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Task description

Background

As offshore oil- and gas exploration and production enters arctic seas, the presence
of ice becomes a substantial challenge which requires monitoring and active coun-
termeasures. In some areas, monitoring of icebergs is expected to be an important
activity, which today in many cases is done using manned planes and helicopters.
The use of unmanned aerial vehicles (UAVs) could arguably give a substantial cost
reduction in such tasks. AMOS is planning a trip to Svalbard in the spring of 2015,
where one aim to do initial tests for a (partly, prototype) autonomous UAV system
for monitoring of icebergs. This project will develop/implement/test technology
for doing such experiments.

Work description

• Give a brief overview of the role of ice estimation systems in Arctic operations.

• Describe or make suggestion for the components and procedures of a UAS
operation for iceberg monitoring

• Describe the platform (UAV, hardware, software, interfaces, etc.) where the
monitoring system should be implemented

• Do appropriate tests, make illustrative simulations/experiments, and discuss.
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Abstract

The exploration of arctic seas for offshore oil- and gas resources has received in-
creasing interest the past few years. Despite the recent dramatic fall in oil prices,
estimates indicate that as much as 22% of the worlds remaining hydrocarbons are
located in arctic areas. Thus it is unlikely that the arctic areas will go largely
untouched the following decades. One of the main challenges of extracting hydro-
carbons in arctic areas is the abundance of sea ice that can cause damaging loads on
installations. An important part of oil exploration in these areas is thus the ability
to manage potentially damaging sea ice. The current methods for ice management
include manned helicopters and other aircraft for detection together with ships to
break up or drag away dangerous ice. The main objective of this thesis is to assess
the use of Unmanned Aerial Systems (UAS) to perform ice monitoring. An au-
tonomous Unmanned Aerial System for ice detection and mapping using a thermal
imaging sensor on a small fixed wing aircraft is proposed. The main contributions
of this thesis is a real-time Bayesian recursive algorithm for occupancy grid map
estimation representing sea ice. An expedition to Svalbard with several PhD and
master students from NTNU was originally planned in April 2015, but this was
canceled in March due to time constraints among the participants. The expedition
was a major source of inspiration for the methods developed, and an indoor labo-
ratory environment for on-board computer vision was developed using the Robot
Operating System (ROS) software framework. The setup included a quadcopter
with an on-board camera, and a motion capture system capable of tracking the pose
of the quadcopter at 120 Hz. The laboratory setup was used to test much of the
planned functionality for the Svalbard expedition. The developed computer vision
based map estimation algorithm is capable of running in real time on an on-board
computer. As a part of the preparation for the Svalbard excursion, a path plan-
ning framework developed by PhD student Anders Albert was successfully tested
in the laboratory setup. The experimental results of the mapping algorithm were
visually appealing, but closer investigation revealed unsatisfactory accuracy. Using
on-board navigational systems alone to perform real-time mapping did not yield
sufficient accuracy for practical use. Sources of error and means to improve the
results in further work were investigated.
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Sammendrag

Utforskning av arktiske omr̊ader i forbindelse med olje- og gassvirksomhet har
vært stadig mer interessant de siste årene. Selv om oljeprisen har hatt en dramatisk
nedgang den siste tiden, har det blitt gjort studier som tyder p̊a at s̊a mye som 22%
av de resterende utvinnbare hydrokarbonene befinner seg i arktiske havomr̊ader.
Det er derfor sannsynlig at aktiviteten i disse omr̊adene bare vil fortsette å øke.
En stor utfordring med utvinning av olje og gass i disse omr̊adene er forekomsten
av store mengder havis som kan gjøre stor skade p̊a installasjoner. H̊andtering
av potensielt skadelig havis er derfor en viktig del av arktisk maritim virksomhet.
N̊aværende metoder for havish̊andtering gjøres med blant annet helikopter for mon-
itorering og bemannede havfartøyer for uskadeliggjøring av havis. Hovedform̊alet
med denne oppgaven er å utrede bruk av et ubemannet fly med et infrarødt kamera
til ismonitorering. Hovedbidraget i denne oppgaven er et Bayesisk rekursivt filter
for estimering av et rutekart som representerer havis i sanntid. En ekspedisjon til
Svalbard sammen med PhD- og masterstudenter fra NTNU var planlagt i april og
inspirerte mye av arbeidet i denne oppgaven, men denne ble avlyst i mars p̊a grunn
av mangel p̊a tid til forberedelser blant deltagerne. Et innendørs laboratorieoppsett
ble utviklet i Robot Operating System (ROS) for å teste et prototype autonomt
ismonitoreringssystem. Som del av forberedelsene til Svalbard ekspedisjonen ble
kartleggingsalgoritmen testet nøye i laboratoriet. En baneplanleggingsalgoritme
som skulle arbeide sammen med iskartleggingsalgoritmen utviklet av PhD student
Anders Albert ble ogs̊a testet. Resultatene viste at å utføre kartlegging i sanntid
med kun navigasjonsutstyr som befant seg ombord i det ubemannede flyet ikke ga
god nok nøyaktighet. Fremtidig arbeid bør undersøke bruk av bildedata direkte
for å forbedre nøyaktigheten i kartleggingen.
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Chapter 1

Introduction

The main motivation for this project is to assess the use of an UAS (Unmanned
Aerial System) to aid ice management. Ice management is a necessary part of
carrying out operations in seas where either drifting icebergs, sea ice or ice ridges
are present. The reason for ice management being a vital part of operations in
these areas is that drifting ice can incur significant loads on ocean structures.
These loads can lead to potentially catastrophic failures risking human life and
the environment. The definition of ice management may vary according to where
operations are carried out, in this project the following definition proposed in Eik
2008 will be used:

Ice management is the sum of all activities where the objective is
to reduce or avoid actions from any kind of ice features. This will
include, but is not limited to:

• Detection, tracking and forecasting of sea ice, ice ridges and
icebergs

• Threat evaluation

• Physical ice management such as ice breaking and iceberg
towing

• Procedures for disconnection of offshore structures applied in
search for or production of hydrocarbons

Even though the interest and use of UAS has increased greatly the last ten years
in academia, industry and recreational use, humans are usually a central part
of an operation using such systems. Thus together with the exploration of the
technological capabilities of an autonomous ice monitoring system, the interaction
with human decision makers and operators is an important part to consider. As
time is a very limited resource when working on this thesis, it is important to narrow
down the scope as much as possible. When the scope of the work has been limited,
it is important to spend some time researching previous work so as to not “reinvent
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the wheel” and to use existing knowledge in an efficient manner. With this in mind,
it is useful to identify which challenges in a system that can be regarded as similar
to other fields and how such a system best can aid ice management operations.

1.1 Detection and mapping of sea ice features

The most prominent role of UAS in ice management in modern operations could
arguably be in the detection and tracking of potentially dangerous ice. This could
be both in both surveying relatively remote areas far from arctic operations, and
real time detection and tracking close to operations. The AMOS (Centre for Au-
tonomous Marine Operations and Systems) had planned a trip to Svalbard during
the spring in 2015, where one of the objectives was to test a prototype autonomous
UAV system for ice monitoring. The main sensor planned for ice detection was
an infrared camera mounted in a stabilized frame. Thermal images from previous
surveys in waters with prominent sea ice features revealed that detecting these fea-
tures was possible. To the authors knowledge, sea ice monitoring from aircraft has
so far been done with manned fixed wing aircraft as reported in Eik 2008. There
are several interesting challenges when it comes to performing ice monitoring au-
tonomously, and many questions arise when trying to imagine such a system;

• What value can such a system add to ice management operations?

• What kind of accuracy can be expected?

• What is the overall system complexity?

• What degree of autonomy can be expected from the system?

• How robust is the system with respect to e.g. changing weather conditions?

• What kind of area coverage can be expected?

the aim of this thesis is to at least partially answer these questions by describing
and implementing an experimental system to detect and map ice features with an
autonomous UAS using probabilistic methods.

1.2 Previous work in tracking and mapping

The general problem of tracking multiple moving objects has been an active area of
research for many years already. Usually objects are tracked on a stationary plat-
form on a fixed and known location relative to the earth. A natural generalization
to this is tracking of objects on a moving platform. Research in SLAM (Simulta-
neous Localization And Mapping) usually focuses on the tracking and mapping of
static features relative to a moving robot, but can be extended to include moving
objects for e.g. collision avoidance (Urmson et al. 2009). SLAM on small un-
manned aerial platforms using visual sensors have recently been shown to perform
well in outdoor applications (Forster, Pizzoli, and Scaramuzza 2014; Stephan Weiss
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et al. 2013). Modern methods are often probabilistic, and in essence they try to
determine the joint probability distribution of the state of all objects of interest,
including the state of the sensor platform. Estimating this density function naively
is however not feasible due to an exponential growth of the number of states that
need to be tracked. In practice objects are usually tracked independently, intro-
ducing the challenge of associating measurements with the relevant objects. See
Schulz et al. 2001 for a popular probabilistic method of associating measurements
with objects of interest. A simpler problem will be considered in this thesis, it will
be assumed that the state of the moving sensor platform is known perfectly, and
that the objective is to estimate a world state, in particular ice density at sea level.

1.3 Computer vision on mobile robots

Using a camera as a sensor on a mobile robot has been an active area of research
for roughly two decades already. In robotics cameras are used most commonly in
applications like navigation and mapping. A well known problem in robotics is the
SLAM problem, where cameras are often used as an important sensor. A notable
and well known experimental application is the use of a stereo camera system on
NASA Mars rovers for obstacle avoidance and navigation (Goldberg, Maimone, and
Matthies 2002). Cameras as sensors have also made their way into commercial au-
tomotive applications for applications like partially or fully autonomous driving, see
e.g. lane-following in Sadano, Kawazoe, and Shimakage 2002 or driver assistance
systems in Urmson et al. 2009. A lot of the theory and methods required to use
cameras as a practical sensor started development already in the 50s and 60s in the
photogrammetry community, with applications like highly accurate terrestrial map-
ping. Modern applications of traditional photogrammetry have enabled estimation
of highly accurate 3D world models used in commercial large scale surveying appli-
cations. A familiar example is the application of aerial imagery to 3D city modeling
in Google Earth. A modern research topic relevant for this thesis is SfM (Structure
from Motion) in the computer vision community. The aim of SfM techniques is to
infer three-dimensional structures from image sequences. Successful applications
include 3D object and terrain modeling, just like in photogrammetry. The theory
and algorithms required in vision-based SLAM, photogrammetry and SfM prob-
lems are very similar, and there is a lot of overlap in the results and research done
in the fields of vision in robotics, general computer vision and photogrammetry. It
should be noted that recent advances in SLAM have often included some sort of
active range sensor in addition to or instead of just a camera. Examples include
LIDAR (Laser Illuminated Detection and Ranging) sensors, RADAR, ultrasound
ranging sensors and so called RGB-D(epth) sensors like the Microsoft Kinect. Laser
based ranging sensors have proved very effective in autonomous driving research
(Levinson, Montemerlo, and Thrun 2008), where both range and intensity data
can be used to navigate safely in urban environments. An interesting comparison
of photogrammetric methods and the early use of airborne laser scanning in the
remote sensing community can be found in Baltsavias 1999. Advantages of laser
scanners include extremely high spatial resolution, depth information and illumina-
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tion independence (lasers are active sensors). Advantages of using passive imaging
sensors are increased spectral resolution compared to laser scanners, availability
of low cost and low footprint COTS (Commercial Off-The-Shelf) sensors and to a
large extent illumination independence in the case of thermal imaging sensors. It
is to the knowledge of the author at the moment both cost and weight prohibitive
to use laser scanners in experimental applications such as the one presented in this
thesis. Many of the mentioned methods are reaching maturity, but are still mostly
on a research level. Since the authors own experience in these research fields is very
limited, only the simplest of methods are implemented and tested in this thesis.

1.4 Structure of this thesis

The first chapter in this thesis presents some of the most relevant theory for the
project work. An algorithm for ice density estimation is presented in the same
chapter. It is assumed that the reader has basic knowledge of statistics, unmanned
aerial systems, control systems, linear algebra and computer vision. The following
chapter presents a proposed system architecture for an ice monitoring system. This
includes a description of an indoor laboratory environment that was developed to
test the necessary parts of the proposed ice monitoring system. The next chapter
consists of some experiments done in the indoor laboratory and on some other data
relevant to this thesis. The final chapters are a discussion of the experiments done
and a conclusion with some remarks regarding further work. Some code developed
for this thesis is included in the appendix for illustration purposes, the rest of the
implementation necessary to reproduce the results of this thesis can be found in
the accompanying zip file.



Chapter 2

Theory

2.1 Notation and coordinate transformations

This section briefly describes notational conventions and coordinate transforma-
tions used in this thesis. The notation and definitions used in this thesis loosely
follow those found in Egeland and Gravdahl 2002. Vectors are written in bold font
and a superscript represents the reference frame which it is expressed.

pw =

xwyw
zw

 =

pw1pw2
pw3

 (2.1)

where p is a vector expressed in the w reference frame. A vector written in homo-
geneous coordinates is indicated by a ∼ symbol.

p̃ =


x
y
z
1

 (2.2)

A coordinate free vector, i.e. a vector without any reference frame, is written with
an arrow: ~p. Different coordinate frames are used for guidance, navigation, control
and computer vision algorithms. In motion control and robotics applications in
general, it is common to have to transform vectors from one coordinate frame to
another. Given two reference frames a and b, a transformation between the frames
can compactly be described by the following homogeneous transformation matrix

T ab =

[
Ra
b raab

0T 1

]
(2.3)

Where Ra
b is the rotation matrix from frame a to frame b. The columns of Ra

b are
the three unit vectors of b expressed in a. raab is a vector describing the translation of
the origin of b relative to a, expressed in frame a. A homogeneous vector expressed

5
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in frame b, denoted x̃b can now be expressed in frame a by the following matrix
multiplication

x̃a = T ab x̃
b (2.4)

It is often convenient to represent the rotation matrix (also called the DCM (Di-
rection Cosine Matrix)) with fewer parameters. It is a well known fact that any
rotation matrix can be expressed by three successive rotations about a fixed axis.
This leads to the definition of the Euler angles. The Euler angles are minimal in
the sense that they define a rotation uniquely with the fewest amount of parame-
ters. It is however ambiguous if the rotation sequence and axes are not specified.
Another disadvantage of the Euler angles is that the kinematic equations (time
derivative) always have singular points. Another useful fact about rotations is that
any fixed rotation can be specified as a rotation about an axis (i.e. a direction)
and an angle. The angle-axis representation has four parameters; namely the angle
θ ∈ R and the axis k ∈ R3. A rotation matrix can be computed from the angle-axis
parametrization in the following way

Ra
b = cos θI + sin θ (ka)x + (1− cos θ)ka (ka)

T
(2.5)

where the axis is specified in frame a and (·)x : R3 → R3×3 is the skew symmetric
cross product matrix operator defined as:ab

c


x

=

 0 −c b
c 0 −a
−b a 0

 (2.6)

Finally, the angle-axis parametrization can be related to the mathematically con-
venient unit quaternion through the following definition

q =

[
η
ε

]
=

[
cos θ2
k sin θ

2

]
(2.7)

The quaternion can be interpreted as an extension of the complex numbers, where
η represents the scalar real part and the vector ε represents three imaginary units.
The order which the parameters are represented in the quaternion is specified varies.
The two most common conventions is to either have the real part as the first or last
component in the quaternion. The latter is the convention used in ROS (Robot
Operating System). The unit quaternion can be used to represent a rotation or a
change of basis, just like the DCM. The main advantages of using quaternions are
the efficiency in composing rotations, the numerical stability and the lack of singular
points in the kinematic equations. Considering the quaternion as an extension of
the complex numbers, an alternative way of computing the quaternion from the
axis-angle parameters is through an analogue of the Euler formula:

~q = exp

(
θ

2

(
k1~i+ k2~j + k3~k

))
= cos

θ

2
+ sin

θ

2

(
k1~i+ k2~j + k3~k

)
(2.8)
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2.2 UAV model

In this project, the goal is to use a fixed wing UAV (Unmanned Aerial Vehicle) as
a vital component to perform experimental ice monitoring. An UAV can provide a
mobile sensor platform that can be moved to a virtually arbitrary position in space.
The platform does however not come without constraints. The constraints are both
dynamic (e.g. Newtons laws via differential equations) and static (e.g. maximum
bank angle, maximum thrust, minimum speed). A sufficiently detailed model of
the flying UAV platform will be necessary in the development of the system. At
the lowest level of abstraction, the motion of an UAV can be accurately modeled
with a set of coupled nonlinear differential equations. For the purposes of this thesis
however, which is the use of an UAV to position an imaging sensor in space, a model
of this fidelity is not necessary. The aircraft which planned for the experimental
platform to be used on Svalbard is a “Skywalkr X8” with an “Ardupilot” closed
loop autopilot. At the highest level, the autopilot has the capability to follow paths
in space in the form of an ordered set of waypoints autonomously. For the purposes
of this thesis, this description is detailed enough.

2.3 Camera model

In the UAS intended for the prototype ice monitoring, an infrared camera is
mounted in the belly of an X8 UAV in a stabilized gimbal frame. In order to
relate features in captured images to the world, a model of the projection of 3D
world points to a 2D camera plane is needed. A projection model usually includes
several parameters grouped into extrinsic and intrinsic parameters. It is neces-
sary to know both the intrinsic camera parameters defined by the cameras optical
system and extrinsic parameters that relate the camera to the world to infer in-
formation about where a feature is located. The determination of the mapping
between 3D reference coordinates and 2D camera coordinates is often called cam-
era calibration. Procedures for the determination of this mapping are described
in Zhang 2000; Heikkila and Silven 1997, and has inspired the implementation
of numerical calibration methods in OpenCV (OpenCV - Open Source Computer
Vision) and MATLAB. Having a good estimate of this mapping is crucial for com-
puter vision applications relating image features to the physical world, such as ice
features at sea. The projection models used in this thesis are identical to those
used in OpenCV, mainly since it is used as an implementation framework and
the models are fairly standard. Performing calibration of intrinsic parameters is
usually done by capturing images of features that have a known structure a fixed
reference frame. When using a traditional optical camera, it is common to print
out a checkerboard pattern and capture images at several viewpoints. The pattern
can be recognized through common computer vision algorithms, and both extrinsic
and intrinsic camera parameters can be determined for the captured images. The
extrinsic parameters estimated are not really useful for further work, since they
only describe the camera pose when the calibration images are taken. The intrinsic
parameters are however very useful, and can be assumed constant for a constant
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focal length and image size. The parameters can be scaled to accommodate for
changes in image size (i.e. image resolution). Since an infrared camera is used in
this application, the calibration images have to be captured in a somewhat unusual
way. The method used at the UAV lab is to capture images of a cooled metal
plate with several evenly spaced holes. It will in this thesis be assumed that the
camera intrinsic parameters can be calculated once and off-line in a laboratory en-
vironment, and that extrinsic parameters can be calculated by relating estimates
of the UAV position and attitude to the camera optical frame. It is also possible
to estimate extrinsic parameters from captured images during flight, i.e. using
the camera as a navigation tool. Methods for camera aided navigation or more
generally SLAM is not the topic of this thesis, but are discussed in Chapter 5.

2.3.1 Extrinsic parameters

Extrinsic parameters are the location and orientation of the camera in space with
respect to a earth fixed reference frame as in (2.3). Given that a point in space is
represented by a homogeneous vector in a world fixed coordinate frame w (e.g. a
world fixed NED (North-East-Down) frame) by pw, we can express this point in a
camera fixed frame c by the homogeneous transformation

p̃c =


xc

yc

zc

1

 = T cwp̃
w (2.9)

It will be assumed in this thesis that the camera is rigidly mounted to the body of
the UAV, such that the relative orientation of the camera and the body frame can
be represented by a simple translation of the origin and a static rotation matrix.
If the position and orientation of the UAV body with respect to a fixed frame is
known, the camera extrinsic parameters can thus be calculated.

2.3.2 Intrinsic parameters

The cameras intrinsic parameters describe how points in a camera fixed frame are
projected into the cameras optical frame. The model presented here is taken from
Hartley and Zisserman 2004. Common intrinsic parameters are focal length, optical
center, lens distortion coefficients and pixel scaling factors. The most simple model
of image projection is the pinhole camera model. This model is a linear projection
model that describes how points expressed in a camera fixed frame are projected
onto the camera optical plane. Consider a point (xc, yc, zc) expressed in a camera
fixed 3D reference frame. Using the pinhole projection model the point can be
expressed in the image plane by: [

ũ
ṽ

]
=

f

zc

[
xc
yc

]
(2.10)

where f is the cameras effective focal length. The camera optical frame is as usual
in computer vision applications centered in the upper left corner of the image array.
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The units of the coordinates (u, v) are in pixels, therefore pixel scaling factors su
and sv are needed to relate metric units to pixels. In addition, the optical center
(u0, v0) must be known to arrive at the following relation between the projected
point to the camera optical frame[

u
v

]
=

[
suũ
sv ṽ

]
+

[
u0
v0

]
(2.11)

The pinhole model does not account for nonlinear lens distortion effects, but in
some applications yields accurate enough results. The model can be extended to
include distortion effects, and images can be undistorted to improve the accuracy of
the pinhole model. The advantage of the pinhole model is its simplicity and the fact
that it gives a linear projection model. Including the camera extrinsic parameters,
we can express the pinhole projection model in homogeneous coordinates in the
following way:

s

uv
1

 = AT cwp̃
w =

fsu 0 u0
0 fsv v0
0 0 1

 [Rc
w rccw

] 
xw

yw

zw

1

 (2.12)

Note that the projection of a 3D point to the 2D image plane is only defined up to
the scale factor s ∈ R. This is a consequence of the camera being a bearing only
sensor, meaning that points on a line in 3D yield the same projected point in 2D.

2.4 Image segmentation

We can determine if an image pixel represents an ice feature or not by perform-
ing image segmentation. Image segmentation assigns image pixels into two or more
classes, or more generally groups them into “similar” classes. In the case of this the-
sis this will at the highest level be either ice or non-ice pixels. There are many ways
of segmenting an image into two or more classes. There are correspondingly many
ways to interpret and use the image data at hand to perform the segmentation.
Examples include image intensity, detected image edges, motion, color similarity
and more. The most trivial is probably through image thresholding. This is a
simple image intensity based procedure where pixels are assigned to one class if
they are above a certain threshold intensity, and to the second class if they are
below it. It is also a very efficient method, since it requires only one comparison
per pixel. Thresholding can work well if the image has a bimodal histogram with
two distinct peaks, separating the two desired classes. Finding the most optimal
threshold value might be nontrivial, and it does not need to be constant for a
group of images due to e.g. variations in illumination. A simple adaptive method
is called Otsu’s criterion (Otsu 1979), where a global threshold value is selected
to divide the image into two maximally homogeneous regions as a function of the
image histogram. This method can naturally be extended to compute locally op-
timal threshold values in an image. Again, this will only work well if the image
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is bimodal in its histogram and the interesting features are indeed homogeneously
in either one of the histogram regions. A recent survey on thresholding techniques
can be found in Sezgin and Sankur 2004. More general methods include graph
based optimization methods where image intensity, motion and spatial arrange-
ment can be used as a similarity measure as described in Shi and Malik 2000.
An method based on Markov random fields using intensity data for segmenting
sea ice in synthetic aperture radar (SAR) data is found in Clausi 2005. Another
common method for image segmentation is to use edge detection together with
morphology operations. In the laboratory environment used in this project, simple
image segmentation using thresholding was sufficient. Since image data for the ac-
tual application of sea-ice monitoring is unavailable for the planned experimental
platform, there is not much that can be said about which methods will work well
on the true application. Images from a similar application were however obtained
by courtesy of NORUT (Northern Research Institute), showing aerial imagery of
dense sea-ice taken by an infrared camera. The next section shows a short analysis
of these images with respect to image segmentation.

2.4.1 Image segmentation of NORUT data

Aerial images of dense sea ice taken with an infrared camera from a UAV was made
available by NORUT. Some simple image segmentation procedures were tested on
the data to indicate if infrared data can be used to reliably detect ice features.
Unfortunately there is no ground-truth available for the images, so that there is
no reasonable way to quantitatively evaluate the methods. The open source scikit-
image python package was used to perform the analysis (Walt et al. 2014). A
few different methods were tested, including global and local Otsu thresholding
methods, segmentation by edge detection coupled with morphological operations,
and segmenting by using the watershed transform. The simplest of these methods
is arguably the global Otsu thresholding method. None of the mentioned methods
gave any significantly better results then the others (which is hard to evaluate due
to the lack of ground-truth), so only the results from the global Otsu method is
presented here. The results are shown in Figure 2.1, where an additional image
with morphological closing performed on the result of the global Otsu thresholded
image in an attempt to reduce noise is also shown.

2.5 Ice density estimation

One of the main objectives of this thesis is to implement a method to estimate
the sea ice distribution using an infrared camera. It is necessary to define how to
represent and store detected ice features. It is not the aim to implement the most
sophisticated methods, but rather to shed light on practical applicability of using
UAS for autonomous ice detection with similar platforms. A significant part of the
workload will naturally go to the implementation of the system on an experimental
platform. It is nonetheless necessary to develop a theoretical framework before
implementing any algorithms, both to aid the development and to increase the
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Figure 2.1: Thermal image of dense sea ice together with a histogram of grey
values, a thresholded image and its morphological closure. Courtesy of NORUT

probability that the lessons learned during this project can be used in further
research.

2.5.1 General Bayesian recursive estimation

A common problem in robotics is to infer the state of some physical system at
a point in time by using past observations (measurements) and inputs. In track-
ing methods and other estimation problems in the field of robotics in general,
Bayesian recursive estimation is a indispensable statistical tool. With additional
assumptions, the method can be used to derive most modern recursive estimation
algorithms such as the Kalman Filter and its many varieties. This section presents
the method briefly, nearly identical to the presentation in Thrun 2002. For sim-
plicity and relevance to this thesis, it is assumed that the stochastic processes
which we want to infer information about has no known inputs. That is, we want
to infer something about the stochastic process xt at time t, given measurements
z1:t := {z1, z2, . . . , zt}. In particular, we would like to say something about the
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following conditional probability distribution also called the belief of the state x at
time t:

bel(xt) := p(xt|z1:t) (2.13)

A very important assumption about the stochastic process is that it is Markov. The
Markov assumption essentially states that given the current state xt, no additional
information is gained by including previous states and measurements when trying to
predict the next state xt+1. In other words, the state xt is complete in the sense that
it summarizes everything that has happened in the past. This assumption is usually
known to be overly optimistic in robotics applications, but yields good results in
practice and computationally tractable algorithms. The Markov assumption can
be summarized by the conditional independence:

p(xt|xt−1, z1:t−1) = p(xt|xt−1) (2.14)

where this particular conditional probability density plays an important role and
is often called the predictive distribution. It will be given the following notation in
further derivations:

bel(xt) := p(xt|xt−1) (2.15)

In general the Bayesian recursive estimation algorithm, also called the Bayes Fil-
ter, tries to calculate the posterior distribution bel(xt) from a prior distribution
bel(xt−1) and a new measurement zt. It does so by marginalizing over all previous
states and using Bayes rule. These steps can be summarized by the two equations

bel(xt) =

∫
p(xt|xt−1)bel(xt−1)dxt−1 (2.16)

bel(xt) = ηp(zt|xt)bel(xt) (2.17)

where η is a normalization factor such that bel(xt) is a proper probability distribu-
tion (i.e. it integrates to one). When using a Bayesian framework, we have to find
the conditional probability distributions p(zt|xt) called the measurement model,
and p(xt|xt−1) called the prediction model. Both models are often obtained by
first principle modeling together with some reasonable inclusion of uncertainty. In
addition, we need to figure out how to evaluate the integral (2.16). The integral is
usually not possible to evaluate explicitly, with the very important exception when
we use a linear model with Gaussian noise yielding the standard Kalman Filter.
Another important exception to this is when we use a finite representation of the
probability distributions involved, changing the (possibly infinite) integral into a
finite sum. Using finite representations has the additional advantage of being able
to adapt the number of finite elements in the approximation of the probability dis-
tribution, giving the possibility to adapt to the available computational resources.
The probabilistic structure of the problem the Bayes filter attempts to solve can
be illustrated by the following graphical model as shown in Figure 2.2

2.5.2 Occupancy grid mapping

Estimating a map from a moving robot is a challenging task. Today there is
a lot of active research in the field of SLAM, which tries to estimate the pose
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Figure 2.2: A graphical model of the latent (white) and observed (grey) variables
in a Markov chain
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of a robot and at the same time estimate the state of the world in the form of
a map. In this thesis a simplified problem will be considered, where the pose
of the robot (i.e. the UAV) is known. The results of the mapping will still be
highly dependent on the estimates of the robot pose, but the algorithms will be
much simpler to implement. An arguably useful way of representing sea ice for ice
management is by an “occupancy grid map”. This is a simplified world fixed grid
map that tries estimate if grid locations are occupied or free, in a probabilistic way.
The algorithm presented in this section is a slight generalization of the algorithm
presented in Thrun 2002 to include the possibility of a dynamic map. The Holy
Grail is to estimate the posterior probability density over all possible maps given
past measurements and states

p(mt|z1:t, x1:t) (2.18)

where mt is the map representation, z1:t are measurements (in our case camera
images) and x1:t are robot poses. Such maps have successfully been used for planar
robot localization and motion planning. In this thesis, we are interested in the
utility of using UAV in ice management operations consisting of ocean vessels
clearing and avoiding dangerous ice. The motion of an ocean vessel is similar
to planar robot movement in the sense that motion control systems usually only
actively control planar position and the vessel heading. And it seems reasonable
that such a map alone contains enough information for either a robot or a human
to identify safe and unsafe areas for ocean vessels. A limitation with a static map
in relation to ice management, is the lack of temporal information in terms of ice
drift. It is possible to include ice dynamics in the estimation of the grid map as
indicated by the time dependence in mt, it might however not be strictly beneficial
since it introduces additional complexity in modeling and implementation, the
issue is discussed later in this section. The grid map estimation will be tackled as
a recursive estimation problem, with the map defined as a 2D grid map

mt = {mi,t} (2.19)

where mi,t are grid elements each with an associated binary occupancy value. The
quantities that we wish to estimate are the probabilities p(mi,t = occupied) and
p(mi,t = not occupied) for each grid cell, where not occupied in this context would
mean that the space in grid cell i is open sea and thus safe for a vessel to traverse.
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The first assumption made to be able to calculate (2.18) is to assume that the grid
cell densities are independent. As an equation this reads

p(mt|z1:t, x1:t) =
∏
i

p(mi,t|z1:t, x1:t) (2.20)

implying that the state of neighbouring cells do not affect each other. Intuitively
this is a crude assumption, since the probability of open sea in one grid cell should
tell us something about the probability of open sea in the neighbouring cell as
well. There are ways to improve on this assumption, but the resulting algorithms
are more computationally complex and require some additional modeling effort (as
usual). The problem of estimating (2.18) thus amounts to the estimation of the
state of each individual grid cell. Each of these problems is a binary estimation
problem. With the additional assumption that mi,t and xt are Markov, we can
estimate the grid state using a Binary Bayes Filter. A Bayes filter is normally
implemented in two steps, the first being a predictive step using knowledge of the
dynamics of the system, and the next being a corrective step using measurements
to improve the estimate. Using the law of total probability and the Markov as-
sumption, the predictive step in our case is to calculate:

bel(mi,t) = p(mi,t|z1:t−1, x1:t−1)

=
∑

mi,t−1

p(mi,t|mi,t−1)p(mi,t−1|z1:t−1, x1:t−1)

=
∑

mi,t−1

p(mi,t|mi,t−1)bel(mi,t−1)

(2.21)

where the dynamics of the occupancy value is encoded in the transition probabilities
p(mi,t|mi,t−1), and we have defined bel(mi,t−1) = p(mi,t−1|z1:t−1, x1:t−1). In the
case of a static map, this step changes to simply set bel(mi,t) = bel(mi,t−1) since
the map does not change over time. The next and final step in the Bayes recursion
is to integrate a new measurement zt to improve our predictive estimate. Using
Bayes rule we get

bel(mi,t) = p(mi,t|z1:t, x1:t)

=
p(zt|mi,t, xt)p(mi,t|z1:t−1, x1:t−1)

p(zt|z1:t−1, x1:t)

=
p(zt|mi,t, xt)bel(mi,t)

p(zt|z1:t−1, x1:t)

(2.22)

where p(zt|mi,t, xt) is the probability relating the state of a grid cell and the
pose of the UAV to the measurement zt. The structure of the measurements can
be illustrated by Figure 2.3. This measurement density might be very hard to
obtain or define, as we in essence have to describe every possible image given the
pose of the UAV and the state of a grid cell. It arguably makes more sense to
define the inverse measurement model p(mi,t|zt, xt). Using Bayes rule again on
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Figure 2.3: Graphical illustration of the map probability model. Grey nodes are
observed quantities, white are unknown (estimated)
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the measurement model we obtain

p(zt|mi,t, xt) =
p(mi,t|zt, xt)p(zt|xt)

p(mi,t,|xt)

=
p(mi,t|zt, xt)p(zt|xt)

p(mi,t)

(2.23)

Inserting this into (2.22) yields

bel(mi,t) =
p(mi,t|zt, xt)p(zt|xt)bel(mi,t)

p(mi,t)p(zt|z1:t−1, x1:t)
(2.24)

The next step is to use the fact that the ith map state is binary, i.e. it can only be
either occupied or free. This leads to the fact that we can calculate the probability
that a grid cell it not occupied by

p(¬mi,t) = 1− p(mi,t) (2.25)

Defining the odds ratio as the fraction between a grid cell being occupied and not,
and using the fact that the negated belief yields the same result as in (2.22), we
can cancel a few terms not depending on the grid state to get

bel(mi,t)

bel(¬mi,t)
=

bel(mi,t)p(mi,t|zt, xt)p(¬mi,t)

bel(¬mi,t)p(¬mi,t|zt, xt)p(mi,t)
(2.26)

Finally, defining li,t to be the log of the odds ratio we get the following additive
update equation

li,t = log
bel(mi,t)

1− bel(mi,t)
+ log

p(mi,t|zt, xt)
1− p(mi,t|zt, xt)

− log
p(mi,t)

1− p(mi,t)
(2.27)

where the first term in this update equation will simply be li,t−1 if we neglect map
dynamics. The last term is the prior log odds ratio, and can be interpreted as a
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quantity returned by the inverse measurement model when no information is added
by a measurement. The map probabilities can easily be obtained by calculating

p(mi,t|z1:t, x1:t) =
exp(li,t)

1 + exp(li,t)
(2.28)

2.5.3 Inverse measurement model

In the previous section, an algorithm for recursive estimation of an occupancy grid
map was developed. Central to this algorithm is the inverse measurement model

p(mi,t|zt, xt) (2.29)

which in our case represents the probability of the map grid cell i being occupied
given an image zt and a pose xt. Hopefully, a raw image together with the pose
of the robot contains this information. The choice of the measurement model is
vital for the result of the mapping algorithm. The determination of the inverse
measurement model can be regarded as a problem of finding a function

f : M × Z ×X → [0, 1] (2.30)

where the input space consists of the map grid position (or index) denoted by M ,
image features Z and the robot pose X. In its simplest form the function can return
a constant probability if a specific feature is observed near the grid cell, perhaps
weighted by the distance to the grid cell center. The function should ideally be
found in a systematic way aided by empirical data. Alternatively the function can
be defined heuristically by defining sensor characteristics. Currently there is very
little data available to do any meaningful systematic estimation of the function f ,
so a heuristic treatment is the only viable option. A possible way of defining this
function is to first consider the segmentation of an observed image. If an image
has been segmented into “ice” and “not-ice” pixels, the segmented image can be
projected and interpolated onto the image grid directly and interpreted as detection
probabilities. The quality of a measurement is then dependent on both the image
segmentation and the estimation of the image perspective projection. In the inverse
measurement model presented here we first define a partial measurement model by
processing the image data, then account for the pose by projecting the processed
image onto the mapping frame.

We first consider the image data zt, we saw in section 2.4 that an image can
be segmented into “ice” and “not-ice” classes. A straightforward thing to do is
to first segment the image into these two classes. Once segmented, we can define
the probabilities that a grid cell is occupied if the segmented pixel belongs to the
each of these classes. The most obvious thing to do might be to simply define
the probability to be equal to one if the pixel belongs to the “ice” class and to
zero of it belongs to the “not-ice” class. However, this is very unlikely to reflect
the true probabilities since there is significant uncertainty in the segmentation
itself. Assuming that the image data is represented in the map frame, we can thus
define an inverse measurement model by assigning these probabilities. Denote these
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Figure 2.4: Illustration of the map grid and the perspective transformation

probabilities by P1 and P2 and let sk,t represent a segmented pixel of the image
zt. Recall that we are interested in the log-odds form of the inverse measurement
model, we can assign the following values to our partial inverse measurement model:

nk,t =

{
log P1

1−P1
if si,t = ice

log P2

1−P2
if si,t = notIce

(2.31)

where nk,t is the partial inverse measurement model. The next step is to relate
this measurement to the map frame using the pose xt.

The UAV pose xt does not contain direct information about the state of the
grid cell, but rather information about where image features observed are located
relative to the grid cell i. Since the captured images are projected onto a plane we
loose some information about the spatial location of the observed features in the
image (i.e. the depth). We have however already constrained the grid mapping to
be in a plane at sea level. With the assumption that image features (e.g. from ice
features) are generated in this sea level plane, it is possible to invert a projection
model like (2.12) to obtain the planar position of a feature in a world fixed reference
frame. In other words, there exists a function that maps a pixel coordinate in the
image plane to a grid cell in the mapping plane.

Given that we want to relate a camera measurement to the map grid, the most
direct way to do this is to project and interpolate the camera measurement (i.e. the
image) onto the map grid plane. An illustration of this is shown in Figure 2.4. It
will now be shown that if we use the pinhole projection model (2.10) the projection
a linear perspective projection, or a homography. The first parameters that need
to be defined are the position and orientation of a fixed map frame relative to some
common world frame shared by the map and camera frames. These parameters
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can be written as the homogeneous transformation matrix:

Twm =

[
Rw
m rwwm

0T 1

]
(2.32)

An occupancy grid map is represented by a matrix in RN×M . Let a map grid cell
(a matrix element) be given by homogeneous coordinates p̃m = (um, vm, 1), with
um ∈ {0, . . . , N − 1} and vm ∈ {0, . . . ,M − 1}. The map grid is defined as lying in
the positive quadrant of the x− y plane in the map frame. The metric location of
the center of a grid cell in the map fixed reference frame can be calculated by:

qm =

Dx 0 1
2Dx

0 Dy
1
2Dy

0 0 0

umvm
1

 = Mp̃m (2.33)

where Dx and Dy are metric scaling factors of a grid cell. The location of a grid
cell can now be expressed in the world fixed frame by:

qw = Rw
mMp̃m + rwwm = (Rw

mM + [0,0, rwwm]) p̃m := Pw
m p̃

m (2.34)

Using the pinhole projection model, and denoting an image pixel coordinate by
p̃c = (u, v, 1) we can project the grid cell onto the image frame yielding:

sp̃c = A (Rc
wP

w
m p̃

m + rccw) = A (Rc
wP

w
m + [0,0, rccw]) p̃m := Xc

mp̃
m (2.35)

where Xc
m ∈ R3 is the perspective transformation between the map grid plane and

camera pixel plane and s is some constant. If this matrix is full rank it can be
inverted to yield:

spm = (Xc
m)
−1
p = Xm

c p (2.36)

where the matrix Xm
c can be used to project camera images onto the map plane.

The matrix is in fact a homography, and it is invertible as long as the camera
center does not lie in the mapping plane (Hartley and Zisserman 2004). If the
camera center is indeed in the mapping plane, something is either wrong with the
navigation system or the UAV has most likely crashed in the ocean.

Now that we can project images onto the mapping plane, we can complete our
inverse measurement model by transforming the partial measurement model nk,t
given in (2.31) onto the mapping plane. In OpenCV this geometric transformation
can be done with the function “warpPerspective”.

When the occupancy grid estimation algorithm was developed, it was assumed
that the pose xt was known perfectly. This is not the case in practice, as both
the position and attitude of the UAV are estimated from sensor measurements
and contain significant errors. Care should thus be taken when the inverse image
projection is used to estimate the position of a feature, optionally including some
simple quantification of the uncertainty in the projection like a two dimensional
isotropic Gaussian distribution. To include this uncertainty would mean that we
“smear” the detected features out over a larger area in the mapping plane. In
practice, a simple way of including a Gaussian uncertainty model is by filtering
the projected image with a Gaussian kernel. Filtering with a Gaussian kernel is
included in the OpenCV image processing module.
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2.5.4 An algorithm for recursive map estimation

In this section the mathematical procedures are summarized in an algorithm which
is conceptually identical to the one implemented in the experiments. The algorithm
requires an initial occupancy grid map estimate m0 in log-odds form, map param-
eters as defined by 2.33, intrinsic camera parameters, filter parameters P1, P2 as
in (2.31), Gaussian blur parameter σ for localization uncertainty and sequential
data in the form of images zk and corresponding camera poses xk, a map can be
estimated recursively using the algorithm listed in Algorithm 1.

Algorithm 1 Basic occupancy grid map estimation

procedure RecursiveMapEstimation(mk, zk, xk)
sk ← SegmentImage(zk)
nk ← ToLogOdds(sk, P1, P2) . (2.31)
nk ← GaussianFilter(nk, σ)
Xm
c ← ComputeMapHomography(xk) . Use the result in (2.36)

Nk ← WarpAndInterpolate(nk, X
m
c ) . Transform to map plane

mk+1 ← mk +Nk . Additive update rule (2.27)
end procedure
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Chapter 3

System architecture

This chapter describes the system architecture of a proposed ice monitoring system.
The design of the ice monitoring system developed in this thesis is mostly done
in the software domain. It thus makes sense to describe the overall system as
communicating software components. Parts of the implemented software will have
to run onboard the UAS, and some parts will likely run on a ground station close
to an UAS operator. This implies that a telemetry link is needed even during
autonomous operation. It is however the aim to develop systems that can be
operated with as much autonomy as possible, and in BLOS (Beyond Line Of Sight)
operations. An experimental operation was planned in an area with very limited
communication coverage (Svalbard), the expected data rates on a telemetry link will
thus be quite low and the link might also experience frequent drop-outs. This leads
to the requirement that the autonomy of the system should not be adversely affected
by a poor communication link. A consequence of this is that real-time operation
of the system will likely rely on the ability to process the large amounts of image
data on-board the UAS, rather than sending the data to be further processed.
With reference to Figure 3.1, the main focus has been on the development of a
novel ice mapping component. The other components have been involved in the
testing of the ice mapping component in a laboratory environment which will be
described in this chapter in more detail. Figure 3.1 also illustrates which software
components that run onboard the UAS in the proposed ice monitoring system, and
illustrates communication links between them. Further in this chapter, the most
relevant software frameworks, tools and libraries are described briefly. Finally, an
experimental setup to test the proposed ice monitoring system is presented.

3.1 Software libraries and frameworks

3.1.1 DUNE

Before the Svalbard excursion was canceled, the plan was to implement the ice
mapping component in a software framework called DUNE (Dune is an Unified

21
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Figure 3.1: Proposed software component diagram for an ice monitoring system

Navigation Environment). The main reason for this is that the NTNU UAV lab
uses this framework for UAS development and experiments, and many PhD and
master students have experience with working with this framework. DUNE is a
software framework designed to be used on board mobile robotic platforms mainly
in the air and at sea. It has a corresponding software framework for ground station
monitoring and control, called Neptus. The main utility of the framework is to
enable a robotic software system to be developed as independent tasks that com-
municate through a well defined protocol. In DUNE the tasks are usually periodic
or event driven, and the messages are sent as pre defined Intermodule Communica-
tion (IMC) messages. The power communicating with pre defined messages is that
these messages can be transported over many different physical layers, including
within computer memory, wired network connections and even wireless communi-
cation systems. Thus IMC messages enable both inter process communication and
telemetry, command and control.

The laboratory setup developed for this thesis work was developed with DUNE
and Neptus compatibility among the main goals. The idea was that an ice monitor-
ing system could be developed in DUNE and tested on a laboratory platform and
deployed on the experimental Svalbard platform with very few modifications. After
the Svalbard excursion was canceled however, these frameworks became less im-
portant. The Svalbard excursion was canceled after the laboratory setup had been
tested to work with both Neptus and DUNE, and it was used by master student
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Recep Cetin working with validating a navigation system in some of his experi-
ments. For this thesis it was used to test a path planning framework meant to be
a part of the experimental system on Svalbard, further explained in section 4.1.2.

3.1.2 OpenCV

OpenCV is the only software dependency that the ice mapping software compo-
nent has. OpenCV is an open source computer vision software library designed for
high performance, real time computer vision. It was originally written in C/C++,
but now has interfaces in several other languages including Python and Java. The
library is released under a BSD license and is free for both academic and commer-
cial use. Industrial leaders such as Intel and Google contribute to the development
financially and through library development. OpenCV provides basic data struc-
tures for handling image data, image processing algorithms for e.g. filtering and
warping of images, video analysis algorithms, multiple view geometry algorithms
(Hartley and Zisserman 2004) for calibration and reconstruction, feature detectors
and descriptors for tracking and detection and more.

3.1.3 ROS

In this project ROS (Quigley et al. 2009) has been used as a framework for the
development of the experimental lab setup. It has been used both to test the ice
mapping functionality in an isolated way, and to integrate the laboratory systems
with DUNE to test path planning functionality. Like DUNE, ROS is an open-
source software toolkit for robotics applications. It is not an operating system
in the traditional sense, but provides a software framework suitable for robotic
systems. Currently ROS only runs on top of UNIX like operating systems, like
Ubuntu Linux and Mac OSX. This is a quote from the ROS documentation:

ROS (Robot Operating System) provides libraries and tools to help software devel-
opers create robot applications. It provides hardware abstraction, device drivers,
libraries, visualizers, message-passing, package management, and more. ROS is
licensed under an open source, BSD license.

The main goal of ROS is to support code reuse in robotics research and de-
velopment. It is designed to be as thin as possible, and has been integrated with
other robotics frameworks. In this thesis it is in fact integrated with DUNE. An
important note is that ROS is not designed to be a real-time framework. A central
concept in ROS is that the tasks that make up a robot application can be repre-
sented by a graph. The graph nodes are the running processes and the edges are
communication between the tasks. Communication between tasks can be done in
several ways. Synchronous communication can be done via ROS “services”, asyn-
chronous message passing over “topics” and storage of configuration data on the
“Parameter server”. The concepts are implemented in a programming language
agnostic way, such that applications can be developed in e.g. C++ or Python (the
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two main implementation languages).
A very useful tool included in the ROS core libraries is the “tf” software library.

It provides a standard way of keeping track of coordinate frames and performing
transformations between different reference frames. A comprehensive overview
of the library can be found in Foote 2013. In this project the library has been
extensively used to publish and retrieve the pose of the UAV used in experimental
setups. A number of static transformations have been defined as a convenience for
other ROS nodes used in experiments.

3.1.4 MAVLINK

MAVLINK is an open source generic UAS communication protocol. It was first
released in 2009 by Lorentz Meier under a LGPL licence, see MAVLINK official
site 2015 for more information. It is used to communicate UAS state, parameters
and commands such as desired paths. In this project it is used as a communication
bridge between DUNE and ROS in a laboratory environment.

3.2 Ice map estimation

This section briefly describes the implemented ice map estimation algorithm devel-
oped in Chapter 2. A C++ module was developed with the aim of being framework
agnostic. The reason for this was that even though the system was to be imple-
mented in DUNE for the planned experiments on Svalbard, the system had to be
tested in an ROS environment in the laboratory. The only dependency is OpenCV,
but this is available both under ROS and DUNE build environments. The main
purpose of the module is pretty much a straightforward implementation of Algo-
rithm 1 using image processing and linear algebra functions from OpenCV. The
occupancy grid map is represented as a matrix in log-odds form, and camera mea-
surements are transformed and aggregated as described in Algorithm 1. The C++
interface for the module is included in Appendix A.2.3. The mapping algorithm is
tested extensively in Chapter 4.

3.3 Experimental lab setup

Early in the project work it was assumed that testing on the Svalbard platform
would be very limited. However, testing was considered very important for the
success of the Svalbard experiment. Considerable time was thus spent creating a
laboratory environment that would emulate the behaviour of the Svalbard platform.
For the purposes of the ice monitoring experiment, the experimental Svalbard plat-
form for ice monitoring can be thought of as an UAS with autonomous waypoint
following capabilities and with a camera payload mounted in a stabilized frame. It
seems plausible that the high level features of ice mapping and path planning can
be reproduced in a laboratory environment. Many failures can be eliminated by
good design and a lot of testing can be done by unit testing software and hardware
components, but in the end complete system tests will often reveal new flaws that
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cannot be found through other testing. To do outdoor flight tests the NTNU UAV-
lab has to travel to Agdenes, about 80 km from NTNU in Trondheim. Test flights
at Agdenes need to be carefully planned and require a licenced UAV operator. The
UAV lab usually does a lot of HIL testing before doing flight tests. The HIL tests
are suitable for testing guidance and control systems, but it does not really make
sense to test computer vision algorithms. Ideally the test platform should be able
to both guide the development of an ice monitoring system, and reveal flaws in
its design at an early stage in development. The UAV lab at NTNU have access
to an indoor robotics lab operated by SINTEF called the “snakelab” (the lab is
used for research on snakerobots). The lab has a motion tracking system and a
small quadcopter with two cameras. In the development of an indoor test platform,
ROS was used extensively to glue together a working software interface emulating
the Svalbard platform. A diagram illustrating the software components used and
implemented is shown in Figure 3.2.

OptiTrack state bridge MAVLINK bridge DUNE

autopilot

AR Drone 2.0

ice mapping

pose

pose

pose

posepose

path

path

imagespose

Implemented in ROS

(OpenCV)

Figure 3.2: Software components in the laboratory setup. Grey boxes have been
implemented in this project work. White boxes are open source software compo-
nents.

3.3.1 Natural Point OptiTrack

As a part of indoor testing of computer vision and path planning algorithms, a
motion capture system called “OptiTrack” from Natural Point is used for indoor
navigation. The motion capture system provides millimeter accuracy 6-DOF (Six
Degrees Of Freedom) state measurement of a rigid body at 120 Hz. The motion
capture setup does this by emitting infrared light which is reflected by special
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reflective markers mounted on the rigid body. After capturing the reflected infrared
light with several cameras it is possible to calculate the position and orientation
of the rigid body relative to the cameras. Calibration of the cameras is done
beforehand such that the relative position of the cameras to each other and a
ground plane is known. The cameras feed data to a standard desktop computer
running proprietary software called “Motive” to do the necessary calculations. The
calculated measurements can be visualized using the “Motive” software and further
broadcast over network via UDP. The UDP feed can be parsed by an ROS device
driver called “mocap-optitrack” and further publish a transformation equivalent to
(2.3) presented in Chapter 2 in real time. The standard transformation published
is a transformation from a world-fixed reference frame to a body fixed coordinate
system fixed to the markers on the rigid body. These two reference frames both
have a z-axis pointing up.

3.3.2 Parrot AR Drone

The quadcopter in the “snakelab” is a Parrot AR Drone 2, see Figure 3.3. The
AR Drone is designed as a recreational multicopter platform for aerial photogra-
phy. It is made of relatively cheap components, but the performance of the control
system and video streams are still deemed adequate for the purposes of this the-
sis work. The advantages of the platform is the ease of use and the availability
a relatively simple software API (Application Programming Interface). The AR
Drone can be communicated with via Wi-Fi, and there exists an ROS driver called
“ardrone autonomy” to integrate the platform with other software tasks (e.g. an
autopilot or image processing algorithms). An autopilot for indoor control was also
necessary to implement. Fortunately a master student from the Technical Univer-
sity of Munich (Engel, Sturm, and Cremers 2014) had already done this with the
“ardrone autonomy” driver and released the source code. His package contains a
position autopilot implemented by independent PID control loops, a state estima-
tor and a simple GUI. The package does however not use a world fixed external
navigation system, but used the on-board cameras and inertial sensors of the AR
Drone to perform SLAM and data fusion of the inertial sensors with an EKF (Ex-
tended Kalman Filter). Due to the modularity of his code and the ROS framework,
it was a relatively simple task to change the state estimate from the EKF with a
pose measurement from the “OptiTrack” motion capture system. In principle it
was only necessary to transform a state measurement from the OptiTrack system
to the same format produced by the vision based EKF. The implementation of
this conversion is shown in Appendix A.2.2. After applying a small patch to the
autopilot, the AR Drone was capable of autonomous flight relative to the motion
capture system. The patch applied consists of some sign changes in the autopilot
control loops, the patch itself is included in Appendix A.2.4. I.e. it was able to
follow a path defined by a sequence of poses defined in the world fixed reference
frame. A pose in this case refers to a position and a heading (yaw angle). The
roll and pitch of the quadcopter have to be zero for the system to be stable. The
camera on the AR Drone that is pointing down was calibrated using standard
methods in OpenCV, and were also validated in MATLAB using the same data.
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The calibration data and results can be found in the attached zip file.

Figure 3.3: Fotograph of the AR Drone 2.0 with reflective OptiTrack markers
attached

3.3.3 ROS implementation

As already mentioned, open source drivers for ROS exist for both the AR Drone
and the OptiTrack system. This made ROS a suitable software framework can-
didate for developing an indoor test platform. The test platform should mimic
the actual platform to be used on Svalbard as closely as possible, both to make
the tests more realistic and to reduce the integration work needed before the Sval-
bard operation. By using existing open source software, it was possible to create an
autopilot for the AR Drone such that it can track arbitrary sequences of poses (posi-
tion+heading) in space relative to the motion capture system. After investigating
the software interfaces used in the planned Svalbard platform, it was clear that
choosing a MAVLINK interface would be the most natural choice in communicat-
ing with DUNE. As MAVLINK is a reasonably generic and stable communication
protocol for UAS, this choice supports the future use of the test platform in other
projects as well. There are also MAVLINK utilities available in ROS, simplifying
the implementation greatly. A ROS package including all the implementations nec-
essary to perform experiments was made. A description of how to install and use
the basic features of the software package is included in Appendix A.3.
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Conversion to a global frame

The autopilot interfaced from DUNE assumes that paths are represented in a global
reference frame, specifically the WGS84 ellipsoidal global reference system. Since
positions relative to the motion capture system are represented in a local Cartesian
frame, it is relatively straightforward to convert to and from the WGS84 represen-
tation (latitude, longitude, height above the ellipsoid). This conversion had to be
done in real-time when receiving desired paths from DUNE or sending current po-
sitions to DUNE. The algorithms described by Fossen 2011, p. 34-39 to convert
to/from an ECEF (Earth Centered Earth Fixed) frame to a WGS84 representa-
tion were implemented in C++ to perform the conversions. In addition, a static
transformation from the world fixed frame defined by the motion capture system
to the ECEF frame was defined in ROS. It should be noted that the actual global
position reported by this system is not very accurate. The error lies in the transfor-
mation from the world fixed frame to the ECEF frame, including the specification
of “north” relative to the world fixed system. This transformation was more or less
guessed by the author by recording the approximate latitude, longitude, height
above the ellipsoid and heading at the location of the lab. This is not an issue
in the applications presented in this thesis however since only relative accuracy is
important, which is guaranteed by the motion capture system down to millimeters.

Static local transformations

Aerospace and navigation conventions suggest having an earth fixed NED frame
(hereby denoted ned) and a body fixed frame with the x-axis pointing forward and
the z-axis pointing down (denoted aero). This is the case for the autopilot interfaces
used by DUNE. This implies that positions and poses have to be transformed into
proper frames for communication with DUNE. Since the motion capture system
publishes the pose of the AR Drone with respect to frames with the z-axis pointing
up, two static transformations are published to be able to use standard aeronautical
conventions. The world fixed motion capture system is simply denoted as world,
and the body fixed as body. In practice the transformations between these frames
are described by a simple rotation of the body frame, and a simple rotation of the
world fixed frame. To make things a bit more concrete, consider the body fixed
frame published by the motion capture system. This can be related to a standard
aeronautical frame with the x-axis pointing forward and z-axis pointing down by a
rotation about the x-axis with a magnitude of π radians. Using the extended Euler
formula (2.8), it can be computed by:

qworldned = cos
π

2
+~i sin

π

2
=~i (3.1)

and since the body frame is related to the aeronautical frame by the same rotation,
we have:

qbodyaero =~i (3.2)

Like in the definitions of the transformations between the local frames and a global
frame, it should not be assumed that the NED frame is indeed pointing towards a



3.3. EXPERIMENTAL LAB SETUP 29

true north. These simple transformations are used to transform information from
the motion capture system to DUNE and the ice mapping algorithm using the “tf”
ROS tools.
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Chapter 4

Experiments

4.1 Indoor Testing

To increase the probability of success on Svalbard, indoor tests of some of the
system components were performed. Many failures can be eliminated by good
design and a lot of testing can be done by unit testing software and hardware
components, but in the end complete system tests will often reveal new flaws that
cannot be found through other testing. More details on the experimental lab setup
can be found in section 3.3.

4.1.1 Test of occupancy grid mapping

Several white paper patches were placed on the floor in the indoor test lab to test
the map grid estimation algorithm, see Figure 4.1. The position of the patches
relative to the motion capture system fixed world coordinate system was recorded
by placing a set of markers on each patch and manually recording the location.
The location of the patches and the (coarse) maximal radius of an inscribed circle
in the paper patch can be seen in Table 4.1.

Patch x [mm] y [mm] r [cm]

1 -1068 2615 3
2 -800 1824 3
3 -1316 1593 4
4 101 1316 4
5 -332 1026 4.5
6 -22 2069 8
7 -557 2399 6.5
8 -1129 626 5

Table 4.1: Location and relative size of paper patches
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Figure 4.1: Photograph of the paper patches placed on the ground.

The patches had varying geometry but were all approximately simple polygons
like triangles and rectangles. The AR Drone was flown manually over the patched
area, and both the pose of the drone and the image stream was recorded with the
“rosbag” ROS tool. A visualization of one of the paths flown is shown in Figure 4.2.
Image segmentation together with the computation of the homography between the
image plane and the mapping plane has been discussed earlier as an integral part
of the mapping algorithm. Examples of these procedures for the relevant datasets
are illustrated in Figure 4.3. Three datasets were recorded and are presented in
this section. The paths flown seen from above and the map estimates for the
corresponding datasets can be seen in Figure 4.5.

The map estimates are annotated with numbers corresponding to the patches
listed in Table 4.1. The numbers are located approximately at the locations of
the patches. The exact locations of the patches is not that important, since the
estimates show pretty large errors in position anyway. There has not been done
any effort to quantify the error since the results were not very promising by visual
inspection.

4.1.2 Test of path planning framework

One of the main reasons for spending time on implementing a laboratory set up
before the Svalbard excursion, was to test a path planning framework developed
by PhD candidate Anders Albert. His framework is developed in MATLAB, and
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Figure 4.2: Visualization of a path flown for the occupancy grid mapping test
created with the “rviz” tool. Grid squares are 1 meter wide. Axes show the origin
and orientation of the world fixed frame.

with the aid of PhD candidate Frederik Leira it was interfaced with DUNE via
TCP. Once the ROS laboratory setup had been interfaced with DUNE, the path
planning framework was tested in real-time in the lab.

4.2 Svalbard

There was originally a planned excursion to Svalbard in April 2015 to test some of
the methods presented in this paper. However, the excursion was canceled due to
time constraints among the participants. The experiments would have been con-
ducted together with NORUT in a limited airspace in Kongsfjorden. Kongsfjorden
is a small fjord (ocean inlet) on the west coast of Spitsbergen. The fjord houses two
glaciers, “Kronebreen” and “Kongsvegen”, and it was expected that Kongsfjorden
would have high ice densities in the period of the excursion due to seasonal melting
of the ice glaciers. The fjord is approximately 10 km wide and 20 km long.

4.3 Feature detection in Eggemoen data

A flight test was performed at Eggemoen air base in February 2015 by PhD student
Frederik Leira to evaluate the X8 experimental platform with an infrared camera.
Video recorded on this test flight was used to evaluate if it would be possible to
use the infrared camera to improve image Geo referencing by using feature de-
tection and matching in OpenCV. Several feature detection methods implemented
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(a) Raw image (b) Segmented image

(c) Pose (d) Perspective transform

Figure 4.3: Showcase of essential parts of the mapping pipeline

(a) t = 0 s (b) t = 4 s (c) t = 12 s

(d) t = 22 s (e) t = 28 s (f) t = 33 s

Figure 4.4: Sequential estimation of the occupancy grid map corresponding to
the dataset in Figure 4.5e
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(a) Final map 1 (b) Final map 2 (c) Partial map 3

(d) Duration: 70s (e) Duration: 60s (f) Extreme roll/pitch

Figure 4.5: Paths flown in the three datasets and corresponding map estimates

in OpenCV were tested, and some metrics were evaluated to compare the per-
formance of the different feature detectors. Since most feature detectors rely on
textured environments with salient features present, it is not expected that the
choice of feature detector will be critical in using these types of methods for local-
ization. The evaluation will however shed some light on the case of using the image
data from the X8 platform for localization. The video file used in the following
experiments is a video recorded near the Eggemoen air field with a pilot manually
flying the X8. Features that can be observed visually include trees, bushes, roads,
buildings and large rocky formations. There is significant motion blur in many of
the frames, and many frames seem to be dropped. The frame dropping is likely
due to an unreliable data link between the video capture and recording equipment.

4.3.1 Video preprocessing

A minimal amount of video preprocessing was done in OpenCV before analyzing
feature extraction and matching in the image sequence. It was noticed by visual
inspection that the video file contained a lot of duplicate frames, which could
lead to highly biased results later on in the analysis. It is not known why the
video contains duplicates, but a possible reason is transmission latency in the video
capture pipeline. To detect duplicate images, a few different methods were tested.
Ideally it should be possible to discriminate duplicates and non-duplicates easily.
First, a standard 2-norm was computed for each consecutive image pair. The
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value of the image difference norm was manually inspected for a small part of the
video. It was observed that even though images were clearly identical, the image
difference norm was nonzero. Intuitively if images are in fact identical, the norm of
the difference should be zero. Compression techniques may however introduce some
noise in the image sequence. An alternative method was tested by computing the
image histograms of consecutive image pairs and comparing them. Histograms can
be compared using several different metrics in OpenCV. The method that yielded
the best result was the Hellinger distance. The Hellinger distance is a metric to
compare two probability distributions. If H1 and H2 are two image histograms,
the Hellinger distance is computed with the following formula in OpenCV:

d(H1, H2) =

√√√√1− 1√
H̄1H̄2N2

N∑
I=1

√
H1(I)H2(I) (4.1)

where H̄ is the mean of the histogram bins and N is the total number of bins in the
histogram. Both the image difference norms and Hellinger distance were computed
for a sequence of 7000 consecutive image pairs from the Eggemoen video. The
resulting histograms of image norms and Hellinger distances is shown in Figure 4.6.
Ideally there should be some threshold value of the norm where duplicates and
non-duplicates are easily separated. Even though the histogram of distance norms
shows a clear peak where most of the duplicates are likely located, it is not very
clear where this threshold should be located. The Hellinger distance was chosen as
a better alternative since the histogram shows a more clear separation. A threshold
distance of h = 0.03 was used to classify an image as a duplicate and is skipped in
further processing. Visual inspection of some of the video sequence showed clear
separation by Hellinger distance when the images were not duplicates.

4.3.2 Feature detection

Some of the implemented feature detectors in OpenCV were tested on the video
sequence. For each detector some metrics were calculated to evaluate their perfor-
mance. The most important part of the feature detection process is the ability to
reliably detect and match features to corresponding features in another image. It is
desirable to evaluate the possibility of performing image alignment with a minimal
number of assumptions. Since features observed from the air are relatively planar
with respect to each other, one method to evaluate if there is a successful set of
correspondences between two images is to attempt to estimate a homography be-
tween the images. The following procedure was used for each image in the sequence
to estimate a homography between the current and the previous image:

1. Check if image is duplicate as defined in the previous section, skip if duplicate
criteria is met

2. Detect keypoints

3. Extract descriptors for keypoints
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Figure 4.6: Histograms showing separation of duplicate images

4. Match keypoints to keypoints from the previous frame using a brute force
search

5. Remove matches that have a distance higher than 2∗minDist where minDist
is the minimal distance among the matches

6. If the number of matches is at least 4, estimate a homograpy robustly using
a RANSAC method (Fischler and Bolles 1981)

To keep things simple it is assumed that if a homography cannot be estimated
with sufficient accuracy (i.e. low enough reprojection error (Hartley and Zisserman
2004)), then the correspondence problem is not solved. A correspondence problem
is assumed solved (i.e. a successful feature match) if the average reprojection error
is less than 5 pixels. An example of an image pair with detected features and
robustly estimated correspondences is shown in Figure 4.8. Standard methods
in OpenCV are used to detect features, extract feature descriptors and match
features. To perform matching a brute force search is used for simplicity and
since computational speed is only interesting as a relative measure between the
different detectors. Unless otherwise noted, standard or recommended parameters
for feature descriptors, extractors and matchers are used. A summarized table of
results for a sequence of 4119 images taken from the Eggemoen video is shown
in Table 4.2. In addition, a graphical comparison of the feature matching and
homography estimation results is shown in Figure 4.7. The computations were
done on a standard desktop computer with an Intel i5 3.3 GHz processor with 8
GB RAM and an AMD Radeon HD 6450 GPU using OpenCV version 2.4.10. The
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Figure 4.7: Plot showing number of feature matches and assumed successful
feature matches for a subset of the Eggemoen video. A successful feature match is
indicated by grey vertical bars.

results of the experiment show that SURF performs best out of the three detectors,
but also has the longest mean computation time. It is encouraging to see that the
recently developed ORB detector is about 10 times faster than the traditional SIFT
and SURF detectors, and it performs almost as good as the SURF detector when
it comes to homography estimation.

4.4 ODROID-XU3/U3

To enable on-board real time computer vision, two potential computing platforms
were purchased early in the project work. The platforms were chosen after consult-
ing PhD student Frederik Leira and measuring the available space in the UAV pay-
load compartment. The ODROID-XU3 has eight available ARM processor cores
and an OpenCL 1.1 “Full Profile” enabled Mali GPU from ARM. The ODROID-U3
is slightly less powerful, with a four available ARM cores and an older Mali GPU
without OpenCL support. The platforms were tested on arrival to check its appli-
cability for doing on-board computer vision. The platform arrived with a pre-built
Linux image running Ubuntu 14.04 on a 32 GB MMC card. OpenCl drivers were
included in this image. While the U3 is smaller and lighter, it is significantly less
powerful. The U3 may still be more than powerful enough for the planned operation

1An image is considered matched if at least one feature from the previous image is matched.
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Num. images Matched1 Homographies Mean comp. time

ORB 4119 2091 387 1.75× 10−2 s
SIFT 4119 1926 268 1.75× 10−1 s
SURF 4119 3431 434 1.95× 10−1 s

Table 4.2: Feature match and homography estimation comparison for an image
sequence of length 4119

Figure 4.8: Visual example of detected features (circles) and feature matches
(lines) between two images in sequence

on Svalbard, and have a lower power consumption. On arrival the platforms were
tested to see if the required software for the planned operation could run on the
platforms. Both platforms arrived with a pre built Ubuntu 14.04 Linux image, this
was not changed before running any tests. The two most important software frame-
works that are necessary for computer vision applications in the NTNU UAV lab
are DUNE and OpenCV. DUNE was successfully compiled by getting the newest
source code from DUNE 2015 and built on the targets. For the OpenCV initial
testing it would be interesting to see if OpenCL acceleration would work “out of
the box” on the ODROID XU3. To test this, the newest release of OpenCV was
fetched from OpenCV 2015 (version 3.0.0-dev). In this version of OpenCV, many
algorithms are implemented using both OpenCL and native CPU in a transparent
API where OpenCL is chosen and used at run-time if it is available. Unfortunately,
after a lot of testing it seemed like the OpenCL drivers produced a lot of errors
in the official OpenCV performance tests. After some investigation a bug report
revealed that there might be insufficient OpenCL support at the moment for the
Mali T628 GPU Mali OpenCl bug 2015, leading to the conclusion that OpenCL
acceleration is not available at the moment of writing this thesis. This gives the
XU3 a slightly smaller theoretical advantage over the U3.
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Dim Mass CPU(s) GPU Memory Price

XU3 70x90x18 mm > 78g Octacore Mali T628 2 GB 179 USD
U3 83x48x? mm 48g Quadcore Mali 400 2 GB 65 USD

Table 4.3: Purchased platforms for on-board image processing, data from Hard-
kernel 2014



Chapter 5

Discussion

5.1 Occupancy grid mapping

The presented algorithm for occupancy grid mapping was tested in a relatively re-
alistic scenario for the originally planned Svalbard excursion. While overall results
are intuitively appealing, the accuracy and robustness is not convincing. The main
source of error in the laboratory setup is in the unknown and varying delay of the
image stream relative to the position data, leading to a potentially gross violation
of the assumption that the pose is perfectly known together with the image mea-
surement. This is problem since even if the accuracy of the pose measurement from
the motion capture system is high, the time-alignment between position and image
measurements is critical. The main reason this is a problem is that the image data
is streamed over an unreliable wireless connection. The problem will perhaps be
smaller on the actual intended platform for experiments on Svalbard, where the
camera system is connected to the onboard computer through en Ethernet cable.
The synchronization problem would also be a much smaller issue if the images were
taken a known time, since buffering either images or pose estimates and delaying
map estimates a few seconds is not really an issue. Controlling the image shutter is
thus a possible solution to the problem, but is dependent on the camera equipment
used.

Another assumption that was made was that camera fixed coordinate frame was
related to the motion capture reference frame via a simple rotation about the x-
axis. While the true transformation is close to this, there is a significant translation
and probably also errors in the rotational alignment. This could be improved by
careful calibration, but that would not be a viable solution in a practical system.
A realistic way of coping with this in a practical system is to try to estimate
this transformation from sensor data as a calibration procedure. A method for
estimating the transformation between an IMU and a camera system in a Kalman
Filter framework, known as inter sensor calibration is described in the PhD thesis of
SM Weiss 2012. A similar method may be required to achieve satisfactory results.
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5.2 Using image data for localization

Experiments suggested that using only the on-board navigation system for map-
ping might not yield accurate enough results for practical use. There is also an
issue with aligning state measurements with the images captured, since the camera
shutter is not necessarily controlled manually. Using the image data to improve
state estimates, or at least to perform image alignment, might be an option to im-
prove the mapping accuracy. This leads to the well known problems of vision-based
monocular SLAM and the related SfM. This is the main motivation for including
a short analysis of relevant methods for camera based navigation in Chapter 4.
Using image data for navigation and alignement of image data relative to a global
reference frame is an active and relatively mature research topic. Groundbreaking
work in monocular SLAM was done by Andrew J Davison et al. 2007, enabling
highly dynamic robust navigation and augmented reality applications in small en-
vironments in real time (∼ 30Hz). The work in Andrew J Davison et al. 2007 is
essentially an EKF using a camera motion model to aid feature matching in a new
image frame. An EKF is recursive by nature, only using the newest measurement
to improve the current state estimate. Experiments done in Strasdat, Montiel, and
Andrew J. Davison 2010 imply that using a bundle adjustment type algorithm in-
stead of a recursive Kalman Filter is both more accurate and less computationally
intensive. An implementation of a real-time SfM can be found in Mouragnon et al.
2009. A similar approach motivated by augmented reality applications is shown in
the much cited paper Klein and Murray 2007, they call their approach PTAM (Par-
allell Tracking and Mapping). There are a few open source PTAM implementations
available, including by the original authors under a GPL licence. The recently an-
nounced Project Tango by Google states that it solves its bundle adjustment and
SLAM problems using optimization methods similar to those in Mouragnon et al.
2009; Klein and Murray 2007, i.e. not recursively. Another interesting publication
similar to the PTAM approach is shown in Forster, Pizzoli, and Scaramuzza 2014,
which is also available as an open source implementation and has been tested on
an embedded ARM platform similar to the one purchased for the experimental
platform developed in this thesis. Some of the methods presented are suitable for
large scale outdoor applications, and make no assumptions about scene geometry.
It has already been noted that the scenes viewed in this application will approxi-
mately be planar. Image features in sequences are thus related by a homography,
and this fact could perhaps be used to simplify or robustify SLAM approaches.
Possible issues with using images for localization in this application include that
detected keypoints are inherently non stationary since they are located at sea, and
that images will often have very little texture when the scene viewed is highly ho-
mogeneous (e.g. pure ice or pure sea water). Then again, homogeneous regions are
not that interesting and require less accuracy in mapping for the purposes of an
ice monitoring system.
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5.3 Potential challenges using an infrared camera

In Eik 2008 it is mentioned that one of the main challenges using traditional fixed
wing aircraft for ice observation is the amount of fog experienced in the areas where
sea ice can be a threat. Fog reduces visibility significantly and can challenge the use
of optical sensors such as cameras. In this project experiments on Svalbard using
an UAS equipped with an infrared camera were planned. The infrared camera may
also be sensitive to weather effects such as fog. Since no experiments were carried
out outdoors, it is hard to tell whether this would be a large problem.
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Chapter 6

Conclusions and further
work

In this thesis an algorithm for recursive ice density map estimation has been de-
veloped. The map has been represented as an occupancy grid map, and a camera
together with a pose sensor has served as the input to the map estimation algo-
rithm. To test the map estimation algorithm and to prepare for an excursion to
Svalbard, an indoor laboratory environment was developed in ROS. The laboratory
environment consists of an AR Drone 2 quadcopter with a camera facing towards
the ground. The position and orientation of the quadcopter is recorded with a
motion capture system. An autopilot was developed to enable the quadcopter to
fly autonomously relative to the motion capture system. The same laboratory en-
vironment was used to test a path planning framework intended to be used for ice
berg monitoring developed by Anders Albert. The path planning framework is im-
plemented in MATLAB, and interfaced to the autopilot via DUNE and MAVLINK.
Experiments done to test the mapping algorithm showed relatively poor estima-
tion quality. A key assumption made in the mapping algorithm is that the pose
is perfectly known, while this was thought to be the case in the lab it is certainly
not the case on-board an UAS. The main issue in the lab was to time-align the
image sequence with the pose estimates, and to calibrate the camera frame with
the pose estimate frame. In March the Svalbard excursion was canceled, prompt-
ing a change in the direction of the thesis work. This made it possible to explore
some methods to improve the map estimation algorithm. It is believed that a
promising way to improve the estimates is to use structural information in the im-
age sequence obtained during flight. Many modern SfM or SLAM methods track
keypoints in images to perform image alignment and navigation tasks. Some time
was thus spent to analyze image sequences from the proposed Svalbard platform to
see if it was possible to perform keypoint extraction and matching with a thermal
camera. Qualitatively the video sequence that was analyzed was not very good, it
contained significant motion blur and at times very little texture. Even so, there
were significant parts of the video sequence that allowed reliable feature detection
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and matching of pairs of images.
Future work in similar real time ice density mapping should include inter sensor

calibration and the possible use of image data for localization of ice features. The
assumption that occupancy grid cells are independent is without doubt wrong in
practice. This deserves some attention, and could improve the amount of informa-
tion that one can retrieve from the image data.



Appendix A

Appendix

A.1 Zip file

The appendix contains mostly information on software implementations that were
done during the thesis work. In addition to this appendix, ther is an attached zip
file to this master thesis. The zip file contains all code necessary to reproduce the
results in this thesis. The contents of the zip file is divided into the folders listed
in Table A.1.

Folder Description

ros optitrack mavlink The main ROS package., see Appendix A.3

optitrack Calibration file for the motion capture system

featurematch Code to produce the results in section 4.3

norut segment Code to do the image segmentation analysis in section 2.4

odroid Code to reproduce the results in section 4.4

cam calib ardrone Data and code to calibrate the camera for the AR Drone

Table A.1: The contents of the attached zip file
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A.2 Code

Note: some code has been trimmed for readability (e.g. removed header guards).
For the original source, see the accompanying zip file.

A.2.1 MAVLINK bridge class definition

#include <ro s / ro s . h>
#include <std msgs / St r ing . h>
#include <t f / t r a n s f o r m l i s t e n e r . h>
#include <t f / t rans fo rm datatypes . h>
#include <cmath>
#include <s t r i ng>
#include <sstream>
#include <chrono>
#define MAVLINK DIALECT ardupi lotmega
#include <mavconn/ i n t e r f a c e . h>

class Mavl inkInter faceNode
{

public :
Mavl inkInter faceNode ( ) ;
void run ( ) ;

private :
r o s : : NodeHandle n ;
ro s : : Pub l i she r cmdPub ;
std : : s t r i n g u r l ;
s td : : chrono : : m i l l i s e c o n d s boot t ime ;
mavconn : : MAVConnInterface : : Ptr mavInter facePtr ;
t f : : Trans formListener po s eL i s t ene r ;
s td : : s t r i n g world frame ned ;
std : : s t r i n g wor ld f r ame ece f ;
s td : : s t r i n g body frame ;
std : : s t r i n g world frame mocap ;
void recv message ( const mavl ink message t ∗msg , u i n t 8 t sys id ,

u i n t 8 t compid ) ;
void s end hear tbeat ( ) ;
void s e n d n a v c o n t r o l l e r p a c k e t ( ) ;
void send waypoint ack ( ) ;
void s e n d l o c a l p o s e ( const t f : : StampedTransform& transform ,

u i n t 3 2 t time msec ) ;
void s e n d g l o b a l p o s i t i o n ( const t f : : StampedTransform&

transform , u i n t 3 2 t time msec ) ;
} ;

code/mavlink interface.h
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A.2.2 Motion capture state transform node

#!/ usr / bin /env python
# ROS node to ge t 6−dof s t a t e from the mocap opt i t rack d r i v e r
# and send i t to the ‘ ‘ tum ardrone ’ ’ ardrone au t o p i l o t
# Ca l cu l a t e s v e l o c i t i e s v ia f i n i t e d i f f e r e n c e us ing lookupTwis tFu l l
import rospy
import t f
from geometry msgs . msg import PoseStamped
from tum ardrone . msg import f i l t e r s t a t e
from t f . t r ans f o rmat i ons import eu l e r f r om quat e rn i on
from math import pi

def g e t F i l t e r S t a t e ( pose , tw i s t ) :
pos = pose [ 0 ]
o r i e n t q u a t = pose [ 1 ]
v e l = tw i s t [ 0 ]
o r i e n t = map(lambda r : 180∗ r / pi ,

eu l e r f r om quat e rn i on ( o r i en t quat , axes=’ szyx ’ ) )
s t a t e = f i l t e r s t a t e ( x = pos [ 0 ] , y = pos [ 1 ] , z = pos [ 2 ] ,

yaw = o r i e n t [ 0 ] , p i t ch = o r i e n t [ 1 ] , r o l l = o r i e n t [ 2 ] ,
dx = ve l [ 0 ] , dy = ve l [ 1 ] , dz = ve l [ 2 ] ,
ptamState = f i l t e r s t a t e .PTAM BEST, sca leAccuracy =1)

return s t a t e

def pub l i shSta t e ( pose , twist , pub ) :
s t a t e = g e t F i l t e r S t a t e ( pose , tw i s t )
pub . pub l i sh ( s t a t e )

def l i s t e n e r ( ) :
rospy . i n i t n o d e ( ’ s t a t e l i s t e n e r ’ )
s t a t e P u b l i s h e r = rospy . Pub l i she r ( ’ / ardrone / pred ic tedPose ’ ,

f i l t e r s t a t e , q u e u e s i z e =10)
t f L i s t e n e r = t f . Trans formListener ( )
# Frame names are con f i gured in the ‘ ‘ mocap opt i t rack ’ ’ d r i v e r
wor ld f = ’ / world ’
a r d r o n e f = ’ /Robot 1/ b a s e l i n k ’
r a t e = rospy . Rate (60)
while not rospy . i s shutdown ( ) :

try :
# ge t pose
pose = t f L i s t e n e r . lookupTransform ( wor ld f , a rdrone f ,

rospy . Time (0) )
# ge t body v e l o c i t i e s
tw i s t = t f L i s t e n e r . lookupTwistFul l ( a rdrone f , wor ld f ,

a rdrone f , ( 0 , 0 , 0 ) , a rdrone f ,
rospy . Time (0) , rospy . Duration (1 . 0/30 ) )

pub l i shSta t e ( pose , twist , s t a t e P u b l i s h e r )
except ( t f . LookupException ,

t f . Connect iv i tyExcept ion ,
t f . Extrapo lat ionExcept ion ) :

continue
r a t e . s l e e p ( )

i f name == ’ ma in ’ :
l i s t e n e r ( )

code/mocap state transform.py
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A.2.3 Ice mapping class definition

#include <s t r i ng>
#include <opencv2/ imgproc/ imgproc . hpp>
#include <opencv2/ core / core . hpp>

class CameraModel {
public :

// f i l e format i s an openCV camera c a l i b r a t i o n XML/YAML f i l e
CameraModel ( const std : : s t r i n g& paramFilename ) ;
const cv : : Matx33f getCamMatrix ( ) { return camMatrix ; } ;
const cv : : Mat g e t D i s t o r t i o n C o e f f s ( ) { return d i s t o r t i o n C o e f f ; } ;
void undistort Image ( const cv : : Mat& input , cv : : Mat& output ) ;

private :
cv : : Matx33f camMatrix ;
cv : : Mat d i s t o r t i o n C o e f f ;

} ;

/∗ The gr i d map i s a p lanar occupancy g r i d map with a f i n i t e number o f
g r i d c e l l s . The occupancy p r o b a b i l i t i e s are represen ted in log−

odds form .
∗ I . e . map ( i , j ) = lo g (P( g r i d c e l l i , j occupied )/P( g r i d c e l l i , j not

occupied ) ) .
∗ A va lue o f zero means equa l p r o b a b i l i t y , wh i l e a va lue o f i n f i n i t y

imp l i e s t ha t P( g r i d c e l l i , j occupied ) = 1 ∗/
class GridMap {

private :
// metric g r i d s i z e in the x d i r e c t i on (meters )
double dx ;
double dy ;
// Map gr i d width (num c e l l s in the x d i r e c t i on )
u i n t 3 2 t width ;
u i n t 3 2 t h e i g h t ;
// map or i g i n r e l a t i v e to a world f i x e d frame , expressed in the
world frame
cv : : Po int3 f originWorldMap ;
// map ro t a t i on matrix from a world f i x e d frame to the map frame
cv : : Matx33f dcmWorldMap ;
// trans format ion from planar homogeneous map coord ina te s (u ’ , v
’ ,1) metric map coord ina te s (x m , y m , z m)
cv : : Matx33f mapMatrix ;
// gr i d map rep re s en ta t i on in l o g odds form
cv : : Mat map ;

public :
stat ic const int MAP DTYPE = CV 32F ;
GridMap( const u i n t 3 2 t width , const u i n t 3 2 t height , const double
dx , const double dy ,

const cv : : Po int3 f o r i g i n , const cv : : Matx33f dcmWorldMap) :
dx ( dx ) , dy ( dy ) , width ( width ) , h e i g h t ( he ight ) ,
originWorldMap ( o r i g i n ) , dcmWorldMap (dcmWorldMap) ,
mapMatrix (dx , 0 , 0 .5∗dx ,

0 , dy , 0 .5∗dy ,
0 , 0 , 0) ,

map ( cv : : Mat : : z e r o s ( width , height , MAP DTYPE) ) {} ;
u i n t 3 2 t getWidth ( ) ;
u i n t 3 2 t getHeight ( ) ;
cv : : S i z e g e t S i z e ( ) ;
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cv : : Po int2 i toMapCoordinates ( cv : : Po int2 f p map) ;
cv : : Po int3 f toMapFrame( cv : : Po int3 f pointWorld ) ;
void addMeasurement ( const cv : : Mat measurement ) ;
/∗ Returns a matrix t ha t transform a map homogeneous coord inate
∗ (u ’ , v ’ ,1) to a world f i x e d coord inate ( x w , y w , z w ) ∗/

const cv : : Matx33f getMapWorldTransform ( ) ;
const cv : : Mat& getMap ( ) { return map ; } ;

} ;

// Simple s t r u c t to repre sen t ground−t r u t h i c e f e a t u r e s in the world
frame

struct I ceFeature {
I ceFeature ( f loat x , f loat y , f loat r ) : r ( r ) , posWorld (x , y , 0 . 0 )
{} ;

cv : : Po int3 f posWorld ;
f loat r ;

} ;

class RecursiveMapEstimator {
public :

RecursiveMapEstimator ( const std : : s t r i n g& paramFilename ) :
gridMap ( ) , camModel ( paramFilename ) {} ;

// Update map es t imate based on a segmented image . Expects a
b inary segmented image and camera pose as input
void updateMap ( cv : : Mat& segmentedImage , const cv : : Matx33f&
dcmCamWorld , const cv : : Po int3 f& originCamWorld ) ;
// Extra func t i ons f o r t e s t i n g
void projectImageToMap ( const cv : : Mat& input , cv : : Mat& output ,
const cv : : Matx33f dcmCamWorld , const cv : : Po int3 f originCamWorld ) ;
void getProbMap ( cv : : Mat& output ) ;
void drawFeaturesOnMap ( std : : vector<IceFeature> f e a tu r e s , cv : : Mat&
output ) ;

private :
GridMap gridMap ;
CameraModel camModel ;
const cv : : Matx33f getPerspect iveTrans form ( const cv : : Matx33f
dcmCamWorld , const cv : : Po int3 f originCamWorld ) ;
void toLogOdds ( cv : : Mat& inputProb , cv : : Mat& outputLogOdds ) ;
void t o P r o b a b i l i t y ( cv : : Mat& inputLogOdds , cv : : Mat&
outputProbab i l i ty ) ;
void segmentedToProb ( cv : : Mat& segmentedImage , cv : : Mat&
detect ionProb ) ;

} ;

code/gridmapping.hpp
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A.2.4 Autopilot patch

d i f f −−g i t a/ s r c / a u t o p i l o t /ControlNode . cpp b/ s r c / a u t o p i l o t /ControlNode
. cpp

index 6a6babd . . e9a7501 100644
−−− a/ s r c / a u t o p i l o t /ControlNode . cpp
+++ b/ s r c / a u t o p i l o t /ControlNode . cpp
@@ −413 ,10 +413 ,10 @@ void ControlNode : : toog leLogg ing ( )

void ControlNode : : sendControlToDrone ( ControlCommand cmd)
{

geometry msgs : : Twist cmdT;
− cmdT. angular . z = −cmd . yaw ;
+ cmdT. angular . z = cmd . yaw ;

cmdT. l i n e a r . z = cmd . gaz ;
− cmdT. l i n e a r . x = −cmd . p i t ch ;
− cmdT. l i n e a r . y = −cmd . r o l l ;
+ cmdT. l i n e a r . x = cmd . r o l l ;
+ cmdT. l i n e a r . y = cmd . p i t ch ;

// assume that whi l e a c t i v e l y c o n t r o l l i n g , the above f o r w i l l
never be equal to zero , so i w i l l never hover .

cmdT. angular . x = cmdT. angular . y = 0 ;
d i f f −−g i t a/ s r c / a u t o p i l o t / DroneContro l l e r . cpp b/ s r c / a u t o p i l o t /

DroneContro l l e r . cpp
index e07575e . . d1736ca 100644
−−− a/ s r c / a u t o p i l o t / DroneContro l l e r . cpp
+++ b/ s r c / a u t o p i l o t / DroneContro l l e r . cpp
@@ −138 ,11 +138 ,11 @@ void DroneContro l l e r : : c a l cCont ro l (TooN : : Vector

<4> new err , TooN : : Vector<4> d e r r

// r o t a t e e r r o r to drone CS, i n v e r t p i t ch
double yawRad = yaw ∗ 2 ∗ 3.141592 / 360 ;

− d term [ 0 ] = cos (yawRad) ∗ d e r r o r [ 0 ] − s i n (yawRad) ∗ d e r r o r [ 1 ] ;
− d term [ 1 ] = − s i n (yawRad) ∗ d e r r o r [ 0 ] − cos (yawRad) ∗ d e r r o r [ 1 ] ;
+ d term [ 0 ] = cos (yawRad) ∗ d e r r o r [ 0 ] + s i n (yawRad) ∗ d e r r o r [ 1 ] ;
+ d term [ 1 ] = − s i n (yawRad) ∗ d e r r o r [ 0 ] + cos (yawRad) ∗ d e r r o r [ 1 ] ;

− p term [ 0 ] = cos (yawRad) ∗new err [ 0 ] − s i n (yawRad) ∗new err [ 1 ] ;
− p term [ 1 ] = − s i n (yawRad) ∗new err [ 0 ] − cos (yawRad) ∗new err [ 1 ] ;
+ p term [ 0 ] = cos (yawRad) ∗new err [ 0 ] + s i n (yawRad) ∗new err [ 1 ] ;
+ p term [ 1 ] = − s i n (yawRad) ∗new err [ 0 ] + cos (yawRad) ∗new err [ 1 ] ;

// i n t e g r a t e & cap

code/tum ardrone.diff
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A.3 ROS package documentation

Note: this section is a converted “README” markdown file from the ROS package
used in the laboratory setup described in this thesis. The complete source code for
this package is included in the accompanying zip file.

General Information

This package provides a MAVLINK interface to the Natural Point OptiTrack mo-
tion capture system at the “Slangerobotlab” in room B333. It also provides an
interface to the AR Drone via MAVLINK. The package can be used to control
the AR Drone with DUNE/Neptus. It has currently been tested to follow “goto”
commands successfully. The package is implemented as an ROS package and has
dependencies to a few other ROS packages. To build and use the package you need
to have ROS installed. For installation instructions see http://wiki.ros.org/.

Build instructions

The package has been developed using the indigo ROS distribution in the catkin
(http://wiki.ros.org/catkin) build environment, but in principle should build and
run on any ROS distribution newer than this. The only build dependency not in-
cluded in the standard ROS libraries is the libmavconn package. If you are running
Ubuntu this package is most likely available in your added ROS repositories. To
install it, run

sudo apt−get i n s t a l l ros−ind igo−l ibmavconn

Additionally, all nodes in this package require an OptiTrack motion capture driver
to be running, this can be found in the mocap-optitrack ROS package. As of writing
this README the package was not available in the indigo repositories. It can be
built from source by adding the package to your catkin workspace. To add the
OptiTrack driver package, run the following commands:

cd catk in ws / s r c
g i t c l one https : // github . com/ ros−d r i v e r s / mocap opt i track . g i t

To build the packages, check out this repository to your catkin workspace. For
help on how to set up a catkin workspace see http://wiki.ros.org/catkin/

Tutorials/create_a_workspace. With your catkin workspace setup, clone the
repository into your workspace

cd catk in ws / s r c
g i t c l one git@uavlab . i t k . ntnu . no : uavlab / r o s o p t i t r a c k m a v l i n k . g i t
cd . . / && catkin make

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
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Motion capture and MAVLINK

There is a dedicated ROS launch file to start the motion capture driver together
with the MAVLINK publisher node. To launch and set the tcp address and listening
port run the following command with the

cd catk in ws source deve l / setup . bash
ros launch opt i t rack mav l ink mocap mavlink . launch u r l :=” tcp−l

: / / 1 2 9 . 2 4 1 . 2 0 8 . 7 0 : 5 7 6 0 ”

AR Drone autopilot

The autopilot has a few run dependencies. Depending on your environment, they
might be available through your package manager. The ROS packages required
are - ardrone autonomy (AR drone driver) - tum ardrone (AR drone autopilot) -
joy (joystick control of the AR drone) - mocap optitrack (motion capture driver,
installation instructions already explained) All dependencies can be built from
source, but many of them can be found in the official Ubuntu ROS repositories.
To install these on Ubuntu run:

sudo apt−get i n s t a l l ros−ind igo−ardrone−autonomy ros−ind igo−joy

The tum ardrone package was not available in the repositories as of writing this
README. So this can be built from source by adding it to your catkin workspace
by running the following commands

cd catk in ws / s r c
g i t c l one https : // github . com/tum−v i s i o n / tum ardrone . g i t

Unfortunately the tum ardrone package includes a lot of unneccessary functional-
ity in the form of computer vision algorithm implementations. This is not used
in practice but it is still neccessary to build the entire package and link to its
dependencies. To get the dependencies on Ubuntu run:

rosdep i n s t a l l tum ardrone
sudo apt−get i n s t a l l f r e e g l u t 3−dev

Where the freeglut3-dev package is needed to link to glut. If you are running Linux
mint rosdep might fail to find the dependencies. You can fake your distribution by
changing this to:

rosdep −os=ubuntu : t ru s ty i n s t a l l tum ardrone

Run the autopilot nodes

There is a launch file set up to run the autopilot. Simply run:

ros launch opt i t rack mav l ink ardrone . launch
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