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Abstract

Control of Remotely Operated Vehicles (ROVs) with manipulator arms require
control of all degrees of freedom. In particular, it is necessary to be able to
keep the vehicle at a constant position and orientation in order for the manip-
ulator arms to efficiently perform its task. To increase the level of autonomy
of a ROV, station keeping, trajectory tracking and path following can be imple-
mented. These functions all require a controller and the development of such a
controller is the key task in this thesis. The design of a path following algorithm
for backtracking the path driven by the ROV when controlled by the operator is
also one of the goals.

When designing a control system for a marine craft, the choice of controller is
not obvious. Several controllers exist with different properties and demands. A
desired feature of a controller is that it is robust to parameter uncertainty, since
the parameters of a marine craft may change with different operating conditions.
For an underwater vehicle, the ocean current is present as a disturbance, so
the controller needs to be able to compensate this disturbance. In this thesis a
position and velocity controller that adapts the system parameters and current
disturbance is developed. Convergence of the position error and virtual velocity
error to zero is proven through Lyapunov theory and by utilizing Barbǎlat’s
lemma.

The developed controller has been implemented and tested on a Simulink simu-
lation model of the Merlin WR200 ROV from IKM Subsea. The tests considered
station keeping, trajectory tracking, path following of paths generated by the
ROV as it drives through the ocean space and of predefined paths. For all cases,
the ROV is able to converge to the desired position, velocity or path. The perfor-
mance of the developed controller and 2 other controllers is compared for station
keeping and trajectory tracking and the developed controller shows very good
results. The controller was also tested for station keeping and trajectory tracking
in the advanced simulator from CM Labs at the IKM headquarters in Bryne.
The performance was very good under the conditions of the simulation.

Future work includes among other things developing a more extensive dynamic
model for Merlin WR200 that includes the effects of cable drag, developing a
steering law for 6 DOF underwater vehicles and conducting a sea trial.

The goal of this thesis was to develop a new model based control law for ROVs
and verify its performance through simulations. This has been successfully ac-
complished.
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Sammendrag

Kontroll av fjernstyrte undervannsfartøy (ROV) med manipulatorarmer krever
kontroll i alle frihetsgrader. Det er spesielt viktig at fartøyet klarer å holde en kon-
stant posisjon og orientasjon slik at arbeidet som utføres med manipulatorarmene
blir utført s̊a effektivt som mulig. For å utvide automasjonsgraden til en ROV
kan man implementere posisjonsregulering og b̊ade tidsavhengig og tidsuavhengig
banefølging. Disse funksjonene krever en regulator og utviklingen av en slik reg-
ulator er hovedm̊alet for oppgaven. Utviklingen av en banefølgingsalgoritme som
gjør det mulig å følge banen ROVen har kjørt n̊ar den ble styrt av en operatør,
er ogs̊a et av m̊alene.

Valget av regulator til et marint styresystem er ikke opplagt. Flere regulatorer
eksisterer og alle har forskjellige egenskaper og krav. En ønsket egenskap med en
regulator er at den skal være robust mot parameterusikkerhet siden parameterne
til et marint fartøy kan forandre seg med ulike operasjonstilstander. Et under-
vannsfartøy vil være p̊avirket av havstrøm, s̊a det er viktig at regulatoren klarer
å kompansere forstyrrelsen havstrømmen for̊arsaker. I denne oppgaven utvikles
det en posisjons,- og hastighetsregulator som adapterer systemparametrene og
strømningsforstyrrelsen. Konvergens av posisjonsfeilen og hastighetsfeilen til null
bevises ved hjelp av Lyapunovteori og ved anvendelse av Barbǎlats lemma.

Den utviklede regulatoren ble implementert og testet i en Simulink simuler-
ingsmodell av Merlin WR200 ROV fra IKM Subsea. Posisjonsregulering og
banefølging av baner generert av ROVen n̊ar den kjører gjennom havrommet og
forh̊andsdefinerte baner ble testet. ROVen konvergerer til den ønskede posisjonen,
hastigheten eller banen i alle tilfeller. Prestasjonen til den utviklede regulatoren
og to andre regulatorer sammenlignes for posisjonsreguleringen og den utviklede
regulatoren viser meget gode resultater. Regulatoren ble ogs̊a testet for posisjon-
sregulering i den avanserte simulatoren fra CM Labs p̊a IKMs hovedkvarter i
Bryne. Prestasjonen var under forholdene meget bra.

Som fremtidig arbeid foresl̊aes blant annet utviklingen av en mer omfattende
dynamisk modell av Merlin WR200 som inkluderer p̊avirkningen fra kabelen,
utvikling av en styrelov for undervannsfartøy i 6 frihetsgrader og utførelse av
sjøtest.

Hovedm̊alet med oppgaven var å utvikle en ny modellbasert regulator for ROVer
og verifisere prestasjonen gjennom simuleringer. Dette ble utført.
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”A mind needs books like a sword needs a whetstone, if it is to keep its edge.”
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Chapter 1

Introduction

1.1 Motivation

Control of unmanned vehicle-manipulator systems (UVMS) including remotely
operated vehicles (ROVs) and autonomous underwater vehicles (AUVs) with ma-
nipulator arms requires control in all 6 degrees of freedom (DOF). When per-
forming operations with the manipulators it is necessary to keep the vehicle at a
constant position and attitude. An underwater vehicle is only exposed to envi-
ronmental disturbances caused by current since it is operating at a depth where
the wave and especially the wind effects can be ignored. The control system
needs to be able to handle this current disturbance.

To achieve the control objective and handle the disturbances, the ROV is equipped
with a dynamic positioning (DP) system. The design of a DP system is not
straightforward, and one of the challenges is the choice of controller. Several con-
trollers with different properties and requirements exist for this purpose and the
choice is not obvious. The controller needs to be robust to parameter uncertainty,
be able to handle disturbances and at the same time respond to changes in the
reference position or velocity in a satisfying way.

The Merlin WR200 is currently only fitted with automatic control functions of
altitude, depth and heading, so it is of interest to increase the level of autonomy
to include position control in the horizontal plane as well, enabling the ROV to
keep its position (station keeping). This increased autonomy would also lead to
the ROV being able to perform path following missions.

The controller must make the ROV able to both hold the position and follow
a path. It should also be easily implementable, meaning it should not rely on
perfect knowledge of system parameters. The derivation of the controller should
be as simple as possible.
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The goal of this thesis is therefore the development of a new model based control
law based on the mentioned criteria. The control law should be tested in a
dynamic positioning setting and in a path following mission through simulations.

1.2 Contributions

In this thesis a new model based control law for marine vehicles in 6 DOFs has
been developed. It is attempted to write the derivation of the new controller in
a more readable and simplified way by using a diffeomorphism. Emphasis was
placed on deriving a control law that is robust to parameter uncertainty and is
able to handle current disturbances.

A control system for the Merlin WR200 has been developed utilizing the new
controller. For the DP part of the control system, reference models and thruster
allocation algorithms have been implemented and the DP system has been tested
in the simulator at IKM Subsea for verification. A path following system based on
the already driven path of the ROV has also been developed. The path following
system uses a modified version of the Line of Sight steering law to ensure correct
heading and velocity.

1.3 Problem description

The overall problem in this thesis is increasing the level of autonomy and robust-
ness for underwater vehicles in general and the Merlin WR200 in particular. The
following subtasks are proposed for this thesis:

1 Develop a model-based controller for path following/tracking control of
ROVs. Dynamic positioning should also be considered as a special case.
Case study: Merlin WR200.

2 Develop a motion planner based on path followed by the ROV when con-
trolled by the operator.

3 Validate the derived controller and motion planner through simulations.

4 Compare the performance of the derived controller with existing controllers
studied in the pre-project.

5 Test and verify the proposed controller in simulator experiments in coop-
eration with IKM Subsea AS.
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1.4 Thesis outline

Chapter 2 defines the notation used in the thesis. Background information
on modeling of marine vehicles and ocean currents is presented along with an
introduction to marine vehicle guidance, navigation and control systems. Pre-
vious work done on the DP system of Merlin WR200 is presented along with
limitations and available measurements. A brief overview of the mathematical
definitions used in this thesis is given.

Chapter 3 is the modeling chapter. The mass, damping and Coriolis matrices
for the Merlin WR200 are described and the process plant and control plant
models are presented.

Chapter 4 presents the DP and path following control system. The control law
is derived and stability is proven. A Line of Sight path following control system
is derived for the return path mode. As an additional feature, a path following
system for predefined paths is presented.

Chapter 5 presents the Simulink simulation system that has been developed.

Chapter 6 contains the results from the Simulink simulations and from the sim-
ulation done in the advanced simulator at IKM Subsea. The results are discussed
consecutively.

Chapter 7 contains suggestions for future work and concluding remarks.
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1.5 Abbreviations

Abbreviation Description
AUV Autonomous Underwater Vehicle
ABSwB Adaptive Backstepping with Bound estimation
CAD Computer Aided Design
CB Center of Buoyancy
CG Center of Gravity
CO Center of Origin
DOF Degree of Freedom
DP Dynamic Positioning
DVL Doppler Velocity Log
EOM Equations of Motion
GES Global Exponential Stability
GNC Guidance Navigation and Control
GNSS Global Navigation Satellite System
GPS Global Positioning System
HMI Human Machine Interface
LOS Line of Sight
NED North-East-Down
P-CABS Parameter and Current Adaptive Backstepping
PE Persistently Exciting
PID Proportional, Integral, Derivative
PLC Programmable Logic Controller
RMS Root Mean Square
ROV Remotely Operated Vehicle
SF Serret-Frenet
TMS Tether Management System
UVMS Unmanned Vehicle Manipulator System
VS-MRAC Variable Structure - Model Reference Adaptive Control
WP Waypoint
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1.6 Greek letters

Letter Description
α Angle between N and LOS vector
β Sideslip angle
γ Arbitrary constant between 0 and 1
Γ Gain matrix
δ Bound on disturbance
∆ Lookahead distance, tuning parameter, ”change in”
ε Coordinates of vessel in the path fixed frame
ζ Damping ratio
η Position and attitude vector
θ Pitch angle
θ Parameter vector
Θ Attitude vector
κ Curvature of path
λ Eigenvalue
ν Velocity vector
ξ Parametrized path
π Pi
ρ Density of seawater
τ Time delay
τ Force vector
φ Roll angle
φ Regressor matrix
χ Course angle
ψ Heading angle
ω Path variable or natural frequency

The following accents are used in the thesis:

Accent Example Description
Tilde η̃ Error between measured/actual value and the desired value
Bar ē2 A modified version of the unbarred variable
Hat θ̂ An estimated variable
Dot ν̇ The time derivative of the variable
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Chapter 2

Theory

2.1 Reference frames

The positions, attitudes and motions of a marine craft are expressed in different
reference frames to best describe the behaviour. The reference frames used in
this thesis are as explained in [Fossen, 2011]:

• NED: The North-East-Down frame, {n} = {N, E, D}, with origin on, is
considered inertial in this thesis. This is the coordinate system we refer to in
our everyday life. The x-axis points towards true North, the y-axis towards
East and the z-axis points down, nominal to the Earth’s surface. The NED
frame can be seen as a tangent plane to the earth’s surface (figure 2.1).
This assumption holds for local operations which is the case for the ROV
operations in this thesis. The positions and attitudes of a vehicle are given
in the NED-frame. From here on out, the NED frame is denoted {n}

• BODY: The BODY frame, {b} = {xb, yb, zb}, with origin ob, is fixed on
the vehicle and thus it is a moving coordinate frame. The axes of the
BODY frame are chosen to coincide with the principal axes of inertia (figure
2.2). The position and orientation of the vehicle is given as the position
and orientation of the BODY reference frame relative to the {n} frame.
The linear and angular velocities however are given in the BODY reference
frame. The origin ob is usually chosen as a point in the middle of the
vessel. This point is referred to as CO. From here on out, the BODY frame
is denoted {b}
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Figure 2.1: The {n} frame.

Figure 2.2: The 6 DOFs of Merlin WR200 in the {b} frame. Image courtesy of
[Knausg̊ard, 2013].
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Cu
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nt

Figure 2.3: The {b} frame of the ROV as it is seen in {n}. {n} is constant and {b}
moves through it. ψ is the heading angle of the ROV, χ is the course angle and β is the
sideslip angle caused by ocean currents, U is the speed of the ROV
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2.1.1 Notation

For a marine craft operating on 6 DOF, 6 different coordinates are necessary to
describe the position and motion. These 6 coordinates are defined by the Society
of Naval Architects and Marine Engineers(SNAME) and can be seen in table 2.1
[SNAME, 1950].

Forces and Positions and
DOF Description moments Velocities Euler angles

1 motions in the x direction(surge) X u x
2 motions in the y direction(sway) Y v y
3 motions in the z direction(heave) Z w z
4 rotation about the x axis(roll) K p φ
5 rotation about the y axis(pitch) M q θ
6 rotation about the z axis(yaw) N r ψ

Table 2.1: Formulations for the different degrees of freedom of a marine vessel as
defined by SNAME in 1950

In this thesis, vectors and matrices are expressed in bold. Sub,- and superscripts
are used as follows: vbb/n and is read as the linear velocity of the BODY frame with
respect to the NED frame, expressed in the BODY frame. Angular representations
are Θnb and is read as the Euler angles between NED and BODY. Since the
position and velocity of the marine craft is described in two different coordinate
frames, it is appropriate to separate them into two vectors. The vectors contains
the states of the marine craft in the appropriate reference frame. See table 2.2.

Vector Vector State Description Force/Moment

ηnb/n

N North position X
pnb/n E East position Y

D Down position Z
φ Attitude about x axis K

Θnb θ Attitude about y axis M
ψ Attitude about z axis N

νbb/n

u Surge velocity X
vbb/n v Sway velocity Y

w Heave velocity Z
p Roll rate K

wb
b/n q Pitch rate M

r Yaw rate N

Table 2.2: The position and attitude vector η, the velocity vector ν and the forces
and moments that influence motion in the state
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2.1.2 Definitions of course, heading and sideslip angles

The relationship between the angular variables course, heading and sideslip is
important for manoeuvring of a marine craft in {n} . First, the speed of a marine
craft is defined as [Fossen, 2011]:

U :=
√
u2 + v2 (2.1.1)

The course, heading and sideslip angle can then be defined as [Fossen, 2011]:

Definition 2.1: The course angle χ is the angle from the xn axis of {n} to the
velocity vector U of the craft. Positive rotation about the zn axis of {n} by the
right-hand screw convention.

Definition 2.2: The heading angle ψ is the angle from the xn axis of {n} to
the xb axis of {b} . Positive rotatoin about the zn axis of {n} by the right-hand
screw convention.

Definition 2.3: The sideslip angle β is the angle from the xb axis of {b} to
the velocity vector of the vehicle. Positive rotation about the zb axis of {b} by the
right-hand screw convention.

From this it is clear that

χ = ψ + β (2.1.2)

2.2 Transformations

The {n} and {b} frame are related through a transformation matrix JΘ(η). This
matrix consists of the linear velocity rotation matrix Rn

b (Θnb) and the angular
velocity transformation matrix TΘ(Θnb)

JΘ(η) =
[
Rn
b (Θnb) 03×3
03×3 TΘ(Θnb)

]
(2.2.1)

where the linear velocity transformation matrix is

Rn
b (Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.2.2)

s(·) = sin(·), c(·) = cos(·). The Rotation Matrix Rn
b (Θ) ∈ R3×3 is an element

in SO(3) which is the special orthogonal group of order 3. A matrix R in SO(3)
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has the properties RRT = RTR = I, R−1 = RT , det R = 1 [Egeland and
Gravdahl, 2002]

The angular velocity transformation matrix is

TΘ(Θnb) =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ

 (2.2.3)

t(·) = tan(·). Notice that (2.2.3) is undefined for θ = 90°. One way around this
singularity is to use quaternion representation of the angles. However, this is
not done in this thesis because the roll and pitch angle of the Merlin WR200 is
limited to θ = ±20°. If the roll and pitch angles can be assumed (φ = θ = 0),
the angular velocity transformation matrix reduces to

TΘ(Θnb) = I3×3 (2.2.4)

and a transformation between {n} and {b} can be defined as:

P (ψ) :=
[
Rn
b (ψ) 03×3

03×3 I3×3

]
(2.2.5a)

P T (ψ) = P−1(ψ) (2.2.5b)

2.3 Mathematical modelling of underwater vehi-
cles

The position and attitude of the marine craft is expressed in {n} . The derivative
of the position, or the velocity in {n} can be expressed as:

ṗnb/n = vnb/n = Rn
b (Θnb)vbb/n (2.3.1a)

Θ̇nb = wn
b/n = TΘ(Θnb)wb

b/n (2.3.1b)

Collecting these terms gives rise to the 6 DOF kinematic model:

η̇ = JΘ(η)ν (2.3.2)

The kinetics, or the forces that are causing the motions, are modelled after the
vectorial notation of [Fossen, 1991]:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τ e (2.3.3)

where

• M = MRB + MA > 0,∈ R6×6 is the system inertia matrix. It is the
sum of the rigid body system inertia matrix MRB = MT

RB > 0 and the
hydrodynamic system inertia matrix or added mass matrixMA = MT

A ≥ 0.
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• C(ν) = CRB(ν) + CA(ν) ∈ R6×6 is the Coriolis matrix. It is the sum
of the rigid body Coriolis matrix CRB(ν) = −CT

RB(ν), ∀ ν ∈ R6 and the
hydrodynamic Coriolis matrix CA(ν) = −CT

A(ν), ∀ ν ∈ R6. This matrix
can always be parametrized such that it is skew-symmetric. This is useful
since the quadratic form νTC(ν)ν ≡ 0.

• D(ν) = Dl +Dnl(ν) > 0 ∈ R6×6 is the damping matrix. It is the sum of
the linear damping matrix Dl and the nonlinear damping matrix Dnl(ν).
Linear damping is caused by potential damping that arises when a body is
forced to oscillate and by skin friction. The nonlinear damping is caused by
quadratic damping and higher order terms. The damping matrix has the
properties of being real, asymmetric and strictly positive, that is D(ν) >
0 ∀ ν ∈ R6.

• g(η) ∈ R6 is the vector of generalized gravitational and buoyancy forces.

• τ ∈ R6 is the vector of generalized control forces acting on the different
DOFs.

• τ e ∈ R6 is the vector of environmental forces. For an underwater vehicle,
this represents the ocean current forces.

The kinematics and kinetics gives us the equations of motion(EOM) for a marine
craft in 6DOFs expressed in {b} :

η̇ = JΘ(η)ν (2.3.4a)
Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τ e (2.3.4b)

2.3.1 Ocean current modeling

Ocean currents are described in [Fossen, 2011] as:

”Horizontal and vertical circulation systems of ocean waters produced by gravity,
wind friction and water density variations in different parts of the ocean.”4

The ocean current itself has a velocity and a direction in {n} and to model the
effects of the current on a marine craft, [Fossen, 2011] proposes to use the relative
velocity vector :

νr = ν − νc (2.3.5)

where νc is the generalized ocean current velocity of an irrotational fluid:

νc =
[
uc vc wc 0 0 0

]T (2.3.6)

with vbc =
[
uc vc wc

]T as the linear current velocity expressed in {b} . The
ocean current can, according to [Fossen, 2011], be assumed as slowly varying or
constant such that its derivative in {n}, v̇nc ≈ 0 and consequently v̇bc = −S(wb

b/n)vbc.
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If it is assumed that the current is the only environmental force acting on the
marine craft, the kinetics can be expressed as equations of the relative velocity:

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ (2.3.7)

2-D irrotational current model

The current is modelled in 2-dimensions with a speed Vc and a sideslip angle βc.
The current in {n} is expressed as:

vnc =

Vccos(βc)
Vcsin(βc)

0

 (2.3.8)

where Vc and βc are considered constant in {n} . The current velocity in {b} is
found as:

vbc = Rn
b (Θnb)Tvnc (2.3.9)

or

uc = Vccos(βc − ψ), vc = Vcsin(βc − ψ) (2.3.10)

Current modeled as a force disturbance

The model (2.3.7) is a suitable model when building a process plant model for
simulation purposes. When designing a model based control law, however, it is
now clear that the parameters are dependent on the relative velocity νr. To get
the current velocity from this measurement, one needs a measure of the vehicle
velocity as well. To overcome this need, one can consider the current as a constant
force disturbance τC in {n}[Antonelli et al., 2003] and build proper compensation
of this disturbance with the control law. The kinetics can then be expressed as:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τC (2.3.11)

2.4 ROV guidance, navigation and control

Guidance, navigation and control(GNC) deals with the design of the entire control
system for a marine craft, both on the surface and under water. The GNC system
consists of 3 parts. The guidance system is what decides where the marine craft
should go, the navigation system determines where the craft actually is, and the
control system calculates the forces necessary to bring the craft from where it is,
to where it should be.
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Control SystemGuidance System
Navigation System
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ocean currents
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Figure 2.4: A typical Guidance, Navigation and Control system for a marine craft.

2.4.1 Guidance system

A guidance system is a system for automatically guiding the position or path of a
marine craft, usually without direct or continuous human control [Fossen, 2011].
There are several methods for guiding the marine craft to the desired position or
to specify for instance the desired velocity. Among the most common are:

• Dynamic Positioning(DP): This is the most basic guidance system and
consists of one or more constant setpoints usually provided by an operator.
DP is used in station keeping or when it is necessary for the marine craft to
stand still. It may also be used to control a state to zero, like for instance
the roll and pitch of an ROV.

• Trajectory-tracking control: The position and velocity of the marine
craft should track the desired time-varying reference signal. This is for
instance used for course changing, setpoint changing or speed changing. The
reference change is usually passed through a reference model to generate a
smooth, time-varying reference signal.

• Path-following: This mode commands the marine craft to follow a pre-
defined path regardless of time. The path may be generated by an operator,
or, as in this thesis, by the marine craft itself as it moves through the ocean
space.

2.4.2 Navigation system

Navigation involves determining for instance the position, attitude, velocity,
course or distance travelled for a marine craft. The most commonly used nav-
igation system for marine vehicles is the US satellite navigation system GPS.
[Sørensen, 2013]. The GPS signal is unavailable for a vehicle operating under wa-
ter, like a ROV. The position must therefore be decided in another way. One pos-
sibility is to design a position observer based on the velocity measurements. The
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velocity measurements can be obtained by using a Doppler Velocity Log(DVL)
as is done with the Merlin WR200. For more information about the observer
developed for Merlin WR200, see the master thesis [Knausg̊ard, 2013].

2.4.3 Control systems

The use of DP systems began in the 1960s when PID control was implemented for
control in surge, sway and yaw. This was improved by Balchen to include mul-
tivariable optimal control, [Balchen et al., 1980]. Balchen also implemented the
Kalman filter in the control loop which is considered a breakthrough in marine
control systems,[Sørensen, 2013, p. 228]. The introduction of Fossen’s vectorial
representation in 1991, [Fossen, 1991], simplified the representation of the gener-
alized positions and velocities and became the new standard for marine control
systems design. A variety of non-linear control methods was developed through-
out the 1990s, like a vectorial backstepping controller [Fossen and Berge, 1997],
adaptive Variable Structure control [Da Cunha et al., 1995], sliding mode with
adaptive gains [Cristi et al., 1990] and adaptive backstepping for tracking control
[Godhavn et al., 1998] to mention some.

2.4.4 Controller types

P, PI, PD and PID controllers

The well known and widely used P, PI, PD and PID controllers utilizes the
error e = x− xd to calculate the input τ . x is the current value of the state and
xd is the desired value. Kp, Ki and Kd are controller gains chosen by the control

P τ = −Kpe

PI τ = −Kpe−Ki

∫ t
0 e dt

PD τ = −Kpe−Kdė

PID τ = −Kpe−Kdė−Ki

∫ t
0 edt

Table 2.3: Input for the different control strategies P, PI, PD and PID control.

designer to scale the input to an appropriate value. The gain Kp affects the
immediate error. Increasing it causes a faster response, but may cause overshoot
if too high. Kd affects the term regarding the derivative, or the rate of change, of
the error. Increasing it will therefore cause lower overshoot and a faster settling
time. Ki affects the sum of the error over time and is used to remove a constant
disturbance acting on the system. Increasing Ki leads to a faster removal of the
disturbance error and a faster settling time, but it also leads to a larger overshoot.

These controllers only considers the error. The gains can be chosen regardless of
the system parameters, so the controllers are not model-based. The choice of the
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Figure 2.5: The behaviour of a mass spring damper system with different controllers
applied. It is seen that using a derivative part causes less oscillations and using an
integral part removes the stationary deviation.

control gains can however be based on the system parameters in order to achieve
a desired system behaviour. This method is called pole-placement and is very
useful when controlling the characteristics of a system.

Feedback linearization controllers

The concept of feedback linearization is to transform the non-linear system into
an equivalent linear system [Khalil, 2002]. When dealing with non-linear systems,
like a marine craft, on the form

Mν̇ + n(ν,η) = τ (2.4.1)

where n(ν,η) = C(ν)ν + D(ν)ν + g(η) is the non-linear part, it would be
beneficiary if there existed a feedback control :

τ = Mab + n(ν,η) (2.4.2)
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Marine craft

Figure 2.6: A non-linear marine craft system is linearized through the feedback lin-
earizing controller τ = Mab + n(ν,η)

with commanded acceleration ab, that transformed the non-linear system into an
equivalent linear system:

ν̇ = ab (2.4.3)

such that linear design methods like pole placement and linear quadratic control
theory can be applied. See figure 2.6. Not all systems are feedback linearizable,
but as it turns out, ships and underwater vehicles, which are basically non-linear
mass-damper-spring systems, can be linearized through a non-linear mapping as
long as all DOFs are controllable. If not, partial feedback linearization is still
possible. The commanded acceleration ab can be chosen by for instance pole
placement [Fossen, 2011].

In [Fossen and Pettersen, 2014], [Holden and Pettersen, 2007] and [Moe et al.,
2014] feedback linearizing controllers are used. This is fine if one knows the exact
parameters of the marine craft.

Backstepping controllers

Backstepping and feedback linearization are closely linked, but where feedback
linearization attempts to cancel all non-linearities, backstepping allows us to be
more selective in what we wish to remove. A marine craft may for instance have
a stabilizing damping term which is in fact doing exactly what we want to do
with our controller, only to a different degree. If we cancel it with feedback
linearization we are removing all damping, even the one that is ”helping” us,
and then adding our own through the controller. With backstepping we look at
the Lyapunov function of the system to decide which damping terms we need
to be cancel through feedback linearization and which terms we can keep. It is
also difficult to obtain the exact model of the non-linearities, so if we can avoid
cancelling them, this would make the controller more robust.

When developing backstepping controllers, a recursive method is applied by
”backstepping” through the integrators of the system until the input is reached.
For every step a virtual control is chosen to control a new state variable to zero.
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Backstepping controllers are used for control of robot manipulators in [Slotine
and Weiping, 1988]. The concept of vectorial backstepping was first introduced
in [Fossen and Berge, 1997] where it was applied to a marine craft showing simul-
taneous global exponential stability (GES) of the surge and sway position and
the yaw angle whilst incorporating the effects of actuator dynamics. Vectorial
backstepping is used to show robust GES for a fully actuated 6 DOF AUV in
[Holden and Pettersen, 2007]. A 6 DOF vectorial backstepping controller utiliz-
ing a diffeomorphism between the positions and velocities of a marine craft is
presented in [Holden and Pettersen, 2007].

Adaptive controllers

Of the aforementioned controllers, both the feedback linearization controller and
the backstepping controller are model based. Since they try to cancel the non-
linearities in for instance the damping and Coriolis matrices and multiply the
commanded acceleration with the mass matrix, these matrices needs to be known.
The problem with this is that values of these matrices changes with different
sea states [Sørensen, 2013]. The requirement that the matrices are known can
be relaxed by introducing parameter adaptation. Consider again the system in
equation (2.4.1), but now the controller is chosen as:

τ = M̂ab + n̂(ν,η) (2.4.4)

where the hat denotes an adapted parameter. The error dynamics of the system
is:

M(ν̇ − ab) = (M̂ −M)ab + (n̂(ν,η)− n(ν,η)) (2.4.5)

If the system is linear in the parameters, the right hand side can be written as:

(M̂ −M)ab + (n̂(ν,η)− n(ν,η)) = φ(ab,ν,η)θ̃ (2.4.6)

where θ̃ = θ̂ − θ is the unknown parameter error and φ(ab,ν,η) is a vector of
measured and known signals referred to as the regressor matrix.

Adaptation on the form in equation (2.4.6) can also be used to cancel unknown
constant disturbances. Consider a marine craft under the effect of ocean currents
τ c:

Mν̇ + n(ν,η) = τ + τ c (2.4.7)

by choosing

τ = M̂ab + n̂(ν,η)− τ̂ c (2.4.8)

equation (2.4.6) can be rewritten as:

(M̂ −M)ab + (n̂(ν,η)− n(ν,η))− (τ̂ c − τ c) = φ(ab,ν,η)θ̃ (2.4.9)
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and hence, the current disturbance is also adapted. It is shown in section 4.2 that
by choosing an update law for the parameter adaptation vector θ̂ on the form:

˙̂
θ = −Γφē2 (2.4.10)

the overall system is stabilized. ē2 is an error variable and Γ is matrix of gains
that are defined in section 4.2.

The convergence of θ̂ to θ can only be guaranteed if the input that drives ˙̂
θ is

persistently exciting. This is defined in Appendix C.2.

In [Antonelli et al., 2001] and [Antonelli et al., 2003] an adaptive control law is
developed for an AUV and a ROV respectively. The controller adapts the en-
vironmental disturbances. This controller was tested in [Ohrem, 2014] showing
good results. Adaptive control is also used in [Zhu and Gu, 2011] where it is com-
bined with backstepping. All disturbances are lumped into a single disturbance
term, so it does not separate for instance the current disturbance. In [Patompak
and Nilkhamhang, 2012], the controller from [Zhu and Gu, 2011] is modified to
include a bound estimation on the uncertainties.

Sliding mode and variable structure control

Sliding mode control, or variable structure control, is based on switching terms
that constraints the motion of the system to a sliding surface [Utkin, 1977]. Once
on this sliding surface, the performance of the system is insensitive to parameter
variations or disturbances. This technique has been used in combination with
Model Reference Adaptive Control in [Hsu, 1990] where a novel controller named
the VS-MRAC is derived. The VS-MRAC method is applied to an ROV and
used for position control in [Da Cunha et al., 1995]. In [Cristi et al., 1990],
sliding mode control is used in the dive plane for controlling an AUV. [Lyshevski,
2001] describes the motions in 6 DOF and derives a sliding mode controller that
utilizes the continuous function tanh(·) instead of the discrete sign(·) function to
ensure feasible control inputs. Sliding mode control may cause chattering in the
control input [Young et al., 1999].

2.5 Previous work on the DP system of Merlin
WR200

Merlin WR200 is equipped with automatic depth, altitude and heading control. It
has velocity control by joystick in surge, sway, heave and yaw and the possibility
of slightly changing the roll and pitch angles. The master project of Knausg̊ard
[2013] aimed to design and implement a DP control system with observers for
Merlin WR200. The system showed successful results in the sea-trials and the
observers worked particularly well, but due to lack of time the system was not
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tested in all DOFs. The controller developed in Knausg̊ard [2013] is a feedback
linearizing controller. A controller on this form requires a very accurate model
of the system and Knausg̊ard concludes that a different controller should be
developed and tested. In the project thesis [Ohrem, 2014], several controllers was
tested in a comparative study. It was concluded that a controller with current
adaptation was a good choice for DP control of Merlin WR200. IKM Subsea
has had some troubles with the continuity of the control system and as far as
the author is aware, the station keeping mode is not implemented in the Merlin
WR200 today.

2.6 Path following for marine crafts

2.6.1 LOS steering

The following is collected from [Fossen, 2011, Ch. 10.3.2]. The LOS guidance
system considers the vessels position relative to two waypoints wpk =

[
xk yk

]T
and wpk+1 =

[
xk+1 yk+1

]T . The path fixed reference frame with origin in wpk
is rotated a positive angle:

αk := atan2(yk+1 − yk, xk+1 − xk) ∈ S (2.6.1)

relative to the x axis. atan2 is the four-quadrant version of arctan(y/x) ∈[
−π2 ,

π
2
]
. The coordinates of the vessel in the path-fixed reference frame is:

ε(t) := RT
p (αk)(p(t)−wpk) (2.6.2)

where

Rp(αk) =
[
cos(αk) −sin(αk)
sin(αk) cos(αk)

]
∈ SO(2) (2.6.3)

and ε(t) =
[
s(t) e(t)

]T ∈ R2. The variables s(t) and e(t) are described as:

s(t) = along track distance(tangential to path)
e(t) = cross track error(normal to path)

Expanding the equation (2.6.2) gives:

s(t) =
[
x(t)− xk

]
cos(αk) +

[
y(t)− yk

]
sin(αk)

e(t) = −
[
x(t)− xk

]
sin(αk) +

[
y(t)− yk

]
cos(αk)

(2.6.4)

For path following of a straight line path, the control objective becomes:

lim
t→∞

e(t) = 0 (2.6.5)

21



CHAPTER 2. THEORY

LO
S 
ve

ct
or

N

E

Figure 2.7: The Line of Sight guidance law. The desired course angle χd is chosen to
point toward the intersection point (xlos, ylos).
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which implies that the vessel is on the straight line between the waypoints. See
figure 2.7 for illustration.

As the vessel approaches the waypoint wpk+1 a new waypoint should be chosen.
This is done by defining a circle of acceptance with radius Rk+1 around the
waypoint wpk+1. If the vessel position at time t satisfies:[

xk+1 − x(t)
]2 +

[
yk+1 − y(t)

]2 ≤ R2
k+1 (2.6.6)

the next waypoint is chosen. The velocity of the marine craft is either chosen as
constant or it can be chosen as:[

ud
vd

]
=

−umax s√
s2+∆2

s

−vmax e√
e2+∆2

e

 (2.6.7)

where ∆s > 0 and ∆e > 0 are speed tuning parameters that ensures a smooth
ramping down of the velocity as the vessel approaches the waypoint.

Two different guidance principles can be used for steering along the LOS vector,
enclosure-based and lookahead-based steering. This thesis only considers the mis-
sile guidance motivated lookahead-based approach since it has several advantages
over enclosure-based steering. For lookahead based steering the desired course
angle χd is chosen so it points towards the the intersection point (xlos, ylos):

χd(e) = αk + arctan
(
−e
∆

)
(2.6.8)

where ∆ > 0 is the lookahead distance. The last term ensures that the velocity
is directed towards a point on the path that is located a lookahead distance away
from the direct projection of the vessels position on to the path.

LOS steering is chosen because this method popular and effective, and it is mo-
tivated by how the operator is most likely to steer the ROV [Fossen and Lekkas,
2015].

2.7 Limitations

No dynamic model for the thrusters has been implemented due to lack of data
regarding the thruster characteristics. A model of the thruster dynamics is im-
portant to assure feasible changes in thruster rates. A simple rate limiter that
limits the rate of change in the thrusters to 8000 N/s is used. This is based on
information given by IKM Subsea. The controllers are tuned with this in mind.
All measurements used in the simulations are noiseless and no observer is imple-
mented. The system parameter matrices are based on the the results presented in
the master thesis [Knausg̊ard, 2013] and may therefore be outdated due to design
changes in the Merlin WR200. The forces due to cable drag are not modeled.
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2.8 Available measurements

Merlin WR200 is equipped with a Doppler Velocity Log (DVL) sensor called
TOGSNAV. This provides the controller with measurements of the depth, veloc-
ities and attitudes when not operating too close to the seabed. Estimates are
used when the DVL measurements are unavailable. The positions are obtained
through an observer that was developed and verified in Knausg̊ard [2013] showing
very good results. For the simulations in this thesis, noiseless measurements of
the positions, attitudes and velocities are assumed.

2.9 Mathematical review

Some important lemmas and definitions that are used in the thesis are presented
here

2.9.1 Norms

From [Khalil, 2002, Ch.5.1], the following definitions are presented regarding the
norm function ||f ||:

Definition 2.4: The norm of a signal is zero if and only if the signal is identi-
cally zero and is strictly positive otherwise

Definition 2.5: Scaling a signal results in a corresponding scaling of the norm.
That is ||af || = a||f || for any positive a and every signal f .

Definition 2.6: The norm satisfies the triangle inequality ||f1 + f2|| ≤ ||f1|| +
||f2|| for any signals f1 and f2.

For the space of piecewise continuous, bounded functions, the norm is defined as:

||f ||L∞ := sup
t≥0
||f(t)|| < ∞ (2.9.1)

For the space of piecewise continuous, square-integrable functions, the norm is
defined as:

||f ||L2 :=

√∫ ∞
0

fT (t)f(t) dt <∞ (2.9.2)

The Euclidian norm is:

||x||2 =
(
|x1|2 + · · ·+ |xn|2

)1/2 =
(
xTx

)1/2 (2.9.3)
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2.9.2 Lyapunov function

Definition 2.7: A Lyapunov Function is a continuously differentiable func-
tion V (x) that satisfies [Khalil, 2002]

V (0) = 0 and V (x) > 0 ∀ x 6= 0 (2.9.4a)
V̇ (x) ≤ 0 (2.9.4b)

2.9.3 Barbǎlat’s lemma

Lemma 2.1: If f , ḟ ∈ L∞ and f ∈ Lp for some p ∈ [1,∞), then f(t) → 0 as
t→∞. [Ioannou and Sun, 2012, Lemma 3.2.5]

Lemma 2.1 is a special case of the more general Barbǎlat’s Lemma which is stated
below

Lemma 2.2: If limt→∞
∫ t

0 f(τ)dτ exists and is finite, and f(t) is a uniformly
continuous function, then limt→∞ f(t)→ 0. [Khalil, 2002, Lemma 8.2]
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Chapter 3

Modeling of Merlin WR200

The Merlin WR200 is a fully electric work class ROV that has an open frame so-
lution with rounded edges. The open frame not only simplifies repairs, but it also
allows water to flow more freely around and through the ROV. To maximize reli-
ability and operation time, as many components as possible are located topside.
The ROV can be fitted with two manipulator arms, cameras and skids. Merlin
WR200 is equipped with a Tether Management System to reduce the cable drag
and increase manoeuvrability. The main data is listed in table 3.1. The model
for the Merlin WR200 is based on the vectorial notation derived in [Fossen, 1991]
and the following assumptions are made:

Assumption 3.1: The {n} frame is considered inertial.

Assumption 3.2: The ROV will operate deeply submerged

Assumption 3.3: The ocean current is considered non-rotational and constant
in {n}with ν̇nc = 0. It is also assumed that the current has no vertical component.

Assumption 3.4: The density of seawater is considered constant for all depths.

Assumption 3.5: The ROV is modelled as a rigid body and the mass is constant.

Length 2.8m
Width 1.8m
Height 1.7m
Weight 3184kg

Table 3.1: Merlin data
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Figure 3.1: The Merlin WR200 ROV

The equations of motion are presented as both a process plant model and a control
plant model. The process plant model is a comprehensive high fidelity model of
the ROV. It should be as detailed as possible to replicate the real system. The
control plant model is a simplified version that only considers the main physical
properties of the plant to simplify the mathematical description [Sørensen, 2005]

3.1 Process plant model

A process plant model that is as accurate as possible given the available data
about Merlin WR200 is developed for use in computer simulations. By utilizing
the fact that the ocean currents are irrotational and constant in {n}, the following
property can be applied [Fossen, 2011, Property 8.1]

MRBν̇ +CRB(ν)ν = MRBν̇r +CRB(νr)νr (3.1.1)

And hence, the equations of motions are:

Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ (3.1.2)

Expanding the terms gives:

MRBν̇ +CRB(ν)ν︸ ︷︷ ︸
rigid-body forces

+

MAν̇r +CA(νr)νr +D(νr)νr︸ ︷︷ ︸
hydrodynamic forces

+ g(η)︸︷︷︸
hydrostatic forces

= τ (3.1.3)
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3.1.1 Rigid body mass matrix

The rigid body mass matrix is given in [Fossen, 2011] as:

MRB =
[
mI3x3 −mS(rbg)
mS(rbg) Ib

]

MRB =


m 0 0 0 mzg −myg
0 m 0 −mzg 0 mxg
0 0 m myg −mxg 0
0 −mzg myg Ixx −Ixy −Ixz

mzg 0 −mxg −Iyx Iyy −Iyz
−myg mxg 0 −Izx −Izy Izz


(3.1.4)

where m is the mass of Merlin WR200, Ib ∈ R3×3 is the inertia matrix, S(·) ∈
R3×3 is the cross product operator (see appendix C.1) and xg, yg and zg are the
distances from the center of origin, CO, to the center of gravity, CG. According
to data from the CAD model of Merlin WR200 in appendix A, the vector rg is:

rg =
[
−0.002341 0.003014 −0.021193

]T [m] (3.1.5)

The mass of Merlin WR200 is m = 3184 [kg] and the inertia is as presented in
appendix A

I =

1819 0 −120
0 3064 7
−120 7 2887

 (3.1.6)

This gives a rigid body mass matrix:

MRB =


3184 0 0 0 −67.5 −9.6

0 3184 0 67.5 0 −7.5
0 0 3184 9.6 7.5 0
0 67.5 9.6 1819 0 −120

−67.5 0 7.5 0 3064 7
−9.6 −7.5 0 −120 7 2887

 (3.1.7)

3.1.2 Added mass matrix

The added mass matrix is given in [Fossen, 2011] and consists of the hydrody-
namic derivatives. It is shown in (3.1.8).

MA = −


Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

 (3.1.8)
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This modeling of Merlin WR200 is based on [Knausg̊ard, 2013]. The added mass
is assumed to be 10 % of the mass in surge, sway and heave and 5% of the mass in
roll, pitch and yaw. All other added mass terms are assumed equal to 0. Though
these assumptions are insecure, the results from the sea trial in [Knausg̊ard, 2013]
show that they are usable. The added mass matrix takes the form:

MA = −


−318.4 0 0 0 0 0

0 −318.4 0 0 0 0
0 0 −318.4 0 0 0
0 0 0 −159.2 0 0
0 0 0 0 −159.2 0
0 0 0 0 0 −159.2

 (3.1.9)

A diagonal structure of this matrix is a good approximation due to the fact that
the off diagonal elements will be much smaller than their diagonal counterparts
[Fossen, 2011].

3.1.3 Total mass matrix

The total mass matrix used in the simulation model for Merlin WR200 can now
be presented as:

M = MRB +MA

=


3502.4 0 0 0 −67.5 −9.6

0 3502.4 0 67.5 0 −7.5
0 0 3502.4 9.6 7.5 0
0 67.5 9.6 1978.2 0 −120

−67.5 0 7.5 0 3223.2 7
−9.6 −7.5 0 −120 7 3046.2


(3.1.10)

3.1.4 Rigid body Coriolis and centripetal matrix

The rigid body Coriolis and centripetal matrix is given in [Fossen, 2011] as:

CRB(ν) =
[

03×3 −mS(v)−mS(S(w)rbg)
−mS(v)−mS(S(w)rbg) mS(S(v)rbg − S(Ibw))

]
(3.1.11)

where v is the linear velocity vector and w is the angular velocity vector as
presented in table 2.2. S(·) is the cross product operator and rbg ∈ R3 is the
vector of distances from CO to the center of gravity, CG. When expanding the
terms, this matrix takes the form:
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CRB(ν) =


0 0 0
0 0 0
0 0 0

−m(ygq + zgr) m(ygp+ w) m(zgp− v)
m(xgq − w) −m(zgr + xgp) m(zgq + u)
m(xgr + v) m(ygr − u) −m(xgp+ ygq)

m(ygq + zgr) −m(xgq − w) −m(xgr + v)
−m(yg + w) m(zgr + xgp) −m(ygr − u)
−m(zgp− v) −m(zgq + u) m(xgp+ ygq)

0 Iyzq − Ixzp+ Izr Iyzr + Ixyp− Iyq
Iyzq + Ixzp− Izr 0 −Ixzr − Ixyq + Ixp
−Iyzr − Ixyp+ Iyq Ixzr + Ixyq − Ixp 0

 (3.1.12)

3.1.5 Added mass Coriolis and centripetal matrix

The hydrodynamic Coriolis and centripetal matrix can be parameterized such
that it is skew-symmetric, according to [Fossen, 2011]. This leads to the matrix
in equation (3.1.13).

CA(ν) =
[

03×3 −S(A11v +A12w)
S(A11v +A12w) −S(A21v +A22w)

]
(3.1.13)

where

MA =
[
A11 A12
A21 A22

]
(3.1.14)

Equation (3.1.13) can be written in component form as:

CA(ν) =


0 0 0 0 −a3 a2
0 0 0 a3 0 −a1
0 0 0 −a2 a1 0
0 −a3 a2 0 −b3 b2
a3 0 −a1 b3 0 −b1
−a2 a1 0 −b2 b1 0

 (3.1.15)

where
a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

a2 = Yu̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

a3 = Zu̇u+ Zv̇v + Zẇw + Zṗp+ Zq̇q + Zṙr

b1 = Ku̇u+Kv̇v +Kẇw +Kṗp+Kq̇q +Kṙr

b2 = Mu̇u+Mv̇v +Mẇw +Mṗp+Mq̇q +Mṙr

b3 = Nu̇u+Nv̇v +Nẇw +Nṗp+Nq̇q +Nṙr

(3.1.16)
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3.1.6 Damping matrix

An ROV that is deeply submerged is mostly affected by damping caused by skin
friction and vortex shredding [Fossen, 2011]. The damping contributions cause
both linear and non-linear damping and are separated into a linear damping term
caused by potential damping and skin friction and a non-linear damping term
caused by higher order terms. This results in the following damping matrix:

D(νr) = Dl +Dnl(νr) (3.1.17)

where Dl contains the linear damping coefficients

Dl = −


Xu Xv Xw Xp Xq Xr

Yu Yv Yw Yp Yq Yr
Zu Zv Zw Zp Zq Zr
Ku Kv Kw Kp Kq Kr

Mu Mv Mw Mp Mq Mr

Nu Nv Nw Np Nq Nr

 (3.1.18)

and Dnl(νr) contains the higher order damping coefficients

Dnl(νr) = −


X|u|u|ur| X|v|v|vr| X|w|w|wr|
Y|u|u|ur| Y|v|v|vr| Y|w|w|wr|
Z|u|u|ur| Z|v|v|vr| Z|w|w|wr|
K|u|u|ur| K|v|v|vr| K|w|w|wr|
M|u|u|ur| M|v|v|vr| M|w|w|wr|
N|u|u|ur| N|v|v|vr| N|w|w|wr|

X|p|p|pr| X|q|q|qr| X|r|r|rr|
Y|p|p|pr| Y|q|q|qr| Y|r|r|rr|
Z|p|p|pr| Z|q|q|qr| Z|r|r|rr|
K|p|p|pr| K|q|q|qr| K|r|r|rr|
M|p|p|pr| M|q|q|qr| M|r|r|rr|
N|p|p|pr| N|q|q|qr| N|r|r|rr|

 (3.1.19)

A pull test in surge and sway was performed in the project thesis [Knausg̊ard,
2012]. In this test it was found that the damping of Merlin WR200 had a very
clear quadratic form in surge and sway. The linear damping matrix is therefore
omitted in the simulation model since no data on this exist. Due to the symmetric
shape of Merlin WR200, the damping could be assumed equal in heave and sway.
As for damping in roll, pitch and yaw, these values are assumed very small. In
[Knausg̊ard, 2012] they are assigned a value of 10% of the average damping in
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surge and sway. The resulting damping matrix is:

D(νr) =


1321|ur| 0 0 0 0 0

0 2525|vr| 0 0 0 0
0 0 2525|wr| 0 0 0
0 0 0 192|pr| 0 0
0 0 0 0 192|qr| 0
0 0 0 0 0 192|rr|

 (3.1.20)

3.1.7 Hydrostatic forces

The vector of hydrostatic forces is [Fossen, 2011]:

g(η) =


(W −B)sin(θ)

−(W −B)cos(θ)sin(φ)
−(W −B)cos(θ)cos(φ)

−(ygW − ybB)cos(θ)cos(φ) + (zgW − zbB)cos(θ)sin(φ)
(zgW − zbB)sin(θ) + (xgW − xbB)cos(θ)cos(φ)
−(xgW − xbB)cos(θ)sin(φ)− (ygW − ybB)sin(θ)

 (3.1.21)

where

W = mg

B = ρgV
(3.1.22)

is the weight and buoyancy of Merlin WR200 respectively. The mass of Merlin
WR 200 is m = 3184kg, the gravitational acceleration is g = 9.81m/s2, the
density of sea water is ρ = 1024kg/m3 and the volume of Merlin WR200 is
V = 3.22m3.

3.2 Control plant model

Some assumptions are made when deriving the control plant model for Merlin
WR200 for this thesis:

Assumption 3.6: The relative velocity is measured, but the current velocity is
unknown

Assumption 3.7: The center of origin(CO) coincides with the center of grav-
ity(CG) and the center of buoyancy(CB) is located directly over the center of
gravity. That is: xg = yg = zg = xb = yb = 0. This leads to a simplified rigid
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body mass and Coriolis matrix, MRB, CRB[Fossen, 2011, p.56-57]:

MRB =
[
mI3×3 03×3
03×3 Ig

]
(3.2.1)

CRB(ν) =


0 0 0 0 mw −mv
0 0 0 −mw 0 mu
0 0 0 mv −mu 0
0 mw −mv 0 Izr −Iyq
−mw 0 mu −Izr 0 Ixp
mv −mu 0 Iyq −Ixp 0

 (3.2.2)

Assumption 3.8: The ROV moves at low speeds and has three planes of sym-
metry. This suggests that the off-diagonal elements of the added mass matrix
MA can be neglected and the added mass Coriolis matrix CA(νr) is simplified
[Fossen, 2011, p.121]:

MA = MT
A = −diag{Xu̇, Yv̇, Zẇ, Kṗ, Mq̇, Nṙ} (3.2.3)

CA(ν) = −CT
A(ν) =


0 0 0 0 −Zẇw Yv̇v
0 0 0 Zẇw 0 −Xu̇u
0 0 0 −Yv̇v Xu̇u 0
0 −Zẇw Yv̇v 0 −Nṙr Mq̇q

Zẇw 0 −Xu̇u Nṙr 0 −Kṗp
−Yv̇v Xu̇u 0 −Mq̇q Kṗp 0


(3.2.4)

Assumption 3.9: The roll and pitch motions are very small, that is φ = θ ≈ 0.
This leads to a reduced transformation matrix JΘ(η):

P (ψ) =
[
R(ψ) 03×3
03×3 I3×3

]
(3.2.5)

where P−1(ψ) = P T (ψ)

Assumption 3.10: The current is modeled as a constant force disturbance in
{n} .

These assumptions gives the following control plant model:

η̇ = P (ψ)ν
Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + τC

(3.2.6)

34



3.3. THRUSTERS

where the matrices M , C and D and the vector g takes the form:

M = MRB +MA

=


m−Xu̇ 0 0 0 0 0

0 m− Yv̇ 0 0 0 0
0 0 m− Zẇ 0 0 0
0 0 0 Ix −Kṗ 0 0
0 0 0 0 Iy −Mq̇ 0
0 0 0 0 0 Iz −Nṙ


(3.2.7)

C(ν) = CRB +CA (3.2.8)

=


0 0 0
0 0 0
0 0 0
0 (m− Zẇ)w −(m− Yv̇)v

−(m− Zẇ)w 0 (m−Xu̇)u
(m− Yv̇)v −(m−Xu̇)u 0

0 (m− Zẇ)w −(m− Yv̇)v
−(m− Zẇ)w 0 (m−Xu̇)u

(m− Yv̇)v −(m−Xu̇)u 0
0 (Iz −Nṙ)r −(Iy −Mq̇)q

−(Iz −Nṙ)r 0 (Ix −Kṗ)p
(Iy −Mq̇)q −(Ix −Kṗ)p 0



(3.2.9)

D(ν) =


1321|u| 0 0 0 0 0

0 2525|v| 0 0 0 0
0 0 2525|w| 0 0 0
0 0 0 192|p| 0 0
0 0 0 0 192|q| 0
0 0 0 0 0 192|r|

 (3.2.10)

g(η) =


0
0

−(W −B)
0
0
0

 (3.2.11)

3.3 Thrusters

Merlin WR200 is equipped with 8 thrusters. 4 vertical and 4 horizontal. The
thrusters are controlled by frequency converters and there is no feedback from
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the thrusters. Various thrust losses will be present, but the modelling of these
are not included in this thesis. In [Knausg̊ard, 2013] a pull test performed by
IKM Subsea is presented. The pull test gave rise to a mapping between desired
thrust and frequency. The mapping function for a single thruster is:

fHzi = 83 sin(0.0007909ui), i = 1, 2 . . . 8 (3.3.1)

where fHzi
is the frequency in Hertz and ui is the desired force for one thruster

calculated by the controller and mapped to the thruster through the thruster
allocation.

3.3.1 Thruster allocation

The control forces and moments and the thruster forces and moments are related
through the thruster allocation:

τ = TKu (3.3.2)

Where T is a thruster configuration matrix, K is a diagonal force coefficient
matrix set to the identity matrix in this thesis because we want the thrust-to-
thrust relationship between τ and u. u contains the thruster inputs for each
individual thruster, [Fossen, 2011, p. 398]:

u =
[
u1 u2 u3 u4 u5 u6 u7 u8

]T (3.3.3)

The thruster configuration matrix contains the locations and geometry of the dif-
ferent thrusters and it relates the control force to the thruster force by calculating
how much thrust each thruster can produce in each DOF. The thruster configu-
ration matrix is based on the simulator at IKM Subsea and must not be confused
with the matrix in [Knausg̊ard, 2013] which is not the same. The numbering of
the thrusters can be seen in figure 3.2.

The thruster configuration matrix for Merlin WR200 as it is in the simulator at
IKM Subsea is:

T =


sin(α) sin(α) −sin(α) −sin(α) 0 0 0 0
cos(α) −cos(α) −cos(α) cos(α) 0 0 0 0

0 0 0 0 1 1 1 1
−l5 l5 −l5 l5 l2 −l2 l2 −l2
0 0 0 0 l1 l1 −l3 −l3
−l4 l4 −l6 l6 0 0 0 0

 (3.3.4)

where α = 45° is the angle of the thrusters in the xy-plane and li is the arm
that creates moment in roll, pitch and yaw. The moment arms are given by the
location of the thruster relative to the CO. The moment arms are as given in

36



3.3. THRUSTERS

Figure 3.2: The location of the thrusters on Merlin WR200 as they are in the simulator
at IKM Subsea. Image courtesy of [Knausg̊ard, 2013]

[Knausg̊ard, 2013]:

l1 = 0.73 m
l2 = 0.24 m
l3 = 0.73 m
l4 = 0.84 m
l5 = 0.10 m
l6 = 0.84 m

See figure 3.3 and 3.4. The thrust allocation can be solved by using [Fossen, 2011,
p. 405]:

u = K−1T †τ (3.3.5)

where T † is the Moore-Penrose pseudo inverse of T . All thrusters are weighted
equally.
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Figure 3.3: Moment arms l1, l2 and l3.
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Figure 3.4: Moment arms l4, l5 and l6.
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Chapter 4

DP and path following
control system

A novel control law has been developed for position and velocity control of the
Merlin WR200. The controller is a Parameter and Current Adapting Backstep-
ping controller (P-CABS). Since the parameters of Merlin WR200 are not known
exactly, emphasis was put on not using them in the control law directly, but on
adapting them and by doing so securing that the controller is robust to parameter
uncertainty.

4.1 Assumptions and simplifications

4.1.1 Assumptions

The following assumptions are made in the development of the controller:

Assumption 4.1: The vessel parameters M and D are constant such that Ṁ =
Ḋ = 0. The gravitational and buoyancy forces are constant such that ġ(η) = 0
The current is considered constant in {n} with ν̇c = 0.

Assumption 4.2: The desired velocities and the reference trajectories are bounded.
The desired velocities are passed through reference models of high enough order
to ensure continuous differentiability.

Assumption 4.3: The velocities and accelerations are bounded
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4.1.2 Global diffeomorphism

In order to simplify notation and increase readability throughout the development
of the controller, a global diffeomorphism is applied as in [Holden and Pettersen,
2007]. The vessels position and attitudes in {n} is rotated to the Vessel Parallel
coordinate system as described in [Fossen, 2011]. The diffeomorphism is defined
as ηp ∈ R6 and Assumption 3.9 is applied:

ηp := P T (ψ)
[
pp
Θ

]
:=
[
RT (ψ) 03×3
03×3 I3×3

] [
p
Θ

]
= T (η) (4.1.1)

The inverse of T (η) is:

η = P (ψ)
[
p
Θ

]
=
[
R(ψ) 03×3
03×3 I3×3

] [
pp
Θ

]
(4.1.2)

Since both T and T−1 exists and the derivatives are continuous for all η and ηp
the diffeomorphism is global.

The time derivative of ηp is (dependencies are skipped):

η̇p =
[
RT ṗ+ ṘT

p
Θ̇

]
(4.1.3)

using ṘT = −S(w)RT [Egeland and Gravdahl, 2002, p.240] and p = Rppwe get:

η̇p =
[
RT ṗ− S(w)RTRpp

Θ̇

]
η̇p =

[
v − S(w)pp

Θ̇

]
η̇p = ν −

[
S(w)pp

03×1

] (4.1.4)

4.2 Control law

The position and velocity errors are defined as:[
e1(t)
e2(t)

]
:=
[
P T (ψ)(η(t)− ηd(t))

ν(t)− νd(t)

]
=
[
η̃p(t)
ν̃(t)

]
(4.2.1)

Where ηd(t) is the desired position and νd(t) is the desired velocity.
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4.2.1 Stabilizing position and attitude

First we look at the position and attitude error(dependencies are skipped):

e1 =
[
RT (p− pd)

Θ−Θd

]
=
[
p̃p
Θ̃

]
(4.2.2)

The derivative of this error is:

ė1 =
[
ṽ − S(w̃)p̃p

w̃

]
(4.2.3)

Using a Lyapunov function candidate V1 defined as:

V1(e1, t) := 1
2e

T
1 e1 ≥ 0 ∀ e1 (4.2.4)

The time derivative is:

V̇1(e1, t) = eT1 ė1

V̇1(e1, t) =
[
p̃p θ̃

] [ṽ − S(w̃)p̃p
w̃

]
V̇1(e1, t) =

[
p̃pṽ − p̃pS(w̃)p̃p

θ̃w̃

] (4.2.5)

Since p̃pS(w̃)p̃p = 0 for all p̃p and w̃, equation (4.2.5) reduces to:

V̇1(e1, t) =
[
p̃p θ̃

] [ ṽ
w̃

]
V̇1(e1, t) = eT1 e2

(4.2.6)

Where e2 :=
[
ṽ θ̃

]T . It is clear that by choosing e2 = −K1e1 where K1 =
KT

1 > 0 ∈ R6×6 as virtual input, (4.2.6) becomes:

V̇1(e1, t) = −eT1K1e1 ≤ −λmin(K1)eT1 e1 (4.2.7)

Where λmin(K1) is the smallest eigenvalue of K1. According to [Khalil, 2002,
Theorem 4.10] the equilibrium point e1 = 0 is globally exponentially stable in the
state space of e1 under Assumption 3.9 and if the input e2 can be made available
instantaneously. The latter is not possible in reality due to the dynamics of e2
so global exponential stability exists only in theory.

4.2.2 Stabilizing velocities and choosing control input

We now look at e2(dependencies are skipped):

e2 =
[
ṽ
w̃

]
=
[
v − vd
w −wd

]
= ν − νd = ν̃ (4.2.8)
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From equation (4.2.6), we know that e2 has to be equal to −K1e1, so νd is
chosen as:

νd = νv +K1e1 (4.2.9)

with νv as a virtual velocity. If a control can be chosen such that ν → νv we
will have e2 = −K1e1, which is what we want. A new variable ē2 := ν − νv is
defined along with a new Lyapunov function candidate:

V2(e1, ē2, t) := V1(e1) + 1
2 ē

T
2Mē2 ≥ 0 ∀ ē2 (4.2.10)

The time derivative of V2 is:

V̇2(e1, ē2, t) = V̇1(e1) + ēT2M ˙̄e2

V̇2(e1, ē2, t) = −eT1K1e1 + ēT2M(ν̇ − ν̇v)
(4.2.11)

Perfectly known parameters and no current

If the system is modelled without considering the current disturbance forces τ c,
the equation for ν̇ from (3.2.6) can be written as:

ν̇ = M−1(−D(ν)ν −C(ν)ν − g(η) + τ ) (4.2.12)

Inserting equation (4.2.12) into (4.2.11) gives:

V̇2(e1, ē2, t) = −eT1K1e1+
ēT2 (−Mν̇v −D(ν)ν −C(ν)ν − g(η) + τ ) (4.2.13)

If perfect parameter knowledge is assumed, τ can be chosen as a feedback lin-
earizing controller:

τ = −K2ē2 +Mν̇v +D(ν)ν +C(ν)ν + g(η) (4.2.14)

with K2 = KT
2 > 0 ∈ R6×6 giving:

V̇2(e1, ē2, t) = −eT1K1e1 − ēT2K2ē2 (4.2.15)

This can be rewritten as:

V̇2(e, t) = −
[
eT1 ēT2

] [K1 0
0 K2

] [
e1
ē2

]
= −eTQe (4.2.16)

with e =
[
eT1 ēT2

]T . Q is positive definite due to the choices of K1 and K2.
According to [Khalil, 2002, Theorem 4.10], V̇2(e, t) is negative definite and the
equilibrium point e = 0 is globally exponentially stable in the state space of
e1, e2. This is only valid under Assumption 3.9.
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Input-to-State stability

The overall controlled system is Input-to-State stable from unmodelled distur-
bances τ d with the controller from (4.2.14). Consider the system with an un-
modeled disturbance τ d:

ν̇ = M−1(−D(ν)ν − g(η) + τ + τ d) (4.2.17)

inserting the controller from (4.2.14) gives a system on the form:

M ˙̄e2 = −K2ē2 + τ d (4.2.18)

The equation (4.2.16) now becomes:

V̇2(e, t) = −eTQe+ eT τ d (4.2.19)
V̇2(e, t) ≤ −λQ||e||2 + ||e||||τ d|| (4.2.20)

V̇2(e, t) ≤ −(1− γ)λQ||e||2 ∀ ||e|| ≥
||τ d||
γλQ

, 0 < γ < 1 (4.2.21)

where λQ is the smallest eigenvalue ofQ and ||·|| is the Euclidian norm. According
to [Khalil, 2002, Theorem 4.19] the system (4.2.18) is Input-to-State stable.

Unknown parameters and current

It is unlikely that the system parameters are known exactly since they may vary
with different sea states [Sørensen, 2013]. The current disturbance may also be
modeled. Consider a control plant model with current:

ν̇ = M−1(−D(ν)ν −C(ν)ν − g(η) + τ + τ c) (4.2.22)

Equation (4.2.11) becomes:

V̇2(e1, ē2, t) = −eT1K1e1+
ēT2 (−Mν̇v −D(ν)ν −C(ν)ν − g(η) + τ + τ c) (4.2.23)

The expression in the last parenthesis containing the parameters M , D(ν), C(ν)
the gravitational and buoyancy forces g(η) and the current disturbance τ c can
be expressed in a linear parametrized form as:

Mν̇v +D(ν)ν +C(ν)ν + g(η)− τ c = φT (ν̇v,ν,η)θ (4.2.24)

Where φ ∈ R6×11 is a matrix of known, bounded signals under Assumptions 4.2
and 4.3. n is the number of DOFs in the system. θ ∈ R11 is a vector of unknown
system parameters, gravitational and buoyancy forces and current disturbances.
Equation (4.2.23) reduces to:

V̇2(e1, ē2, t) = −eT1K1e1 + ēT2 (τ − φTθ) (4.2.25)
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The control input τ is chosen as:

τ = −K2ē2 + φT θ̂ (4.2.26)

with K2 = KT
2 > 0 ∈ R6×6 giving:

V̇2(e1, ē2, t) = −eT1K1e1 − ēT2K2ē2 + ēT2 φT θ̃ (4.2.27)

A third Lyapunov function candidate is needed in order to prove stability. This
function is chosen as:

V3(e1, ē2, θ̃, t) = V2 + 1
2 θ̃

TΓ−1θ̃ ≥ 0 ∀ e1, ē2, θ̃ (4.2.28)

With Γ = ΓT > 0 ∈ R6×6. The time derivative of V3 is:

V̇3(e1, ē2, θ̃, t) = −eT1K1e1 − ēT2K2ē2 + ēT2 φT θ̃ + θ̃TΓ−1 ˙̃θ

V̇3(e1, ē2, θ̃, t) = −eT1K1e1 − ēT2K2ē2 + θ̃T (φē2 + Γ−1 ˙̃θ)
(4.2.29)

As mentioned in Assumption 4.1, the vessel parameters, gravitational forces and
the current disturbance is considered constant such that the derivatives are equal
to zero. This means that ˙̃θ = ˙̂

θ − θ̇ = ˙̂
θ. By choosing

˙̂
θ = −Γφē2 (4.2.30)

the function in (4.2.29) reduces to:

V̇3(e1, ē2, θ̃, t) = −eT1K1e1 − ēT2K2ē2 (4.2.31)

Which is negative semi-definite in the state space {e1, ē2, θ̃}. Stability of the
state space {e1, ē2} is proven by using Lemma 2.1 and Lemma 2.2.

The solution to the Lyapunov function candidate V3 in the state space {e1, ē2}
is:

V3(e1(t), ē2(t), t) ≤ V3(e1(0), ē2(0), 0) ∀ t ≥ 0 (4.2.32)

due to the negative semi-definiteness of V̇3 in this state space. Since the initial
error is bounded, the states e1, ē2 ∈ L∞. Looking at V̇3 it is clear that it is
a function of two signals in L∞, each multiplied by its own transpose and a
respective constant. This implies that V̇3 ∈ L∞.

By taking the integral of V̇3 we get:∫ ∞
0

V̇3 dt = V3(∞)− V3(0) < ∞ (4.2.33)

We know that V3(∞) < ∞ because V3 ≥ 0 and V̇3 ≤ 0. V3 converges to a finite
value in the state space {e1, ē2} as t→∞. Inserting for V3 in (4.2.33) gives∫ ∞

0
−eT1K1e1 − ēT2K2ē2 dt <∞ (4.2.34)
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which can be rewritten as:

−K1

∫ ∞
0
eT1 e1 dt−K2

∫ ∞
0
ēT2 ē2 dt <∞ (4.2.35)

The integrands are ≥ 0, therefore√∫ ∞
0
eT1 e1 <∞√∫ ∞

0
ēT2 ē2 <∞

(4.2.36)

and by utilizing (2.9.2), e1, ē2 ∈ L2. Thus, e1, ē2 → 0 as t→∞.

Convergence to 0 and by that asymptotic stability, cannot be proven for the
whole state space {e1, ē2, θ̃} because θ̃ is only guaranteed to be bounded. This
is seen from the choice of ˙̃θ = −Γφē2. Γ is bounded, φ is bounded and ē2 → 0
as t → ∞. This implies that ˙̃θ → 0 as t → ∞ and hence θ̃ ∈ L∞. The same
properties for θ̃ and ˙̃θ are presented in [Ioannou and Sun, 2012, Table 4.3 C]
when the estimation model is in linear parametrized form as in (4.2.24) and the
update law is chosen as in (4.2.30).

4.3 Path following control system

4.3.1 Path following problem

The path following problem is described in [Skjetne et al., 2002] as two control
objectives:

1. The geometric task: force the state x to converge to a desired path
ξ(ω(t)),

lim
t→∞

[x(t)− ξ(ω(t))] = 0 (4.3.1)

2. The Speed Assignment Task: force the speed ω̇ to converge to a desired
speed vd,

lim
t→∞

[ω̇(t)− vd(ω, t)] = 0 (4.3.2)

In [Fossen et al., 2003] these objectives are defined for an underactuated marine
craft in 3DOFs using LOS guidance as:
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1. LOS Geometric task: Force the vessel position p = [x, y]T to converge
to a desired path by forcing the yaw angle ψ to converge to the LOS angle:

ψlos = atan2 (ylos − y, xlos − x) (4.3.3)

where the LOS position plos = [xlos, ylos]T is the point along the path which
the vessel should point to. See figure 2.7.

2. Dynamic Task: Force the speed u to converge to a desired speed assign-
ment ud, that is:

lim
t→∞

[u(t)− ud(t)] = 0 (4.3.4)

where ud is the desired speed of the craft along the body-fixed x-axis.

In this thesis, the vessel is a fully actuated underwater vehicle operating in 6
DOFs, but because of Assumption 3.9 the control problem is reduced to 4 DOFs.
The vessels depth must be considered as well as the x and y positions. For path
following tasks in this thesis it is assumed that the vessel operates at a constant
depth at all times, so the path following problem is only considered in 3 DOFs.

4.3.2 Reverse path

IKM Subsea desired a path following system that was based on the already driven
path of the ROV, a kind of reverse path system. The path is not generated by the
operator by choosing waypoints but by the ROV based on its position and the
distance to the previous waypoint. When the operator enables the reverse path
mode, the ROV should return to the origin by manoeuvring through the stored
waypoints. This mode may be used if the operator has manoeuvred the ROV
through a narrow area and is unable to repeat the same path backwards by him
or herself or if the operator has conducted a pipe survey over a longer distance
and simply wants the ROV to return to the origin on its own. It is important
that the heading and velocity is chosen so the ROV does not crash. If the ROV
is in a narrow area as in figure 4.1 it may be impossible to turn it around and
hence the ROV should reverse along the path with the heading the same way it
was when it was moving into the narrow area. Since the Merlin WR200 is fully
actuated, it is able to move in all DOFs. This is what makes the reverse path
mode possible.

Storing waypoints

The ROV needs to store waypoints as it is moving through the ocean space. These
waypoints are chosen by defining a circle of acceptance for adding waypoints:√

(xk − x(t))2 + (yk − y(t))2 ≥ R2
add (4.3.5)

Where Radd > 0 is the circle of acceptance radius.

48



4.3. PATH FOLLOWING CONTROL SYSTEM

OBSTACLES

Figure 4.1: The ROV has manoeuvred into a narrow area and cannot turn around.

Ensuring correct heading

The regular LOS guidance law is designed for underactuated crafts that are not
able to reverse. This means that if the waypoint is behind the craft it must circle
around in order to reach it. If the craft is in a narrow area like in figure 4.1 it may
not be able to perform this circular motion and it is therefore crucial that the
heading is chosen correctly and thus, the desired course cannot be defined as in
equation (2.6.8). A new way to define the course angle is to look at the locations
of the waypoints relative to the craft and the heading of the craft. The angle
αk can be defined as described in Algorithm 1. The algorithm checks the last
2 waypoints to find out if the ROV has moved forward or backwards. Only the
waypoints along the x-axis are checked because the ROV is assumed to be moving
forward when adding waypoints. This is how the operator is most likely operating
the ROV since the cameras are pointing forwards. This can be extended to also
include sideways movement with small modifications to the algorithm. As seen in
Algorithm 1, the heading angle is also checked to ensure that the ROV as moved
forward or backwards.
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Algorithm 1 Calculate αk
1: if WP(x, i)-WP(x, i-1) < 0 AND abs(ψ) > pi

2 then
2: αk ← atan2(WP(y, i)-WP(y, i-1),WP(x, i)-WP(x, i-1)
3: else if WP(x, i)-WP(x, i-1) < 0 AND abs(ψ) ≤ pi

2 then
4: αk ← atan2(WP(y, i-1)-WP(y, i),WP(x, i-1)-WP(x, i)
5: else
6: αk ← atan2(WP(y, i)-WP(y, i-1),WP(x, i)-WP(x, i-1)

(2,0)

(3,0)

Figure 4.2: The regular LOS steering law is designed for underactuated crafts that
are not able to reverse. If the waypoint is behind the craft it has to circle around to
reach it. This may not be possible if the craft is in a narrow area like in figure 4.1.
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(2,0)

(3,0)

Figure 4.3: The modified LOS steering law considers the locations of the waypoints
relative to the position of the craft and then calculates the heading angle and desired
velocity in such a way that the craft has the same orientation it had when it generated
the waypoint.
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Ensuring correct velocity

By defining αk as in Algorithm 1, the velocity will be defined correctly in equa-
tion (2.6.7) because the along track distance s(t) in (2.6.4) will be positive if the
next waypoint is behind the ROV and negative if it is in front of the ROV.

Example 1: Consider the stored waypoints WPx = [1, 2, 3] and WPy = [0, 0, 0].
The ROV is in the position [x(t), y(t)]T = [3.5, 0]T and has a heading of ψ = 0°.
The last stored waypoint is in [xk, yk] = [3, 0]. umax is chosen as 4.3m/s and
∆s = 5. The ROV should reverse back to the origin.

xk − xk−1 = 3− 2 = 1 > 0
yk − yk−1 = 0

α = atan2(0, 1) = 0
s = (3.5− 3) cos(0) + 0 sin(0) = 0.5
e = 0

ud = −4.3 0.5√
0.52 + 52

= −0.42 m/s

χd = α+ arctan
(

0
5

)
= 0

The velocity is negative and hence the ROV will reverse and keep the correct
heading angle.

4.4 Using the derived controller in a path follow-
ing setting

The LOS guidance system provides setpoints for the controller. Consider the
system in 4 DOFs:

η̇pl = νl

Mν̇l +C(νl)νl +D(νl)νlg(ηl) = τ l − τC
(4.4.1)

Where ηpl is the vessel parallel representation of the position and attitude in 4
DOFs and νl =

[
u v w r

]T . The goal of the LOS path following control
system is not to control the position in N and E, but the respective velocities.
The position and attitude control is that of the depth Z and the yaw angle ψ
respectively. The control law is therefore split in two. One controller for the
depth and heading angle and one for the velocities.
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4.4.1 Depth and heading controller

New error variables for the depth and heading are defined with the subscript l

e1l :=
[
Z(t)− Zd(t)
ψ(t)− ψd(t)

]
(4.4.2)

e2l :=
[
w(t)− wd(t)
r(t)− rd(t)

]
(4.4.3)

Consider a new Lyapunov function candidate V1l (dependencies are skipped):

V1(e1l, t) := 1
2e

T
1lK1le1l (4.4.4)

where K1l = KT
1l > 0 ∈ R2×2. The time derivative is:

V̇1(e1l, t) = e1lė1l = e1le2l (4.4.5)

e2l is then chosen the same way the variable e2 was chosen in section 4.2 and
the same procedure is followed giving a control input for the depth and heading
controller as:

τZ,ψ = −K2lē2l + φT1lθ̂1l (4.4.6)

with K2l = KT
2l > 0 ∈ R2×2, φT1l ∈ R2×5 and θ1l ∈ R5.

4.4.2 Velocity controller

A new error variable for the velocity is defined as:

e3l :=
[
u(t)− ud(t)
v(t)− vd(t)

]
= νl(t)− νld(t) (4.4.7)

where νl(t) =
[
u(t) v(t)

]T and νld(t) =
[
ud(t) vd(t)

]T . The derivative is:

ė3l =
[
u̇− u̇d
v̇ − v̇d

]
= ν̇l − ν̇ld (4.4.8)

where ud and vd are the desired velocities in the body fixed x and y directions
respectively. The desired velocity is calculated using (2.6.7). The desired accel-
eration u̇d and v̇d is obtained by filtering the desired velocities through reference
models represented by low pass filters as described in [Fossen, 2011, Ch.10.2.1].
A Lyapunov function candidate V2(e3l, t) is defined as:

V2(e3l, t) := 1
2e

T
3lM̄e3l (4.4.9)
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where M̄ = M̄
T

> 0 = diag{m − Xu̇, m − Yv̇} and represents the x and y
component of the mass matrix. The time derivative of V3 is:

V̇2(e3l, t) = eT3lM̄ė3l

V̇2(e3l, t) = eT3lM̄(ν̇l − ν̇ld)
(4.4.10)

Inserting for ν̇l and utilizing the linear parametrized form described in (4.2.24)
but in 2 DOFs with ν̇v = ν̇ld, ν = νl and η = ηl =

[
N E

]T we get:

V̇2(e3l, t) = eT3l

(
τu,v − φT2l(ν̇l,νl,ηl)θ2l

)
(4.4.11)

Where φ2l ∈ R2×6 and θ2l ∈ R6. The input is then chosen as:

τu,v = −K3le3l + φT2lθ̂2l (4.4.12)

where K3l = KT
3l > 0 ∈ R2×2 giving

V̇2(e3l, t) = −eT3lK3le3l + eT3lφT2lθ̃2l (4.4.13)

Another Lyapunov function candidate is needed. This is defined as:

V3(e3l, θ̃2l, t) := V2 + 1
2 θ̃

T

2lΓ−1
l θ̃2l (4.4.14)

By following the same procedure as in chapter 4.2 for the unknown parameter
case, we end up with a parameter update law θ̇2l = −Γlφ2le3l and the derivative
of the Lyapunov function candidate V3 is:

V̇3(e3l, θ̃2l, t) = −eT3lK3le3l (4.4.15)

Utilizing the same arguments as in chapter 4.2, e3 → 0 as t→∞.

4.5 Path-following of predefined paths

As an additional feature, a path following system that is not dependent on the
driven path of the ROV has been implemented. This is useful if IKM Subsea
wants to plan a mission for the ROV. This could be following a pipe or perform
a survey of an area. A technique for guiding the craft to a predefined path is by
using a path fixed reference frame. This reference frame can be chosen as the
Serret-Frenet frame and it is defined in [Fossen, 2011, Ch. 10.4.2] as:

Definition 4.1: The Serret-Frenet frame is the virtual target defined by the pro-
jection of an actual craft on to a path-tangential reference frame(Serret-Frenet
frame{SF})[...].
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The Serret-Frenet frame has axes along the tangent T , the normal N and the
binormal B of the path. It is a continuously differentiable space curve in the
inertial frame and for path following of curved paths it has advantages over
LOS which only considers points. As can be seen in figure 4.4, there are 3
reference frames. The inertial {n} frame, the {b} frame and the {SF} frame. The
relationship between the frames is given in [Fossen, 2011, Ch.10.4.2] as:

rb/n = rSF/n + rb/SF (4.5.1)

The time differentiation of rb/SF with {b} as the moving reference frame gives:
nd

dt
rb/SF =

bd

dt
rb/SF + wb/n × rb/SF (4.5.2)

such that

vb/n = vSF/n +
(
bd

dt
rb/SF + wSF/n × rb/SF

)
(4.5.3)

Expressing this in {SF} gives:

vSFb/n = vSFSF/n +
(
SF d

dt
rSFb/SF +wSF

SF/n × r
SF
b/SF

)

=

ṡ0
0

+

ẋb/SFẏb/SF
żb/SF

+

 0
0
κṡ

×
xb/SFyb/SF
zb/SF

 (4.5.4)

where κ is the curvature of the path. vSFb/n = RSF
b (ΘSFb)

[
u v w

]T and
RSF
b (ΘSFb) = Rn

b (ΘSFn)TRn
b (Θ) where Θ is the orientation of {b} with re-

spect to {n} and ΘSFn is the orientation of the {SF} frame with respect to {n} .
ṡ is the speed of a virtual particle that moves along the path.

In this thesis it is assumed that the depth is kept constant using the depth
controller from (4.4.6). With this in mind, rearranging the terms in (4.5.4), the
kinematic relationship between the {SF} frame and body frame can be expressed
as:[

ẋb/SF
ẏb/SF

]
=
[
cos(ψSFb) −sin(ψSFb)
sin(ψSFb) cos(ψSFb)

] [
u
v

]
−
[
ṡ
0

]
− ṡ

[
0 −κ
κ 0

] [
xb/SF
yb/SF

]
(4.5.5)

where ψSFb = ψ − ψf is the heading of {b} relative to the heading of the {SF}
frame. The defined path is in 2DOFs only, so the reference position for the craft
is the origin of the {SF} frame. The control objective becomes:

lim
t→∞

xb/SF = 0

lim
t→∞

yb/SF = 0

lim
t→∞

u− ud = 0
(4.5.6)
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Where xb/SF and yb/SF can be seen as the difference between {b} and the {SF}
frame as shown in figure 4.4. The desired velocity of the craft as it moves along
the curve is specified by ud. How the origin of the {SF} frame propagates along
the path can be chosen freely and in [Børhaug, 2008] it is suggested to choose an
update law as:

ṡ =
√
u2
d + v2

√
∆2 + x2

b/SF + xb/SF√
∆2 + x2

b/SF + y2
b/SF

(4.5.7)

and the desired heading is proposed as:

ψd = ψf − atan
(
v

ud

)
− atan

 yb/SF√
∆2 + x2

b/SF

 (4.5.8)

∆ is a constant tuning parameter.

It should be noted that this method was designed for underactuated marine crafts
with no direct control in sway. To compensate the ocean current, the craft has
to sideslip. Merlin WR200 is fully actuated, so it could compensate the current
without sideslipping by controlling the sway velocity to v = vd = 0.

In the doctoral thesis of [Børhaug, 2008], it is shown that the update law (4.5.7)
and the guidance law (4.5.8) ensures exponential achievement of the control ob-
jective when using feedback linearizing surge and yaw controllers. The same
behaviour cannot be expected when using the P-CABS controller, but it is as-
sumed that the control objective will be achieved.
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Figure 4.4: Illustration of the Serret-Frenet frame in 2D.

4.6 Joystick control

It is trivial to implement a joystick as means of deciding the reference velocity ud
and vd. Joystick control may also implemented for the yaw rate r. This has been
done in the simulations for this thesis to test the waypoint storing and reverse
path functionality. The velocity controller when using the joystick takes the same
form as (4.4.12) but is augmented to include the yaw rate r as well. The same
stability properties apply to the controller when using joystick control.

The raw velocity signal from the joystick is filtered through a reference model
to ensure smooth desired velocity νd and acceleration ν̇d. See figure 4.5 and
figure 4.6.
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Joystick Reference
model

Velocity
controller ROV

Figure 4.5: The joystick input is filtered through a reference model to ensure smooth
desired velocities and accelerations.
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Figure 4.6: The raw input signal from the joystick is fed through the reference model
which generates a smooth desired velocity and a desired acceleration.
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CONTROLLERS

4.7 Comparison of the derived controller to other
controllers

The derived controller is similar to the controllers derived in for instance [Slotine
and Weiping, 1988], [Fossen and Berge, 1997], [Holden and Pettersen, 2007],
[Antonelli et al., 2003] and [Patompak and Nilkhamhang, 2012](ABSwB). The
difference is that it combines the adaptive abilities of the controller from [Slotine
and Weiping, 1988] with the vectorial backstepping from [Fossen and Berge, 1997].
The adaptive part handles the system parameter uncertainty, the gravitational
and buoyancy forces and the current disturbance. It is combining the adaptation
done in [Patompak and Nilkhamhang, 2012](ABSwB) and [Antonelli et al., 2003]
and it is presented in a simplified way by using the diffeomorphism from [Holden
and Pettersen, 2007].

Let us take a closer look at the ABSwB controller from [Patompak and Nilkhamhang,
2012] and the controller from [Antonelli et al., 2003] to easier present the differ-
ence.

4.7.1 ABSwB controller

The control plant model is presented as:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ + ∆f (4.7.1)

Where ∆f is a disturbance that satisfies ||∆f(t)|| ≤ δ, ∀ t. The position and
virtual velocity error is presented as:

e :=
[
e1
e2

]
=
[
η − ηdf
ν − νv

]
(4.7.2)

Where ηdf is the filtered desired position. The virtual velocity control is chosen
as:

νv = −J−1(η)K1e1 + J−1(η)η̇df (4.7.3)

The derivative of the errors are:

ė =
[

η̇ − η̇df
M−1(τ + ∆f − φT (ν̇v,ν,η)θ)

]
(4.7.4)

where the term φT (ν̇v,ν,η)θ is the linear parameterized form of the system as
in (4.2.24). The control law is then proposed as:

τ = −JT (η)e1 −K2e2 + φT (ν̇v,ν,η)θ̂ −Be (4.7.5)
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Where K2 is a diagonal matrix with positive constant gains, θ̂ is the parameter
estimates andBe is the robustifying term that handles disturbances and is defined
as:

Be :=
{
δ̂e2
||e2|| if e2 6= 0
0 if e2 = 0

(4.7.6)

The update laws are:
˙̂
θ = −ΓθφT (ν̇v,ν,η)e2

˙̂
δ = Γδ||e2||

(4.7.7)

Where Γθ and Γδ are positive constant matrices. The regressor matrix takes the
form:

φ(ν̇v,ν,η) =



u̇v ur 0 −uv
−vr v̇v 0 uv

0 0 ẇv 0
0 0 0 ṙv
|u|u 0 0 0

0 |v|v 0 0
0 0 |w|w 0
0 0 0 |r|r
0 0 1 0


(4.7.8)

And the parameter vector is:

θ̂ =



m−Xu̇

m− Yv̇
m− Zẇ
m−Nṙ
X|u|u
Y|v|v
Z|w|w
N|r|r
gz


(4.7.9)

The controller does not specifically adapt the current disturbance and in the
article of [Patompak and Nilkhamhang, 2012] the disturbance is described as
being produced by collisions and water current. The disturbance is modelled as
∆f = 50 + 100 sin(0.785t)kgf in the body x, y and z directions. The controller is
able to suppress the disturbance, but only due to the discontinuous control input
generated by the robustifying term Be.

The main difference between this and the developed P-CABS controller is the
modeling and adaptation of the current and the discontinuous robustifying term.
Also, throughout the derivation of the control law, the term J−1(η) has to be
included because the method does not utilize the diffeomorphism. This causes
more variables to appear in the derivation, which may complicate the derivation.
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4.7.2 Antonelli controller

In [Antonelli et al., 2003] the control plant model is presented as:

Mν̇ + C(ν)ν +D(ν)ν + g(η) = τ − τC (4.7.10)

The error variables are presented in a vehicle fixed frame, not unlike what is done
in this thesis:

ỹ :=
[
R−1(ψ)η̃

ε̃

]
ν̃ := ν − νd

(4.7.11)

where η̃ is the position error, ε̃ is the quaternion based attitude error and ν̃ is
the velocity error. A means of tracking the error is defined as:

s := ν̃ +K1ỹ (4.7.12)

where K1 ∈ R6×6 is a positive definite diagonal matrix of gains. The control law
is then presented as:

τ = −K2s−Kỹ + φ(R−1(ψ),η)T θ̂
˙̂
θ = Γsφ(R−1(ψ),η)

(4.7.13)

where K2,K,Γ ∈ R6×6 are all positive definite and diagonal matrices of gains.
φ is the regressor matrix and θ̂ is the vector of unknown disturbances caused
by the ocean current and the hydrostatics. This represents a PD controller with
adaptive compensation of environmental and hydrostatic disturbances. Note that
the system parameters are not included in the control law, which separates it from
the controller in this thesis and from [Patompak and Nilkhamhang, 2012]. The
adaptive part takes the following form:

φ(R−1(ψ),η) =

 0 0 1
cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

 (4.7.14)

and the unknown disturbances are:

θ̂ =

 gzτCx
τCy

 (4.7.15)

This control plant model contains the same model of the current and gravitational
disturbances as in this thesis, namely that they are constant in {n} . There is
no adaptation of the system parameters as they are completely left out of the
control law.

The main difference between this controller and the P-CABS controller is that
P-CABS adapts the system parameters as well as the current disturbance.
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Chapter 5

Simulation

5.1 Simulink Model

In order to test the controller and the different functionalities including the dy-
namic positioning and path following, a Simulink model of the whole system has
been developed. The Simulink model contains the dynamic model of the Mer-
lin WR200 based on the modeling done in chapter 3, a DP controller, velocity
and heading controller for the LOS system, velocity controller for joystick control
and a guidance system for storing waypoints. A 3D-world was created to get an
overview of what happened to the ROV as it moved through the ocean space.
The Simulink system is shown in figure 5.1.

5.1.1 Joystick block

To replicate the joystick input, an Xbox 360 controller was connected to the
Simulink model and the joysticks on it was used to control the velocities and to
activate the return path mode, see figure 5.2. To reduce the sensitivity of the
joysticks an adjustment is added in the Simulink diagram.

Since several different controllers are used, the system needs to switch between
them. The system switches to DP mode when all the joystick signal is 0. It
switches to velocity control when any of the joysticks are pushed in any direction
and lastly, the return path mode is activated when the blue X button is pushed.
Every time a switch occurs, the integrators in the controller it is switched to
is reset. This is because the integrators build compensation even though the
controller is not in use.
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5.1.2 Guidance system

This block contains the guidance system for the return path mode. The system
adds waypoints as described in equation (4.3.5). When the return path button
is pushed, the system calculates the desired heading and velocity and sends it to
the velocity and heading controller. The guidance system block also contains a
setpoint storing function that, when the joystick is released, stores the position
and attitude and sends it as a setpoint to the DP controller.

5.1.3 Input selection block

This block chooses which of the calculated inputs that are to be used, depending
on whether or not the joysticks are active or the return path is active.

5.1.4 Controller blocks

The DP controller block, the velocity controller block and the LOS controller
block simply contains the controllers for the respective control system. Notice
however, that there is an input tau to the LOS controller. This is the depth, roll
and pitch control force calculated by the DP controller to keep these values as
desired.

5.2 Regressor matrix and parameter vector

The control plant model used in the simulations is in 6DOF, but it is assumed
that the roll and pitch motions are very small so the gravitational and buoyancy
forces are as in (3.2.11). Since the current is considered irrotational and in 2
dimensions, no current disturbance is considered in heave, roll, pitch or yaw.
Because the center of gravity is below the center of buoyancy, the Merlin WR200
is naturally stable in roll and pitch, but to reduce the influence of roll and pitch
on other variables the roll and pitch is controlled by the same controller as the
other DOFs, only without the adaptive part. This, along with assumption 3.7
reduces the mass, damping and Coriolis matrices to the following:

M = diag{m−Xu̇, m− Yv̇, m− Zẇ, m−Nṙ} (5.2.1)
D(νl) = diag{Xu|u||u|, Yv|v||v|, Zw|w||w|, Nr|r||r|} (5.2.2)

C(νl) =


0 0 0 −(m− Yv̇)v
0 0 0 −(m−Xu̇)u
0 0 0 0

(m− Yv̇)v −(m−Xu̇)u 0 0

 (5.2.3)
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Figure 5.2: The Xbox 360 controller buttons that are used to control the Merlin
WR200 in the simulation setup.

This leads to the regressor matrix φ(ν̇v,ν,η):

φ(ν̇v,ν,η) =



u̇v ur 0 −uv
−vr v̇v 0 uv

0 0 ẇv 0
0 0 0 ṙv
|u|u 0 0 0

0 |v|v 0 0
0 0 |w|w 0
0 0 0 |r|r
0 0 1 0

−cos(ψ) −sin(ψ) 0 0
sin(ψ) −cos(ψ) 0 0


(5.2.4)

and the parameter vector:

θ̂ =



m−Xu̇

m− Yv̇
m− Zẇ
m−Nṙ
X|u|u
Y|v|v
Z|w|w
N|r|r
gz
τcx
τcy


(5.2.5)
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5.3 Reference model

The variables u̇v, v̇v, ẇv and ṙv are produced by using reference models for
the change in position and velocity. These reference models are motivated by
the dynamics of mass-damper-spring systems as described in [Fossen, 2011, Ch.
10.2.1]. A position and attitude reference model is chosen as a third order mass-
damper-spring system on the form:

ηdi

rni
(s) =

ω3
ni

s3 + (2ζi + 1)ωnis
2 + (2ζi + 1)ω2

nis+ ω3
ni

(i = 1, . . . , n) (5.3.1)

where rni is the specified reference signal. The different DOFs require different
reference models and the values used are shown in table 5.1.

DOF ζ ω
X 1 1
Y 1 0.8
Z 1 1
φ N/A N/A
θ N/A N/A
ψ 1 0.9

Table 5.1: Values for the natural frequency and damping ratio of the reference models
used in the DP test

5.4 Choosing Γ

In the parameter update law ˙̂
θ = −Γē2φ the gain matrix Γ can be chosen as

a constant gain matrix by tuning or it may be time varying. By choosing it
as a time varying matrix the update law becomes a Modified Least-Squares with
Forgetting Factor, as described in [Ioannou and Sun, 2012, p.198]:

˙̂
θ = −Γ(t)ē2φ

Γ̇ =
{
βΓ− Γφφ

T

m2 Γ if ||Γ(t)|| ≤ R0

0 otherwise
(5.4.1)

where Γ(0) = Γ0 = ΓT0 > 0, ||Γ0|| ≤ R0 and R0 is a constant that serves as an
upper bound for ||Γ||. m2 = 1 + n2

s and ns is chosen such that φ
m ∈ L∞. With

β > 0, Γ(t) will not become arbitrarily small and because of the upper bound R0
it will not become infinitely large. This modification guarantees that Γ ∈ L∞.
The proof for the properties of the update law can be found in Appendix D
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Results

The derived controller is compared to two other controllers in a dynamic posi-
tioning setting to evaluate its performance. The other controllers are those from
[Patompak and Nilkhamhang, 2012] and [Antonelli et al., 2003]. It was found
in [Ohrem, 2014] that the controller from [Antonelli et al., 2003] is preferred to
for instance PID and LQ controllers so a comparison with these controllers is
not performed. The controller from [Patompak and Nilkhamhang, 2012] is an
Adaptive Backstepping controller with Bound estimation and is referred to as
”ABSwB” in the figures. The controller from [Antonelli et al., 2003] is a PD
controller with current and gravity adaptation. It is referred to as ”Antonelli” in
the figures.

When testing the reverse path control system the ROV is first manoeuvred in an
S-shaped path and then commanded to return to the origin. This is done both
forwards and backwards. The path following of the predefined path considers a
straight path and a circular path under the influence of current.

The comparison is done in the Simulink model of Merlin WR200 and for all
simulations, the current angle is 45° with a velocity of 0.5m/s.

The results from the simulator at IKM Subsea does not include a comparison,
since this is very hard to achieve when the conditions are unequal in each simu-
lation. Only the derived controller is tested.

6.1 Simulink Dynamic Positioning results

The DP controllers are compared for the following cases:

• Stand still for 50 seconds.

• Move 2 meters North.
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Parameter Value
K1 diag{1.0542, 1.2307, 0.6557, 2.6345, 2.0862, 2.1444}
K2 diag{6323.4, 5416.3, 6100, 1087.3, 1373.1, 1335.9}
Γ(0) diag{1, 1, 1, 1}

Table 6.1: Controller parameters used in the simulations

• Rotate 90°.

The error in North, East and ψ and the control input X is presented for compar-
ison basis. The position in Down is also presented. The controller parameters
in table 6.1 are used in the simulations. To measure the performance, the mean
of the 1-norm and the RMS, or 2-norm, of the error during the step change in
North and ψ are used:

Mean of 1-norm: ē = |e1|+ |e2|+ · · ·+ |en|
n

RMS or 2-norm: erms =
√

1
n

(e2
1 + e2

2 + · · ·+ e2
n)

(6.1.1)

The error values are presented in tables 6.2 - 6.3 and the plots can be seen in
figures 6.1 - 6.14.
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6.1.1 Error in North
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Figure 6.1: Error in North. For the first 50 seconds, the ROV should hold its position
in 0, then move 2 meters and finally rotate 90 degrees after 100 seconds.
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Figure 6.2: Close up on the error in North when the ROV is moving 2 meters.
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Figure 6.3: Close up on the error in North when the ROV turns 90°
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Discussion of results

There are slight variations in the performance of the controllers. The ABSwB
is slower to converge in the beginning when the ROV should keep its position.
This is because it does not possess the same current adaptation part as the other
controllers. The P-CABS controller and the controller from [Antonelli et al.,
2003] show very similar behaviour in the first 50 seconds. It is when the setpoint
change in North occurs that the difference between the controllers becomes clear.
From table 6.2 it can be seen that the mean of the 1-norm and RMS error of
the P-CABS controller is smaller than the other two controllers. This is also
seen in figure 6.2, where the P-CABS controller shows a lower peak value and
faster convergence. During the step in ψ however, the error is very similar for the
P-CABS controller and the controller from [Antonelli et al., 2003], but ABSwB
controller gives approximately half the error. Looking at the plots in figure 6.3
the error of the ABSwB controller is not a smooth curve like the controller of
Antonelli and the P-CABS controller. This is because the control input generated
by the ABSwB is very choppy.

Step Rotation
Controller Mean of 1-norm[m] RMS[m] Mean of 1-norm[m] RMS[m]
P-CABS 0.009 0.2320 0.0052 0.1321
Antonelli 0.0122 0.3018 0.0053 0.1344
ABSwB 0.0138 0.3854 0.0023 0.0684

Table 6.2: Mean of the 1-norm and RMS of the error in North for the 3 controllers
during the 2 meter step in North and 90° rotation.
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6.1.2 Error in East
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Figure 6.4: Error in East when the ROV moves 2 meter in North and turns 90°
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Figure 6.5: Close up of the error in East when the ROV moves 2 meter in North
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Figure 6.6: Close up of the error in East when the ROV rotates 90°
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Discussion of results

There is no setpoint change in the East direction, so the error here is strictly
due to current and couplings between the DOFs of Merlin WR200. Looking at
the mass, damping and Coriolis matrices used in the process plant model, it can
be seen that there is a coupling between North and ψ and between ψ and East.
This leads to an indirect coupling between North and East, so one can expect
some change in East with movement in North. This coupling is very weak, so
not much influence occurs.

Like in North, the ABSwB controller is slower to converge to 0 in the first 50
seconds as seen in figure 6.4. The P-CABS and Antonelli controller show very
similar behaviour again. When the step in North happens, one can observe a
very small change in East with the Antonelli and P-CABS controller, but the
ABSwB controller show a deviation. This deviation is thought to be caused by
the discrete robustifying term. In practice, the deviation is so small it can be
ignored. This deviation leads to the ABSwB controller showing a much larger
mean of 1-norm and RMS error in this DOF for the step in North. The ABSwB
is able to remove the error in East after the step in ψ, so the mean and RMS
error for that step is smaller, but still larger than the P-CABS and Antonelli
controller who show very similar behaviour.

Step Rotation
Controller Mean of 1-norm[m] RMS[m] Mean of 1-norm[m] RMS[m]
P-CABS 7.31e-06 1.48e-04 0.0033 0.0855
Antonelli 7.11e-06 1.32e-04 0.0033 0.0862
ASBwB 0.0017 0.0213 0.0042 0.1236

Table 6.3: Mean of the 1-norm and RMS of the error in East for the 3 controllers
during the 2 meter step in North and 90° rotation.
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6.1.3 Error in ψ
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Figure 6.7: Error in ψ. For the first 50 seconds, the ROV should hold its position in
0, then move 2 meters and finally rotate 90 degrees after 100 seconds.
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Figure 6.8: Close up on the error in ψ during the step in North.
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Figure 6.9: Close up on the error in ψ when the ROV is told to rotate 90°.

Discussion of results

The influence of the ocean current on ψ through couplings is minimal, so for the
first 50 seconds the ROV is able to keep the desired heading. When the step
in North happens, there is hardly any influence in ψ, but in figure 6.8 it can be
seen that the ABSwB controller has lower peak value. This leads to the ABSwB
controller having a smaller mean and RMS error. It is also seen from figure 6.9
that the ABSwB has a lower peak and fast convergenve when the setpoint in
ψ changes. It seems like the ABSwB gives less error in the DOF that is not
influenced by current disturbances.

Step Rotation
Controller Mean of 1-norm[rad] RMS[rad] Mean of 1-norm[rad] RMS[rad]
P-CABS 2.87e-05 6.48e-04 0.0039 0.1053
Antonelli 3.00e-05 6.9e-04 0.0040 0.1081
ASBwB 1.84e-05 4.42e-04 0.0027 0.0909

Table 6.4: Mean of 1-norm and RMS of the error in ψ for the 3 controllers during the
2 meter step in North and 90° rotation.
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6.1.4 Down position
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Figure 6.10: The Down position during station keeping and setpoint changes.
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Figure 6.11: Close up of the Down position when station keeping is initiated.

Discussion of results

All the controllers are able to keep the Down position at the desired −10m. In
the beginning there are some differences in the transient behaviour as can be
seen in figure 6.11. The P-CABS controller generates more oscillations than the
other controllers. From t ≈ 100 some oscillations occur for the ABSwB controller
caused by the fact that e1 does not reach 0 before the compensation stops.
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6.1.5 Control force
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Figure 6.12: The calculated force in X for the 3 controllers during the 2 meter step
in North and 90° rotation.
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Figure 6.13: Close up of the calculated force in X for the 3 controllers during the 2
meter step in North.
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Figure 6.14: Close up of the calculated force in X for the 3 controllers during the
rotation
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Discussion of results

From the figure 6.12-6.14 it is clear that the force applied by the ABSwB is very
different from the force applied by the P-CABS and Antonelli controllers. This
is caused by the discontinuous update of the bound estimate. Because of this
discontinuity the controller is able to force the system onto a sliding surface, but
the cost is a very choppy input that may cause wear and tear on the actuators.
The input generated by the P-CABS and Antonelli controllers are smooth. The
P-CABS controller has slightly lower oscillations than the Antonelli controller
during the step in North.

6.2 Simulink return path mode results

The ROV is first manoeuvred with the joystick in an S-shaped pattern and then
given the command to return to the origin by using the stored waypoints as
references for the LOS steering law. The parameters used are listed in table 6.5.

Parameter Description Value
Radd Circle of acceptance for adding waypoint 3
R Circle of acceptance for switching waypoint 0.5
∆ Lookahead distance 20
∆s Speed tuning parameter 15
∆e Speed tuning parameter 15

Table 6.5: Parameters used in the return path control system

The desired velocity in the body x-direction is chosen as constant ud = 0.5[m/s]
for as long as the ROV is returning along the path. When the second to last
waypoint is reached, the desired velocity changes to ud = −umax s√

s2+∆2
s

so the
ROV ramps down its velocity while approaching the final waypoint and then stops
there. The desired velocity in body y-direction is chosen as vd = −vmax e√

e2+∆2
e

.

The driven path that generates the waypoints is shown in figure 6.15 for when the
ROV is steered forward in an S-shaped pattern and in figure 6.19 for when the
ROV is reversed in an S-shaped pattern. The return path of the ROV compared
to the waypoints is presented in figure 6.16 and in figure 6.20 for when the ROV is
reversed. A traceplot of the ROV driving and returning along the path is shown
in figures 6.18 and 6.22 for forward and reverse respectively. The crosstrack error
is shown in figure 6.17 and in figure 6.21
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Figure 6.15: The driven path of the ROV when it is steered in an S shaped pattern.
The waypoints are added every 3 meters.
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Figure 6.16: The ROV returns with constant velocity and uses the waypoints as
guidance for the desired heading.
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Figure 6.17: The crosstrack error during return. The return starts at about t = 156.
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Figure 6.18: Traceplot of the ROV driving the path and then returning along it.
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Figure 6.19: The driven path of the ROV when it is reversing in an S shaped pattern.
Waypoints are added every 3 meters.
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Figure 6.20: The ROV is returning along the driven path using the waypoints as
guidance.
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Figure 6.21: The crosstrack error when the ROV is returning along the driven path.
The return starts at t = 125 approximately.
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Figure 6.22: Traceplot of the ROV driving the path and then returning along it. The
ROV keeps the same heading when it is returning as it did when it was driving.
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Discussion of results

The traceplot in figures 6.18 and 6.22 are good indicators for the performance of
the return path system. There is hardly any difference between the driven path
and the return path. The crosstrack error needs some explanation as it seems like
the ROV is off track a lot. Figure 6.17 shows that at the start of the return path,
when the waypoints are more or less in a straight line, the error converges to
0. During turning however, the error is jumping between negative and positive
values. This is because the ROV does not reach the current desired waypoint
before the next waypoint is chosen as desired waypoint. Thus the crosstrack
error jumps because of the LOS vector that is created when the waypoint changes.
Figures 6.23 and 6.24 tries to illustrate this.
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Figure 6.23: The ROV is approaching a waypoint. The crosstrack error is 0. The
waypoint wpk+2 is not aligned with waypoint wpk and wpk+1, so a crosstrack error will
occur because the waypoint order switches as the ROV reaches the circle of acceptance.
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Figure 6.24: As the ROV reaches the circle of acceptance, the waypoint switches and
a new LOS vector is calculated. Since the ROV is not at the waypoint when the switch
occurs, there will be a crosstrack error.
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6.3 Simulink predefined paths results

6.3.1 Straight line

A straight line path is defined with the following parametrization:

xSF (s) = s cos(ψSF )
ySF (s) = s sin(ψSF )

ψSF = π

8

(6.3.1)

The initial position and attitude of the ROV is chosen as

η0 =
[
−50 −50 −10 0 0 0

]T
The desired velocity ud = 1m/s and the tuning parameter ∆ = 50. Since Merlin
WR200 is fully actuated the desired velocity in sway can be set to vd = 0 such
that the current is properly compensated. This means that the ROV does not
have to sideslip to stay at the desired path.
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Figure 6.25: The ROV converges to the path. Due to the choice of tuning parameter
∆ the transition is smooth, though with some overshoot.
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Figure 6.26: The error converges with some overshoot due to the tuning parameter
∆.
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Figure 6.27: The desired velocity is reached in about 10 seconds and stays the same
throughout the simulation. The plot is only for the first 100 seconds to show the
transient behaviour.
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Figure 6.28: The heading angle follows the desired heading angle very nicely. The
heading angle converges to a constant value as the ROV approaches the path.
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6.3.2 Circular path

A circular path with the following parametrization is defined

xSF (s) = R cos
( s
R

)
ySF (s) = R sin

( s
R

)
ψSF = π

2 + s

R

(6.3.2)

The ROV starts in the origin and R = 300. The desired velocity is ud = 1 m/s
and the tuning parameter ∆ is set to the more aggressive value of 10.
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Figure 6.29: The ROV manages to follow the circular path. There is a slight deviation
because the controller used is not a perfect feedback linearizing controller.
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Figure 6.30: The error seems to converge to 0, but there is a very small deviation of
about 0.1 m
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Figure 6.31: The desired velocity is reached in about 10 seconds and stays the same
throughout the simulation. The plot is only for the first 100 seconds to show the
transient behaviour.
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Figure 6.32: The heading angle follows the desired heading angle very nicely. The
angle is limited to be between −π and π.
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Discussion of results

When the path is predefined by using the Serret-Frenet reference frame, the P-
CABS controller is able to drive the ROV to the desired heading and velocity
as seen in figures 6.28, 6.32, 6.27 and 6.31. A surge velocity controller is able
to remove the necessity for sideslipping. Since the controller is not a perfect
feedback linearizing controller, a very small error is present for the circular path
case. The convergence is smooth, though with some overshoot for the straight
path case because of the choice of the tuning parameter ∆. The velocity and
heading converges very nicely to the desired values.

6.4 Results from simulator at IKM Subsea

For training and mission simulation purposes, IKM Subsea has invested in an
advanced simulator from CM Labs. This is how it is described on the IKM
Subsea homepage (freely translated)[IKM]:

”The simulator gives realistic and lifelike impressions of real situations. By us-
ing the same control system as in the real ROVs and lifelike dynamics and sensor
simulations our pilots are trained in a very realistic environment [...] The sim-
ulator is running on Vortex Dynamics, the leading dynamics simulations engine
in the industry. The Vortex engine gives the best rendition in simulation of ROV
hydrodynamics, propulsion systems, tether, manipulators and sensors.”

The developed DP control system was implemented in the simulator during a
testing period between April 8th and April 12th of 2015. Unfortunately, there
was not enough time to implement the reverse path control system since much of
the time was spent on troubleshooting. The DP system had to be reprogrammed
to run in Matlab instead of Simulink due to lack of Simulink software packages
needed for real time control. Since the author had no knowledge of the dynamic
model in the simulator, the reference frames used and the thruster definitions, a
lot of time was spent on troubleshooting these areas and fixing the code to fit.
One example is that the thruster numbering done in [Knausg̊ard, 2013], which
this thesis is based on, did not match the thruster numbering in the simulator.
Also, the thruster positive directions was not consistent with what the author had
expected. This thesis and the thesis of [Knausg̊ard, 2013] considers a {n} frame
as mentioned in chapter 2.1. The reference frame used in the simulator was a
North-West-Up frame. This was the source of a lot of confusion, as it was not
expected and hence overlooked for a while. But gladly it was fixed on the final
day of testing. This meant that there was only time to test the P-CABS control
law in the simulator for station keeping and set point changes with current. A
comparison in the simulator would be difficult to implement anyhow, because the
inconsistency of such a life like system would not provide the same conditions in
all tests.
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The controller gains used in the simulations, K1, K2 and Γ had to be retuned.
It was found that the dynamic model used in the simulations in Simulink did not
match the dynamic model in the simulator. This is thought to be because of the
thruster dynamics model and because of the disturbance forces from the tether.
In the Simulink model the thrusters are limited by a rate limiter block. This block
constraints the change in control forces to the informed value of |∆τ | ≤ 8000[N/s].
The controller was tuned to avoid breaching this constraint, but when the same
gains were applied to the control system in the simulator, the behaviour did not
match. The adaptation in yaw had to be turned off to achieve proper control of
this DOF, but the results are still very good in this DOF.

The code used in the simulations is attached in Appendix E

6.4.1 Available measurements & coordinate system

The simulator provides measurements of the ROV positions and attitude. The
available measurements are presented in table 6.6. The coordinate system used

Measurement Description
N North position
E East position, positive right
D Down position, positive up
φ Roll angle, positive about N following the right hand rule
θ Pitch angle, positive about E following the right hand rule
ψ Yaw angle, positive about D following the right hand rule

Table 6.6: Available measurements from the simulator

in the simulator is not the same as the coordinate system used when deriving
the model for Merlin WR200 in chapter 3. The simulator coordinate system is
a North-West-Up system, rather than the North-East-Down system described in
chapter 2.1. This was the source of much confusion since the control forces were
calculated based on a {n} frame. The forces where applied wrong due to the
structure of the rotation matrix since ψ was defined in two different directions.
The solution was to change the rotation matrix from:

R(ψ) =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


to

R∗(ψ) =

 cos(ψ) sin(ψ) 0
−sin(ψ) cos(ψ) 0

0 0 1


utilizing cos(−x) = cos(x) and −sin(x) = sin(−x).
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Parameter Value
K1 diag{0.1, 0.4, 0.2, 20, 1000, 0.4}
K2 diag{3930.7, 3151.2, 5416.9, 1, 1, 2469.4}
Γ diag{400, 400, 400, 0}

Table 6.7: Controller parameters used in the simulator

6.4.2 Results from DP test

After tuning of the controller parameters the DP system worked. Time delays
was discovered in the transfer functions from input to velocity in surge, sway and
yaw. These transfer functions are presented in section 6.4.3. The adaptation gain
had to be tuned very conservative because of this, to not cause large overshoots.
This could have been improved by using for instance a Smith-predictor [Smith,
1957], but unfortunately there was not enough time to implement this properly.
During the work on the Smith-predictor a rudimentary velocity estimator was
developed. This provided smooth estimates of the relative velocity of the ROV
rather than the choppy derivative of the position and could also be used as a
current estimator.

Since the focus was on controlling the Merlin in 4 DOFs, the roll and pitch
was only controlled with simple P controllers. This caused problems because
if the current got too high the effects of the tether cable caused large move-
ment in the roll and pitch DOFs that the P controllers where unable to han-
dle. The simulations had to be done with a relatively conservative current of
vc = 0.3knots ≈ 0.15[m/s] towards 0° to avoid this.

The following tests where carried out:

Test 1: Hold position, then move 2 meters in North.

Test 2: Hold position, then move 2 meters in East.

Test 3: Hold position, then move 2 meters in North and rotate 90°.

Test 4: Hold position, then move 5 meters in North and 1 meter up.

Table 6.7 contains the values for the controller parameters used in the simulator.
The controllers had to be tuned differently from the Simulink model due to the
difference in mass and damping and because of the time delay. Γ had to be
chosen as a constant value in N, E and D to achieve proper behaviour.

Since the simulator is very advanced, no simulation is exactly the same. The drag
from the tether cable will be different in each simulation and the initial position
for the step change may be different. The latter part should not affect the overall
performance.
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Figure 6.33: Screenshot of the Merlin WR200 during station keeping. The tether
cable can be seen on top of the ROV, coiling down on the port side and causing a small
roll angle.
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Figure 6.34: Test 1: Hold position, then move 2 meters in North. Down position and
heading angle should be the same as initial and roll and pitch should be 0.

109



CHAPTER 6. RESULTS

−17 −16.8 −16.6 −16.4 −16.2 −16 −15.8 −15.6 −15.4
13

13.5

14

14.5

15

15.5

16

16.5

17

17.5

18

East [m]

N
o

rt
h

 [
m

]

 

 

Position

Setpoints

Figure 6.35: Test 1: x-y plot of the position and the setpoints when moving 2 meters
North

Discussion of results

The results from figure 6.34 show that the system is very slow. It takes approx-
imately 50 seconds to compensate the current disturbance in North. The step
is also done very slowly because of the conservative gains. If the sluggishness
is ignored, the step response is quite good. Low overshoot in North, almost no
influence in East, roll, pitch and yaw. The ROV has a small pitch angle caused
by the drag from the tether cable. The Down position is stabilized at the desired
value, though with some oscillations. The influence from the step is small. The
simulation was stopped a little early, but convergence in North can be seen in
figure 6.38.
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Test 2
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Figure 6.36: Test 2: Hold position, then move 2 meters in East. Depth and heading
should be the same as initial and roll and pitch should be 0.
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Figure 6.37: Test 2: x-y plot of the position and the setpoints when moving 2 meters
East

Discussion of results

Like in test 1, the system is slow to compensate for the current in North. Some
fluctuations are present in East as well. This may be caused by the tether cable.
The step in East, however, is carried out very nicely. The ROV follows the
reference almost perfectly. The influence on North is stronger than the equivalent
influence on East was in test 1. Roll and pitch are kept very close to 0, but yaw
is slightly more influenced due to the coupling between East and yaw. Down
position is almost exactly like in test 1. It is stabilized and not influenced much
by the step change.
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Test 3
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Figure 6.38: Test 3: Hold position, then move 2 meters in North and rotate 90° at
the same time. Keep Depth at same level and roll and pitch in 0.
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Figure 6.39: Test 3: x-y plot of the position and setpoints when moving 2 meters in
North and rotating 90°.

Discussion of results

In this test, the controller is put to the test when the ROV is commanded to
move 2 meters in North while rotating 90°. As can be seen from figure 6.38 the
same sluggish behaviour to compensate the current is apparent. The step change
is carried out very nicely. The reference is followed almost perfectly in yaw and
with some deviations and overshoot in North, but it settles at the desired value.
The coupling with East is stronger due to the rotation, but the error is less than
30cm. Also here, the Down position is kept at the desired value after settling
and roll and pitch is kept at 0. The simulation was long enough to show proper
convergence of the North position. It is clear that not using adaptation in yaw
still causes a very good result, since this DOF is not under the influence of any
constant disturbances.
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Test 4
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Figure 6.40: Test 4: Hold position, then move 5 meters in North and 1 meter up.
Keep East, roll, pitch and yaw at initial values.
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Figure 6.41: Test 4: x-y-z plot of the position and setpoints when moving 2 meters
in North and 1 meter up.

Discussion of results

This test considers a larger step in North while also moving 1 meter up. The
Down position does not settle before the step occurs, which may be why there
is some overshoot and slow convergence to the desired value. The step in North
is similar to test 1 and 3, but like in test 1, the simulation was ended a little
early so the final convergence is not showed. The 3D plot in figure 6.41 gives an
overview of the setpoint change and errors.
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6.4.3 Identification of dynamic model

Since the behaviour was so different from the one in the Simulink model and
to develop a rudimentary estimator, it was of interest to identify the system
parameters used in the dynamic model in the simulator. A step response was
investigated in surge, sway and yaw. A step from 0[N] to 8000[N] was applied
at t = 46[s] and the velocity measured. That is, the derivative of the position
was calculated, since the only available measurement from the simulator was the
position. Based on the step response, the dynamic models was approximated by
1st order transfer functions on the form:

H(s) = K

1 + Ts
e−τs (6.4.1)

with K = ∆y
∆u . T is the time constant which is the time it takes the process to

reach 63% of the finite value and τ is the time delay of the step response.

Surge speed model

The surge speed model was found to be:

∆uu = 8000 [N], ∆yu = 4 [m/s], τu = 1.2 [s], Tu = 3.5 [s]

Hu(s) = 0.0005
3.5s+ 1e

−1.2s (6.4.2)

As seen from figure 6.42, the model is quite a good fit, but it must be assumed
that some uncertainty exists.
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Figure 6.42: The measured surge speed response compared to the derived surge speed
model.
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Sway speed model

The sway speed model was found to be:

∆uv = 8000 [N], ∆yv = 2.8 [m/s], τv = 2.5[s], Tv = 2.1[s]

Hv(s) = 0.00035
2.1s+ 1e

−2.5s (6.4.3)

In figure 6.43 the step response of the model is compared to the actual response
and the model fits.
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Figure 6.43: The measured sway speed response compared to the derived sway speed
model.
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Yaw rate model

The yaw rate model was found to be:

∆ur = 8000 [N], ∆yr = 3 [m/s], τr = 3[s], Tr = 2.2[s]

Hr(s) = 0.000375
2.2s+ 1 e

−3s (6.4.4)

The comparison is presented in figure 6.44 and it shows a good fit.
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Figure 6.44: The measured yaw rate response compared to the derived yaw rate model
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Parameter Model Simulator
m−Xu̇ 3502 7000
m− Yv̇ 3502 6000
m−Nṙ 3031 5867

−(Xu +X|u|u) 1321 2000
−(Yv + Y|v|v) 2525 2857
−(Nr +N|r|r) 192 2667

Table 6.8: Table presenting the parameters used in the Simulink model and the pa-
rameters identified in the simulator when assuming no time delay.

Compared to Simulink model

Writing the transfer functions Hu(s), Hv(s) and Hr(s) from (6.4.2)-(6.4.4) as
linear mass-damper systems as presented in [Fossen, 2011, Ch.12.2.1] with ∆yu,
∆yv and ∆yr as the velocities in the body fixed x and y directions and as the
angular velocity about the z-axis and assuming no time-delay we get:

Tu
Ku

ẍ+ 1
Ku

ẋ = (m+Xu̇)ẍ+ (X|u|u)ẋ = X

Tv
Kv

ÿ + 1
Kv

ẏ = (m+ Yv̇)ÿ + (Y|v|v)ẏ = Y

Tr
Kr

r̈ + 1
Kr

ṙ = (m+Nṙ)r̈ + (N|r|r)ṙ = N

(6.4.5)

A comparison of this to the model found using the mass and damping matrices
from chapter 3 is presented in table 6.8. The difference in mass, and damping in
yaw is very big. It is unknown what causes this difference, but it might be the
tether cable or that the model used in the simulator simply is different. However,
the controller performs very well after some tuning and since it is not dependent
on the model parameters, the robustness is proven.
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Velocity estimator

A rudimentary relative velocity estimator was developed based on the derived
dynamic model from the step responses. The model for the estimator is based
on the relative velocity representation of the kinetics as in (2.3.7):

η̇ = R(ψ)ν (6.4.6)
M ˙̂νr +Dν̂r = τ (6.4.7)

The estimator in 3 DOFs takes the form: ˙̂ur
˙̂vr
˙̂rr

 =

− 1
3.5 0 0
0 − 1

2.1 0
0 0 − 1

2.2

ûrv̂r
r̂r

+

 0.0005
3.5 0 0
0 0.00035

2.1 0
0 0 0.000375

2.2

XY
N


(6.4.8)

The input X, Y and N is the same input as applied to the acutal ROV. To
imitate the time delay found in the models (6.4.2) - (6.4.4) the input is held back
an approximate amount of simulation steps. In this test, the desired position is
constant, but the ROV is commanded to rotate 90° at t ≈ 150. The result is
shown in figure 6.45. Unfortunately, there was not enough time to implement the
estimated velocity in the control loop, but for future work it could be useful.
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Figure 6.45: Estimated velocity plotted against relative velocity. The difference is
due to current and tether disturbances. At t ≈ 150 the ROV turns from −90° to 0°.
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Discussion of results

Figure 6.45 shows the derivative of the position which can be interpreted as the
velocity ν = νr − νc. The estimated relative velocity ν̂r is also shown. For the
first 150 seconds the ROV is heading towards −90° and the current, which is
constant in {n} , is causing the estimated relative velocity of ≈ −0.21 m/s. The
derivative of the position however, is ≈ 0. This means that the current in {n}can
be calculated as:

ν̂nc = R∗(ψ) (ν − ν̂r))[
ûc
v̂c

]
=
[

cos(ψ) sin(ψ)
− sin(ψ) cos(ψ)

] [
u− ûr
v − v̂r

]
[
ûc
v̂c

]
=
[
−v̂r

0

]
=
[
0.21

0

]
The same method may be used after the ROV has turned 90° yielding the same
results. The current is known to be νnc =

[
0.15 0 0 0 0 0

]T [m/s], so
the estimation error may be caused by tether cable drag, model errors or the
simplicity of the estimator. The estimate of the yaw rate r follows the measured
state, but during the rotation it shows a lower value. This is probably caused by
model errors or the simplicity of the estimator.
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Chapter 7

Future work and conclusion

7.1 Future work

Sea trial

There was no time for a sea trial to test the theories in this master thesis. It is
highly recommended that this is carried out to verify the results in a full scale
test. The tests done in the simulator are a very good alternative, but nothing
beats the real thing.

Dynamic model

It was found during the testing in the simulator that the dynamic model used in
the computer simulations did not match the dynamic model in the simulator. It
is suggested that a new and more extensive dynamic model is developed based on
the simulator at IKM Subsea. The parameters of the mass, damping and Coriolis
matrices should be identified using basic control theory or more extensive system
identification methods, like those mentioned in [Ioannou and Sun, 2012]. The
model should include thruster dynamics and tether cable dynamics.

Controller

Based on the more extensive dynamic model, the P-CABS controller should be
re-verified. The P-CABS controller could be improved to include the thruster
and tether dynamics in the control loop and more emphasis should be put on
also controlling the roll and pitch angles.
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Path following

Further improve the path following control system developed in this thesis by
utilizing the new dynamic model and improved controller. Investigate the pos-
sibilities of using a different steering law than LOS or develop a new steering
law for 6 DOF underwater vehicles. The path following system developed in this
thesis should be tested in the simulator at IKM Subsea for verification.

Observer/Estimator

An observer could be developed to improve the overall control system. The
observer may be based on the Kalman filter from [Knausg̊ard, 2013] or other
methods like the nonlinear passive observer [Fossen and Strand, 1999] could be
put to use. This observer could include current estimates as well as position
and attitude estimates. The observer can be tested in the Simulink model by
introducing noisy measurements and in both the simulator at IKM Subsea and
in sea trials.

HMI

A more intuitive Human Machine Interface (HMI) should be developed for the
DP and path following system. Now, the system only exists as a Matlab script
in pure code. There are several advantages to a good HMI system, for instance
easier path planning and set point selection, simple logging and easy access to
data and simpler tuning of controller gains.

7.2 Conclusion

The goal of this thesis was to develop a new controller for path following and
tracking control of ROVs in general and the Merlin WR200 in particular. The
Merlin WR200 is only fitted with automatic control of depth, altitude and head-
ing, so to increase the level of autonomy it is of interest to include position control
in the horizontal plane as well. Some controllers demand knowledge of the sys-
tem parameters. In reality, these system parameters are not exactly known, so
working around this demand was one of the fundamentals in the design of the
new control law. The derivation of the control law was attempted as simple and
readable as possible.

A new control law was derived by using parameter and current adaptation and
integrator backstepping. The convergence of the error states to zero was proven
and the controller was verified through simulations in Simulink and in the simu-
lator at IKM Subsea.
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The developed controller was compared to 2 existing controllers in a simulation
study. The controller from [Antonelli et al., 2003] which has adaptation of current
and gravitational terms and the Adaptive Backstepping with Bound Estimation
(ABSwB) controller from [Patompak and Nilkhamhang, 2012]. The ABSwB con-
troller has the same parameter adaptation part as was desired for the controller in
this thesis and hence it was included in the comparison. The developed P-CABS
controller showed equal or lower error than the controller from [Antonelli et al.,
2003] in all cases. The controller from [Patompak and Nilkhamhang, 2012] had
smaller mean and RMS value of the error in some cases, but the control input
was very choppy. The control input from the P-CABS controller was smooth at
all times.

Path following of already driven paths was also one of the goals of this thesis.
The ROV had to add waypoints while driving through the ocean space and to do
so, a circle of acceptance for adding waypoints was defined. A modified version of
the popular LOS steering law was developed. This method considers the ROVs
position and heading relative to the stored waypoints in order to calculate the
desired heading and velocity. This is important because the ROV may be in
a narrow area where turning around is impossible. The ROV should therefore
follow the exact same path back to the origin with the same heading angle as it
had while driving the path in the first place. This was tested and accomplished in
simulations in Simulink for S-shaped paths showing some crosstrack error during
turning caused by the waypoint switching. Unfortunately there was not enough
time to implement this in the simulator at IKM Subsea.

During testing in the simulator it was found that the dynamic model used in
the simulator did not match the dynamic model used in Simulink, so further
work should be done on identifying this model. The roll and pitch was only
controlled with simple P controllers, so the disturbances from the tether cable
where not compensated properly. This should be looked at in the future by
extending the parameter adaptation and disturbance rejection to all 6 DOFs. The
path following system should be implemented in the simulator at IKM Subsea
for verification and the controller should be tested in a sea trial to verify the
performance in a real setting. The DP system, consisting of the station keeping
and trajectory tracking did work in the simulator and the ROV was able to hold
its position under the influence of ocean currents and change the position to the
desired position in North, East, Down and ψ. The controller had to be tuned
quite conservative because of time delays in the dynamic model causing a slow
but otherwise very good response.
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APPENDIX B. MERLIN SPECIFICATIONS

ROV Specifications:
	 Depth rating	 3000 msw
	 Length	 2.8 m
	 Width	 1.8 m
	 Height	 1.7 m
	 Weight	 2800 kg

	 Manipulator	 Schilling Titan 4 (or client spec.)
	 Manipulator	 Schilling Rig master (or client spec.)

	 Thrusters	 8 of Electrical 12” Dual  Counter Rotating Propellers
	 Configuration	 4 of Horizontal (vectored), 4 off Vertical

	 Pulling force	 8 kN Forward / Aft. / Lateral
		  11 kN Vertical

	 Auxiliary Tool HPU	 1 of 18-30 kW Electrical Hydraulic Power Pack
		  49-80 l/min adjustable up to 315 bar

	 Auxiliary ROV HPU	 1 of 8-18 kW Electrical Hydraulic Power Pack
		  20-49 l/min adjustable up to 250 bar

	 Valve pack 1	 8 of proportional NG 3 valves

	 Valve pack Tool	 8 of proportional NG 3 valves & 1 off Ng 10

	 Subsea Electrical interface	 Communication: RS 232, RS 422, RS 485, Ethernet, fiber (HD)
		  Power: 24V, 110V, 3000V

	 Cameras	 1 of  Low Light Camera (pan & tilt) 
		  1 of Color & Zoom Camera (pan & tilt)
		  2 fixed color cameras (on front bar). 
		  2 of color camera (one rear, one center for TMS docking)
		  Total number of camera slots: 8 (prepared for add. pan & tilt)

	 Lights	 4 of Q-LED, 3 of MV-LED

	 Sensors:    
	 Depth	 Digiquartz & altimeter
	 Heading 	 Gyro - as specified by client
	 Pitch & Roll	 +/- 20 degrees
	 Sonar	 MS-1000
	 Auto functions	 Auto Heading / Auto Depth / Auto Altitude
	
	 Tooling	 Wire cutter, ROV hook/shackle, rope cutter, grinder - optional tools 
		  according to client request
	 Power Requierments:
	 ROV	 250 kVA
	 Control - Container	 30 kW, 440V/50-60Hz
	
		  This is standard equipment for the Merlin WR200. Different options for 	
		  lighting, cameras, manipulator arms, tools etc. may be selected.
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Appendix C

Mathematics

C.1 Cross-product operator

The vector cross product × is

λ× a = S(λ)a (C.1.1)

where S ∈ SS(3) is

S(λ) = −ST (λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 (C.1.2)

C.2 Persistence of Excitation(PE)

Persistence of Excitation is defined in [Ioannou and Sun, 2012] as:

Definition C.1: A piecewise continuous signal vector u : R+ → Rn is PE in
mathcalRn with a level of excitation α0 > 0 if there exists constantsα1, T0 > 0
such that:

α1I ≥
1
T0

∫ t+T0

t

u(τ)uT (τ)dτ ≥ α0I, ∀ t ≥ 0 (C.2.1)

In general, this means that the signal u has to be a rich signal. A rich signal could
for instance be a sum of sin and cos signals. It is referred to [Ioannou and Sun,
2012] for a more thorough explanation on PE signals and examples and proofs.
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APPENDIX C. MATHEMATICS

C.3 Stability

From [Khalil, 2002], the following definitions of stability are collected

Consider the nonautonomous system

ẋ = f(x, t) (C.3.1)

Definition C.2: The equilibrium point x = 0 is

• stable, if for each ε > 0 there is δ = δ(ε, t0) > 0 such that

||x(t0)|| < δ =⇒ ||x(t)|| < ε, ∀ t ≥ t0 ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and there is a constant c = c(t0) such
that x(t)→ 0 as t→∞, for all ||x(t0)|| < c

Stability can also be described using Lyapunov functions

Definition C.3: The equilibrium point x = 0 is

• stable, if there exists a Lyapunov function V (x) with the properties

V (0) = 0 and V (x) > 0 ∀ x 6= 0
V̇ (x) ≤ 0

• asymptotically stable, if there exists a Lyapunov function V (x) with the
properties

V (0) = 0 and V (x) > 0 ∀ x 6= 0
V̇ (x, t) < 0 ∀ x 6= 0

• exponentially stable, if there exists a Lyapunov function V (x) with the prop-
erties

k1||x||a ≤ V (t, x) ≤ k2||x||a

∂V

∂t
+ ∂V

∂x
f(x, t) ≤ −k3||x||a

∀ t ≥ 0, where k1, k2, k3 and a are positive constants.
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C.4. DIFFERENTIATION OF VECTORS

C.4 Differentiation of vectors

Differentiation of a vector ~(u) in a moving reference {b} frame satisfies [Fossen,
2011]

id

dt
~u =

bd

dt
~u+ ωb/i × ~u (C.4.1)
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Appendix D

Modified Least-Squares with
Forgetting Factor

The following is gathered from [Ioannou and Sun, 2012, Ch. 4.3.6]:

Consider a a case where the unknown parameters appear in a linear form as:

z = θTφ (D.0.1)

where θ is the vector of unknown parameters and φ is the vector of known signals.
Consider a simple scalar plant:

y = θu+ dn (D.0.2)

where dn is a noise disturbance; y, u ∈ R+ and u ∈ L∞. An approach to generate
θ̂ is to minimize the cost function:

J(θ̂) = 1
2

∫ t

0
(y(τ)− θ̂(t)u(τ))2dτ (D.0.3)

with respect to θ̂ at any given time t. The cost J(θ̂) penalizes the past errors
from τ = 0 to t that are due to θ̂(t) 6= θ. Because J(θ̂) is a convex function over
R1 at each time t, its minimum satisfies:

∇J(θ̂) = −
∫ t

0
y(τ)u(τ)dτ + θ̂(t)

∫ t

0
u2(τ)dτ = 0 (D.0.4)

for any given time t, which gives:

θ̂(t) =
(∫ t

0
u2(τ)dτ

)−1 ∫ t

0
y(τ)u(τ)dτ (D.0.5)
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APPENDIX D. MODIFIED LEAST-SQUARES WITH FORGETTING
FACTOR

provided the inverse exists. This is the least-squares estimate. Extending the
problem to the linear model (D.0.1). The estimate of z and the normalized
estimation error are generated as:

ẑ = θ̂Tφ

ε = z − ẑ
m2 = z − θ̂Tφ

m2

(D.0.6)

where m2 = 1 + n2
s. m satisfies φ

m ∈ L∞. Consider the following cost function:

J(θ̂) = 1
2

∫ t

0
e−β(t−τ) [z(τ)− θ̂T (t)φ(τ)]2

m2(τ) dτ + 1
2e
−βt(θ̂ − θ̂0)TQ0(θ̂ − θ̂0)

(D.0.7)

where Q0 = QT0 > 0, β ≥ 0, θ̂0 = θ̂(0), which is a generalization of (D.0.3) to
include discounting of past data and a penalty on the initial parameter estimate
θ̂0. Because z

m ,
φ
m ∈ L∞, J(θ̂) is a convex function of θ̂ over Rn at each time t.

Any local minimum is also a global and satisfies:

∇J(θ̂(t)) = 0, ∀ t ≥ 0 (D.0.8)

i.e.,

∇J(θ̂) = e−βtQ0(θ̂(t)− θ̂0)−
∫ t

0
e−β(t−τ) z(τ)− θ̂T (t)φ(τ)

m2(τ) φ(τ)dτ = 0

This yields the so-called nonrecursive least-squares algorithm:

θ̂(t) = Γ(t)
[
e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ) z(τ)φ(τ)

m2(τ) dτ

]
(D.0.9)

where:

Γ(t) =
[
e−βtQ0 +

∫ t

0
e−β(t−τ)φ(τ)φ(τ)T

m2(τ) dτ

]−1

(D.0.10)

The parameter update law is found by taking the time derivative of θ̂:

˙̂
θ(t) = Γ(t)

[
−βe−βtQ0θ̂0 +

∫ t

0
−βe−β(t−τ) z(τ)φ(τ)

m2(τ) dτ + z(t)φ(t)
m(t)

]
+ Γ̇(t)

[
e−βtQ0θ̂0 +

∫ t

0
e−β(t−τ) z(τ)φ(τ)

m2(τ) dτ

] (D.0.11)

this is equal to:

˙̂
θ = Γ(t)

[
−βΓ−1(t)θ̂(t) + z(t)φ(t)

m2(t)

]
+ Γ̇(t)Γ−1(t)θ̂(t)

= −βθ̂(t) + Γ(t)z(t)φ(t)
m2(t) + Γ̇(t)Γ−1(t)θ̂(t)

(D.0.12)
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Because Q0 = QT0 > 0 and φφT is positive semidefinite, Γ(t) exists at each time
t. Using the identity:

d

dt
ΓΓ−1 = Γ̇Γ−1 + Γ d

dt
Γ−1 = 0

we achieve

Γ̇ = βΓ− Γφ(t)φT (t)
m2 Γ , Γ(0) = Q−1

0 (D.0.13)

Inserting this into (D.0.12) and using εm2 = z − θ̂Tφ we get:

˙̂
θ = −Γ(t)εφ

Γ̇ =
{
βΓ− Γφ(t)φT (t)

m2 Γ if ||Γ(t)|| ≤ R0

0 otherwise

(D.0.14)

where Γ(0) = Γ0 = ΓT0 > 0, ||Γ0|| ≤ R0 and R0 is a constant that serves as an
upper bound for ||Γ||. m2 = 1 + n2

s and ns is chosen such that φ
m ∈ L∞. With

β > 0, Γ(t) will not become arbitrarily small and because of the upper bound R0
it will not become infinitely large. This modification guarantees that Γ ∈ L∞.
The stability properties of the least-squares with forgetting factor depends on the
value of β. The properties are presented for β > 0:

Theorem D.1: The modified least-squares with forgetting factor (D.0.14) has
the following properties:

1. ε, εns, θ̂, ˙̂
θ ∈ L∞

2. ε, εns, ˙̂
θ ∈ L2

Proof. Consider the function

V (θ̃) = 1
2 θ̃

TΓ−1θ̃ (D.0.15)

where Γ is given by (D.0.13). Because Γ−1 is a bounded positive definite symmet-
ric matrix, it follows that V is decrescent and radially unbounded in the space of
θ̃. Along the solution of (D.0.13) we have

V̇ = 1
2 θ̃

T d(Γ−1)
dt

θ̃ + θ̃TΓ−1 ˙̃θ = −ε2m2 + 1
2 θ̃

T d(Γ−1)
dt

θ̃

By using the identity d(Γ−1)
dt = −Γ−1Γ̇Γ−1 we can establish

d(Γ−1)
dt

=
{
−βΓ−1 + φ(t)φT (t)

m2 Γ if ||Γ(t)|| ≤ R0

0 otherwise
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FACTOR

where Γ−1(0) = Γ−1
0 , which leads to:

V̇ =
{
− ε

2m2

2 − β
2 θ̃

TΓ−1θ̃ if ||Γ(t)|| ≤ R0

− ε
2m2

2 otherwise
(D.0.16)

Because V̇ ≤ − ε2m2

2 ≤ 0 and Γ(t) is bounded and positive definite ∀ t ≥ 0, V ∈
L∞ and ε, εm ∈ L2. From this we have θ̃ ∈ L∞, which implies that ε, εm ∈ L∞.
Using εm ∈ L∞ ∧ L2 and that Γ(t) is bounded we have ˙̂

θ ∈ L∞ ∧ L2
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Appendix E

Matlab code

%%%Simulation model for Merlin WR200%%%
clear all
clc
close all
%%
%Integration values
sim time=600; %Simulation end time
dt=0.2; %Steplength
L=sim time/dt; %Simulation steps
%%
%%%%%%%%%%%%%%%% Dimensions and constants %%%%%%%%%%%%%%%%%%%%%%%%%%
tau thruster max=1382; %Max forward thrust [N]
i=1;
m=3184; %3184 %Mass of the ROV %3300
g=9.81; %Gravitational acceleration
rho=1024; %Density of salt water
V=3.22; %3.22 %Volume of WR200
alpha=pi/4; %Angle of thrusters
l1=0.73; %
l2=0.24; %
l3=0.73; %
l4=0.84; %Length of moment arms
l5=0.1; %
l6=0.84; %
r g=[−0.002341 0.003014 −0.021193]; %Location of CG wrt CO
r b=[0.12 0 0.197]; %Location of CB wrt CO
I=[1805+0.05*m 0 −120;0 3050+0.05*m 7;−120 7 2872+0.05*m]; %Inertia matrix
B=rho*g*V; %Buoyancy
W=m*g; %Weight
M RB=1.1*m*eye(3); %Mass matrix including added mass
M=[M RB*eye(3) −m*Smtrx(r g);m*Smtrx(r g) I];%System inertia matrix
M inv=inv(M);
D=diag([1321 2525 2525 192 192 192]); %Damping matrix
%%%%%%%%%%%%%%%%%%%% Thruster allocation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%
T=[zeros(1,4) sin(alpha) sin(alpha) −sin(alpha) −sin(alpha);zeros(1,4)...

cos(alpha) −cos(alpha) −cos(alpha)...
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cos(alpha);ones(1,4) zeros(1,4);l2 −l2 −l2 l2...
−l5 l5 −l5 l5;l1 l1 −l3 −l3...
−l5*0*ones(1,4);zeros(1,4) −l4 l4 −l6 l6];

T inv=pinv(T);
%%
%%%%%%%%%%%%%%%%%%% LQR settings %%%%%%%%%%%%%%%%%%%%%%%%%%%
A6=[zeros(6,6) eye(6);zeros(6,6) −M inv*D];
B6=[zeros(6,6);M inv];

x max=0.15; %Max deviation in X
y max=0.15; %Max deviation in Y
z max=0.15; %Max deviation in Z
psi max=5*pi/180; %Max deviation in phi
theta max=5*pi/180; %Max deviation in theta
phi max=2*pi/180; %Max deviation in psi

Q6=diag([1/(x maxˆ2) 1/(y maxˆ2) 1/(z maxˆ2) 1/(phi maxˆ2)...
1/(theta maxˆ2) 1/(psi maxˆ2) 10 10 10 10 10 10]);% Generate Q matrix

% Specify max allowable force in the different DOFs. Chosen rather
% conservative to not break the saturation:
tau max x=500; % Max allowable force in X
tau max y=500; % Max allowable force in Y
tau max z=1000; % Max allowable force in Z
tau max psi=100; % Max allowable force in K
tau max theta=100; % Max allowable force in M
tau max phi=500; % Max allowable force in N

r6=zeros(6,1);

r6(1)=1/(tau max xˆ2);
r6(2)=1/(tau max yˆ2);
r6(3)=1/(tau max zˆ2);
r6(4)=1/(tau max phiˆ2);
r6(5)=1/(tau max thetaˆ2);
r6(6)=1/(tau max psiˆ2);

R6=diag(r6); %Make R matrix
[K6,P6,e6]=lqr(A6,B6,Q6,R6); %Generate K, R and eigenvalues
Kd LQ6=diag(diag(K6(:,7:12))); %Pick out Kd

%%%%%%%%%%%%%%%%% Controller Gains %%%%%%%%%%%%%%%%%%%%%%%%%%%
Kd=diag([Kd LQ6(1,1) Kd LQ6(2,2) Kd LQ6(3,3) 1 1 Kd LQ6(6,6)]);
LAM=diag([0.1 0.389 0.2 20 1000 0.4]);
Gamma = diag([400 400 400 0]);

Cl=[zeros(6,6) eye(6);−(Kd*LAM)/M −((D/M)+(Kd/M))]; % Closed loop A matrix

%%
%Creating tables for data storage
nu=zeros(6,L); %Velocity vector
e 2=zeros(6,L); %Error in velocity
tau=zeros(6,L); %Control forces and moments
eta=zeros(6,L); %Position and attitude vector
eta dot=zeros(6,L); %Derivative of position(same as velocities)
e 1=zeros(6,L); %Error in position and attitude
eta corr=zeros(1,L); %Vector to store corrections when passing 360 degrees
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eta corr2=zeros(1,L);
nu dot=zeros(6,L); %Derivative of velocities = acceleration
joy x=zeros(1,L); %Joystick input in X
joy y=zeros(1,L); %Joystick input in Y
joy z=zeros(1,L); %Joystick input in Z
joy n=zeros(1,L); %Joystick input in N
nu ref=zeros(12,L); %Reference velocity (filtered desired velocity)
eta ref=zeros(18,L); %Reference pos. and att.(filtered desired pos and att.)
g eta=zeros(6,L); %Restoring forces
tau thruster=zeros(8,L); %Force to each thruster
u=zeros(8,L); %Frequency to each thruster
u pros=zeros(8,L); %Percentage to each thruster
telapsed=zeros(1,L); %Elapsed time
u corrected=zeros(8,L); %Percentage to each thruster, corrected to fit simulator
nu v = zeros(6,L); %Virtual velocity vector
eta dot p d = zeros(6,L);%Eta dot paralell desired
eta d dot p d = zeros (6,L); %Eta double dot paralell desired
e 1 dot = zeros(6,L); % Error variable
nu v dot = zeros(6,L); % Virtual velocity vector derivative
theta = zeros(14,L); % Parameter vector
theta dot = zeros(14,L); % Derivative of parameter vector
tau c temp = zeros(4,L); % Temporary storage of current estimate
tau c = zeros(6,L); % Current force estimate
eta d = zeros(6,L); % Desired position
nu d = zeros(6,L); % Desired velocity
tau pd = zeros(6,L); % PD part of force vector
pausetid = zeros(1,L); % Pause time to ensure equal steplengths
X hat = zeros(2,L); % Estimated X position
tau ned = zeros(6,L); % Control force in NED frame
Y hat = zeros(2,L); % Estimated Y position
yaw hat = zeros(2,L); % Estimate heading
%%
%%%%%%%%%%%%%%%%%%%%%%%%%%% UDP connection %%%%%%%%%%%%%%%%%%%%%%%%%

%Define UDP object
obj1 = instrfind('Type', 'udp', 'RemoteHost', '10.3.0.44',...

'RemotePort', 11001, 'Tag', '');

if isempty(obj1)
obj1 = udp('10.3.0.44', 11001, 'LocalPort',11000);

end

if strcmp(obj1.status,'closed') == true % open connection if closed
fopen(obj1);

end

flushinput(obj1); %Empty buffer input
flushoutput(obj1); %Empty buffer output

u send='0 0 0 0 0 0 0 0'; %Send zeros to all thrusters to initiate contact
tic %Start timer
sendt=0;mottatt=0; %Set sent and recieved counter to zero
%%
%%%%%%%%%%%%%%%%%%%%%%%% LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

while telapsed < 1000 %Enter desired time to run in seconds
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fwrite(obj1,u send); %Write to PLC to be able to recieve
sendt=sendt+1; %Count how many packages sent
data1 = fscanf(obj1); %Reading values from PLC

if isempty(data1)==false
mottatt=mottatt+1; %Count how many packages recieved.

end
data2 = strsplit(data1); %Split into separate words
x c=cell2mat(data2(1,1)); %Convert from cell type to string(char)
eta(1,i)=str2double(x c); %Convert from char to num
y c=cell2mat(data2(1,2)); %Convert from cell type to string(char)
eta(2,i)=str2double(y c); %Convert from char to num
z c=cell2mat(data2(1,3)); %Convert from cell type to string(char)
eta(3,i)=str2double(z c); %Convert from char to num
roll c=cell2mat(data2(1,5)); %Convert fro cell type to string(char)
eta(4,i)=str2double(roll c)*pi/180; %Convert from char to num
pitch c=cell2mat(data2(1,6)); %Convert from cell type to string(char)
eta(5,i)=str2double(pitch c)*pi/180; %Convert from char to num
yaw c=cell2mat(data2(1,4)); %Convert from cell type to string(char)
eta(6,i)=str2double(yaw c)*pi/180; %Convert from char to num

if i>1
if (eta(6,i)−eta(6,i−1))>pi

eta corr(1,i)=eta(6,i)−2*pi;
eta(6,i)=eta corr(1,i); %Discontinuity fix for heading

elseif (eta(6,i)−eta(6,i−1))<−pi
eta corr2(1,i)=eta(6,i)+2*pi;
eta(6,i)=eta corr2(1,i);

end
end
joy x c=cell2mat(data2(1,7)); %Convert from cell type to string(char)
joy x(i)=str2double(joy x c); %Joystick input in X in −1 to 1
joy y c=cell2mat(data2(1,8)); %Convert from cell type to string(char)
joy y(i)=str2double(joy y c); %Joystick input in Y in −1 to 1
joy n c=cell2mat(data2(1,9)); %Convert from cell type to string(char)
joy n(i)=str2double(joy n c); %Joystick input in N in −1 to 1
joy z c=cell2mat(data2(1,10)); %Convert from cell type to string(char)
joy z(i)=str2double(joy z c); %Joystick input in Z in −1 to 1

flushinput(obj1); %Empty input buffer memory
flushoutput(obj1); %Empty output buffer memory

%%
R mat = [cos(eta(6,i)) sin(eta(6,i)) 0;

−sin(eta(6,i)) cos(eta(6,i)) 0; % Rotation matrix fix
0 0 1];

P mat = [R mat zeros(3,3);
zeros(3,3) eye(3)];

if i == 1
nu(:,1)=0;
nu dot(:,1)=0;
eta dot(:,1) = 0;

else
eta dot(:,i)=(eta(:,i)−eta(:,i−1))/dt; % Update velocity
nu(:,i)=P mat\eta dot(:,i);

end
eta d(1:3,i) = eta(1:3,1);
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% eta d(1,300:end) = eta(1,299)+5;
eta d(2,300:end) = eta(2,299)+2;
eta d(4:6,i,:) = [0;0;eta(6,1)];%45*(pi/180)
% eta d(6,400:end)=eta(6,399)−90*pi/180;
nu d(:,i) = [joy x(i)/100*4.3;joy y(i)/100*3.2...

;joy z(i)/100;0;0;joy n(i)/100*0.5];%zeros(6,1);%nu(:,i);
%%
%%%%%%%%%%%%%%%%%%%% REFERENCE MODEL %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
omega ref nu=diag([2 2 2

1 1 2]); %Velocity reference model natural frequency
zeta ref nu=1; %Velocity reference model damping. 1=no overshoot
omega ref eta=diag([0.3 0.3 1

1 1 0.3]);%Pos and att reference model natural frequency
zeta ref eta=1; %Pos and att reference model damping 1=no overshoot

%Velocity reference model
A ref nu=[zeros(6,6) eye(6);−omega ref nuˆ2*eye(6)

−2*zeta ref nu*omega ref nu...

*eye(6)]; %Reference model system matrix, continuous
B ref nu=[zeros(6,6);

omega ref nuˆ2*eye(6)]; %Reference model input matrix, continuous

%Position and attitude reference model Same steps as above
A ref eta=[zeros(6,6) eye(6) zeros(6,6);zeros(6,6) zeros(6,6) eye(6);...

−omega ref etaˆ3*eye(6) −(2*zeta ref eta*eye(6)+eye(6))...

*omega ref etaˆ2 −(2*zeta ref eta*eye(6)+eye(6))*omega ref eta];
B ref eta=[zeros(6,6);zeros(6,6);omega ref etaˆ3*eye(6)];

eta ref 0=[eta(:,1);zeros(12,1)];
nu ref 0=[nu(:,1);zeros(6,1)];

%Estimator
A X hat =[0 1;0 −1/3.5];
B X hat =[0;0.0005/3.5];
X hat 0 = [0 0]';

A Y hat = [0 1;0 −1/2.1];
B Y hat = [0;0.00035/2.1];
Y hat 0 = [0 0]';

A yaw hat = [0 1;0 −1/2.2];
B yaw hat = [0;0.000375/2.2];
Z yaw 0 = [0 0]';

if i <= 16
X hat(:,i) = (eye(2)+dt.*A X hat)*X hat(:,i) + dt*B X hat*tau(1,i);

else
X hat(:,i) = (eye(2)+dt.*A X hat)*X hat(:,i−1)...

+ dt*B X hat*tau(1,i−16);
end

if i<=30
Y hat(:,i) = (eye(2)+dt.*A Y hat)*Y hat(:,i) + dt*B Y hat*tau(2,i);

else
Y hat(:,i) = (eye(2)+dt.*A Y hat)*Y hat(:,i−1) +...

dt*B Y hat*tau(2,i−30);
end
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if i<=40
yaw hat(:,i) = (eye(2)+dt.*A yaw hat)*yaw hat(:,i) +...

dt*B yaw hat*tau(6,i);
else

yaw hat(:,i) = (eye(2)+dt.*A yaw hat)*yaw hat(:,i−1) +...
dt*B yaw hat*tau(6,i−40);

end
if i==1 % First iteration, use initial state as nu ref 0 and eta ref 0

nu ref(:,i)=(eye(12)+dt.*A ref nu)*nu ref 0+dt*B ref nu*nu d(1:6,i);
%Velocity

eta ref(:,i)=(eye(18)+dt.*A ref eta)*eta ref 0+dt*B ref eta*eta d(1:6,i); %Pos and att.

else % Then feed the reference signal through the filter
nu ref(:,i)=(eye(12)+dt.*A ref nu)*nu ref(:,i−1)+dt*B ref nu*nu d(1:6,i);%Velocity
eta ref(:,i)=(eye(18)+dt.*A ref eta)*eta ref(:,i−1)+dt*B ref eta*eta d(1:6,i);%Pos and att.

end
%%
%%%%%%%%%%%%%%%%% CONTROL LOOP %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g eta(:,i)=[0 0 0 −4820*cos(eta(5,i))*sin(eta(4,i))... %
−4820*sin(eta(5,i))*cos(eta(5,i))*cos(eta(4,i)) 0];%Restoring

e 1(:,i) = (eta(:,i)−eta ref(1:6,i));
if e 1(6,i)<=−pi %Discontinuity fix for heading

e 1(6,i)=2*pi−e 1(6,i);
elseif e 1(6,i)>pi

e 1(6,i)=−2*pi+e 1(6,i);
end

eta dot p d(:,i) = 0.8*eta ref(7:12,i);
eta d dot p d(:,i) = 0.1*eta ref(13:18,i);
e 1 dot(:,i) = nu(:,i) − eta dot p d(:,i);
nu v(:,i) = −LAM*e 1(:,i)+eta dot p d(:,i);
nu v dot(:,i) = −LAM*e 1 dot(:,i)+eta d dot p d(:,i);
e 2(:,i)=eta dot(:,i)−nu v(1:6,i);

%%
%%%%%%%%%%%%%%%%%%%%%%% Generate regressor %%%%%%%%%%%%%%%%%%%%%%%%%%

phi = [nu v dot(1,i) 0 0 0 −abs(nu(1,i))*nu(1,i) 0 ...
0 0 0 0 0 cos(eta(6,i)) −sin(eta(6,i)) 0;

0 nu v dot(2,i) 0 0 0 −abs(nu(2,i))*nu(2,i) 0
0 0 0 0 sin(eta(6,i)) cos(eta(6,i)) 0;
0 0 nu v dot(3,i) 0 0 0 −abs(nu(3,i))*nu(3,i)
0 0 0 0 0 0 1;
0 0 0 nu v dot(6,i) 0 0 0 −abs(nu(6,i))*nu(6,i)...
0 0 0 0 0 0];

%%

%%%%%%%%%%%%%%%%%%%%%%%% Adaptation %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tau c temp(:,i) = phi*theta(:,i);
tau c(:,i) = [tau c temp(1,i) tau c temp(2,i)

theta(14,i) 0 0 tau c temp(4,i)]';

% tau c(:,i) = [0 0 theta(14,i) 0 0 0]';
theta dot(:,i) = phi'*Gamma*e 2([1 2 3 6],i);
theta(:,i+1) = theta(:,i)+dt*theta dot(:,i);
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%%%%%%%%%%%%%%%%%%% Set output %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
tau pd(:,i) = −e 1(:,i) − Kd*e 2(:,i);
tau ned(:,i) = tau pd(:,i)−tau c(:,i);
tau(:,i) = P mat\tau ned(:,i);%+g eta(:,i);

tau thruster(:,i)=pinv(T)...

*tau(:,i); %Desired force from each thruster in [N] and [Nm]
%Desired force is unlimited, but the actual force
%must be limited

if i>1
for s=1:8 %Check to see if thruster is at limit

if abs(tau thruster(s,i))>=tau thruster max
tau thruster(s,i)=(tau thruster(s,i)/...

abs(tau thruster(s,i)))*tau thruster max;%Limit thrust
end

end
end

u(:,i)=83*sin(0.0007909*tau thruster(:,i));

u corrected(1,i)=u(6,i);
u corrected(2,i)=u(5,i);
u corrected(3,i)=u(7,i);
u corrected(4,i)=u(8,i);%Changes numbering of thrusters to fit simltr
u corrected(5,i)=u(2,i);
u corrected(6,i)=u(1,i);
u corrected(7,i)=u(3,i);
u corrected(8,i)=u(4,i);

u pros(:,i)=(u corrected(:,i)/100)*100; %Convert to percent

u send=sprintf('%f ',u pros(:,i));%Stores the % in u send as a string.

telapsed(i)=toc; %Updates elapsed time
%%
%%%%%%%%%%%%%%%%%%%%%%%%% REAL TIME PLOTS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot(telapsed(1:i),joy x(1,1:i));hold on;
% plot(telapsed(1:i),nu(1,1:i),'r');
% plot(telapsed(1,1:i),joy x(1:i),'b');hold on;
% plot(telapsed(1,1:i),eta ref(1,1:i),'r');hold on;

figure(1)
subplot(3,2,1)
plot(telapsed(1,1:i),eta(1,1:i)),title('N');hold on;
plot(telapsed(1,1:i),eta ref(1,1:i));
subplot(3,2,3)
plot(telapsed(1,1:i),eta(2,1:i)),title('E');hold on;
plot(telapsed(1,1:i),eta ref(2,1:i));
subplot(3,2,5)
plot(telapsed(1,1:i),eta(3,1:i)),title('D');hold on;
plot(telapsed(1,1:i),eta ref(3,1:i));
subplot(3,2,2)
plot(telapsed(1,1:i),eta(4,1:i)),title('\phi');hold on;
plot(telapsed(1,1:i),eta ref(4,1:i));
subplot(3,2,4)
plot(telapsed(1,1:i),eta(5,1:i)),title('\theta');hold on;
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plot(telapsed(1,1:i),eta ref(5,1:i));
subplot(3,2,6)
plot(telapsed(1,1:i),eta(6,1:i)*180/pi),title('\psi');hold on;
plot(telapsed(1,1:i),eta ref(6,1:i)*180/pi);

figure(2)
subplot(3,2,1)
plot(telapsed(1,1:i),nu(1,1:i)),title('u');hold on
plot(telapsed(1,1:i),X hat(2,1:i));
subplot(3,2,3)
plot(telapsed(1,1:i),nu(2,1:i)),title('v');hold on
plot(telapsed(1,1:i),Y hat(2,1:i));
subplot(3,2,5)
plot(telapsed(1,1:i),nu(3,1:i)),title('w');
subplot(3,2,2)
plot(telapsed(1,1:i),nu(4,1:i)),title('p');
subplot(3,2,4)
plot(telapsed(1,1:i),nu(5,1:i)),title('q');
subplot(3,2,6)
plot(telapsed(1,1:i),nu(6,1:i)),title('r');hold on
plot(telapsed(1,1:i),yaw hat(2,1:i));

drawnow
pausetid(i)=dt−(toc−telapsed(i));
pause(pausetid) %Pauses for sampling time

i=i+1; %Update count

end
%%
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