
Force control interface for ABB S4/IRC5
/home/isolde/robot/doc/extctr.pdf

Isolde Dressler

July 13, 2009

1. Overview

A standard industrial ABB S4 robot controller has been extended for perform-
ing control experiments. The extension makes it possible to read and modify
the position, velocity and torque references that are sent from the main con-
troller to the axis controllers (Fig. 1).

A controller modeled in Simulink can be integrated in the robot control
using Real-Time Workshop and an opcom interface communicating with con-
troller and S4Cplus via the labcom protocol. Using the interface, controllers
can be loaded, controller parameters changed and sensor data be accessed.
Controller signals can be logged by an external program.

2. Safety

The customized controller will bypass S4’s safety procedure by sending the
modified position/velocity reference directly to the axis controller, so never
use a controller unless you have not made absolutely sure that it
is robust and stable! You might damage the robot, the robot lab or worst,
harm yourself or other people!
Always go through all of the following steps for testing a controller:

1. Test the controller with the robot simulation model in Simulink. Do
not only test the ideal case! Check what happens if the controller is
activated/deactivated.

external
sensor

irb2ext ext2irb

axis
computercomputer

main

submit

obtain

controller
Simulink

Figure 1 Schematic of reference value path from main to axis computer

1

2. Load the controller in opcom and test the logged signals in “submit”
state. Test the control without environment interaction, i.e. produce con-
tact forces with a broomstick or similar.

3. Finally, the experiment can be performed in “obtain”-state. Test the
control first with a soft environment, e.g. a cardboard box.

Pay attention to the following things:

• Use a parameter for activating the controller from the opcom interface.
It has to be inactive when starting the controller (obtain), else the con-
troller is in an uncertain state and the robot’s movements are unpre-
dictibly when pressing obtain. This parameter will in the following be
called f switch.

• Never press “obtain” in opcom if you are not absolutely sure that the
loaded controller is deactivated (fswitch 0) and its states (integrators)
are 0, else the robot might make an unexpected and perhaps very large
jump.

• Never leave the robot and control in an unsafe state when you are not
near. Press the emergency stop button, unload the controller in opcom
(never leave it in obtain-state!) and eventually exit the extrapid program.

• Integrate a routine in your controller to return the robot/controller states
to its initial position/zero with low velocity when the controller is deac-
tivated.

• When running a control experiment, have robot in manual state so that
switch has to be pressed during the experiment. Always watch the robot
and be ready to abort it by letting go the switch, even if you have run
the same experiment before.

• When running extrapid, introduce a signal in your controller that tells
if the controller states have returned to zero. The first command in an
extrapid program should check this signal and only continue when it is
sufficiently small.

• Pay special attention when running an extrapid program in automatic
state of the ABB controller.

3. Controller in Simulink

As there are problems with the current version of Simulink and Real-Time
Workshop (June 2007), the 2006 version has to be started:

VERSION=R2006a matlab -nodesktop

The s-function files necessary for the robot control library “extctrl” are only
available on gladia in the robot lab. The directories including them are added
with:

addpath /opt/robot/matlab/;

addpath /opt/robot/matlab/irb/mex/;

addpath /opt/robot/matlab/irb/mex/mex IRB2400 16;

2009-07-13 11:52 2

For other robots than IRB 2400 the corresponding directory has to be in-
cluded.

The commands can conveniently be executed by including them (and oth-
ers) in an executable text comment in Simulink. An available template file
contains such a text comment, otherwise it can be obtained by choosing “An-
notation properties” in the text comment’s context menu and choosing “Use
display text as click callback”.

As the above pathes should be available when the model is opened, it
has to be reopened after executing the commands, else the linking between
Real-Time Workshop and Orca is not done properly.

The modeling of a controller is explained in Sec. 3.5 on a simple example
(see Figs 5 and 6).

3.1 Labcom files

For communication between the Simulink controller and the robot, you have
to write a labcom file (*.lc) which specifies the input/output signals for lab-
com. See the following example:

sample float forceOut[6];

sample float fswitch;

As can be seen in the example, the file contains inputs and outputs in random
order. Vector signals have to be specified in the shown way. The name of the
labcom file has to be added in the RTW options ORCA tab (see App. A).

3.2 Real-Time Workshop

From the opcom interface it is possible to change controller parameters. To be
able to do so, these parameters have be declared before building the model. In
the model’s Simulink menu, go to Tools → Real-Time Workshop → Options.
Select Optimization, then Configure next to Inline parameters in the Simula-

tion and Code Generation block. New parameters can be declared selecting
New and typing the name it has in the Simulink model. The parameter type
should be “auto”.

Screen prints with other settings can be found in App. A.
Once the Simulink controller is modeled, the files used for control can be

generated with “ctrl + b” or select Tools → Real-Time Workshop → Build

Model.

3.3 Library extctrl

The Simulink blocks available in the extctrl library can be seen in Fig. 2. It
contains kinematic blocks for the IRB robot (the uppermost line of blocks)
and blocks to calculate between different coordinate systems (the right part).
The signal transmission and controller blocks to the left are seldomly used.

It is important to keep in mind in which coordinate system a pose or vector
is expressed. More on different coordinate systems follows in Sec. 3.4.

There is also a difference between joint angles expressed on the arm or on
the motor side. To change between the two the two blocks “arm2motor” and
“motor2arm” exist. Inputs and outputs (ext2irb or irb2ext) of the Simulink
model are given in motor angles, inputs to the kinematic blocks in arm angles.

Matrices are always given as an array in which the elements are stored row
after row. The vector indices of a homogeneous matrix are then for example:

2009-07-13 11:52 3

T44 =













1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16













→



















1

2
...

15

16



















Kinematic blocks There is an IRB forward kinematics block (arm angles
as input), two different Jacobian matrix blocks (available to give velocities in
base or flange frame, Ẋ = J · θ̇) and a block that calculates the pseudo inverse
of the input (Jacobian) matrix to compute the inverse Jacobian.

Transformation blocks

• Velocity/force transmission: As forces/velocities are not only vec-
tors but have a point of attack, the absolute values of momentums and
angular velocities might change if they are expressed in another frame
having a different origin.

• arm2motor/motor2arm: Calculate from joint angles on motor to arm
side or vice versa; input to kinematic blocks in arm angles, inputs/ out-
puts of Simulink model in motor angles.

• Quaternions and homogeneous representation: Any transforma-
tion between coordinate system is described by a rotation and a trans-
lation. A quaternion respresentation has 7 elements, the first 3 are the
translation vector and the remaining 4 quaternions describing the rota-
tion. Two blocks are available to change between the two representations.
More on quaternions and homogeneous coordinates can be read in [1].

• Quaternion/T44 inversion: If the input T44 of this block fulfills
Pbase = T44 · Pflange (Pflange are the coordinates of point P given in the
flange frame), the output T44−1 fulfills Pflange = T44−1 · Pbase. Similar
for quaternions.

• Quaternion/T44 multiply: The block outputs the upper input multi-
plied with the lower one. Suppose the upper input T1 fulfills Pbase =
T1 · Pflange and the lower one Pflange = T2 · PTCP, then the output
T3 = T1 ∗ T2 fulfills Pbase = T1 · Pflange = T1 · T2 · PTCP = T3 · PTCP.
Similar for quaternions.

3.4 Coordinate systems

It is important to keep in mind in which coordinate system a pose is given,
otherwise the robot might act unpredictibly. There are normally 4 different
coordinate frames: the base frame, the flange frame and the sensor frame.
Figure 3 shows base and flange frames. Sensor and TCP frames can be defined
manually corresponding to the used sensor or tool.

In the example Simulink controller, the coordinate frames are given and
used in the following way (check!!):

• Base frame: Attached to the robot base, the only constant one, z-axis
upwards.

2009-07-13 11:52 4

velocity transmission

v0 v1

v0

T44

v1

quaternion multiply

q1*q2=q

q1

q2

q

quaternion inversion

q^(−1)

motor2arm

Motor2Arm

logdata_mux

dataA

dataB

dataC

dataD

Out1

gravity compensation

f1=f0−gravity

f0

T44

f1

force transmission

f0 f1

f0

T44

f1

arm2motor

Arm2Motor

T44toD66

T44 to D66

T44Multiply

T44*T44

T44Inv

Invert T44

T44D4

T44*D4
T44

D4

D4

T442Quat

T44 to Quat

Reshape

Reshape

Quat2T44

Quat to T44

Mux−Ext2Irb

parKp

parKv

parKi

posRef

velRef

trqRef

trqFfw

trqDis

extMode

Ext2IrbVect

IRB inverse Jacobian

J^(−1)

IRB Jacobian2

JACOBIAN in basejoints 36*1 J

IRB Jacobian 1

JACOBIAN in flangejoints 36*1 J

IRB Forward Kinematics

FORWARD

joints−>flange
joints T44

Force Controller

Irb2Ext

Force Sensor

Force Ref

Ext2Irb

Demux−Irb2Ext

Irb2ExtVect

parKp

parKv

parKi

parTrqMin

parTrqMax

posRaw

posFlt

velRaw

velFlt

velOut

trqRaw

trqFlt

trqOut

posRef

velRef

trqRef

trqqFfw

trqDis

rPs

uPs

D66D66

D66*D66

D66D6

D66*D6
D66

D6

D6

Figure 2 extctrl library

Figure 3 Coordinate systems: base (left) and flange (right)

• Flange frame: Attached to midpoint of flange, output of kinematics
function blocks is transformation base to flange. Pbase = T44 · Pflange

• TCP frame: Transformation TCP to flange. Pflange = T44 · PTCP

• Sensor frame: Transformation flange to sensor. Psensor = T44 · Pflange

Example Figure 4 shows the part of the robot simulation model which
calculates the force sensor output. It is a nice example for calculations between
the different coordinate frames.

The surface normal vector, and hence also the force direction, is given in the
base frame, but has to be transformed to the sensor frame. So the input to the
velocity transmission block in the right of Fig. 4 should be the transformation
matrix which fulfills Psensor = T44 · Pbase.

Inputs in the subsystem are 3 different coordinate systems: the transmis-
sion

• from flange to TCP: PTCP = T1 · Pflange ,

• from flange to sensor: Psensor = T2 · Pflange

2009-07-13 11:52 5

calculates output of force sensor from TCP position

in base frame
to plane, here

normal vector in global
z−direction

force vector in base frame
force = 0 if no contact

in sensor frame

convert force from base to sensor frame

base to TCP

base to flange

TCP to flange

sensor to flange

base to sensor

1

Force

force

TCP
Moment

vector product

q^(−1)

quaternion inversion

N_wall

normal_vector
f0 f1

f0

T44
f1

force transmission

In1

display6

pos_TCP distance

calculate distance

T44*T44

T44Multiply1

T44*T44

T44Multiply

Invert T44

T44Inv

Switch

Scope

Quat to T44

Quat2T44

Quat to T44

Quat2T1

Product

K*u

K1

−50

K

0

F_0

3

sensor_frame

2

TCP_frame

1

posTCP

Figure 4 Part of the robot simulation model as example for coordinate system
calculations

addpath /opt/robot/matlab/;

addpath /opt/robot/matlab/irb/mex/;

addpath /opt/robot/matlab/irb/mex/mex_IRB2400_16

DOF=6; h=0.004;

samptimeS4C=h;

forceRef=15;

f_gain=0.3;

v_gain=0.5;

dz_offset=3;

P_NoContact=−50;

P_Contact=0.05;

vf_nom=[0 0 1];

N_wall = [0 0 1];

sensor_frame=[2.2962 18.0779 58.1643 0.9844 0.0273 0.0109 −0.1737];

TCP_frame=[50.86 −41.01 190.80 0.2418447 0.66446302 −0.2418447 0.66446302];

f_switch=1;

disp(’init done’)

f_switch: master pos/force on/off, tracks back when off

vf_nom: starting search/force ref. direction

vf: actual current force ref. direction

vv: current velocity direction

f_gain: gain between projected force error [N] and control velocity [mm/s]

v_gain: gain between projected measured force [N] and commanded tangential velocity [mm/s]

dz_offset: start force for tangential motion [N]

ext2irb[i].to_test_signal_viewer[j]

1

robot system

posref

vref

TCP_frame

sensor_frame

q_motor

F_sensor

position/velocity

u

posRef

velRef

posMod

velMod

display7

In1

display6

In1

display16

In1

controller

Fref

F/TCP

q_motor

TCP_frame

v_nom/base

P_NoContact

P_Contact

dv

To Workspace1

simout1

To Workspace

simout

Scope1

Impedance joint

reference calc.

dv,dw

posFlt

TCP−>flange

pF

posMod

Ground

[fref]

[vf_nom]

[qs]

[qTCP]

[P_Cont]

[f_switch]

[posRef]

[P_NoCont]

[velRef]

[posFlt]

[velFlt]

[velRaw]

[posRaw]

[F_sensor]
Goto

[posQ]

[P_NoCont]

[posRaw]

[qTCP]

[qTCP]

[F_sensor]

[qs]

[f_switch]

[qTCP]

[posRaw]

[velRef]

[fref]

[vf_nom]

[P_Cont]

[qs]

[qTCP]

[posRef]

From

[posQ]

Force sensor−>TCP

F_comp

TCP frame

sensor frame

F_tcp

Differentiation

raw diff

forceRef

TCP_frame

sensor_frame

vf_nom

Constant4

0

P_Contact

P_NoContact

Constant12

0

f_switch

log_posRef[i]

log_velRef[i]

log_posFlt[i]

log_posFlt[i]

log_velUpd[i]

log_posUpd[i]

Figure 5 Example: a simple controller – simulation model

• and from base to TCP: PTCP = T3 · Pbase.

The coordinate transformation is obtained multiplying T2 · T1−1 · T3. For
used blocks see Fig. 4.

3.5 Controller example

Figures 5 and 6 show the example controller, once with a robot model for
simulation and once the controller model for running experiments.

The controller block is the same for both Simulink models. A simple P con-
troller is implemented. As soon as a force is measured, the robot moves in the
direction given by the force vector until the absolute value of the force reaches

2009-07-13 11:52 6

addpath /opt/robot/matlab/;

addpath /opt/robot/matlab/irb/mex/;

addpath /opt/robot/matlab/irb/mex/mex_IRB2400_16

DOF=6; h=0.004;

samptimeS4C=h;

forceRef=15;

P_NoContact=−50;

P_Contact=0.05;

vf_nom=[0 0 1];

sensor_frame=[2.2962 18.0779 58.1643 0.9844 0.0273 0.0109 −0.1737];

TCP_frame=[50.86 −41.01 190.80 0.2418447 0.66446302 −0.2418447 0.66446302];

f_switch=0;

disp(’init done’)

f_switch: master pos/force on/off, tracks back when off

vf_nom: starting search/force ref. direction

vf: actual current force ref. direction

vv: current velocity direction

f_gain: gain between projected force error [N] and control velocity [mm/s]

v_gain: gain between projected measured force [N] and commanded tangential velocity [mm/s]

dz_offset: start force for tangential motion [N]

ext2irb[i].velRef

10

ext2irb[i].posRef

9

ext2irb[i].to_test_signal_viewer[j]

8

ext2irb[i].trqDis

7

ext2irb[i].trqFfw

6

ext2irb[i].trqRef

5

ext2irb[i].accRef

4

ext2irb[i].parKi

3

ext2irb[i].parKv

2

ext2irb[i].parKp

1

position/velocity

u

posRef

velRef

posMod

velMod

controller

Fref

F/TCP

q_motor

TCP_frame

v_nom/base

P_NoContact

P_Contact

f_switch

dv

Impedance joint

reference calc.

dv,dw

posFlt

TCP−>flange

pF

posMod

Ground

[fref]

[vf_nom]

[qs]

[qTCP]

[P_Cont]

[f_switch]

[posRef]

[P_NoCont]

[velRef]

[posFlt]
[velFlt]

[velRaw]

[posRaw]

[F_TCP]

[posRaw]

[qTCP]

[f_switch]

[fref]

[F_TCP]

[vf_nom]

[f_switch]

[qTCP]

[posRaw]

[velRef]

[P_NoCont]

[P_Cont]

[qs]

[qTCP]

[posRef]

Force sensor−>TCP

F_comp

TCP frame

sensor frame

F_tcp

forceRef

TCP_frame

sensor_frame

vf_nom

P_NoContact

P_Contact

f_switch

jr3_B[i]

22

irb2ext[i].trq_ffw_grav

21

irb2ext[i].trqDis

20

irb2ext[i].trqFfw

19

irb2ext[i].trqRef

18

irb2ext[i].accRef

17

irb2ext[i].trqRef_flt

16

irb2ext[i].trqRaw

15

irb2ext[i].velOut

14

irb2ext[i].velFlt

13

irb2ext[i].velRaw

12

irb2ext[i].posRaw_fb

11

irb2ext[i].posRaw_abs

10

irb2ext[i].parTrqMax

9

irb2ext[i].parTrqMin

8

irb2ext[i].parKi

7

irb2ext[i].parKv

6

irb2ext[i].parKp

5
irb2ext[i].velRef

4

irb2ext[i].posRef

3 irb2ext[i].posFlt

2

jr3_A[i]

1

forceTCP[i]

log_posRef[i]

log_velRef[i]

log_posFlt[i]

log_velUpd[i]

log_posUpd[i]

Figure 6 Example: a simple controller – model for control

a reference value. If not in contact, the robot moves in a given search direction.
Output of the block is an incremental velocity change given in the TCP frame.
In order to transform the global search direction to the TCP frame, the motor
angles and TCP frame have to be inputs to the block.

The following block transforms the TCP velocity into joint velocities using
the robot’s Jacobian matrix.

The next block modifies the references sent to the robot. In this block,
backtracking in case of controller deactivation is implemented. It is also con-
venient to implement other safety features here, e.g. a maximum reference
change and what to do if this maximum is attained.

For the real controller, the changed references are sent to the robot, in the
simulation model they are inputs to the robot model.

The model for the real controller has inputs/outputs. For these, an*. lc file
has to be written (see Sec. 3.1). The names of vectors have to be written as
name[i]. The same is valid for logged signals (see Sec. 5).

comment to run before controller, close reopen. Here pathes to the kinemat-
ics library are added and parameters like the TCP frame are defined. Should
be available in the template file.

The force measurement is given in the sensor frame and has to be trans-
formed to the TCP frame. In the block in front of that one, a constant offset
is substracted from the force measurement.

Parameters that you want to change from opcom have to be added as inline
parameters.

As safety features, the controller should always have a parameter to acti-
vate and deactivate the controller as well as a routine what should be done
after deactivation. The controller states should then return to zero. It is also
very convenient when working with extrapid to have a variable that measures
if the states are returned to zero. It is also good to introduce a maximum
possible modification of the robot position.

2009-07-13 11:52 7

Figure 7 Opcom interface

Use preferably common Simulink blocks, not all might be translated in the
right way or implemented.

4. Control interface and experiment

After the Simulink controller model has been built, the controller can be loaded
and used with the opcom interface. It is started in the following way:

cd /home/robot/project/extctrl/opcom

./robban -v

For the IRC 5 cabinet which controls the Gantry-Tau robot, the opcom inter-
face is started exchanging robban for tekla or yoda (in directory yoda m).

The interface can be seen in Fig. 7, it consists of 4 parts. The upper left
window is for communication with the S4 system and the JR3 force sensor,
the upper right window for accessing files on the g4 Power PC in the ABB
controller cabinet. In the lower left area the inline controller parameters can
be read and changed and in the lower right area the controller can be loaded.

Backspace does not work, use CTRL-h instead, even if it appears not to
work.

4.1 S4-Terminal and force sensor

This window is mostly for communication with the two force sensors, which are
connected through channel 0 and 1. The following commands can be executed:

• extctrl jr3 set filter 1,3
Change filter for force sensor signal: in example filter for channel 1 (0
or 1) is changed to filter 3 (0–6, cutting frequency is cut in half with
increasing number, mostly set to 0)

• extctrl jr3 get filter 1
Read filter in channel 1

2009-07-13 11:52 8

• jr3 init
Resets force sensor in current position; not to be done in “submit” or
“obtain”!

• jr3 test read force 1
Read force for channel 1

4.2 G-4 Terminal

Here communication with the G4-power-PC is done. Its harddisk can be ac-
cessed.

4.3 Loading of the controller

There exist 4 different states in the process of loading a controller:

• unload
Basic state active when interface is loaded, no communication.

• load
After having entered the controller name in field above activate “load”.
Controller is saved by RTW compiler in directory “/tmp/”.

• submit
Communication from S4 to interface active, parameter values can be
read, but nothing sent back to controller/axes controller. Try your con-
troller first in this state, it doesn’t affect the robot but you can look at
the logged signals and see if it’s behaving as it should.

• obtain
Communication is active in both directions, parameter values can be
changed and controller run. Modified references are sent to axes com-
puters.

4.4 Parameters

Parameters that have been defined as inline parameters in Simulink can be read
and changed here. Click on parameter, change value in right field, parameter
will first be sent to controller when clicking on commit.

4.5 Carrying out an experiment

• Model controller in Simulink: test with simulation model, add pa-
rameters, write *.lc files, build

• Open opcom

cd /home/robot/project/extctrl/opcom

./robban -v

• Load controller and submit

• Test logged signals without running the robot, force sensor signals
are read, so you can simulate environment interaction by pressing TCP
with a stick

• Obtain, if previous experiment gave expected result

• Loosen brakes and hold dead man’s switch

2009-07-13 11:52 9

• Activate controller

• Be ready to push emergency stop

5. Data logging

Independently from the control execution, another program can be run to
log signals. All input and output signals of the Simulink model (irb2ext or
ext2irb) as well as specified signals are logged. To specify that a signal should
be logged, click on the signal line and choose Signal Properties in the context
menu. Activate Test point in the first tab Logging and accessibility and choose
a signal name. If the signal is an array, the name has to end with “[i]” (really
“i” and not the signal dimension!), e.g. testsignal[i].

To start the program “log” located in Anders Blomdell’s home directory,
type

cd /home/andersb/work/robot/log

./log -t 10 -d 2 --host prpmc1.m --port 2000 -o /tmp/logA

The right host for a specific robot controller can be found in the *.fsm file
of the controller’s opcom interface as the value of G4 IP ADDRESS.

This will log signals specified in the Simulink model during 10 s (-t 10).
The -d 2 command specified that every second sample is logged. The sam-
pling time is 4 ms and the resulting file can get large easily. The logged data is
saved in the file “/tmp/logA”. To convert the logged data in a format readable
by Matlab, run the following program:

./log2matlab /tmp/logA > /tmp/logA.txt

To read data in Matlab from the data file the program “readlog” can be
used. It can be found in

/home/tolsson/research/flexaa/newsys test/readlog.m

The program is used in the following way:

[data,names]=

readlog(’/tmp/logA.txt’, {’log forceComp’,’posRef’});
plot(data)

The program loads all signals that include the specified strings ’log forceComp’
or ’ext2irb.posRef’ in their names from the specified file “/tmp/logA.txt” and
saves each signal in a column of the matrix data. The struct names contains
the signal names in the same order as they appear in the matrix.

6. Using EXTRAPID

It is even possible to use a customized Simulink model controller together
with a exetended RAPID program. Besides usual RAPID commands, an EX-
TRAPID program can contain commands for setting or comparing parame-

2009-07-13 11:52 10

ters in the Simulink model. With the aid of these parameters, the Simulink
controller can be activated and deactivated and the RAPID program flow
controlled.

6.1 Example program

An example for such an EXTRAPID program is the following:

MODULE EXAMPLE

PROC main()

! This should always be done to ensure that the controller

is initially in a safe state!!!

FORCE

FORCESET f_activate := 0;

FORCEWAITUNTIL trackedBack <= 0.0001;

WaitTime \InPos, 1.0;

ENDFORCE

MoveL [[106.58,801.18,1178.86],[0.706217,0.008091,-0.707823,

-0.01267],[0,-1,1,0],[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]]

,v10,z0,tool0;

FORCE

FORCESET vX := 0;

FORCESET vY := 0;

FORCESET vZ := 1;

FORCESET signvX := 2;

FORCESET signvY := 2;

FORCESET f_activate := 1;

FORCEWAITUNTIL forceOut >= 5;

FORCESET param1 := 1;

FORCESET f_activate := 0;

WaitTime \InPos, 3.0;

ENDFORCE

ENDPROC

ENDMODULE

The first command block is a very important safety feature. If an exper-
iment is aborted while the Simulink controller is active, the controller states
might continue to grow instead of decreasing to 0. One possibility to deacti-
vate the controller and check its states is to use the manual communication
programs, which will be discussed later.

If this is forgotten the robot may do an unpredictible jump when the emer-
gency brake is released while the opcom interface is still in “obtain” mode and
the controller activated.

To prevent that, this block should be inserted in any EXTRAPID pro-
gram. The variable trackedBack is the sum of the controller states’ absolute
values, and the program only continues when it is sufficiently close to 0 after
deactivating the controller. The opcom interface may only be switched from
“submit” to “obtain” mode, when the robot starts to move, which shows that
the controller is in a safe state.

2009-07-13 11:52 11

In the second part, the robot is commanded to move to a certain point,
where the Simulink controller is activated. The controller will move the robot
in a specified direction until a contact force is measured and then control the
contact force.

Before the controller is activated, different controller parameters are set.

6.2 Safety

When using EXTRAPID, 3 systems are interacting: the ABB controller, the
Simulink controller and the EXTRAPID program. This complicates the ma-
nipulation and

6.3 How to make and run an Extrapid program

The EXTRAPID files (2007-08-14) are located in /work/robot. An example
program can be found in /work/robot/extrapid-build/example.prg.

To run an EXTRAPID program type the following:

source /work/robot/extrapid/environment

cd /work/robot/extrapid-build

Then copy your program file to /work/robot/extrapid-build/. and run it
with

java Execute example.prg

But before you can run your EXTRAPID program together with a Simulink
controller, you have to create an interface between EXTRAPID and controller:

source /work/robot/extrapid/environment

cd /work/robot/extrapid/src/s4cplus/extcomm

Do the following things:

• Create a directory for the new controller (use drillcomm as an example).

• Change the names from drill xx to fit the new controller.

• Change the lc-file to contain the parameters of the Simulink controller
(a duplicate may be in the Simulink directory).

For the Makefile,

• compile the lc-file using Anders Blomdells labcomm-compiler

• update drill in.c and drill out.c to handle the parameters

• compile c-files

• put the binary file so that EXTRAPID can access it.

To build and install the rap interface towards S4C+ type:

source /work/robot/extrapid/src/

cd /work/robot/extrapid/src/s4cplus/rapcomm

make

To build EXTRAPID:

source /work/robot/extrapid/src/

cd /work/robot/extrapid/src/lang/extrapid_20070318_0918

ant

2009-07-13 11:52 12

Do not add any files to /work/robot/extrapid-build, it is an automati-
cally generated directory.

To run a new controller you need to make changes in the class ExtCtrlComm
under /work/robot/extrapid/src/lang/extrapid 20070318 0918 and com-
pile extrapid (ant).

Corresponding lines in ExtCtrlComm.java:

String[] drill_in = {"drill_in","prpmc1.m","2000"};

String[] drill_out = {"drill_out","prpmc1.m","2000"};

drill in and drill out handle in and out parameters and can be run man-
ually from a terminal

At the moment, EXTRAPID cannot handle negative parameters or vectors.
To run an EXTRAPID program, the abb controller has to be in automatic

state.

6.4 Safety

As the ABB controller has to be in automatic state to run EXTRAPID, special
attention has to be paid to safety issues. In the automatic state, All points
cited above should be followed and

Run the programs for in and out parameters manually to check if the
controller is working properly.

A. Real-Time Workshop Options

2009-07-13 11:52 13

B. Accessing harddisk on robot server

• ncftp -uu -pp robban.m

• lcd robot/control/example/

• ! ls

• get VOLVO070618A.prg

• quit

List of all possible commands with help

C. How to change system on ABB controller

• backup old system (/home/robot/project/SMErobot/backup tekla/ for
IRC 5), use ncftp

• 2 files important: mc/mc.sym (compiled system, in folder bin of robot
system) and install.cmd (points to which robot to load, in folder robots
of robot system), actually used file only copy of one of group of several
possible files, choose right file, check that right robot is pointed to

• power down on control cabinet, now cables can be exchanged if another
robot should be connected to the controller cabinet

• power up

• restart - advanced - X-start - choose system that should be booted

• eventually additional I-start to erase all old information

[1] R.M. Murray, Z. Li and S.S. Sastry, A Mathematical Introduction to

Robotic Manipulation, CRC Press, Boca Raton, FL, 1994.

2009-07-13 11:52 14

