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Abstract

This thesis was motivated by a student project with the goal of building a proto-

type for a vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV).

The goal was to determine what performance could be expected from the wireless

communication system of this UAV by employing advanced digital signal process-

ing techniques. This study was important to determine which applications this

UAV is suitable for, and hence its commercial potential. A wast theoretic study

was conducted to identify what factors prevents reliable communication with high

data transfer rate. These factors was found to be limitations on signal bandwidth

and emitted power, besides the high mobility of the UAV antenna. A fundamental

challenge was identified: Increasing data transfer rate results in increased signal

distortion. To facilitate a study on how to remedy this problem, an ergodic model

of the communication system was derived, based on the filtered Gaussian noise

method. Great effort was invested in finding a digital signal processing technique

that could optimize for data transfer rate and reliability simultaneously. Vari-

ous filtering techniques was studied. On-line identification of the communication

channel was found to be a prerequisite for achieving an effective filter. The sys-

tem identification problem was approached as a black box parameter estimation

problem. Simulations revealed that the problem was non-convex. The problem

was solved in a simulation with a channel model that exhibited perhaps unrealisti-

cally mild time-variant behaviour, using a global optimization method. However,

the solution was not found within a satisfactory time period. It was therefore

concluded that the non-convex problem is not suited to be solved on-line by an

embedded computer within reasonable price range. Reliable communication must

therefore be achieved by trading off data transfer rate. The three primary trade

off mechanisms are the modulation order, the period between transmitted sym-

bols, and data overhead containing error correcting code. Increasing the period

between transmitted symbols is expected to yield the best results. Consequently,

the expectation of limited data transfer rate is taken into consideration by the

UAV development team.
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Sammendrag

Denne avhandlingen var motivert av et studentprosjekt med mål om å bygge en

prototype for et ubemannede fly som kan lande og ta av vertikalt. Målet var å

finne hvilke ytelsen som kan forventes fra det tr̊adløse kommunikasjonssystemet

til dette flyet ved bruk av avansert digitale signalbehandling. Denne studien var

viktig å finne ut hvilke bruksomr̊ader dette flyet er egnet for, og dermed dets kom-

mersielle potensial. En grundig teoretisk studie ble utført for å identifisere hvilke

faktorer som hindrer p̊alitelig kommunikasjon med høy dataoverføringshastighet.

Disse faktorene ble funnet å være begrensninger p̊a signalb̊andbredden og sende-

effekten, i tillegg til den høye mobilitet til antennen p̊a flyet. En grunnleggende

utfordring ble identifisert: Økende dataoverføringshastighet resulterer i økt signal-

forvrengning. For å muliggjøre en studie p̊a hvordan man skal bøte p̊a dette prob-

lemet, ble en ergodisk modell av kommunikasjonssystemet utledet. Stor innsats

ble investert i å finne en digital signalbehandlingsteknikk som kan optimalisere

for dataoverføringshastighet og p̊alitelighet samtidig. Ulike filtreringsteknikker

ble studert. Kontinuerlig identifisering av kommunikasjonskanalen ble funnet å

være en forutsetning for å oppn̊a et effektivt filter. Systemidentifikasjonsprob-

lemet ble ble tilnærmet som et svart boks parameterestimeringsproblem. Simu-

leringer viste at problemet var ikke-konveks. Problemet ble løst i en simulering,

med en kanalmodell som oppviste kanskje urealistisk mild tidsvarierende oppførsel,

ved hjelp av en global optimaliseringsmetode. Løsningen ble ikke funnet innen-

for en tilfredsstillende tidsperiode. Det ble derfor konkludert med at det ikke-

konvekse problemet ikke er egnet til å bli løst av et innvevd datasystem innen

rimelig prisklasse. P̊alitelig kommunikasjon m̊a derfor oppn̊as p̊a bekostning av

dataoverføringshastigheten. Avveining mellom disse kan realiseres ved å endre

p̊a modulasjongraden, perioden mellom sendte symboler, og tilleggsdata som in-

neholder feilkorrigerende kode. Økning av perioden mellom sendte symboler for-

ventes å gi beste resultaten. Det ble konkludert med at begrenset dataoverføringshastighet

må forventes.
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Chapter 1

Introduction

1.1 Background and motivation

[2]

This thesis was motivated by a student project with the goal of building a pro-

totype for a small VTOL UAV, dubbed ”X-Drone”. A group of students, mainly

from the engineering cybernetics and mechanical engineering programs at NTNU,

participated with contribution to different aspect of the development. This master

project contributes with theoretic study aiming to identify possible challenges that

could arise in the radio communication system for this UAV. This information is

vital to determine potential commercial applications for the UAV.

Existing literature in the field are based on other applications, e.g. mobile networks

such as 4G, and might not suitable for UAS. UAS differs from these application on

key parameters such as higher mobility in six spatial dimensions, and over large

geographical areas in short time span. Also, literature that is only few years old

might be outdated due to the ever increasing capabilities of modern embedded

computers. Embedded computers enables the use advanced algorithms, that are

able to dynamically adapt communication scheme based on real-time computation.
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The use of Unmanned aerial systems (UAS) has seen a rise in popularity the recent

past. This can be contributed to the increasing availability of the technology,

UAS have become better and cheaper. Although the majority of UAS are used

for recreational purposes, the technology has proven useful in commercial and

academic applications. These applications include, but are not limited to, remote

sensing, logistics and communication relay. Remote sensing is the acquisition

of information about an object or phenomenon without making physical contact

with the object and thus in contrast to on site observation. For UAS, the most

viable commercial applications involve some form of imaging. Examples of such

applications are:

• Hyperspectral imaging applications, including mineralogy, agriculture and

surveillance.

• Steriographic pairs of areal photographs to make topographic maps.

• Infra-red imaging for object detection and tracking, such as search and res-

cue.

Common for these applications are the need for processing large amounts of data.

For some applications, this may be done by collecting data during flight, and pro-

cessing the data after the flight. Other applications calls for real-time processing

of data. This can be achieved by on-board processing or by transferring the data

to the GCS. These two approaches have distinct key advantages. Although mi-

croprocessors are becoming ever more powerful, they cannot match the processing

power of high-end desktop computers. On the other hand, real-time GCS data

processing requires reliable and high data-rate communication between the UAV

and GCS.
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Figure 1.1: Illustration of an UAV.

1.2 Goals

The goal of this project is to identifying both underlying physical restriction for

the communication system, and other technical challenges that prevents us from

achieving reliable communication with high data transfer rate. Focus will then

be shifted towards techniques for combating these technical challenges, with the

physical restrictions in mind. Effort will be put towards finding application spe-

cific solutions. Due to spatial limitations in the UAV under consideration here,

the techniques will be limited to signal processing, as opposed to antenna and

front end design. The approach taken here is inspired by techniques from cy-

bernetics and applied mathematics, such as optimization and estimation theory,

rather than the traditional approach from information theory. This goal of this

approach is to provide original insight to the problems regarding high mobility

wireless communication, and determine whether this approach is worth perusing

any further.
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1.3 Thesis outline

Chapter 2 will provide an introduction to the challenges related to high UAS

wireless communication. In chapter 3, a mathematical model of an wireless com-

munication system will be derived. This model aims to accurately capture the

characteristics of typical scenarios that occurs during UAS operation. Chapter 4

will summarize a study on digital signal processing techniques, and give recom-

mendation for techniques to combat the technical challenges presented in chapter

2 and modelled in chapter 3. Chapter 5 describes experiments conducted to deter-

mine the performance of the digital signal processing recommended in chapter 4.

Chapter 6 concludes the thesis with discussion and recommendations for further

work.
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Chapter 2

Theory

This chapter will present the underlying physical restriction for wireless commu-

nication as well as technical challenges specificity for UAS radio communication.

Most notably, these challenges are results of multipath propagation, bandwidth

and energy limitations along with mobility of the UAV. The goal is to provide the

reader with intuition of these challenges.

Figure 2.1: Illustration of a radio communication system. [? ]

2.1 Radio wave propagation

In digital radio communication, data is encoded into electromagnetic waves, with

radio frequency, which are propagated between antennas. In Telecom literature,

the data-carrying electromagnetic waves are referred to as signals, and the medium

in which these waves are propagated are referred to as the channel. These terms,

where ”channel” refer to the analogue section of the communication system, are
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adopted in this thesis. This section will briefly describe the main phenomena

which affects radio wave propagation.

2.1.1 Propagation mechanisms

Reflection occurs when a propagating electromagnetic wave impinges upon an

object which has very large dimensions when compared to the wavelength of the

propagating wave. E.g. the earth or buildings. If the surface of the object is

smooth, the reflection is specular (mirror-like). If the surface is rough, the re-

flection is diffuse. When reflection causes the wave not to arrive to receiver, it is

often referred to as shadowing in Telecom literature. Refraction is the change

in direction of propagation of a wave due to a change in its transmission medium.

Diffraction occurs when the radio path between the transmitter and receiver is

obstructed by a surface that has sharp irregularities (edges). This gives rise to a

bending of waves around the obstacle. Scattering is the process where electro-

magnetic waves are forced to deviate from a straight trajectory by one or more

paths due to localized non-uniformities in the channel. Scattering occurs when

there are objects with dimensions that are small compared to the wavelength λ in

the channel, and where the number of obstacles per unit volume is large. Scattered

waves are produced by rough surfaces, small objects, or by other irregularities in

the channel. In practice, droplets, foliage etc. Absorption refer to the phenom-

ena where the energy of an electromagnetic wave is absorbed by matter in the

channel. Most notably water vapour. This typically occurs when the energy of

the photons are absorbed by electrons of an atom. The reduction in energy of a

propagation wave due to absorption is often referred to as attenuation.

2.1.2 Multipath Propagation

Due to these propagation mechanisms, transmitted waves can reach the receiver

via different paths. Due to different path lengths, these waves are time delayed

and arrives from a different direction compared to the direct path. As a result,

6



the received signal may consist of a superposition of several adjacent signals with

varying time delay.

Figure 2.2: Illustration of multipath propagation.

Multipath propagation leads to interference, since the time delayed signals are

relatively phase shifted. There exists countermeasures for this problem, which will

be discussed in chapter 4, but for now lets consider this interference as random

noise. Although this assumption is clearly wrong, it will simplify the introduction

of other topics in this chapter.

2.2 Bandwidth limitations

This section will introduce sources of bandwidth limitations, such as regulations

governing the use of the electromagnetic spectrum for wireless communication.

Technical difficulties resulting from bandwidth limitation will also be presented.
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2.2.1 Regulations

The assignment of frequencies for wireless communication is regulated by inter-

national agreements, and governed internationally by the International Telecom-

munication Union, which is a sub-organization of the United Nations. ITU es-

tablished guidelines for the usage of spectrum in different regions and countries.

Further regulations are issued by frequency regulators of individual countries [3].

For example the Federal Communications Commission in the USA, and Nkom in

Norway. Regulated frequency bands may be divided into two groups. There are

bands which are regulated with regards to whom may use them. These are typi-

cally assigned to users by national authorities. The other group, such as the 2.45

Ghz band, may be used by anyone, but are regulated with regards to emission

power and bandwidth. There exists clever work-around techniques to limit the

effect of these restrictions. Most notably cognitive radio techniques, and orthog-

onal frequency-division multiplexing. In this thesis the assumption of a coherent

and limited frequency band will be used, as this most likely will be the case for

the UAS motivating this thesis. Either way, considering the worst case scenario is

good engineering practise.

2.2.2 Shannon’s theorem

Shannon’s theorem provides a good intuition to how bandwidth limitation affects

the performance of the communication system. It states the tight upper bound of

the data transfer rate for a communication system in the presence of noise:

C = B log2

(
1 +

S

N

)
(2.1)

where:

C is the theoretical maximum data transfer rate, in bits per second.

B is the width of the frequency band, in Hertz.
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S is the average received signal power over the bandwidth, in Watts.

N is the average power of the AWGN, in Watts.

This theorem assumes constant spectral density of both signal and noise power,

and the noise to be purely additive white Gaussian. Hence, this upper bound

cannot realistically be achieved. In practice, distortion and noise from radio wave

propagation, antenna and front-end electronics determines the the actual transfer

rate limit.

2.2.3 Modulation

Digital modulation is the process of mapping digital data to signal waveforms that

can be transmitted trough a wireless channel, which is inherently analogue. This

encoding can therefore be viewed as a form of analogue to digital conversion. The

terms symbol will be used for the pair of discrete-time and continuous-time signal.

The discrete-time signal, i.e. the digital data, is an integer number usually repre-

sented in either decimal or binary. The continuous-time signal is a waveform which

may be represented as a complex vector. The relationship between the discrete-

and continuous-time signal is illustrated in figure 2.4. The demodulator in the

receiver aims to perform the inverse transform of the modulator. Hence the entire

continuous-time system between the modulator and demodulator, referred to as

the channel, may be represented as a mapping of the complex vector representing

of the symbol.

A set of M symbols that may be transferred is referred to as an M -ary alphabet.

Each symbol in an M -ary alphabet can be related to a unique sequence of k bits,

expressed as k = log2M , where M is the size of the alphabet. Hence M = 2k.

Since one of M symbols is transmitted during each symbol duration Ts, the data

rate R in bits per second can be expressed as

R =
k

Ts
=

log2M

Ts
(2.2)
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The most fundamental digital modulation schemes are:

PSK (phase-shift keying): A finite number of phases are used to map sym-

bols.

FSK (frequency-shift keying): A finite number of frequencies are used to

map symbols.

ASK (amplitude-shift keying): A finite number of amplitudes are used to

map symbols.

QAM (quadrature amplitude modulation): A finite number of at least two

phases and at least two amplitudes are used to map symbols.

QAM will be used in all examples and simulations in this thesis, since it’s a

standard used extensively in the industry. QAM subsumes ASK, FSK and PSK,

as the final waveform of QAM is a combination of ASK and PSK, and FSK is

a special case of PSK. Since QAM in theory supports any alphabet size, it can

achieve arbitrarily high spectral efficiency. In a transmitter using QAM, the real

and complex (quadratur and in-phase) components of the symbol mapping are

multiplied to two sinusoids in quadrature ( π
2

out of phase). These sinusoids have

the same frequency fc, referred to as the carrier frequency. The final signal is an

additive combination of the two sinusoids, as illustrated below.

Figure 2.3: Illustration of a QAM transmission system.

The encoding procedure endeavours to make each waveform as unalike as possible;

the goal is to render the cross correlation coefficient cf as small as possible. For

example, if there are only two symbols in the alphabet, the smallest possible cf can

10



be achieved by making the signals antipodal, which makes them anti-correlated.

This may be more easily visualized as increasing the distance between the complex

vectors. A constellation diagram provides this representation, as exemplified by

figure 2.4.
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Figure 2.4: Illustration of QAM symbol mapping to the complex plane, with
alphabet size M = 16.

Since the signal power restrictions, and received noise power, of course are un-

related to the choice of alphabet size, the relative noise power will increase with

the modulation order. Hence, the choice of alphabet size can be used to trade off

between reliability and data transfer rate.
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2.2.4 Pulse shaping

The signal must be filtered to conform with the bandwidth restrictions. This is

typically done by low-pass filtering the baseband signal before it’s multiplied with

the carrier frequency. Ideally this would be done with a sinc filter. Typically,

a raised cosine filter is used. The figures below illustrates how low-pass filtering

with a raised cosine filter affects the signal in the time domain, i.e. the Fourier

transform.

Figure 2.5: Illustration of the frequency response of raised-cosine filter with
various roll-off factors.

Figure 2.6: Illustration of the impulse response of raised-cosine filter with
various roll-off factors.

In the figures above, T is the symbol period and β is the roll-off factor of the raised

cosine filter. Hence, adjacent symbols overlap at all times except the points that

12



is an integer multiplicand of the symbol period. This as illustrated in the figure

below.

Figure 2.7: Illustration of overlapping of consecutive raised cosine impulses.

Recall that the continuous-time system between the ADC in the modulator and

the DAC in the demodulator at the receiver, is referred to as the channel. If this

system is linear and time invariant (LTI) the received signal would also have points

in time where only one symbol was non-zero. That is, the signal would remain

within the same bandwidth. Theoretically the signal could be sampled at these

points. This would result in a linear mapping of the complex vectors representing

the symbol in the constellation diagram. However, a real channel is never LTI.

The channel is inherently non-linear and, for a UAS communication system, also

time-variant. This will become more obvious in the next two sections. For a

real channel there would be no points in time where only one symbol was non-

zero. They would always overlap. For any sampling technique the signal would

be distorted. This distortion is referred to as intersymbol interference (ISI). A

typical manifestation in the continuous-time domain would be spreading of the

symbols. Equally, the complex vectors representing the symbols would undergo a

non-linear mapping. An obvious solution to this problem would be to increase the

time between symbols. That is increasing Ts while retaining B. Since this would

directly impact the data transfer rate, alternative techniques will be presented in

chapter 4.
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2.2.5 Antenna

The bandwidth limitations discussed thus far in this section, originates from po-

litical regulations. These regulations does not always apply for UAS which, for

example, may be used in military applications. The communication system will

nonetheless be band limited due to properties of the antenna.

The purpose of an antenna is to transform electrical power into electromagnetic

waves and vica versa. Transmission is done by applying an alternating current to

the antenna terminals, the antenna radiates the energy from the current as elec-

tromagnetic waves, with the same frequency. The opposite happens in reception,

the antenna intercepts some of the energy from an electromagnetic wave and pro-

duces a voltage at its terminals. To achieve good performance from an antenna,

its characteristics must be chosen for a particular application. The main charac-

teristic to consider is the antenna gain, which is the product of the directivity and

the electrical efficiency. The antenna gain describes how well the antenna converts

electrical power to electromagnetic waves transmitted in a specified direction. The

opposite applies for a receiving antenna. Another important characteristic is the

physical dimensions of the antenna. The antenna directivity will be discussed in

section 2.4.

The term ”antenna efficiency” is a measure of the efficiency with which a radio

antenna converts the radio-frequency power accepted at its terminals into radiated

power. To achieve high efficiency, the antenna must be impedance matched with

the transmission line and the transceiver. For a resonating antenna, the input

impedance depends on its resonant frequency. The input impedance is defined as

”the impedance presented by an antenna at its terminals or the ratio of the voltage

to current at a pair of terminals or the ratio of the appropriate components of the

electric to magnetic fields at a point” [4]. The resonance frequency fr of a resonator

is given by: fr = Nv
2d

, where N is an integer, v is the velocity of the wave and d

is the distance between the sides of the resonator, in this case the length of the

antenna. At the resonance frequency, the standing wave has a current peak and

voltage node at the input terminals. At this frequency the current and voltage is
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in phase, i.e. the input impedance of the antenna is minimal and purely resistive.

Meaning that the antenna efficiency is proportional to the factor of the radiation

resistance to the loss resistance (heat). When the applied frequency is moved away

from the resonance frequency, the input impedance will be mismatched and hence

get a reactive component. In simple terms, this means that the antenna performs

band-pass filtering with center frequency at the resonance frequency.

2.3 Energy limitations

The technical challenges related to the SNR of the received signal, introduced in

the previous section, could obviously be solved by increasing the power of trans-

mitted signal. In practice the signal power is limited, primarily by regulations on

transmitted energy. But also implicitly by the power amplifiers at the transmitter,

since they will introduce distortion to the signal when operated in the high region.

This section explains why energy limitations is a problem.

2.3.1 Free Space Loss

For wireless communication systems where the transmitter and receiver has a clear,

unobstructed line of sight path between them, the Friis transmission equation (2.3)

can be used to predict received signal strength [4]. The assumption of the entire

signal being transmitted via a single unobstructed LOS path is obviously not valid

for the system under consideration here, but will nevertheless provide some good

intuition to some of the factors that affects the received signal strength.

Pr
Pt

= ecdtecdr
(
1− |Γt|2

) (
1− |Γr|2

)( λ2

4πR

)2

Dt(θt, φt)Dr(θr, φr)|ρ̂t · ρ̂r|2 (2.3)

where:

Pr = Power delivered to the receiver load.
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Pt = Input power of the transmitting antenna.

er = (1− |Γ|2) = Reflection (mismatch) efficiency.

ecdr = Antenna radiation efficiency of the receiving antenna.

ecdt = Antenna radiation efficiency of the transmitting antenna.(
λ2

4πR

)2
= The free-space loss which takes into account the spherical spread-

ing of the energy by the antenna.

R = The distance between the antennas.

Dt(θt, φt) = Directivity of the transmitting antenna.

Dr(θr, φr) = Directivity of the receiving antenna.

|ρ̂t · ρ̂r|2 = PLF (polarization loss factor).

Although the equation gives a statistically good estimate of the received power

under idealized conditions, it is unsuited for predicting instantaneous Pr. This

can be contributed to it’s neglect of important factors such as water absorption,

interference, temperature noise and Doppler spread.

2.4 Mobility

Mobility of the antennas in a wireless communication system is a problem for two

distinct reasons, which will be discussed in this section. One is related to the

directional mobility, i.e. the heading of the antenna, the other is related to the

translational mobility of the antenna. For an UAS the antenna mounted on the

UAV is mobile under flight. The other antenna may also be mobile, e.g. in the

case of satellite communication. In this thesis the assumption of a stationary earth

mounted antenna will be used.
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2.4.1 Antenna Directivety

The term antenna directivity is as ”the ratio of the radiation intensity in a given

direction from the antenna to the radiation intensity averaged over all directions.

The average radiation intensity is equal to the total power radiated by the antenna

devided by 4π. If the direction is not specified, the direction of maximum radiation

intensity is implied” [4]. The antenna directivity measures, in transmit, the power

density the antenna radiates in the direction of its strongest emission, versus the

power density radiated by an ideal isotropic radiator, in dBi. Directivity is an

important measure since the total transmitted power is limited. Hence, higher

directivity enables more signal power to be transferred in the direction of the re-

ceiver. This will in turn contribute to a higher SNR. However high directivity

antennas are not suitable for all applications, since they introduce new challenges.

Using a high directivity antenna in a point to point communication link presup-

poses that the location of the receiver, in this case the UAV, is known. Since an

UAV is non-stationary, the heading of the high directivity antenna must have the

ability to be dynamically actuated, preferably autonomously. This is not trivial.

For the UAV, a high directivity antenna would be significantly more difficult to

implement. Not only would it require control algorithm of the antenna heading. It

could also be a major impairment of the aerodynamic profile of the UAV, since the

antenna would, e.g. have to be gimbal mounted. Although the antenna heading

does not have to stabilized towards the GCS for the signal to be transferred, due to

multipath propagation, a high directivity antenna would worsen the time-variant

behaviour of the channel. A low directivity antenna would be more suited. In real-

ity an omnidirectional antenna, with non-directional radiation in azimuth, would

be a better choice. This would also cause time-variant behaviour, e.g. related to

banking manoeuvres of the UAV.
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2.4.2 Doppler Shift

The relative translational velocity of the antennas cause a Doppler shift in the

signal. The change in frequency fD due to the Doppler shift of a signal component

arriving from azimuth angle α, not accounting for the effects of special relativity,

is related to the translational velocity of the receiver relative to the source ∆v,

the speed of light c, and the frequency of the signal f as follows:

fD =
∆v

c
fcos(α) (2.4)

For a UAS communication system, the Doppler shift will vary due to the UAV

translational and rotational mobility. The variable α will depend on how the

signal is multipath propagated. As seen from the equation, the Doppler shift is

also a function of the signal frequency, thus the Doppler shift will not be constant

over the signal bandwidth. Doppler shifts is a significant source of intersymbol

interference, which may be more easily understood from it’s Fourier transform in

the time domain. How a signal is affected by Doppler shift hard to predict due to

it’s rapid time-variant behaviour. This is further discussed in chapter 3.
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Chapter 3

Channel modelling

In this chapter a mathematical model of an wireless communication channel will be

derived. This model aims to accurately capture the characteristics of typical sce-

narios that occurs during UAS operation. Ideally, this model should incorporate

the system characteristics discussed in chapter 2, while having feasible computa-

tional efficiency. More specifically, the model will generate a dataset transmitted

signals and their respective distorted received signals, i.e. the input and output of

the channel.

3.1 Assumptions

A proper deterministic model of the channel would consist of the transfer functions

of the electronics of both the transmitter and receiver, including accurate models

of the antennas. Initial conditions calculated from these transfer functions could

be used to solve a version of Maxwell’s equation taking account for surrounding

topography and electrodynamic properties of the transmission medium. Since

geometrical optics and unified theory of diffraction require accurate knowledge of

material and geometry of all objects in the transmission medium, deterministic

methods require high computational effort, and are sensitive to change in the
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initial conditions [5]. Hence, a deterministic model is not feasible. Neither is it

needed to model typical system dynamics.

A stochastic model can be used to satisfactory capture the dynamics of a specific

scenario. For a model to be stochastic, at least one of it’s parameter must be a

random variable. The scenario to be modelled here is described by the assumptions

below:

1. The UAV has a single dipole antenna.

2. The UAV antenna polarization is always polarized in azimuth (horizontal

polarization).

3. The GCS has a single stationary antenna headed towards the UAV.

4. The communication system operates with a single coherent frequency band.

5. The UAV is airborne, a few kilometres away from the GCS.

6. There is a line of sight (LOS) between the GCS and the UAV.

7. The resolved signal is propagated over multiple paths, including the LOS.

8. The signal is perturbed by AWGN from background radiation and front-end

electronics.

9. There is a LNA in the receiver with expected output power equal to the

signal power at the input of the transmit amplifier. That is E[
N∑
n=1

C2
n = 1]

where Cn is the n’th signal component.

3.2 Stochastic model

The impulse response of the channel, i.e. the complex vector representing the

received signal, is assumed to be an additive combination of the complex vectors

representing:
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• The resolved signal, which is the combination of components from one or

more transmitted signals. Due to multipath propagation, these signal com-

ponents may originate from different, typically adjacent, transmitted sym-

bols. The number of different symbols contributing to the received signal,

and their magnitude, depends on their spreading in the time domain due to

Doppler shift fD and their time delay τ .

• Additive white Gaussian noise (AWGN) introduced by the front-end elec-

tronics and antennas. This noise primarily arise from background noise

(temperature noise) and unresolved signals (interference) observed by the

antenna, in addition to noise introduced by the front-end electronics in both

the receiver and transmitter. The quantization error of the ADC is also

assumed to be AWGN, although this is not strictly true.

Ignoring the AWGN, the linear time-variant system interpretation may be de-

scribed by a simple deterministic model, where the received lowpass complex signal

y(t) is related to the transmitted complex signal x(t, τ) by:

y(t) =

∫ ∞
−∞

x(t, τ)h(t, τ)dτ (3.1)

Equation 3.1 assumes sinc (raised cosine with β = 0) low-pass filter. The spectrum

of the received signal is given by:

Y (f̃) =

∫ ∞
−∞

∫ ∞
−∞

X(f)H(t, f)ej2πftej2πf̃tdfdt (3.2)

Which does not reduce to Y(f) = X(f)H(f) [6]. Fourier transforming the trans-

fer function with respect to t, yields the Doppler spread fD and time delay τ

parametrized function, often referred to as the spreading function:

s(fD, τ) =

∫ ∞
−∞

h(t, τ)ej2πfDtdt (3.3)

These interpretations are Fourier transforms of each other. As mention a deter-

ministic model is not feasible, instead a stochastic model limited to second order
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statistics, may be derived using the autocorrelation function (ACF). The ACF of

the raceived signal Ryy(t, t
′) is given by:

Ryy(t, t
′) = E

[∫ ∞
−∞

x∗(t− τ)h∗(t− τ)dτ

∫ ∞
−∞

x(t′ − τ ′)h(t′ − τ ′)dτ ′
]

(3.4)

The transmitted signal can be interpreted as a stochastic process that is indepen-

dent of the transfer function representing the channel. Under this assumption,

the expectation over the transmitted signal and the transfer function may be per-

formed separately. The ACF of the received signal may then be written as:

Ryy(t, t
′) =

∫ ∞
−∞

∫ ∞
−∞

E [x∗(t− τ)x(t′ − τ ′) ]E[h∗(t− τ)h(t′ − τ ′)] dτdτ ′ (3.5)

=

∫ ∞
−∞

∫ ∞
−∞

Rxx(t− τ, t′ − τ ′)Rh(t, t
′, τ, τ ′)dτdτ ′ (3.6)

Rh depends on four variables since the underlying stochastic process is two dimen-

sional. To further assumptions about the underlying physical system may lead

to simplification of Rh. The most popular are called the ”wide sense stationary”

and ”uncorrelated scatterers” assumptions [7]. Models using both assumptions are

referred to as WSSUS models. The wide sense stationary assumptions is that the

ACF does not depend on t and t′ seperately, but rather their difference ∆t = t−t′.

That is, the statistic properties of the transfer function representing the channel

does not change with time:

Rh(t, t
′, τ, τ ′) = Rh(∆t, τ, τ

′) (3.7)

The ”uncorrelated scatterers” assumption is that signal components with different

delay are uncorrelated. That is:

Rh(t, t
′, τ, τ ′) = Ph(t, t

′, τ)δ(τ − τ ′) (3.8)
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Where Ph(·) is the power spectral density function. Combining the two assump-

tions yield the following relationships:

Rh(t, t+ ∆t, τ, τ ′) = Ph(∆t, τ)δ(τ − τ ′) (3.9)

RH(t, t+ ∆t, f, f + ∆f) = RH(∆t,∆f) (3.10)

Rs(fD, f
′
D, τ, τ

′) = Ps(fD, τ)δ(fD − f ′D)δ(τ − τ ′) (3.11)

RB(fD, f
′
D, f, f + ∆f) = PB(fD,∆f)δ(fD − f ′D) (3.12)

Under these assumption a discrete time model representing the complex signal

r(k) sampled by the receiver at time k may formulated as:

r(k) =

N2∑
n=−N1

x(k − n)gn(k) (3.13)

Where k is spaced by the sample period Ts = 1/Rs (due to optimal low pass

filtering), and gn(k) is the gain process. Proof is derived in [8].

h(n, τ) =
∑
i

Ci(n)δ(τ − τi) (3.14)

In [9] it has been shown that the power spectrum Ps(τ, fD) is proportional to

the probability density function p(τ, fD). Under these requisites it’s sufficient to

specify p(τ) and p(fD) along with the AWGN v(t) to construct a stochastic model

of the system. Ps(τ) and Ps(fD) for a variety of scenarios occurring in aeronautical

channels are described in [5]. There are two main methods for implementing a

simulator described by Ps(τ, fD); sum of sinusoid (SoS) methods, and Filtered

Gaussian noise (FGN) methods. A thorough comparison of these methods are

provided in [8].
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3.3 MATLAB implementation

The FGN channel model described above can be easily implemented in MATLAB,

using the ricianchan channel object. All parameters used in creating the channel

object, is based on this study on aeronautical channels [5], and modified to better

suit the application under consideration here. The source code for the channel

model is appended. The channel had the following attributes:

ChannelType: ’Rician’

InputSamplePeriod: 6.3272e− 06

DopplerSpectrum: [1x1 doppler.ajakes]

MaxDopplerShift: 416.6667

PathDelays: [1x5 double]

AvgPathGaindB: [0 0 0 0 0]

KFactor: 5.6234

DirectPathDopplerShift: 0

DirectPathInitPhase: 0

NormalizePathGains: 1
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To get a proper understanding the behaviour of this channel model, the source code

and MATLABs ”Channel Visualization Tool” in the communication systems

toolbox should be advised, as it does not support figure exportation. Nevertheless,

two snapshots of typical impulse responses is provided below.

Figure 3.1: Illustration of typical impulse responses

Figure 3.2: Illustration of typical impulse responses

In both figure 3.1 and 3.2, the first peaks are located at two sample periods. The

impulse responses are roughly 8 sample period long in figure 3.1, and 10 in figure

3.2.
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Chapter 4

Signal Processing

This chapter will present techniques to perform the functionality of the demodu-

lator. Hence, a digital signal processing scheme to combat the technical challenges

presented in chapter 2 and modelled in chapter 3. First, lets define:

• k ∈ N, k ≤ n, where n ∈ N is the current time.

• s[k] ∈ C is the sequence of transmitted symbols.

• z[k] ∈ C = G(h[k] ∗ r[k]) − s[k] is the additive noise process from signal

distortion.

• v[k] ∈ C is the AWGN process.

• e[k] = v[k] + z[k] is the error process.

• r[k + ∆t] = s[k + ∆t] + e[k + ∆t] is the received symbols.

• ∆t ∈ R is an arbitrary transmission delay. For simplicity, ∆t = 0 will be

used.

• xr[k] = [r[k], ..., r[k −m+ 1]]T is the channel response vector.

The signal processing scheme at the receiver will attempt to recover the transmit-

ted symbol s[k] from r[k]. A system which performs this functionality is called an
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equalizer in telecom literature and filter in estimation theory. To avoid confusion

the term filter will be used here. Thus, r[k] is the observation to the filter, which

aims to estimate ŝ[k] = s[k]. The performance of the filter is measured in its abil-

ity to estimate the transmitted symbol from the received signal, as the fraction of

errors; symbol error rate (SER) or equally bit error rate (BER). Hence, the ideal

filter Ho(·) always satisfies:

y[k] = ŝ[k] = Ho(r[k]) (4.1)

Where y[k] is the symbol estimate, i.e. output from the filter, at time k. Due

to the time-variant non-linear behaviour of the channel, Ho(·) has to be non-

linear and time-variant. A non-linear filter is one whose estimate is not a linear

function of the observation. The simplest way to achieve this is to use a channel

estimator in combination with a sequence estimator. The channel estimator is a

filter that attempts to estimate the transmitted symbol by predicting the distortion

introduced by the channel. The sequence estimator attempts to estimate the

transmitted symbol by finding the most likely sequence of symbols. In the trivial

case where the sequence has length one, the sequence estimator is a simple symbol

classifier.

4.1 Data Estimator

Recall that demodulation is the process of transforms the received symbol to its

respective set of data bits, and that the symbol may be perceived as a complex

vector. This functionality can be achieved by applying a limiter, also known as a

classifier or a decision device. A limiter is a filter that maps an observation to an

estimate which is member of a predetermined set. If the members of the set are the

symbols of the symbol alphabet the functionality of the demodulator is achieved.

In the following, the limits are constant and equidistant from adjacent symbols,

i.e. the input is mapped to the closest valid symbol. The output from the limiter
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ŝ[k] is referred to as the symbol decision or simply decision. If the limiter HL(·)

is combined with a filter H1(r[k]) as illustrated below, H1(r[k]) merely needs to

produce estimates within the limits for the correct symbol for the concatenation

of these filters to be optimal.

Alternatively, the data may be estimated from an observation of a sequence of

symbols, using a maximum likelihood sequence estimator (MLSE). Typically im-

plemented with the Viterbi algorithm. The general idea of the MLSE is to deter-

mine the sequence of symbols under the assumption of a stationary channel with

perturbation by AWGN. The first assumption as obviously not valid for the sys-

tem under consideration here. It would still be possible to implement this type of

data estimator by using an adaptive filter, as described below, compensate for the

time-variant behaviour of the channel, and ideally produce a stationary estimate

of the received sequence.

Figure 4.1: Illustration of a limiter.

The distance between the limits are directly proportional to the inverse square of

the modulation order in the case of QAM. This means the sufficient performance

of H1(r[k]), in terms of worst case e[k], depends on the modulation order.

4.2 Linear filters

The optimal filter may consist of a linear filter h[k] concatenated to a limiter.

That is:

Ho(r[k]) = HL(r[k] ∗ h[k]) (4.2)

Intuitively, one may think that h[k] should have the inverse frequency response

of the transfer function of the channel, such that their concatenation has a flat
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frequency response. Such a filter would be optimal for eliminating distortion from

a noiseless linear channel. In reality this filter is very noise sensitive, since it must

have strong amplification at frequencies where the transfer function of the channel

attains small values. Assuming the noise to be flat over the bandwidth of the

signal, the SNR at the frequencies of the signal would determine the amplification

of noise relative to the signal. As a consequence, the the noise power at the output

of the filter is greater then at the input.

A better contestant for h[k] is a filter that attempts to minimize the mean square

error of e[k]. Hence, a filter that minimizes:

MSE = E[|e[k]|2] = E[Re{|e[k]|}2 + Im{|e[k]|}2] (4.3)

These filters are called MMSE filters, or filters with a quadratic cost functions.

Strictly speaking, an arbitrary filter does not have a quadratic cost function to be

optimal, but these filters are thoroughly studied and well understood. The Wiener

filter [Wiener] is an optimal MMSE filter under the conditions that its physically

realizable, and r[k] is a stationary stochastic process with known first and second

moment statistics. Thus, the Wiener filter is in fact any filter that fulfils these

conditions. However, the Wiener filter is inadequate if the channel is time-variant,

which would render r[k] nonstationary. In this situation there does not exist a

single optimal filter. The optimal filter is one that tracks the statistical variations

caused by the time-variant behaviour of the channel.

4.3 Feedback filter

Inserting a feedback filter as depicted below is results in a filter commonly referred

to as a decision feedback equalizer (DFE) in Telecom literature. The abriviation

DFE will be adopted here to refer to the combination of a feed-forward filter,

feedback filter and limiter. The goal of the feedback filter is to remove distortion

from a symbol to subsequent symbols. Hence, this filter relies on the correctness of

previous symbol estimates. Consider a sequence of exclusively correct estimates.
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The job of the feedback filter is then to determine how this symbols interferes with

subsequent symbols, and remove this this part of z[k], from subsequent sequence

of symbols. For a stationary input process, this can be achieved with a FIR filter,

where the coefficients determines how a symbol interferes in subsequent symbols.

Now, consider an erroneous estimation occurs. This error will now be fed back to

subsequent symbols, which in turn decreases the probability of an correct estimate.

This is a manifestation of the stability problem which is inherent to introducing

feedback to a system. A possible solution to this problem is to decode the data

sequence from the limiter, perform error check, and re-encode them before they

are used in the feedback filter. This will, however, introduce a time delay.

Figure 4.2: Illustration of a DFE

A DFE is characterized by the order of the feed-forward filter, m, the order of the

feedback filter, n, and the ”decision delay”, d, which will be discussed below.

4.4 Adaptive filters

Consider the following example. A Wiener filter is implemented as a FIR filter for

a stationary process with known statistics. The filter could have IIR structure,

but FIR is assumed here to ignore stability issues. This filter is optimal only when

the statistics of the process match the prior information the filter was designed

for. If the statistic properties of the process diverge from the original properties,

the filter will no longer be optimal. The solution to this problem is to adjust the

coefficients of the filter in a way that minimizes the cost function of the filter. The

adjustment of the coefficients are done with an adaptation algorithm. A filter with

this property is said to be adaptive. The adaptation algorithm must be provided
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with a desired filter response, which corresponds to the transmitted symbol, with

a decision delay s[k − d]. The decision delay should correspond to the sample

for which the received value attains the largest value. In other words, the largest

expected value of the discrete impulse response. This is typically one of the first

samples, which corresponds to a path close to LOS. The simulations described in

chapter 3, suggests that the second or third should yield the best results. In the

following d = 2 was used.

Adaptive filtering can of course be stated more generally in terms of parametric

regression: The goal is to determine the parameters w of a model, described by

a set of input-output relations {x[k],y[k]}, and the model structure. In the case

of a FIR filter, the input vector {x[k] contains a sequence r[k], ..., r[k +m] where

m is the length of the filter. Here the model structure is described by the filter

structure, and the model parameters w are the filter coefficients. The vector w will

be referred to as the parameter vector. In all practical applications, the adaptation

algorithm is recursive. There is no universal optimal recursive algorithm for the

adaptive filtering problem. Rather, there is an abundance of algorithms which can

be used for this purpose. Their performance may be described by the following

criteria [2]:

1. Convergence rate: This is defined as the time required for the algorithm,

in response to stationary inputs, to converge ”close enough” to the opti-

mum. In this case the this would be a filter which minimizes the MSE to

a satisfactory degree, which is typically determined by the modulation or-

der as discussed above. For iterative algorithms the convergence rate can

conveniently be measured in number of iterations if the algorithms under

consideration receive the same inputs at the same rate. The importance of

quick convergence depends on the time-variant behaviour of the channel; a

slow algorithm may not be able to keep up with the time evolution of the

channel.
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2. Misadjustment: The deviation of the final converged state to the optimal

solution. This criteria is typically measured by an average over an ensemble

of adaptive filters.

3. Tracking: When an adaptive filtering algorithm operates in a nonstationary

environment, the algorithm is required to track the statistical variations in

the environment. The tracking performance of the algorithm, however, is

influenced by two contradictory features: (1) rate of convergence and (2)

steady-state fluctuation due to algorithm noise.

4. Robustness: For an adaptive algorithm to be robust, small disturbances

(i.e. disturbances with small energy) can only result in small estimation

errors. The disturbances may arise from a variety of factors, internal or

external to the filter.

5. Computational effort: Here, the issue of concern include (a) the number

of operations required by the processor to perform one iteration of the algo-

rithm. This is not analogue to operation per time unit, as the algorithm may

be executed in parallel. (b) The size of memory locations required to store

the data and program, and (c) the investment required to implement the

algorithm on a computer, including engineering and hardware expenses. The

upper limit to the computational effort of an algorithm is also dependant on

available technology. Today this limit is rarely an issue, due to TeraFLOPS

DSPs and incredibly dense and cheap computer memory.

6. Structure: This refers to the structure of information flow in the algorithm,

determining the manner in which it is implemented in hardware. For exam-

ple, an algorithm whose structure exhibits high modularity, parallelism or

concurrency is well suited for implementation using very large-scale integra-

tion (VLSI).

7. Numerical properties: When an algorithm is implemented numerically,

inacuracies are produced due to quantization errors, which are dependent

on ADC resolution and the digital representation of internal calculations.

33



Ordinarily, it is the latter source of quantization errors that poses a serious

design problem. In particular there are two basic issues of concern: numer-

ical stability and numerical accuracy. Numerical stability is an inherent

characteristic of an adaptive filter algorithm. It essentially refers to the

ability of the algorithm to damp errors introduced by numerical inaccuracy.

This is obviously related to criteria 1, 2 and 4. Numerical accuracy is

determined by the number of bits used in the numerical representation of

data samples and filter coefficients. This number determines the magnitude

of errors mainly caused by round off and truncating infinite sums. An adap-

tiv filter algorithm is said to be numerically robust when its insensitive to

variations in wordlength used in its digital implementation.

8. Global minimum: Also known as absolute minimum of the error sur-

face, refers to the optimum solution of the parameter estimation problem.

Although it is impossible to construct an algorithm that will find a global

minimum for an arbitrary function in deterministic time, some adaptation

algorithms are better than others in finding the global minimum of the er-

ror surface, in terms of escaping local minima. The ability to find the global

minim is dependent on the filter structure and number of parameters. Filters

with fewer parameters are generally easier to adapt to the optimum solution,

but this solution may not be able to provide good estimates although its op-

timal for that particular filter.

There are two main approaches to derive a recursive adaptive filtering algorithm:

the method of stochastic gradient descent, and the method of least squares.

4.4.1 Stochastic Gradient Descent

Gradient decent algorithms are first order optimization algorithms that attempts

to minimize the cost function J(w) by changing its parameters, denoted by the
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vector w, with respect to the gradient vector of the cost function:

∇J(w) =

[
δJ

δw1

,
δJ

δw2

, ...,
δJ

δwL

]T
(4.4)

For example, consider the method of steepest descent, where the successive adjust-

ments applied to the parameter vector w are in the direction of the steepest descent

of the error plane. Hence, in a direction opposite to the gradient vector ∇J(w).

Now, reconsider the example of a FIR Wiener filter and limiter, as illustrated in

figure 4.3. If the inputs to the filter are nonstationary or their statistic properties

are otherwise not completely determined, a stochastic cost function can be em-

ployed. One could for example apply the method of steepest descent to the cost

function of the instantaneous squared value of the error signal: J(w) = 1
2
e2[k].

Doing this recursively is called the least mean square (LMS) algorithm. There

exist a platter of algorithms based on these method, with the general update rule:

ŵ[k + 1] = ŵ[k] + µ[k]θ[k] (4.5)

Where the vector µ[k] is a scaling parameter determining the iterative step size in

a direction, with respect to the gradient vector, determined by θk. The stochastic

gradient algorithms differs in their derivation of µ[k] and θ[k].

4.4.2 Least Squares

The method of least squares, developed by Gauss, minimizes a cost function of

the sum of weighted error squares:

J(w) =
∑
k

λ[k]|s[k]− φ(ŵ[k], r[k])|2 =
∑
k

λ[k]|e[k]|2 (4.6)

Where φ(ŵ[k], r[k]) is the filter response at time k. Lets once again consider the

case of an adaptive FIR filter approximation to the Wiener filter, under the same

assumptions as above. The method of recursive least squares (RLS) can be used
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to update the filter coefficient in a way that minimizes the sum of squared differ-

ences between the inputs and their corresponding modelled values. The update

algorithm is on the form:

ŵ[k + 1] = ŵ[k] + g[k]α[k] (4.7)

Where g[k] is the ”gain vector”, which determines how the current parameters

should be changed with respect to the ”new” information α[k] that entered the

system at time-step k. There exists a large family of algorithms based on the RLS,

with different approach to deriving g[k]. To the best of the authors knowledge

e[k] = s[k] − φ(ŵ[k], r[k]) is always used as αk. A common trait of RLS based

algorithms is their use of second moment statistics of the observation process r[k]

in their derivation of the gain vector. More specifically the cross-correlation of the

correlation matrix of the input vector xk, and the variance of the desired filter

response s[k]. When choosing a RLS based algorithm, some key aspects should be

taken under consideration:

• Prior information about the statistic properties of the input process.

• Characteristics of the filter structure.

• Computational effort with respect to number of parameters. This is generally

quadratic, with some popular algorithms having cubic complexity.

For example: a linear filter with statistically independent Gaussian distributed

inputs calls for the Kalman filter, its equivalent RLS or the information filter. The

use of second moment statistics facilitates rapid convergence rate at the expense of

increased computational complexity, when compared to stochastic gradient descent

based algorithms. Conversely, these does not make any statistical assumptions

about r[k].
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4.5 Choice of filter structure

In this sections the choice of filter structure will be justified. The goal is to find a

structure that minimizes SER while attaining feasibility in terms of computational

complexity. When the impulse response is long, the symbol decision of the MLSE

has too long delay to be efficient in a DFE structure [Bayesian DFE mobile]. Hence,

the two general structures under consideration is the DFE, and the adaptive MLSE

algorithm. These structures have different key characteristics:

• The MLSE structure is an optimal estimator for stationary gaussian chan-

nels. Thus, the adaptive MLSE performance relies on the adaptive forward

filters ability to render the MLSE input stationary. The performance is

therefore highly dependent on the performance of the adaptive receive filter

when the channel has rapid time-variant behaviour [10].

• The MLSE, void the adaptive receive filter, has exponential complexity on

the form 2(MN), where M is the modulation order, e.g. alpabet size, and N

is the discrete time length of the impulse response of the channel, in number

of sample periods. For the channel modelled in chapter 3, N ≈ 10. On

the other hand, the DFE type filter typically has more parameters than the

MLSE adaptive receive filter. The complexity of the adaptive filters, both the

DFE and the MLSE receive filter, depends on the number of parameters and

the adaptation algorithm. RLS based algorithms typically has a complexity

on the form L2, where L is the number of parameters.

• The DFE structure is more robust against such rapid time-variant behaviour

[11].

The DFE structure was chosen due to its superior scalability in terms of modula-

tion order, as well as the reported superior performance for channels with rapid

time-variant behaviour. A simple DFE with FIR structure in both feed-forward

filter and feedback filter will be used in the experiments in chapter 5.
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4.6 Artificial Neural Network

Instead of conventional FIR or IIR structures, the DFE structure can be imple-

mented as a nonlinear filter modelled as an artificial neural network [12]. This

is an obvious advantage, since such a filter can capture the characteristics of an

actual transmission system, which is inherently nonlinear. The filter structure

should ideally be robust enough to capture the characteristics of the channel all

scenarios which may occur during UAS communication. Including the general

model derived in chapter 3. The number of adjustable parameters in the struc-

ture should be minimized since the computational complexity of the adaptation

algorithm increase with number of parameters.

Figure 4.3: Illustration of a recurrent neuron

An artificial neural network is made up of interconnected ”neurons”, loosely at-

tempting to model the way a brain attempts to perform a particular task. The

output of these neurons are typically either a weighted sum, or a sigmoid function

of the weighted sum, of the neuron inputs. In the following the hyperbolic tangent

function is used as the sigmoid function. A recurrent neuron is one with a feedback

of the output to the input, as illustrated in figure 4.3. Artificial neural networks
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with recurrent neurons are referred to as recurrent neural networks (RNN). The use

of feedback enables information of previous states to remain within the network,

similar to IIR filters, this reduces the necessary number of adjustable parameters

[2]. A recurrent neural networks can in theory be applied as a black box model to

any system, with arbitrary accuracy [13]. A black box model is a system that can

be characterized by the input-output relationship without any information about

the internals of the system. The internals of a neural network is obviously not

unknown, but not on the same form as any reasonable channel model. Hence,

it is difficult to study the actual channel by studying the neural network, even

though the input-output characteristics are similar. In figure 4.3 there is an input

denoted ”bias”. This input has a fixed value of +1 and its magnitude is therefore

determined by its corresponding weight. The bias has the affect of applying an

affine transformation to the other weighted inputs. Mathematically a recurrent

neuron can be described as:

y = φ
(∑

wx
)

(4.8)

Where y is the output, x is a vector containing the inputs, w is a vector containing

the corresponding weights (gains) and φ(·) is, in this case, the hyperbolic tangent

function.

An Elman type fully recurrent neural network with three hidden nodes was chosen

as the general structure due to its successive application as black box model for

similar systems [14] [1] [15]. This is a very compact RNN consisting of a hidden

layer (internal layer) of sigmoid neurons [16]. The output layer of the network is

the sum of the outputs from the hidden layer and a bias. An illustration of an

Elman type RNN is provided in figure 4.4. Since r[n] ∈ C (the received signal

is complex), the real and imaginary part will be handled separately. This can be

justified by the fact that complex numbers are treated as a two dimensional vector

by the computer, and will therefore inherently require twice as many computations

as a real number would. In practise the calculation of the RNN response of the real

and imaginary part may be done in parallel. However, proper implementation of

the algorithm, in e.g. C/POSIX, is beyond the scope of this thesis. All simulations
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are performed in the MATLAB environment. Source code for the implemented

algorithm is appended.

Figure 4.4: Illustration of a Elman RNN implementation of a DFE [1], where
the bias nodes are omitted for simplicity.

Mathematically the Elman RNN can be described on discrete state-space form:

x[k] = φ(Z[k],Wp) (4.9)

y[k] = f
(
{[1,xT [k]]Two[k]

)
(4.10)

Where:

• φ(·) is the activation function for the neurons in the hidden layer. tanh(·) is

used as activation function here.

• f(·) is the activation function for the output layer. A linear combiner (sum-

mation) is used here.

• Z[k] = [z1[k], ..., zp[k]] is the matrix containing p equal input vectors for the

neurons.

• z[k] = [1, rT [k]], uT [k]], xT [k − 1]]T is the neuron input vector, containing:

– The node bias input.
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– The vector of received inputs r[k] = [r[k], ..., r[k −m+ 1]]T

– The vector of previous symbol decisions u[k] = [u[k], ..., u[k − n]]T

– The vector of hidden layer feedback vector x[k − 1]

• Wp[k] = [w1[k], ...,wp[k]] is the matrix containing the weights for the p

neurons.

• wo[k] is the 1 + p long output summation node weight vector, including the

bias weight.

The parameter vector which contains all the parameters of the RNN is defined as:

• w[k] = [wT
1 [k], ...,wT

p [k],wT
o [k]]T

A DFE is characterized by the integers m, n, p described above, and implicitly

the decision delay d. As discussed above, p = 3 and d = 2 was chosen. The

minimal sufficient value of m and n can be calculated by the method described

in [11]. That is: m = d + 1 = 3 and n = N + m − d − 2 = 9. Hence, L =

2(p(m + n + p + 1) + p + 1) = 104. Where the scalar coefficient 2 is due to r[k]

being complex.

4.7 Parameter estimation

Adapting the weights of the RNN to minimize MSE can be regarded parameter

estimation of a nonlinear system. It is also known as a neural net training. As

described above, the concept is to apply a set of inputs with corresponding desired

outputs T {rd,yd}, and calculating the error as the difference (MSE) between the

actual filter response and the desired response. In practice rd corresponds to a

sequence of transmitted signal with values and time of transmission that is known

to the receiver. This can be implemented by transmitting a predetermined data

sequence at predetermined points in time. The necessary length of the sequence
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is determined by the convergence time of the adaptation algorithm. The neces-

sary frequency of sequences is determined by how rapid the characteristics of the

channel is changing over time. What ”necessary” actually constitutes is typically

determined by a BER requirement. How the training sequence is implemented

to the communication system is beyond the scope of this thesis, but its assumed

that the sequence is not part of the payload data. Hence, faster convergence time

yields higher data transfer rate.

Modern UAVs typically have an embedded computer with a floating point unit

(FPU), such as the pixhawk, to run the autopilot with motion control algorithm,

sensor fusion, path planning and so on. It is assumed here that the UAV has a

modern microcontroller, for example based on the ARM-M4, with a FPU. Hence,

real-time implementing a RLS adaptation algorithm is not a problem in terms

of reaching deadlines. In other words the available floating point operations per

second (FLOPS) is sufficient if the parameter estimation task is given highest

priority by the scheduler and may pre-empt other tasks. This assumption means

that it is possible to implement RLS based parameter estimation methods, but the

higher computational complexity may impair other tasks that the microcontroller

has to perform. This must be taken under consideration when implementing the

algorithm on an embedded system, but is not considered any further here. Under

these assumptions, RLS based methods are superior to stochastic gradient based

methods, such as backpropagation through time or real-time recurrent learning.

Both due to the higher convergence rate and the vanishing gradient problem [1].

It was therefore decided to use RLS methods for both the FIR based DFE filter,

and the RNN.

Among the RLS methods considered for the RNN, are the nonlinear kalman filter

algorithms. Mainly because of their successful application to similar problems

[1], but also due to the extensive literature on using these filters for neural net

parameter estimation [17]. Lets first describe the RNN behaviour in a way that is

suitable for Kalman filter formulation, using the notation of [15]

w[k + 1] = w[k] + ω[k] (4.11)
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yd = h(w[k], z[k]) + υ[k] (4.12)

Where w[k] is the L-by-1 weight vector describing the state of the system (RNN),

and z[k] is a 90-by-1 input vector, aggregated from the three real and three imag-

inary hidden node input vectors described above. The process equation (4.11)

describes the state of the system when characterized as a stationary process cor-

rupted by process noise ω[k]. The measurement equation (4.12) describes the

desired system output yd as a nonlinear function of the weight vector w and the

input vector z[k]; this equation is augmented by random measurement noise υ[k].

yd corresponds to s[k−d] when the filter parameters are being adapted (in training

mode), and ŝ[k − d] otherwise.

The general concept of RLS methods was discussed above. The Kalman filter is a

RLS method that uses an Bayesian approach to determined the optimal recursive

estimation, in the MMSE sense, of the state (in this case w) given the observations

up to the current time. Mathematically, this can be stated as [17]

ŵ[k] = E[w[k]|Y0[k]] (4.13)

Where Y0[k] is the sequence of observations up to time k. To determine this expec-

tation, or any ”best estimator” under non-MMSE criteria, requires knowledge of

the a posteriori density p(w[k]|Y0[k]). This may be determined recursively using

the Bayesian approach:

p(w[k]|Y0[k]) =
p(w[k]|Y0[k − 1])p(y[k]|w[k])

p(y[k − 1]|Y0[k − 1])
(4.14)

Where

w[k]|Y0[k − 1]) =

∫
p(w[k]|w[k − 1])p(w[k − 1]|Y0[k − 1])dw[k − 1] (4.15)

and the normalizing constant (y[k]|Y0[k − 1]) is given by:

w[k]|Y0[k − 1]) =

∫
p(w[k − 1]|Y0[k − 1])p(y[k]|w[k − 1])dw[k] (4.16)
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This recursion specifies the current state density as a function of the previous

density and the most recent measurement data. The state space model into play

by specifying the state transition probability p(y[k]|w[k − 1]) and measurement

probability p(y[k]|w). Specifically, p(y[k]|w[k − 1]) is determined by the process

noise density p(ω[k]), with the state update equation

w[k − 1]) = φ(w[k],u[k], ω[k]) (4.17)

This reduces to (4.11) when there is no exogenous process input u[k], and the

noise is additive. Similarly, p(y[k]|x[k]) is determined by the observation noise

density p(υ[k]) and the measurement equation (4.12). Thus, knowledge of these

densities and the initial condition p(w0|y0) = p(y0|w0)p(w0])/p(y0) determines

p(x[k]|Y0[k]) ∀ k.

For most systems it is intractable to derive a closed-form solution for the multi-

dimensional integration indicated by (4.14) - (4.16). The only general approach

is to apply Monte Carlo sampling techniques that essentially convert integrals to

finite sums, which converge to the true solution in the limit. The particle filter

[18] and the unscented particle filter [19] are examples of this approach. These es-

timators have very high computational complexity [20], and will not be discussed

further here. The Bayesian recursion can be greatly simplified under the assump-

tion of Gaussian distributed densities. In this case, only the conditional mean

ŵ[k] = E[x[k]|Y0[k]] and covariance Pw[k] needs to be evaluated. This leads to

the recursive estimation, equal to that in (4.7).

ŵ[k] = (prediction of ŵ[k]) +K[k](yd[k]− (prediction of y[k])) (4.18)

Pw[k] = P−w[k]−K[k]Pỹ[k]KT [k] (4.19)

The optimal terms in this recursion are given by

ŵ−[k] = E[w[k] + ω[k]] (4.20)

K[k] = Px[k]yd[k]P
−1
e[k]e[k] (4.21)
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ŷ−[k] = E[φ(w[k], z[k]) + υ[k]] (4.22)

Where the optimal prediction (prior mean) of w[k] is written ŵ−[k] and cor-

responds to the expectation of w[k − 1], with similar interpretation for ŷ−[k].

The optimal gain term is a function of the posterior covariance matrices with

e[k] = yd − ŷ[k].

As mentioned above, the Kalman filter [21] calculates the optimal terms of (4.20)

- (4.22) in the case of a linear model. In the case of a nonlinear model, the

Kalman filter is no longer optimal, and a nonlinear Kalman filter should be used

instead. There exists several nonlinear versions of the Kalman filter. The simplest

being the extended Kalman filter (EKF), and the most complex are the cubature

Kalman filters. EKF is the Kalman filter applied to a local linearization of the

descrete state space model under consideration. In this case (4.9) and (4.10). The

linearisation is performed with a first order Taylor approximation. Higher order

Taylor approximation may be used, but the increased accuracy rarely justifies the

increased computational complexity, since there exists nonlinear Kalman filters at

this complexity class that typically yields better performance. The approximation

of the optimal terms may lead to large errors in the true posterior mean of the

transformed Gaussian variable, which may lead to suboptimal performance and

sometimes divergence of the filter.

Another nonlinear interpretation of the Kalman filter, which attempts to address

the flaws of the EKF, is the unscented Kalman filter (UKF) [22], which instead of

linearising the state space model, samples the state distribution in a deterministic

way (as opposed to the particle filter). The sample points are propagated through

the true nonlinear model and used to calculate the posterior mean and covariance

accurately to the second order Taylor approximation of any nonlinear system.

The UKF uses the unscented transform (UT) to perform the transformation of

the random variable, the algorithm [22] is presented below for convenience. The

general idea is to find a minimal number of samples that accurately captures the

statistics of the random variable. The typical method is to us the mean vector

and two conjugated vectors for each dimension of the random variable. Consider
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propagating a random variable x with dimension L through a nonlinear function

y = f(x). Assume x has a mean x̄ and covariance Px. To calculate the statistics

of y, a vector X of 2L+ 1 sigma vectors Xi are formed in the following way:

,X0 = x̄ (4.23)

Xi = x̄ + (
√

(L+ λ)Px)i, i = 1, ..., L (4.24)

Xi = x̄− (
√

(L+ λ)Px)i, i = L+ 1, ..., 2L (4.25)

Where λ = α2(L + κ) − L is a scaling parameter. The constant α determines

the spreading of the sigma points around the mean, and is usually set to a small

positive number (e.g. 10−4 ≤ α ≤ 1). The constant κ is a secondary scaling

parameter that may also be used to determine the sigma point spreading, whileβ

is used for taking advantage of prior knowledge of the distribution of x. It has

been shown that β = 2 is optimal for Gaussian distribution. The sigma vectors

are propagated through the nonlinear function

Yi = f(Xi), i = 0, ..., 2L (4.26)

and the mean and covariance of y are approximated using a weighted sample mean

and covariance of the posterior sigma points

ȳ ≈
2L∑
i=0

Wm
i Yi (4.27)

Py ≈
2L∑
i=0

W c
i (Yi − ŷ)(Yi − ŷ)T (4.28)

with the weights Wi given by

Wm
0 =

λ

L+ λ
(4.29)

W c
0 =

λ

L+ λ
+ 1− λ2 + β (4.30)

Wm
0 = W c

0 =
λ

2(L+ λ)
, i = 1, ..., 2L (4.31)
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A comparison of the UKF and the EKF for a similar parameter estimation prob-

lem was conducted in [Haykin, 2004]. It concluded that the UKF typically has

slightly better performance than the first order EKF in terms of tracking and

misadjustment, and similar performance in terms of convergence rate and robust-

ness. In that experiment the matrix square root in (4.24) and (4.25) was done

with lower-triangular Cholesky factorization (chol() in MATLAB). This method,

as well as other matrix inversion methods such as QR, yields cubic complexity

(O(L3)), which is significantly higher than the quadratic complexity of the EKF.

However, the square root implementation of the UKF [23] (cholupdate() in MAT-

LAB), claims to yield similar performance with quadratic complexity (O(L2)).

Kalman filters experiences numerical stability issues known as the divergence phe-

nomenon [24]. This manifests by the covariance matrix of the system state Pw

being rendered not non-negative definite, which obviously is unacceptable. This is

a result of the fact that Pw is defined as the difference between two matrices, and

the calculation is performed with finite length arithmetic. Techniques to remedy

this problem includes

• square root filtering.

• eigen decomposition of Pw to ensure positive eigenvalues.

• adding artificial noise to Pw.

The latter technique is especially useful for nonlinear Kalman filters, since they

tend to underestimate the true covariance matrix. For the case of neural net

parameter estimation it has been shown that artificial noise also accelerates the

convergence rate, both with EKF and UKF [1]. The numerical stability issues

tends to increase with the dimension of the state vector, and for large dimensions

the artificial noise technique may not be sufficient to retain non-negative definite

Pw. In that case, it may be used in combination with one of the other techniques.

To summarise with respect to the list in section 4.4, the EKF and UKF have similar

performance for convergence rate, robustness, structure and numerical properties.

47



They differ in terms of computational complexity, where the EKF is slightly better,

and tracking, ability to find global minimum [25] and misadjustment where the

UKF is slightly better. The UKF was chosen as the adaptation algorithm in the

following simulations.
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Chapter 5

Experiments

In this chapter the performance of the filters presented in chapter 4 will be tested on

the model presented in chapter 3. The goal of these experiments is to determine

whether system identification with a black block approach is suitable for joint

optimization of the data transfer rate and the reliability of an UAS communication

system. As discussed in the previous chapter, literature in the field suggests that

the DFE structure is most suitable for channels with rapid time-variant behaviour,

and the filters under consideration are two DFE filters realized with FIR structure,

and recurrent artificial neural network. The FIR version uses the RLS algorithm

for parameter estimation, with forgeting factor λ = 0.99 (4.6). The neural net uses

the UKF. In theory the FIR DFE has less expressive power, in the sense that the

accuracy in which it can identify the optimal filter is worse than the neural net.

On the other hand, it has only 12 parameters (m + n) to be estimated, which is

far less then the 104 parameters in the neural net. The source code used in these

experiments are appended.

All the experiments in this section was conducted in the same general manner:

A set of inputs, generated from the channel model described in chapter 3, with

the corresponding ideal responses, was a applied to the parameter estimator. The

ability to converge to the optimal solution for different QAM modulation orders

was studied. Recall the optimal solution is any filter that result in no erroneous

symbol estimates.
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The parameters was initialized to random values between -1 and 1, using the

rand() function in MATLAB, which has flat distribution. This makes sense since

the expected average value of the filter outputs is zero. The transmitted data

sequence, i.e. the input to the channel model, was also generated with a flat

distributed random integer generator (randi() in MATLAB).

5.1 RNN with UKF

The first experiment conducted on the neural net endeavoured to determine the

required length of training set to converge to the optimum solution when 16-,

4- and 2-QAM modulation was used. 2-QAM is equivalent to BPSK (2-PSK).

A training set of ten thousand inputs and desired outputs was used in twenty

independent experiments. The convergence characteristics is depicted below for

the different modulation orders. These experiments are performed without adding

random noise to the channel output. That is, v[k] = 0, ∀k. The y-axis is the sum

of absolute error of the real and imaginary component of the error, Re{e[k]} +

Im{e[k]}.
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Figure 5.1: Convergence of the RNN with UKF for 16-QAM modulation.

Figure 5.2: Constellation of the RNN with UKF for 16-QAM modulation.
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Figure 5.3: Convergence of the RNN with UKF for 4-QAM modulation.

Figure 5.4: Constellation of the RNN with UKF for 4-QAM modulation.
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Figure 5.5: Convergence of the RNN with UKF for 2-QAM modulation.

Figure 5.6: Constellation of the RNN with UKF for 2-QAM modulation.

As seen above this RNN with UKF converged to the same local minimum for

all experiments. In this local minimum, the filter produces estimates along the

axes. This result simply means that the filter converged to an estimate of the

expectation of the average value of the set. Intuitively, this is an easy to find local

minima for the algorithm which is trying to find the least sum of squared errors.
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5.2 FIR DFE with RLS

The same experiments that was done on the neural net was conducted on the FIR

DFE filter: QAM modulation with modulation order 16, 4 and 2 was used in fifty

independent experiments with set length of ten thousand.

Figure 5.7: Convergence of the FIR DFE with RLS for 16-QAM modulation.

Figure 5.8: Constellation of the FIR DFE with RLS for 16-QAM modulation.
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Figure 5.9: Convergence of the FIR DFE with RLS for 4-QAM modulation.

Figure 5.10: Constellation of the FIR DFE with RLS for 16-QAM modulation.
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Figure 5.11: Convergence of the FIR DFE with RLS for 2-QAM modulation.

Figure 5.12: Constellation of the FIR DFE with RLS for 2-QAM modulation.

Some key observations can be made from these experiments:
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• None of the experiments was successful in converging to the optimal solution.

• A training set of 2000 symbols seems to be sufficient.

• The FIR DFE with 2-QAM and 4-QAM modulation seems to successfully

filter the signal.

• The neural net does not seem to be able to filter the signal successfully for

any of the experiments.

5.3 SER improvement

The experiments described above indicates that the FIR DFE filter with low mod-

ulation order are most suited for the channel model under consideration here. In

the following experiments, the symbol error rate improvement will be quantified.

The filter will first use a 2000 samples long training set to converge, and the pa-

rameters will then be held constant. A set of ten thousand symbols will then be

applied to both the filter, and directly to the data estimator/limiter. The errors

of the estimates from the filtered and unfiltered sets will then be compared, for

different SNR. The SER is averaged over 20 independent experiments for each

SNR value.
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Figure 5.13: SER performance, in percent, for different SNR of the FIR DFE
with RLS for 4-QAM modulation.

Figure 5.14: SER performance, in percent, for different SNR of the FIR DFE
with RLS for 2-QAM modulation.

Two key observations can be made from these experiments:

• The filter did not improve the SER, even though it was able to produce

estimate in groups close to the reference values. Hence, these estimates was
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mostly wrong.

• The signal distortion introduced by AWGN does not affect the SER. This

implies that the distortion is dominated by superposition of adjacent symbols

(ISI).
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5.4 Global optimization

Since the result in the experiments using the neural net was negative, an experi-

ment using a simple global optimization technique was conducted to ensure that

the problem is in fact due to nonconvex optimization. This technique is to con-

verge to a local minimum and save the corresponding parameters and error. If the

local minimum is not the global minimum, the procedure was repeated with new

initial parameters and the error at this minimum was compared with the previous.

This type of brute force optimization was not expected to converge to the global

optimal solution within reasonable time. Meaning that the convergence time is far

longer than what would be tractable for being used for on-line parameter estima-

tion on an UAV. Therefore the experiment was conducted with a channel model

that generates a training set which should present a much easier parameter esti-

mation challenge. The channel model has been used to produce positive results

in literature [1] [15]. The transfer function of the channel model is s a third order

FIR filter on the form:

C(z) = (c0 + a0[k]) + (c1 + a1[k])z−1 + (c2 + a2[k])z−2 (5.1)

Where c = [c0 c1 c2]
T = [0.3482 0.8704 0.3482]T and the coefficients ai[k](i =

0, 1, 2) are generated by a second order Markov model. Where an AWGN source

drives a secound-order Butterworth low-pass filter with cut-off frequency 0.1. This

random-walk process is meant to simulate random time-variant behaviour of the

channel. The neural net with the UKF was used in this experiment. The param-

eters of the neural net was chosen in the same manner as described in chapter

4. Hence, p = 3, d = 1 m = 2 and n = 2. This results in a naural net with 50

parameters. Training sets with length of ten thousand symbols where used. Figure

5.15 shows the result after 800 training sets, where the a close approximation to

the global optimal solution is achieved.
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Figure 5.15: Illustration of a Elman RNN implementation of a DFE [Haykin
paper], where the bias nodes are omitted for simplicity.

This simulation was performed with an Intel Core i7 Ivy Bridge-E processor. The

simulation time was more than five hours. This is obviously utterly unacceptable

for on-line applications. Reason implies that the results on the channel model

derived in chapter 3 would be even worse, since this channel model introduces far

more distortion to the signal. Although better techniques for initializing the pa-

rameters between training sets might yield better performance, global optimization

techniques was not studied any further.
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Chapter 6

Discussion And

Recommendations For Further

Work

The bulk of the work described in this thesis, focused on finding a filtering tech-

niques to enable reliable communication with minor impairs to the data transfer

rate for the UAV under consideration here. This is a very ambitious endeavour,

which unfortunately yielded negative results despite great effort. The degree of

non-convexity of the filtering problem perplexed the author, since high profile sci-

entists in the field had reported overwhelmingly positive results for the filtering

techniques in similar problems [26] [1] [15] [14] [11] [27] [28]. Consequently, great

effort was put towards verifying the results, which in the end are trusted to be

accurate. The reason for the negative results is contributed to the use of minimal

time period between transmitted symbols. This is a fundamental characteristic

in the channel model described in chapter 3. Theory implies that the signal dis-

tortion from ISI could be reduced by adjustable time spacing between symbols,

called guard periods. By seting the guard period equal to the length of the impulse

response of the channel, ISI would be completely eliminated. Experiments on the

effect of varying the length the guard period would have been very interesting and

probably quite useful since the length of the channel is time-varying. However, the
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author was unable to incorporate adjustable guard periods to the channel model

while retaining its accuracy in regards to the other characteristics it must capture.

A representative dataset of transmitted and received signals, collected from an

actual UAV communication system could have been used to remedy this problem.

Either to fit a channel model to the dataset, or simply to employ it directly to the

simulations. Nevertheless, the expectation of limited data transfer rate is taken

into consideration by the UAV development team.

6.1 Recommendations For Further Work

1. As mentioned, the channel model should be augmented to incorporate guard

period as an adjustable parameter,

2. and the model should be validated with a dataset.

3. Under the assumption that the guard periods amends the non-convexity

problem to a satisfactory degree, the filter algorithms should be tested on a

real radio system. Obviously not in any critical applications, but rather in

a representative test scenarios using software defined radio.

4. The effect of error correcting codes should be evaluated with respect to other

trade off mechanisms, e.g. modulation order and guard periods. Interleaving

should among the techniques to be evaluated.

5. The next step should be implementation to the UAV communication system.

6. An algorithm that adapts the parameters m, n and N , based on estimates

derived from the system states of the autopilot should be implemented to

minimize the number of filter parameters to be estimated.
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Chapter 7

Conclusion

This thesis was motivated by a student project with the goal of building a pro-

totype for a VTOL UAV. The goal was to determine what performance could

be expected from the wireless communication system of this UAV by employing

advanced digital signal processing techniques. The ideal technique would opti-

mize for both reliability and data transfer rate. A literature survey on filtering

techniques concluded that an adaptive filter with the general structure of an DFE

was best suited for the task. This techniques relies on parameter estimation to

perform system identification of the channel. The system identification problem

proved to be non-convex in simulations conducted on a FGN WSSUS aeronautic

channel model. An experiment using a global optimization technique implied that

the filtering problem was ill-suited to be solved on-line by an embedded computer

within reasonable price range. Hence, the filtering technique deemed inadequate to

achieve high data transfer rate while retaining the reliability for the UAV commu-

nication system under consideration here. Reliable communication must therefore

be achieved by trading off data transfer rate. The main three trade off mechanisms

are the modulation order, the period between transmitted symbols, and data over-

head containing error correcting code. Increasing the period between transmitted

symbols is expected to yield the best results, since simulations suggested that the
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signal distortion was completely dominated by interference. Consequently, the ex-

pectation of limited data transfer rate was taken into consideration by the UAV

development team.
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