
FPGA Based Real-time Systems Tester

Diaa Jadaan

Embedded Computing Systems

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: July 2015

Norwegian University of Science and Technology

To Father, Mother, Alaa, Israa and Baraa

Summary

Real-time systems can be defined as systems in which correctness depends not only
on the logical result of computation, but also on the time at which the results are produced
[22]. Therefore, it is important to verify that a real-time system produces the right result
at the right time. There are several techniques to implement time analysis of real-time
systems, but they often have a great effect on the execution or involve platform dependent
tools that are relatively expensive.

The solution this project presents is a low-cost and platform independent system for
testing real-time systems. Due to the lack of similar solutions, university labs, like the
real-time systems lab of subject TTK4147, use low-cost software-based testing devices
with low accuracy and low customizability. This work attempts to solve that problem and
provide the students with high quality hands-on experience to increase their understanding
of real-time systems, especially that it is design to be compatible with a popular embedded
system as a standard System Under Test, which is the Raspberry Pi.

In addition, the platform is fully reconfigurable making it possible to use in various
kinds of projects thanks to the added user peripherals and extra GPIO pins available. This
makes the tool valuable in hobbyist environments as well.

This work is based on the master thesis of Kyrre Gonsholt [15] where he developed an
IP to perform this kind of tests. This report will first give a few details about the previous
work and then explain how it was analyzed to correct its malfunctions. Then some key
points of the design process will be discussed with special emphasis on protection. After
that, the overall structure of the used software will be presented followed by a guide for
the usage and development of the real-time tester. Finally, the report will shed light on
some of the issues faced during development and suggest a few recommendation for fu-
ture system development.

This project has successfully met its goals and produced a fully functional real-time
testing platform accompanied by a graphical user interface that allows the user to config-
ure and run the tester in addition to performing analysis of the resulting log data. The
tester features a resolution of 20ns, a maximum logging frequency of 12.5MHz and it can
generate interrupts with a frequency up to 10MHz. These features ensure that this tool will
provide labs with a reliable testing solution that is both high-quality and low-cost.

i

Acknowledgments

This project would not have been possible without the support of many people. My
greatest gratitude goes to my supervisor, Amund Skavhaug, for his guidance, valuable
feedback and numerous coffee invites throughout this semester. I would also like to thank
the staff at the Department of Engineering Cybernetics for extending my deadline when
I had unforeseen problems. Also thanks to the people at the Electronics and Prototyping
Lab for their help with my PCB assembly. Many thanks to the EMECS program and its
coordinator, Prof. Wolfgang Kunz, for this great master’s course that allowed me to learn
a lot and meet fantastic people.

And finally, thanks to my family back in Syria who provided me for the last two years
with the spiritual support that gave me the strength to work hard and finish my master.

ii

Table of Contents

Summary i

Acknowledgments ii

Table of Contents v

List of Tables vii

List of Figures x

Abbreviations xi

1 Introduction 1
1.1 Problem description . 1
1.2 Prevoius work . 2

1.2.1 Hardware . 2
1.2.2 Specifications . 3
1.2.3 Software . 3
1.2.4 Completeness . 4

1.3 Work to be done . 4
1.4 Structure of the report . 5

2 Validating the tester IP 7
2.1 Verifying tester IP operation . 7
2.2 Running the design on actual hardware 8
2.3 Examining the design . 8

3 Creating the testing platform 13
3.1 Choosing an FPGA for the tester . 13
3.2 FPGA Configuration . 16

3.2.1 Configuration Modes . 16
3.2.2 Configuration tool . 20

iii

3.3 System Design . 21
3.3.1 Initial Design . 21
3.3.2 Adding a Microcontroller . 21
3.3.3 USB Interface . 22

3.4 Choosing the PCB design software . 25
3.5 Following Raspberry Pi HAT Specifications 26

3.5.1 The Raspberry Pi HAT . 26
3.5.2 HAT Specifications . 27
3.5.3 Following the Full Specification 29

3.6 Interface to the System Under Test . 29

4 Protection 31
4.1 Introduction . 31
4.2 Used protection techniques . 31

4.2.1 Reversed Voltage . 32
4.2.2 Using multiple power sources simultaneously 32
4.2.3 Over current and short circuit 33
4.2.4 Overvoltage . 33
4.2.5 Supply noise and voltage spikes 33
4.2.6 I/O Overvoltage . 35
4.2.7 I/O Overcurrent . 36

5 Software 39
5.1 The Graphical User Interface . 39
5.2 Microcontroller Software . 40
5.3 Nios II software . 40
5.4 Main Operations . 40

5.4.1 Test Operation . 40
5.4.2 Read-to-SD Operation . 41
5.4.3 Read-to-PC Operation . 41
5.4.4 Configuration Command . 41

6 Using The Tester 47
6.1 Configuring the FPGA . 47
6.2 Programming the Configuration Device 47

6.2.1 Using JTAG Interface . 48
6.2.2 Using AS Interface . 50

6.3 Programming Nios II Processor . 53
6.4 Programming the Microcontroller . 53
6.5 Using the Graphical User Interface . 56

6.5.1 Performing a Test . 56
6.5.2 Reading Test Results . 56
6.5.3 Analyzing Test Results . 57
6.5.4 Configuring the Tester . 57

iv

7 Testing and Result Analysis 59
7.1 Available Testing Techniques . 59

7.1.1 Software Tags: . 59
7.1.2 Interrupt to acknowledgment . 59
7.1.3 Interrupt to thread trigger . 60

7.2 Programming SUT to interact with the tester 60
7.2.1 A to B Tests and Execution Logging 60
7.2.2 Interrupt to the Acknowledgment and Interrupt to Thread 61

7.3 Analysing Test Results . 62
7.3.1 Data Logging Format . 62
7.3.2 Example of analyzing actual log data 63
7.3.3 Comparing log data to the actual signals 63
7.3.4 Getting response duration information 64

8 Discussion 67
8.1 Board manufacturing and assembly . 67
8.2 Micro SD card connection . 68
8.3 Issues with PCB design . 69
8.4 Recommendations for PCB design improvements 70
8.5 RTS-tester vs. a logic/bus analyser [15] 71
8.6 System cost . 71
8.7 Conforming to HAT specifications . 73
8.8 Notes about using the tester . 73
8.9 Future work . 74

9 Conclusion 77

Bibliography 79

Appendix 81

A PCB Design Schematics 81

v

vi

List of Tables

3.1 Excerpt from the list of available resources for FPGA (EP4CE15E22)[5] . 15
3.2 Excerpt from the list of available resources for FPGA (5CSXFC6D6F31C8NES)[6] 16
3.3 Configuration Features in Cyclone IV Devices 16
3.4 Atmega32u4 microcontroller main characteristics [9] 24

4.1 Comparison of EOS and ESD . 31

7.1 Sample log data . 64

8.1 An overview of components cost . 72

vii

viii

List of Figures

1.1 Arrow SoCkit from Terasic, source: rocketboards.org [18] 2
1.2 GHRD module overview, source: rocketboards.org [19] 3

2.1 RTS-tester simulation result when activating all 4 interrupts 7
2.2 Real-time tester design hierarchy . 9
2.3 Bug caused by incorrectly importing tester’s I/Os 9
2.4 An interrupt is only issued when all ACK lines are on logic 0 10
2.5 SignalTap II output when using one interrupt line 11

3.1 UPGA package showing a trace routed between two balls 14
3.2 QFP-144 (left), and UBGA-484 (right), source: mouser.com 15
3.3 Programming the FPGA Using JTAG Interface [2] 17
3.4 JTAG Testing/Configuration of Multiple Devices [2] 17
3.5 In-System Programming of Serial Configuration Device [2] 18
3.6 Combining JTAG and AS Configuration Schemes [2] 19
3.7 Altera USB-Blaster . 20
3.8 Initial design structure . 22
3.9 RT-tester design after adding a microcontroller to control the SD card . . 23
3.10 RT-tester design after replacing the USB-serial chip with a microcontroller 24
3.11 Atmega32u4 board used for early firmware development 25
3.12 Raspberry Pi 2 Model B, source: raspberrypi.org 27
3.13 Raspberry Pi HAT board Specifications, source: raspberrypi.org 28

4.1 Unidirectional battery connector . 32
4.2 Schottky diodes at power input . 33
4.3 Variation of PTC resistance with Temperature, source: hems.de [21] . . . 34
4.4 A plot generated by PDN tool showing the relation between Zeff and Ztarget 35
4.5 Simple circuit illustrating the usage of N-MOS transistors for I/O protection 36
4.6 Pin connections for GTL2000 based overvoltage protection 37

5.1 Testing Procedure . 41

ix

5.2 Actual Test Commands . 41
5.3 Read-to-SD Operation . 42
5.4 Actual Commands for Reading to SD card 43
5.5 Read-to-PC Operation . 44
5.6 Actual Commands for Reading to PC 45
5.7 Tester Configuration . 45
5.8 Actual Configuration Commands . 46

6.1 Quartus II Programmer window after completing the setup 48
6.2 Starting the File Converter from Quartus II Programmer 49
6.3 Setting up the conversion parameters . 49
6.4 Adding the .sof file . 49
6.5 Choosing the correct target device . 50
6.6 Quartus II Programmer window after completing the setup 51
6.7 Setting up the conversion parameters . 52
6.8 Adding the .sof file . 52
6.9 Quartus II Programmer window after completing the setup 53
6.10 Nios II Embedded Design Suite . 54
6.11 Setting up Atmel Device Programmer 55
6.12 Real-time Tester Graphical User Interface 56

7.1 Desired behavior of logging with software tags 59
7.2 Desired behavior of interrupt to acknowledgment tests 60
7.3 Desired behavior of interrupt activated thread test 60
7.4 Timing diagram built based on extracted log data 64
7.5 Tester signals captured by SignaTap II 65
7.6 Log data analysis result created by the tester software 65
7.7 Interrupt-to-acknowledgment data extracted by the tester software 66

8.1 Assembled Tester PCB . 68
8.2 Connecting an SD card adapter to SPI test points 69
8.3 Connection problem causing JTAG configuration failure 70
8.4 Correcting the connection problem . 70
8.5 Tester PCB before (left) and after (right) the correction 70
8.6 A proposed Bluetooth module with UART interface 74

x

Abbreviations

ALM Adaptive Logic Module

AS Active Serial

BTS Boundary-scan Testing

CPLD Complex Programmable Logic Device

DIP Dual Inline Package

DUT Device Under Test

EOS electrical overstress

FIFO First-In-First-Out

FPGA Field Programmable Gate Array

FPP Fast Passive Parallel

HPS Hard Processing System

IP Intellectual Property

ISP In-System Programming

.jic JTAG Indirect Configuration File

LE Logic Element

LUFA Lightweight USB Framework for AVR

LUT Look Up Table

PDN Power Distribution Network

.pof Programmer Object File

PS Passive Serial

QFP Quad Flat Package

RTS Real-Time System

SFL Serial Flash Loader

.sof SRAM Object File

xi

SUT System Under Test

TCK Test Clock

TDI Test Data In

TDO Test Data Out

TMS Test Mode Select

UART Universal Asynchronous Receiver/Transmitter

UBGA Ultra-fine Ball Grid Array

USB Universal Serial Bus

xii

Chapter 1
Introduction

1.1 Problem description

A real-time system can be defined as "a system where the result correctness depends not
only on the logical result, but also at what time the results arrive" [22]. Thus, a real-time
system must be verified with respect to time as well as to correct logical behavior.

Various techniques exist to assist system developers to verify the real-time behavior of
their systems. One option would be using software techniques, where the execution of the
program gets affected by the testing mechanism. An enhanced mechanism is using a logic
analyzer to log system reaction and a signal generator for applying the stimuli. The prob-
lem with this technique is it must be tailored to the system, which reduces the possibility
of reuse and increases development costs.

Professional testing tools exist. However, most of the tools that can provide real-time
benchmarking with high accuracy and customizability are usually very expensive and/or
platform dependent, which make them an unattractive option in educational environments.
For example, the Real-time Systems lab in Technical Cybernetics department at NTNU
uses a microcontroller based testing technique that can perform simple response analysis
with relatively low accuracy.

The quest of creating a customizable, platform independent and inexpensive real-time
testing system at NTNU started with the work of Kyrre Gonsholt1 in his master thesis [15].
The major outcome of his work was a real-time tester IP as a Verilog module that had ex-
cellent results when tested using simulation. The physical implementation, however, had
some problems and was not successful.

1In electronics department on behalf of Amund Skavhaug

1

Chapter 1. Introduction

1.2 Prevoius work
As mentioned above, the basis of this master thesis is the work of Kyrre Gonsholt. More
details about his work, the used hardware and usage are mentioned next.

1.2.1 Hardware
The real-time tester IP was implemented and tested using the SoCKit development plat-
form from Terasic, figure 1.1.

Figure 1.1: Arrow SoCkit from Terasic, source: rocketboards.org [18]

It contains an Altera Cyclone V FPGA with an ARM Cortex-A9 microprocessor, 1GB
SDRAM, micro SD card support, a wide variety of peripherals and about 120 GPIO pins
available through the HSMC-GPIO daughter board [18].

One of the features of the kit is the Golden System Reference Design (GSRD). The
GSRD provides a set of essential hardware and software system components that can be
used as a starting point for various custom user designs [1]. It contains a precompiled
Linux kernel and file system, precompiled preloaded and bootloader (u-boot) in addition
to the Golden Hardware Reference Design (GHRD).

GHRD is a fully configured hardware design that includes all the necessary config-
uration of the microprocessor and its peripherals so the user only needs to add his/her
design as an additional IP block and connect it to the preconfigured blocks. The default
configuration of GHRD is shown in figure 1.2.

2

1.2 Prevoius work

Figure 1.2: GHRD module overview, source: rocketboards.org [19]

The price of this kit is roughly EUR 325 [24], which makes it impractical to purchase
a large quantity to be used as an educational platform for real-time systems.

1.2.2 Specifications
The test system has a resolution of 20ns and can perform a new logging every 80ns, which
corresponds to a rate of 12.5 MHz. It can maintain an interruption rate of 2.5 MHz with
four interrupt lines and 8.33 MHz with one line. The tester may log data with unique time
over a period of n∗243 ∗20ns with a resolution of n∗20ns where n is clock scaling. That
is, a test time of 48.9 hours with a resolution of 20ns.

1.2.3 Software
The RTS-tester uses the ARM processor, which is running Linux, to execute the software
that configures and starts the test. The user will need to connect to the system using UART
to launch the command line interface and run the program that triggers the test.

3

Chapter 1. Introduction

If the user needs to change the testing configuration, however, he/she will need to
use a PC to modify the source code of the program (which is written in C) according to
the new requirements, use a cross-compiler to compile the code into an ARM compatible
executable and use the Ethernet port to transfer the executable to the system using SCP
protocol. Only after all these steps will the user be able to run the tester using the new
configuration.

1.2.4 Completeness
The functionality of the RTS-tester IP was tested and verified using a test-bench written in
Verilog to simulate the design behavior using Mentro Graphics Modelsim. More details
about the simulation and its result are available in Gonsholt’s master thesis report [15].

Although the proper operation of the IP was verified using simulation, testing the im-
plementation on an actual system has failed. Trying to connect the HSMC-GPIO daughter
board to the kit and running the test caused damage to the board’s circuit.

1.3 Work to be done
The main purpose of this master thesis is to:

• Understand the previous design and its operation.

• Debug and analyze its HDL code.

• Correct the found errors and verify the IP functionality.

• Suggest a design with suitable components for low cost.

• Create a PCB that implements the design.

• Create a user friendly interface to interact with the system.

• Keep the whole system cost below EUR 50.

The ultimate goal is to create a testing platform that can be used in the real-time sys-
tems lab as an enhanced replacement for the existing equipment. The platform design is to
be compatible with Raspberry Pi Model B as a standard System Under Test (SUT) with the
capability to use any other device as a test target. Another desired feature for the created
system is to have a user-friendly interface that makes customizing the system an easy task
compared to the previous design.

The previous features of the system will increase the students’ understanding of real-
time systems, especially when they get firsthand experience with such testing techniques.
In addition, by providing the PCB design as open-source materials, universities can easily
build and even customize the design for their needs.

4

1.4 Structure of the report

This tool will also be helpful in hobby environments that usually have tight budgets and
desire to have a generic solution. In addition to that, it has been taken into consideration to
make the platform usable as a multipurpose tool. By offering the HDL files as open-source
and offering extra general-purpose I/O pins for the FPGA and some extra peripherals, users
can use the tool as a low-cost FPGA development platform alongside its ordinary function
as a real-time tester.

1.4 Structure of the report
This report gives the reader an idea of the design process of the tester in addition to its
structure and behaviour along with some background information.

After introducing the problem this project is supposed to tackle and some background
information in the Introduction Chapter, Chapter 2 will explain how the previous work was
analyzed in order to correct its malfunctions.

Chapter 3 focuses on the main steps for creating the platform. It starts with the FPGA
selection and configuration, then describes the system design process followed by some
PCB design considerations. It also discusses how the tester can comply with the Raspberry
Pi HAT specification as a standard SUT.

Chapter 4 concentrates on the importance of providing proper protection to the system
against power supply problems and user mistakes and suggests techniques to overcome
these hazards.

Chapter 5 illustrates the software structures of the different parts of the systems along
with the interfaces used between them.

Chapter 6 serves as a detailed user guide on configuring the various units of the system
including the FPGA, Nios II processor and the microcontroller. It also gives directions on
how to use the tester graphical user interface.

Chapter 7 will present the available testing techniques and how the SUT can be pro-
grammed in each of them. In addition, it will have an overview of performing result
analysis both manually and using the accompanying software.

Chapter 8 sheds light on some issues faced during development and suggests a few
recommendations for future system development.

5

Chapter 1. Introduction

6

Chapter 2
Validating the tester IP

2.1 Verifying tester IP operation
The first task that needs to be done is making sure that the RTS-tester IP works properly
and as expected. At the beginning, several simulations were made using a testbench based
on the one Kyrre Gonsholt originally used. The simulations tested multiple configurations
of the tester to make sure it is fully functional in all operation modes.

One example of the tester operation is the case where all four interrupt lines are ac-
tivated and the testbench is set up to properly respond to them. The resulting timing
diagrams of this case can be seen in figure 2.1.

Figure 2.1: RTS-tester simulation result when activating all 4 interrupts

Not all the tests will be listed here. If the reader is interested in the detailed simulation
results he/she may refer to the results of the extensive simulations performed by Gonsholt
[15].

7

Chapter 2. Validating the tester IP

2.2 Running the design on actual hardware
The next step is finding the reason for the hardware failure when the RTS-tester IP is syn-
thesized in the FPGA and linked to external pins. This failure is particularly strange since
the design worked perfectly in simulation.

The first thing to be checked was the Altera Quartus II configuration. Quartus II is
the official software from Altera to be used as an IDE to develop HDL code (whether it
is Verilog or VHDL), compile it, synthesize it and perform all kinds of time and power
analysis of the designs. Along with Quartus, comes a large set of software such as Qsys
for building up systems out of IPs and Signal Tap II that functions as a logic analyzer that
can be synthesized into the FPGA.

After speaking with Gonsholt, he shared his suspicion that a problem may have hap-
pened while fitting the design in the FPGA because of some compiler optimization by
Quartus, which may have caused the design to malfunction. This may seem unlikely to
happen but it seemed a logical assumption then especially since the author has faced prob-
lems before caused by compiler optimizations particularly in microcontrollers.

Quartus has tens of options for optimizing the different processes such as synthesis
and fitting (place and route operation). These options may affect the design power con-
sumption, size (occupied logic elements) or speed.

Checking if a software bug caused the problem was done by modifying the optimiza-
tion parameters and monitoring the internal signals. This task became a lot easier thanks to
the Signal Tap II software bundled to Quartus. This software allows the user to make part
of the FPGA function as a logic analyzer not only for the I/O pins but also for the internal
signals. After changing all the major options that may affect the compilation outcome, no
change was observed in the tester signals.

2.3 Examining the design
The only option left to catch the bug that is causing the design to fail is thorough code
examination. Although the Verilog code was not well documented, most of the internal
signals and variables had meaningful names, which made this task fairly easier.

Code examination could not reveal any obvious bugs in the design. Although the ex-
amination was not extremely thorough, it gave more confidence in design correctness,
especially that it passed all simulation tests.

Since the design itself is assumed to be correct, the suspicion moved to other elements
in the hierarchy. As mentioned before in Section 1.2.1, the design is built by integrating
the tester IP into the GHRD that has been used as is. Figure 2.2 shows the tester’s place in
the hierarchy.

8

2.3 Examining the design

GHRD_top

SignalTap Soc_system

Peripherals CPU Custom_module

FIFO Avalon master RTS_tester

Interconnect . . .

. . .

Figure 2.2: Real-time tester design hierarchy

All the components in this structure are part of GHRD except for the Custom_module
that is built by Gonsholt. This module consists of an FIFO buffer, Avalon master and the
RTS-tester IP. The FIFO buffer is actually an Altera IP that is used for collecting/releasing
the data on positive clock edges depending on the control signals. Avalon master module
implements Avalon master interface as described in [1] which, in this case, acts as the
consumer of the FIFO. Its task is to write data (test result) to the HPS SRAM and it is
controlled by the control signals from the top module. It can write to memory either in
burst or in normal mode.

By looking at the structure, one can clearly notice that the inputs and outputs of the
tester module have to be imported in each level in the hierarchy. This is where the major
bug was found. In one of the levels, the assignments of inputs and outputs were inverted
causing the system to misbehave and damage any external circuitry connected. Figure 2.3
shows the place of the bug before it was corrected.

Figure 2.3: Bug caused by incorrectly importing tester’s I/Os

After correcting the code, another attempt was made to run the tester with one inter-

9

Chapter 2. Validating the tester IP

rupt line activated. SignalTap did not show any improvement in the signals and the module
did not issue any interrupts although the clock was running and the internal counters were
normally counting.

After getting deeper in code examination, another problem was discovered. Regardless
of how many interrupt lines are activated, all acknowledgment lines must be at logic 0 for
any interrupt to be issued. This condition was made (according to the code comments) to
prioritize acknowledgment over interrupt sending, but probably the mentioned side effect
was not noticed. The condition in question is shown in figure 2.4.

Figure 2.4: An interrupt is only issued when all ACK lines are on logic 0

After the unused ACK lines were manually pulled down, the test was repeated and
it was finally successful. SignalTap logic analyzer showed correct waveforms of all the
major signals including the used INT and ACK lines. This can be seen in figure 2.5. The
used SUT for this experiment was an Atmel microcontroller programmed to interact and
respond to the signals issued by the FPGA.
The functionality was confirmed by repeating the test using other configurations like using
all interrupt lines, which gave similar results.

10

2.3 Examining the design

Figure 2.5: SignalTap II output when using one interrupt line

11

Chapter 2. Validating the tester IP

12

Chapter 3
Creating the testing platform

So far, the SoCkit from Terasic has been used to work with the tester module. As mentioned
in Chapter 1, one of the goals of this work is to create a dedicated platform for testing.
This chapter describes the process of designing this platform.

3.1 Choosing an FPGA for the tester
The main component that needs to be selected for this project’s target platform is the
FPGA. The obvious solution for this is to just use the same device used in SoCkit. This
way, the design is guaranteed to work and there is no need to worry about device compati-
bility issues. The main problem here is cost. The cost of the FPGA is EUR 335 [16] which
is even a more expensive than the SoCkit itself.

The next option is to pick a lower end device from the same family that can give good
compatibility with a lower cost. The chip that provides the lowest cost and still offers
most functionality along with an ARM processor core is 5CSEBA2U19C8SN. It is also
from Cyclone V family, it has a single ARM core and more than enough specifications
to implement our design. The cost for this chip is EUR 49. Although this is almost our
cost limit that we have set earlier, one may argue that since the FPGA is the most costly
component, the total system cost may not exceed EUR 70, which is not too much for such
a device. While this statement may generally be true, other factors should be considered.

The package of this chip is UBGA-484 (Ultra-fine Ball Grid Array), which has a pin
pitch of 0.8 mm and ball diameter of 0.5 mm [3]. This means only 0.3mm is free between
two neighbouring balls. Therefore, as figure 3.1 shows, for a trace to pass between two
balls its width must be at most 0.1 mm (4 mil) and the drill size for vias can not exceed
0.2mm. This violates the design rules of most of the PCB fabrication houses, thus forcing
us to choose a PCB manufacturer with higher end equipment which, of course, will result
in a much higher manufacturing cost. Furthermore, having 484 pins in a BGA package

13

Chapter 3. Creating the testing platform

will make it almost impossible to design a PCB with less than 6-8 layer especially with
vital pins (power, configuration, clock, etc.) scattered all over the chip. These two factors
would multiply the platform cost several times even before start to consider assembly cost.

Figure 3.1: UPGA package showing a trace routed between two balls

Taking all that into consideration, the quest now is to find an FPGA with the following
characteristics:

• Has enough specs to implement the design.

• Maintains a minimum degree of compatibility with the current chip.

• Satisfy the minimum requirements of Qsys: 12k Logic Elements (LEs) and 128k of
embedded memory.

• Comes in a routing friendly package that allows cheap manufacturing and a mini-
mum number of layers.

• Low cost.

Taking all previous points into consideration, an Altera Cyclone IV FPGA with the
cost of EUR 23 was found, the EP4CE15E22. It has 15k LEs, 504 kbit of embedded mem-
ory and comes in a QFP-144 package. Using a QFP chip allows keeping the PCB design
within the standard design rules of most of the manufacturers, thus lowering production

14

3.1 Choosing an FPGA for the tester

cost. Furthermore, it will make using two layers for the design possible.

Figure 3.2 shows QFP-144 and UBGA-484 packages side by side.

Figure 3.2: QFP-144 (left), and UBGA-484 (right), source: mouser.com

Table 3.1 shows an overview of the selected Cyclone IV FPGA specs. For comparison,
Table 3.2 shows an overview of resources available in the SoCkit’s Cyclone V FPGA.

Table 3.1: Excerpt from the list of available resources for FPGA (EP4CE15E22)[5]

Specification Value

Logic Elements (LEs) 15k
Memory 504 kbit
FPGA GPIO 81
HPS I / O N/A
ARM Cortex-A9 MPCore processor N/A

Picking a chip with lower cost does not come free. As noticed in the tables, the Cy-
clone IV FPGA does not contain a hard processor core. This is a significant disadvantage
because the tester design is based on and integrated with the GHRD. As mentioned in sec-
tion 1.2.1, GHRD is a hardware design provided by Terasic with their SoCkit that allows
users to design their systems by simply adding the proper IPs. Being unable to use GHRD
means that a soft processor core, e.g. Altera Nios II, should be used and more time should
be invested in migrating the original design to the new hardware. More details about that
in the next sections.

15

Chapter 3. Creating the testing platform

Table 3.2: Excerpt from the list of available resources for FPGA (5CSXFC6D6F31C8NES)[6]

Specification Value

Logic Elements (LEs) 110k
Adaptive Logic Modules (ALMs)1 41509
Register 166,036
Memory 5570 kbit
FPGA GPIO 288
HPS I / O 181
ARM Cortex-A9 MPCore processor Dual-core

3.2 FPGA Configuration

3.2.1 Configuration Modes
The chosen FPGA supports the configuration modes shown in table 3.3.

.

Table 3.3: Configuration Features in Cyclone IV Devices

Configuration Scheme Configuration Method Max Clock (MHx)

Active Serial (AS) Serial Configuration Device 100
Passive Serial (PS) External Host with Flash Memory /

Download Cable
125

Fast Passive Parallel (FPP) External Host with Flash Memory 125
JTAG External Host with Flash Memory /

Download Cable
33

JTAG Configuration Scheme

JTAG has been chosen as the main configuration scheme because it provides all the fea-
tures the other schemes have in addition to being more versatile as we will see later. Ac-
cording to the table, JTAG configuration is slower than the other modes. However, it only
takes about 3-4 seconds to completely configure the device in practice. One of the great
features of JTAG is Boundary-scan Testing (BTS). The BTS architecture offers the ca-
pability to efficiently test pin connections without using physical test probes and capture
functional data while the device is normally operating.

1 Adaptive Logic Module (ALM) is a further development of Look Up Table (LUT), and it is used to instance
registers and other logic [7]

16

3.2 FPGA Configuration

In addition, JTAG configuration scheme does not require any external components like
PS or FPP. Only a standard Altera download cable, e.g. USB Blaster, is needed. Figure
3.3 shows the connection of a download cable connector to a Cyclone IV device in JTAG
mode.

Figure 3.3: Programming the FPGA Using JTAG Interface [2]

Another interesting feature of JTAG is that an unlimited number of devices can be
configured/tested at the same time by connecting them in a JTAG chain, i.e. Test Data
Out (TDO) pin of one device is connected to Test Data In (TDI) pin of the next device
in the chain with Test Mode Select (TMS) and Test Clock (TCK) pins connected to all
devices. An example of that is shown in figure 3.4.

Figure 3.4: JTAG Testing/Configuration of Multiple Devices [2]

17

Chapter 3. Creating the testing platform

In our design, JTAG is also used for programming Nios II processor without the need
to reconfigure the whole FPGA. It also serves as a virtual UART interface to provide a
console the programmer can use to interact with the processor.

Section 6.1 gives instructions for using the JTAG interface to transfer the HDL design to
the FPGA.

AS Configuration Scheme

After programming the FPGA, it stores the configuration data in an on-chip volatile SRAM
memory that is erased once the device loses power. A common solution to have permanent
configuration is storing the configuration file in an external flash memory that programs
the FPGA at every power on.

Altera has a standard line of serial configuration memory chips that use AS interface to
be programmed and to connect to the FPGA. For programming the memory, USB Blaster
can be connected to it through AS interface and then Quartus II programmer software is
used to start the programming procedure. Detailed instructions of how this is done are
given in section 6.2.2. Figure 3.5 shows the required connection on the board.

Figure 3.5: In-System Programming of Serial Configuration Device [2]

18

3.2 FPGA Configuration

Programming Serial Configuration Device Using JTAG Interface

USB Blaster can use the JTAG interface of the FPGA to access the AS pins to program the
configuration-device thanks to the Serial Flash Loader (SFL) deign embedded in Cyclone
IV series FPGAs. In this case, the same connection in figure 3.3 can be used. Detailed
instructions of using the Quartus II programmer to perform this operation are found in
section 6.2.1.

The Used Configuration Setup

To ensure the functionality of the RTS-tester prototype being built, both AS interface and
JTAG interface have been included in the design. One 10-pin connector has been added for
each mode to guarantee that the user can configure the design even if one of the interfaces
failed. Figure 3.6 shows the used configuration.

Figure 3.6: Combining JTAG and AS Configuration Schemes [2]

After the tester operation has been verified and both interfaces are confirmed to work,
the required components for the AS interface (10-pin connector, diodes and capacitors)
can be removed from the design to save space and cost.

19

Chapter 3. Creating the testing platform

Choosing a configuration device

According to the Altera Cyclone IV Configuration and Upgrade Guide [2], the EPC4CE15
FPGA used in the design has a maximum uncompressed configuration file size of about 4
Mbits. However, an EPCQ16 configuration device with 16Mbits of memory has been used
to give the user access to more general-purpose memory, especially that the used FPGA
has only 504kbits of embedded memory.

The user can easily access the extra memory in his/her design by adding the SFL block
to the Qsys system builder. However, caution must be taken not to access the region re-
served for storing the configuration file, which usually starts from address 0x0.

Since Altera branded configuration devices are relatively expensive, serial flash mem-
ory chips with compatible interfaces from other manufacturers can be used, e.g. S25FL116K
serial SPI flash memory from Spansion. Altera’s EPCQ16 costs EUR 6.85 on mouser.com
while Spansion’s chip costs only EUR 0.47.

3.2.2 Configuration tool
USB Blaster, shown in figure 3.7, is the standard download cable for in-circuit reconfig-
uration of Altera’s FPGAs SRAM. In an ideal scenario, USB Blaster hardware would be
integrated into the RT-tester’s PCB design so no external tool is needed for FPGA config-
uration. Unfortunately, that was not very doable within the scope of this project.

Figure 3.7: Altera USB-Blaster

The USB Blaster design mainly consists of a CPLD, particularly an Altera MAX series
device, along with a USB-Parallel chip from FTDI (FT245BM). Altera has published the
USB Blaster schematics, but the HDL code running in the CPLD has not been released.
Several attempts to replicate this device exist on the web. Most of them take the approach
of reverse-engineering where they try to monitor the control and programming signals is-
sued by the CPLD and attempt to produce HDL code that emulates this behaviour.

20

3.3 System Design

A German hardware enthusiast named Kolja Waschk is working on a project to develop
a USB JTAG adapter compatible with Altera’s USB-Blaster protocol [25]. He managed to
produce HDL code that enables a MAX CPLD to function properly in a way similar to an
original USB Blaster. He even built a modified version that uses a Cypress microcontroller
with USB support to perform both the USB interfacing function and issuing the control
signals to the FPGA. The design was reported to function properly in most cases with a
few bugs.

For the purpose of this project, the option of using a CPLD to integrate the configu-
ration device functionality into the system is not very preferable as it adds more cost and
complexity to our cost-oriented project; whereas using a USB enabled microcontroller is
more attractive since a similar device already exists in the design. The main problem with
this approach is that Cypress MCU firmware is extremely device specific and heavily uses
Cypress libraries.

After spending several days trying to accomplish the task of integrating the USB
Blaster into the available hardware using multiple resources, the author decided to leave
this task for future work and invest the time in other aspects that can have a better benefit to
the project, and use instead an external USB Blaster for configuration purposes. The lack
of this feature is not likely to cause any inconvenience to the user either since the RT-tester
will probably need to be programmed only once if it is used in a lab or testing environment.

3.3 System Design

3.3.1 Initial Design
The initial design was planned to be similar to figure 3.8.

The SD card is a very important component of the system. It provides a local storage
medium to save the test results in a form of a dump file and allows the user to keep track
of previous test results. Unfortunately, no proper SD card controller IP for the FPGA was
found. Most of the available IPs out there are either commercial or do not support Avalon
interface which is needed to communicate with Nios II processor.

3.3.2 Adding a Microcontroller
For the previous reasons, a microcontroller was chosen to perform the task of communi-
cating with the SD card and a device from the AVR family, which is produced by Atmel,
was selected. Atmel AVR is a family of 8-bit microcontrollers that covers a wide range
of devices with variant features and capabilities and is considered among of the most pop-
ular microcontrollers in the world among hobbyists. This popularity helped producing a
huge set of open source libraries that cover various needs from LED switching to complex
communication protocols. The author has evaluated several libraries that implement SD

21

Chapter 3. Creating the testing platform

Figure 3.8: Initial design structure

card control over SPI and chose one that has a very convenient command based interface
in addition to supporting FAT file system.

UART protocol was chosen to transfer the commands and data between the microcon-
troller and the FPGA. Figure 3.9 shows the design after adding the microcontroller.

One may argue that an SPI IP with Avalon interface can be used in the FPGA in ad-
dition to implementing the SD card control logic and the file system. This indeed can be
done, but it would require a non-trivial amount of time and effort with advantages that do
not match this cost. Actually, the only advantage, in this case, would be saving the cost
of the microcontroller, which may make sense since one of our priorities is cost reduction.
However, as we will see next, adding the microcontroller will help reduce the system cost
further more.

In case a future developer finds a proper way to use the FPGA for controlling the SD
card, the micro-SD card SPI bus is connected to the FPGA through a 74CBTLV3257D bus
multiplexer. The microcontroller controls the bus direction using PORTB7 where it sets
the selection pin of the multiplexer to ’1’ to take control over the bus. The schematic of
the connection can be found in Appendix A.

3.3.3 USB Interface
As seen in figure 3.9, another UART interface, besides the one we just added for the MCU,
is needed by the FPGA to communicate with the USB interface chip. This interface re-
quires special care because it is the data transfer medium to/from the PC, which obviously

22

3.3 System Design

Figure 3.9: RT-tester design after adding a microcontroller to control the SD card

has a greater transfer rate and processing power than Nios II. This means that the PC can
finish processing one bunch of data and send a new one way before Nios is prepared for
that.

Let us consider a case where Nios is busy with a time-consuming task, like a real-time
test operation that may take several seconds, and it starts receiving requests or data from
the PC. It is very likely in this case that the receiver buffer overflows and some informa-
tion gets lost. This illustrates the importance of having an intelligent intermediary device
compared to a simple interface chip.

Since we already have a microcontroller in the design, it makes perfect sense to have
it supervise the communication with the PC, especially that its only function right now is
controlling the SD card. Thankfully, Atmel has several devices in the AVR family that
incorporate the USB protocol stack in hardware, which make them a perfect fit for our
need. Figure 3.10 shows the system design after applying these proposed adjustments.

The chosen chip is Atmega32u4 which main characteristics are shown in table 3.4.

Having the microcontroller handling the USB-bridge functionality does not only help
saving some items from the bill of materials, it will also enhance the functionality and
responsiveness of the system. The microcontroller can respond to certain user request
without disturbing Nios or waiting for it to be free. For example, user requests related to
the SD card, such as browsing and getting test results, can be performed without any need
of intervention from Nios. The only disadvantage of removing the dedicated USB-bridge

23

Chapter 3. Creating the testing platform

Figure 3.10: RT-tester design after replacing the USB-serial chip with a microcontroller

Table 3.4: Atmega32u4 microcontroller main characteristics [9]

Specification Value

Flash Memory 32K Bytes
RAM 2.5K Bytes
EEPROM 1K Bytes
GPIO 26
Maximum Speed Up to 16 MIPS
Communication protocols USB, SPI, USART, I2C
Maximum USB transfer rate 12 Mbit/s

chip is the extra effort needed to set up the microcontroller to operate as a bridge com-
pared to an effortless drop-in solution. However, as mentioned earlier, AVR has a great
community support that helped a lot making this task easier.

LUFA (Lightweight USB Framework for AVR) [10] is an open-source library that
offers a convenient API for programmers to take advantage to the USB core in AVR mi-
crocontrollers. It also comes with some examples for creating a USB bridge that allows
the MCU to communicate easily with the PC.

A dedicated PCB was designed using Altium Designer to develop the USB bridge
functionality in addition to SD card control. It was also used to connect to the FPGA in
the SoCkit to perform firmware development before the final PCB is manufactured. Figure

24

3.4 Choosing the PCB design software

3.11 shows the board along with its connection to the SoCkit and the SD card reader.

Figure 3.11: Atmega32u4 board used for early firmware development

3.4 Choosing the PCB design software
Eagle is one of the most common PCB design tools among students and hobbyists. This
popularity is mainly regarded to the existence of a freeware version that makes it very pop-
ular among hobbyists who cannot afford the multi-thousand dollars price tag of the rival
software. A good indicator for this popularity is that most open-source electronic design
schematics and PCBs are published in Eagle format along with good community support.
These were the main reasons why the author has chosen Eagle for most of his electronics
designs every time a PCB needs to be created.

Giving this background, the PCB design process for this project started with Eagle as
the main tool. However, its shortcomings started to get more noticeable as the design got
more complicated. For example, it is not a simple task to create a multi-level hierarchical
design for the different parts of the design (e.g. PSU, user I/O, FPGA blocks, etc.).

For these reasons, other software options were evaluated. Most commercial software
(such as Orcad and Proteus Ares) were directly ruled out because they are only available

25

Chapter 3. Creating the testing platform

as professional packages with a hefty price tag (compared to Eagle that has a free edition).
In addition, the available open source tools (e.g. KiCad) are too simple for the task in
hand. The only alternative left was Altium Designer which commercially costs $9k, but
thankfully NTNU has a license for it which can be used for free by students.

Compared to Eagle, Altium Designer offers several advantages including:

• 2D and 3D modelling of the PCB design

• Functional view of the FPGA as separate blocks (rather than a one big block in
Eagle)

• Better hierarchical design support

• Supports creating reusable modules

• Better PCB autoroute functionality

• Faster and more intuitive workflow

3.5 Following Raspberry Pi HAT Specifications

3.5.1 The Raspberry Pi HAT

This project aims to design a real-time testing device with a generic interface to be usable
by any external device. However, since the tester is meant to be used mainly in labs for
educational purposes, it is beneficial to have an interface compatible with a popular em-
bedded system.

The Raspberry Pi is a credit card sized single-board computer developed with the in-
tention of promoting the teaching of basic computer science in schools [27], and has been
chosen to be the standard SUT of the tester. It was preferred over the other options because
of its popularity among students and hobbyists and its robust design. Figure 3.12 shows a
photo of the Raspberry Pi 2 model B.

After launching Raspberry Pi model B+, the Raspberry Pi Foundation introduced a set
of specifications to unify the design and form factor of the add-on boards targeting the Pi.
The add-ons that follow those specifications are called HATs (Hardware Attached on Top).

"A HAT is an add-on board for B+ that conforms to a specific set of rules to enhance user
experience" [14].

A significant feature of HATs is the inclusion of a system that allows the Pi to identify a
connected HAT and automatically configure the GPIOs and drivers for the board.

26

3.5 Following Raspberry Pi HAT Specifications

Figure 3.12: Raspberry Pi 2 Model B, source: raspberrypi.org

3.5.2 HAT Specifications
HAT is a rectangular board (65x56mm) that has four mounting holes in the (nicely rounded)
corners that align with the mounting holes on the B+, has a 40W GPIO header and supports
the special autoconfiguration system that allows automatic GPIO setup and driver setup.
The automatic configuration is achieved using 2 dedicated pins (ID_SD and ID_SC) on
the 40W B+ GPIO header that are reserved for an I2C EEPROM. The EEPROM holds the
board manufacturer information, GPIO setup and a thing called a ’device tree’ fragment
- basically a description of the attached hardware that allows Linux to automatically load
the required drivers. [14]

Basically, a board is only a HAT if: [12]

1. The ID_SC and ID_SD pins must only be used for attaching a compatible ID EEP-
ROM.

2. If back-powering via the 5V GPIO header pins you must make sure that it is safe to
do so even if the Pi 5V supply is also connected.

3. The board must protect against old firmware accidentally driving GPIO6,14,16 at
boot time if any of those pins are also driven by the board itself.

4. It has a valid ID EEPROM (including vendor info, GPIO map and valid device tree
information).

5. It has a full size 40W GPIO connector.

6. It follows the HAT mechanical specification (figure 3.13).

7. It uses a GPIO connector that spaces the HAT between 10mm and 12mm from the
Pi.

8. If back powering via the GPIO connector the HAT must be able to supply a mini-
mum of 1.3A continuously to the Pi.

27

Chapter 3. Creating the testing platform

Figure 3.13: Raspberry Pi HAT board Specifications, source: raspberrypi.org

Currently, the tester design follows all the previous requirements except for points 4
and 6. An EEPROM chip is already included in the design and it is connected to ID_SC
and ID_SD pins in the Pi header. However, it has not been programmed with valid vendor

28

3.6 Interface to the System Under Test

information, GPIO map or device tree. Detailed information is available to guide the user
on what to program on the EEPROM [13]. The EEPROM chip is already connected to the
microcontroller’s I2C pins and it can be programmed directly using them. Alternatively,
an external connection for the I2C bus has been added to the tester in case the user wishes
to use an external device for programming the memory.

As for the mechanical specifications, some of them are implemented including the full
40W GPIO connector, two electrically isolated mounting holes with the correct position
and dimensions. The other mounting holes and the smaller board size could not be imple-
mented because the large number of components required for the tester functionality did
not allow so.

3.5.3 Following the Full Specification

Since the initial tester prototype proved to function properly, many of the components
used for prototyping can be safely removed. That includes the components used for pro-
gramming the serial configuration device over AS interface (as mentioned in section 3.2.1)
and SPI bus multiplexer in addition to the extra connectors like the microcontroller’s I2C,
UART and PortF (which is used for JTAG debugging). Furthermore, if only the pure tester
functionality is needed, the additional user peripherals (LEDs and switches) and extra
FPGA I/O pins (GPIO_B pins) and their protection circuitry can be removed.

Taking all the mentioned recommendations into consideration, making the tester design
completely compliant to the Raspberry Pi HAT specifications will be an extremely easy
task.

3.6 Interface to the System Under Test
The interface to the test system is implemented with the following signals:

Interrupt Signal:
Four output connections the tester uses to signal a new interrupt.

Acknowledgment Signal:
Four input connections the tester uses for receiving an acknowledgment signal.

Read/Write signal:
Input signal that controls the direction of the data bus. Used to trigger data logs
by software tags.

Databus:
Seven input/output signal for transmitting interrupt identification number or data
from software tags.

When the system being tested wants to log data or send an acknowledgment data, it
must first add the desired data to the data bus, then lower the Read/!Write signal or raise

29

Chapter 3. Creating the testing platform

the acknowledgment signal. Similarly, the Read/!Write signal must be held high in order
for the tester to send interrupt signals.

30

Chapter 4
Protection

4.1 Introduction
A common cause of failure for any electronics product is electrical overstress (EOS). Over-
stress could be an outcome of numerous scenarios, including supply surges and applica-
tion of overvoltage. Having effective EOS protection is a primary requirement for product
durability.

While both EOS and electrostatic discharge (ESD) are voltage overstress conditions,
they differ in the energy involved and time span of the event as shown in table 4.1 [20].

Table 4.1: Comparison of EOS and ESD

Characteristic EOS ESD

Time frame > 1ms < 1us
Voltage smaller values > 500V
Current usually more usually less

ESD protection is out of the scope of this work and only EOS will be discussed.

4.2 Used protection techniques
Having proper protection is particularly important in our system because the tester is pro-
posed to be used in lab environment where it can be handled by students with different
backgrounds. The tester will also be connected to external devices which characteristics
are not known at design time.

31

Chapter 4. Protection

In the next sections, an overview of the possible power related hazards that may affect
the circuit will be presented along with the used protection methods to counter their effects.

4.2.1 Reversed Voltage

The first thing to do to protect against unintentional voltage reverse is to make it less likely
to happen when providing power from an external source. The simplest way to do that
is by using a unidirectional connector like the one shown in figure 4.1, which is mostly
suitable to provide power from a battery.

Figure 4.1: Unidirectional battery connector

If the user managed anyway to provide a reversed voltage, the input diodes will make
sure no harm is done to the circuit because they will be reverse biased then and will exhibit
a large resistance that will almost break the circuit. Figure 4.2 shows the diodes used for
the three available inputs. Two Schottky diodes, with forward voltage of 0.4V, are used
at each input. Every diode can handle up to 20V of reversed voltage and has a maximum
forward current of 1A allowing the circuit to draw up to 2A from each input.

4.2.2 Using multiple power sources simultaneously

If the user connected multiple power sources with different values at the same time, e.g.
3.7V from a battery and 5V from USB, current would start flowing from the USB port to
the battery. Luckily, the diodes added in the previous step will provide protection prevent-
ing this from happening.

32

4.2 Used protection techniques

Figure 4.2: Schottky diodes at power input

4.2.3 Over current and short circuit
To provide protection against overcurrent a resettable fuse (polyfuse) is used. The reset-
table fuse increases its resistance rapidly causing the circuit to breaks when there is a surge
of large current passing through it.

Resettable fuses are made up of conductive polymer and the working principal of these
resettable fuses is that when the temperature of the device (i.e. the fuse temperature)
crosses the threshold limit, they break temporarily. They switch back on when the temper-
ature drops below the threshold (Figure 4.3).

During an over current or short circuit scenario, the current through the fuse increases,
this increasing the temperature and in-turn the circuit breaks, thereby protecting the sys-
tem or device.

4.2.4 Overvoltage
Instead of using dedicated components to provide overvoltage protection, the voltage reg-
ulators in the circuit were chosen to have internal overvotlage and overtemperature protec-
tion.

4.2.5 Supply noise and voltage spikes
Most ICs suffer performance degradation of some type if there is ripple and/or noise on
the power supply pins. A digital IC will incur a reduction in its noise margin and a pos-
sible increase in clock jitter [11]. For high performance digital ICs, such as FPGAs, the
specified tolerance on the supply (less than 5% in the used FPGA) includes the sum of the

33

Chapter 4. Protection

Figure 4.3: Variation of PTC resistance with Temperature, source: hems.de [21]

dc error, ripple, and noise. FPGA will meet specifications if this voltage remains within
the tolerance.

Enhancing supply stability is generally done by placing a number of decoupling ca-
pacitors near the power pins of the IC. Decoupling capacitors help to stabilize the power
distribution bus by supplying current that opposes any change in the bus voltage. Altera
has a useful tool that helps PCB designers estimate the number, value, and type of decou-
pling capacitors needed to develop an efficient PCB decoupling strategy.

The Power Distribution Network (PDN) tool [8] calculates the impedance target of the
design (Ztarget) and plot it against frequency based on the information provided by the
user including maximum current consumption in each rail, the nature of the used voltage
regulators (linear/switching) and so on. The user’s job now is to change the number and
value of the used capacitors in each rail until the effective impedance graph is under the
target impedance (Zeff) graph all the way until the effective frequency (feffective) of the
design.

Figure 4.4 shows the plot for the RTS-tester design where we can notice the relation
between Zeff (red) and Ztarget (blue).

34

4.2 Used protection techniques

Figure 4.4: A plot generated by PDN tool showing the relation between Zeff and Ztarget

4.2.6 I/O Overvoltage

Since the tester’s I/O pins will be connected to external circuitry with possibly a different
power source, those pins should be protected from any overvoltage that may appear on the
connection lines. The method used in our design depends on the characteristics of MOS-
FET transistors. While this idea is used mostly in level shifting applications, it can also be
used to provide protection against overvoltage and voltage spikes.

Figure 4.5 two bus lines connecting the section that needs to be protected with the
section with potentially unstable voltage. Each bus line is identical and consists of one
discrete N-channel enhancement MOS-FET. The gates (g) has to be connected to the sup-
ply voltage of the protected section, the sources (s) to the bus lines of the protected section,
and the drains (d) to the bus lines of the unstable section.

Many MOS-FETs have the substrate internally already connected with its source, oth-
erwise it should be done externally. The diode between the drain (d) and substrate is
present inside the MOS-FET as n-p junction of drain and substrate.

This structure insures that each source has a maximum output voltage equal to Vdd1.
The reader may refer to [17] for more details about the circuit and basic theory of opera-

35

Chapter 4. Protection

Figure 4.5: Simple circuit illustrating the usage of N-MOS transistors for I/O protection

tion.

Instead of placing a transistor for each I/O pin, the GTL2000 chip from NXP is used.
GTL2000 is a 22-bit bi-directional voltage translator operates according to the aforemen-
tioned N-MOS based method and it supports voltages from 1.0 V to 5.0 V. This chip was
chosen to having a minimum propagation delay in mind. It features a constant 2.5 nS
propagation delay which can be easily added to the test results later.

In order to make this voltage translator serve our purpose of overvoltage protection,
both gate and drain reference pins (GREF and DREF) must be connected to the tester’s
3.3V power rail through a 200kΩ resistor. Sn pins should be connected to the side we want
to protect and Dn pins should connect to the side with unstable power. Figure 4.6 shows
the pin connections.

4.2.7 I/O Overcurrent
In addition to providing overcurrent protection for the whole circuit, it is also important
to take current sinking and sourcing capabilities of the individual FPGA pins into consid-
eration. The importance of this becomes clearer when the user connects an FPGA output
(e.g. INT pin) to the DUT where the respective pin is mistakenly configured as output as
well resulting in a high probability of a short circuit situation.

The maximum current sinking and sourcing capabilities of the used FPGA pins are
25mA and 40mA respectively. The used I/O standard is 3.3V-LVTTL, which has a current
drive characteristic of 4mA according to Altera Cyclone IV datasheet [4]. Whereas, the

36

4.2 Used protection techniques

Figure 4.6: Pin connections for GTL2000 based overvoltage protection

current drive capability of the Raspberry Pi, as a standard DUT, range from 2mA to 16mA
[26].

Therefore, we need series resistors with values ranging from 767Ω (corresponds to
4mA) to 148Ω (corresponds to 16mA). We should also take into account that the pro-
tection chip, GTL2000, has an on-state resistance of 58Ω. Hence, 270Ω resistors were
chosen, which would give a maximum current of 10mA for 3.3V.

The Pin Planner tool in Quartus II software allows the user to set the preferred I/O
standard to one of several options including LVTTL or LVCMOS along with "Current
Strength", which is the maximum current that the pin is allowed to drive. This adds an
additional layer of current protection.

37

Chapter 4. Protection

38

Chapter 5
Software

This chapter will have an overview of the software used in Nios II processor, the AVR
microcontroller and the PC-based GUI written in C# in addition to the interfaces used for
the communications between them.

5.1 The Graphical User Interface

The Graphical User Interface of the tester is created with C# and supports the following
functions:

• Performing tests.

• Reading log data to the on-board micro-SD card.

• Reading log data to the PC.

• Configuring the tester (not fully implemented).

• Performing basic analysis of test results.

• Performing time analysis of test results.

The reader may refer to Section 6.5 for a detailed description of these functions and their
use. Figure 6.12 in the same chapter shows the GUI and its components.

The GUI consists of several modules each of which is responsible for a dedicated
function including serial communications, file management, log data processing, etc. This
modularity makes the software easier to modify and develop.

39

Chapter 5. Software

5.2 Microcontroller Software

The microcontroller serves as the interface between the PC and the FPGA in addition to
handling SD card storage. Most of the firmware is related to USB interface, SD card
interface and SD card file system (FAT16). The rest is a state machine used for handling
the commands received from the PC.

5.3 Nios II software

The firmware on Nios can be divided to three main functions:

Main
It keeps waiting for commands from the microcontroller to perform the required function
and send back the results.

Start_Test
Called when a "test" command is received. It handles setting up the control register of the
tester module with the correct configuration and performing the actual test.

Dump_Memory
Called when a "read memory" command is received. It reads the memory associated with
the tester module and arranges the data in packets. After that, it sends the packets to the
microcontroller over UART where it can be processed further.

Nios does not differentiate between read-to-PC and read-to-SD commands. The micro-
controller simplifies the task to a single read-memory command and it handles the rest
afterwards.

5.4 Main Operations

The system uses a simple one-character based commands to facilitate the communication
between the units. For example, let us assume ’c’ is the character associated with the de-
sired command. The commands have the form of "c\n" in the MCU=>PC interface and a
simple "c" format in the rest of the interfaces.

Next, we will have an idea of how the various commands are handled in the system.

5.4.1 Test Operation

Figure 5.1 shows the commands sequence to perform the test operation. Figure 5.2 shows
the actual commands sent.

40

5.4 Main Operations

PC MCU FPGA

TEST

TEST

Testing

SUCCESS / FAILURE

SUCCESS / FAILURE

Figure 5.1: Testing Procedure

PC MCU FPGA

t

t

s/f

s/f

Figure 5.2: Actual Test Commands

5.4.2 Read-to-SD Operation

Figure 5.3 shows the commands sequence to perform the read-to-SD operation. Figure 5.4
shows the actual commands sent.

5.4.3 Read-to-PC Operation

Figure 5.5 shows the commands sequence to perform the read-to-PC operation. Figure 5.6
shows the actual commands sent.

5.4.4 Configuration Command

Figure 5.7 shows the commands sequence to perform the tester configuration. Figure 5.8
shows the actual commands sent.
The configuration data is sent in the following order:

• DATA[0]: INT A PERIOD (us)

41

Chapter 5. Software

PC MCU FPGA

SD-READ

SD-INIT

INIT SUCCESS

READY?

ACK
Initiate
Mem.
Read

MEM-READ

ACK

READING

FRAME 0

Store
Frames
in Card

FRAME 511

...

SUCCESS Signal
CompletionSUCCESS

Figure 5.3: Read-to-SD Operation

• DATA[1]: INT B PERIOD (us)

• DATA[2]: INT C PERIOD (us)

• DATA[3]: INT D PERIOD (us)

• DATA[4]: BURST WRITE

• DATA[5]: TIME SCALER

• DATA[6]: HOLD TIME (ns)

• DATA[7]: TEST DURATION (ms)

42

5.4 Main Operations

PC MCU FPGA

m

s

r

a

m

a

m

DATA

s

s

Figure 5.4: Actual Commands for Reading to SD card

43

Chapter 5. Software

PC MCU FPGA

PC-READ

ACK

READY?

ACK
Initiate
Mem.
Read

MEM-READ

ACK

READING

FRAME 0

FRAME 0

FRAME 511

...

FRAME 511

...

SUCCESS Signal
CompletionSUCCESS

Figure 5.5: Read-to-PC Operation

44

5.4 Main Operations

PC MCU FPGA

p

a

r

a

m

a

m

DATA

DATA

s

s

Figure 5.6: Actual Commands for Reading to PC

PC MCU FPGA

CONFIG

CONFIG

ACK

ACK

DATA 0

DATA 0

DATA 7

...

DATA 7

...

SUCCESS

SUCCESS

Figure 5.7: Tester Configuration

45

Chapter 5. Software

PC MCU FPGA

c

c

a

a

DATA

DATA

s

s

Figure 5.8: Actual Configuration Commands

46

Chapter 6
Using The Tester

This chapter will cover all the necessary aspects required to fully utilize and configure the
tester.

6.1 Configuring the FPGA
When compiling a project, Quartus II Compiler’s Assembler module automatically gen-
erates an SRAM Object File (.sof) that contains the data for configuring SRAM-based
FPGAs. This file can be directly used to program the FPGA using the following steps:

1. Launch Quartus II Programmer software.

2. Click on "Hardware Setup..." and choose the connected download cable (e.g. USB
Blaster).

3. Click on "Add File..." and choose the .sof file from the project directory.

4. Check "Program/Configure" option next to the device name.

5. When your programmer window looks like Figure 6.1 click the "Start" button.

6. The progress bar should show a successful operation.

Note: If after adding the file the programmer failed to detect the device, try "Auto De-
tect" first, select the device from the list and then use "Change File" option to choose the
programming file.

6.2 Programming the Configuration Device
The configuration device is a flash memory that can be used to retain the FPGA configura-
tion file after power reset. When powered, the FPGA will program itself automatically over
AS interface. The configuration device can be programmed either using JTAG through the
FPGA or through AS interface.

47

Chapter 6. Using The Tester

Figure 6.1: Quartus II Programmer window after completing the setup

6.2.1 Using JTAG Interface
The serial configuration device cannot be programmed using the .sof file generated by
default. This file needs to be converted to a JTAG Indirect Configuration File (.jic) first.

Generate JIC File

The following steps should be followed:

1. Start Quartus II software.

2. From Quartus II, start "Convert Programming File" utility from "File" menu as seen
in Figure 6.2.

3. Setup the conversion parameters (Figure 6.3):

• Select "Programming file Type" as "JTAG Indirect Configuration File (.jic)"

• Select "Configuration Device" as "EPCQ16" (or the correct one if another chip
is used).

• Select "Mode" as "Active Serial"

• Enter "File name" for the .jic file to be generated

4. Select the "SOF Data" line on the bottom panel and click "Add File" (Figure 6.4).

5. Browse and select the .sof file containing the hardware design.

6. Select the "Flash Loader" line on the bottom panel and click "Add Device" (Figure
6.5).

48

6.2 Programming the Configuration Device

Figure 6.2: Starting the File Converter from Quartus II Programmer

Figure 6.3: Setting up the conversion parameters

Figure 6.4: Adding the .sof file

7. Select the correct device from the list. In our case, this is Cyclone IV EP4CE15.

49

Chapter 6. Using The Tester

Figure 6.5: Choosing the correct target device

8. Click "Generate" button.

9. A completion message is displayed. Click "OK" to close it.

Note: A Conversion Setup Data file has been created so the configuration can be set au-
tomatically. The file name is "sop_to_jic_conversion(jtag).cof" and it is located in the
Quartus project directory. It can be used by clicking "Open Conversion Setup Data..."
button in the Converter window.

Program the Device

1. Start Quartus II Programmer.

2. Click on "Hardware Setup..." and choose the connected download cable (e.g. USB
Blaster).

3. Set the "Mode" field to "JTAG".

4. Click on "Add File..." and choose the generated .jic file from the project directory.

5. Check "Program/Configure" option next to the device name.

6. When your programmer window looks like Figure 6.6 click the "Start" button.

7. The progress bar should show a successful operation.

Note: If after adding the file the programmer failed to detect the device, try "Auto De-
tect" first, select the device from the list and then use "Change File" option to choose the
programming file.

6.2.2 Using AS Interface
To program the serial configuration device through AS interface, the .sof file generated by
default needs to be converted to a Programmer Object File (.pof) first.

50

6.2 Programming the Configuration Device

Figure 6.6: Quartus II Programmer window after completing the setup

Generate POF File

The following steps should be followed:

1. Start Quartus II software.

2. From Quartus II, start "Convert Programming File" utility from "File" menu as seen
in Figure 6.2.

3. Setup the conversion parameters (Figure 6.7):

• Select "Programming file Type" as "Programmer Object File (.pof)"

• Select "Configuration Device" as "EPCQ16" (or the correct one if another chip
is used).

• Select "Mode" as "Active Serial"

• Enter "File name" for the .pof file to be generated

4. Select the "SOF Data" line on the bottom panel and click "Add File" (Figure 6.8).

5. Browse and select the .sof file containing the hardware design.

6. Click "Generate" button.

7. A completion message is displayed. Click "OK" to close it.

Note: A Conversion Setup Data file has been created so the configuration can be set au-
tomatically. The file name is "sop_to_pof_conversion(AS).cof" and it is located in the
Quartus project directory. It can be used by clicking "Open Conversion Setup Data..."
button in the Converter window.

51

Chapter 6. Using The Tester

Figure 6.7: Setting up the conversion parameters

Figure 6.8: Adding the .sof file

Program the Device

1. Start Quartus II Programmer.

2. Click on "Hardware Setup..." and choose the connected download cable (e.g. USB
Blaster).

3. Set the "Mode" field to "Active Serial Programming".

4. Click on "Add File..." and choose the generated .pof file from the project directory.

5. Check "Program/Configure" option next to the device name.

6. When your programmer window looks like Figure 6.9 click the "Start" button.

7. The progress bar should show a successful operation.

Note: If after adding the file the programmer failed to detect the device, try "Auto De-
tect" first, select the device from the list and then use "Change File" option to choose the
programming file.

52

6.3 Programming Nios II Processor

Figure 6.9: Quartus II Programmer window after completing the setup

6.3 Programming Nios II Processor
If further development to the firmware is desired the Nios II Embedded Design Suite needs
to be installed. Nios II EDS is installed automatically with Quartus II software. Alterna-
tively, it can be obtained from Altera website as a stand alone package.

The following steps need to be followed the first time you run the software:

1. Start Nios II EDS software.

2. It will ask for the workspace location. Browse to "/Project location/ software/
soc_system_RT_CIV-workspace".

3. Make sure USB Blaster is connected to the JTAG connector on the tester.

4. Do the required modifications to the code.

5. Choose the "Run" option from "Run" menu as shown in Figure 6.10.

A progress bar should appear indicating the operation progress. Figure 6.10 shows
the Run option and how the window should look like. If the operation was unsuccessful,
the user is advised to check "Run Configuration" to make sure the EDS has detected the
programming cable. It can be opened from "Run" menu.

6.4 Programming the Microcontroller
Programming the AVR Atmega32U4 microcontroller can be done using the 6-pin In-
System Programming (ISP) connector on the left of the board. This is a standard program-

53

Chapter 6. Using The Tester

Figure 6.10: Nios II Embedded Design Suite

ming connector for Atmel AVR devices and all compatible programmers should support
by default. It is worth mentioning that this connector can be used only to program the
device, i.e. device debugging is not supported by the ISP protocol.

ISP was chosen over JTAG for programming mainly because of the smaller footprint
of the ISP connector compared to JTAG, which helped saving valuable PCB space. This
choice should be suitable for the application since development is assumed to be done on
an external platform and only the final working firmware needs to be transferred to the
tester. If debugging is urgently needed, however, the JTAG pins of the microcontroller
have been exposed just next to it in the form of PortF pins. A few wires can be used to
make a temporary JTAG connector. The author used this trick to debug the microcon-
troller’s firmware when a last minute bug was discovered.

The following steps should be followed to program the AVR device using Atmel ICE
programmer:

1. Launch Atmel Studio software.

2. From "File->Open->Project/Solution.." browse to the "USB_Interface" project di-
rectory and choose "USB_Interface.atsln" file.

3. After the solution opens launch the "Device Programmer" from the "Tools" menu.

54

6.4 Programming the Microcontroller

Figure 6.11: Setting up Atmel Device Programmer

4. Setup the programming parameters: (Figure 6.11)

• Tool: Atmel-ICE

• Device: ATmega32U4

• Interface: ISP

• ISP Clock: Any number below 250kHz

• Click "Set" to set the chosen ISP clock.

5. Click "Apply".

6. Click "Read" button next to "Device Signature" field.

7. If the device signature is displayed and no error message is shown proceed. Other-
wise, check that the programmer is connected and the device is powered on. The
correct "Target Voltage" should be displayed as well.

8. Close the "Device Programmer" window.

9. From "Debug" menu choose "Start Without Debugging".

10. The firmware now should be transferred to the microcontroller.

Note: If JTAG is used the user can follow a similar procedure with choosing "JTAG" as
the interface in the "Device Programmer" window.

55

Chapter 6. Using The Tester

6.5 Using the Graphical User Interface
After launching the Real-Time Tester GUI it will look similar to Figure 6.12. If no port is
selected, the buttons related to controlling the tester will be deactivated. The user can use
the timeout after which the software will stop waiting for an answer from the tester.

Figure 6.12: Real-time Tester Graphical User Interface

6.5.1 Performing a Test
1. Make sure the correct port is open.

2. Click "Start Test".

3. A message saying "Test successful" should be printed.

6.5.2 Reading Test Results
1. Make sure the correct port is open.

2. Click "Read Memory to SD" or "Read Memory to PC".

3. Messages in the status text-box (left of the window) will inform you of the operation
status and the log file storage location. The progress bar will show the progress of
the current operation.

4. The message ""Memory read successfully" should be printed if the operation ends
successfully.

56

6.5 Using the Graphical User Interface

6.5.3 Analyzing Test Results
The software offers the possibility to perform Basic Analysis and Time Analysis of the
collected data.

1. Select the log to be analyzed by clicking "Open Log File". The default log file
extension is ".rts".

2. Choose either "Basic Analysis" or "Time Analysis" to start the analysis.

3. Analysis output will be printed on the screen in a similar manner to Figure 7.6 and
Figure 7.7.

6.5.4 Configuring the Tester
The Tester can be easily configured by setting the desired parameters in the interface and
clicking "Configure". A success message will be displayed when the tester is configured.

57

Chapter 6. Using The Tester

58

Chapter 7
Testing and Result Analysis

This chapter will present the available testing techniques and how the SUT can be pro-
grammed in each of them. Finally, it will have an overview of performing result analysis
both manually and using the accompanying software.

7.1 Available Testing Techniques

7.1.1 Software Tags:

This technique is implemented using data lines and read/!write signal in the module where
SUT lowers read/!write signal after adding the desired data on the data lines. This oper-
ation takes place where the user has placed a mark in the code. How this software tag is
implemented depends on the system architecture and programming language selected by
the user. Figure 7.1 shows the desired behavior of the signal lines using software labels.

Clock

Read/!Write

Data DATA

Log

Figure 7.1: Desired behavior of logging with software tags

7.1.2 Interrupt to acknowledgment

Implemented by sending an interrupt signal on one of the interrupt lines; then the tester
waits for a response on the respective acknowledgment line. If SUT want to write back the

59

Chapter 7. Testing and Result Analysis

identification number, it places it out on the data lines before the acknowledgment signal
is raised. Figure 7.2 shows the desired behavior.

Clock

Interrupt

Acknowledgment

Data ID1 ID1

Log

Figure 7.2: Desired behavior of interrupt to acknowledgment tests

7.1.3 Interrupt to thread trigger
This gives an idea of the time taken from issuing an interrupt to running a thread that is
waiting for this interrupt. In this case, SUT must place the same identification number it
received on the bus and initialize a data-logging at the start of the thread that is triggered
by the operating system in response to the interrupt. Figure 7.3 demonstrates this.

Clock

Interrupt

Acknowledgment

Data D1 D1 D1

Log

Read/!Write

Figure 7.3: Desired behavior of interrupt activated thread test

7.2 Programming SUT to interact with the tester
The tester can be used to implement many different tests. The following sections give an
example of how to carry out tests of real-time systems as suggested in [15].

7.2.1 A to B Tests and Execution Logging
This type of testing is the most flexible of the test methods. It requires connecting the
read/!write signal and one or more data lines. The pseudo-code in Listing 7.1 shows how
a software label can be created in C to minimize the overhead during runtime; code 7.2 is

60

7.2 Programming SUT to interact with the tester

the equivalent function call. In the code below it is assumed that PORTB is connected to
the data lines and that the most significant bit (the 8th bit) is the read/!write signal, which
is set to 1. Using a macro instead of a function call avoids processor jump in assembly
code in order to implement a data logging. Using macros will increase the program size,
but the proposed macro is so short that it will make a very little difference and this penalty
is insignificant compared to the overhead produced by a function call.

A to B testing is performed by placing two labels, or more, in the code and a logging
operation is performed every time the execution arriving at one of these points. When the
test is completed the results will be analyzed and the user will be able to figure out how
long the program has taken between points. A practical example of A to B tests is how
much time does the processor take for context switching, synchronization of threads or
critical sections in addition to estimation of worst-case execution time.

Listing 7.1: Example of using the macro software label

d e f i n e TAG (d a t a) PORTB = d a t a ; \
PORTB & = ~(0 x80) ; \
PORTB | = 0x80 ;

Listing 7.2: Example of a function that places the software label

Void t a g (d a t a) {
PORTB = d a t a ;
PORTB & = ~(0 x80) ;
PORTB | = 0x80 ;
}

7.2.2 Interrupt to the Acknowledgment and Interrupt to Thread
By connecting the desired number of acknowledgment and interrupt signal pairs and using
pseudo code from Listing 7.3, the user can obtain information about the response time of a
system, which is the time taken between interrupt reception and the system starting to deal
with it. In the example code below, data lines are not being used. The average response
time can be found by analyzing the tester log data.

If the user includes the data lines, he/she can also see how long the system takes to
move from an interrupt to a thread waiting for it. Listing 7.4 shows an example of a code
to perform that. An important factor to consider here is that it can take variable times to
conduct context switching between threads or between an interrupt service routine (ISR)
and a thread because some processors include shadow registers or other techniques to
minimize switching time.

Listing 7.3: Example of ISR for the interrupt-to-acknowledgment test

void ISR () {
PORTA | = 0x1 ; / / Acknowledgment = 1

61

Chapter 7. Testing and Result Analysis

PORTA & = ~(0 x1) / / Acknowledgment = 0
}

Listing 7.4: Example of logging in a thread for an interrupt-to-thread test

void ISR () {
DDRB = 0 ; / / S e t t h e da ta d i r e c t i o n t o read
d a t a = PORTB; / / Read t h e g l o b a l v a r i a b l e da ta
PORTA | = 0x1 ; / / Acknowledgment = 1
PORTA & = ~(0 x1) ; / / Acknowledgment = 0
s i g n a l (t h r e a d) ; / / S i g n a l t o a t h r e a d
}

Void Thread () {
DDRB = 1 ; / / S e t t h e da ta d i r e c t i o n t o read
PORTB = d a t a ; / / Read t h e g l o b a l v a r i a b l e da ta
PORTB & = ~(0 x80) ; / / Togg le r / ! w l i n e t o s t a r t l o g g i n g
PORTB | = 0x80 ;
}

7.3 Analysing Test Results

7.3.1 Data Logging Format
Data logging is initiated upon receipt of acknowledgments, requests for data logs from
SUT or sending interrupts from the tester. The following information is included in each
log:

Start of frame (4 bits)
Is always b0101 so the user can see that the data is written to memory correctly.

Data type (2bits)
Indicates if this log was because of an acknowledgment, data log or interrupt.
Data types are, in order of priority, 2 for acknowledgments, 3 data logs and 1 for
interrupts.

Active interrupt signal (4 bits)
The active interrupt signals during logging.

Active acknowledgment signal (4 bits)
The active acknowledgment signals during logging.

Data (7 bits)
Data or identification number located on the data lines.

Timestamp (43 bits)
Time Counter value when data logging took place.

For example, this is a line from a data log generated by the tester

56C1500000011936

62

7.3 Analysing Test Results

When converted to binary, it will look like this:

0101 01 1011 0000 0101010 0000000000000000000000000010001100100110110

By applying the rules above to analyze this bit string we find that:

0101
Start of frame.

01
Type: data log is caused by an interrupt.

1011
Status of interrupt lines: all interrupt lines are high except for INT2.

0000
Status of acknowledgment lines: no acknowledgment is present.

0101010
Interrupt identification number is 42.

0000000000000000000000000010001100100110110
Timestamp: this log is recorded at time 71990.

7.3.2 Example of analyzing actual log data
Table 7.1 shows a few lines extracted from an actual log with their binary counterpart or-
ganized according to the format mentioned in the previous section. It is worth mentioning
that the time mentioned in the Timestamp column may not correspond to actual clock cy-
cles. This depends on the Time Scaler configuration of the tester. This will be explained
with a practical example in the next section.

We notice in the table that the interrupt signals are initially issued from time 165 until
216 and the value of the data type field is 01 indicating an interrupt-issued event. The
first acknowledgment is received at time 639 from ACK0. At this point, the data type
field changes to 102 (2) indicating and acknowledgment event even though INT0 line has
changed as well. This is because acknowledgment reception has more priority than inter-
rupt signal change.

The analysis can continue in the same manner to extract more information about the
test from log data and eventually a full timing diagram to describe the test can be built.
Figure 7.4 shows the timing diagram constructed based on the log data in the table.

7.3.3 Comparing log data to the actual signals
SignalTap II was used to capture the test shown in figure 7.5. Figure 7.6 shows part of
the analysis of the respective dump data generated by the RTS-tester GUI software. The
timing mentioned next is actually the number of clock cycle since the start of the test.
Since we are using a 50MHz clock oscillator (i.e. 20ns period), each number should be
multiplied with 20 to get the actual time in ns.

63

Chapter 7. Testing and Result Analysis

Table 7.1: Sample log data

Raw Hex Type INT Lines ACK Lines DATA Lines Timestamp
0 54400000000000a5 01 0001 0000 0000000 165
1 54c00000000000b6 01 0011 0000 0000000 182
2 55c00000000000c7 01 0111 0000 0000000 199
3 57c00000000000d8 01 1111 0000 0000000 216
4 5b8408000000027f 10 1110 0001 0000001 639
5 57c008000000029f 01 1111 0000 0000001 671
6 5b480800000003f5 10 1101 0010 0000001 1013
7 5a50080000000439 10 1001 0100 0000001 1081
8 56c0080000000483 01 1011 0000 0000001 1155
9 58e0080000000489 10 0011 1000 0000001 1161
10 55c00800000005e2 01 0111 0000 0000001 1506

INT3

INT2

INT1

INT0

ACK3

ACK2

ACK1

ACK0

Data 0 1

Figure 7.4: Timing diagram built based on extracted log data

Figure 7.5 shows that the first interrupt to be issued is INT0 at clock 495. Line 0 of the
analysis output in figure 7.6 shows that the interrupt bus has the value of 0001 at time 165,
meaning INT0 was activated at this moment. According to the configuration shown in the
same figure, the time scaler value is ’3’. This means that the scaling timer will count once
every three clock cycles. Therefore, the timestamp 165 corresponds to 495=165*3, which
is the same information we had from the logic analyzer.

7.3.4 Getting response duration information
Using the information presented earlier, one can easily deduce the response time for every
interrupt issued. The tester software can also be used to automatically calculate this data
and print it for each interrupt line. Figure 7.7 shows this information for the log example

64

7.3 Analysing Test Results

Figure 7.5: Tester signals captured by SignaTap II

Figure 7.6: Log data analysis result created by the tester software

presented earlier.

65

Chapter 7. Testing and Result Analysis

Figure 7.7: Interrupt-to-acknowledgment data extracted by the tester software

66

Chapter 8
Discussion

8.1 Board manufacturing and assembly
Several steps has been taken to reduce PCB manufacturing cost. Assembly cost, however,
has not been taken into account when calculating the final system cost. This is mainly
because we are lucky at NTNU to have our own PCB assembly lab, the Electronics and
Prototyping Lab (ElproLab). This lab has most of the necessary equipment such as a pick-
and-place machine, a reflow oven and a device for soldering/desoldering surface mount
components.

The pick-and-place machine could not be used for this project because it requires the
components to be fed to it in reels. In other words, a large quantity of components is
needed which was not feasible for our project. Therefore, assembly needed to bed done
manually by the lab staff using the stencil the author ordered with the PCB.

The lab took two weeks to assemble the board and then the author spent another week
debugging the PCB. Several Problems were found including reversed diodes and a few
shorted pads under one of the SMD components, the micro-SD card socket to be specific.
This required taking the boards back to the lab to do some further rework.

The main advantages of local PCB production are cost saving and being able to per-
sonally speak to the lab staff and clearly deliver feedback. However, if more boards are to
be ordered, it is recommended that the PCB manufacturer is asked to do the assembly as
well. The author checked with the used PCB manufacturing company (elecrow.com) and
they do offer assembly services. Components can be shipped directly to their location as
well. The author could not check the exact assembly cost though because it is job depen-
dent.

To be fair, the assembly problems at ElproLab could have happened because the pick-
and-place machine could not be used resulting in error caused by hand placement. Trying

67

Chapter 8. Discussion

to clarify the concerns mentioned above to the lab staff before any future work is probably
a good idea. Figure 8.1 shows the project PCB after assembly.

Figure 8.1: Assembled Tester PCB

8.2 Micro SD card connection
As mentioned in the previous section, some rework was needed to correct the micro SD
card socket connection to the PCB. Even after this rework and removing the shorted con-
nections, the microcontroller could not communicate with the card. Apparently, this time
the socket was not properly soldered to the board. To work around this, the SPI bus test
points were used to connect an external SD card adapter in order to get access to the micro
SD card. Figure 8.2 shows the connection made. Although it does not look very appeal-
ing, it was the only way to connect the memory card to the system and prove its operation
without wasting more time on reworks at the lab.

The good news is that this connection is not permanent. Instead of soldering, it was con-
nected to the board through a female-to-male header so it is easily removable. In fact,
after proving that the system is working correctly with the SD card, this connection was

68

8.3 Issues with PCB design

Figure 8.2: Connecting an SD card adapter to SPI test points

removed and data was transferred directly to the PC in the later phases of development.
So the prototype board will look perfectly normal except when the user wants to write the
log data directly to the micro-SD card instead of the PC.

8.3 Issues with PCB design

After soldering the PCB, examination revealed a problem with the design that prevented
FPGA configuration over JTAG. The TDI and TDO pins from the JTAG connector were
flipped relative to the ones on FPGA side causing the FPGA not to be detected by the
programming cable. This problem can be easily fixed, but it needs some soldering effort.

As shown in the simplified connection figure below (figure 8.3) TDI and TDO are con-
nected to the FPGA through 100Ω resistors.

These resistors were added for extra protection, but neither Altera nor the JTAG proto-
col requires them. Therefore, they can be harmlessly removed to correct the wire connec-
tions as shown in figure 8.4.

This patch was applied to the actual hardware as shown in figure 8.5, successfully re-
sulting in operational JTAG connection.

69

Chapter 8. Discussion

Figure 8.3: Connection problem causing JTAG configuration failure

Figure 8.4: Correcting the connection problem

Figure 8.5: Tester PCB before (left) and after (right) the correction

It is worth mentioning that this problem has been corrected in the PCB design files, so
the user does not need to worry about this if a new batch of PCBs is to be manufactured.

8.4 Recommendations for PCB design improvements
Although the final PCB is fully functional, there are some notes that might make dealing
with the hardware more convenient if a future version is made.

• Adding more power pins
Six GND pins and one 3V3 pin are available on the PCB. Anyway, having extra
5VUSB and 3V3 pins can be very useful.

• Making test points have Dual Inline Package (DIP) pin pitch
Currently, the distance between neighboring test points is slightly larger than DIP

70

8.5 RTS-tester vs. a logic/bus analyser [15]

pin pitch, which is 2.54mm. This is useful if a DIP connector is intended to be used.

• Test points labeling Having the test points labeled on the silkscreen of both sides
of the PCB rather than one side.

• Labeling Raspberry Pi connections on both PCB sides

• Changing the Schmitt trigger chip
The 74HC7014 hex Schmitt trigger buffer is used in the design. This chip is very
rare and probably discontinued. The 74HC7541 octal Schmitt trigger buffer chip is
recommended as a replacement.

• Removing extra components
As mentioned in section 3.5 there are several components used for redundancy and
prototyping and they can be removed from future designs.

• Changing board shape
If conforming to Raspberry Pi HAT specifications is intended, board dimensions
should be changed to fit the specified shape.

8.5 RTS-tester vs. a logic/bus analyser [15]
Dedicated Systems Experts uses a PCI bus analyzer in their work [23]. This requires direct
access to the system bus, something very few microcontrollers have. The tester developed
in this project require GPIO pins, something most microcontrollers have. Another similar
option is a logic analyzer.

Neither bus analyzer nor logic analyzer can produce stimuli and they require that the
user uses a form of signal generator. The signal generator may be a microcontroller that is
programmed to send interrupt and produce data packets. Beyond that, it will be necessary
to verify the correct behavior of the microcontroller. Pin number may be another problem.
The logic analyzer must use one or more pins to sample the outputs of the signal generator
in addition to sample data from the system under test.

It is important to record accurately the timing of stimuli applied the system to carry
out a good analysis. If all data lines from the microcontroller are sampled, one must also
get around the problem of synchronization between the assumed sent data and the actually
sent data. In addition to that, high-quality logic analysers are very expensive so the user
must choose between an expensive analyzer and limited access to information from the
system. The system implemented in this project provides test information and verified
behavior along with low cost.

8.6 System cost
One of the project goals was to keep the system cost below EUR 50. Table 8.1 lists the
prices of the used components in addition to the PCB cost. The following points should
be taken into consideration when reading the table.

71

Chapter 8. Discussion

• The cost of development, research, debugging, etc. is not considered.

• Board assembly was done at NTNU with no cost.

• PCB is manufactured at elecrow.com

• PCB shipping cost is not considered. If the normal China mail is used, shipping cost
per PCB can be negligible. This option would have been used if the project did not
have a tight deadline.

• "Lowest Price" column shows the prices of some components when purchased from
other retailers besides Mouser. Some parts, like the micro-SD card socket and USB
connector, can be found for extremely cheap prices when 10 or 20 pieces are or-
dered.

• The Configuration Device listed is the Altera chip equivalent from Spansion.

Table 8.1: An overview of components cost

Component Component Name Mouser Price (e) Lowest Price (e)

Passive components 5 4
50MHz Oscillator VCC1-B3B-50M 0.51 0.51
8MHz Crystal 4SMX-8MHz 1.27 1.27
Micro-SD Card Socket 2.548 0.1
USB Mini-B Connector 0.45 0.05
3.3V Regulator LD29300P2M33R 1.41 1.41
2.5V Regulator LDK130M25R 0.48 0.48
1.2V Regulator LD1117AS12TR 0.64 0.64
Voltage Level Shifter GTL2000 2.73 2.73
Bus Multiplexer 74CBTLV3257D 0.57 0.57
Configuration Device S25FL116K 0.43 0.43
EEPROM CAT24C256WI-G 0.73 0.73
Microcontroller Atmega32U4 6.19 3.44
FPGA EP4CE15E22C8N 22.65 22.65
PCB 1.45 1.45
Sum 47.06 40.46

The table shows that the project target price has been successfully reached. Further-
more, the cost can be easily driven lower to 40ewith just 3 components ordered from other
retailers, that’s even without considering ordering the other components in quantities over
10, which will drive the cost even lower.

72

8.7 Conforming to HAT specifications

8.7 Conforming to HAT specifications
As mentioned in section 3.5 the tester has been designed to conform to HAT specifications
of Raspberry Pi. However, due to the need of adding extra components to the PCB for de-
bugging purposes or for extra functionality, the RTS-tester does not fully adhere to these
specifications. Extra components like the AS configuration interface, user GPIO pins and
their protection circuit and non-essential user peripherals can be eliminated from the future
designs. By doing so, it will be easier to modify the PCB layout and publish it as standard
Raspberry Pi HAT.

8.8 Notes about using the tester
• The R/!W line should be kept at logic ’1’ whenever the tester is required to perform

an action, e.g. issue interrupts or change data lines. Having this line on logic ’0’
will put the tester in "reading" mode, because read/!write here is from the SUT
perspective.

• Problems with memory access have been noticed when the memory writing mode
in the tester is set to Normal. It is highly recommended that Burst mode is activated
at all times.

• Due to the bug mentioned in Section 2.3, all ACK lines must be held at logic ’0’ in
order for the tester to issue any interrupts, even if only some of the interrupt lines
are activated in configuration.

• The 74HC7014 Schmitt trigger chip is used in the design to provide basic debounc-
ing for the push buttons and buffering for the Configuration Done LED. However,
as seen in Figure 8.1 the place of the chip is empty because it was not available at
Mouser when the components were order. If the chip is not found and the push but-
tons are needed, the user can solder the input and output pins of the chip connected
to them and deal with the debounce in software. The Done LED connection should
not be soldered. To know the exact pin locations please refer to Appendix A for the
design schematics.

• The default tester configurations are:
Active Interrupts: All
Interrupt Period: 10us
Burst Mode: On
Time Scaler: 3
Hold Time 1ns
Test Duration: 10ms

• Another bug has been discovered in the tester IP. The actual test results are not
pushed from the buffer to the memory until the next test. Therefore, two consecutive
tests need to be performed in order to get the results for the first one. This issue has
been taken care of in the GUI and the user does not need to worry about it.

73

Chapter 8. Discussion

The test parameters will be reset to these values after each power on. Otherwise, the tester
will keep the programmed parameters even if the GUI was closed and opened again.

8.9 Future work

The produced system can be considered a "complete product". However, more improve-
ments can be made to enhance its features and increase its usability.

Enhanced log data analysis

As explained in section 7.3.3, the PC software already has the capability of analysing the
raw log data to produce the test results. Anyway, this operation can still be improved to
offer more useful details to the user. For example, expanding it to cover other test modes
besides interrupt-to-acknowledgment tests. An extra nice feature to have is the ability to
recreate the signal timing diagram from the log data in a manner similar to figure 7.4.
Adding additional features to the software is mostly straightforward because of its the
modular structure and the features of C#.

Making the PCB compliant to Raspberry Pi HAT specification

The reader can refer to section 3.5 where the required modifications are explained in de-
tails.

Controlling the tester from a smartphone

This feature has been planned and the necessary connection was added to the PCB. A
future developer can use the TX/RX pins on the PCB to connect a Bluetooth module
similar to the one in Figure 8.6 and interface it to any smartphone. Since the implemented
interface between with Nios II is simple ASCII based commands, this task should be easy
to implement.

Figure 8.6: A proposed Bluetooth module with UART interface

It is important that the UART unit in the microcontroller is disabled before connecting the
Bluetooth module.

74

8.9 Future work

Open-source materials

The most of the materials of this project have been published as open-source on the au-
thor’s Github web page at the address: https://github.com/ditek

75

https://github.com/ditek

Chapter 8. Discussion

76

Chapter 9
Conclusion

This project was set out to create a platform independent, low-cost solution for testing real-
time systems. The basis of the project is a real-time testing IP created within a previous
master thesis at NTNU. The report shows how the functionality of this IP was debugged,
corrected and verified before a dedicated hardware of the tester was created.

The resulting platform has dimensions of 10*10 cm2 that partially follows the stan-
dard form factor of Raspberry Pi 2 model B as a proposed SUT. Despite that, it is possible
to connect any external device to the tester. Additional IOs and peripherals were included
to allow the user to add custom functionality. In addition, extra care has been taken of
protection against power supply problems and user mistakes.

The test system has a resolution of 20ns and can perform a new logging every 80ns,
which corresponds to a rate of 12.5 MHz. It can maintain an interruption rate of 2.5 MHz
with four interrupt lines and 8.33 MHz with one line. The tester may log data with unique
timestamps over a period of n ∗ 243 ∗ 20ns with a resolution of n ∗ 20ns where n is clock
scaling. That is, a test time of 48.9 hours with a resolution of 20ns. Clock scaling will be
sufficient for most test requirements for real-time systems.

An easy to use graphical user interface has also been created to allow the user to cus-
tomize test parameters, perform data analysis and save test results to the PC or the the
on-board micro SD card.

This work can be considered as a complete system, which the user can connect to an
external SUT and then use the accompanying PC software to analyze the resulting test data
log. A good way to improve the user experience is to enhance the analysis operation by
adding more features to it. Other potential improvements include modifying the design of
the device to become a standard add-on for a popular embedded system (e.g. a HAT for
the Raspberry Pi) and enhancing device usability by developing a Bluetooth-based smart-
phone interface for example. The basis of all these improvements has been implemented

77

Chapter 9. Conclusion

with various degrees of completeness as explained in the Discussion chapter.

Finally, this project has successfully met its goals and produced a fully functional real-
time testing platform that costs less than EUR 50. The various features of this device
ensure that it can provide labs and universities with a reliable solution that is both high-
quality and low-cost.

78

Bibliography

[1] Altera. Avalon Interface Specifications.

[2] Altera. Configuration and remote system upgrades in cyclone iv devices, 5 2013.

[3] Altera. Altera device package information, 8 2014.

[4] Altera. Cyclone iv device datasheet, 10 2014.

[5] Altera. Cyclone iv device overview, 10 2014.

[6] Altera. Cyclone v device overview, 10 2014.

[7] Altera. Quartus ii help pages. http://quartushelp.altera.com/14.
0/master.htm#mergedProjects/quartus/gl_quartus_welcome.
htm, 2014.

[8] Altera. Pdn tool. http://wl.altera.com/technology/signal/
power-distribution-network/sgl-pdn.html, 2015.

[9] Atmel. Atmega32u4 datasheet, 9 2014.

[10] Dean Camera. Lufa usb framework. www.fourwalledcubicle.com/LUFA.
php, 26.6.2015.

[11] Analog Devices. Decoupling techniques, 3 2009.

[12] Raspberry Pi Foundation. Add-on boards and hats. https://github.com/
raspberrypi/hats, 26.6.2015.

[13] Raspberry Pi Foundation. Hat id eeprom format specification. https://github.
com/raspberrypi/hats/blob/master/eeprom-format.md,
26.6.2015.

[14] Raspberry Pi Foundation. Introducing raspberry pi hats. https://www.
raspberrypi.org/introducing-raspberry-pi-hats, 26.6.2015.

79

http://quartushelp.altera.com/14.0/master.htm#mergedProjects/quartus/gl_quartus_welcome.htm
http://quartushelp.altera.com/14.0/master.htm#mergedProjects/quartus/gl_quartus_welcome.htm
http://quartushelp.altera.com/14.0/master.htm#mergedProjects/quartus/gl_quartus_welcome.htm
http://wl.altera.com/technology/signal/power-distribution-network/sgl-pdn.html
http://wl.altera.com/technology/signal/power-distribution-network/sgl-pdn.html
www.fourwalledcubicle.com/LUFA.php
www.fourwalledcubicle.com/LUFA.php
https://github.com/raspberrypi/hats
https://github.com/raspberrypi/hats
https://github.com/raspberrypi/hats/blob/master/eeprom-format.md
https://github.com/raspberrypi/hats/blob/master/eeprom-format.md
https://www.raspberrypi.org/introducing-raspberry-pi-hats
https://www.raspberrypi.org/introducing-raspberry-pi-hats

[15] Kyrre E. A. Gonsholt. Sanntidsystemtester. Master’s thesis, NTNU, 2015.

[16] Mouser. Altera cyclone v fpgas. http://no.mouser.com/new/altera/
altera-cyclonev/, 18.06.2015.

[17] Philips. Bi-directional level shifter for i2c-bus. http://www.adafruit.com/
datasheets/an97055.pdf, 2004.

[18] Rocketboards. Arrow sockit evaluation board. http://www.rocketboards.
org/foswiki/Documentation/ArrowSoCKitEvaluationBoard,
18.06.2015.

[19] Rocketboards. Gsrd v14.0 - user manual - arrow sockit edition. http://www.
rocketboards.org/foswiki/Documentation/GSRDGhrd, 18.06.2015.

[20] Cypress Semiconductor. Protecting your low voltage electronic
devices from electrical overstress. http://www.embedded.
com/design/prototyping-and-development/4423709/
Protecting-your-low-voltage-electronic-devices-from+
electrical-overstress, 2013.

[21] Siemens. Ptc thermistors guide. http://www.hems.de/uploads/media/
PTC_siemens.pdf, 2015.

[22] William Stallings. Operating Systems: Internals and Designs Principles. Pearson
Education, 7 edition, 2012.

[23] Dedicated Systems. Real-time testing documents. http://download.
dedicated-systems.info/, 26.6.2015.

[24] terasic.com.tw. Sockit producer webpage. http://www.terasic.com.tw/
cgi-bin/page/archive.pl?CategoryNo=167&No=816, 18.06.2015.

[25] Kolja Waschk. Usb jtag project. http://ixo-jtag.sourceforge.net/,
26.6.2015.

[26] Mosaic Documentation Web. Raspberri pi gpio electrical specifications.
http://www.mosaic-industries.com/embedded-systems/
microcontroller, 26.6.2015.

[27] Wikipedia. Raspberry pi. https://en.wikipedia.org/wiki/
Raspberry_Pi, 26.6.2015.

80

http://no.mouser.com/new/altera/altera-cyclonev/
http://no.mouser.com/new/altera/altera-cyclonev/
http://www.adafruit.com/datasheets/an97055.pdf
http://www.adafruit.com/datasheets/an97055.pdf
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/ArrowSoCKitEvaluationBoard
http://www.rocketboards.org/foswiki/Documentation/GSRDGhrd
http://www.rocketboards.org/foswiki/Documentation/GSRDGhrd
http://www.embedded.com/design/prototyping-and-development/4423709/Protecting-your-low-voltage-electronic-devices-from+electrical-overstress
http://www.embedded.com/design/prototyping-and-development/4423709/Protecting-your-low-voltage-electronic-devices-from+electrical-overstress
http://www.embedded.com/design/prototyping-and-development/4423709/Protecting-your-low-voltage-electronic-devices-from+electrical-overstress
http://www.embedded.com/design/prototyping-and-development/4423709/Protecting-your-low-voltage-electronic-devices-from+electrical-overstress
http://www.hems.de/uploads/media/PTC_siemens.pdf
http://www.hems.de/uploads/media/PTC_siemens.pdf
http://download.dedicated-systems.info/
http://download.dedicated-systems.info/
http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=167&No=816
http://www.terasic.com.tw/cgi-bin/page/archive.pl?CategoryNo=167&No=816
http://ixo-jtag.sourceforge.net/
http://www.mosaic-industries.com/embedded-systems/microcontroller
http://www.mosaic-industries.com/embedded-systems/microcontroller
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/Raspberry_Pi

Appendix A
PCB Design Schematics

81

1

1

2

2

3

3

4

4

D D

C C

B B

A A

1

*
*
*
*
*18

TOP
1 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\Top.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

U_PSU
PSU.SchDoc

SW[0..3]
LED[0..3]

STATUS_LED

U_LEDs_Switches
LEDs_Switches.SchDoc

USB_DATA

MCU_SPI

MCU_I2C

MCU_UART

SPI_Master/!Slave

U_MCU_USB_Interface
MCU_USB_Interface.SchDoc

HARD_JTAG
AS_INTERFACE

FPGAIO_A[2..27]
FPGAIO_B[0..21]

USB_DATA

FPGA_SPIMCU_SPI

I2C

SPI_Master/!Slave

U_Connectors
Connectors.SchDoc

HARD_JTAG
AS_INTERFACE

STATUS_LEDFPGA_SPI

FPGA_I2C

FPGAIO_A[2..27]
FPGAIO_B[0..21]

FPGA_UART

SW[0..3]
LED[0..3]

U_FPGA
FPGA.SchDoc

TX
RX

MCU_UART

TX
RX

FPGA_UART

I2C

U_EEPROM
EEPROM.SchDoc

1

1

2

2

3

3

4

4

D D

C C

B B

A A

2

*
*
*
*
*18

CONNECTORS
2 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\Connectors.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

1
2

P6VCC_HDR

GND

5V0_USB

GND

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40

P5

GND

GND

GND

GND

GND

GND

GND

GND

5V0_RPi

SDA SCL

GPIO_A6_INTC

GPIO_A8_ACKA
GPIO_A9_ACKB

GPIO_A18_DATA2

GPIO_A19_DATA3
GPIO_A20_DATA4
GPIO_A21_DATA5

GPIO_A22_DATA6 GPIO_A23_R/!W
GPIO_A24

GPIO_A25

GPIO_A26

GPIO_A27

GPIO_A2
GPIO_A3
GPIO_A4_INTA
GPIO_A5_INTB
GPIO_A6_INTC
GPIO_A7_INTD
GPIO_A8_ACKA
GPIO_A9_ACKB
GPIO_A10_ACKC
GPIO_A11_ACKD
GPIO_A12
GPIO_A13
GPIO_A14
GPIO_A15
GPIO_A16_DATA0
GPIO_A17_DATA1
GPIO_A18_DATA2
GPIO_A19_DATA3
GPIO_A20_DATA4
GPIO_A21_DATA5
GPIO_A22_DATA6
GPIO_A23_R/!W

GPIO_A3
GPIO_A4_INTA

GPIO_A10_ACKC

GPIO_A11_ACKD

GPIO_A12
GPIO_A13

GPIO_A14
GPIO_A15

GPIO_A16_DATA0

GPIO_A17_DATA1

200k
R1

24x270ohm

GPIO_A2

GPIO_A5_INTB

GPIO_A7_INTD

GND

3V3

1
2
3
4

P1

1
2
3
4
5
6
7
8

P4

1
2
3
4

P3

GPIO_A4_INTA
GPIO_A5_INTB
GPIO_A6_INTC
GPIO_A7_INTD

GPIO_A8_ACKA
GPIO_A9_ACKB
GPIO_A10_ACKC
GPIO_A11_ACKD

GPIO_A16_DATA0
GPIO_A17_DATA1
GPIO_A18_DATA2
GPIO_A19_DATA3
GPIO_A20_DATA4
GPIO_A21_DATA5
GPIO_A22_DATA6
GPIO_A23_R/!W

100nF
C1

GND

200k
R31

GND

3V3

100nF
C2

GND

GPIO_B0
GPIO_B1
GPIO_B2
GPIO_B3
GPIO_B4
GPIO_B5
GPIO_B6
GPIO_B7
GPIO_B8
GPIO_B9
GPIO_B10
GPIO_B11
GPIO_B12
GPIO_B13
GPIO_B14
GPIO_B15
GPIO_B16

GPIO_A24
GPIO_A25

GPIO_B0
GPIO_B1
GPIO_B2
GPIO_B3
GPIO_B4
GPIO_B5
GPIO_B6
GPIO_B7
GPIO_B8
GPIO_B9
GPIO_B10
GPIO_B11
GPIO_B12
GPIO_B13
GPIO_B14
GPIO_B15
GPIO_B16
GPIO_B17

3V3

GND

FPGAIO_A[2..25]

HARD_JTAG

AS_INTERFACE

U_Config_Interfaces
Config_Interfaces.SchDoc

HARD_JTAG

AS_INTERFACE

FPGAIO_A[2..27] FPGAIO_A[2..27]

FPGAIO_B[0..21] FPGAIO_B[0..21]

uSD_SPI

U_MicroSD
MicroSD.SchDoc

D-
D+

USB_DATA

USB_DATA

FPGAIO_A2
FPGAIO_A3
FPGAIO_A4
FPGAIO_A5
FPGAIO_A6
FPGAIO_A7
FPGAIO_A8
FPGAIO_A9
FPGAIO_A10
FPGAIO_A11
FPGAIO_A12
FPGAIO_A13
FPGAIO_A14
FPGAIO_A15
FPGAIO_A16
FPGAIO_A17
FPGAIO_A18
FPGAIO_A19
FPGAIO_A20
FPGAIO_A21
FPGAIO_A22
FPGAIO_A23

FPGAIO_A24
FPGAIO_A25

FPGAIO_B0
FPGAIO_B1
FPGAIO_B2
FPGAIO_B3
FPGAIO_B4
FPGAIO_B5
FPGAIO_B6
FPGAIO_B7
FPGAIO_B8
FPGAIO_B9
FPGAIO_B10
FPGAIO_B11
FPGAIO_B12
FPGAIO_B13
FPGAIO_B14
FPGAIO_B15
FPGAIO_B16
FPGAIO_B17

MISO
MOSI
SCK
SS

FPGA_SPI

FPGA_SPI

MISO
MOSI
SCK
SS

MCU_SPI

MCU_SPI

nCS

MOSI
MISO

SCK

uSD_SPI

SDA
SCL

I2C

I2C SDA
SCL 1

2

P7
2.2k
R41

2.2k
R42

3V3
3V3

3V3

3V3

I2C

RPi Header

ACK

Data/Ctrl

INT

I2C

Ext_Power

67503-1020

VBUS1 MH4

D-2

D+3

ID4

GND5 MH1

MH3

MH2

J6

GND

S1

1B1 2

1B2 31A4

2B1 5

2B2 62A7

GND 8

3A9

3B2 103B1 11

4A12

4B2 134B1 14

BE15

VCC16

U11

74CBTLV3257D

3V3

GNDGND

SPI_Master/!Slave

100nF
C14

GND

GPIO_B17
GPIO_B18
GPIO_B19
GPIO_B20
GPIO_B21

FPGAIO_B18
FPGAIO_B19
FPGAIO_B20
FPGAIO_B21

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

P2

Header 24

GPIO_B19
GPIO_B20
GPIO_B21

GPIO_B18

GND1

SREF2

S13

S24

S35

S46

S57

S68

S79

S810

S911

S1012

S1113

S1214

S1315

S1416

S1517

S1618

S1719

S1820

S1921

S2022

S2123

S2224 D22 25D21 26D20 27D19 28D18 29D17 30D16 31D15 32D14 33D13 34D12 35D11 36D10 37D9 38D8 39D7 40D6 41D5 42D4 43D3 44D2 45D1 46

DREF 47GREF 48
U1

GTL2000

GND1

SREF2

S13

S24

S35

S46

S57

S68

S79

S810

S911

S1012

S1113

S1214

S1315

S1416

S1517

S1618

S1719

S1820

S1921

S2022

S2123

S2224 D22 25D21 26D20 27D19 28D18 29D17 30D16 31D15 32D14 33D13 34D12 35D11 36D10 37D9 38D8 39D7 40D6 41D5 42D4 43D3 44D2 45D1 46

DREF 47GREF 48
U2

GTL2000

PIC101 PIC102
COC1

PIC201 PIC202
COC2

PIC1401

PIC1402
COC14

PIJ601

PIJ602

PIJ603

PIJ604

PIJ605 PIJ60MH1

PIJ60MH2

PIJ60MH3

PIJ60MH4

COJ6

PIP101

PIP102

PIP103

PIP104

COP1

PIP201

PIP202

PIP203

PIP204

PIP205

PIP206

PIP207

PIP208

PIP209

PIP2010

PIP2011

PIP2012

PIP2013

PIP2014

PIP2015

PIP2016

PIP2017

PIP2018

PIP2019

PIP2020

PIP2021

PIP2022

PIP2023

PIP2024

COP2

PIP301

PIP302

PIP303

PIP304

COP3

PIP401

PIP402

PIP403

PIP404

PIP405

PIP406

PIP407

PIP408

COP4

PIP501 PIP502

PIP503 PIP504

PIP505 PIP506

PIP507 PIP508

PIP509 PIP5010

PIP5011 PIP5012

PIP5013 PIP5014

PIP5015 PIP5016

PIP5017 PIP5018

PIP5019 PIP5020

PIP5021 PIP5022

PIP5023 PIP5024

PIP5025 PIP5026

PIP5027 PIP5028

PIP5029 PIP5030

PIP5031 PIP5032

PIP5033 PIP5034

PIP5035 PIP5036

PIP5037 PIP5038

PIP5039 PIP5040

COP5

PIP601

PIP602

COP6
PIP701

PIP702

COP7

PIR101

PIR102
COR1

PIR201 PIR202
COR2

PIR501 PIR502
COR5

PIR1401 PIR1402
COR14

PIR1501 PIR1502
COR15

PIR1601 PIR1602
COR16

PIR1701 PIR1702
COR17

PIR1801 PIR1802
COR18

PIR1901 PIR1902
COR19

PIR2001 PIR2002
COR20

PIR2101 PIR2102
COR21

PIR2201 PIR2202
COR22

PIR2301 PIR2302
COR23

PIR2401 PIR2402
COR24

PIR2501 PIR2502
COR25

PIR2601 PIR2602
COR26

PIR2701 PIR2702
COR27

PIR2801 PIR2802
COR28

PIR2901 PIR2902
COR29

PIR3001 PIR3002
COR30

PIR3101

PIR3102
COR31

PIR3501 PIR3502
COR35

PIR3601 PIR3602
COR36

PIR3701 PIR3702
COR37

PIR3801 PIR3802
COR38

PIR3901 PIR3902
COR39

PIR4101

PIR4102

COR41
PIR4201

PIR4202

COR42

PIU101

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU108

PIU109

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

PIU1019

PIU1020

PIU1021

PIU1022

PIU1023

PIU1024 PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034

PIU1035

PIU1036

PIU1037

PIU1038

PIU1039

PIU1040

PIU1041

PIU1042

PIU1043

PIU1044

PIU1045

PIU1046

PIU1047

PIU1048

COU1

PIU201

PIU202

PIU203

PIU204

PIU205

PIU206

PIU207

PIU208

PIU209

PIU2010

PIU2011

PIU2012

PIU2013

PIU2014

PIU2015

PIU2016

PIU2017

PIU2018

PIU2019

PIU2020

PIU2021

PIU2022

PIU2023

PIU2024 PIU2025

PIU2026

PIU2027

PIU2028

PIU2029

PIU2030

PIU2031

PIU2032

PIU2033

PIU2034

PIU2035

PIU2036

PIU2037

PIU2038

PIU2039

PIU2040

PIU2041

PIU2042

PIU2043

PIU2044

PIU2045

PIU2046

PIU2047

PIU2048

COU2

PIU1101

PIU1102

PIU1103

PIU1104

PIU1105

PIU1106

PIU1107

PIU1108

PIU1109

PIU11010

PIU11011

PIU11012

PIU11013

PIU11014

PIU11015

PIU11016

COU11

PIC1401

PIP201
PIR102

PIR3102

PIR4101
PIR4201

PIU102

PIU202

PIU11016 PIP502

PIP504

PIJ601

POAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACE

PIC102

PIC202PIC1402

PIJ605 PIJ60MH1

PIJ60MH2

PIJ60MH3

PIJ60MH4

PIP2024

PIP506

PIP509

PIP5014

PIP5020

PIP5025

PIP5030

PIP5034

PIP5039

PIP602

PIU101

PIU201

PIU1108

PIU11015

NLGND

PIP503

PIU1046

NLGPIO0A2

PIP505

PIU1045

NLGPIO0A3

PIP101

PIP507

PIU1044

NLGPIO0A40INTA

PIP102

PIP5029

PIU1043

NLGPIO0A50INTB
PIP103

PIP5031

PIU1042

NLGPIO0A60INTC

PIP104

PIP5026

PIU1041

NLGPIO0A70INTD

PIP301

PIP5024

PIU1040

NLGPIO0A80ACKA

PIP302

PIP5021

PIU1039

NLGPIO0A90ACKB

PIP303

PIP5019

PIU1038

NLGPIO0A100ACKC

PIP304

PIP5023

PIU1037

NLGPIO0A110ACKD

PIP5032

PIU1036

NLGPIO0A12

PIP5033

PIU1035

NLGPIO0A13

PIP508

PIU1034

NLGPIO0A14
PIP5010

PIU1033

NLGPIO0A15

PIP401

PIP5036

PIU1032

NLGPIO0A160DATA0

PIP402

PIP5011

PIU1031

NLGPIO0A170DATA1

PIP403

PIP5012

PIU1030

NLGPIO0A180DATA2
PIP404

PIP5035

PIU1029

NLGPIO0A190DATA3

PIP405

PIP5038

PIU1028

NLGPIO0A200DATA4

PIP406

PIP5040

PIU1027

NLGPIO0A210DATA5

PIP407

PIP5015

PIU1026

NLGPIO0A220DATA6

PIP408

PIP5016

PIU1025

NLGPIO0A230R0!W

PIP5018

PIR3502

NLGPIO0A24

PIP5022

PIR3602

NLGPIO0A25

PIP5037
NLGPIO0A26

PIP5013
NLGPIO0A27

PIP202

PIU2025

NLGPIO0B0

PIP203

PIU2026

NLGPIO0B1

PIP204

PIU2027

NLGPIO0B2

PIP205

PIU2028

NLGPIO0B3

PIP206

PIU2029

NLGPIO0B4
PIP207

PIU2030

NLGPIO0B5

PIP208

PIU2031

NLGPIO0B6

PIP209

PIU2032

NLGPIO0B7

PIP2010

PIU2033

NLGPIO0B8

PIP2011

PIU2034

NLGPIO0B9
PIP2012

PIU2035

NLGPIO0B10

PIP2013

PIU2036

NLGPIO0B11

PIP2014

PIU2037

NLGPIO0B12

PIP2015

PIU2038

NLGPIO0B13

PIP2016

PIU2039

NLGPIO0B14
PIP2017

PIU2040

NLGPIO0B15

PIP2018

PIU2041

NLGPIO0B16

PIP2019

PIU2042

NLGPIO0B17

PIP2020

PIU2043

NLGPIO0B18

PIP2021

PIU2044

NLGPIO0B19
PIP2022

PIU2045

NLGPIO0B20

PIP2023

PIU2046

NLGPIO0B21

POHARD0JTAGPOHARD0JTAGPOHARD0JTAGPOHARD0JTAG

PIC101PIR101
PIU1047

PIU1048

PIC201PIR3101
PIU2047

PIU2048

PIJ602POUSB0DATA
PIJ603

POUSB0DATA

PIJ604

PIP501

PIP5017

PIR202PIU103

PIR502PIU104

PIR1402PIU108

PIR1502PIU109

PIR1602PIU1010

PIR1702PIU1011

PIR1802PIU1012

PIR1902PIU1013

PIR2002PIU1014

PIR2102PIU1015

PIR2202PIU1016

PIR2302PIU1017

PIR2402PIU1018

PIR2502PIU1019

PIR2602PIU1020

PIR2702PIU1021

PIR2802PIU1022

PIR2902PIU1023

PIR3002PIU1024

PIR3702PIU105

PIR3802PIU106

PIR3902PIU107

PIU1101POSPI0Master0!Slave

PIU1102

POFPGA0SPI

PIU1103

POMCU0SPI

PIU1104

PIU1105 POFPGA0SPI
PIU1106

POMCU0SPI

PIU1107

PIU1109

PIU11010

POMCU0SPI

PIU11011

POFPGA0SPI

PIU11012

PIU11013

POMCU0SPI

PIU11014

POFPGA0SPI

PIP5028

PIP702
PIR4202

NLSCLPOI2C PIP5027PIP701
PIR4102 NLSDAPOI2C PIP601

PIR201
NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A2

POFPGAIO0A0200270

PIR501

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A3

POFPGAIO0A0200270

PIR3701

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A4

POFPGAIO0A0200270

PIR3801

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A5

POFPGAIO0A0200270

PIR3901

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A6

POFPGAIO0A0200270

PIR1401

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A7

POFPGAIO0A0200270

PIR1501

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A8

POFPGAIO0A0200270

PIR1601

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A9

POFPGAIO0A0200270

PIR1701

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A10

POFPGAIO0A0200270

PIR1801

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A11

POFPGAIO0A0200270

PIR1901

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A12

POFPGAIO0A0200270

PIR2001

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A13

POFPGAIO0A0200270

PIR2101

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A14

POFPGAIO0A0200270

PIR2201

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A15

POFPGAIO0A0200270

PIR2301

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A16

POFPGAIO0A0200270

PIR2401

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A17

POFPGAIO0A0200270

PIR2501

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A18

POFPGAIO0A0200270

PIR2601

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A19

POFPGAIO0A0200270

PIR2701

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A20

POFPGAIO0A0200270

PIR2801

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A21

POFPGAIO0A0200270

PIR2901

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A22

POFPGAIO0A0200270

PIR3001

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A23

POFPGAIO0A0200270

PIR3501

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A24

POFPGAIO0A0200270

PIR3601

NLFPGAIO0A0200250

NLFPGAIO0A0200270

NLFPGAIO0A25

POFPGAIO0A0200270NLFPGAIO0A0200270POFPGAIO0A0200270NLFPGAIO0A0200270POFPGAIO0A0200270

PIU2024

NLFPGAIO0B0000210

NLFPGAIO0B0

POFPGAIO0B0000210

PIU2023

NLFPGAIO0B0000210

NLFPGAIO0B1

POFPGAIO0B0000210

PIU2022

NLFPGAIO0B0000210

NLFPGAIO0B2

POFPGAIO0B0000210

PIU2021

NLFPGAIO0B0000210

NLFPGAIO0B3

POFPGAIO0B0000210

PIU2020

NLFPGAIO0B0000210

NLFPGAIO0B4

POFPGAIO0B0000210

PIU2019

NLFPGAIO0B0000210

NLFPGAIO0B5

POFPGAIO0B0000210

PIU2018

NLFPGAIO0B0000210

NLFPGAIO0B6

POFPGAIO0B0000210

PIU2017

NLFPGAIO0B0000210

NLFPGAIO0B7

POFPGAIO0B0000210

PIU2016

NLFPGAIO0B0000210

NLFPGAIO0B8

POFPGAIO0B0000210

PIU2015

NLFPGAIO0B0000210

NLFPGAIO0B9

POFPGAIO0B0000210

PIU2014

NLFPGAIO0B0000210

NLFPGAIO0B10

POFPGAIO0B0000210

PIU2013

NLFPGAIO0B0000210

NLFPGAIO0B11

POFPGAIO0B0000210

PIU2012

NLFPGAIO0B0000210

NLFPGAIO0B12

POFPGAIO0B0000210

PIU2011

NLFPGAIO0B0000210

NLFPGAIO0B13

POFPGAIO0B0000210

PIU2010

NLFPGAIO0B0000210

NLFPGAIO0B14

POFPGAIO0B0000210

PIU209

NLFPGAIO0B0000210

NLFPGAIO0B15

POFPGAIO0B0000210

PIU208

NLFPGAIO0B0000210

NLFPGAIO0B16

POFPGAIO0B0000210

PIU207

NLFPGAIO0B0000210

NLFPGAIO0B17

POFPGAIO0B0000210

PIU206

NLFPGAIO0B0000210

NLFPGAIO0B18

POFPGAIO0B0000210

PIU205

NLFPGAIO0B0000210

NLFPGAIO0B19

POFPGAIO0B0000210

PIU204

NLFPGAIO0B0000210

NLFPGAIO0B20

POFPGAIO0B0000210

PIU203

NLFPGAIO0B0000210

NLFPGAIO0B21

POFPGAIO0B0000210

POAS0INTERFACEPOAS0INTERFACE0ASDOPOAS0INTERFACE0CONF0DONEPOAS0INTERFACE0DATAPOAS0INTERFACE0DCLKPOAS0INTERFACE0NCEPOAS0INTERFACE0NCONFIGPOAS0INTERFACE0NCSO

POFPGA0SPIPOFPGA0SPI0MISOPOFPGA0SPI0MOSIPOFPGA0SPI0SCKPOFPGA0SPI0SS

POFPGAIO0A2POFPGAIO0A3POFPGAIO0A4POFPGAIO0A5POFPGAIO0A6POFPGAIO0A7POFPGAIO0A8POFPGAIO0A9POFPGAIO0A10POFPGAIO0A11POFPGAIO0A12POFPGAIO0A13POFPGAIO0A14POFPGAIO0A15POFPGAIO0A16POFPGAIO0A17POFPGAIO0A18POFPGAIO0A19POFPGAIO0A20POFPGAIO0A21POFPGAIO0A22POFPGAIO0A23POFPGAIO0A24POFPGAIO0A25POFPGAIO0A26POFPGAIO0A27POFPGAIO0A0200270

POFPGAIO0B0POFPGAIO0B1POFPGAIO0B2POFPGAIO0B3POFPGAIO0B4POFPGAIO0B5POFPGAIO0B6POFPGAIO0B7POFPGAIO0B8POFPGAIO0B9POFPGAIO0B10POFPGAIO0B11POFPGAIO0B12POFPGAIO0B13POFPGAIO0B14POFPGAIO0B15POFPGAIO0B16POFPGAIO0B17POFPGAIO0B18POFPGAIO0B19POFPGAIO0B20POFPGAIO0B21POFPGAIO0B0000210

POHARD0JTAGPOHARD0JTAG0TCKPOHARD0JTAG0TDIPOHARD0JTAG0TDOPOHARD0JTAG0TMS

POI2CPOI2C0SCLPOI2C0SDA

POMCU0SPIPOMCU0SPI0MISOPOMCU0SPI0MOSIPOMCU0SPI0SCKPOMCU0SPI0SSPOSPI0MASTER0!SLAVE

POUSB0DATAPOUSB0DATA0D0

1

1

2

2

3

3

4

4

D D

C C

B B

A A

3

*
*
*
*
*18

CONFIG. INTERFACES
3 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\Config_Interfaces.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

JTAG

GND

3V3

TCK
TDI

TDO
TMS

HARD_JTAG

HARD_JTAG

3V33V3

DCLK
CONF_DONE

nCONFIG

ASDO

nCE
nCSO

DATA

AS_INTERFACE

AS_INTERFACE

GND

1 2
3 4
5 6
7 8
9 10

P11

1 2
3 4
5 6
7 8
9 10

P8

GND

3V3
AS_INTERFACE

3V3

GND

100R44
100R45
100R46

100R47

10pF

C52

10pF

C53

10pF

C54

10pF

C55

10k

R32

10k

R33

1k

R34

JTAG

AS

PIC5201

PIC5202

COC52 PIC5301

PIC5302

COC53 PIC5401

PIC5402

COC54 PIC5501

PIC5502

COC55

PID100A
PID100K

COD10

PID110A
PID110K

COD11

PID120A
PID120K

COD12

PID130A
PID130K

COD13

PIP801 PIP802

PIP803 PIP804

PIP805 PIP806

PIP807 PIP808

PIP809 PIP8010

COP8

PIP1101 PIP1102

PIP1103 PIP1104

PIP1105 PIP1106

PIP1107 PIP1108

PIP1109 PIP11010

COP11

PIR3201

PIR3202

COR32 PIR3301

PIR3302

COR33

PIR3401

PIR3402

COR34

PIR4401 PIR4402
COR44

PIR4501 PIR4502
COR45

PIR4601 PIR4602
COR46

PIR4701 PIR4702
COR47

PID100K PID110K PID120K PID130K

PIP804

PIP1104

PIR3201 PIR3301

PIC5202 PIC5302 PIC5402 PIC5502

PIP802

PIP8010

PIP1102

PIP11010

PIR3402

PIC5201

PID100A
PIP801

POAS0INTERFACE

PIC5301

PID110A

PIP807POAS0INTERFACE

PIC5401

PID120A

PIP809

POAS0INTERFACE

PIC5501

PID130A

PIP808POAS0INTERFACE

PIP803

POAS0INTERFACE
PIP805

POAS0INTERFACE
PIP806

POAS0INTERFACE

PIP1101PIR4402

PIP1103PIR4502

PIP1105PIR4602 PIP1106

PIP1107 PIP1108

PIP1109PIR4702

PIR3202

PIR4501

POHARD0JTAG

PIR3302

PIR4701

POHARD0JTAG

PIR3401

PIR4401

POHARD0JTAG PIR4601POHARD0JTAG

POAS0INTERFACEPOAS0INTERFACE0ASDOPOAS0INTERFACE0CONF0DONEPOAS0INTERFACE0DATAPOAS0INTERFACE0DCLKPOAS0INTERFACE0NCEPOAS0INTERFACE0NCONFIGPOAS0INTERFACE0NCSO

POHARD0JTAGPOHARD0JTAG0TCKPOHARD0JTAG0TDIPOHARD0JTAG0TDOPOHARD0JTAG0TMS

1

1

2

2

3

3

4

4

D D

C C

B B

A A

4

*
*
*
*
*18

MICRO-SD
4 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\MicroSD.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

CS
2

DI
3

GND
6

VCC
4

SCK
5

RSV
8

DO
7

NC
1

SHIELD
GND1

SHIELD
GND3

CD1
CD1

CD2
CD2

U9

nCS
MOSI
MISO

SCK

uSD_SPI

GND

3V3

uSD_SPI

uSD_SS
uSD_MOSI
uSD_MISO
uSD_SCK

PIU901

PIU902

PIU903

PIU904

PIU905

PIU906

PIU907

PIU908

PIU90CD1

PIU90CD2

PIU90GND1

PIU90GND3

COU9

PIU904

PIU906

PIU90GND1

PIU90GND3

PIU901

PIU908

PIU90CD1

PIU90CD2

PIU907

NLuSD0MISO
POuSD0SPI PIU903

NLuSD0MOSIPOuSD0SPI

PIU905
NLuSD0SCK

POuSD0SPI
PIU902

NLuSD0SS
POuSD0SPIPOUSD0SPIPOUSD0SPI0MISOPOUSD0SPI0MOSIPOUSD0SPI0NCSPOUSD0SPI0SCK

1

1

2

2

3

3

4

4

D D

C C

B B

A A

5

*
*
*
*
*18

EEPROM
5 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\EEPROM.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

A01

SDA 5

A23

A12

WP 7

VSS 4

SCL 6

VCC8
U12

24LC256-I/SN

GNDGND

3V3

SDA
SCL

I2C

I2C100nF

C5

I2C Address:
0xA0 = 1010000

PIC501

PIC502

COC5

PIU1201

PIU1202

PIU1203

PIU1204

PIU1205

PIU1206

PIU1207

PIU1208

COU12

PIC501PIU1208

PIC502

PIU1201

PIU1202

PIU1203

PIU1204

PIU1207

PIU1205 POI2C
PIU1206

POI2CPOI2CPOI2C0SCLPOI2C0SDA

1

1

2

2

3

3

4

4

D D

C C

B B

A A

6

*
*
*
*
*18

FPGA TOP
6 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\FPGA.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

HARD_JTAG
AS_INTERFACE

STATUS_LED

CONF_IO

U_FPGA_Conf
FPGA_Conf.SchDoc

CLK_IN

U_FPGA_CLK
FPGA_CLK.SchDoc

U_FPGA_Power
FPGA_Power.SchDoc

FPGA_SPI
FPGA_I2C

FPGAIO_A[2..27]
FPGAIO_B[0..21]

FPGA_UART CONF_IO

SW[0..3]

LED[0..3]

U_FPGA_Banks
FPGA_Banks.SchDoc

CLOCK_50

U_OSC
OSC.SchDoc

HARD_JTAG
AS_INTERFACE

STATUS_LED

FPGA_I2C

FPGAIO_A[2..27]
FPGAIO_B[0..21]

FPGA_UART

SW[0..3]

LED[0..3]

FPGA_SPI

POAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACEPOAS0INTERFACE

POFPGA0I2CPOFPGA0I2C
POFPGA0SPIPOFPGA0SPIPOFPGA0SPIPOFPGA0SPI

POFPGA0UARTPOFPGA0UART

POHARD0JTAGPOHARD0JTAGPOHARD0JTAGPOHARD0JTAG

POSTATUS0LED

POAS0INTERFACEPOAS0INTERFACE0ASDOPOAS0INTERFACE0CONF0DONEPOAS0INTERFACE0DATAPOAS0INTERFACE0DCLKPOAS0INTERFACE0NCEPOAS0INTERFACE0NCONFIGPOAS0INTERFACE0NCSO

POFPGA0I2CPOFPGA0I2C0SCLPOFPGA0I2C0SDA
POFPGA0SPIPOFPGA0SPI0MISOPOFPGA0SPI0MOSIPOFPGA0SPI0SCKPOFPGA0SPI0SS

POFPGA0UARTPOFPGA0UART0RXPOFPGA0UART0TX

POFPGAIO0A2POFPGAIO0A3POFPGAIO0A4POFPGAIO0A5POFPGAIO0A6POFPGAIO0A7POFPGAIO0A8POFPGAIO0A9POFPGAIO0A10POFPGAIO0A11POFPGAIO0A12POFPGAIO0A13POFPGAIO0A14POFPGAIO0A15POFPGAIO0A16POFPGAIO0A17POFPGAIO0A18POFPGAIO0A19POFPGAIO0A20POFPGAIO0A21POFPGAIO0A22POFPGAIO0A23POFPGAIO0A24POFPGAIO0A25POFPGAIO0A26POFPGAIO0A27POFPGAIO0A0200270
POFPGAIO0B0POFPGAIO0B1POFPGAIO0B2POFPGAIO0B3POFPGAIO0B4POFPGAIO0B5POFPGAIO0B6POFPGAIO0B7POFPGAIO0B8POFPGAIO0B9POFPGAIO0B10POFPGAIO0B11POFPGAIO0B12POFPGAIO0B13POFPGAIO0B14POFPGAIO0B15POFPGAIO0B16POFPGAIO0B17POFPGAIO0B18POFPGAIO0B19POFPGAIO0B20POFPGAIO0B21POFPGAIO0B0000210

POHARD0JTAGPOHARD0JTAG0TCKPOHARD0JTAG0TDIPOHARD0JTAG0TDOPOHARD0JTAG0TMS

POLED0POLED1POLED2POLED3POLED000030

POSTATUS0LED

POSW0POSW1POSW2POSW3POSW000030

1

1

2

2

3

3

4

4

D D

C C

B B

A A

7

*
*
*
*
*18

FPGA Banks
7 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\FPGA_Banks.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

B
A

N
K

 4 IO, DIFFIO_B21p, (DQ1B) 58

IO, DIFFIO_B22p, (DQ1B) 59

IO, DIFFIO_B22n, (DQ1B) 60

IO, DIFFIO_B23p 61

IO 64

IO, VREFB4N1 65

IO, RUP2, (DQ1B) 66

IO, RDN2, (DQ1B) 67

IO, DIFFIO_B29n, (DQS0B/CQ1B,CDPCLK3) 68

IO, VREFB4N0 69

IO, PLL4_CLKOUTp 71

IO, PLL4_CLKOUTn 72

U3D

EP4CE15E22C8N

BA
N

K
 5 IO, RUP3 76

IO, RDN3 77

IO, VREFB5N1 80

IO, VREFB5N0 83

IO, DIFFIO_R22p, (DQS1R/CQ1R#,DPCLK6) 85

IO, DIFFIO_R21n, (DEV_OE) 86

IO, DIFFIO_R21p, (DEV_CLRn) 87

U3E

EP4CE15E22C8N

BA
N

K
 6 IO, DIFFIO_R17n, (INIT_DONE) 98

IO, DIFFIO_R17p, (CRC_ERROR) 99

IO, VREFB6N1 100

IO, DIFFIO_R16n, (nCEO) 101

IO, DIFFIO_R16p, (CLKUSR) 103

IO, DIFFIO_R15n, (DQS0R/CQ1R,DPCLK7) 104

IO, VREFB6N0 105

IO, DIFFIO_R2n, (PADD20) 106

U3F

EP4CE15E22C8N

B
A

N
K

 2 IO, VREFB2N0 28

IO, DIFFIO_L19p, (DQS1L/CQ1L#,DPCLK1) 30

IO, VREFB2N1 31

IO, RUP1 32

IO, RDN1 33

U3B

EP4CE15E22C8N

BA
N

K
 3 IO, VREFB3N1 39

IO, (DQS1B/CQ1B#,CDPCLK2) 42

IO, PLL1_CLKOUTp 43

IO, PLL1_CLKOUTn 44

IO, VREFB3N0 46

IO, (DQ1B) 49

IO, DIFFIO_B18p, (DQ1B) 50

IO, DIFFIO_B18n, (DQ1B) 51

U3C

EP4CE15E22C8N

B
A

N
K

 7 IO, DIFFIO_T30p, (DQS0T/CQ1T,CDPCLK6) 110

IO, VREFB7N0 111

IO, PLL2_CLKOUTn 112

IO, PLL2_CLKOUTp 113

IO, RUP4, (DQ1T) 114

IO, RDN4, (DQ1T) 115

IO, VREFB7N1 119

IO, DIFFIO_T23n, (PADD3), (DQ1T) 120

IO, DIFFIO_T21p, (PADD4) 121

IO, DIFFIO_T17p, (PADD12) 125

U3G

EP4CE15E22C8N

BA
N

K
 8 IO, DIFFIO_T12n, (DATA2), (DQ1T) 132

IO, DIFFIO_T12p, (DATA3), (DQ1T) 133

IO, DIFFIO_T11n, (PADD18) 134

IO, DIFFIO_T11p, (DATA4), (DQ1T) 135

IO, VREFB8N0 136

IO, (DATA5), (DQ1T) 137

IO, VREFB8N1 141

IO, DIFFIO_T2p, (DATA12), (DQS1T/CQ1T#,CDPCLK7) 142

IO, PLL3_CLKOUTn, (DQ1T) 143

IO, PLL3_CLKOUTp, (DM1T) 144

U3H

EP4CE15E22C8N

12

10

8

7

5

MISO
MOSI

SCK
SS

FPGA_SPI

FPGA_SPI

SDA
SCL

I2C

FPGA_I2C

FPGAIO_A[2..27]

FPGAIO_B[0..21] TX
RX

FPGA_UART

FPGA_UART

ASDO
nCSO
DATA0

CONF_IO

CONF_IO

BA
N

K
 1 IO, DIFFIO_L4n, (DATA1,ASDO) 6

IO, VREFB1N0 7

IO, DIFFIO_L6p, (FLASH_nCE,nCSO) 8

IO, (DQS0L/CQ1L,DPCLK0) 10

IO, VREFB1N1 11

IO, (DATA0) 13

U3A

EP4CE15E22C8N

SW[0..3]

LED[0..3]

SW[0..3]

LED[0..3]

6

10

8

FPGAIO_A[2..27]

FPGAIO_A2
FPGAIO_A3
FPGAIO_A4
FPGAIO_A5
FPGAIO_A6
FPGAIO_A7
FPGAIO_A8
FPGAIO_A9
FPGAIO_A10
FPGAIO_A11
FPGAIO_A12
FPGAIO_A13
FPGAIO_A14
FPGAIO_A15
FPGAIO_A16
FPGAIO_A17
FPGAIO_A18
FPGAIO_A19
FPGAIO_A20
FPGAIO_A21
FPGAIO_A22
FPGAIO_A23

FPGAIO_A24
FPGAIO_A25

FPGAIO_B[0..21]

FPGA_MISO
FPGA_MOSI
FPGA_SCK
FPGA_SS

FPGA_SDA
FPGA_SCL

FPGA_TX
FPGA_RX

FPGA_MISO
FPGA_MOSI

FPGA_SCK

FPGA_SS

FPGA_SDA
FPGA_SCL

FPGA_TX
FPGA_RX

FPGAIO_B0
FPGAIO_B1
FPGAIO_B2
FPGAIO_B3
FPGAIO_B4
FPGAIO_B5
FPGAIO_B6
FPGAIO_B7
FPGAIO_B8
FPGAIO_B9
FPGAIO_B10
FPGAIO_B11
FPGAIO_B12
FPGAIO_B13
FPGAIO_B14
FPGAIO_B15
FPGAIO_B16
FPGAIO_B17
FPGAIO_B18
FPGAIO_B19
FPGAIO_B20
FPGAIO_B21
LED0
LED1

LED2

LED3
SW0

SW1
SW2
SW3

PIU306

PIU307

PIU308

PIU3010

PIU3011

PIU3013

COU3A

PIU3028

PIU3030

PIU3031

PIU3032

PIU3033

COU3B

PIU3039

PIU3042

PIU3043

PIU3044

PIU3046

PIU3049

PIU3050

PIU3051

COU3C

PIU3058

PIU3059

PIU3060

PIU3061

PIU3064

PIU3065

PIU3066

PIU3067

PIU3068

PIU3069

PIU3071

PIU3072

COU3D

PIU3076

PIU3077

PIU3080

PIU3083

PIU3085

PIU3086

PIU3087
COU3E

PIU3098

PIU3099

PIU30100

PIU30101

PIU30103

PIU30104

PIU30105

PIU30106

COU3F

PIU30110

PIU30111

PIU30112

PIU30113

PIU30114

PIU30115

PIU30119

PIU30120

PIU30121

PIU30125

COU3G

PIU30132

PIU30133

PIU30134

PIU30135

PIU30136

PIU30137

PIU30141

PIU30142

PIU30143

PIU30144
COU3H

PIU3085

NLFPGA0MISO

POFPGA0SPI

PIU3086

NLFPGA0MOSI
POFPGA0SPI

PIU3099

NLFPGA0RXPOFPGA0UART

PIU3083

NLFPGA0SCKPOFPGA0SPI

PIU30100

NLFPGA0SCLPOFPGA0I2C

PIU30101

NLFPGA0SDA
POFPGA0I2C

PIU3087

NLFPGA0SS

POFPGA0SPI

PIU3098

NLFPGA0TX
POFPGA0UART

PIU306

POCONF0IOPIU308 POCONF0IO

PIU3013

POCONF0IO

PIU3080

PIU3077

NLFPGAIO0A0200270

NLFPGAIO0A2

POFPGAIO0A0200270

PIU3076

NLFPGAIO0A0200270

NLFPGAIO0A3

POFPGAIO0A0200270

PIU3072

NLFPGAIO0A0200270

NLFPGAIO0A4

POFPGAIO0A0200270

PIU3071

NLFPGAIO0A0200270

NLFPGAIO0A5

POFPGAIO0A0200270

PIU3069

NLFPGAIO0A0200270

NLFPGAIO0A6

POFPGAIO0A0200270

PIU3068

NLFPGAIO0A0200270

NLFPGAIO0A7

POFPGAIO0A0200270

PIU3067

NLFPGAIO0A0200270

NLFPGAIO0A8

POFPGAIO0A0200270

PIU3066

NLFPGAIO0A0200270

NLFPGAIO0A9

POFPGAIO0A0200270

PIU3065

NLFPGAIO0A0200270

NLFPGAIO0A10

POFPGAIO0A0200270

PIU3064

NLFPGAIO0A0200270

NLFPGAIO0A11

POFPGAIO0A0200270

PIU3061

NLFPGAIO0A0200270

NLFPGAIO0A12

POFPGAIO0A0200270

PIU3060

NLFPGAIO0A0200270

NLFPGAIO0A13

POFPGAIO0A0200270

PIU3059

NLFPGAIO0A0200270

NLFPGAIO0A14

POFPGAIO0A0200270

PIU3058

NLFPGAIO0A0200270

NLFPGAIO0A15

POFPGAIO0A0200270

PIU3051

NLFPGAIO0A0200270

NLFPGAIO0A16

POFPGAIO0A0200270

PIU3050

NLFPGAIO0A0200270

NLFPGAIO0A17

POFPGAIO0A0200270

PIU3049

NLFPGAIO0A0200270

NLFPGAIO0A18

POFPGAIO0A0200270

PIU3046

NLFPGAIO0A0200270

NLFPGAIO0A19

POFPGAIO0A0200270

PIU3044

NLFPGAIO0A0200270

NLFPGAIO0A20

POFPGAIO0A0200270

PIU3043

NLFPGAIO0A0200270

NLFPGAIO0A21

POFPGAIO0A0200270

PIU3042

NLFPGAIO0A0200270

NLFPGAIO0A22

POFPGAIO0A0200270

PIU3039

NLFPGAIO0A0200270

NLFPGAIO0A23

POFPGAIO0A0200270

PIU3032

NLFPGAIO0A0200270

NLFPGAIO0A24

POFPGAIO0A0200270

PIU3033

NLFPGAIO0A0200270

NLFPGAIO0A25

POFPGAIO0A0200270NLFPGAIO0A0200270POFPGAIO0A0200270NLFPGAIO0A0200270POFPGAIO0A0200270

PIU30103

NLFPGAIO0B0000210

NLFPGAIO0B0

POFPGAIO0B0000210

PIU30104

NLFPGAIO0B0000210

NLFPGAIO0B1

POFPGAIO0B0000210

PIU30105

NLFPGAIO0B0000210

NLFPGAIO0B2

POFPGAIO0B0000210

PIU30106

NLFPGAIO0B0000210

NLFPGAIO0B3

POFPGAIO0B0000210

PIU30110

NLFPGAIO0B0000210

NLFPGAIO0B4

POFPGAIO0B0000210

PIU30111

NLFPGAIO0B0000210

NLFPGAIO0B5

POFPGAIO0B0000210

PIU30112

NLFPGAIO0B0000210

NLFPGAIO0B6

POFPGAIO0B0000210

PIU30113

NLFPGAIO0B0000210

NLFPGAIO0B7

POFPGAIO0B0000210

PIU30114

NLFPGAIO0B0000210

NLFPGAIO0B8

POFPGAIO0B0000210

PIU30115

NLFPGAIO0B0000210

NLFPGAIO0B9

POFPGAIO0B0000210

PIU30119

NLFPGAIO0B0000210

NLFPGAIO0B10

POFPGAIO0B0000210

PIU30120

NLFPGAIO0B0000210

NLFPGAIO0B11

POFPGAIO0B0000210

PIU30121

NLFPGAIO0B0000210

NLFPGAIO0B12

POFPGAIO0B0000210

PIU30125

NLFPGAIO0B0000210

NLFPGAIO0B13

POFPGAIO0B0000210

PIU30132

NLFPGAIO0B0000210

NLFPGAIO0B14

POFPGAIO0B0000210

PIU30133

NLFPGAIO0B0000210

NLFPGAIO0B15

POFPGAIO0B0000210

PIU30134

NLFPGAIO0B0000210

NLFPGAIO0B16

POFPGAIO0B0000210

PIU30135

NLFPGAIO0B0000210

NLFPGAIO0B17

POFPGAIO0B0000210

PIU30136

NLFPGAIO0B0000210

NLFPGAIO0B18

POFPGAIO0B0000210

PIU30137

NLFPGAIO0B0000210

NLFPGAIO0B19

POFPGAIO0B0000210

PIU30141

NLFPGAIO0B0000210

NLFPGAIO0B20

POFPGAIO0B0000210

PIU30142

NLFPGAIO0B0000210

NLFPGAIO0B21

POFPGAIO0B0000210

PIU30143

NLLED000030

NLLED0

POLED000030

PIU30144

NLLED000030

NLLED1

POLED000030

PIU307

NLLED000030

NLLED2

POLED000030

PIU3010

NLLED000030

NLLED3

POLED000030

PIU3011

NLSW000030

NLSW0

POSW000030

PIU3028

NLSW000030

NLSW1

POSW000030

PIU3030

NLSW000030

NLSW2

POSW000030

PIU3031

NLSW000030

NLSW3

POSW000030

POCONF0IOPOCONF0IO0ASDOPOCONF0IO0DATA0POCONF0IO0NCSO

POFPGA0I2CPOFPGA0I2C0SCLPOFPGA0I2C0SDA

POFPGA0SPIPOFPGA0SPI0MISOPOFPGA0SPI0MOSIPOFPGA0SPI0SCKPOFPGA0SPI0SS

POFPGA0UARTPOFPGA0UART0RXPOFPGA0UART0TX

POFPGAIO0A2POFPGAIO0A3POFPGAIO0A4POFPGAIO0A5POFPGAIO0A6POFPGAIO0A7POFPGAIO0A8POFPGAIO0A9POFPGAIO0A10POFPGAIO0A11POFPGAIO0A12POFPGAIO0A13POFPGAIO0A14POFPGAIO0A15POFPGAIO0A16POFPGAIO0A17POFPGAIO0A18POFPGAIO0A19POFPGAIO0A20POFPGAIO0A21POFPGAIO0A22POFPGAIO0A23POFPGAIO0A24POFPGAIO0A25POFPGAIO0A26POFPGAIO0A27POFPGAIO0A0200270

POFPGAIO0B0POFPGAIO0B1POFPGAIO0B2POFPGAIO0B3POFPGAIO0B4POFPGAIO0B5POFPGAIO0B6POFPGAIO0B7POFPGAIO0B8POFPGAIO0B9POFPGAIO0B10POFPGAIO0B11POFPGAIO0B12POFPGAIO0B13POFPGAIO0B14POFPGAIO0B15POFPGAIO0B16POFPGAIO0B17POFPGAIO0B18POFPGAIO0B19POFPGAIO0B20POFPGAIO0B21POFPGAIO0B0000210

POLED0POLED1POLED2POLED3POLED000030

POSW0POSW1POSW2POSW3POSW000030

1

1

2

2

3

3

4

4

D D

C C

B B

A A

8

*
*
*
*
*18

FPGA CLOCK
8 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\FPGA_CLK.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

CLK1, DIFFCLK_0n23

CLK2, DIFFCLK_1p24

CLK3, DIFFCLK_1n25

CLK4, DIFFCLK_2p91

CLK5, DIFFCLK_2n90

CLK6, DIFFCLK_3p89

CLK7, DIFFCLK_3n88

CLK8, DIFFCLK_5n126

CLK9, DIFFCLK_5p127

CLK10, DIFFCLK_4n128

CLK11, DIFFCLK_4p129

CLK12, DIFFCLK_7n55

CLK13, DIFFCLK_7p54

CLK14, DIFFCLK_6n53

CLK15, DIFFCLK_6p52

U3I

EP4CE15E22C8N

CLK_IN

GND

PIU3023

PIU3024

PIU3025

PIU3052

PIU3053

PIU3054

PIU3055

PIU3088

PIU3089

PIU3090

PIU3091

PIU30126

PIU30127

PIU30128

PIU30129

COU3I

PIU3024

PIU3025

PIU3052

PIU3053

PIU3054

PIU3055

PIU3088

PIU3089

PIU3090

PIU3091

PIU30126

PIU30127

PIU30128

PIU30129

PIU3023POCLK0INPOCLK0IN

1

1

2

2

3

3

4

4

D D

C C

B B

A A

9

*
*
*
*
*18

FPGA CONFIGURATION
9 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\FPGA_Conf.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

TDI15 TDO20 TCK16 TMS18

MSEL094 MSEL196 MSEL297

nCE21

DCLK12 CONF_DONE92 nCONFIG14 nSTATUS9
U3J

EP4CE15E22C8N

nCS 1

DATA 2VCC3

GND 4

ASDI 5

DCLK 6VCC7

VCC8

U4

EPCS16SI8N
3V3

3V3

TCK

TDI
TDO

TMS

HARD_JTAG

HARD_JTAG

DCLK
CONF_DONE

nCONFIG

ASDO

nCE
nCSO

DATA

AS_INTERFACE

AS_INTERFACE

STATUS_LED

3V3

3V3

GND

GND

GND

ASDO
nCSO
DATA0

CONF_IO

CONF_IO

10k

R58

10k

R59

10k

R60

10k

R61

25R62

AS (Active Serial)
Configuaration
Scheme

PIR5801

PIR5802

COR58 PIR5901

PIR5902

COR59 PIR6001

PIR6002

COR60

PIR6101

PIR6102

COR61

PIR6201 PIR6202
COR62

PIU309

PIU3012

PIU3014

PIU3015

PIU3016

PIU3018

PIU3020

PIU3021

PIU3092

PIU3094

PIU3096

PIU3097

COU3J

PIU401

PIU402PIU403

PIU404

PIU405

PIU406PIU407

PIU408

COU4

PIR5801 PIR5901 PIR6001

PIU3094

PIU3097

PIU403

PIU407

PIU408

PIR6102 PIU3096

PIU404

PIR5802

PIU3092

POAS0INTERFACE

POSTATUS0LED

PIR5902

PIU3014

POAS0INTERFACE

PIR6002

PIU309

PIR6101 PIU3021

POAS0INTERFACE

PIR6201PIU402 PIR6202

POAS0INTERFACE

POCONF0IO

PIU3012

PIU406

POAS0INTERFACE PIU3015

POHARD0JTAG

PIU3016

POHARD0JTAG

PIU3018

POHARD0JTAG

PIU3020

POHARD0JTAG

PIU401

POAS0INTERFACE

POCONF0IO

PIU405

POAS0INTERFACE

POCONF0IO

POAS0INTERFACEPOAS0INTERFACE0ASDOPOAS0INTERFACE0CONF0DONEPOAS0INTERFACE0DATAPOAS0INTERFACE0DCLKPOAS0INTERFACE0NCEPOAS0INTERFACE0NCONFIGPOAS0INTERFACE0NCSO

POCONF0IOPOCONF0IO0ASDOPOCONF0IO0DATA0POCONF0IO0NCSO

POHARD0JTAGPOHARD0JTAG0TCKPOHARD0JTAG0TDIPOHARD0JTAG0TDOPOHARD0JTAG0TMS

POSTATUS0LED

1

1

2

2

3

3

4

4

D D

C C

B B

A A

10

*
*
*
*
*18

FPGA POWER
10 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\FPGA_Power.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

VCCINT 5

VCCINT 29

VCCINT 34

VCCINT 38

VCCINT 45

VCCINT 70

VCCINT 78

VCCINT 84

VCCINT 102

VCCINT 116

VCCINT 124

VCCINT 138

VCCIO117

VCCIO226

VCCIO340

VCCIO347

VCCIO456

VCCIO462

VCCIO581

VCCIO693

VCCIO7117

VCCIO7122

VCCIO8130

VCCIO8139

U3K

EP4CE15E22C8N

GND19

GND27

GND41

GND48

GND57

GND63

GND82

GND95

GND 118

GND 123

GND 131

GND 140

GND 4

GND 22

GND 79

GND 145

U3L

EP4CE15E22C8N

GNDA1 36

GNDA2 108

GNDA3 2

GNDA4 74

VCCA135

VCCA2107

VCCA33

VCCA475

VCCD_PLL137

VCCD_PLL2109

VCCD_PLL31

VCCD_PLL473

U3M

EP4CE15E22C8N

1V2

GND GND

3V3
VCCD_PLL

VCCA

PIU305PIU3017

PIU3026

PIU3029

PIU3034

PIU3038

PIU3040 PIU3045

PIU3047

PIU3056

PIU3062

PIU3070

PIU3078

PIU3081

PIU3084

PIU3093

PIU30102

PIU30116

PIU30117

PIU30122

PIU30124

PIU30130

PIU30138

PIU30139

COU3K

PIU304

PIU3019

PIU3022

PIU3027

PIU3041

PIU3048

PIU3057

PIU3063

PIU3079PIU3082

PIU3095

PIU30118

PIU30123

PIU30131

PIU30140

PIU30145

COU3L

PIU301

PIU302PIU303

PIU3035 PIU3036

PIU3037

PIU3073

PIU3074PIU3075

PIU30107 PIU30108

PIU30109

COU3M

PIU305

PIU3029

PIU3034

PIU3038

PIU3045

PIU3070

PIU3078

PIU3084

PIU30102

PIU30116

PIU30124

PIU30138

PIU3017

PIU3026

PIU3040

PIU3047

PIU3056

PIU3062

PIU3081

PIU3093

PIU30117

PIU30122

PIU30130

PIU30139

PIU302

PIU304

PIU3019

PIU3022

PIU3027

PIU3036

PIU3041

PIU3048

PIU3057

PIU3063

PIU3074

PIU3079PIU3082

PIU3095

PIU30108

PIU30118

PIU30123

PIU30131

PIU30140

PIU30145

PIU303

PIU3035

PIU3075

PIU30107

PIU301

PIU3037

PIU3073

PIU30109

1

1

2

2

3

3

4

4

D D

C C

B B

A A

11

*
*
*
*
*18

OSCILATOR
11 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\OSC.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

INH1

GND 2

OUT 3

VDD4

50.00 MHz

X1

VCC1-B3B-50M0000000

GND

3V3 CLOCK_50

100nF
C3

15pF
C4

FPGA_CLK

PIC301

PIC302
COC3

PIC401

PIC402
COC4

PIX101

PIX102

PIX103

PIX104

COX1

PIC301

PIX104 PIC401

PIX103
NLFPGA0CLK

POCLOCK050

PIC302

PIC402

PIX102

PIX101 POCLOCK050

1

1

2

2

3

3

4

4

D D

C C

B B

A A

12

*
*
*
*
*18

LEDs AND SWITCHES
12 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\LEDs_Switches.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

3V3

GND

R8
10k

S0

100
R3

GND

LED0
LEDB

3V3

GND

R9
10k

3V3

GND

R10
10k

3V3

GND

R11
10k

3 4
U7B

74HC7014

5 6
U7C

74HC7014

9 8
U7D

74HC7014

11 10
U7E

74HC7014

1 2
U7A

74HC7014

SW[0..3]

SW0 SW1 SW2 SW3

S1 S2 S3

100
R4

GND

100
R6

GND

100
R7

GND

LED[0..3]

VCC_EXT

100
R56

GND

100
R55

GND

D14
LEDY

STATUS_LED

LED0
LED1
LED2
LED3

SW[0..3]LED[0..3]

D15
LEDG

LED1
LEDB

LED2
LEDB

LED3
LEDB

14
7

VCC

GND

U7G
74HC7014

VCC

3V3

GND

PID140A
PID140K

COD14 PID150A
PID150K

COD15

PILED00A
PILED00K

COLED0
PILED10A
PILED10K

COLED1
PILED20A
PILED20K

COLED2
PILED30A
PILED30K

COLED3

PIR301

PIR302
COR3

PIR401

PIR402
COR4

PIR601

PIR602
COR6

PIR701

PIR702
COR7

PIR801

PIR802
COR8

PIR901

PIR902
COR9

PIR1001

PIR1002
COR10

PIR1101

PIR1102
COR11

PIR5501

PIR5502
COR55

PIR5601

PIR5602
COR56

PIS001

PIS002
COS0

PIS101

PIS102
COS1

PIS201

PIS202
COS2

PIS301

PIS302
COS3

PIU701 PIU702

COU7A

PIU703 PIU704

COU7B

PIU705 PIU706

COU7C

PIU708PIU709

COU7D

PIU7010PIU7011

COU7E

PIU707

PIU7014

COU7G

PIR802 PIR902 PIR1002 PIR1102
PIU7014

PID140K PID150K

PILED00K PILED10K PILED20K PILED30K PIS001 PIS101 PIS201 PIS301
PIU707

PID140A
PIR5501

PID150A
PIR5601

PILED00A
PIR301

PILED10A
PIR401

PILED20A
PIR601

PILED30A
PIR701

PIR801
PIS002
PIU703

PIR901
PIS102
PIU705

PIR1001
PIS202
PIU709

PIR1101
PIS302
PIU7011

PIR5502PIU702PIU701POSTATUS0LED

PIR5602

PIR302

NLLED000030

NLLED0

POLED000030

PIR402

NLLED000030

NLLED1

POLED000030

PIR602

NLLED000030

NLLED2

POLED000030

PIR702

NLLED000030

NLLED3

POLED000030

PIU704

NLSW000030

NLSW0

POSW000030

PIU706

NLSW000030

NLSW1

POSW000030

PIU708

NLSW000030

NLSW2

POSW000030

PIU7010

NLSW000030

NLSW3

POSW000030POLED0POLED1POLED2POLED3POLED000030

POSTATUS0LED

POSW0POSW1POSW2POSW3POSW000030

1

1

2

2

3

3

4

4

D D

C C

B B

A A

13

*
*
*
*
*18

MCU USB INTERFACE
13 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\MCU_USB_Interface.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

D+4 D-3

AVCC44 AVCC24

AREF42

XTAL216

XTAL117

VCC34 VCC14

VBus7

UGnd5

UCap6

RESET13

PF7 (ADC7/TDI) 36PF6 (ADC6/TDO 37PF5 (ADC5/TMS)) 38PF4 (ADC4/TCK) 39PF1 (ADC1) 40PF0 (ADC0) 41

PE6 (INT.6/AIN0) 1

PD7 (T0/OC4D/ADC10) 27

PD6 (T1/OC4D/ADC9) 26

PD5 (XCK1/CTS) 22

PD4 (ICP1/ADC8) 25

PD3 (TXD1/INT3) 21

PD2 (RXD1/INT2) 20

PD1 (SDA/INT1) 19

PD0 (OC0B/SCL/INT0) 18

PC7 (ICP3/CLK0/OC4A) 32

PC6 (OC3A/OC4A) 31

PB6 (PCINT6/OC1B/OC4B/ADC13) 30

PB5 (PCINT5/OC1A/OC4B/ADC12) 29

PB4 (PCINT4/ADC11) 28

PB3 (PDO/PCINT3/MISO) 11

PB2 (PDI/PCINT2/MOSI) 10

PB1 (PCINT1/SCLK) 9

PB0 (SS/PCINT0) 8GND43 GND35

GND15

UVcc2

PE2 (HWB) 33

PB7 (PCINT7/OC0A/OC1C/RTS) 12

GND23

U8

ATmega32U4-AU

1 2
3 4
5 6
7 8
9 10

P10

MCU_JTAG

GND

GND
C56

1uF

GND

3V3

TCK

TMS
TDO

TDI

RESET

3V3

3V3

R49 22

MISO
MOSI
SCK
SS15pF

C57

GND

3V3

GND

RESET

R51
10k

EVQ-PQHB55
On/Off

S4

3V3

5V0_USB

RESET

D-
D+

USB_DATA

USB_DATA

MISO
MOSI

SCK
SS

MCU_SPI
MISO
MOSI
SCK
SS

MCU_SPI

SCL
SDA

SDA
SCL

I2C

MCU_I2C SDA
SCL

1 2
Y1

4SMX-8MHz

15pF
C58 GND

100
R12

GND

D7
LEDG

100
R13

D8
LEDY

TX
RX

TX
RXTX

RX

MCU_UART

MCU_UART

1 2
3 4
5 6

P12

MOSI
RESET

MISO
SCK

3V3

GND
MCU_ISP

R50 22

PF0
PF1
PF4
PF5
PF6
PF7

1 2
3 4
5 6

P9

Header 3X2

1
2

P10

Header 2SPI_Master/!Slave

SPI_M/!S

SPI_M/!S

C57 = C58 = 2*CL – 2*Cstray
CL = 12pF
Cstray = 35pF

PIC5601 PIC5602

COC56

PIC5701

PIC5702
COC57

PIC5801

PIC5802
COC58

PID70A
PID70K

COD7
PID80A
PID80K

COD8

PIP901 PIP902

PIP903 PIP904

PIP905 PIP906

COP9

PIP1001

PIP1002

COP10

PIP1201 PIP1202

PIP1203 PIP1204

PIP1205 PIP1206

COP12

PIR1201

PIR1202
COR12

PIR1301

PIR1302
COR13

PIR4901 PIR4902
COR49

PIR5001 PIR5002
COR50

PIR5101

PIR5102
COR51

PIS401

PIS402
COS4

PIU801

PIU802

PIU803

PIU804

PIU805

PIU806

PIU807

PIU808

PIU809

PIU8010

PIU8011

PIU8012

PIU8013

PIU8014

PIU8015

PIU8016

PIU8017

PIU8018

PIU8019

PIU8020

PIU8021

PIU8022

PIU8023

PIU8024

PIU8025

PIU8026

PIU8027

PIU8028

PIU8029

PIU8030

PIU8031

PIU8032

PIU8033

PIU8034

PIU8035

PIU8036

PIU8037

PIU8038

PIU8039

PIU8040

PIU8041PIU8042

PIU8043

PIU8044

COU8

PIY101 PIY102

COY1

PIC5602

PIP1202PIR5102

PIU806

PIU8014

PIU8024

PIU8034

PIU8042

PIU8044

PIU807

PIC5601

PIC5701 PIC5801

PID70K PID80K

PIP1206

PIS401

PIU805

PIU8015

PIU8023

PIU8035

PIU8043

PIP1201

PIU8011NLMISO

POMCU0SPI

PIP1204

PIU8010
NLMOSIPOMCU0SPI

PIC5702

PIU8016

PIY101

PIC5802

PIU8017PIY102
PID70A
PIR1201

PID80A
PIR1301

PIR1202

PIU8026

PIR1302

PIU8027

PIR4901POUSB0DATA PIR4902 PIU803

PIR5001

POUSB0DATA
PIR5002 PIU804

PIU801

PIU802

PIU8022

PIU8025

PIU8028

PIU8029

PIU8030

PIU8031

PIU8032

PIU8033

PIP901

PIU8041
NLPF0

PIP902PIU8040
NLPF1

PIP903PIU8039
NLPF4

PIP904

PIU8038
NLPF5

PIP905

PIU8037
NLPF6

PIP906

PIU8036
NLPF7

PIP1205

PIR5101

PIS402

PIU8013

NLRESET

PIP1002PIU8020

NLRXPOMCU0UART

PIP1203

PIU809
NLSCKPOMCU0SPI

PIU8018

NLSCL
POMCU0I2C

PIU8019

NLSDAPOMCU0I2C

PIU8012

NLSPI0M0!SPOSPI0Master0!Slave

PIU808
NLSS

POMCU0SPI

PIP1001PIU8021

NLTXPOMCU0UART

POMCU0I2CPOMCU0I2C0SCLPOMCU0I2C0SDA

POMCU0SPIPOMCU0SPI0MISOPOMCU0SPI0MOSIPOMCU0SPI0SCKPOMCU0SPI0SS

POMCU0UARTPOMCU0UART0RXPOMCU0UART0TX

POSPI0MASTER0!SLAVE

POUSB0DATAPOUSB0DATA0D0

1

1

2

2

3

3

4

4

D D

C C

B B

A A

14

*
*
*
*
*18

PSU TOP
14 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\PSU.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

5V0_USB

VCC_HDR

D1 VCC_EXT

U_PUS_Decoupling
PUS_Decoupling.SchDoc

5V0_RPi

2A

F1 J5

VIN VOUT

U_PSU_3V3_LD29300
PSU_3V3_LD29300.SchDoc

VIN VOUT

U_PSU_2V5_LDK130
PSU_2V5_LDK130.SchDoc

VIN VOUT

U_PSU_1V2_LD1117A
PSU_1V2_LD1117A.SchDoc

VCC_EXT 3V3 VCC_EXT 3V32V5 1V2

3V3 POWER 2V5 POWER 1V2 POWER

1V23V3 2V5

D2

D3

D4

D5

D6

CURRENT_TEST

PID10A PID10K

COD1

PID20A PID20K

COD2

PID30A PID30K

COD3

PID40A PID40K

COD4

PID50A PID50K

COD5

PID60A PID60K

COD6

PIF101 PIF102

COF1
PIJ501PIJ502

COJ5
PID30A

PID40A

PID10A

PID20A

PID10K

PID20K

PID30K

PID40K

PID50K

PID60K

PIF101 PIF102 PIJ501PIJ502

PID50A

PID60A

1

1

2

2

3

3

4

4

D D

C C

B B

A A

15

*
*
*
*
*18

PSU 1V2
15 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\PSU_1V2_LD1117A.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

VIN VOUT

GND

100nF
C12

VIN3

1

VOUT 2

GND
VOUT 4

U5 LD1117AS12TR

10uF
C31

GND GND

PIC1201

PIC1202
COC12

PIC3101

PIC3102
COC31

PIU501

PIU502PIU503

PIU504

COU5

PIC1202 PIC3102

PIU501
PIC1201

PIU503POVIN

PIC3101

PIU502

PIU504

POVOUTPOVIN POVOUT

1

1

2

2

3

3

4

4

D D

C C

B B

A A

16

*
*
*
*
*18

PSU 2V5
16 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\PSU_2V5_LDK130.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

IN1

EN3 BYP 4OUT 5

2

GND

U6

LDK130M25R

VIN VOUT

GND GND

1uF
C59

10nF
C60

1uF
C61

GND GND

PIC5901

PIC5902
COC59

PIC6001

PIC6002
COC60

PIC6101

PIC6102
COC61

PIU601

PIU602

PIU603 PIU604

PIU605

COU6

PIC5902 PIC6002 PIC6102

PIU602
PIC5901

PIU601

PIU603

POVIN

PIC6001

PIU604

PIC6101

PIU605 POVOUTPOVIN POVOUT

1

1

2

2

3

3

4

4

D D

C C

B B

A A

17

*
*
*
*
*18

PSU 3V3
17 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\PSU_3V3_LD29300.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

VIN VOUTIN2 OUT 4

INH1 NC 5

3

GND

6

TAB

U10 LD29300P2M33R

0.47uF
C10

GNDGND GND

10uF
C62PIC1001

PIC1002
COC10

PIC6201

PIC6202

COC62

PIU1001

PIU1002

PIU1003

PIU1004

PIU1005

PIU1006

COU10

PIC1002 PIC6202

PIU1003PIU1006
PIC1001

PIU1001

PIU1002POVIN

PIC6201

PIU1004 POVOUT
PIU1005

POVIN POVOUT

1

1

2

2

3

3

4

4

D D

C C

B B

A A

18

*
*
*
*
*18

PSU_DECOUPLING
18 *

10/07/2015 03:55:21
C:\Users\Public\Documents\Altium\Projects\RTTester_CIV\PUS_Decoupling.SchDoc

Title

Size: Number:

Date:
File:

Revision:

Sheet ofTime:
A4

PLL VCCD Decoupling

L1
1K at 100MHz 300mA Bead

10uF
C42

2V5

10uF
C47

1V2 VCCD_PLL

VCCA

GND

GND

3.3V Decoupling

PLL VCCA Decoupling

L2
1K at 100MHz 300mA Bead

VCC_EXT

GND

10uF
C6

10uF
C8

10nF
C17

GND

VCCA

10uF
C28

0.47uF
C27

100nF
C26

22nF
C25

10nF
C24

4.7nF
C22

1V2

GND

4.7nF
C23

VCCD_PLL

2.2nF
C48

0.22uF
C49

GND

1uF
C35

22nF
C34

4.7nF
C33

3V3

GND

1.2V Decoupling

PIC601

PIC602
COC6 PIC801

PIC802
COC8

PIC1701

PIC1702
COC17

PIC2201

PIC2202
COC22

PIC2301

PIC2302
COC23

PIC2401

PIC2402
COC24

PIC2501

PIC2502
COC25

PIC2601

PIC2602
COC26

PIC2701

PIC2702
COC27

PIC2801

PIC2802
COC28

PIC3301

PIC3302
COC33

PIC3401

PIC3402
COC34

PIC3501

PIC3502
COC35

PIC4201

PIC4202
COC42

PIC4701

PIC4702
COC47

PIC4801

PIC4802
COC48

PIC4901

PIC4902
COC49

PIL101 PIL102

COL1

PIL201 PIL202

COL2

PIC2201 PIC2301 PIC2401 PIC2501 PIC2601 PIC2701 PIC2801

PIL201

PIL101

PIC3301 PIC3401 PIC3501

PIC602 PIC802

PIC1701

PIC2202 PIC2302 PIC2402 PIC2502 PIC2602 PIC2702 PIC2802

PIC3302 PIC3402 PIC3502

PIC4201

PIC4701 PIC4802 PIC4902

PIC601 PIC801

PIC1702PIC4202
PIL102

PIC4702 PIC4801 PIC4901
PIL202

	Summary
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Problem description
	Prevoius work
	Hardware
	Specifications
	Software
	Completeness

	Work to be done
	Structure of the report

	Validating the tester IP
	Verifying tester IP operation
	Running the design on actual hardware
	Examining the design

	Creating the testing platform
	Choosing an FPGA for the tester
	FPGA Configuration
	Configuration Modes
	Configuration tool

	System Design
	Initial Design
	Adding a Microcontroller
	USB Interface

	Choosing the PCB design software
	Following Raspberry Pi HAT Specifications
	The Raspberry Pi HAT
	HAT Specifications
	Following the Full Specification

	Interface to the System Under Test

	Protection
	Introduction
	Used protection techniques
	Reversed Voltage
	Using multiple power sources simultaneously
	Over current and short circuit
	Overvoltage
	Supply noise and voltage spikes
	I/O Overvoltage
	I/O Overcurrent

	Software
	The Graphical User Interface
	Microcontroller Software
	Nios II software
	Main Operations
	Test Operation
	Read-to-SD Operation
	Read-to-PC Operation
	Configuration Command

	Using The Tester
	Configuring the FPGA
	Programming the Configuration Device
	Using JTAG Interface
	Using AS Interface

	Programming Nios II Processor
	Programming the Microcontroller
	Using the Graphical User Interface
	Performing a Test
	Reading Test Results
	Analyzing Test Results
	Configuring the Tester

	Testing and Result Analysis
	Available Testing Techniques
	Software Tags:
	Interrupt to acknowledgment
	Interrupt to thread trigger

	Programming SUT to interact with the tester
	A to B Tests and Execution Logging
	Interrupt to the Acknowledgment and Interrupt to Thread

	Analysing Test Results
	Data Logging Format
	Example of analyzing actual log data
	Comparing log data to the actual signals
	Getting response duration information

	Discussion
	Board manufacturing and assembly
	Micro SD card connection
	Issues with PCB design
	Recommendations for PCB design improvements
	RTS-tester vs. a logic/bus analyser kyrre
	System cost
	Conforming to HAT specifications
	Notes about using the tester
	Future work

	Conclusion
	Bibliography
	Appendix
	PCB Design Schematics

