth rate. It is not pointed out which population with respect to gender or

age the model extension is meant for. Since there is a enormous difference be-

tween having 120 beats per minute for a 20 year old male, compared to 70 year

old female. Also a well trained person will manage to transport more oxygen

at a lower hearth rate due to higher maximal oxygen uptake, and therefore

increase the glucose utilization at a lower heart rate compared to a normal per-

son.

Another shortcoming is how intensity and duration is weighted. This is weighted

through the function W(t) and they are about equal as seen in figure 3 and fig-

ure 4, where 90 bpm(1.5 basal hearth rate) in 30 min gives approximate the

same response as 120 bpm(2 basal heart rate) in 15 min. This linear relation-

ship between glucose utilization and heart rate a simplification.

The human body have two main ways to produce energy, either through burn-

ing carbohydrate/glucose or through fat burning. How large share of carbohy-

drates or fat are dependent on the situation. (Roberts et al., 1996) quantified

the use of fat versus carbohydrates in exercising dogs and goats at certain in-

tensity. The intensities used where 40%, 60% and 85% of the maximal rate

of oxygen consumption. When exercising at 85% it took 5-10 min to reach a

steady state with respect to distribution of fat and carbohydrate consumption.

In this situation the dogs and the goats were burning roughly around 20% fat

and 80 % carbohydrates. When exercising in lower intensity, 40 % and 60 %

it took around 20-30 minutes to reach a steady state. When exercising 40 %
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intensity, fat stands for over 75% of the total energy consumption. At 60 % in-

tensity, 40 % of the total energy consumption came from fat.

An explanation is that fat needs more oxygen in order to be used for energy

consumption compared to carbohydrates. So when the intensity is increasing,

the need for more energy happens immediately and the body chooses to use

more glucose since this is faster. When holding the intensity over time(20-30

min) the body adapt and goes back to burning more fat. If the intensity rises

to high fat burning it not efficient and the body runs predominant on glucose.

Steady state is therefore achieved faster when the intensity is higher. The time

the body uses to reach steady state can also change depending on how fit the

person is.

If possible the body tries to burn fat since the fat reservoirs last must longer

than the storage of glycogen. In the simulation the time of exercise was pretty

short, which gives the body a little time to adjust to the change, therefore burn-

ing more glucose than fat. The model will be off when exercising one or two

hours at mild intensity since then glucose will only contribute with 25 % of the

total energy consumption.
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3 Pulsatile control
3.1 Pulsatile behaviour
Pulsatile control means that the input, which in this case is insulin, should be

administered as boluses/pulses instead in a continuous manner. The pulses can

vary in both length, amplitude and frequency. There are many processes in the

human body which is believed or known to have a pulsatile or oscillatory be-

haviour, as the neural system, cardiac system, circadian system and hormone

system. A known example with the hormone system is the secretion of the hor-

mone GnHR, which was found to be secreted in monkeys with six minutes

pulses every hour (WILDT et al., 1981). It was tested to give the GnRH hor-

mone with different pulse length and frequency, but only the infusion with six

minutes pulse every hour gave a wanted response.

This pulsatile behaviour also applies for the secretion of insulin. The first find-

ings of this dates long back to 1923 when (Hansen, 1923) found oscillations

in blood glucose concentration, which later gave indications that this could be

related to pulsatile insulin secretion by beta cells.(Matthews et al., 1983) found

by taking intravenous samples from humans every min in a period of 2.5 hour,

insulin oscillation with periods of 14 min and a 40% increase every 7 min.

There are however many studies which have measured the frequency of insulin

burst but the periodicity it not completely decided, due to different results.

In a comprehensive review on pulsatile insulin secretion by (Pørksen, 2002)

the frequency from studies was varying between 4-15 min in test done in vivo.

Tests done in vitro with isolated perfused pancreas reported oscillations of 6-10

min. There is also measured time between pulses in isolated perfused islet of

lagerhans where the pulses is found to be 3-5 min. The review further points

out that observations shows that most of the beta cells secrete their pulses at

the same time.
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Is also important to emphasise that even if the beta cells have a pulsatile na-

ture, not all of the insulin is secreted in pulses. Around 30 % is given as a basal

dose (Pørksen, 2002). In (PAOLISSO et al., 1991) nine males was given insulin

continuous, in pulses with 13 min frequency and pulses with 26 min frequency.

The insulin was administrated over 2 minutes. The 13 min frequency increased

inhibition of endogenous glucose production which did not occur in the contin-

uous or 26 min frequency case. There was concluded that a certain frequency is

needed to increase inhibition of endogenous glucose production. Insulin given

in pulses with the right frequency will therefore have more effect with lowering

the BGL. When exposed for a high steady concentration of insulin the receptors

become less sensitive (PAOLISSO et al., 1991).

3.2 Properties of a pulsatile controller

Since insulin oscillation measured in vivo lies between 4-15 min it is desirable

to design a controller which is able to release insulin in a pulsatile manner in

this time frame. The pulsatile controller will be compared to the a normal/-

continuous controller already implemented. Since pulsatile insulin delivery do

not have better effect in lowering the BGL in the model since this effect is not

implemented, the goal is to get the performance of the controller close to the

continuous controller

As mention briefly in chapter 2 the model has support for both insulin infusion

and glucose measurement for intravenous, intraperitoneal and subcutaneous

approach. The goal is to design a controller for intravenous and intraperitoneal

approach only. This is because Chan et al. (2008) small insulin boluses given

in intervals around 15 min is indistinguishable from giving a continuous basal

rate. It is therefore no use to implement a pulsatile controller for a subcuta-

neous approach.
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3.3 Pulsitile infusion for clinical treatment

Since commercial treatment uses double subcutaneous approach diabetics is

not treated with pulsatile infusion. Only in intensive care patients pulsatile infu-

sion is used. How frequent the blouses is given depend on how frequent glucose

measurements are taken and with respect to workload for the health person-

nel. A example is the glucomancer algorithm, where one bolus is set every hour

based on one glucose measurement. The frequency is therefore to seldom in

order to get the advantages from pulsatile infusion.

In Skjærvold et al. (2013) there is presented an algorithm designed for pul-

satile intravenous infusion. The algorithm is based on a series of if and then

sentences to decide the time and amount of the insulin bolus. The algorithm

is divided into two parts. The first part is to lower a high initial value in BGL,

which often is the case in a intensive care setting in the patients. While the sec-

ond part maintains the BGL at a steady oscillating state. The trial was preformed

on four pigs, which had developed a mild diabetics state due to streptozotocin

pretreatment. The algorithm was set to maintain glucose level at the range of

4.5-6.0 mmol/l. The BGL was continuously measured by a glucose sensor from

Glucoset and the insulin was given in boluses, both intravenous. The amount of

insulin given was estimated from the change in BGL given by the previous bo-

lus. The dose was either kept, doubled or halved. The frequency was not strict,

but given according to the float diagram presented in the paper. On average

there were administrated around 4-5 boluses every hour. The algorithm is not

directed against against meal disturbances.

There was tried to implement this algorithm in MATLAB but the performance

was not satisfying. This is shown in figure 5. The initial value was set to 12.5

mmol/L. The algorithm handles the high initial value and brings the BGL to a

oscillatory state. The fluctuations have an amplitude around 1 mmol/L which is
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a little much. The main problem however is the frequency of the boluses com-

pared with the original article Skjærvold et al. (2013), which is to seldom. The

algorithm where also changed a little in order to make the simulation work.

The issue came from to slow decease in BGL when administering a bolus in the

model. In Skjærvold et al. (2013) it was stated that every bolus should yield

an decrease in BGL with 1 mmol/L, which took considerable longer time in the

model. The total decrease of one bolus was around the same, so increasing the

dosage made the simulation unstable. There was tried to alter the scheme in

Figure 5: Skjævold algorithm for controlling BGL without any disturbances

order to get faster frequency for the injections but this was not successfully. In

retrospect it could be possible that the pulsatile infusion induced in the pigs

gave a much faster decrease in BGL than normal continuous infusion, because

of the mentioned effect with the receptors being more sensitive. Since this dy-

namics is not implemented in the glucose insulin model, this was not captured

by the model simulation.
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3.4 Control methods already implemented in the model

There are implemented two different control methods for controlling the BGL

in the model in SIMULINK(Froyen, 2014). The methods are proportional inte-

gral derivative(PID) controller, model predictive control(MPC) and lastly there

is the possibility to give the insulin in a open loop manner.

Proportional, integral and derivative(PID) controller is by far the most used

controller in the industry. About 95 % of all industries application is controlled

by a PID controller(Aastrom, 1995). PID is model less controller, which uses

three parameters to control the process. The three parameters are weigths to

error, the rate of change in the error and the stationary error. The parameters

is calculated by either tuning the system until the wanted response is achieved

with methods such as Ziegler-Nichols or Skogestad, or calculate them directly

by estimating a polynomial to the input output data, or some other calculation

method. Advantage with PID control is its fast implementation and is rather

cheap computational. PID does however have little prediction power. The PID

implemented in the model have a sampling time equal to 0.05, which is 3 sec-

onds since the model is simulated in minutes.

Model predictive control(MPC) is the most used model based controller in the

industry. The method uses a model of the process and calculates an optimal

solution sequence based on an objective function. The first number in this se-

quence is used as input to the plant. This repeats every time step. MPC have a

much high computational cost. The great advantages with MPC is the possibili-

ties for including constrains into the problem. This makes it ideally for glucose

insulin regulation. A MPC have much lower samplings rate due to computa-

tional cost than for example a PID controller. In (Froyen, 2014) the sampling

time is set to 5 min with 100 minutes prediction horizon.
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As mentioned the controller should deliver boluses in the frequency of 4-15

minutes. Since the sampling time for the MPC is 5 minutes this algorithm seem

well suited for pulsatile infusion. The PID controller on the other hand need

sufficient sampling time in order to be accurate and is therefore not very fitted

for this task. Therefore it was chosen to use the MPC algorithm as basis for the

pulsatile controller.

3.5 MPC formulation

This section will describe the MPC controller implemented in (Froyen, 2014)

The implemented MPC controller is set to regulate the BGL to the reference

value of 4.5 mmol/L. In addition the BGL have a lower and upper bound on 4

mmol/L and 8 mmol/L respectively. The input have a lower and upper bound

equal to zero and 900 pmol/kg/min. The upper bound is never reached in prac-

tice but are implemented to make the simulation as realistic as possible. There

are also included slack variables to not make the problem infeasible when BGL

is outside the bounds due to meal disturbances.

The formulation have three weights, q punishes the deviation in BGL from the

reference, r is the cost of the input and s punishes the deviation from the feasible

area. The last parameter is set high to avoid hyperglycemia or hypoglycaemia.

The most optimal is to have a asymmetric function such that low values of BGL

is punished harder, due to the fact that hypoglycemia is a much more sever state

than hyperglycemia is, but this not implemented. With sampling time equal 5

minutes and prediction horizon equal 100 minutes the optimization problem

have 60 variables to calculate, 20 states, 20 inputs and 20 slack variables. The
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MPC problem is formulated in following manner

min J =
1

2

N−1∑
t=0

xTt+1 q xt+1 + uTt r ut + εTt s εt (8)

which is subject to

xt+1 = −a1 xt − a2 xt−1..− an xt−n−1 + b1 ut + b2 ut..+ bm ut−m (9)

xmin − εt ≤ xt ≤ xmax + εt (10)

umin ≤ ut ≤ umax (11)

εt ≥ 0 (12)

q ≥ 0 (13)

r ≥ 0 (14)

s ≥ 0 (15)

A linear auto-regressive model with exogenous input(ARX) was chosen over

a state space formulation as a control model due to advantages with adapta-

tion of model parameters. To determine the number of parameters, the model

was simulated several times with different inputs in order to get data to per-

form off-line estimation. The simulations were done without meal disturbances.

Since the main model can simulate insulin infusion and glucose measurement

subcutaneous, intraperitoneal and intravenous, it is important that this also is

reflected in the control model. The model shown in equation 16 was chosen as

the best fit for all the situation.

y(t) = −a1 y(t− 1)− a2 y(t− 2)− a3y(t− 3) + b1 u(t− 1) (16)



3 Pulsatile control 25

The off-line estimation where preformed in MATLAB with the command tfest,

which estimates a transfer function based on the input output data given. The

function is discrete with 5 min sample time. There are estimated different pa-

rameters for all the nine combination.

In MATLAB the problem is formulated in one state vector Z, that contains all

states, x, u and ε and supplied to the solver fmincon. Fmincon can tackle non

linearities both for objective function and for constrains. Since this solver is

costly computational wise, it is only efficient to use it in optimization problems

with non linearities.

Since the control model is a linear ARX model and the objective function is

quadratic, it was chosen to use quadprog instead of fmincon. Quadprog is able

to solve this problem with much smaller computational cost.

3.6 Pulsatile control with MPC

3.6.1 Pulsatile infusion

There is probably several ways to use the MPC controller for pulsatile infusion.

For simplicity the frequency between boluses is considered constant. A straight

forward way to generate boluses with the MPC algorithm is to multiply the

insulin output with the sample time for the MPC, divided with the length of the

bolus, and administrate the dosage over this time.

Ipulsatile = Icontinous
Ts mpc

Bolus length

The frequency of the pulsatile infusion will then be equal to the sampling time

of the MPC controller. There was not found a specific pulse length in the, so the

length of the pulse was chosen to be 30 seconds. If wanted this can be easily

changed and is not important to the method itself.



26 3 Pulsatile control

In order to simulate the model with another sampling time, it is necessary to

change the model parameters so they fit the sample time. The parameters was

found by just re-sampling the 5 min model with the MATLAB command d2d,

which resamples a discrete system for any given sampling time. Is not possible

to specify the number of coefficients in the nominator to the d2d command.

The number of coefficients in the denominator are the same. This is perhaps

done by MATLAB to generate the best performance for the resampling. To test

the controller it was chosen to give pulsatile infusion with frequencies at 5 min-

utes, 10 minutes and 15 minutes to cover the wanted rage of 4-15 minutes.

It is natural to presume that faster sampling time give better performance so

4 minute frequencies was not simulated. The 5 minutes model were therefore

resampled into 10 minutes and 15 minutes model. Figure 6 shows the step re-

sponse of these three model.

Figure 6: Step response of control model with different sample time.
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Figure 7: Continuous and pulsatile infusion.

Figure 7 shows a six hour simulation with one meal ingested from t=30 to

t=50, with the total of 60 gram of carbohydrate. Both the infusion of insulin

and glucose measurement is done intravenous. The red curve shows the original

MPC algorithm with 5 min sample time. In the green curve the same amount

of insulin is delivered over 30 seconds instead over 5 minutes. The amplitude

is therefore ten times higher in the pulsatile case, as seen in sub plot 2 and sub

plot 3 in figure 7. It was chosen to give in insulin in the beginning of each inter-

val since then the insulin is administrated 2.15 minutes earlier in average with

respect to the continuous case(Normal MPC). This gives the pulsatile curve a
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slightly lower peak and drops less after the meal disturbance than compared to

the continuous curve.

The blue and magenta curve shows the pulsatile delivery with frequency of

10 minutes and 15 minutes. The prediction horizon was kept to 100 minutes

for the former case and 105 minutes for the latter, since 100 is not dividable

by 15. It was also tried to expand the prediction horizon, but this did not effect

the performance. The performance is acceptable in all cases since the BGL is

in between 4mmol/L-8 mmol/L at all time, which is the overall goal for the

regulation. However the performance for 10 minutes and especially 15 minutes

is a little slower.

3.6.2 Impulse invariant model

The standard method for discretiaction of a system in MATLAB is zero order

hold, which assumes that the input is continuous over the sample time. This

method maps the step response of the system and fits well for the normal MPC,

since the input is a series of steps. Another possibility is to use the impulse in-

variant method. This method produces a discrete model with the same impulse

response as the continuous model. This may fit the pulsatile controller better

since the input consist of short pulses.

A continuous model were estimated with the same script as done in(Froyen,

2014), and then discretized with the impulse invariant method afterwords. The

discretization is done with the c2d(continous to discrete) command in MAT-

LAB, where the impulse invariant method can be chosen as an option. The

discretization goes as follows, starting with a continuous transfer function.

H(s) =
bn−1 s

n−1 ...+ b1 s+ b0
sN + an−1 sn−1 ...+ a1 s+ a0

(17)
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Then write the system as a sum of first order terms.

G(s) =
N∑
i=1

Ki

s− si
(18)

Note that the transfer function needs to be at least marginal stable. Now taking

the inverse Laplace transform gives

G(t) =
N∑
i=1

Ki e
si t (19)

Sampling the expression.

G(n) =
N∑
i=1

Ki e
si n T n = 0, 1, 2.. (20)

Taking the z transform gives

G(z) =
N∑
i=1

Ki

1− esi T z−1
(21)

The simulation is done in the same manner with meal disturbance, starting

at t=30 min and ending at t=50 min. The result in shown in figure 8. The

continuous infusion and the 5 minutes pulsatile infusion is now pretty similar,

while the two other have gotten worse. The input given by the pulsatile con-

troller resembles an impulse more than a step, and in that way the discretization

should be more correct. However as mention with the discretization command

in MATLAB, the number of coefficients in the nominator can change during the

discretization. The output value only depends on the last value with respect to

input, since the model normally have one b coefficient. If two or three b co-

efficient are used because of the discretization the performance can be much

different.
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Figure 8: Continuous and pulsatile with impulse invariant discretization

3.6.3 Adding constraint

Instead for using different model parameters for the different frequencies, it is

possible to implement a constraint to the MPC problem instead to avoid resam-

pling of the model. The pulsatile controller would then use model parameters

for the 5 min model but be able to give insulin with all the three used frequen-

cies.

For pulsatile delivery with 10 minute frequency the constraint 22 is imple-

mented.

u[1 , 3 , 5 , 7 ...99] = 0 (22)
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which gives the following output from the optimization algorithm.

u = [u0 0 u2 0 u4 0 u6 0 u8 ...u98 0] (23)

The optimization problem is executed every 10 min, but it calculates states vari-

ables for every 5 minutes and with a prediction horizon of 100 minutes. The

problem now contains 20 states, 20 input where 10 of them is zero, and 20 slack

variables. The constraint was implemented by setting higher input weights on

the inputs that should be zero. Since the algorithm will try to minimize the cost

function, the other inputs will be used instead.

A better solution is to implement this as a hard constraint. Then the solu-

tion space would be smaller since the algorithm only would know about 10

inputs. When adjusting the input weights the problem have 20 input to cal-

culate, where ten of them becomes approximately zero, giving more compu-

tational cost. It was not found a good way to implement this. However the

adjustment of the inputs weight should yield the same answer.

The exact same is done for pulsatile delivery with 15 minute frequency.

u[(1 : 2) , (4 : 5) , (7 : 8) ...(103 : 104)] = 0 (24)

which gives the following output from the optimization algorithm.

u = [u0 0 0 u3 0 0 u6 0 0 u9 ...u105] (25)

In this cases every third input is non zero, giving a 15 min frequency for the

bolus.
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Figure 9: Continuous and pulsatile infusion with input constraint.

Figure 9 show a simulation with this implemented. Now the performance is

good, for all three frequencies of pulsatile infusion. The model parameters in

taken from the normal model since this gave better simulation result than the

impulse invariant model.

In figure 10 and figure 12 the model is simulated for 24 hours, starting at

midnight and contains three meals, breakfast, lunch and dinner and contains

40, 60 and 70 gram carbohydrate respectively. The timing of the meals are seen

in figure 11. Figure 10 is done with double intravenous method while figure 12
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Figure 10: 24 hour simulation with IV approach

Figure 11: Meal profile
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Figure 12: 24 hour simulation with IP approach.

is double intraperitoneal method. As mention in chapter 1, intravenous infusion

is modelled directly into plasma and have no time delay. The glucose is value is

measured directly from plasma as well.

Since there is a time delay from injecting insulin intraperitoneal, the BGL rises

higher when exposed to meal disturbances compared with intravenous infusion.

The amount of insulin used do not differ with regards to continuous or pulsatile
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infusion. In the intravenous case the amount of insulin given is around 51 units

insulin, given a body weight on 78 kilos. In the intraperitoneal case however

the insulin amount is around 64 units insulin.

This method allows for a pulsatile control with a frequency of 5 minute, 10

minute, 15 minute, where the performance are about equal. Giving boluses ev-

ery 5 min is most secure because the controller faster can answer if disturbances

are introduced.

3.7 Effect off Pulsatile control

As seen in the previous section it is possible to give the insulin injection in

boluses instead of continuously infusion, and this can be done both intravenous

and intraperitoneal. This is no point however if there are no insulin oscillations

in the blood. In figure 13 shows the insulin concentration. All the three pulsatile

cases have clear oscillations equal to their own sampling time. The peek to peek

value for the 5, 10, and 15 minutes pulsatile infusion is around 118 pmol/L,

235 pmol/L and 345 pmol/L respectively. The peak to peak value increases in

a linear manner in respect to increased sampling time. This is realistic since

the insulin is modelled directly into plasma without any delay and the insulin

amount used, are around equal in all cases.

Figure 21 shows the same type of simulations only with intraperitoneal ap-

proach instead. The peek to peek values are around 2 pmol/L, 7.5 pmol/L and

16.8 pmol/L for the three cases, which are much more damped compared to

the intravenous case. There is no linear relationship between increased peak to

peak value and increased sampling time. By doubling the sample time from 5

minutes to 10 minutes the peak values increases 3.5 times, while tripling the

sample time from 5 minutes to 10 minutes increases the peak to peak value to

8.4 times.
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Figure 6 shows a closed up from subcutaneous infusion while fasting in order

to compare the to intraperitoneal approach. As mention before there is no point

using pulsatile subcutaneous infusion because the result would be the almost

the same as continuous infusion because of the slow uptake from the subcutis.

Injecting boluses every 15 minutes manages to create oscillations with peak to

peak value equal to 1 pmol/L.

Figure 13: Simulation of BGL and insulin concentration with IV.
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Figure 14: Simulation of BGL and insulin concentration with IP.

Figure 15: Insulin oscillation while fasting with subcutaneous approach.
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4 Adaptive control

Adaptive control is useful when there are uncertainties or changes over time in

the model parameters. The parameters for the glucose insulin system will vary

from person to person, but do also vary during the day, or day to day. The pur-

pose of a adaptive controller is to try to estimate some parameters in order to

regulate the system more accurate than a normal controller with rigid control

parameters. Adaptive control can be divided into two groups, direct or indirect.

In the former case the adaptation happens directly on the control parameters,

while in the latter case the adaptation happens on the model parameters and

then calculating the new control parameters. Since this regulation uses a MPC

controller with a ARX model structure the adaptation will be indirect by adapt-

ing the parameters for the ARX model then supplying it to the MPC algorithm.

This means the algorithm only needs to estimate four parameters.

As with offline estimation, parameter convergence happens only if the input

is "varied" enough, also called persistent excitation. As a rule of thumb one si-

nusoidal is enough to estimate two parameters. This stands in conflict with the

main goal which is to keep the BGL steady at the reference level. Perfect regu-

lation gives therefore no chance for adaptation. The controller needs however

to give insulin regularly(basal dose) to keep the insulin at reference level, since

total absent of insulin would make the BGL increase. Small fluctuations in the

BGL can therefore give room for adaptation.

The input from the MPC controller is given in steps. In an ideal step the number

of frequencies is infinite since the derivative is infinite. However in a practical

simulation where the derivative is finite, the step response is not so good re-

garding adaptation purposes. Also with good regulation, the insulin infusion

from the MPC can be kept constant under fasting making adaptation harder. In
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the pulsatile case the input is also given in steps but have much shorter length

resembling more an impulse. This gives more variation in the input as well as

possible fluctuations in output and is perhaps more suitable for online estima-

tion than the normal MPC controller.

In order to assess if a pulsatile controller is beneficial in respect to online es-

timation, compared to a continuous controller, a recursive least square algo-

rithm(RLS) was implemented in SIMULINK to test the response of both meth-

ods. The RLS method was chosen because of its wide use in many application,

also within glucose regulation(Eren et al., 2007).

4.1 Least square method

The least square algorithm is much used, both for offline and online estimation.

The following section will derive the expression for the offline and online least

square estimate. The ARX model is written in the following general form

y(t) = −a1 y(t−1)−a2 y(t−2)−...an y(t−n)+b1 u(t−1)+b2 u(t−2)+...bm y(t−m)

(26)

This can be rewritten as matrices in the standard form 27,

y(t) = φT θ (27)

φT = [−y(t− 1) − y(t− 2)... − y(t− n) u(t− 1) u(t− 2)... u(t−m)]

θT = [a1 a2 ...an b1 b2 ..bm]

The least square estimate is

θLS = min =
1

2N

N∑
t=0

ε2
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with

ε2 = y(t)− ˆy(t) = y(t)− φT (t) θ

The optimum is found by differentiating with respect to the parameter vector

and setting the result equal to zero.

δ

δε
θls =

δ

δε

1

2n

n∑
t=0

(y(t)− φT θ)2

− 1

n

N∑
t=1

φ(t)(y(t)− φT θ) = 0

θ̂(n) =

( n∑
t=0

φ(t)φT (t)

)−1 n∑
t=0

φ(t)y(t)

θ̂(n) = P (n)
n∑

t=0

φ(t)y(t) (28)

Equation 28 is the offline version of the least square algorithm with P equal the

covariance matrix. To be able to use this online, a recursive expression for the

covariance matrix and the parameter vector is needed.

P (n)−1 =
N∑
t=0

φ(t)φT (t) (29)

In order to weight the parameters it is common to include the forgetting factor

in the equation where λ have a value between one and zero. Lower value

means that the estimation care less about the older the estimates.

P (n)−1 =
n∑

t=0

λn−t φ(t)φT (t) (30)

P (n)−1 =
n−1∑
t=1

λn−1)−t φ(t)φT (t) + φ(n)φT (n) (31)

P (n)−1 = λ P (n− 1)−1 + φ(n)φT (n) (32)
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P (n) = (λ P (n− 1)−1 + φ(N)φT (n))−1 (33)

Using the Woodbury identity

(A+ UCV )−1 = A−1 − A−1 U(C−1 + V A−1U)−1V A−1

where

A = λ P (n− 1)−1 U = φ(n) V = φT (n) C = 1

This gives

P (n) = λ−1 P (n−1) − λ−1P (n−1)φ(n)(1+φT (n)λ−1P (n−1)φ(n))−1 φT (n)λ−1P (n−1)

P (n) = λ−1 P (n− 1) − k(n)φT (n)λ−1P (n− 1) (34)

k(n) = λ−1P (n− 1)φ(n)(1 + φT (n)λ−1P (n− 1)φ(n))−1

k(n) = P (n− 1)φ(n) (λ+ φT (n)P (n− 1)φ(n))−1 (35)

k(n)(1 + φT (n)λ−1P (n− 1)φ(n)) = λ−1P (n− 1)φ(n)

k(n) = λ−1P (n− 1)φ(n)− k(n)φT (n)λ−1P (n− 1)φ(n)

k(n) = (λ−1P (n− 1)− k(n)φT (n)λ−1P (n− 1))φ(n)

k(n) = P (n) φ(n) (36)

Lastly a recursive expression for the parameter vector is needed. Rewriting

equation 32

λ P (n− 1)−1 = P (n)−1 − φ(n)φT (n) (37)

Substitute N-1 for N in equation 28

θ̂(n− 1) = P (n− 1)
n−1∑
t=1

φ(t)y(t) (38)
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Rearranging equation 37 and insert 38 yields

n−1∑
t=1

φ(t)y(t) = P (n− 1)−1 θ̂(n− 1) = (P (n)−1 − φ(n)φT (n)) θ̂(n− 1) (39)

Using equation 28 again and rewrite this to

θ̂(n) = P (n)
n∑

t=1

φ(t)y(t) = P (n)

( n−1∑
t=1

φ(t)y(t) + φ(n)y(n)

)
(40)

Substitute equation 39 into equation 40

θ̂(n) = P (n) (P (n)−1 − φ(n)φT (n)) θ̂(n− 1) + φ(n)y(n)) (41)

θ̂(n) = θ̂(n− 1)− P (n) φ(n)(y(n)− φT (n) θ̂(n− 1)) (42)

θ̂(n) = θ̂(n− 1)− k(n) (y(n)− φT (n) θ̂(n− 1)) (43)

The implementation is done in a SIMULINK using the three equation 34, 35

and 43. The RLS method calculates a new estimate every time step, which is set

to 5 min, same as the sample time for the MPC controller. The initial values for

diagonal in the P matrix is 10000. When the diagonal values become low the

parameter estimates gets less affected and converges to a value.

4.2 Results

4.2.1 Normal adaptive control

Figure 16 shows a 24 hour simulation with the normal model parameters and

with adaptive model parameters both in a continuous manner. The adaptive

controller starts of with the same model parameters as in the normal case and

do not use the online estimation values until the diagonal values in the covari-

ance matrix passes a lower threshold. As seen in the simulation there is small

fluctuations in the beginning and the lower threshold is passed at t = 145.
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Figure 16: Simulation with normal and adaptive controller.

The recursive least square estimator have no knowledge about initial condi-

tions. However the controller needs a set of parameters in the beginning so

there would always exist a guess for some initial condition but this is not in-

cluded since it did not effect the estimation significantly. Regardless of initial

condition the transient phase of the estimation will often be some what un-

predictable anyway and therefore the initial conditions is set to zero for all

parameters. More important the RLS algorithm have global converges since the

problem is convex so initial conditions does not matter if the input is PE. The

forgetting factor is set to one meaning none of the information will be disre-
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garded over time. When using forgetting factor equal to one the estimates will

converges to value eventually. How to chose the forgetting factor depends on

how fast the parameters are expected to change. If the system is expected to

change rapidly a low forgetting factor is needed and the input must be PE in

other to adapt to the changes. If the changes in parameters are expected to be

slower the forgetting factor is not as important. In the simulation the forgetting

factor was set to one in order to get convergence. Leaving out the forgetting

factor when there is rapid changes will mean that the parameters will coverage

to an average value.

In figure 17 shows the parameter estimate over time. Note that the reference

values not is taken from the normal model since they are estimated with the

tfest command. Instead the reference parameters is estimated with a offline

least square(LS) method instead. Even if the performance of the estimates from

tfest and LS are pretty similar the exact values of parameters is not the same.

The LS algorithm was applied on the same dataset as Froyen (2014). The of-

fline LS estimation should on the other hand look similar to the online RLS

estimation and be more suitable.

The estimation converges to a value after approximately 120 min for all pa-

rameters and is applied after t = 145. The parameters do not converge to the

exact value which is to be expected since the linear ARX model is very simpli-

fied compared to the non linear model and is therefore most accurate around

the working point. The estimate will therefore be dependent on how the BGL is

affected. It is also possible that input is not "varied" enough since the changes

in both input and output is relative small. It was tried to inject more insulin

the first 100 minutes in order to affect the BGl more, but the parameter did not

converge further. At t=500 the first meal begins to raise the BGl. This changes

the dynamics of the system completely since the RLS algorithm do not know
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Figure 17: Parameters in ARX model.

about any disturbances. This affects all four parameters. The main problem is

because the BGL rises due to meal disturbance and insulin is given in order to

lower the BGL to the reference level. However the estimator misinterpret this

as if the insulin is the reason for the increase in BGL since it have no informa-

tion about the meal. Therefore the parameter b1 which weight the former input

becomes positive. This is illustrated in the sub plot down to the right in figure

17. This would make the model highly unstable since giving insulin at the time

t would lead to increased dose at time t+1 etc and lead to hypoglycemia. To

avoid this the b1 coefficient from the online estimation is only used if the value

is negative. After the first meal disturbance the estimate drop under zero again.

The online parameter is updated when the estimation get negative again. Even

if the b1 coefficient in keep in check the other parameters changes values which

make the performance bad with much oscillations as seen in figure 17
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It is also worth noticing that the estimation do not get affected as much during

the two other meals, lunch and dinner. This is because the P matrix is close to

zero, which means the new estimate do not affect the overall estimate much.

The simulation will therefore yield a much worse result if the meal disturbance

should have entered earlier or the initial condition for the P matrix have been

higher. In addition to meal disturbances, exercise will also affect the estimate.

Exercise on the other hand will give the opposite effect for the controller. When

doing exercise the blood sugar will fall due to the extra energy consumption

needed in the cell. This will lower the b coefficient and the controller will give

less insulin in the next time step. This will not make the model directly unstable

as with meal disturbance but will affect the controller.

It is apparent that the adaptation cannot take place during meal disturbances

in its current form. One possibility is to do the online estimation only at night

since the parameter did converged to reasonable value after 150 min. Figure

18 show the simulation with online estimation from midnight to half eight in

the morning shown in the blue curve and there is also included a black curve

where the online estimation happens all day except meals. The performance is

very good in both estimation cases. There are little difference between them,

the black curve perhaps slightly better but there is difficult to determine the

meal schedule. It was decided that the controller should have no knowledge

about time or amount regarding meals to best reflect a real situation. The meal

times must therefore be estimate if this is to be used, but this demands that

the diet is pretty similar day to day. Also a small snack is enough to affect the

estimation significantly. Therefore it was decided to use the online estimation

only during night.
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Figure 18: Adaptive control with online estimation during night and between meals.

Figure 19 shows the simulation with two different models. The black curve

show the simulation with online estimation at night with good parameter con-

vergens. In the simulation showed with the blue curve the are no fluctuations

in the beginning which makes adaptation not possible and the adaptive param-

eters are never used, since this would crash the simulation. So in order to get

parameter convergences some fluctuations are needed.
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Figure 19: Simulation with and without parameter convergence.

4.2.2 Pulsatile adaptive control

In the pulsatile case there is the option to do online estimation is the same

manner as the normal infusion using five min sampling time for the estima-

tion. This means however that there will be no advantages input wise, but it

is possible that pulsatile injection gives more fluctuation in the BGL. A study

on rhesus monkeys, showed oscillation with ±4% of average in BGL (Goodner

et al., 1982). Compared with the model simulation this should be enough to get

parameter convergence. Therefore it is a possibility that the pulsatile controller

is better suited from adaptive control. In the model simulation the pulsatile con-

troller did not give more fluctuations in the BGL than in the continuous case,

and therefore the performance was about equal for both cases, as seen in figure

20. The adaptation was only tried with intravenous approach.
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Figure 20: Adaptive pulsatile control compared with normal adaptive control.

Figure 21 shows the simulation with pulsatile infusion with frequencies 5 min,

10 min and 15 min. All three simulations are done by online estimation during

night time only. The parameter estimation have 5 min sampling time since all

simulation uses the same 5 min model.
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Figure 21: Pulsatile adaptive control for all frequencies.
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5 Discussion
The controller was able to deliver boluses with frequencies of 5, 10 and 15 min-

utes with the same performance as the normal MPC controller. The controller

can be used in both intraperitoneal and intravenous infusion. It is believed that

a pulsatile infusion have greater hypoglycemic effect than continuous infusion,

which would give better control and would reduce events of hypoglycemia.

The oscillation in insulin concentration was over 20 times higher when giv-

ing insulin intravenous compare to intraperitoneal. So if this is possible with

intraperitoneal approach is difficult to say. In order to do better computer simu-

lation it is necessary to include effects of pulsatile infusion, both intravenously

and intraperitoneal.

This is also necessary in order to conclude whether pulsatile infusion is more

suitable for adaptive control. Based on the simulations, there seems like some

oscillation is enough in order to estimate the parameter, while fasting. However

since the estimation only is active during night time, no changes in parameters

during the day is captured.

While the controller gives all of the insulin in boluses, only 70 % is secreted

in humans, rest is given as a basal dose, which means that the insulin oscillates

more than normal if the insulin is given intravenously.
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6 Conclusion
An extension for physical activity chosen from the literature has been imple-

mented on the APT glucose insulin model. The result of the extension was

verified by comparison with result from the original article. This gives the pos-

sibility to introduce activity as a disturbance in silco simulation in order to test

performance of closed loop algorithms.

A method for pulsatile insulin was presented and implemented into the model

in order to mimic the natural insulin secretion better. The controller is based on

a already implemented model predictive controller and delivers insulin boluses

over 30 seconds with frequency of 5, 10 or 15 minutes. The results where com-

pared with the MPC algorithm already implemented. The pulsatile controller

showed good performance for all three frequencies with regard to BGL con-

trol, both in the intravenous and the intraperitoneal case. The intraperitoneal

approach showed some oscillations in the blood insulin concentration but sub-

stantial less than in the intravenous case.

An adaptive scheme was implemented in order to compare the adaptive prop-

erties of the pulsatile and normal controller. In the computer simulation there

where found no advantages with the pulsatile method using this method since

the pulsatile infusion did not give any fast fluctuations in BGL which is pre-

sumed to be the case. Implementing this behaviour in the model could yield a

different result.
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