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Problem description

The candidate will consider the problem of implementing and adapting motion-planning algo-
rithms for unmanned vehicle-related applications. The following elements must be considered:

1. Implement a number of sampling-based and combinatorial algorithms (such as RRTs,
Probabilistic Roadmaps and Voronoi diagrams) in two dimensions. Use environments
with obstacles.

2. Continue with the RRT and:

• Apply Dubins car dynamics and clothoids for curvature continuity.

• Apply Dubins car dynamics and Fermat’s spirals for curvature continuity.

• Compare the different methods.

3. Investigate the possibility of using the generated paths (Fermat’s and clothoid) as input
for guidance techniques, such as path tracking in the case where ocean current is present
as a disturbance.

Assignment given: January 12th 2015
Supervisors: Morten Breivik, ITK and Anastasios Lekkas, IMT
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Abstract

In this Master’s thesis, some of the most popular techniques in the motion-planning field are
implemented in two-dimensional areas with obstacles. The Voronoi diagram method, the prob-
abilistic roadmap method and the rapidly-exploring random trees method (RRT). Because the
RRT has proved to be very efficient in finding paths connecting two points on a map while avoid-
ing obstacles in earlier work, the method is in this thesis combined with differential constraints
such as curvature continuity, which can be achieved using Dubin’s vehicle kinematics with Fer-
mat’s spiral and clothoid transitions. A comparison is made showing that the Fermat’s spirals
computational time is much lower than for the clothoid. To determine whether the smoothing
methods are suitable for collision-avoidance applications for marine vehicles, the main part of
the thesis is dedicated to test the generated paths as input for an extended version of the tra-
jectory tracking guidance system from Lekkas and Fossen (2014). Even when introducing ocean
current to the vehicle while tracking, the method shows promising results, and future work could
revolve around further tuning of the system and the generated paths, or expanding the method
with another dimension to use for 3-D applications.
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Sammendrag

(Norwegian translation of the abstract)

I denne masteroppgaven blir noen av de mest populære baneplanleggnings metodene innen feltet
implementert for to-dimensjonale omr̊ader med hindringer. Det er Voronoi diagram metoden,
probabilistisk veikart metoden og den raskt utforskende tilfeldige trær metoden (RRT). Fordi
RRT i tidligere arbeid har vist seg å være svært effektiv til å finne veier som forbinder to punkter
p̊a et kart samtidig som man unng̊ar hindringer, blir metoden i denne avhandlingen kombinert
med differensielle begrensninger som kontinuerlige krumninger ved hjelp Dubins kjøretøy kine-
matikk kombinert med Fermats spiral og klotoide overganger. En sammenlikning av metodene
viser at Fermats spiralens utregningstid er veldig mye lavere enn for klotoiden. For å finne ut
om metodene er egnet for kollisjonsunng̊aende applikasjoner som marine kjøretøy er hoveddelen
av oppgaven dedikert til å teste de genererte banene som grunnlag for en utvidet versjon av
systemet i Lekkas and Fossen (2014). Det viser seg at selv n̊ar man tilfører havstrømmer p̊a
kjøretøyet gir metoden lovende resultater, og videre arbeid kan dreie seg om ytterligere testing
eller å utvide metoden for 3-D-applikasjoner.
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Chapter 1

Introduction

1.1 Motivation

The motion planning problem originates from 1950s when the famous American mathematician
and electronic engineer Claude Shannon (Figure 1.1) made an electronic mice which explored
a maze with a simple maze-searching algorithm. This method saw the environment as a check
board and every square would include two bits, which after being visited indicated the direction
the mice left. This simple algorithm would later be optimised to find the shortest path to the
exit, by changing the check board into a graph (set of objects where some pairs of objects are
connected by links). Then solve by using shortest-path methods for graphs which are described
in most algorithm introduction courses.

Figure 1.1: Claude Shannon and his maze-solving mouse in 1952, from CyberneticZoo (2009)

1



Also during the 40s the idea of manipulator arms (robotic arms) was introduced, first for the
purpose of handling radioactive material. The more intelligent control systems for such arms
wasn’t researched until the late 60s where the dynamics, kinematics and trajectories were taken
into account. This eventually led to the problem of motion planning being clearly defined during
the 70s:

Motion planning involves getting a robot to automatically determine how to move
while avoiding collisions with obstacles. - LaValle (2011a)

During the 80s combinatorial solutions were found for the problem. One of them was the Voronoi
diagram method. In the 90s the sampling-based methods such as the RRT and the PRM were
introduced and was shown to offer more practical solutions for modern industry. Because these
methods have proved to be very efficient in finding paths by essentially connecting two points
on a map, they are very suitable for motion-control scenarios where the goal is to navigate in
narrow environments filled with obstacles. It is because of these properties the methods have
been extended to other fields than robotics, such as unmanned vehicle-related applications. An
important question today is if these sampling-based methods from the robotics literature can
compete with the complete motion planning techniques, such as the Voronoi diagrams, where
you can determine if there exists a solution.

Figure 1.2: Kongsberg Maritimes AUV Remus 100, from http://www.ntnu.edu/amos/aur-lab

One of the sampling-based methods which are very relevant today is Steven M. LaValle’s
Rapidly-exploring Random Trees, LaValle (1998). By taking differential constraints into ac-
count and creating motion primitives, such as curvature continuity, can this method provide
satisfying results when generating paths to be used as input for today’s guidance systems? A
lot of today’s research revolves around creating motion planning systems for generating paths
for autonomous vehicles. Can the Rapidly-exploring Random Trees contribute to this field?

2
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1.2 Contribution

The main contribution of this thesis is the combination of taking a collision free path generated
by the Rapidly-exploring Random Trees method, and using it as a basis to generate a Dubin’s
path with Fermat’s spiral transitions for curvature continuity. The resulting path will then
be used as input for a guidance system tracking that path while under the influence of ocean
currents. The results are also compared with results from tracking a Dubin’s path with clothoid
transitions and concludes which method is the fastest. The thesis also contributes by using an
alternative parametrization of the Fermat’s spiral (which was suggested in Lekkas et al. (2013))
in order to achieve the tracking.
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1.3 Outline

This thesis is divided into chapters which together aims to build a system using motion planning
to generate paths as input for a guidance system tracking that path.

Chapter 2 provides theoretical background on path planning by formulating the path planning
problem and explains the many approaches available. It also introduces shortest path algorithms
and explains how obstacles can be added and avoided in a path planner algorithm.

In Chapter 3, three of the most common path planning methods in the field are presented and
explained in detail. Chapter 3 also compares the methods for 2D scenarios.

Chapter 4 increases the complexity by introducing kinematics and differential constraints to be
added to the Rapidly-exploring Random Trees method in Chapter 5. Chapter 5 also explains
how to generate paths with different levels of smoothness.

Chapter 6 goes over the basic elements of a guidance system which will use the paths generated
in Chapter 5 as input.

In Chapter 7, the results of using the paths from chapter 5 as input for the guidance system
from Chapter 6 are presented and discussed.

Chapter 8 presents the final conclusion together with suggestions for future work.
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1.4 Notations

α , Angle

Ps , Starting pose

Pf , Finishing pose

r , Path

q , Path parameter

R , Euclidean space

X , Metric space

W , Workspace

O , Obstacle space

C , Configuration space

R , Radius

⊂ , Subset

∈ , Included in

A , Set of points occupied by a vehicle

κ , Curvature

c , Sharpness

φ , Steering angle

$ , Path parameter

∀ , For all

ψ , Vessel heading

ω , Angular velocity
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1.5 Abbreviations

RRT - Rapidly-exploring random trees
PRM - Probabilistic roadmap method
DOF - Degrees of freedom

FS - Fermat’s spiral
NED - North-East-Down
LOS - Line-of-sight
RSL - Right-Straight-Left
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Chapter 2

Theoretical Background

This chapter provides a short introduction to path planning and different concepts in the field
of path planning. Path planning uses concepts from many different fields of study. The most
commonly used terminology comes from the field of robotics, where path planning has been
an important part since the beginning. Other disciplines which have contributed to the field
of path planning are computer science, mathematics, control theory and in more recent years
autonomous offshore and aerial applications. For more in depth explanations of the concepts
presented in this chapter, the reader is advised to look at the book from Tsourdos et al. (2010) as
well as LaValle (2011a), LaValle (2011b) and Kavraki and LaValle (2008). Other recommended
papers are Dahl (2013), Haugen (2010) and Loe (2008).
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2.1 Path planning theory

2.1.1 Formulating a path planning problem

In Tsourdos et al. (2010), the path planning problem is formulated as follows: For any kind of
vehicle or robot we have a starting pose Ps and a finishing pose Pf . Path planning then involves
producing a path r(q) connecting Ps and Pf ,

Ps
r(q)−−→ Pf (2.1)

where q in r(q) is a path parameter which depends on the path formulation (straight-line or
curved).
In most problems where path planning is applied there are constraints which has to be taken
into account. Constraints can include obstacles in the region, vehicle limitations, communication
limitations and different safety measures. In the simplest case constraints are represented as the
symbol q. (2.1) can then be written as:

Ps
qr(q)−−−→ Pf (2.2)

From (2.2) we see that a path planner acts as a black box system, in the sense that it
produces a path from given inputs. This analogy is pictured as a block diagram approach in
Figure 2.1.

Figure 2.1: Block diagram approach to path planning, from Tsourdos et al. (2010)

The inputs are the poses Ps and Pf , and the output is the path r(q) which is also fed back
into the path planner to determine if the produced path meets the constraints.

2.1.2 Solving a path planning problem

In both Tsourdos et al. (2010) and LaValle (2011a) the basic concepts of a solver for the path
planning problem are explained in depth. A path planners task is to produce a series of nodes,
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connected by straight lines, which shows the path from start to finish. This is called a global path
planner. In turn the series of nodes can be optimised and used as input for a vehicles controller.
For complex problems, some systems also include a local path planner, which provides a more
detailed solution.

There are a wide variety of approaches for a path planner to create a solution. The approach
can be split into two parts, first transforming the given environment into a searchable database,
and second finding a suitable algorithm to compute the path into a list of nodes.

Translating the environment is dominated by three methods documented by Latombe (1991)
as the potential field method, cell decomposition method and roadmap method. These methods
are also explained in Tsourdos et al. (2010).

Ps

Pf

Figure 2.2: Potential field example

The potential field method sees the environment as an artificial potential field, where
destinations are seen as attractive, and obstacles are seen as repulsive (see Figure 2.2). This
continuous method will in the end produce a path which follows a line of maximum potential,
and is therefore vulnerable to getting trapped in a local maximum.

The cell decomposition method divides the environment into a cell structure with free
cells and occupied cells, as can be seen in Figure 2.3. This discrete representation can then be
used as input for a solver finding a path consisting of free cells.

The roadmap method will be covered in more detail as we get further into the theory, but to
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Figure 2.3: Cell decomposition example, from Tsourdos et al. (2010)

understand how road maps work, the space in which it works in must be explained.

2.1.3 The configuration space and workspace

The configuration space or C-space is a complete specification of the position of every point in
a system. In a simple case, the position of a particle in a 3D space can be defined by the vector
r(x, y, z). The configuration space of the particle is therefore R3.

A workspace however, is modified to accommodate for the physical size of the vehicle.

To better illustrate the configuration space, an example from LaValle (2011a) and Kavraki
and LaValle (2008) is considered. A 2D workspace denoted W = R2. The workspace has
obstacles O ⊂ W. The goal is create a path for a vehicle which occupies a closed set of points
A(q) ⊂ W from an inital configuration qi to a goal configuration qG. Assuming the vehicle is
unable to rotate the configuration space will be equal to the workspace C =W = R2. Every time
the vehicle changes configuration it must be without colliding with an obstacle, this noncolliding
space can be defined as

Cfree = {q ∈ C|A(q) ∩ O = ∅} (2.3)

and is called the free space. Hence the colliding space is Cobs = C/Cfree. With this description
the path-planning problem can be visualised as seen in Figure 2.4.
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Figure 2.4: Connecting qi to qG while remaining in Cfree, from LaValle (2011a)

2.1.4 Roadmaps

A roadmap is a network of straight lines (2D or 3D) connecting the starting point of a vehicle
and the goal without colliding with any defined obstacles in the environment. Since the roadmap
works in the configuration space, the vehicle is considered (as mentioned in the Section 3.2) to
be a point, and the space takes the vehicles dimensions into account when defining Cobs and
Cfree.

To better understand a roadmap, a simple example is considered in Tsourdos et al. (2010).
After the environment has been transformed into Cobs and Cfree a network of straight lines are
generated, creating a graph which results in a set of polygons surrounding the obstacles on the
map. The result can be seen in Figure 2.5.

2.1.5 Planning algorithms

After a path planning problem has been translated by a path planner into a suitable configuration
space, a planning algorithm can be applied. The algorithm requires input in the form of the
vehicle’s initial placement, the desired goal placements, and a description of the vehicle itself
and the workspace. The goal is then to deliver a precise description of how the vehicle can move
from start to finish. As all algorithms, a planning algorithm works step-by-step when calculating
a path. When receiving a workspace with known points or paths all ready defined, simple search
algorithms can be used to calculate the resulting path. But in other cases the algorithms has to
place out the points and paths by itself, incrementally getting closer to the goal.
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Figure 2.5: Starting point ps connected to a goal point pf using the roadmap method taken
from Tsourdos et al. (2010)

2.1.6 Global and local methods

In this report the maps are without dynamic constraints. Thus the only methods needed are
considered global methods. A global method uses global information to save the environment in
a map, which is used during the entire calculation of the path planner. This means the global
map does not change, and exists in the memory available to the planner. The computational
time of a global method is often long, as static environments does not require quick reactions in
common cases.

However, if the environment is to include dynamic constraints, such as other vehicles acting
as moving obstacles, a more precise approach is needed. This is where a local method can be
introduced. A local method only operates within a small area of the environment, and only
considers one situation at a time, making it much faster than a global method. Local methods
can be simplified version of the global methods, as long as they fulfil the demands required.
Local methods work off sensors and are therefore memoryless.

In large areas filled with both dynamic and static obstacles, a combination of both a global
and a local path planner is the most beneficial way to design a path planner.

2.2 Dijkstra’s algorithm

Known as one of the most famous shortest path graph search methods in computer science,
Dijkstra’s algorithm from Dijkstra (1959) assigns every node in a graph a tentative distance
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value (initially all nodes are set to infinity and the starting node as zero). It then marks all
nodes except xinit as unvisited, and sets xinit as the current node. The algorithm then considers
the current nodes unvisited neighbours by calculating their tentative distance and comparing it
to their previous value, and updates it if a lower value is calculated. When all neighbours are
visited, they are no longer marked unvisited. After each loop of visiting neighbours is complete
the unvisited node marked with the smallest tentative distance is set as the new current node.
When the destination has been marked as visited, or there exists no connection between the
visited and unvisited nodes, the algorithm is finished.

1 1

1 1

1
1

1 11

1 1

1 1

1
1

1 11
∞ ∞ ∞

∞

∞

1

2

1

1

2

x_init x_init

Figure 2.6: Dijkstra’s algorithm initially and finished
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2.3 Obstacles

Since this report mostly explores path planning in two dimensions, 2D obstacles is naturally
what we want to avoid when finding a path from start to finish. In 2D cases obstacles can
be pictured as polygons which makes avoiding them a simple thing to implement. Another
advantage of using polygons is that they are easy to increase in size if a clearance constraint is
also a wanted feature. The clearance constraint concept will be explained in Chapter 4.

2.3.1 Placing points

Having the obstacles as polygons is an advantage when a path planner is placing out points
to explore, as the simple Point-in-polygon method (inpolygon, see MathWorks (2014b)) can
be applied. Point-in-polygon determines whether a given point is inside or on the edge of a
polygonal region, and returns either true or false. This is pictured in Figure 2.7 where the blue
points can be used by planner, and the red points will be discarded.

Figure 2.7: Placing points and deciding whether they are inside or outside a polygonal region,
from MathWorks (2014b)
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2.3.2 Checking edges

When finding out if a generated edge collides with an obstacle, it is once again favourable to
have the obstacles defined as polygons. MATLAB’s polyxpoly function (see MathWorks (2014c))
creates a set containing all intersecting points between the given edge and the obstacle. Checking
if this set is empty afterwards determines whether the edge collides with the obstacle or not.

Figure 2.8: Finding the intersecting points between a line and a rectangle, from MathWorks
(2014c)
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Chapter 3

Path Planning Methods

This chapter introduces three common path planning methods and then compares them in a
two dimensional environment. The methods are the Voronoi diagram method, first introduced
in Voronoi (1908), the Probabilistic road map method, first introduced in Kavraki et al. (1996),
and the Rapidly-exploring random trees method introduced in LaValle (1998).

Path planning is often split into two types, combinatorial and sampling-based. In the book
LaValle (2006) combinatorial planning is described as a methods which find paths through
the continuous configuration space without resorting to approximations. While sampling-based
methods probes the configuration space using a sampling-scheme. Thus very complex geometric
principles can be simplified, and paths can be found quickly.

For the voronoi diagram method Lekkas (2014) includes a good literary review of the method.
For the RRT LaValle (1998), LaValle and Kuffner Jr (2000a), LaValle and Kuffner Jr (2000b)
and LaValle and Kuffner (2001) are recommended to get a good introduction of the method,
and for some of the methods uses see Pepy et al. (2006), Xinggang et al. (2014), and Heo and
Chung (2013). For path planning method design in general Sucan et al. (2012) is recommended.
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3.1 The Voronoi diagram method

The Voronoi diagram method is named after the ukranian mathematician Voronoi who defined
and studied the n-dimensional case of the method in Voronoi (1908). Originally, the method
dates back as far as Descartes who used it in 1644. The method can bee seen as partitioning a
plane into regions based on a set of points, and is visualised in its simplest form in Figure 3.1.
When applied to a path planning problem, the set of points will represent obstacles.

Figure 3.1: The Voronoi diagram of a set of 9 points

3.1.1 The basics of Voronoi diagrams

The Voronoi diagram is based on a finite set of points P = {p1, ..., p2} contained in a workspace
X. In this report we are working in X ⊂ R2. The space X has a metric function defined as
d(·). When the space and points have been defined the method starts by associating a Voronoi
region Ri for each point pi ∈ P ⊂ X, where Ri is defined as the set of points xi ∈ X such that
their distance to pi is lower than the distance from xi to any other point of P . Mathematically
speaking the metric is defined as:

d(x, p) = inf{d(x, p)|p ∈ P} (3.1)
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such that the Voronoi region is defined as:

Rk = {x ∈ X|d(x, Pk) ≤ d(x, Pj)∀j 6= k} (3.2)

In the end the final Voronoi diagram is the tuple of cells (Rk)k∈K , with K as a set of indices.

3.1.2 Voronoi diagrams for path planning

As mentioned earlier, the Voronoi diagram can be used to solve a path planning problem. When
doing so, the points used as inputs are put on the edges of the obstacles, to create collision free
edges for the starting and finish point to connect to, and then the resulting path will be along
the edges. In this section a step-by-step explanation of how the Voronoi works is presented.

3.1.3 Placing points

Figure 3.2: A path planning scenario for the Voronoi method

Figure 3.2 shows a map containing five obstacles, a start point and a finish point. To convert
this to an input for the Voronoi diagram method the sides of the obstacles must be discretized
into points, and the area must be contained. In this case using the corners of the obstacles are
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enough, but with larger more complex obstacles a large amount of points must be provided to
get a reliable result.

3.1.4 Placing the Voronoi diagram

When the input points have been set, they can be fed into the Voronoi diagram function. In
this case the built-in MATLAB function voronoi was used MathWorks (2014d). This function
requires two vectors as input. One with the x-coordinates and the other with the y-coordinates.
When executed the result is as shown on Figure 3.3. The blue points are the input points, and
the blue lines are the edges of the polygons created by the method.

Figure 3.3: Resulting Voronoi diagram for Figure 3.2
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3.1.5 Filtering edges within obstacles

When the diagram has been created, the next step is to remove the edges and points that
lead out of the area or go through obstacles. This is achieved by going through each edge and
removing them if some part of it is within an obstacle or at the border of the area. When
finished, a collision free network has been generated, see Figure 3.4.

Figure 3.4: Figure 3.3 after removing edges and points within obstacles
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3.1.6 Connecting to the network and finding a path

The final step of the method is to connect the starting and finishing point to the network and
applying a shortest path algorithm such as Dijkstra’s. The initial path will follow the Voronoi
edges, but by applying a waypoint reduction a final path can consist of very few points. Figure
3.5 shows how the problem in Figure 3.2 has been solved.

Figure 3.5: Figure 3.4 after applying Dijkstra’s algorithm and waypoint reduction
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3.2 The Probabilistic Roadmap method

The probabilistic road map method was first introduced in Kavraki et al. (1996). It is a sampling
based method which computes collision-free paths by generating random states in the configu-
ration space, checking if they are in Cfree, and applies a local planner to connect neighbouring
states to each other. In the end there will be a graph including all generated states which the
states xinit and xgoal can be connected to, and a shortest path algorithm can be applied to find
the resulting path.

Figure 3.6: Probabilistic road map method

3.2.1 The basics of PRM

When applying the PRM method, the first task is to create the space in which the method will
work. When using PRM three spaces are needed; the workspace W, which in most cases is the
same as the configuration space C, the collision free part of C, namely Cfree, and the obstacle
space Cobs. When these are set a roadmap is generated as an undirected graph R = (N,E). The
graph includes the nodes N which are a set of randomly chosen configurations, or points, in
the free space Cfree. E are the possible connections between nodes, called edges. This is called
the learning phase of the PRM. After the roadmap is complete, the query phase takes over and
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connects xinit and xgoal to the roadmap and calculates a feasible path. The two phases can be
intervowen, but are best explained when separated.

Learning phase

As mentioned, the goal of the learning phase is to create a roadmap over a given workspace. The
phase starts by constructing the roadmap. The nodes N of the initially empty graph R = (N,E)
are repeatedly updated with additional random free configurations called c. For every new node
generated, a neighbourhood set is generated, Nc ⊂ N , which contains nearby existing nodes
within a chosen radius. Then the newly created node tries to connect to its neighbours, and if
successful, the edge is added to E. For a more in-depth explanation of how the neighbourhood
set is chosen see Kavraki et al. (1996). When the number of nodes added to the graph is
satisfying the learning phase is over and a roadmap has been created. An example of a finished
learning phase can be seen in Figure 3.7. Here the starting and ending points are represented
as the green and red dot, respectively.

Figure 3.7: PRM after the learning phase

Query phase

After the learning phase is complete, the query phase takes over. Here the goal is to connect
the initial point and the goal point to the roadmap. This is done in a similar way to how new
nodes are added in the learning phase. However the neighbourhood nodes can be chosen with
a different radius, and other constraints. In the general case, the starting point and goal point
connect to the first point available, which may not be the best. This can be countered with

24



waypoint reduction of the finalized path. Figure 3.8 shows how the query phase has connected
both points to the roadmap generated in Figure 3.7.

Figure 3.8: PRM after the query phase

PRM finding goal

When the graph R = (N,E) has been updated with the start and finishing point including the
edges from the query phase, a simple graph shortest path algorithm can be applied to find a
path. This is illustrated in Figure 3.9 as the red line connecting start to finish.
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Figure 3.9: PRM after applying shortest path algorithm

3.2.2 The PRM algorithm

The probabilistic roadmap method is relatively easy to implement, and programs such as MAT-
LAB have many functions which shortens the process. Below in Algorithm 1, a pseudo code
based on a MATLAB implementation is presented. The code starts out by initialising the con-
figuration space C, and generates an empty graph called R. Then the learning phase starts at
line 3 by iteratively creating up to K nodes in Cfree. For every iteration a node c is generated
randomly in Cfree and saved in R. Then a neighbourhood Nc is created by defining a radius,
d, around c. For each neighbour n in Nc, c checks if a connection is possible and that the edge
doesn’t all ready exist. If that is the case, an edge between c and n is saved in R. The learning
phase ends at line 13 when K nodes have been added to R and all possible edges have been
found.

When the learning phase is done, the query phase tries to connect the start and finishing
point to R. If this is possible for both points, a graph shortest path method is applied to the
finished roadmap, and a path is generated. If no connection is possible, the method fails.

3.2.3 PRM extensions

Combining learning and query phase

One way to improve the PRM is to combine the learning and query phase so they are applied
together. This extension makes the method more reliable, in the way that if the query phase fails
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1 initialize(C, xinit, xgoal, N,E);
2 R ← ({N,E});
3 for k = 1 to K do
4 c ← RANDOM STATE(Cfree);
5 Nc ← GENERATE NEIGHBOURHOOD(c,N, d);
6 N ← N ∪ {c};
7 while n ∈ Nc do
8 if CAN CONNECT(c,n) and NOT CONNECTED(c,n) then
9 N ← N ∪ {(c, n)};

10 end

11 end
12 k = k + 1;

13 end
14 if CONNECT(xinit,xgoal,R,d) then
15 graphshortestpath(R,xinit,xgoal);
16 else
17 return failure;
18 end

Algorithm 1: PRM

in connecting the starting and finishing point to the roadmap, the learning phase can continue
making an even larger roadmap until the query phase finds its solution.

Waypoint reduction

Waypoint reduction is a simple technique to apply to the initial path generated by the PRM. It
both reduces the length and the complexity of the path. The method uses the points and edges
of the initial path as input, and works through the path by continuously attempting to connect
points that are not already connected, and deleting the middle points if a connection is possible.
An example can be seen in Figure 3.10.
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Figure 3.10: Waypoint reduction for the PRM
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3.3 The Rapidly-exploring Random Trees method

Figure 3.11: Rapidly exploring random trees method

The Rapidly-exploring random trees (RRT) algorithm was introduced in LaValle (1998). It is a
randomised method designed for problems with nonholonomic constraints. In other words it can
create a path while considering the dynamics of a vehicle at the same time. The randomness
of the RRT gives it the property of being able to explore a space and find solutions much
faster than a complete path planning method. The property of randomness makes the method
favour exploring unexplored areas, as well as increasing the chance of reaching the goal for each
iteration. A simple MATLAB implementation shows the exploring properties of the RRT in
environments with and without obstacles in Figure 3.12 and 3.13.
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(a) 30 iterations

(b) 250 iterations

Figure 3.12: RRT exploring an area w/o obstacles
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(a) 30 iterations

(b) 250 iterations

Figure 3.13: RRT exploring an area with obstacles
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3.3.1 The basics of RRT

The basis of the RRT algorithm is to generate a tree with the vehicle’ss initial state as the starting
node. The tree grows by placing nodes randomly in Cfree and checking if the tree’s existing
nodes can connect to them without colliding with Cobs. As the tree grows it will eventually reach
the goal point and a guaranteed collision free path has been made. The RRT is able to take the
vehicle’s constraints into consideration when checking whether a new node can be connected to
the existing ones. Ultimately the result will be a collision free and runnable path.

To visualise the method an example can be seen in Figure 3.14. A random state has been
found in Cfree as qrand, and qnear has been found as the closest node from the expanding tree,
T. Now the RRT uses an extend function towards qrand by moving in small steps (relative to
the size of the space), creating a new node in the tree for each step as qnew. After each step the
extension function either continues, reaches qrand or gets trapped. Afterwards, if the goal hasn’t
been reached, a new qrand is generated, and the RRT continues until a goal has been found.

Figure 3.14: RRT extending, from LaValle and Kuffner Jr (2000a)

3.3.2 The RRT algorithm

One of the strengths of the RRT method is that it’s relatively simple to implement. A pseudo
code based of the implementation which Figure 3.12 and 3.13 was made from is presented in
Algorithm 2, it is based on the theory from LaValle and Kuffner Jr (2000a). The algorithm runs
in a loop of N iterations extending towards random states created by the RANDOM STATE
function, which randomly generates points in Cfree. The algorithm then finds the newly gen-
erated point with NEAREST NEIGHBOUR by using a minimum distance function to find the
closest point to xrand, called xnear from the existing tree, T . An input u is generated by SE-
LECT INPUT and used to move safely towards xrand. The length of u is determined by a desired
step length and the limits of the area, and the resulting point is generated by NEW STATE and
saved as xnew. CAN CONNECT then checks if the new point, xnew, can be added to T , and if
it can, the vertex continues to extend until xrand is reached, or an obstacle is met. The method
of extending this way is the same as in Figure 3.14 where q represents x.
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1 initialize(xinit, C);
2 T ← TREE({xinit, 0});
3 for k = 1 to N do
4 xrand ← RANDOM STATE(Cfree);
5 xnear ← NEAREST NEIGHBOUR(xrand, T );
6 u ← SELECT INPUT(xrand, xnear);
7 xnew ← NEW STATE(xnear, u);
8 while CAN CONNECT(xnew) do
9 T ← xnew;

10 u ← SELECT INPUT(xrand, xnew);
11 xnew ← NEW STATE(xnew, u);
12 if xnew == xrand then
13 break;
14 end

15 end
16 k = k + 1;

17 end

Algorithm 2: RRT exploring for N iterations

3.3.3 RRT finding goal

Extending the existing pseudo code from Algorithm 2 to include a goal condition is simple. For
each new node connected to the tree T , a check can be added comparing the new node to the
goal point, which when yielding a matching result, stops the algorithm. Now a simple shortest
path search algorithm for a graph can be applied, in the case of Figure 3.15 and the other
RRT results in this report, MATLAB R2014a’s own shortest path function for graphs was used.
The function is explained in the MATLAB documentation found on their web page MathWorks
(2014a). The default search method of the function is the Dijkstra algorithm.
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Figure 3.15: RRT finding goal in an obstacle-free area
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3.3.4 RRT theory

Mathematical definition

The standard RRT presented in this report is working in a metric space X which is equal to
the configuration space C. This means the obstacle region can be noted as Xfree ⊂ X. All the
vertices the RRT creates are states in Xfree, which means all the edges generated in the tree
corresponds to a path which lies entirely in Xfree. The method can then be formulated in six
mathematical steps as seen in LaValle and Kuffner Jr (2000b):

1. Creating a State Space: Metric space, Xfree.

2. Defining Boundary Values: xinit ∈ X, xgoal ⊂ X.

3. Detecting Collisions: D : X → {true, false}, determines whether global constraints are
satisfied.

4. Generating Input: A set, U , specifying the complete set of controls or actions that can
affect the state.

5. Incremental Simulator: Given the current state, x(t), and inputs from U applied over
a time interval, {u(t′)|t ≤ t′ ≤ t+ ∆t, compute x(t+ ∆t).

6. Metric: A real valued function, ρ : X × X → [0,∞), specifying the distance between
pairs of points in X.

Analysis

In the paper LaValle and Kuffner Jr (2000b), LaValle presents several lemmas and theorems on
the properties of the RRT method. One of the results is that the distribution of the RRT vertices
converge towards the sampling distribution, meaning that the RRT will come arbitrarily close
to any point in a convex space. He also establishes probabilistic completeness, meaning that as
more work is performed, the probability that a planner will fail in finding a path, asymptotically
approaches zero. This is measured in rate of convergence, which obtaining theoretical bounds
for, is described in LaValle and Kuffner Jr (2000b) as one of the key difficulties for RRT-based
planners.

Proportionality with Voronoi regions

In LaValle and Kuffner Jr (2000b) and LaValle and Kuffner Jr (2000a) it is shown that the
probability that a vertex is selected for extension in the RRT is proportional to the area of its
Voronoi region. This can bee seen in Figure 3.16, where the top row shows the RRT expanding
for a holonomic planning problem, and the bottom row shows the Voronoi diagram of the RRT
vertices. This shows how the RRT is biased to rapidly explore, and also uniformly covers the
space, which are both desired properties in a probabilistic planner.
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Figure 3.16: RRT biased by large Voronoi regions to rapdily explore, before uniformly covering
the space, from LaValle and Kuffner Jr (2000b)
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3.3.5 RRT extensions

In this section some of the RRT’s properties are presented, together with MATLAB results for
visual help.

Immediate goal connection

The results from Figure 3.15 may rise a question of why the path isn’t found immediately as a
straight line connecting the two points on the map. A feature may be added to the RRT, where
for each new point added to the tree, a connection to the goal is checked. This feature is used
in most RRT cases elsewhere, but in this report it is not added, as it tends to hide the RRT’s
properties, which is nice to observe to fully understand how the method works.

Waypoint reduction

Waypoint reduction for the RRT is exactly the same as for the PRM which was explained in
Section 3.2.3. An example can be seen in Figure 3.17.

Figure 3.17: Waypoint reduction for the RRT
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Weighted distribution (goal bias)

If there exists a solution for connecting a path between two points in a workspace W, the RRT
will always find it, see Section 4 in LaValle and Kuffner Jr (2000a). However, in large sets
the convergence rate can be slow if there is no bias leading towards the goal. In LaValle and
Kuffner Jr (2000b) LaValle debates on different ways to introduce a bias toward the goal.

Figure 3.18: RRT cubicle with 0% goalbias

One way to make the convergence faster is to introduce a coin tossing function which decides
if the RANDOM STATE will find a random point in the entire workspace, or in a smaller area
around the goal. A similar coin toss method can be used to choose either a completely random
point from RANDOM STATE or the goal point itself. There also exists methods where the
weight of the coin increases as the RRT moves closer to the goal.

In the examples of RRT seen in this report, the sampling data which RANDOM STATE gen-
erates a random point from, is distributed in a way that increases the chance of hitting the
goal point. A small bias towards the goal, between 1-5% is enough to drastically increase the
convergence rate of the RRT, see LaValle and Kuffner Jr (2000b). Figure 3.18 and 3.19 illustrate
the difference between a bias of 0 and 1% in an example where the RRT moves from one cubicle
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to another. In the 0% case the entire space is explored before the goal is found, using a lot
more memory and time then the 1% case where the entire area is explored in a more simple
way, before reaching the goal.

Figure 3.19: RRT cubicle with 1% goalbias

To have a constant bias, or a dynamic one increasing as the tree grows closer to the goal are
both viable options, and to choose between them often depends on the shape of the workspace.
For simple spaces a constant bias is sufficient, but in areas with elements of spirals or a ”room-
to-room” setup an increasing bias is a better choice.

Bidirectional RRT

To improve the performance of the RRT, the method can be extended into growing two RRTs
towards each other, instead of just a single RRT. This method is called a bidirectional RRT
and a detailed treatment can be found in LaValle and Kuffner Jr (2000b). With two trees, one
growing from xinit and one from xgoal the solution is found when the two trees meet. Instead
of each tree being biased towards the starting point of the other tree, the bidirectional biases
towards the entire other tree instead. This is done to ensure that the trees meet well before
covering the entire space.
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1 initialize(xinit, xgoal, C);
2 Ta ← TREE({xinit, 0});
3 Tb ← TREE({xgoal, 0});
4 for k = 1 to N do
5 xrand ← RANDOM STATE(Cfree);
6 if EXTEND(Ta, xrand = reached) then
7 if EXTEND(Tb, xnew = reached) then
8 Return PATH(Ta, Tb)
9 end

10 end
11 SWAP(Ta, Tb);
12 end

Algorithm 3: Bidirectional RRT

The bidirectional version of RRT can be seen as pseudo code in Algorithm 3. For simplicity
all the extending operations seen in the standard RRT from Algorithm 2 have been compressed
into a function called EXTEND. The bidirectional RRT maintains two trees, Ta and Tb simulta-
neously. For each iteration, one tree extends creating a new vertex. Then the other tree checks
if it can connect its nearest vertex to the new vertex, and if successful a path has been found.
If not, the roles are swapped and another iteration follows. Figure 3.20 and 3.21 illustrates the
advantages the method provides over the standard RRT. The amount of waypoints are reduced
without any significant increase in computational time.

Figure 3.20: Basic Bidirectional RRT
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Figure 3.21: Bidirectional RRT in a narrow environment
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3.3.6 3D RRT

Extending the RRT to include a third dimension is convenient when using the algorithm for
underwater or flying autonomous vehicles. Introducing a third dimension increases the com-
plexity of the method and the collision checking functions must be extended. In this thesis
the MATLAB functions inpolygon() and polyxpoly() which were mentioned in Section 2.3 were
extended to 3D to be able to check for collisions in all dimensions. Aside from that the graph
can still be used as input for Dijkstra’s algorithm and a collision free path between to points
in the workspace can be found. Figure 3.22 and 3.23 shows a resulting RRT 3D plot after
implementation in MATLAB.

Figure 3.22: RRT generated tree for a 3D 10x10x10 map
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Figure 3.23: RRT original (red) and reduced (green) path for a 3D 10x10x10 map

3.3.7 Problems with the RRT

Even though the RRT has shown promising results in many fields, no method are without
disadvantages. In this section some of the problems one might encounter with the RRT are
described and illustrated.

Narrow passages

When calculating a path through very narrow environments, the RRT will struggle with finding
a way past the obstacles. This is illustrated in Figure 3.24. The random exploration can in
this case slow down the RRT, and will result in the method exploring almost the entire half
of the space before finding a path to the goal. One way to solve this problem is by using the
bidirectional approach from Section 3.3.5. This can be seen by comparing Figure 3.24 and Figure
3.21.
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Figure 3.24: RRT with a narrow passage

Local maximas

When extending with a bias towards the goal the RRT might encounter what can be described
as a local maximum problem. Illustrated in Figure 3.25, the issue is clearly visible. In this case,
extending towards the goal in the early stages of the method is counterproductive, and only
causes the computational time to increase substantially. Fortunately, there exists methods that
can avoid the local maxima problem, such as a dynamic bias function described in LaValle and
Kuffner Jr (2000b), or the bidirectional RRT where two growing trees will avoid the issue which
is shown in Figure 3.26.
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Figure 3.25: RRT local maxima

Figure 3.26: Bidirectional RRT local maxima
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3.4 Comparing Voronoi, PRM and RRT

In two dimensions the three methods discussed in the previous sections show very similar results,
as shown in two different cases in this section.

3.4.1 Small areas

This case is based on Figure 2.5 from the path planning theory section, which is a small area
containing four different obstacles. All cases have been implemented in MATLAB using the
same map and discretization.

Voronoi diagram

Figure 3.27 shows how the Voronoi diagram method has solved the path planning problem. By
placing the Voronoi points on the borders of the map, as well as on the edges of the obstacles,
and then remove the points and edges that fall inside the obstacles, a network appears. The
network is then saved as a graph with nodes and edges, and can then be applied as input in
Dijkstra’s algorithm to calculate the shortest path from start to finish. Then the path is fed
into a way point reduction function which results in the red path described by a total of four
points, down from seventeen. It is important to note that as long as the same points are used
as input for the Voronoi diagram method, the result will be exactly the same.

Figure 3.27: Voronoi applied to Figure 2.5
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PRM

In Figure 3.28 the PRM’s result is shown. The path is different from simulation to simulation
because of the probabilistic nature, but in most cases the result is similar to the result from
Figure 3.28. The final path, marked as the red path contains a total of three points, reduced
from eight.

Figure 3.28: PRM applied to Figure 2.5
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RRT

Figure 3.29 is the result of the RRT, which as the PRM produces a different result for every
simulation, but due to the goal bias (5%) often finds path through the middle. Here the way
point reduction function has the best result, as it reduces the path from a total of twenty eight
points to only three.

Figure 3.29: RRT applied to Figure 2.5, 5% goalbias

Comparison

Figure 3.30 show that all three paths are very similar, both in length and in the amount of way
points the path consist of. The way point reduction is most beneficial for the Voronoi and RRT
in terms of the amount of points that can be neglected. It is difficult to judge the methods
by the simulation time as the implementation is far from optimal in that sense, but general
observation using the inbuilt MATLAB timer show that no method stand out as significantly
faster in the small 2D-case.
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Figure 3.30: Comparing the paths from figures 3.27, 3.28 and 3.29

49



3.4.2 Large areas

Since the case in Section 3.4.1 using the classic roadmap from Figure 2.5 didn’t show much
difference in the three methods, a larger case can be considered. To consider the methods in
a more realistic setting, a simulation where finding the path in a fjord can be considered. A
map over the area can be seen in Figure 3.31, and the different landmasses in this area can be
discretized as large polygons for an implementation. In the path planning sense, the entire map
is seen as the configuration space C, the water as Cfree and the landmasses as Cobs.

Figure 3.31: Map over a part of Oslofjorden, from Google (2014)
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Voronoi diagram

When applying the Voronoi diagram to the method (Figure 3.32), points were placed along the
edges of all the obstacles to create the network. This results in the initial path solution being
in the middle relative to nearby obstacles. The reduced path abandons the middle road, and
prioritises fewer way points, resulting in a shorter path. It’s important to point out that just
before reaching the goal in the northeast corner, the Voronoi chooses the extremely narrow path
to the east of a small island. If this path was generated for a large vehicle, the absence of a
clearance constraint could cause the vehicle to crash because of this choice.
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Figure 3.32: Voronoi result for the narrow fjord case
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PRM

When finding a path using the PRM, some trial and error was necessary to find the right amount
of nodes for the roadmap, as well as the correct maximum connection distance for new nodes.
It is worth to mention that this trial and error could have been reduced if the learning and
query phase of the PRM were interwoven, as mentioned in Section 3.2.3 In Figure 3.33 the max
distance was set to 400 meters and the number of nodes was set to 170. With this setup the
PRM covers the space sufficiently enough to find a path.
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Figure 3.33: PRM result for the narrow fjord case
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RRT

When applying the RRT to a large area, it is important to tune the step length of the extend
function. In Figure 3.34 a step length of 100 meters has been used. The result shows both how
the space is uniformly covered by the method, and how it finds the path relatively fast in terms
of the amount of nodes generated, the goal bias was set to 5%.
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Figure 3.34: RRT result for the narrow fjord case, 5% goalbias
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Comparison

Figure 3.35 shows the reduced paths from figures 3.32, 3.33 and 3.34 together, including the
length of each path. Looking at allt the results in this section it is easy to conclude that in
two dimensions, without any kinematics on the vehicle or dynamic constraints in the area, the
Voronoi diagram method, the Probabilistic roadmap method (PRM) and the Rapidly exploring
random trees (RRT) method end up with very similar results. This makes the choice of method
when planning a path for a static two dimensional case come down to how easy the method
is to implement, what the computational time is, and how easy it can be applied to different
environments.

When it comes to implementation difficulties, all three methods took advantage of some of
MATLAB’s built-in functions, such as the graph shortest path method, which ends up doing
much of the work. The RRT was implemented first, and was therefore the most challenging one.
Where as the two others were trivial after learning a lot from the troubles encountered when
implementing RRT. Looking back, it is recommended to implement PRM before RRT. Because
the PRM only deals with connecting node to node in one operation, while the RRT uses a loop
to extend towards nodes, which can be tricky for beginners.

The computational time of the three methods are all similar, with only small variations in
the RRT and PRM due to their probabilistic nature. When it comes to the RRT, some improve-
ment of the mean run time was seen when the bidirectional RRT was used.

When applying the methods to different environments, the Voronoi method has a major disad-
vantage in that all obstacles must be highly discretized to be sufficient enough as input. This is
complicated and time demanding. However it has a built-in clearance constraint.

One way to improve the PRM is to make the learning phase and query phase work together
simultaneously, as this will decrease the run time of the method as well as minimise the amount
of nodes in the completed roadmap. For the RRT, more experiments on the goal bias, or looking
further into the bidirectional RRT are some of the options that will improve the results.
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Figure 3.35: Comparing the narrow fjord paths from figures 3.32, 3.33 and 3.34
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Chapter 4

Kinematics and Differential
Constraints

Just creating collision free paths consisting of waypoints connected by straight lines is rarely
useful in a motion planning problem. Fortunately, the planners from Chapter 3 can include
a vehicle’s kinematics and differential constraints when finding a path. In this chapter, some
constraints and vehicle models are introduced, which will be used in simulations combined with
the RRT algorithm.

Path parametrization is also considered as it is useful way to formulate paths when used as
input for guidance techniques. The formulation comes from Breivik and Fossen (2009) and is
also used in Dahl (2013), Lekkas et al. (2013) and Lekkas (2014).
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4.1 Curvature

The term curvature is used in many different disciplines. In the motion planning world, curva-
ture is used in a mathematical way to describe the ratio of the change in the angle of a tangent
that moves over a given arc. In short, it describes how sharp a turn is.

Figure 4.1: Defining curvature

In this report, we look at the geometrical definition of curvature, which is based on straight
lines having zero curvature and curved lines being described by using circles. Figure 4.1 shows
how the curvature of the point q on the path P can be found. Given any path P and a point q
on it, there is a unique circle which approximates the curve close to q. The curvature κ of q can
therefore be defined to be the curvature of that circle:

κ =
1

R
(4.1)

When path planning wheeled systems the minimum turning radius is a central constraint. The
maximum possible curvature κmax is then described by Rmin:

κmax =
1

Rmin
(4.2)

To determine the maximum curvature of a vehicle, a common method is to run the vehicle with
nominal speed and applying the vehicles maximal steering angle. This will result in the vehicle
moving in a circle, and the radius of that circle is used as the minimum turning radius Rmin.
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4.2 Clearance constraint

In most path planning cases the resulting path for the vessel must not only avoid the obstacles
but stay a certain distance away from them. In offshore scenarios this is often linked to how
far below the waterline a surface vessel is, and using the clearance constraint to avoid shallow
waters. For aerial applications where most obstacles are dynamic, a clearance constraint can
be used to avoid coming to close to other applications and thus avoid turbulence and other
unwanted disturbances.

With maximum curvature and minimum turning radius explained in the previous section it
is possible to implement a simple but effective clearance constraint for the polygon obstacles
introduced in Section 2.3. This method simply increases the obstacles by a ratio determined
by the minimum turning radius. The resulting path will then avoid the obstacle as well as the
area around them and guarantee that a vessel can always turn around before hitting the original
sized obstacle.

4.3 Simple car model

To understand differential models a simple car model is considered. Since cars can only turn
their front wheels, they are limited by a maximum curvature when moving.

Figure 4.2: 3 DOF car model, with a 2D velocity space

The simple car model is illustrated in Figure 4.2. The car can move in the xy-plane while
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the angle is represented as θ. The configuration space of the car is therefore C = R2 × S. At
any time the position of the car is denoted as the configuration q = (x, y, θ). Furthermore the
car has a steering angle denoted φ, a constant length between the front and rear axle denoted
L and a signed speed s. Note that when driving with a constant steering angle the car moves
in a circle with radius ρ.

With these notations, a mathematical model of the car’s motion can be written as a set of
equations:

ẋ = f1(x, y, θ, s, φ)

ẏ = f2(x, y, θ, s, φ) (4.3)

θ̇ = f3(x, y, θ, s, φ)

To find f1, f2 and f3, we take a look at what happens to the position of the car in a small time
interval ∆t. For this small interval, the car moves approximately the same direction as the rear
wheels are pointing, implying that dy/dx = tan θ. With dy/dx = ẏ/ẋ and tan θ = sin θ/ cos θ
we get the following condition:

− ẋ sin θ + ẏ cos θ = 0 (4.4)

The constraint in equation (4.4) is satisfied if ẋ = cos θ and ẏ = sin θ, and any scalar multiple of
this solution, where the scaling factor is the speed s. To derive the equation for θ̇ we denote w
as the distance travelled by the car. If the steering angle φ is at a fixed position, then the radius
ρ represents the radius of the circle traversed, implying dw = ρdθ. Together with ρ = L/ tan θ
from trigonometry, we get:

dθ =
tanφ

L
dw (4.5)

Which when divided by dt on each side and knowing that ẇ is the speed s becomes:

θ̇ =
s

L
tanφ (4.6)

Although the car has been modelled, no input variables have been introduced. When controlling
a car, both the speed s and steering angle φ can be controlled. These action variables controlling
s and φ are denoted as us and uφ respectively. The final model for the motion of the car is then:

ẋ = us cos θ

ẏ = us sin θ (4.7)

θ̇ =
us
L

tanuφ
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4.4 Dubins car

The Dubins car is a simplified model of the model in equation (4.8) from the previous section.
For a Dubins car, the speed input us is restricted to us ∈ {0, 1}. This means a Dubins car
can only move in three different ways: straight forward, left turn or right turn. It also has a
maximum steering angle φmax which results in a minimum turning radius of ρmin. With constant
speed the Dubins car can be modelled as:

ẋ = cos θ

ẏ = sin θ (4.8)

θ̇ = u

The input u is chosen as either of the three ways of available motion:

Symbol Steering: u

S 0

L 1

R -1

Table 4.1: Dubin’s car motion primitives

Figure 4.3: Dubins path examples. Left path RSL, right path RSR

4.4.1 Dubins curves

Dubins curves was introduced in Dubins (1957). The article showed that between any two
configurations qI and qG, the shortest path for a Dubins car can always be expressed as a
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combination of no more than three motion primitives, namely the primitives from Table 4.1. S
translates to driving straight ahead, and L and R translates to turning left and right as sharply as
possible (maximum curvature). With a path consisting of three primitives, there are ten possible
paths, and in Dubins (1957) it is shown that out of these ten only six are possibly the optimal
path. The six possible optimal paths are the following: {LRL,RLR,LSL,LSR,RSL,RSR}.
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4.5 Path parametrization

In Section 2.1.1 a path was formulated as r(q) as it is in Tsourdos et al. (2010). In this section,
a different formulation of a path is given, which is more suited as input for guidance. The
formulation has been used in Breivik and Fossen (2009), Dahl (2013) and Lekkas et al. (2013),
and considers a planar path as a one-dimensional manifold that can be expressed as the set

P := {p ∈ R2 | p = pp($) ∀ $ ∈ R} (4.9)

where the symbol $ is called the path parameter and p = pp($) is then the position of a
point belonging to the path. Choosing the path parameter $ is not always easy as it does not
necessarily need to have any physical meaning. For example, in the case of a straight lines, the
path length can be used, but in most cases choosing $ to be within the unit domain is more
convenient:

$ ∈ [0, 1] (4.10)

When implementing a path p(·), it is common practice to implement the path as a piecewise-
defined function, which will reduce the function complexity and in turn the computational time.
Both Lekkas (2014) and Lekkas et al. (2013) mention this and state that even though this
method has its advantages it demands consideration at the transition points between subpaths.
In Haugen (2010), a definition for planar paths consisting of a number of curve segments was
expressed as:

Pi := {pi ∈ R2|
pi = pi,p($)∀$ ∈ Ii = [$i,0, $i,1] ⊂ R} (4.11)

The expression in equation (4.11) can be written as a superset of n curve segments:

Ps =

n⋃
i=1

Pi (4.12)

In this thesis, the type of path parametrization which will be used for two-dimensional curves
is expressed as:

pp($) =

[
xp($)
yp($)

]
(4.13)

with the path tangential angle computed as:

χp($) = arctan 2(y′($), x′($)) (4.14)
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where (·)′ denotes the first derivative w.r.t the path parameter $.

4.5.1 Straight line

For a straight line connecting two points, the parametric form can be expressed similar to Breivik
and Fossen (2009) as:

pline($) =

[
x0 + L$ cos(χl)
y0 + L$ sin(χl)

]
(4.15)

where p0 = [x0, y0]
T is the starting point, L the path length, and χl the constant path-tangential

angle.

4.5.2 Circular arc

In Section 4.4.1 a Dubins path was shown to be a path consisting of circular arcs and straight
lines. A circular arc can be parameterized as:

pcir($) =

[
cx +R cos(α0 +$(α1 − α0))
cy +R sin(α0 +$(α1 − α0))

]
(4.16)

where c = [cx, cy]
T is the center of the circle, R is the radius and α0 and α1 are the angles at

which the circular arc starts and ends, respectively.
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4.5.3 Clothoid

Figure 4.4: Double-end Euler spiral from Wikipedia (2015)

A clothoid is a spiral which has the property of a linear increase in curvature along its length.
Its often used when designing railroads and roller coasters when creating a transition between a
straight segment of a path and a circular segment. The clothoid is often called an Euler spiral
as it was first presented in Euler (1744).

In this thesis, the clothoid will later be used together with Dubins curves for curvature continuous
paths. But in this section the clothoid itself is presented. A clothoid can be parameterized as
in Dahl (2013) and Lekkas et al. (2013):

S(x) =

∫ x

0
sin(t2)dt (4.17)

C(x) =

∫ x

0
cos(t2)dt (4.18)

Together the two equations (4.17) and (4.18) are called Fresnel integrals.
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As mentioned, the main property of the clothoid is its linear increase in curvature proportional
to the length of the arc. With the length of the arc denoted as s, the initial curvature as κ0 and
the sharpness coefficient as c the curvature κ is:

κ(s) = cs+ κ0 (4.19)

With curvature being the rate of change in the tangential angle of a curve, integration gives the
equation for χ:

χ(s) =

∫ s

0
κ(ξ)dξ =

1

2
cs2 + κ0s+ χ0 (4.20)

where the constant χ0 is the initial course. The tangent vector equation is then:

t(s) =

[
cos(χ(s))
sin(χ(s))

]
=

[
cos(12cs

2 + κ0 + χ0)
sin(12cs

2 + κ0 + χ0)

]
(4.21)

The entire clothoid segment can be given as a path pclothoid, with initial position p0 = [N0, E0],
by integrating the tangent angle across the length of the arc s:

pclothoid(s) = p0 +

∫ s

0
t(ξ)dξ =

[
N0 +

∫ s
0 cos(12cξ

2 + κ0ξ + χ0) dξ
E0 +

∫ s
0 sin(12cξ

2 + κ0ξ + χ0) dξ

]
(4.22)

By choosing a desired clothoid length send and sharpness c from equation (4.19) the segment
can be manipulated to achieve any desired tangent angle χd.

In the case of a desired final tangent angle χd and maximal curvature κmax, equation (4.19) and
(4.20) can be changed to:

κmax = κ(send) = csend (4.23)

χd = χ(send) =
1

2
csend (4.24)

which can be solved to yield the necessary length and sharpness to satisfy the conditions:

send =
2χd
κmax

(4.25)

c =
κ2max
2χd

(4.26)
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4.5.4 Fermat’s spiral

The Fermat’s spiral originates from the 1600s when the French mathematician Fermat first
studied it. It was first published in Fermat (1697). Similar to the clothoid, the Fermat’s spiral
(FS) is a curve with initial curvature equal to zero and then increases over its length. One of the
main reasons to replace the clothoid with the Fermat’s spiral is to decrease the computational
time, as the FS does not include any integral terms. FS is a part of the Archimedean spirals
which is a family of curves described by the equation:

r = kθ1/n (4.27)

taken from Weissten (2013a). Equation (4.27) is in polar coordinates where r is the radial
distance, k is a scaling constant (sometimes denoted as a), θ is the polar angle and n is a
constant which determines how tightly the spiral is wrapped. With n = 2 we get the FS
equation:

r = k
√
θ (4.28)

with the curvature written as in Weissten (2013b):

κ =
1

k

2
√
θ(3 + 4θ2)

(1 + 4θ2)3/2
(4.29)

The chosen parametrization of the FS is in Cartesian coordinates where an FS with initial

position p0 =
[
x0, y0

]T
, initial tangent angle χ0 and rotational direction ρ can be written as in

Lekkas et al. (2013):

pfermat(θ) =

[
x0 + k

√
θ cos(ρθ + χ0)

y0 + k
√
θ sin(ρθ + χ0)

]
(4.30)

This parametrization describes a curve which starts with zero curvature and then increases to
the wanted curvature which is determined by the domain of θ, θ ∈

[
0, θend]. This domain is

neither unit domain nor unit speed, but can be unit domain by choosing the path parameter to
be θ = $θend.

When using the FS as entering and exiting segments for smoothing a turn, the exiting
segment has its own parametrization which is a mirrored version of the entering segment. In
other words the exiting segment must start at the chosen curvature and then decrease it to zero.
In Lekkas et al. (2013) the exiting segment pfermat is written:

pfermat(θ) =

[
xend + k

√
θend − θ cos(ρ(θ − θend) + χend)

yend + k
√
θend − θ sin(ρ(θ − θend) + χend)

]
(4.31)

69



where pend =
[
xend, yend]

T is the position at the end of the curve, i.e. pend = pfermat(θend),
with χend as the course angle at pend.

(a) Fermat’s spiral, one
complete rotation. Asterisk
marks the point where the

curve has maximum
curvature

(b) Fermat’s spiral
curvature. The asterisk
marks the value of θ for

which the curve has
maximal curvature

Figure 4.5: Fermat spiral properties, from Lekkas et al. (2013)
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4.5.5 Path table

In Dahl (2013), a path table is used to save each segment of a path as parameters and functions
instead of saving the infinite amount of points p ∈ P that constitute the path. This method is
beneficial when using a path as input for guidance systems as each row of the table represents
a subpath with the necessary parameters. The path parameter $ can then be used to traverse
the table when the path is used as target for the guidance system.

Curve segment 1 2 3 4 5 6 7 8

Straight line 1 p0,x p0,y lx ly - - -
Circular arc 2 cx cy R α0 α1 - -

Clothoid 3 p0,x p0,y send c κ0 χ0 -
Fermat 4 p0,x p0,y a θend ρ χ0 ζ

Table 4.2: Path table, Dahl (2013)

Table 4.2 shows an example of the path table. The first value reveals what type of segment
the curve has, followed by the necessary parameters for that type of segment as introduced in
sections 4.5.1, 4.5.2, 4.5.3 and 4.5.4.
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Chapter 5

2D Rapidly-exploring Random Trees
with Dubins Car Dynamics

In this chapter the RRT algorithm is used as a basis for three interpolating algorithms which
generate paths accommodated for a vehicles dynamic constraints, such as max curvature and
Interpolating means that all the waypoints from the RRT-generated path are visited along the
way.
The chapter includes a tutorial on how the paths can be computed, similar to Dahl (2013) and
Lekkas et al. (2013), with figures of the resulting plots of the calculations. In the end some
comparisons will be made, especially between the curvature continuous paths.
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5.1 Generating the initial path with RRT

Generating the initial path with the RRT yields a path consisting of straight lines connected by
waypoints. The input for the RRT includes the workspace, a chosen start and finishing pose, as
well as a chosen minimum turning radius of the vehicle, which creates and extra layer around the
obstacles. Compensating for minimum turning radius is done so that the vehicle is guaranteed
to not collide with the original obstacle. Figure 5.2 shows the initial path consisting of straight
lines connected by waypoints from the RRT, which will be used as the basis path when creating
the Dubins path. The chosen start and finishing configurations as well as the minimum turning
radius is listed in Table 5.2. Figure 5.1 is a list summarizing the different elements in the plots
throughout this section.

Minimum turning radius R(m): 0.35 x(m) y(m) θ(rad)

Starting pose 1 1 0

Goal pose 9 9 0

Table 5.1: 2D RRT Dubins path input

Figure 5.1: Legend for Figure 5.2-5.9
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Figure 5.2: Initial path created by the RRT
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5.2 Dubins path algorithm

The Dubins path algorithm for a sequence of waypoints is a method implemented by Andreas
Dahl in Dahl (2013). It is based on the path generation method from Tsourdos et al. (2010)
which generates a path between and initial and a final pose, but extended to a sequence of
waypoints. In this thesis the method is applied to the sequence of waypoint created by the
waypoint reduced RRT, with a chosen start and finish pose, not assuming the initial heading to
be equal to the direction of the line connecting to the first interior waypoint.

5.2.1 Preparation

At the starting point, the finishing point and the interior waypoints a course tangent vector is
calculated.

~vin,initial =

[
cos(θinit)
sin(θinit)

]
(5.1)

~vin,i =
wpti − wpti−1
‖wpti − wpti−1‖

, i 6= initial (5.2)

~vout,i =
wpti+1 − wpti
‖wpti+1 − wpti‖

, i 6= goal (5.3)

~vout,goal =

[
cos(θgoal)
sin(θgoal)

]
(5.4)

The tangent t for every point is then the normalized sum of vin and vout:

t =
vin + vout
‖vin + vout‖

(5.5)

The next step is to find the center of the rotation circle for every point, and is done by rotating
the tangent t 90 degrees in the direction of rotation ρ between vin and vout, and making it the
length R, which is the minimum turning radius of the vehicle from equation (4.2).

ρ = −sign(vin,yvout,x − vin,xvout,y) (5.6)

The rotated tangent is then:

tx = ρ

[
−tN
tE

]
(5.7)

And with the rotated tangent calculated the circle center c is:

c = wpti +Rtx (5.8)

Figure 5.3 shows the initial calculations for every point on the path from Figure 5.2
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Figure 5.3: Showing the calculated tangents and turning circles for each point
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5.2.2 Initial subpath

When creating the initial subpath a small change of the method had to be made to compensate
for the freely chosen initial pose θinit. The first step is to calculate the wheel over point pwop
for the first waypoint, which is where the linear path from the start point turning circle will
connect to the turning circle of the first waypoint. This is done by finding the line H from the
start point to the circle center of the waypoint and using trigonometry to extend a leg vector L
from the circle center to the turning circle edge.

H = wpt0 − c (5.9)

α = arccos

(
R

‖H‖

)
(5.10)

The leg vector L is at an angle α in the direction of rotation from the calculated line H. The
orientation of H is with the two-argument tangent function:

χH = arctan 2(HN , HE) (5.11)

And L can be found by:

L = R

[
cos(χH + ρα)
sin(χH + ρα)

]
(5.12)

This makes the wheel over point equal to:

pwop = c+ L (5.13)

In the original method a straight line is then connected from the start point to the wheel over
point, but its not realistic to assume that the starting pose is always facing the wheel over point.
Therefore the vehicle runs on its own initial turning circle until its directly facing the wheel over
point of the first waypoint. Figure 5.4 shows the resulting initial subpath.
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(a) Calculated pwop and the
pull out point of the first

turning circle

(b) Initial subpath
completion, a turn

followed by a straight line

Figure 5.4: Initial subpath steps
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5.2.3 Equivalent consecutive rotations

For equivalent consecutive rotations the first and second waypoint of Figure 5.3 are used as an
example. Equivalent consecutive rotations means that the direction of rotation for both way-
points is the same. With vin, vout, the tangent t and the turning circle center for both waypoints
already calculated, the next step is to find the pull out point ppo for the first waypoint and the
wheel over point pwop for the second waypoint.

To locate pwop and ppo the vector J from the first waypoint’s circle center cprev to the second
waypoint’s circle center c is needed.

J = c− cprev (5.14)

Then a leg vector L perpendicular to J is extended with length R from both circle centers. L is
found by normalizing J and rotating it 90 degrees opposite of the rotation ρ.

L = −ρR 1

‖J‖

[
−JN
JE

]
(5.15)

With the leg vector the pull out point and wheel over point are:

ppo = cprev + L (5.16)

pwop = c+ L (5.17)

Figure 5.5 shows J and the leg vector L which places the pull out point and wheel over point
on the turning circles. It also shows that the path between ppo and pwop is parallel to J . Figure
5.6 is the complete subpath for the consecutive equivalent rotation. Moving on the first turning
circle until the pull out point is reached, and then extending a straight line over to the wheel
over point.
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Figure 5.5: Finding ppo and pwop in the case with equivalent consecutive rotations

Figure 5.6: Equivalent consecutive rotations complete subpath
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5.2.4 Different consecutive rotations

Different consecutive rotations starts out similar to equivalent rotations by using the previously
computed circle centers from the two waypoints to find the vector from the first to the second
center.

J = c− cprev (5.18)

Since the direction of rotation for the waypoints is opposite of each other, a symmetric trigono-
metric relation is used to find the leg vector L.

H =
J

2
(5.19)

α = arccos

(
R

‖H‖

)
(5.20)

Finding the orientation of H is done with the two-argument tangent function:

χH = arctan 2(HN , HE) (5.21)

And the leg vector L is found by rotating the angle α in the direction of rotation from H:

L = R

[
cos(χH + ρα)
sin(χH + ρα)

]
(5.22)

The wheel over point and pull out points are then calculated:

ppo = cprev + L (5.23)

pwop = c− L (5.24)

Figure 5.7 shows J and the leg vector L which places the pull out point and wheel over
point on the turning circles. Figure 5.8 is the complete subpath for the consecutive equivalent
rotation. Moving on the first turning circle until the pull out point is reached, and then extending
a straight line over to the wheel over point.
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Figure 5.7: Finding ppo
and pwop with different
consecutive rotations

Figure 5.8: Different
consecutive rotations

complete subpath

5.2.5 Final subpath

When connecting the last interior waypoint to the goal point either the equivalent rotations step
or the different rotations step is chosen based on the rotation of the last interior waypoint and
the chosen final pose. The wheel over point for the goal point is chosen in a way that makes the
vehicle end up at the exact chosen pose as well as position. This is done by rotation the unit vec-
tor for the final pose 90 degrees in the direction of rotation, instead of the calculated pose vector.

For the example path from Figure 5.2 the final subpath was a different consecutive rotation
path. And the complete Dubins path for the example is plotted in Figure 5.9
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Figure 5.9: Dubins path
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5.2.6 Path properties

Figure 5.10 shows some of the data concerning the path from Figure 5.9. The figure shows the
north position, east position, heading angle and the curvature along the length of the path.

Figure 5.10: Dubins path properties
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5.3 Curvature continuity using clothoids

The path properties from Figure 5.10 show that the Dubins path in Figure 5.9 has an instant
increase in curvature when entering a circular arc, going from zero curvature to the maximum
value instantly. To achieve curvature continuity, a small segment must be added which linearly
increases the curvature. This small segment is called a clothoid (see Section 4.5.3), which is a
curve designed to gradually increase the curvature with respect to the vehicles properties.

5.3.1 Method

The method to achieve curvature continuity with clothoids is taken from Dahl (2013), and is
an extension of the Dubins path algorithm form the previous section. It keeps the minimum
turning radius circle as an inner turning circle, and generates an outer circle which is then used
to generate a clothoid between the straight line segment and the inner turning circle linearly
increasing the curvature.

(a) Line/circle transition

(b) Trigonometric
observations

Figure 5.11: The clothoid transition, based on a figure from Dahl (2013)

By extending the method from Section 5.2 with the observations from Figure 5.11 the clothoid
can be added as a step in the algorithm between the connection of a straight line segment with
a circular arc or vice versa.
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The inner circles radius R1 is still the minimum turning radius, meaning the inverse of the
maximum curvature κmax

R1 =
1

κmax
(5.25)

The outer circle radius R2 is

R2 = r1 + r2 (5.26)

with r1 as the offset from the circle center c to the clothoid-circle junction perpendicular to the
linear path, and r2 is the clothoid offset perpendicular to the linear subpath. Both r1 and r2
can be seen in Figure 5.11.

With a chosen maximum sharpness cmax, the length send of the transition clothoid can be found:

send =
κmax
cmax

(5.27)

This also leads to the course change ∆χ, which can also be seen in Figure 5.11b, being

∆χ =
1

2
cmaxs

2
end (5.28)

from the beginning to the end of the clothoid. With trigonometry r1 can be computed:

r1 = R1 cos(∆χ) (5.29)

And r2 can be found via integration:

r2 =

∫ send

0
sin(

1

2
cmaxξ

2)dξ (5.30)

The wheel over point pwop is now on the outer circle tangent, but at a distance l1 before the
line intersects with the outer circle. From Figure 5.11a the two distances l1 and l2, l2 being the
offset from the circle center to the clothoid-circle junction parallel to the linear path, gives the
length of the clothoid projection on the tangent lclothoid:

l1 = lclothoid − l2 (5.31)

And:

lclothoid =

∫ send

0
cos

(
1

2
cmaxξ

2

)
dξ (5.32)

Finally, with the trigonometry from Figure 5.11b l2 can be computed:

l2 = R1 sin(∆χ) (5.33)
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5.3.2 Final subpath and path properties

Figure 5.12: Dubins with clothoid transition path
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Figure 5.13: Dubins with clothoid transition path properties
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5.4 Curvature continuity using Fermat’s spiral

In Lekkas et al. (2013), the Fermat’s spiral was suggested as a candidate for creating simple
paths consisting of straight lines and arc segments. The Fermat’s spiral holds has the same
properties as the clothoid (curvature continuity) but has a much lower computational time. The
method is similar to the clothoid transition method in Figure 5.11.

5.4.1 Method

With a given maximum curvature κmax, meaning R1 = 1/κmax, and the point of maximal
curvature being:

θκmax = min

(
θend,

√√
7

2
− 5

4

)
(5.34)

where θend is the chosen point of the curve where the maximum curvature appears, the scaling
constant a (can also be written as k) can be determined:

a =
1

κmax

2
√
θκmax(3 + 4θ2κmax

)

(1 + θ2κmax
)
3
2

(5.35)

With the scaling constant a calculated both the length of the FS and the value r2 can be
computed:

r2 = a
√
θend sin(θend) (5.36)

lfermat = a
√
θend cos(θend) (5.37)

And the rest of the required values are computed as:

χend = θend + arctan(2θend) (5.38)

r1 = R1 cos(χend) (5.39)

l2 = R1 sin(χend) (5.40)

l1 = lfermat − l2 (5.41)

R2 = r1 + r2 (5.42)
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5.4.2 Final subpath and path properties

Figure 5.14: Dubins with Fermat transition path
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Figure 5.15: Dubins with Fermat transition path properties
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5.5 Comparing the methods

5.5.1 Visual comparison

Figure 5.16: Clothoid (top two) and Fermat’s spiral (bottom two) data compared
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Figure 5.17: Closeup of the clothoid (top) and Fermat’s spiral curvature at the same waypoint

Figure 5.16 shows how both the clothoid transition and FS transition have very similar results
when looking at the heading angle. The change in angle is now smooth unlike the results without
the transitions which were only linear (see Figure 5.10). This is a wanted feature for all vessels
with a rudder as only linear changes in the heading angle would cause the rudder to skip (change
in an instant) which is not possible for a rudder due to counteracting hydrodynamical forces.

Looking closer at the curvature for the clothoid transition and the FS transition the difference
in curvature increase is visible. The clothoid transition shows a linear increase as expected
from equation (4.19), and the FS shows the expected increase from equation (4.29). The main
advantage of the FS transition is that its starts slower than the clothoid and may therefore
contribute to a more stable system, however it catches up in the end with a much faster increase
in curvature which can be unwanted.

The length of the path for three different methods is negligible, but naturally the original Dubins’
path is somewhat shorter.
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5.5.2 Computational time comparison

Implementing the methods in MATLAB showed huge differences in the time it took for the
methods to generate a path using the same basis. Even though the two transitions are very
similar in the way they are computed, the Fresnel integrals (equations (4.17) and (4.18)) used to
generate the clothoid take a lot of computational time. For the specific runs plotted in figures
5.12 and 5.14 where the basis was the same the clothoid used 3.44 seconds while the FS used
0.00241 seconds. This difference in computational time is consistent for any basis, and the mean
run time is around 2-3 seconds for the clothoid and around 0.002 seconds for the FS when
planning in the workspace seen in their plots. The same difference in run time between the
methods is expected for any workspace size. For the original Dubin’s path the computational
time is observed to be around the same as the FS.

5.5.3 Geometric continuity comparison

When classifying the smoothness of a path, geometric continuity is often used as the measure.
Considering the intermediate waypoints of the generated paths, the basic measure of geometric
continuity is Gn, where n describes the smoothness. In short terms G0 only means the curves
at each side of the waypoint connecting them. G1 means the curves on each side also share a
common tangent direction at the waypoint. And G2 means they also share a common center of
curvature at the joint point. The geometric continuity of the paths in this section are summarized
in Table 5.2.

Method G0/C0 G1 G2

Waypoint-reduced RRT (Piecewise linear) 3 7 7

Dubins path (Circular arc smoothing) 3 3 7

Dubins path w/ clothoid transition 3 3 3

Dubins path w/ Fermat transition 3 3 3

Table 5.2: 2D RRT Dubins path input
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Chapter 6

Path Tracking and Ocean Current
Estimation

To compare the different paths generated in the previous section, they can be used as input in a
path tracking guidance system. In this thesis, an extension of the guidance system based of the
work in Lekkas and Fossen (2014) is considered. In Lekkas and Fossen (2014) a guidance system
for 2-D straight-line path tracking applications for underactuated marine vehicles exposed to
ocean currents was developed. The system must therefore be extended to include tracking of
circular arcs and clothoid/FS transitions.
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6.1 Tracking segments

In a path tracking system the task of the vehicle is to track a virtual vehicles position (the
target), in other words minimize the difference between its current position p and the virtual
vehicles position pt such that p − pt → 0. How to update the targets position differs between
the type of line the target moves on.

6.1.1 Straight line

When the target moves on a straight line between to waypoints the path-tangential angle γp is
constant between waypoints (meaning it only has to be computed once for the entire segment):

γp = arctan 2(yk+1 − yk, xk+1 − xk) (6.1)

with waypoints as (xk, yk) for k = 1, 2, ...,N. The position of the target ptn = (xt, yt) can then
be calculated by assuming its total speed to be Ut > 0 as:

ẋt = Ut cos(γp) (6.2)

ẏt = Ut sin(γp) (6.3)

Notice that in the case of a straight line there is no need to use the path parametrization from
Section 4.5.1 as a simple check can determine when the segment is finished, instead of updating
a path parameter $ and stopping when it reaches the upper value.
The position error for a vehicle at position p = (x, y) is given by:[

xe
ye

]
= R>(γp)

[
x− xt
y − yt

]
(6.4)

where R is the classic rotation matrix:

R(γp) =

[
cos(γp)− sin(γp)
sin(γp) cos(γp)

]
(6.5)

Written out, equation (6.4) yields the along-track and cross-track error equations:

xe = (x− xt) cos(γp) + (y − yt) sin(γp) (6.6)

ye = −(x− xt) sin(γp) + (y − yt) cos(γp) (6.7)

With the along-track and cross-track error calculated an algorithm is used to control the actual
vehicle to minimize the errors, this is explained in detail in Lekkas and Fossen (2014). The
principle of tracking a straight line is illustrated in Figure 6.1.
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Figure 6.1: Tracking a straight-line path. The vehicle (solid-line) tracks the virtual vehicle
(dotted line) which is moving on a straight line while under the influence of unknown ocean
currents (red frame), taken from Lekkas and Fossen (2014)
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6.1.2 Circular arc

Moving the target on a circular arc means that the path-tangential angle is not constant, and
must be updated for each step. In this case the path parametrization for circular arcs (see
Section 4.5.2) is used. When the target enters a circular arc segment the path parameter is set
to zero ($ = 0) and the arcs parameters are found in the paths path table (as in Section 4.5.5).
The targets next position is then found by inserting the path parameter and the arcs parameters
into the path parametrization:

pcir($) =

[
cx +R cos(α0 +$(α1 − α0))
cy +R sin(α0 +$(α1 − α0))

]
(6.8)

where (cx, cy) is the circle centre, R is the radius and α0 and α1 are the angles which the circular
arc starts and ends, respectively. The path tangential angle is:

γp($) =

{
(α0 +$(α1 − α0)) + 90◦ when α0 < α1 and,

(α0 +$(α1 − α0))− 90◦ when α0 > α1

(6.9)

and the speed of the target v($) = d
d$p($) is computed:

d

d$
pcir($) =

[
−(α1 − α0)R sin(α0 +$(α1 − α0))
(α1 − α0)R cos(α0 +$(α1 − α0))

]
(6.10)

To use the circular arc segment for path-tracking the derivative of the parameter w.r.t must be
defined. According to both Breivik and Fossen (2004) and Fossen (2011), for a desired vehicle
speed Ud(t) (chosen as a constant in this thesis) the parameter derivative w.r.t is determined
by:

$̇ =
Ud(t)√

x′p($)2 + y′p($)2
(6.11)

where x′p($) and y′p($) is the result of d
d$p($) =

[
x′p($), y′p($)

]T
.

The parameter is then updated as $next = $ + $̇ and the along-track and cross-track errors
are calculated as in equation (6.6) and (6.7). The circular arc parametrization is a unit domain
parametrization, meaning $ ∈

[
0, 1], which in turn means that target has reached the end of

the segment when $ = 1.

6.1.3 Clothoid

In this thesis a unit domain parametrization is used when implementing the parametrization for
the clothoid. To make the clothoid segment unit parametrized the path parameter $ must be
scaled with the length of the segment send:

pclothoid($) =

[
N0 +

∫ $send

0 cos(12cξ
2 + κ0ξ + χ0) dξ

E0 +
∫ $send

0 sin(12cξ
2 + κ0ξ + χ0) dξ

]
(6.12)
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with the values found in the path table entry for that segment as explained in sections 4.5.5 and
4.5.3. The path tangential angle for the segment is found by:

γp($) =
1

2
c($send)

2 + κ0$send + χ0 (6.13)

and the speed parametrization v($) = d
d$p($) is:

d

d$
pclothoid($) =

[
send cos(12cξ

2 + κ0ξ + χ0)
send sin(12cξ

2 + κ0ξ + χ0)

]
(6.14)

For each step the path parameter $ is updated as in equation (6.11) and the along-track and
cross-track errors are calculated, until the target reaches the end of the segment, at which in
the unit parametrization case the path parameter is $ = 1 since $ ∈

[
0, 1].

6.1.4 Fermat’s spiral

Finding the derivative of the FS parametrization in Section 4.5.4 is pretty straightforward:

d

d$
pfermat($) =

k

2
√
$

[
cos(ρ$ + χ0)− 2ρ$ sin(ρ$ + χ0)
sin(ρ$ + χ0) + 2ρ$ cos(ρ$ + χ0)

]
(6.15)

however the fraction k/(2
√
$) creates a singularity at $ = 0. This is a drawback as both

velocity and acceleration are undefined at the beginning of an entering FS segment and at the
end of an exiting FS segment, which in turn makes the FS appear unsuitable for path-tracking.
Luckily this is a property of the parametrization and in Lekkas et al. (2013) a change of variables
is done to create a singularity free parametrization:

u :=
√
$ ⇒ 0 ≤ u ≤

√
$max (6.16)

Where $max is the path table value θend. With the change of parameters, the parametrization
for the FS entering segment becomes:

pfermat(u) =

[
x0 + ku cos(ρu2 + χ0)
y0 + ku sin(ρu2 + χ0)

]
(6.17)

which makes a singularity free expression for the velocity:

d

du
pfermat(u) = k

[
cos(ρu2 + χ0)− 2ρu2 sin(ρu2 + χ0)
sin(ρu2 + χ0) + 2ρu2 cos(ρu2 + χ0)

]
(6.18)

The exiting segments position and velocity is parametrized as follows:

pfermat(u) =

[
x0 + k(uend − u) cos(ρ(u− uend)2 + χ0)
y0 + k(uend − u) sin(ρ(u− uend)2 + χ0)

]
(6.19)
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d

du
pfermat(u) = k

[
cos(ρ(u− uend)2 + χ0)− 2ρ(uend − u)2 sin(ρ(u− uend)2 + χ0)
sin(ρ(u− uend)2 + χ0) + 2ρ(uend − u)2 cos(ρ(u− uend)2 + χ0)

]
(6.20)

Updating the path parameter is done in the same way as for the circular arc and clothoid, namely
equation (6.11). An important thing to note is that this is not a unit domain parametrized as
u ∈

[
0,
√
$max]. The segment is therefore over when the path parameter reaches u =

√
$max.

6.2 Vehicle kinematics

For the guidance system used in this thesis, the vehicle kinematic equations for horizontal plane
motions are taken from Lekkas and Fossen (2014). In Lekkas and Fossen (2014) the equations
can be expressed in terms of the relative surge and sway velocities ur = u− uc and vr = v − vc
as:

ẋ = ur cos(ψ)− vr sin(ψ) + Vx (6.21)

ẏ = ur sin(ψ) + vr cos(ψ) + Vy (6.22)

ψ̇ = r (6.23)

with ψ as the yaw angle and r as the yaw rate. Vx and Vy are the ocean current velocities
in the North-East frame which are constant in NED, while the body-fixed velocities uc and vc
depend on the heading ψ. Together they satisfy:[

uc, vc]
> = R>(ψ)

[
Vx, Vy]

> (6.24)

where R>(ψ) is the transforming matrix.

6.3 Ocean current

In this thesis, we use a constant current, however the way a constant current affects a moving
vehicle depends on the position of the vehicle, and must therefore be estimated for each step.
From Figure 6.1, we have the ocean current velocity magnitude Uc, the current orientation w.r.t.
the inertial frame βc and the ocean velocity magnitude in the North-East frame is:

Vx = Uc cos(βc) (6.25)

Vy = Uc sin(βc) (6.26)

In the body frame, the heading of the vessel ψ must be taken into account giving the equations
for the ocean velocity magnitude in the body frame:
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uc = Uc cos(βc − ψ) (6.27)

vc = Uc sin(βc − ψ) (6.28)

6.4 Guidance

When the target’s position is known, as well as the vessel’s kinematics and the ocean current, it
is time to use that knowledge to control the vessel to minimize the cross-track and along-track
errors. This part of the guidance system includes an adaptive observer, indirect adaptive integral
LOS (line-of-sight) guidance and a surge controller to minimize the along track error. Only the
main points will be considered in this section, a more detailed explanation is given in Lekkas
and Fossen (2014).

6.4.1 Indirect adaptive integral LOS guidance

The LOS equation for calculating the desired heading ψd is:

ψd = γp − βr + arctan

(
− 1

∆
(ye + αy)

)
(6.29)

where βr = arctan 2(vr, ur), ∆ > 0 is the lookahead distance and αy is the control input. The
desired yaw rate rd can be computed using ψd together with the previous desired heading ψdp:

rd =
(ψd − ψdp)

h
(6.30)

with h as the systems time step.

6.4.2 Adaptive observer

The adaptive observer is used to calculate the control input αy. The observer estimates the rate
of change in the cross-track and along-track errors as well as the rate of change of the ocean
currents effects. The observer updates for each loop xob = xob + hẋob using the equations given
in Lekkas and Fossen (2014):

ˆ̇ye = − Ur(ŷe + αy)√
∆2 + (ye + αy)2

+ θ̂y + k1(ye − ŷe) (6.31)

ˆ̇
θy = k2(ye − ŷe) (6.32)

ˆ̇xe = −x̂e + θ̂e + αx + k3(xe − x̂e) (6.33)

ˆ̇
θx = k4(xe − x̂e) (6.34)
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where αx = −θ̂x, and k1 > 0, k2 > 0, k3 > 0 and k4 > 0 are chosen gain values. The ocean
current is then estimated as:

β̂c = γp + arctan 2(θ̂y, θ̂x) (6.35)

Ûc =
√
θ̂2y + θ̂2x (6.36)

6.4.3 Surge controller

The surge controller is used to minimize the along-track error xe by finding a suitable relative
velocity reference urd:

urd =
√

1 + ξ2t

(
− vr

ξt√
1 + ξ2t

+ Ut + αx − kxxe

)
(6.37)

Equation (6.37) shows how urd is computed where kx > 0 is a chosen gain value and ξt is:

ξt =
vr∆ + ur(ye + αy)

vr(ye + αy)− ur∆
(6.38)
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Chapter 7

Simulations, Results and Discussion

Following the goals for this thesis, the final element was to investigate the possibility of using
the generated paths in Chapter 5 as input to a guidance system such as the one presented in
Chapter 6 from Lekkas and Fossen (2014).

This chapter show the results from using that guidance system when given the task of tracking
three differently generated paths, namely the Dubins’ path, and the Dubins’ path with clothoid
transitions and Fermat’s spiral transitions. These three paths have all been generated as ex-
plained in Chapter 5 after receiving the same basic path consisting of straight lines connected
by waypoints, which was made by the RRT algorithm from Chapter 3.

Simulations were made for three different scenarios, namely a run with zero ocean current, a
run with small ocean current and a run with large ocean current. Then the resulting paths are
plotted together with the generated tracking trajectory to see how far the vehicle deviates from
the target. The simulations were done using MATLAB 2015a.
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7.1 Simulation setup

As in any path planning scenario, the workspace had to be defined. In these simulations, a
1000x1000 meter map was made containing two large square obstacles (yellow colored). The ob-
stacles are placed in a way that forces the path to have many intermediate waypoints and to check
if the collision avoidance and the clearance constraints are satisfying. After the map is created,
the vehicle is placed at an initial position on the map with an initial heading, and a goal position
and heading is chosen. In the simulations, the start was set at Xstart = (xstart, ystart, ψstart) =
(100, 100, 0) and the goal was at Xgoal = (xgoal, ygoal, ψgoal) = (900, 900, 0). Then the minimum
turning radius is chosen, R = 50 which is also used as input for the clearance constraint increas-
ing the obstacles size for the next step.

With the area, start position and goal position defined, the RRT algorithm tries to find a path
connecting the two points without entering the extended obstacle area (plotted as the white
area surrounding the obstacles in Figure 7.1). The initial path is plotted as the solid blue line
in Figure 7.1. Using a simple waypoint reducing algorithm, the reduced path is shown as the
dotted red line. The intermediate waypoints in this reduced path is then used as input for the
path generator.

Once a path has been generated with the chosen smoothing, it is saved as a path table and
used as input for the guidance. In the guidance system, the table is used to define the initial
conditions for each segment the target will traverse, and also decide when to switch segment.
The target speed is set at Ut = 5m/s. The current is also set and for the three scenarios it is set
at 0, 1 and 3 m/s with βc = −40deg. The initial position of the vehicle is set at Xstart and the
lookahead distance for the LOS algorithm is ∆ = 50m. The gain values are kx = 0.5, k1 = 10,
k2 = 0.8, k3 = 10 and k4 = 1. It is assumed that no prior estimation or measurement of the ocean
current is available. This means the observer’s initial conditions are (x̂e, θ̂x, ŷe, θ̂y) = (0, 0, 0, 0).
The simulation is run until the goal point has been reached by the actual vehicle.
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Figure 7.1: RRT-generated basis from the vessel’s start position to the end position
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7.2 Results with zero current

Figure 7.2: Tracking a Dubin’s path with zero current
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Figure 7.3: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
zero current
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Figure 7.4: Tracking a Dubin’s path with clothoid transition with zero current
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Figure 7.5: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
clothoid transition with zero current
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Figure 7.6: Tracking a Dubin’s path with Fermat’s spiral transition with zero current
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Figure 7.7: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
Fermat’s spiral transition with zero current

113



7.3 Results with small current

Figure 7.8: Tracking a Dubin’s path with current Uc = 1m/s
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Figure 7.9: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
current Uc = 1m/s
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Figure 7.10: Tracking a Dubin’s path with clothoid transition with current Uc = 1m/s
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Figure 7.11: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
clothoid transition with current Uc = 1m/s
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Figure 7.12: Tracking a Dubin’s path with Fermat’s spiral transition with current Uc = 1m/s
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Figure 7.13: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
Fermat’s spiral transition with current Uc = 1m/s
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7.4 Results with large current

Figure 7.14: Tracking a Dubin’s path with current Uc = 3m/s
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Figure 7.15: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
current Uc = 3m/s
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Figure 7.16: Tracking a Dubin’s path with clothoid transition with current Uc = 3m/s
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Figure 7.17: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
clothoid transition with current Uc = 3m/s
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Figure 7.18: Tracking a Dubin’s path with Fermat’s spiral transition with current Uc = 3m/s
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Figure 7.19: Plot of the along-track and cross-track errors when tracking a Dubin’s path with
Fermat’s spiral transition with current Uc = 3m/s
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7.5 Discussion

‘ When simulating with zero current, the tracking of the three different paths give very good
results. In figures 7.2, 7.4 and 7.6, the cross-track and along-track errors are very small (less
than 1 meter) as shown in the plots from figures 7.3, 7.5 and 7.7. Even though the errors are
very small and always converge after the perturbation caused by turns, they still have some os-
cillatory behavior which is mostly due to insufficient tuning. It is not easy to see any difference
between the regular Dubin’s path and the curvature continuous Dubin’s/clothoid path and the
Dubin’s/Fermat path.

In terms of run time, the Fermat’s spiral is still superior over the clothoid as the same time
difference mentioned in Section 5.5.2 was also visible in these simulations. To find out how this
time difference would influence the system a test where the system requires a new path to be
generated underway is proposed for future work. Such a test would also test how important the
speed of RRT method is as well.

It is worth mentioning that the paths generated for these simulations were made to always start
on a turning circle, which is a very frequent case due to the Dubin’s path logic mentioned in
Chapter 4 always starting with a turn. This is not recommended as the actual vehicle does not
start with the rudder in a turning position, and therefore there will always be an error in the
beginning when the vehicle tries to compensate. This phenomenon is more visible when under
the influence of ocean currents, but zoomed in it can be seen with zero ocean current as well
as shown in Figure 7.20. In the cases with Fermat’s spiral and clothoid transition some of the
deviation can be avoided if a transition is included at the start. However the initial deviation
will always occur as long as the observer starts with no prior knowledge of the system, and there
has to estimate the effect of the current.

Tracking the paths while under the influence of a low amount of current (Uc = 1m/s) is shown
in figures 7.8-7.13 and still the plots show that tracking the three different target paths give
very similar results. Looking at the error plots in figures 7.9, 7.11 and 7.13, the controller’s
along-track error xe is much less than the cross-track error ye which is expected as the relative
velocity reference urd was designed to only minimize xe. The initial deviation shown in Figure
7.20 is more visible in this low current case.

Under the influence of a high amount of current (Uc = 3m/s) the cross-track ye is very large
around the turning segments, especially along the longest turns as seen in figures 7.14-7.19.
The actual vehicle uses a long time to converge towards the target after such an increase in the
cross-track error. One of the main reasons for this large cross-track error is that the adaptive
LOS computes the effect of the current in the body frame. When the vehicle changes direction,
as it does in the turning segments, the parameters θy and θx are time varying and therefore it is
not possible to track them 100%. This effect is amplified the longer the turn lasts as the results
in Figure 7.14, 7.16 and 7.18 clearly show. This can be fixed by computing the current in the
NED frame, which means that for each time instant the values θy and θx can be calculated as
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(a) Dubin’s/clothoid path
(b) Dubin’s/Fermat path

Figure 7.20: The vehicle’s initial deviation from the target caused by the first path segment
being a circular arc

in the paper by Lekkas and Fossen (2014) instead of being estimated as in Section 6.4.2.

All the results show that the actual vessel stays well away from the obstacles when going from
start to finish. This is due to the RRT creating the initial path of straight lines connected by
waypoints while avoiding the extended obstacles, and shows the RRT is capable of being used as
a basis in path tracking guidance systems. In every case the vessel also reaches the goal position
with the desired pose.

Another reason for the vibrations on the along-track and cross-track errors xe and ye is that
during a turn the vessel loses some of its surge speed which turns into sway. This causes the
tracking algorithm to compensate by commanding additional thrust. This additional thrust
cause the vessel to speed up during the turn and therefore escape the path because the rudder
is not able to adjust fast enough.

The cross-track and along-track errors seem to be slightly larger when tracking the Dubin’s path
in every case, and with more tuning of the desired rate of change in curvature for the Fermat’s
spiral and clothoid their resulting cross and along-track errors are expected to be even smaller.
For the clothoid this means looking deeper into the choice of sharpness c, and for the Fermat’s
spiral the chosen point of the curve where the maximum curvature should appear, namely the
value θend.
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Chapter 8

Conclusion and Future Work

The main goal for this thesis was to create a path with the Rapidly-exploring Random Trees
algorithm. Smooth it with Dubins’ car dynamics and clothoid or Fermat’s spiral transitions for
curvature continuity. And then find out if the generated path could be used as input for path
tracking while being under the influence of ocean currents. By implementing such a system for
a marine vessel in MATLAB the results from Chapter 7 are promising, but not without some
issues. Under high ocean current value, long turns causes the vehicle to deviate from the target
and in some cases causes the vehicle to be unable to converge with target until it reaches the
next turn. Most of this deviation comes directly from the adaptive controller which does not
promise to track a time-varying parameter, but still does it to a certain degree. An ad-hoc
solution is suggested in Chapter 7. The results and comparison from Section 5.5.2 show that
using the Fermat’s spiral to achieve curvature continuity is far superior to the clothoid even
though both paths are G2 continuous, as the Fermat transitions are computed around a 100
times faster. This is mostly due to computing Fresnel integrals when creating a clothoid.

When it comes to collision avoidance, the results from Chapter 7 are also very promising. Adding
clearance constraints provided results where the vehicle stayed clear of obstacles. The RRT al-
gorithm is extremely efficient in doing this.

There are many paths one could take when continuing the work presented in this thesis. Tuning
the path generating algorithms further as well as the guidance system should provide better
results than the ones in Chapter 7. Time became an issue towards the end of the thesis work
so not much tuning was done.

To investigate the computational speed of the RRT vs other methods, or the time difference
between the Fermat’s spiral and the clothoid, a test with dynamical obstacles requiring new
paths to be generated on-the-way will provide interesting results.

Another approach could be to extend the controller from Chapter 6 which not only minimizes
the along-track but also the cross-track error. It is also possible to replace the estimation of
the current by calculating the actual current as mentioned in Section 7.5, hence being able to
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compensate for the current more accurately, especially during turning segments.

A natural next step for the RRT-generated curvature continuous paths is to extend them with
another dimension, testing them for 3-D applications such as AUVs or UAVs. This is a rel-
atively fresh part of the field which can provide many opportunities to explore new parts of
motion planning for autonomous vehicles.

For real-life applications, the paths should be combined with optimization methods. The re-
quirements for creating efficient paths w.r.t. for example fuel consumption or path lengths are
very relevant in the world today.

130



Bibliography

Morten Breivik and Thor I. Fossen. Path following for marine surface vessels. In OCEANS ’04.
MTTS/IEEE TECHNO-OCEAN ’04, volume 4, pages 2282–2289, Nov 2004.

Morten Breivik and Thor I. Fossen. Guidance laws for autonomous underwater vehicles. Chapter
4, pages 51-76. INTECH Education and Publishing, 2009.

CyberneticZoo. Claude Shannon - Maze-Solving Mouse. http://cyberneticzoo.com/

wp-content/uploads/Shannon-Life-p60-x640.jpg, 2009. [Online; accessed 16-December-
2014].

Andreas R. Dahl. Path planning and guidance for marine surface vessels. Master’s thesis,
Norwegian University of Science and Technology, 2013.

Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische mathematik,
1(1):269–271, 1959.

Lester E. Dubins. On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79
(3):79:497–516, 1957.

Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gau-
dentes, sive solutio problematis isoperimetrici lattissimo sensu accepti. The Euler Archive,
http://eulerarchive.maa.org/, 1744.

Pierre de Fermat. Ad locos planos et solidos isagoge. Varia Opera Mathematica, 1697.

Thor I. Fossen. Handbook of marine craft hydrodynamics and motion control. John Wiley &
Sons Ltd., 2011.

Google. Map over Oslofjorden. https://www.google.no/maps/@59.6746501,10.6045211,

5415m/data=!3m1!1e3?hl=en, 2014. [Online; accessed 17-December-2014].

Joakim Haugen. Guidance algorithms for planar path-based motion control scenarios. Master’s
thesis, Norwegian University of Science and Technology, 2010.

Young Jin Heo and Wan Kyun Chung. RRT-based path planning with kinematic constraints
of AUV in underwater structured environment. In 2013 10th International Conference on

131

http://cyberneticzoo.com/wp-content/uploads/Shannon-Life-p60-x640.jpg
http://cyberneticzoo.com/wp-content/uploads/Shannon-Life-p60-x640.jpg
https://www.google.no/maps/@59.6746501,10.6045211,5415m/data=!3m1!1e3?hl=en
https://www.google.no/maps/@59.6746501,10.6045211,5415m/data=!3m1!1e3?hl=en


Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, South-Korea, pages 523–525, Oct
2013.

Lydia E. Kavraki and Steven M. LaValle. Motion planning. Springer Handbook of Robotics,
pages 109–131, 2008.

Lydia E. Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark J. Overmars. Probabilistic
roadmaps for path planning in highdimensional configuration space. International Transac-
tions on Robotics and Automation, 12:566–580, 1996.

Jean-Claude Latombe. Robot Motion Planning: Edition en anglais. The Springer International
Series in Engineering and Computer Science, Boston, MA. Springer, 1991. URL http://

books.google.no/books?id=Mbo_p4-46-cC.

Steven M. LaValle. Rapidly-exploring random trees: A new tool for path planning. Report No.
TR 98-11. Computer Science Department, Iowa State University, 1998.

Steven M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006.
Available at http://planning.cs.uiuc.edu/.

Steven M. LaValle. Motion planning: The essentials. Robotics & Automation Magazine, IEEE,
18(1):79–89, 2011a.

Steven M. LaValle. Motion planning: Wild frontiers. Robotics & Automation Magazine, IEEE,
18(2):108–118, 2011b.

Steven M. LaValle and James J. Kuffner. Randomized kinodynamic planning. The International
Journal of Robotics Research, 20(5):378–400, 2001.

Steven M. LaValle and James J. Kuffner Jr. RRT-connect: An efficient approach to single-
query path planning. In proceedings of the 2000 IEEE International Conference on Robotics
& Automation, San Fransisco, CA, 2:995–1001, 2000a.

Steven M. LaValle and James J. Kuffner Jr. Rapidly-exploring random trees: Progress and
prospects. In Proceedings of the Workshop on the Algorithmic Foundations of Robotics, Dart-
mouth College, Hanover, NH, USA, 2000b.

Anastasios M. Lekkas. Guidance and Path-Planning Systems for Autonomous Vehicles. PhD
thesis, Norwegian University of Science and Technology, 2014.

Anastasios M. Lekkas and Thor I. Fossen. Trajectory tracking and ocean current estimation for
marine underactuated vehicles. In 2014 IEEE Conference on Control Applications (CCA),
Antibes, France, pages 905–910, Oct 2014.

Anastasios M. Lekkas, Andreas R. Dahl, Morten Breivik, and Thor I. Fossen. Continuous-
curvature path generation using Fermat’s spiral. Modeling, Identification and Control, 34(4):
183–198, 2013.

132

http://books.google.no/books?id=Mbo_p4-46-cC
http://books.google.no/books?id=Mbo_p4-46-cC


Øivind A. G. Loe. Collision avoidance for unmanned surface vessels. Master’s thesis, Norwegian
University of Science and Technology, 2008.

MathWorks. MATLAB graphshortest. http://se.mathworks.com/help/bioinfo/ref/

graphshortestpath.html, 2014a. [Online; accessed 18-December-2014].

MathWorks. MATLAB inpolygon. http://se.mathworks.com/help/matlab/ref/inpolygon.
html, 2014b. [Online; accessed 16-December-2014].

MathWorks. MATLAB polyxpoly. http://se.mathworks.com/help/map/ref/polyxpoly.

html, 2014c. [Online; accessed 18-December-2014].

MathWorks. MATLAB voronoi. http://se.mathworks.com/help/matlab/ref/voronoi.

html, 2014d. [Online; accessed 18-December-2014].

Romain Pepy, Alain Lambert, and Hugues Mounier. Path planning using a dynamic vehicle
model. In Information and Communication Technologies, 2006. ICTTA ’06. 2nd, volume 1,
pages 781–786, 2006.

Ioan A. Sucan, Mark Moll, and Lydia E. Kavraki. The open motion planning library. Robotics
Automation Magazine, IEEE, 19(4):72–82, Dec 2012.

Antonios Tsourdos, Brian White, and Madhavan Shanmugavel. Cooperative path planning of
unmanned aerial vehicles. John Wiley & Sons, 2010.

Georgy Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadra-
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