
Guidance System for Autonomous
Surface Vehicles

Thomas Stenersen

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Øystein Engelhardtsen, DNV GL

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

Problem Description

Assuming available sensor data, design a guidance system for an Autonomous
Surface Vehicle (ASV) capable of safe navigation in various environments. The
system shall adhere to the International International Regulations for Avoiding
Collisions at Sea (COLREGs).

1. Outline a path planning and collision avoidance strategy

2. Simulate the system

3. Implement the system in ROS

To my fiancée, for her patience during the countless hours I spent
working on this thesis. . .

Abstract

There has been a rapid growth in autonomous technology in several fields the
past decade. One of these is autonomous navigation, where the DARPA Grand
Challenges has been a major research catalyst. Today, the Centre of Excellence
“Centre for Autonomous Marine Operations and Systems (AMOS)” in cooper-
ation with the maritime industry seeks to develop autonomous technology for
marine applications.

A robust collision avoidance system is crucial for an Autonomous Surface Vessel
(ASV). In order to operate at sea, near other traffic, it also needs to adhere to
the “rules of the road”, the International Regulations for Avoiding Collisions at
Sea (COLREGs). In this thesis, a COLREGs compliant guidance, navigation
and control (GNC) system has been developed with the Velocity Obstacle (VO)
method as the basis for collision avoidance. To validate the performance of the
GNC system, a general nonlinear 3-DOF surface vessel simulator has been im-
plemented. It features simple models for slow and fast-varying disturbances (e.g.
waves, wind and current). The system has been implemented in the Robotic
Operating System (ROS) framework.

Three main scenarios has been designed to test the guidance system in all main
COLREGs scenarios: overtaking, head-on and crossing. Each scenario requires
multiple COLREGs compliant maneuvers. Several special cases are also examined
and discussed.

The VO method performs very well in the simulated scenarios and its avoidance
maneuvers complies with all main COLREGs requirements. A thorough discus-
sion highlights both advantages and disadvantages with method and suggests
actions to mitigate less ideal behavior experienced in some special cases. The
thesis also features a rich discussion on further development and improvements
to the system.

Samandrag

Det siste århundret har vi sett ein enorm vekst innan autonom teknologi i ulike
felt. Eit av desse felta er autonom navigasjon, der DARPAs «Grand Challenge»-ar
har vore ein viktig forskingskatalysator. I dag ynskjer senter for framifrå forsking,
«Senter for Autonome Marine Operasjonar og System (AMOS)» i samarbeid med
den maritime industrien å utvikle autonom teknologi for marine applikasjonar.

Eit robust kollisjonsomgåingssystem er ein svært viktig del av eit autonomt over-
flateskip. For å nyttast til sjøs, nær anna trafikk, må systemet òg lyde dei inter-
nasjonale reglane for kollisjonsomgåing til sjøs (COLREGs). I denne avhandlinga
er eit styrings-, navigasjons- og kontrollsystem som lyder COLREGs utvikla, med
«Velocity Obstacle (VO)»-algoritmen som basis for kollisjonsomgåing. For å kun-
ne validere funksjonaliteten til systemet har ein generell simulator for fartøy med
tre fridomsgradar òg vorte utvikla. Denne inneheld enkle modellar for sakte- og
hurtigvarierande forstyrringar (t.d. bølgjer, vind og straum). Systemet er imple-
mentert i «Robot Operating System (ROS)»-rammeverket.

Tre hovudscenario har vorte designa for å teste styringssystemet i dei viktigaste
COLREGs-situasjonane: overtaking, front-mot-front og kryssing. Kvart scenario
krev fleire COLREGs-samsvarande manøvrar. I tillegg, er fleire spesialtilfelle un-
dersøkt og diskutert.

VO-metoden yter særs bra i dei simulerte scenaria og alle omgåingsmanøvra
samsvarar med COLREGs-reglementet. Ein djuptgåande diskusjon belyser både
fordelar og ulemper med metoden og foreslår tiltak for å minske mindre ideell
oppførsel erfart i einskilde tilfelle. Avhandlinga inneheld òg ein rik diskusjon kring
vidare utvikling og forbetringar av systemet.

Preface

This thesis is written as a compulsory part of the Master’s degree in Engineer-
ing Cybernetics at the Department of Engineering Cybernetics at the Norwegian
University of Science and Technology (NTNU). The thesis has been written in
cooperation with DNV GL.

Acknowledgements

I would like to thank my supervisors Kristin Y. Pettersen (NTNU) and Øys-
tein Engelhardtsen (DNV GL). I would also like to thank Bjørn-Olav, Stine and
Sveinung whom I shared office space with the past year. A special thanks goes
out to Bjørn-Olav for all the interesting discussions regarding collision avoidance
strategies.

Thomas Stenersen,
Trondheim, June 2015

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Assumptions . 2
1.3 Contribution . 3
1.4 Thesis Structure . 3

2 Literature Review 5
2.1 Overview Papers . 5
2.2 Planning Algorithms for Ocean Vehicles 6
2.3 Other Planning Algorithms . 12

3 Theoretical Background 15
3.1 Surface Vessel Modeling . 15

3.1.1 Actuator Forces and Low-level Control 17
3.1.2 Environmental Forces . 18

3.2 Configuration Spaces . 19
3.3 Planning Algorithms . 20

3.3.1 Local Methods . 21
3.3.2 Global Methods . 21

3.4 Guidance Laws . 22
3.5 COLREGs – Following the Rules of the Road 25

3.5.1 The Rules . 25
3.5.2 COLREGs for an ASV . 28

3.6 Velocity Obstacles . 30
3.6.1 The Velocity Obstacle . 31
3.6.2 Properties of the Velocity Obstacle 32

4 System Implementation 35
4.1 System Architecture . 35

xi

xii CONTENTS

4.2 Simulator . 36
4.2.1 Low-level Controllers . 37

4.3 Guidance . 39
4.4 Velocity Obstacle Controller . 39

4.4.1 The Velocity Field . 40
4.4.2 Static Obstacles . 41

5 Simulation Results 45
5.1 Ideal Conditions . 47

5.1.1 Overtaking and Crossing from the Right 47
5.1.2 Overtaking, Crossing and Head-on 48
5.1.3 Crossing Left and Right . 48

5.2 Wave Disturbances . 53
5.2.1 Overtaking and Crossing from the Right 53
5.2.2 Overtaking, Crossing and Head-on 53
5.2.3 Crossing Left and Right . 54

6 Discussion 61
6.1 Static Obstacle Oscillations . 61

6.1.1 Solutions . 63
6.2 COLREGs Challenges . 65

6.2.1 In Between Rules . 65
6.2.2 COLREGs Ambiguity . 67
6.2.3 Clearance During Overtaking 68

7 Future Work 69
7.1 Simulator . 69
7.2 Global Planner . 69

7.2.1 A* Search . 70
7.2.2 Hybrid-state A* Search . 71

7.3 Velocity Obstacle Controller . 73
7.3.1 Better ROS Integration . 73
7.3.2 Velocity Obstacles as a Filter 73

7.4 Stability . 74
7.5 Experimental Testing . 75

7.5.1 Practial Considerations . 75

8 Conclusion 77

A Robotic Operating System (ROS) 79
A.1 Introduction . 79
A.2 ROS Concepts . 80

CONTENTS xiii

A.2.1 ROS Filesystem Level . 80
A.2.2 ROS Computation Graph Level 81

A.3 Conventions . 81
A.3.1 Position, Orientation and Velocity 81
A.3.2 Reference Frames . 82

B Implementation Details 85
B.1 Installation Guide . 85
B.2 Package Details . 86

B.2.1 ASV System . 86
B.2.2 ASV Simulator . 87
B.2.3 Velocity Obstacle Controller 88
B.2.4 Path Trackers . 88

C Source Code Examples 89

xiv CONTENTS

List of Figures

1.1 Two autonomous vehicles . 2

2.1 Differences between behavior-based control and conventional control 6
2.2 Projected Obstacle Areas . 7
2.3 Modified Dynamic Window algorithm 8
2.4 Fault-tolerant sensor-fusion . 9
2.5 Powervent USV prototype . 10

3.1 6-DOF marine vessel naming and notation. 16
3.2 Approximating a vessel as a disc 20
3.3 Collapsing a three-dimensional configuration space 20
3.4 Local method getting stuck near local minima. 21
3.5 Guidance algorithms . 22
3.6 Switching criterions . 24
3.7 COLREGs rule 13: overtaking . 26
3.8 COLREGs rule 14: head-on . 27
3.9 COLREGs rule 15: crossing . 27
3.10 Closest Point of Approach . 29
3.11 COLREGs rule selection . 30
3.12 The velocity obstacle V OA|B . 32
3.13 Velocity obstacle regions . 33

4.1 Control system block diagram . 36
4.2 Information flow in simulated system 37
4.3 Information flow in real system . 38
4.4 VO controller velocity field . 40
4.5 Velocity fields with COLREGs and VO regions 41
4.6 Challenges with treating static obstacles as stationary dynamic. . 42
4.7 Static obstacles with the velocity obstacle algorithm 43

xv

xvi LIST OF FIGURES

5.1 ROS: “Overtaking and crossing from the right” screenshot 47
5.2 ROS: “Overtaking, crossing and head-on” screenshot 48
5.3 ROS: “Crossing right and left” screenshot 49
5.4 Overtaking and crossing from right 50
5.5 Overtaking, crossing and head-on 51
5.6 Crossing right and left . 52
5.7 Overtaking and crossing from right wave noise 55
5.8 Overtaking and crossing from right with wave disturbances 56
5.9 Overtaking, crossing and head-on wave noise 57
5.10 Overtaking, crossing and head-on with wave disturbances 58
5.11 Crossing left and right wave noise 59
5.12 Crossing left and right with wave disturbances 60

6.1 The velocity obstacle method experiences oscillations near static
obstacles . 62

6.2 Velocity obstacle oscillations explained 62
6.3 Lower bound for LOS lookahead distance. 63
6.4 Oscillations reduced when ∆ > robs + rASV 64
6.5 Passing a static obstacle by “picking a side” 65
6.6 Locked in a crossing from right situation 66
6.7 Locked in a crossing from left/overtaking situation 67
6.8 Insufficient clearance during overtaking scenario 68

7.1 Extensions to the simulator node 70
7.2 A* search methods . 72
7.3 Using the Voronoi field to alleviate contour hugging 72
7.4 Using the Velocity Obstacle algorithm as a filter for the Dynamic

Window method . 74

A.1 Sharing information between processes using message parsing. . . . 80
A.2 ROS coordinate frames . 82

List of Tables

4.1 Simulator parameters . 39
4.2 Guidance system simulation parameters 40

5.1 Simulation platform description. 46
5.2 Simulation parameters . 46
5.3 Wave model parameters . 53

xvii

xviii LIST OF TABLES

List of Acronyms

AIS Automatic Identification System

AMCL Adaptive Monte-Carlo Localization

AMN Autonomous Maritime Navigation

ASV Autonomous Surface Vehicle

COLREGs International Regulations for Avoiding Collisions at Sea

CPA Closest Point of Approach

DARPA Defense Advanced Research Projects Agency

DW Dynamic Window

EKF Extended Kalman Filter

ENU East, North, Up

GNC Guidance, Navigation and Control

GPS Global Positioning System

HIL Hardware-in-the-Loop

ILOS Integral Line of Sight

IMO International Maritime Organization

IMU Inertial Measurement Unit

xix

xx LIST OF ACRONYMS

LOS Line of Sight

LQG Linear Quadratic Gaussian

MVFF Modified Virtual Force Field

NED North, East, Down

POA Projected Obstacle Area

REP ROS Enhancement Proposal

ROS Robotic Operating System

RRT Rapidly-exploring Random Tree

UKF Unscented Kalman Filter

USV Unmanned Surface Vehicle

VFF Virtual Force Field

VFH Vector Field Histogram

VO Velocity Obstacle

WMR Wheeled Mobile Robot

Notation

η Position and orientation vector
ν Body-fixed linear and angular velocity vector
τ Vector of generalized forces
M Mass matrix
C(ν) Coriolis matrix
D(ν) Damping matrix
ω0 Dominating wave frequency
λ Wave damping coefficient
σ Wave intensity coefficient
ud Surge speed set-point
ψd Heading set-point
Kp Proportional gain
Ki Integral gain
Kd Derivative gain
χp Path-tangential angle
χr Velocity-path relative angle
∆ Lookahead distance
e(t) Cross-track error
s(t) Along-track error
Ra Radius of acceptance
C Configuration space

xxi

xxii NOTATION

CO Part of configuration space with obstacles
Cfree Part of configuration space without obstacles
tCPA Time to closest point of approach
dCPA Distance to closest point of approach
V OA|B The Velocity Obstacle of B in the velocity space of A
pAB The position of B relative to A
vAB The velocity of B relative to A
A⊕ B The Minkowski sum of the sets A and B
V1 Set of velocities left of the VO cone
V2 Set of velocities right of the VO cone
V3 Set of velocities below of the VO cone

Chapter 1

Introduction

1.1 Motivation

The past century, automation has revolutionized numerous industries by making
tasks more safe and cost-effective. Not only has it forever changed pre-existing
industries, but also paved the way for several new. One example is the furniture
producer Ekornes, that managed to keep their production line in Norway despite
high labor cost, by automating much of their production – without any layoffs
(Klingenberg, 2014).

In recent years, the intelligence of such systems has increased immensely. A
transition from automated to autonomous systems has taken place. Where the
automated system is specialized in one task, the autonomous system is a self-
governing system capable of completing loosely defined goals with intelligent rea-
soning. Autonomy is found in a multitude of fields, from automated journalistic
robots (Narrative Science, 2014), used by many of the largest newspapers today,
to self-driving cars (Fig. 1.1a) (Google Inc., 2014) and general-purpose mobile
robots (Marder-Eppstein, Berger, Foote, Gerkey, & Konolige, 2010).

Today, both MARINTEK through the MUNIN project (Dragland, 2014) and
DNVGL (Flæten, 2014) envisions the use of Autonomous Surface Vehicles (ASVs)
for transport at sea (Fig. 1.1b). The onshore transportation networks are reach-
ing their capacity, increasing the demand for alternatives. Due to the harsh
landscape, expanding road or rail networks in Norway is both difficult and ex-
pensive. One promising solution is therefore “short sea shipping” (Adams, 2015).
Normally, the cost of maintenance and crew makes this solution less viable. To

1

2 CHAPTER 1. INTRODUCTION

(a) Google’s self-driving car. (b) DNV GL’s Revolt

Figure 1.1: Two autonomous vehicles (images courtesy of Google and DNV GL).

overcome this, DNV GL suggest using an unmanned, fully electrical powered ves-
sel with a lower cruising speed of 6 knots. This design requires low maintenance
and is very cost-effective. The concept vessel is named “ReVolt”, and this thesis
is a part of a prototype that is currently being developed by DNV GL.

In ASV development, path planning and collision avoidance remains largely un-
solved challenges. Previous studies have to a great extent been limited to Wheeled
Mobile Robot (WMR) platforms. Although path planning and collision avoidance
algorithms for mobile robots have similar difficulties as their maritime counter-
parts, there are several important factors that differs. Firstly, WMRs are for the
most part either holonomic or have first-order nonholonomic constraints, where
ocean vehicles for the most part are underactuated with second-order nonholo-
nomic constraints. Secondly, when operating at sea, one must adhere to the
International Regulations for Avoiding Collisions at Sea (COLREGs).

In this thesis, a complete COLREGs compliant Guidance, Navigation and Control
(GNC) system, with the Velocity Obstacle (VO) method for collision avoidance,
is implemented and suggested as a versatile and robust basis for an ASV control
system architecture. The VO method is an intuitive method for collision avoid-
ance in the presence of moving obstacles, and imitates in many ways the mindset
of an experienced helmsman. The system has been developed using the Robotic
Operating System (ROS) framework.

1.2 Assumptions

The following assumptions has been made:

• All other vessels are motor-driven. For example, situations involving in-
teraction with sailboats, where the motor-driven vessel will always be the

1.3. CONTRIBUTION 3

give-way vessel, are not considered.

• Sufficient sensor data is always available (no dead-reckoning) and the system
is observable based on this sensor data.

• Information regarding other vessels is available, e.g., through sensors such
as radar, stereo-cameras, etc. This information is enough to determine pose
and velocity of the other vessels.

1.3 Contribution

The main contributions of this thesis are:

• A thorough review of the existing literature on the subject.

• An in depth analysis of the Velocity Obstacle (VO) algorithm as a collision
avoidance strategy for an ASV operating under COLREGs requirements.

• An implementation of the algorithm together with the necessary framework
ready for full-scale experiments.

• Algorithm performance validation through extensive simulations together
with a rich discussion and recommendations for future development and
improvements.

1.4 Thesis Structure

Chapter 2 provides a review of the most prominent research on guidance sys-
tems for maritime applications in recent years together with research from the
mobile robotics field. Chapter 3 presents the necessary theoretical background
and Chapter 4 explains the implementation of the system. In Chapter 5, the
results from a selected set of simulated scenarios are given. A discussion of the
challenges and possible extensions to the system is given in Chapter 6 and 7.
Finally, a conclusion is given in Chapter 8.

There are three chapters in the Appendix. First, a general introduction to ROS,
secondly system implementation details and finally a collection of source code
examples.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Literature Review

Since the latter part of the 20th century, planning algorithms has been an increas-
ingly popular research area. Despite decades of research, no unified approach or
solution to the planning problem has been found. For a comprehensive collection
of general planning algorithms, the reader is referred to LaValle (2006).

This chapter reviews several of the main contributions to autonomous maritime
navigation research in recent time.

2.1 Overview Papers

Unfortunately, the amount of overview or review papers on the topic of maritime
path planning and collision avoidance systems is next to none. The studies most
often referred to are presented in this section.

Campbell, Naeem, and Irwin (2012) review the state of research on ASVs in
2012. The article focuses on GNC and motion planning aspects and highlight
development needs. It lists Unmanned Surface Vehicle (USV) prototypes for re-
search (Majohr, Buch, & Korte, 2000; Bibuli, Bruzzone, Caccia, Indiveri, & Ziz-
zari, 2008; Naeem, Sutton, & Chudley, 2006) and military applications (Corfield
& Young, 2006; Rafael Advanced Defense Systems Ltd., 2010; Larson, Bruch,
& Ebken, 2006). The authors continue with an analysis of the most common
control and guidance laws used, together with obstacle detection and avoidance
architecture and map representations. The paper considers only one type of local
methods, potential field methods. Potential field methods (Khatib, 1986) has

5

6 CHAPTER 2. LITERATURE REVIEW

been proposed for USV collision avoidance in the past (Lee, Kwon, & Joh, 2004),
however they are associated with several inherent limitations such as oscillation
problems near obstacles and in narrow passages (Koren & Borenstein, 1991).
Evolutionary algorithms and heuristic A*-like methods are suggested for path
planning purposes. Finally, a review of the main COLREGs rules and how to
apply COLREGs for a multiple USVs in cooperation is given. The article gives
an overall good introduction to the challenges faced when developing an ASV,
however it lacks depth on collision avoidance methods.

Tam, Bucknall, and Greig (2009) review the development of collision avoidance
techniques and path planning for ships in a historical context. The article pro-
vides a good and comprehensive historical background on the subject.

2.2 Planning Algorithms for Ocean Vehicles

Benjamin, Leonard, Curcio, and Newman (2006) propose a behavior-based method
for avoiding collisions and adhering to COLREGs (Fig. 2.1). The behavior-based
methodology takes away the need for a single complex world model of which de-
cisions has to be made from and replaces it with a discrete decision space. The

World

Action
selection

Behavior

Sense Act

Behavior

Behavior

(a) Behavior-based control scheme

World

Model

Plan

Sense

Act

(b) Conventional control scheme

Figure 2.1: Differences between behavior-based control and conventional control.
Behavior-based control compose vehicle behavior into distinct modules that are
developed and operate largely in isolation, and coordinated through an action
selection mechanism (Benjamin, Leonard, Curcio, & Newman, 2006).

primary difficulty associated with behavior-based control is how to ensure the
action selected is in the overall best interest of the robot or vehicle. The two
main approaches to this is to either select one of the actions and apply it or to
apply the sum of two or more actions (averaging). The authors suggest using in-

2.2. PLANNING ALGORITHMS FOR OCEAN VEHICLES 7

terval programming (an optimization technique) to find the best weighted sum of
actions. The system has been tested on a physical platform and shows promising
results. The behavior-based method significantly reduce the level of complexity
of the behavioral analysis, since the system acts as a finite state machine. I.e.,
the system is not able to take any actions other than the already predefined
ones. However, guaranteeing stability and COLREGs compliance may prove to
be difficult, if not impossible. As such, the method may still be considered ex-
perimental and needs to be more rigorously tested. For example, the behavior at
the boundary between COLREGs rules or in situations where the best course of
action may change as the situation progresses.

Larson et al. (2006, 2007) propose a hybrid approach with an A*-based method
for global navigation and a behavior-based common world model as the reactive
(or local) planner. The global path planner utilizes the VO method (Fiorini &
Shiller, 1993) to determine safe velocity ranges for avoiding moving obstacles.
If changing the velocity alone does not guarantee collision avoidance, the path
planner changes the path by using Projected Obstacle Areas (POAs) (Fig. 2.2),
i.e., an estimate of the region an obstacle is likely to occupy in the future. The

(a) Standard POA (b) Starboard action (c) Increased surge velocity

Figure 2.2: Projected Obstacle Areas (POAs). The POAs define regions in the
obstacle map dynamic obstacles are likely to occupy during the next planning
cycle.

local world model is a fusion of all near-field sensors and individual behaviors
vote on specific navigation solutions within the local model. This approach has
its roots from the Morphin planning algorithm (Simmons & Henriksen, 1996).
The system calculates an array of arcs and each behavior votes on these. For
the obstacle avoidance behavior, each arc is given a score based on the distance
the vehicle can travel before encountering an obstacle. Clearly, this is similar
to the Dynamic Window (DW) approach (Fox, Burgard, & Thrun, 1997). The
system is deployed on a SEADOO Challenger 2000 sport boat, but the authors
does not present any results from sea trials or simulated scenarios. In addition,
COLREGs compliance is only implemented as a part of the path planner and not
the reactive planner, however a sufficiently fast replan rate for the path planner
might rectify this.

8 CHAPTER 2. LITERATURE REVIEW

In Loe (2007) several popular methods are compared and provide a basis for the
approach used in Loe (2008). A Matlab simulation environment was implemented
in order to compare algorithm performance, and based on the results a hybrid ap-
proach with A*-guided Rapidly-exploring Random Trees (RRTs) (LaValle, 1998)
for global path planning and the dynamic window algorithm for local collision
avoidance was recommended. Loe (2008) propose modifications to the methods
to incorporate proper COLREGs behavior and improve their overall performance.
Most notably, more of the vessel dynamics are considered in the DW algorithm –
in particular sway motion and acceleration constraints (Fig. 2.3). Thus changing
the method from exploring circular arcs to more dynamically feasible trajecto-
ries. The system was tested in Trondheimsfjorden in cooperation with Maritime

(a) Original (b) Modified

Figure 2.3: Modified DWA algorithm. Incorporating lateral velocities and accel-
erations allows for more accurate trajectories (Loe, 2008).

Robotics yielding promising results. Because of the random nature of RRTs,
the paths generated are unpredictable and sub-optimal. The method is origi-
nally intended for use with high degree of freedom systems with nonholonomic
constraints. To increase optimality and reduce unpredictability, an A* search is
used to guide the RRTs. One may argue that it may be more effective to include
vehicle dynamics in the A* search directly rather than use two separate methods.

Naeem, Xu, Sutton, and Tiano (2008) describe the system architecture for the
Springer USV, an USV designed for environmental monitoring and pollutant
tracking. The paper describes both hardware and software architecture, includ-
ing sensor suite, system identification and GNC. A prediction error method was
used for system identification with good results. The navigation system uses a

2.2. PLANNING ALGORITHMS FOR OCEAN VEHICLES 9

fuzzy logic adaptive Kalman filter (FLA Kalman filter) as a fault-tolerant multi-
sensor navigation strategy (Fig. 2.4). The guidance and control system consists of

Local
Filter

Sensor n

Sensor 2

Sensor 1 Fault?

Fault?

Fault?

Local
Filter

Local
Filter

Master
Filter

Reference
Filter

Global
Estimation

Figure 2.4: Fault-tolerant sensor fusion. If the sensor is free of faults, its signal
is passed on to a local filter that compares its estimate against a reference filter.
The local estimation sent to a master filter with a weight of 1/βi for sensor i.

a Line of Sight (LOS) guidance algorithm in combination with a Linear Quadratic
Gaussian (LQG) controller. The USV does not, however, feature any path plan-
ning or obstacle avoidance systems. Naeem, Irwin, and Yang (2012) explore
the development of a collision avoidance scheme for the USV based on A* path
planning and a manual bias for COLREGs compliant avoidance maneuvers. The
article provides simulations of the system performing relatively simple avoidance
maneuvers, e.g., avoiding static obstacles and simple COLREGs maneuvers.

The Autonomous Maritime Navigation (AMN) project (Elkins, Sellers, & Monach,
2010) is one of the most mature autonomous marine system in existence today.
Elkins et al. (2010) describe the system as a whole; its sensor suite, data fu-
sion, real-time control system, communications and more. Over the course of
the project three USVs was developed (Fig. 2.5). The article presents the results
from several full-scale experiments with in depth analysis and an extensive dis-
cussion. Kuwata, Wolf, Zarzhitsky, and Huntsberger (2011, 2014) present the VO
approach for moving hazard avoidance (Sec. 3.6), the collision avoidance strategy
used in the AMN project. They argue that other methods such as fuzzy logic,
evolutionary algorithms, interval programming, and 2D grid maps does not scale
well to multiple traffic boats and multiple COLREGs rules. Because of this, these

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.5: Powervent USV prototype, the second of three USV prototypes used
in the AMN project (image courtesy of U.S. Navy).

methods are ill suited for robotic platforms with hard real-time demands. The
VO method on the other hand scales linearly with the number of obstacles. Fur-
thermore, due to the nature of the velocity obstacle approach, augmenting the
collision avoidance system to comply with the main COLREGs rules is relatively
straight forward (Sec. 4.4) as the VO already has information on which side of
the hazard the USV will pass (the USV will either pass on the left, right or move
away from the hazard (Sec. 3.6.2)). Full scale experimental results using a USV,
a 12m traffic boat and two 7 m RHIBs are presented. Their system uses two
pairs of stereo cameras to estimate the position and velocity of the traffic boats
(Huntsberger, Aghazarian, Howard, & Trotz, 2011). In particular, two scenarios
are presented: “Head-On and Crossing” and “Overtake, Head-On and Crossing”.
These are both relatively complex scenarios that requires applying multiple COL-
REGs maneuvers. In these scenarios, the system behaves very well and shows
promising results for the VO algorithm for collision avoidance.

Švec et al. (2013, 2014) introduce a dynamics aware (i.e., system-identified, non-
linear USV model) COLREGs compliant planning algorithm for target following.
Furthermore, the algorithm is capable of predicting the future motion of obstacles
using worst-case and probabilistic predictive motion models. The vessel utilized
in the paper is the WAM-V USV14, with a differential thrust system. The equa-
tions of motion are given in a standard 3-DOF form (Fossen, 2011). By applying
a control action uc,d,k ∈ Uc,d(sj) ⊆ Uc(xj) from a discretized set of dynamically
feasible control actions Uc,d, multiple trajectories may be generated. A discrete
control action primitive uc,d,k ∈ Uc,d is represented as a sequence of USV poses
{ηi}Lk

i=1 ∈ Xη×T . An A* search is used to find the “best” control action, e.g., the
one that makes most progress towards the goal. By forward simulating the con-

2.2. PLANNING ALGORITHMS FOR OCEAN VEHICLES 11

trol actions (using the dynamic model of the system) and checking for collisions,
a set Uc,obs is found, defining the obstacles in the control space. This is similar to
the Generalized VO scheme (Wilkie, van den Berg, & Manocha, 2009). When the
collision free control space has been determined, COLREGs compliant maneuvers
are found by examining the relative bearing, heading and position between the
USV and the obstacle, comparable to the method used by Kuwata et al. (2011,
2014). The authors present results from on-water trials showing good behavior
in both COLREGs and target following scenarios. Švec et al. (2014) also include
an excellent literature review on technology applied to USV platforms.

Savvaris, Oh, and Tsourdos (2014) present the C-Enduro, a USV designed to
operate at sea for up to three months at a time. The USV employs an algorithm
similar to the collision cone approach (Chakravarthy & Ghose, 1998) or veloc-
ity obstacle (Fiorini & Shiller, 1998) for reactive collision avoidance, using the
relative velocity between the USV and other ships to determine safe velocities.
The system determines COLREGs rules based on which quadrant an obstacle
ship is in the body-fixed coordinate system of the USV. The authors only present
simulated data to verify its performance in minimal scenarios.

Lee et al. (2004) propose the Modified Virtual Force Field (MVFF) method as
a modification of the classical Virtual Force Field (VFF) method (Borenstein
& Koren, 1989). The MVFF method operates in either a “track-keeping” or
“collision avoidance” mode. The objective of the first mode is to bring the vehicle
to a desired track, presuming it has gone astray from this track. The second mode
handles static and dynamic obstacles whilst adhering to COLREGs. Two forces
~Fa = α~ea and ~Fr = β~ep are defined. They act as an attractive force towards
the goal and a repulsive force from an obstacle respectively, where ~ea, ~er are
unit vectors in the two directions and α, β are parameters determined using a
set of fuzzy rules. Several simulated results are given with promising results,
however all the simulations only show single obstacle avoidance. Koren and
Borenstein (1991) demonstrated the limitations of potential field methods and
the VFF method in particular, but Lee et al. (2004) does not address any of
these difficulties. It is likely that the method would suffer from oscillations in
more complex multi-obstacle environments.

There has been several other studies on using fuzzy logic or machine learning tech-
niques for collision avoidance, e.g., Perera, Carvalho, and Soares (2009), Zhang
et al. (2014), but none has provided more than simulated results in minimal
scenarios.

12 CHAPTER 2. LITERATURE REVIEW

2.3 Other Planning Algorithms

Planning algorithms for maritime applications accounts for only a fraction of the
total research in the field. Most research today is focused on WMRs and car-
like robots. In many cases, this research is almost directly applicable to ocean
vehicles. An excerpt of the available literature is presented here.

Rodríguez-Seda, Tang, Spong, and Stipanović (2014) developed a nonlinear con-
troller for trajectory tracking and dynamical collision avoidance. The controller
is based on an input-output linearizing feedback controller where system has the
dynamics of a unicycle (two drive-wheels WMR). It is split in two, with one part
for trajectory tracking and one part for collision avoidance. The article is rigor-
ous, with Lyapunov-based proofs for stability of the methods, however due to the
assumptions made about the system, the methods may be less applicable to sur-
face vessels. In particular, the decoupling of surge force and yaw moment is not
valid for underactuated surface vessels. Furthermore, only stability for the yaw
angle is proven, not asymptotic stability, rendering the yaw angle uncontrollable.
This may cause challenges in an attempt to incorporate COLREGs compliance
into the method. In addition, the collision avoidance control law is based on
“avoidance functions” that are similar to potential field methods (Khatib, 1986),
known for their fundamental challenges (Koren & Borenstein, 1991).

The Defense Advanced Research Projects Agency (DARPA) Grand Challenges
(Wikipedia, 2015b) has been catalysts for several new and promising autonomous
systems. Montemerlo et al. (2008) present the autonomous robotic vehicle “Ju-
nior” that participated in the DARPA Urban Challenge. The article gives an
overview of the whole autonomous system, including software architecture, envi-
ronment detection, localization and navigation. Its navigation system consists of
a road network navigation module and a free-form navigation module, the latter
being most applicable to maritime navigation. The free-form planner, named
the hybrid-state A* search, is described in detail in Dolgov, Thrun, Montemerlo,
and Diebel (2010). As the name suggests, it is based on the very popular A*
search (Hart, Nilsson, & Raphael, 1968), but is modified to better suit the non-
holonomic nature of a car. By using the vehicle dynamics to expand viable nodes,
the algorithm ensures path feasibility at the cost of completeness. During the ini-
tial search, only three control actions are considered for each node expansion: left
turn, right turn and straight ahead. Later, a gradient-based smoothing technique
is used to optimize the path. The authors also describe several clever heuristic
methods to improve the search speed and path quality. One of the techniques is
to use Voronoi-based potential fields to recognize environmental structures and
mitigate “contour hugging” (Nord, 2010; Stenersen, 2014), a phenomena caused
by the fact that the shortest path in an environment with obstacles tend to lie

2.3. OTHER PLANNING ALGORITHMS 13

along the boundary of one or more of these obstacles. The algorithm performs
very well in several scenarios and may be very well suited as a global planner for
an ASV (Stenersen, 2014).

Marder-Eppstein et al. (2010) present a system for robust autonomous navigation
in an indoor office environment. The paper describes all the necessary methods
required for such a system, including local and global planners, a Voxel-based
3D mapping algorithm for modeling unknown space as well as an open-source
implementation of the whole system together with a simulation environment.
The framework used is the now well-known Robotic Operating System (Open
Source Robotics Foundation, 2014). The system uses A* as a global guide for a
local DW algorithm. The A* search has long been the probably most popular
method for path planning, but it has some critical drawbacks making it less
suitable for path planning for ocean vehicles. One of which is its tendency to
produce paths containing 90◦ turns, rendering paths impossible for an ocean
vehicle to follow. In practice, it is common to apply some sort of smoothing
algorithm to the paths afterwards to rectify this. To mitigate “contour hugging”,
all obstacles are expanded by the safety radius of the robot. This is not ideal
when navigating at sea, where it is preferable to keep good distance from the shore
and a too large safety radius may render normally feasible paths unfeasible. The
Voronoi-based guiding heuristics (Dolgov et al., 2010) may solve this efficiently
(Stenersen, 2014).

14 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Theoretical Background

3.1 Surface Vessel Modeling

The marine craft equations of motion can be written on a general vectorial form
(Fossen, 2011)

η̇ = JΘ(η)ν
Mν̇ + C(ν)ν + D(ν)ν + g(η) + g0 = τ + τext,

(3.1)

Using the notation of Fossen (2011):

veb/n = linear velocity of the point ob with respect to {n} expressed in {e}
ωbn/e = angular velocity of {n} with respect to {e} expressed in {b}

fnb = force with line of action through the point ob expressed in {n}
mn
b = moment about the point ob expressed in {n}

Θnb = Euler angles between {n} and {b}

For simplicity, we operate with only two coordinate frames in this thesis: the
North, East, Down (NED) frame, {n}, and the body-fixed frame, {b}. The three
vectors in Equation (3.1) describing the motion of the surface vessel may now be
defined

η =
[
pnb/n
Θnb

]
, ν =

[
vbb/n
ωbb/n

]
, τ =

[
f bb
mb
b

]
, (3.2)

15

16 CHAPTER 3. THEORETICAL BACKGROUND

where η ∈ R3 × SO(3) is the position and orientation vector, ν ∈ R6 the linear
and angular body-fixed velocity vector and τ ∈ R6 the generalized force vector
respectively. The vector components follow the SNAME (1950) notation and
naming conventions:

pnb/n = (N, E, D)> ∈ R3 Θnb = (φ, θ, ψ)> ∈ SO(3)
vbb/n = (u, v, w)> ∈ R3 ωnb/n = (p, q, r)> ∈ R3

f bb = (X, Y, Z)> ∈ R3 mb
b = (K, M, N)> ∈ R3

where motion in the (x, y, z) directions are known as surge, sway and heave mo-
tion and rotation about the same axes is known as roll, pitch and yaw respectively.

Figure 3.1: 6-DOF marine vessel naming and notation.

In this thesis, a simplified 3-DOF vessel model (Fossen, 2011) is used to describe
the surface vehicle motions in the horizontal plane. This model is chosen for its
generality, as it may describe the motion of a wide range of surface vehicles with
sufficient accuracy. By extracting the components related to motion in surge,
sway and yaw from (3.1), the 3-DOF equations of motion may be written

η̇ = J(ψ)ν
Mν̇ + C(ν)ν + D(ν)ν = τ + τext,

(3.3)

where η = (N, E, ψ)> = (x, y, ψ) ∈ R2 × SO(2), ν = (u, v, r)> ∈ R3 and
τ = (X, Y, N)> ∈ R3. For simplicity, the body origin is chosen such that it
coincides with the vessel’s center of gravity.

3.1. SURFACE VESSEL MODELING 17

The transformation matrix J(ψ) in (3.3) is equal to the rotation matrix

J(ψ) , Rz,ψ =

cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 . (3.4)

M = MRB + MA is the mass matrix consisting of the rigid-body mass and
hydrodynamic added mass.

MRB =

m 0 0
0 m 0
0 0 Iz

 , MA = −

Xu̇ 0 0
0 Yv̇ Yṙ
0 Nv̇ Nṙ

 , (3.5)

where m is the vessel mass and Iz is the moment of inertia about the z-axis.

C(ν) = CRB(ν) + CA(ν) is the Coriolis and centripetal matrix. The rigid-body
and added Coriolis matrices for our system are

CRB(ν) =

 0 0 −mv
0 0 mu
mv −mu 0

 ,
CA(ν) =

 0 0 Yv̇v + Yṙr
0 0 −Xu̇u

−Yv̇v − Yṙr Xu̇u 0

 .
(3.6)

Finally, D(ν), is the nonlinear damping matrix. It may be defined as

D(ν) = DL + DNL(ν) (3.7)

where DL accounts for linear damping and DNL accounts for nonlinear damping

DL = −

Xu 0 0
0 Yv Yr
0 Nv Nr

 ,
DNL(ν) = −

X|u|u|u|+Xuuuu
2 0 0

0 Y|v|v|v|+ Yvvvv
2 0

0 0 N|r|r|r|+Nrrrr
2

 .
(3.8)

3.1.1 Actuator Forces and Low-level Control

The actuator forces are given through the generalized force vector τ . It is assumed
that the vessel has only two control inputs: the propeller force and rudder angle,

18 CHAPTER 3. THEORETICAL BACKGROUND

and therefore the vessel is underactuated (Fossen, 2011). This is modeled with
the force vector

τ =

XY
N

 =

 Fx
Fy
lrFy

 , (3.9)

where lr is the rudder length. Fx ∝ n cos δ and Fy ∝ n sin δ, given propeller shaft
speed n and rudder deflection angle δ.

In the simulator, feedback linearization is used (Sec. 4.2.1), however in a practical
situation where an accurate vessel model is unattainable, other control methods,
such as a multi-variable PID controller, would most likely yield better results.

3.1.2 Environmental Forces

Environmental disturbances act upon the vessel through the disturbance vector
τext. In this thesis, the environmental forces are split in two parts: slow varying
(e.g. wind and current forces), τc, and fast varying (first-order wave forces), τw.

Slow Varying Forces

Slow varying forces such as ocean currents, wind and second-order wave forces
are combined into one constant force acting in the NED frame. It is assumed
that these forces are irrotational. Thus, the combined ocean current and wind
effect is given as

τc =

Xc

Yc
0

 . (3.10)

First-order Wave Forces

First-order wave forces are modeled as filtered Gaussian white noise (Brown &
Hwang, 2012). The filter is a second-order wave transfer function approximation
(Fossen, 2011) on the form

h(s) = Kws

s2 + 2λω0s+ ω2
0
, Kw = 2λω0σ, (3.11)

where σ describes the wave intensity, λ is a damping coefficient and ω0 is the
dominating wave frequency. The waves affect the motion of the ASV in surge,

3.2. CONFIGURATION SPACES 19

sway and yaw. Thus three independent wave filters are needed for modeling the
wave disturbance in all degrees of freedom.

A state space representation of the wave filter may be written as[
ξ̇w
τ̇w

]
=
[

0 I
−Ω2

0 −2ΛΩ0

]
︸ ︷︷ ︸

Aw

[
ξw
τw

]
+
[

0
Kw

]
︸ ︷︷ ︸

Ew

w,

y =
[
0 I

]︸ ︷︷ ︸
Cw

[
ξw
τw

]
,

(3.12)

where ξw ∈ R3 is an internal filter state, τw ∈ R3 is the generalized wave forces
and w ∈ R3 is a vector of Gaussian white noise. I ∈ R3×3 is the identity matrix,
and the matrices Ω0,Λ,Kw ∈ R3×3 are chosen as

Ω0 = diag(ω0,X , ω0,Y , ω0,N),
Λ = diag(λX , λY , λN),

Kw = diag(Kw,X ,Kw,Y ,Kw,N).
(3.13)

3.2 Configuration Spaces

Spong, Hutchinson, and Vidyasagar (2006) define a robot’s configuration, q, as
“. . . a complete specification of the location of every point on the robot.” Further-
more, the configuration space, C, is defined as “the set of all possible configura-
tions”.

For a 3-DOF surface vehicle, its configuration is η = (x, y, ψ)> and its configu-
ration space is C = R2 × SO(2). The set of configurations for which the vehicle
collides with an obstacle is referred to as the configuration space obstacle and is
defined as

CO = {η ∈ C | A(η) ∩ O 6= ∅}, (3.14)

where O = ∪Oi is the total space occupied by all obstacles and A(η) is the
space occupied by robot A for a given configuration η. The set of collision-free
configurations, the free configuration space, is

Cfree = C\CO. (3.15)

To ease computational demands, higher order configuration spaces are often col-
lapsed in to a simple two- or three-dimensional cartesian space (Fig. 3.3) by
approximating the vessel as a disc (Fig. 3.2) or a sphere.

20 CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.2: Approximating a vessel as a disc. With a long slender vessel as B,
the disc approximation worsens.

(a) A two-dimensional snapshot of the
three-dimensional configuration space

(b) Collapsed configuration space

Figure 3.3: Collapsing a three-dimensional configuration space. By approximat-
ing the vessel as a disc of radius r, the three-dimensional configuration space may
be collapsed into two dimensions by “padding” all obstacles as shown in (b).

3.3 Planning Algorithms

The term planning algorithms was first introduced in LaValle (2006) as a broad
term referring to a common ground between the fields of artificial intelligence,
robotics and control theory. The term encompasses a broad range of algorithms
often distinguished in two categories: local and global methods.

3.3. PLANNING ALGORITHMS 21

3.3.1 Local Methods

Local methods, often reffered to as reactive or dynamic, considers the immediate
environment obtained through available sensor information and plan accordingly.
They are responsive and orders of magnitude faster than global methods. How-
ever, as they only considers a subset of the configuration space, they are sus-
ceptible to local minima and may get “stuck” (Fig 3.4). Some examples of local
methods are the Dynamic Window (DW) (Fox et al., 1997), the Virtual Force
Field (VFF) (Borenstein & Koren, 1989) and Vector Field Histogram (VFH)
(Borenstein & Koren, 1991).

Goal

Figure 3.4: Local method getting stuck near local minima. As the vessel travels
towards the goal, it is unable to recognize the dead-end. A local method is a
“greedy” method, meaning that it only considers solutions optimal at the current
time step. Getting unstuck requires moving away from the obstacle, a “sub-
optimal” choice, for several time steps. The dashed rectangle indicates the field
of vision of the local method.

3.3.2 Global Methods

Global methods considers the full configuration space. They use a priori knowl-
edge, e.g., a map, to find a complete sequence of states describing a complete mo-
tion from the initial state to the final state. Many global methods are complete,
meaning that if such a sequence of states exists, it will find it. These methods
are sometimes referred to as deliberate in the literature. As the global methods
compute all subsequent motions and not just the next, they are naturally slower
than their local counterparts. By reducing accuracy, using heuristics or by other
means, some methods may run in a fraction of a second, but they are still in
general regarded as slow. Examples of global methods are A* (Hart et al., 1968),

22 CHAPTER 3. THEORETICAL BACKGROUND

Rapidly-exploring Random Trees (RRTs) (LaValle, 1998) and Hybrid-state A*
(Montemerlo et al., 2008; Dolgov et al., 2010).

3.4 Guidance Laws

Most local methods expect a single goal configuration or a control input reference,
but often it is desirable to be able to give the system a set of waypoints or a path
obtained from global methods. Thus, a path tracking scheme is needed. Popular
methods are the simple pure pursuit scheme (Fossen, 2011, p. 244) or the more
advanced Line of Sight (LOS) method (Fossen, Breivik, & Skjetne, 2003; Fossen,
2011) (Fig. 3.5).

North

East

LOS Vector

(a) Line of sight guidance

North

East

(b) Pure pursuit guidance

Figure 3.5: Guidance algorithms. The LOS algorithm (a) steers the vessel onto
the line between the waypoints, where as the pure pursuit method (b) simply
steers the vessel towards its current waypoint.

Pure Pursuit Guidance

The pure pursuit method (Fig. 3.5b) is the simplest form of waypoint following
and is given as

ψd = atan2(yk − y, xk − x), ud = u0, (3.16)

3.4. GUIDANCE LAWS 23

where wk = (xk, yk)> is the coordinate of the current waypoint and u0 is a
predefined desired surge speed. The method essentially steers the vessel towards
the current waypoint.

Line of Sight Guidance

The LOS method (Fig. 3.5a) steers the vessel towards the straight line in between
the previous and current waypoint. The desired heading (or course) and surge
velocity set-points are given as

ψd = χp + χr(e), ud = u0, (3.17)

where

χp = atan2(yk − yk−1, xk − xk−1) (3.18)

is the path-tangential angle,

χr = atan2(−e, ∆) (3.19)

is the velocity-path relative angle,

e = −(x− xk) sinχp + (y − yk) cosχp (3.20)

is the cross-track error and ∆ is the predefined lookahead distance (Fig. 3.5a).

Optionally, one may want to add integral effect to counteract the effects of un-
known disturbances such as ocean current. This is know as the Integral Line of
Sight (ILOS) method and the velocity-path relative angle changes to

χr = atan2(−Kpe−Ki

∫ t

0
e(τ) dτ, ∆) (3.21)

One should always be careful when adding integral action as it adds a destabilizing
effect. It is common to limit the integrator (anti-windup) and reset at a waypoint
switch if the new path-tangential angle differs from the old by more than a certain
limit (e.g. 45◦).

Switching Criteria

When following a path described by a set of waypoints, one needs to know when
to switch to the next waypoint. One such method is known as the “circle of

24 CHAPTER 3. THEORETICAL BACKGROUND

acceptance” method (Fig. 3.6a). Given the current waypoint wk = (xk, yk)>,
the switching criterion is defined as follows

(xk − x)2 + (yk − y)2 ≤ R2
a, (3.22)

i.e., when Equation (3.22) holds, the controller switches to the next waypoint.

North

East

(a) Circle of acceptance method

North

East

(b) Progress along path method

Figure 3.6: Switching criterions. The circle of acceptance method (a) will make
sure every waypoint is visited, whereas the progress along path method (b) allows
deviation from the path.

An alternative strategy is to switch waypoint whenever the vessel “passes” the
current waypoint, i.e., when the vessel crosses the line normal to the waypoint
line. This method is known as the “progress along path” method (Fig. 3.6b) (Loe,
2008; Stenersen, 2014) or “along-track” method (Fossen, 2011). The switching
criterion now becomes

(xk − x) cosχp + (yk − y) sinχp ≤ Ra (3.23)

Which of the switching criteria to use depends on the intention of the waypoints.
If it is critical that all waypoints are visited, then the former criterion is best
suited. However, if the purpose of the waypoints is to make up a path for the
vessel to follow, the latter should be used.

3.5. COLREGS – FOLLOWING THE RULES OF THE ROAD 25

3.5 COLREGs – Following the Rules of the Road

The International Maritime Organization (IMO) established the International
Regulations for Avoiding Collisions at Sea (COLREGs) in 1972 (International
Maritime Organization, 2003). COLREGs is based on a long history of regula-
tions for preventing collisions at sea, dating back to 1840. At that time there
was no single set of international rules and practices, giving rise to dangerous
confusion between vessels at the risk of colliding (Wikipedia, 2015c). Over the
next century an international standard emerged, culminating into the now well
known COLREGs.

COLREGs is divided into five parts (A–E), but in this thesis it is the rules covered
in Part B – Steering and Sailing that is most applicable. Of the rules in this part,
rules 8 (b) and (d), 13, 14, 15, 16 and 17 are most relevant. There are three main
scenarios to be considered: head-on, overtaking and crossing.

3.5.1 The Rules

Rule 8: Action to Avoid Collision

(b) Any alteration of course and/or speed to avoid collision shall, if the circum-
stances of the case admit, be large enough to be readily apparent to another
vessel observing visually or by radar; a succession of small alterations of
course and/or speed should be avoided.

(d) Action taken to avoid collision with another vessel shall be such as to re-
sult in passing at a safe distance. The effectiveness of the action shall be
carefully checked until the other vessel is finally past and clear.

Rule 13: Overtaking

(a) Notwithstanding anything contained in the Rules of part B, sections I and
II, any vessel overtaking any other shall keep out of the way of the vessel
being overtaken.

(b) A vessel shall be deemed to be overtaking when coming up with another
vessel from a direction more than 22.5 degrees abaft her beam, that is, in
such a position with reference to the vessel she is overtaking, that at night
she would be able to see only the sternlight of that vessel but neither of her
sidelights.

26 CHAPTER 3. THEORETICAL BACKGROUND

(c) When a vessel is in any doubt as to whether she is overtaking another, she
shall assume that this is the case and act accordingly.

(d) Any subsequent alteration of the bearing between the two vessels shall not
make the overtaking vessel a crossing vessel within the meaning of these
Rules or relieve her of the duty of keeping clear of the overtaken vessel until
she is finally past and clear.

Beam

Figure 3.7: COLREGs rule 13: overtaking. In an overtaking situation the over-
taking vessel may pass the other vessel on either side as long as sufficient distance
is kept.

Rule 14: Head-on

(a) When two power-driven vessels are meeting on reciprocal or nearly recipro-
cal courses so as to involve risk of collision each shall alter her course to
starboard so that each shall pass on the port side of the other.

(b) Such a situation shall be deemed to exist when a vessel sees the other ahead
or nearly ahead and by night she could see the masthead lights of the other
in a line or nearly in a line and/or both sidelights and by day she observes
the corresponding aspect of the other vessel.

(c) When a vessel is in any doubt as to whether such a situation exists she shall
assume that it does exist and act accordingly.

Rule 15: Crossing

When two power-driven vessels are crossing so as to involve risk of collision, the
vessel which has the other on her own starboard side shall keep out of the way and

3.5. COLREGS – FOLLOWING THE RULES OF THE ROAD 27

(a) Correct (b) Incorrect

Figure 3.8: COLREGs rule 14: head-on. In a head-on situation both vessels are
give-away vessels and are to change their course starboard.

shall, if the circumstances of the case admit, avoid crossing ahead of the other
vessel.

(a) Correct (b) Incorrect

Figure 3.9: COLREGs rule 14: crossing. In a crossing situation the give-away
vessel is the one with the other on its starboard side.

Rule 16: Action by Give-away Vessel

Every vessel which is directed to keep out of the way of another vessel shall, so
far as possible, take early and substantial action to keep well clear.

Rule 17: Action by Stand-on Vessel

(a) (i) Where one of two vessels is to keep out of the way the other shall keep
her course and speed.

(ii) The latter vessel may however take action to avoid collision by her
manoeuvre alone, as soon as it becomes apparent to her that the vessel
required to keep out of the way is not taking appropriate action in
compliance with these Rules.

(b) When, from any cause, the vessel required to keep her course and speed
finds herself so close that collision cannot be avoided by the action of the
give-way vessel alone, she shall take such action as will best aid to avoid
collision.

28 CHAPTER 3. THEORETICAL BACKGROUND

(c) A power-driven vessel which takes action in a crossing situation in accor-
dance with subparagraph (a)(ii) of this Rule to avoid collision with another
power-driven vessel shall, if the circumstances of the case admit, not alter
course to port for a vessel on her own port side.

(d) This Rule does not relieve the give-way vessel of her obligation to keep out
of the way.

3.5.2 COLREGs for an ASV

To determine a COLREGs situation, a combination of previous approaches is
used (Kuwata et al., 2014; Loe, 2008; Švec et al., 2013). A collision situation
is first identified by computing the Closest Point of Approach (CPA), given the
current poses of the ASV and the potential hazard.

Closest Point of Approach

Let pA be the position of the ASV and pB be the position of the obstacle and
let vA and vB be their velocity vectors in the global frame. Then, the time to
CPA may be found as (Kuwata et al., 2014)

tCPA = (pB − pA) · (vA − vB)
‖vA − vB‖

(3.24)

and the distance between the vessel at CPA (Fig. 3.10) is then

dCPA = ‖(pA + vAtCPA)− (pB + vBtCPA)‖ . (3.25)

Note that if ‖vA − vB‖ → 0 then tCPA → ±∞, where the physical interpretation
of this is that the vessels follow the same course with equal speed and the distance
between the vessels will remain constant.

Thus, the vessel is deemed to be in a collision situation if

0 ≤ tCPA ≤ tmax ∧ dCPA ≤ dmin (3.26)

COLREGs Rule Selection

When a possible collision situation is present, it remains to identify the applicable
COLREGs rule. An efficient and easy way of determining the situation is to

3.5. COLREGS – FOLLOWING THE RULES OF THE ROAD 29

Figure 3.10: Closest Point of Approach. At time tCPA, the two vessels reaches
the Closest Point of Approach (CPA), with the distance dCPA. In this case
dCPA < dmin and the situation is classified as a potential collision situation.

calculate the relative bearing β between the ASV and the approaching hazard.
The relative bearing is found as

β = atan2(yA − yB , xA − xB)− ψB (3.27)

With the relative bearing found, the COLREGs situation is determined according
to Figure 3.11. Four different sectors are defined, each corresponding to a different
COLREGs situation. The limits for the overtaking sector are given directly
from Rule 13, however the limits for the remaining sectors are more difficult to
determine. A size of 30◦ was used in Loe (2008), Benjamin et al. (2006), Colito
(2007) and this choice seems reasonable. Thus, the sectors are defined as

1. Head-on: β ∈ [−15◦, 15◦)

2. Crossing from right: β ∈ [15.0◦, 112.5◦)

3. Overtaking: β ∈ [112.5◦, 180◦) ∪ [−180◦,−112.5◦)

4. Crossing from left: β ∈ [−112.5◦,−15◦)

Note that the relative bearing determines the type of COLREGs situation, not if
such a situation exists. This is established using the combined information from
the relative bearing and the vessels’ velocity vectors. Consider, for example,

30 CHAPTER 3. THEORETICAL BACKGROUND

A

B

Figure 3.11: COLREGs rule selection. The choice of COLREGs rule is based on
the relative bearing of the vessels. In this situation, the lower left vessel is the
give-away vessel in a crossing from right situation.

a situation where the relative bearing is in the overtaking zone, but the angle
between the velocity vectors is greater than 90◦, then this cannot be considered
an overtaking situation as the vessels are on opposite courses.

Furthermore, even though the relative bearing changes during a COLREGs ma-
neuver, it does not mean that the situation is necessarily over. If, for example,
the ASV is overtaking another vessel and seeing it on its left hand (port) side,
the overtaking situation is not over when the relative bearing enters the crossing
(from left) zone and the ASV is still the give-way vessel (Sec. 6.2.2).

3.6 Velocity Obstacles

The Velocity Obstacle (VO) is a collision avoidance concept that has been re-
invented several times over the last century under different names (Wikipedia,
2014), such as the maneuvering-board approach (Tychonievich et al., 1989), the
velocity obstacle (Fiorini & Shiller, 1993), collision cones (Chakravarthy & Ghose,
1998) and forbidden velocity maps (Damas & Santos-Victor, 2009). There has
also been proposed several extensions to the algorithm, e.g., generalized velocity
obstacles (Wilkie et al., 2009), reciprocal n-body velocity obstacles (van den Berg,

3.6. VELOCITY OBSTACLES 31

Guy, Lin, & Manocha, 2011a) and acceleration-velocity obstacles (van den Berg,
Snape, Guy, & Manocha, 2011b).

3.6.1 The Velocity Obstacle

First, we introduce a general definition:

Definition 3.1 The Velocity Obstacle (VO) for A induced by B is the set of all
relative velocities of A with respect to B that will result in a collision between A
and B.

In other words, the velocity obstacle is the set of velocities that, if chosen from,
will eventually lead to a collision between the two vessels (Fig. 3.12).

Let p ∈ R2 denote the position of a vessel and v ∈ R2 denote its velocity. The
relative position of the obstacle with respect to the vessel is pAB = pB − pA,
likewise their relative velocity is vBA = vA−vB . Furthermore, let a ray starting
from p going in the direction of v be defined as

λ(p,v) = {p + vt | t ≥ 0}. (3.28)

Given a vessel of shape A and an obstacle of shape B, the VO of obstacle B in
the velocity space of A may formally be written as

V OA|B = {vA | λ(pA,vBA) ∩ (B ⊕−A) 6= ∅}, (3.29)

where A⊕B = {a + b | a ∈ A,b ∈ B} is the Minkowski sum of the sets A and B
and −A = {−a | a ∈ A} is the reflection of the set A. Note that is analogous to

V OA|B = {vA | λ(pA,vBA) ∩ CO 6= ∅}, (3.30)

using the definition of configuration spaces given in Section 3.2 (Fig. 3.12a).

The definition can be simplified by assuming disc shaped vessels with the com-
bined radius rAB = rA + rB , giving

V OA|B = {vA | λ(pA,vBA) ∈ D(pAB , rAB)} , (3.31)

where D(x, r) is a disk with center x and radius r (Fig. 3.12b). Simplifying
the shape of the vessels is equivalent to collapsing the configuration space from
C = R2 × SO(2) to C = R2 (Sec. 3.2).

32 CHAPTER 3. THEORETICAL BACKGROUND

A

B

(a) The velocity obstacle using Minkowski
addition.

A

B

(b) The velocity obstacle with a collapsed
configuration space.

Figure 3.12: The velocity obstacle V OA|B may be found using Minkowski addi-
tion (a) or by reducing the problem by assuming disc shaped vessels (b). The red
polygon in (a) is the resulting configuration space obstacle found by taking the
Minkowski sum. If vessel A choose a velocity within the VO region, the vessels
will collide in finite time.

3.6.2 Properties of the Velocity Obstacle

The definitions of the velocity obstacle in Equations (3.29) and (3.31) are useful in
the mathematical sense, but not well suited for a control system implementation.
By investigating some of the geometrical properties of the method, the process
of determining if a velocity is in the VO region is greatly simplified.

The VO region has the geometric shape of a cone1, and may therefore be repre-
sented as

V OA|B = {vA | vBA · p⊥AB, left ≥ 0 ∧ vAB · p⊥AB, right ≥ 0} (3.32)

where (·) is the vector dot product and p⊥AB, left and p⊥AB, right are vectors perpen-
dicular to the left and right edges of the cone, respectively (Fig. 3.13) (Guy et al.,
2009). Noting the geometric relations in Figure 3.12 and 3.13, these vectors may

1This is true for both the general and simplified definition.

3.6. VELOCITY OBSTACLES 33

be found as

p⊥AB, left = R(−α+ π/2) pAB
‖pAB‖

, p⊥AB, right = R(α− π/2) pAB
‖pAB‖

, (3.33)

where R is the rotation matrix

R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
, (3.34)

and α is the angle between the center line and the cone edges, given as

α = arcsin
(
rA + rB
‖pAB‖

)
. (3.35)

Furthermore, the region outside of the VO may be split into three distinct parts
(Fig. 3.13) (Kuwata et al., 2014). Choosing a velocity in one of these regions
yields three distinct maneuvers.

Figure 3.13: Velocity obstacle regions. The velocity obstacle cone splits the
velocity space into four regions: the cone itself, V1 , V2 and V3.

The first set, V1, is found as

V1 =
{
vA | vA 6∈ V OA|B ∪ V3 ∧ [pAB × vBA]z < 0

}
, (3.36)

34 CHAPTER 3. THEORETICAL BACKGROUND

where the [·]z operator extracts the z component of the vector. If a velocity is
chosen from V1, vessel A will pass B seeing it on its right hand side. The second
set, V2, is found as

V2 =
{
vA | vA 6∈ V1 ∪ V3 ∪ V OA|B

}
. (3.37)

If a velocity is chosen from V2, vessel A will pass B seeing it on its left hand side.
The third set, V3, is found as

V3 = {vA | pAB · vBA < 0} . (3.38)

If the velocity is chosen from V3, vessel A will move away from the other vessel.
Note that definitions of these sets remains valid even for the formal definition of
the VO given in Equation 3.29.

Chapter 4

System Implementation

The system is implemented in both C++ and Python using the ROS framework.
One of the objectives of the thesis was to create a collision avoidance system
ready for full-scale integration. With this in mind, the choice of ROS as the main
development framework was an easy one.

The reader is referred to Appendix A and B for details regarding ROS and the
implementation.

4.1 System Architecture

The system is designed to be as modular as possible and this is achieved by
dividing the system into distinct components. The strict modular approach is
made easy with ROS due to its message passing architecture. Three main modules
have been developed:

• A simulator with low-level controllers

• LOS and pure pursuit guidance controllers

• A VO controller

These are implemented as their own ROS packages (or nodes), sharing informa-
tion through message passing.

The control flow of the system (Fig. 4.1) is similar to common guidance scheme
with the addition of the VO controller for obstacle avoidance. The ROS imple-

35

36 CHAPTER 4. SYSTEM IMPLEMENTATION

mentation for a simulated system (Fig. 4.2) follows the same structure where the
components are implemented as individual packages. Note the obstacle tracker
node that simulates a system for sensing other vessels in the vicinity of our own
and determining their state. In the current implementation of the system, other
ships are simply additional instances of the vessel simulator. The obstacle tracker
subscribes to their state information and publishes it as a collection of states for
the ASV to subscribe to.

WaypointsObstacle states

ASV
Low-level

Controller

LOS ControllerVO Controller

Figure 4.1: Control system block diagram. The LOS controller feeds the VO-
controller with desired set-points in surge speed and yaw angle. These set-points
determines the minima in the VO velocity field with no obstacles present.

In a real application, the simulator may simply be replaced by sensor drivers,
a state estimator and (a) motor controller(s) (Fig. 4.3). Drivers for common
sensors are already available in the ROS distribution and there are also several
implementations of common state estimators such as the Extended Kalman Fil-
ter (EKF), Adaptive Monte-Carlo Localization (AMCL) and Unscented Kalman
Filter (UKF). Unfortunately, most state estimator implementations are tailored
towards mobile robot applications.

4.2 Simulator

The simulator is an implementation of the equations of motion for a general
3-DOF surface vessel (Sec. 3.1) together with a numerical integration scheme
for solving the nonlinear differential equations. It is written to be very gen-
eral and may load any parameter configuration from the ROS parameter server
(Sec. A.2.2) at run-time.

4.2. SIMULATOR 37

Figure 4.2: Information flow in simulated system. This graph shows how the
different nodes in the system communicate. The obstacle tracker node gathers
odometry data from all the simulated obstacle ships and publishes their states.
The obstacles are just other instances of the simulator under different namespaces.
By using a dedicated node for “tracking” these ships we can, for example, easily
add a simulated disturbance or sensor noise.

The numerical integration method chosen in this thesis is a standard first order
Euler method.

xk+1 = xk + hf(xk, tk) (4.1)

This method is chosen for it simplicity and speed. Its accuracy is in general poor,
but suits the needs in this thesis.

4.2.1 Low-level Controllers

Two feedback-linearizing controllers and one conventional PD-controller are im-
plemented in the simulator: a speed controller, yaw rate controller and a heading
controller respectively. The speed controller is on the form

Fx = (−mv + Yv̇v + Yṙr)r
− (Xu +X|u|u|u|+Xuuuu

2)u+Kp,um(ud − u),
(4.2)

38 CHAPTER 4. SYSTEM IMPLEMENTATION

Figure 4.3: Information flow in real system. Simply replacing the simulator node
with a hardware interface is enough to launch the system on a real platform.

the yaw rate controller

Fy = (mu−Xu̇u)r − (Yvv + Yrr + Y|v|v|v|v + Yvvvv
3) + Kp,rIz

lr
(rd − r), (4.3)

and finally the heading PD-controller is

Fy = Kp,ψIz
lr

((ψd − ψ)−Kd,ψr). (4.4)

Both the yaw and yaw rate controller are implemented and may easily be in-
terchanged at run-time. However, in practice only the yaw controller is used
in this thesis as the VO algorithm outputs a speed and heading reference. The
parameters used for the simulator and controllers for the simulations are listed
in Table 4.1.

4.3. GUIDANCE 39

Table 4.1: Simulator parameters. The vessel parameters are based on the Viknes
830 (Loe, 2008). Note that it is assumed MA = CA = 0, which yields a slightly
unrealistic model, however it captures the vessel dynamics sufficiently.

(a) Vessel parameters

Parameter Value Unit
m 3980.0 kg
Iz 19703.0 kg/m2

Xu -50.0 kg/s2
X|u|u -135.0 kg/m2

Xuuu 0.0 kg/(m·s)2
Yv -200.0 kg/m2

Y|v|v -2000.0 kg/s2
Yvvv 0.0 kg/(m·s)2
Nr -3224.0 kg·m2/s
N|r|r 0.0 kg·m2

Nrrr -3224.0 kg·m2s
Nv 0.0 kg·m/s
Yr 0.0 kg·m/s

Fx,max 13100.0 N
Fx,min -6550.0 N
Fy,max 645.0 N
lr 4.0 m

(b) Controller parameters

Parameter Value Unit
Kp,u 0.1 1/s
Kp,ψ 5.0 1/s
Kd,ψ 1.0 s

4.3 Guidance

An ILOS guidance controller (Sec. 3.4) has been implemented as a part of the
control structure (Fig. 4.1). The integrator is limited through anti-windup and
reset when switching waypoints if the new path-tangential angle differs more than
45◦ from the previous. The ILOS controller also implements both the “circle of
acceptance” and “progress along path” switching criteria. The parameters used
by the guidance system are summarized in Table 4.2.

4.4 Velocity Obstacle Controller

The velocity obstacle controller implements the VO algorithm described in Sec-
tion 3.6. It consists of two main parts: a dynamic and static part.

40 CHAPTER 4. SYSTEM IMPLEMENTATION

Table 4.2: Guidance system simulation parameters. In the simulations (Chap. 5),
no constant disturbance has been added and therefore the integral gain is set to
zero.

Parameter Value Unit
Ra 20.0 m
∆ 40.0 m
Ki 0.0 1/s

4.4.1 The Velocity Field

At each update of the controller, it searches a predefined discretized velocity field
which is centered around the current velocity of the vessel (Fig. 4.4).

(a) Discretized velocity field (b) Velocity field implemented in ROS

Figure 4.4: VO controller velocity field. The controller loops through the dis-
cretized set of velocity pairs assigning each a cost according to Equation (4.6).

The field is defined as two dimensional grid consisting of (ui, ψj) velocity pairs.
The surge speed and heading angle is linearly scaled with Nu samples in the range
[umin, umax] and Nψ samples in the range [−ψmax + ψ,ψmax + ψ], respectively.
First, an error velocity vector is defined as

ṽi,j =
[
ud cosψd − ui cosψj
ud sinψd − ui sinψj

]
, (4.5)

then a cost is assigned to each velocity pair (ui, ψj) according to the following
cost function

C = αṽ>i,jQṽi,j + βfCOLREGs(ui, ψj) + γfcollision(ui, ψj), (4.6)

4.4. VELOCITY OBSTACLE CONTROLLER 41

where Q ∈ R2×2 is a positive definite weighing matrix. The constants α, β and
γ are scaling factors. Changing the elements of Q allows for different weighing
of the cross-track and along-track velocity. In the simulations, Q is simply set as
the identity matrix.

The functions fCOLREGs and fcollision are Boolean functions that returns “0” or
“1”. The function fCOLREGs returns “1” if the vessel is in a collision situation
(Sec. 3.5.2) and choosing the given velocity pair results in a COLREGs defying
maneuver. This is done using the properties established in Section 3.6.2. Specif-
ically, if a velocity is V1, choosing it would cause a COLREGs-defying maneuver
when the ASV is the give-way vessel. The function fcollision returns “1” if the
vessel is in a collision situation and the given velocity pair is inside the velocity
obstacle.

COLREGs VO

(a) Discretized velocity field with COL-
REGs and VO regions

(b) Velocity field with COLREGs and VO
regions in ROS

Figure 4.5: Velocity fields with COLREGs and VO regions. The velocity field
shown in (a) and (b) corresponds to a “head-on” situation. Choosing velocities
from within the VO cone would set the ASV on a collision course. The velocities
left of the VO cone would cause the ASV to pass the incoming vessel on the left
side, thus defying COLREGs.

4.4.2 Static Obstacles

The VO algorithm natively supports static obstacles by simply considering static
obstacles as dynamic with zero velocity. However, there are multiple challenges
associated with this approach.

Firstly, in most practical implementations static obstacles are represented as

42 CHAPTER 4. SYSTEM IMPLEMENTATION

occupied cells in a grid map. Thus, a VO cone must be generated for each of the
occupied cells. This would be highly inefficient as the number of occupied cells in
the map could be huge. Moreover, it is only the cells along the obstacle boundary
that need to be tested, since it is not possible to collide with an internal cell of
the obstacle without passing through the boundary first.

Secondly, one may construct a scenario as shown in Figure 4.6. If the goal pose is
in front of the obstacle, it may never be reached. The reason for this is that any
course towards an obstacle is a collision course, and therefore deemed “illegal” by
the VO method. Note that this may also be a problem with stationary dynamic
obstacles (see discussion in Sec. 6.1).

Goal pose

Figure 4.6: If static obstacles are treated as stationary dynamic obstacles, any
course towards the obstacle will be deemed as “illegal”. This causes problems if
the goal pose is in front of a static obstacle.

A Solution

The solution devised in this thesis was to loop through each velocity pair (ui, ψj)
and traverse a ray, λ, given as

λ(pA, ui, ψj) = pA +
[
cosψj − sinψj
sinψj cosψj

] [
uiti
0

]
, t ∈ (0, tmax], (4.7)

where pA is the position of the vessel, and test if the ray intersects an occupied cell
(Fig. 4.7). By selecting tmax = d/umax, where umax is the largest possible surge
velocity, one may define the distance d as the maximum distance the algorithm
searches for obstacles.

4.4. VELOCITY OBSTACLE CONTROLLER 43

Figure 4.7: Static obstacles with the velocity obstacle algorithm. In the proposed
algorithm, for each discretized direction, a ray is cast using the corresponding
velocities sorted in descending order. If a velocity is found to be OK, each
subsequent velocity in the same direction is marked as OK.

The algorithm is given in Listing C.2.

44 CHAPTER 4. SYSTEM IMPLEMENTATION

Chapter 5

Simulation Results

In this chapter, the results from several scenarios will be presented. The scenar-
ios have been developed to show the versatility and robustness of the method.
Having said that, it is impossible to test for everything and in the discussion
(Sec. 6.1) some of the special cases were the algorithm faces particular challenges
are highlighted and discussed.

There are three main scenarios considered:

1. Overtaking and crossing from the right

2. Overtaking, crossing and head-on

3. Crossing left and right

These scenarios are simulated both with and without external disturbances. The
simulation platform information is summarized in Table 5.1. Videos of the sim-
ulations presented in this chapter are available on YouTube1.

A combined safety radius of 20 m is used in the simulations presented here2.
This is well below what should be used in a real situation, but illustrates the VO
algorithm performance.

1http://bit.ly/1G07k18
2The length of the vessels used in the simulation is ca. 8 m. The safety radius is individually

configurable for each vessel.

45

http://bit.ly/1G07k18

46 CHAPTER 5. SIMULATION RESULTS

Table 5.1: Simulation platform description.

Computer Dell Optiplex 990
Processor Intel Core i5-2500 @ 3.30 GHz × 4
Memory Samsung DDR3 1333 MHz 4GB × 2
Operating system Ubuntu 14.04 “Trusty Tahr”
ROS version “Indigo Igloo”
Guidance system version 1.1.0

Table 5.2: Simulation parameters

(a) Overtaking and crossing from the right

ASV Ship 1 Ship 2
East [m] North [m] East [m] North [m] East [m] North [m]

Initial position 0.0 0.0 150.0 150.0 0.0 100.0
Waypoint 1 0.0 300.0 -150.0 150.0 0.0 300.0

(b) Overtaking, crossing and head-on

ASV Ship 1 Ship 2
East [m] North [m] East [m] North [m] East [m] North [m]

Initial position 150.0 0.0 150.0 0.0 150.0 150.0
Waypoint 1 0.0 0.0 0.0 0.0 -150.0 150.0
Waypoint 2 0.0 300.0 0.0 300.0
Waypoint 3 0.0 0.0

(c) Crossing left and right

ASV Ship 1 Ship 2
East [m] North [m] East [m] North [m] East [m] North [m]

Initial position 0.0 0.0 150.0 300.0 -150.0 50.0
Waypoint 1 0.0 150.0 -50.0 200.0 -150.0 200.0
Waypoint 2 -150.0 300.0 0.0 0.0 100.0 300.0

5.1. IDEAL CONDITIONS 47

5.1 Ideal Conditions

For the simulations in this section it is assumed ideal conditions, i.e., no external
disturbances such as wind, current or waves.

5.1.1 Overtaking and Crossing from the Right

In this scenario, the ASV is moving in a straight line from south to north when a
slow moving vessel appears in front of it. At the same time, another vessel comes
in from the right such that the ASV needs to avoid two vessels at once. This is
the easiest of the scenarios, considering that only a simple starboard maneuver
is needed for avoiding the other two vessels. The parameters used for the vessels
are found in Table 5.2a and the simulation is shown in Figure 5.4.

From Figure 5.4 it is immediately clear that the system behaves very well in this
situation. The ASV signals its intentions early by altering its course starboard,
thus adhering to COLREGs rule 13 and 15 (Sec. 3.5). The ASV passes both
vessel with a margin of about 20 m. Still, one should note that the ASV cuts
it close in front of the overtaken vessel and should ideally keep a larger safety
distance (see discussion in Sec. 6.2.2).

Figure 5.1: ROS: “Overtaking and crossing from the right” screenshot. The green
circles seen in the upper left and right corners are waypoint indicators.

48 CHAPTER 5. SIMULATION RESULTS

5.1.2 Overtaking, Crossing and Head-on

This scenario tests all the COLREGs situations where the ASV is the give-way
vessel. The ASV needs to perform an overtaking, a crossing from right and a
head-on maneuver – in that order. Moreover, this scenario tests the algorithms
ability to track the COLREGs status of other vessels over time as the first vessel
changes its status from an overtaken vessel to a head-on vessel . The simulation
parameters are summarized in Table 5.2b and the resulting simulation is shown
in Figure 5.5.

Figure 5.2: ROS: “Overtaking, crossing and head-on” screenshot.

The algorithm tackled this situation flawlessly (Fig. 5.5). If there is something to
comment, it is that the ASV could have turned the opposite way at the second
waypoint.

5.1.3 Crossing Left and Right

This is a more complex scenario, where the obstacle ships alter their courses and
blocks the path for the ASV. This causes the COLREGs situation to change as
the situation progresses. Due to the location of the waypoints, the ASV is also
“locked in”. This scenario tests the algorithm’s ability to execute more intricate
maneuvers. The parameters used for the vessels are found in Table 5.2c and the
simulation is shown in Figure 5.6.

From the simulation (Fig. 5.6) some of the versatility of the VO method becomes
apparent. As the ASV approaches its first waypoint, it alters it course slightly

5.1. IDEAL CONDITIONS 49

Figure 5.3: ROS: “Crossing right and left” screenshot.

starboard whilst slowing a bit down to pass the oncoming vessel from the upper
right. Now, the vessel previously on a parallel course has changed its course and
is now crossing from left. Therefore, to avoid collision the ASV slows down to
almost halt and passes behind the vessel coming in from the left. Just as the
first vessel is passed, the second changes its course heading towards our own.
The ASV then speeds up and passes behind the second vessel as well and reaches
its final waypoint successfully. This test shows how the VO method responds
to a changing environment. Some of the disadvantages of the method are also
demonstrated in this simulation, in particular the fact that the method does
not consider the vessel dynamics. In Figures 5.6f–i, the ASV gets closer than the
20 m safety radius due to the VO controller expecting the ASV to instantaneously
follow any velocity vector. Nevertheless, the ASV avoids any collision and adheres
to all COLREGs regulations.

50 CHAPTER 5. SIMULATION RESULTS

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
11.7 s

ASV
Obstacle ship
Obstacle ship

(b)
23.5 s

(c)
35.3 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
47.0 s

(e)
58.8 s

(f)
70.6 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
82.3 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
94.1 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
105.9 s

Figure 5.4: Overtaking and crossing from right. In the first two plots, we see
clearly that the ASV has started the avoidance maneuver. It steers effortlessly
away from the other vessels. Note that the inscribed circles around the vessels
have a radius of 20 m, therefore even though it might seem like the ASV passes
the red vessel (coming in from the right) very closely, it keeps a distance of 20 m.

5.1. IDEAL CONDITIONS 51

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
19.8 s

ASV
Obstacle ship
Obstacle ship

(b)
39.7 s

(c)
59.6 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
79.5 s

(e)
99.4 s

(f)
119.3 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
139.2 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
159.1 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
179.0 s

Figure 5.5: Overtaking, crossing and head-on. The ASV is the give-away vessel
in all three main COLREGs scenarios: overtaking, crossing from right and head-
on. It handles all situations very good. Note the clear and distinct avoidance
maneuvers.

52 CHAPTER 5. SIMULATION RESULTS

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
14.7 s

ASV
Obstacle ship
Obstacle ship

(b)
29.5 s

(c)
44.3 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
59.1 s

(e)
73.8 s

(f)
88.6 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
103.4 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
118.2 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
133.0 s

Figure 5.6: Crossing right and left. The vessel starts its avoidance maneuver for
the vessel approaching from the right, but when it reaches it first waypoint, the
vessel on a parallel course changes its course and becomes a crossing vessel (from
left). This causes the ASV to slow down and wait for both vessels to pass before
continuing to its last waypoint.

5.2. WAVE DISTURBANCES 53

5.2 Wave Disturbances

Now we consider the same scenarios, but with the addition of wave disturbances.
This addition causes unpredictable forces to act upon all the vessels. The param-
eters used in the wave model (Sec. 3.1.2) is summarized in Table 5.3.

Table 5.3: Wave model parameters. The parameters are tuned based on recom-
mendations in Fossen (2011) and vessel response during simulations.

Parameter Value
Kw,X 4693.9
Kw,Y 6750.1
Kw,N 7078.4

Parameter Value
λX 0.12
λY 0.15
λN 0.10

Parameter Value
ω0,X 0.80
ω0,Y 0.90
ω0,N 0.80

5.2.1 Overtaking and Crossing from the Right

In Figure 5.8 the response of the VO algorithm is seen when waves are added to
the simulation. The wave forces and moment acting on the vessels are given in
Figure 5.7.

As the simulation shows (Fig. 5.8), the ASV displays very satisfactory perfor-
mance despite repeatably being struck by wave forces of several thousand New-
ton. The oscillatory motion caused by the waves leads to some fluctuation in
the control output from the VO controller. Interestingly, due to the low-pass
characteristic of the vessel dynamics, the vessel is unable to follow such a rapid
change in set-points, diminishing the wave effects.

5.2.2 Overtaking, Crossing and Head-on

In Figure 5.10 the response of the VO algorithm is seen when waves are added
to the simulation. The forces acting on the vessels are given in Figure 5.9.

As the simulation progresses, the effect of waves on the yaw of the ASV increase
significantly until it peaks at around 5 kNm at t ≈ 120 s (Fig. 5.9). Bear in
mind that the waves does not only affect the ASV directly through forces and
moments, but also via the shifting velocity vectors it induces in the other vessels.
By altering the heading of the other vessels, the factor for which the VO method is
most sensitive, the waves may indirectly give rise to additional oscillatory motion.

54 CHAPTER 5. SIMULATION RESULTS

5.2.3 Crossing Left and Right

This scenario is the most sensitive to disturbances, because of the small margins.
The added wave forces and moments are found in Figure 5.11 and the simulation
in Figure 5.12.

In general, the ASV complete this scenario with satisfactory performance. It
passes behind the right-crossing vessel with a rather small margin, yet it manages
to avoid both vessels and reach the goal. Note that the left-crossing vessel is the
give-way vessel in this situation and disobeys the COLREGs regulations.

5.2. WAVE DISTURBANCES 55

0 20 40 60 80 100 120
Time [s]

−4
−2

0
2
4

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 ASV Wave Noise

Xwave

Ywave

Nwave

0 20 40 60 80 100 120
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 1 Wave Noise

Xwave

Ywave

Nwave

0 20 40 60 80 100 120
Time [s]

−8
−6
−4
−2

0
2
4
6
8

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 2 Wave Noise

Xwave

Ywave

Nwave

Figure 5.7: Overtaking and crossing from right wave noise. The vessels are
exposed for up to 6 kNm of torque in yaw and about 3-4 kN in surge and sway,
corresponding to very rough sea.

56 CHAPTER 5. SIMULATION RESULTS

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
11.8 s

ASV
Obstacle ship
Obstacle ship

(b)
23.6 s

(c)
35.5 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
47.3 s

(e)
59.1 s

(f)
71.0 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
82.7 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
94.6 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
106.4 s

Figure 5.8: Overtaking and crossing from right with wave disturbances. Despite
the rough sea state, the ASV does not have any difficulties passing the two vessels
while still complying to COLREGs and maintaining safe distance.

5.2. WAVE DISTURBANCES 57

0 50 100 150 200
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 ASV Wave Noise

Xwave

Ywave

Nwave

0 50 100 150 200
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 1 Wave Noise

Xwave

Ywave

Nwave

0 50 100 150 200
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 2 Wave Noise

Xwave

Ywave

Nwave

Figure 5.9: Overtaking, crossing and head-on wave noise.

58 CHAPTER 5. SIMULATION RESULTS

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
20.1 s

ASV
Obstacle ship
Obstacle ship

(b)
40.4 s

(c)
60.6 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
80.9 s

(e)
101.1 s

(f)
121.4 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
141.6 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
161.9 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
182.1 s

Figure 5.10: Overtaking, crossing and head-on with wave disturbances. The ASV
safely avoids all vessels.

5.2. WAVE DISTURBANCES 59

0 20 40 60 80 100 120 140
Time [s]

−4
−3
−2
−1

0
1
2
3
4

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 ASV Wave Noise

Xwave

Ywave

Nwave

0 20 40 60 80 100 120 140
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 1 Wave Noise

Xwave

Ywave

Nwave

0 20 40 60 80 100 120 140
Time [s]

−6
−4
−2

0
2
4
6

Fo
rc

e
[N

]/
To

rq
ue

[N
m

] ×103 Obstacle Ship 2 Wave Noise

Xwave

Ywave

Nwave

Figure 5.11: Crossing left and right wave noise.

60 CHAPTER 5. SIMULATION RESULTS

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
15.3 s

ASV
Obstacle ship
Obstacle ship

(b)
30.7 s

(c)
46.0 s

0

50

100

150

200

250

300

N
or

th
[m

]

(d)
61.4 s

(e)
76.7 s

(f)
92.1 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(g)
107.4 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(h)
122.8 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(i)
138.1 s

Figure 5.12: Crossing left and right with wave disturbances. Overall satisfactory
performance in this scenario. While it waits for the first vessel to cross from left,
it is tossed left and right by the waves. Just as the first vessel is passed, the
second heads straight towards the ASV. Nevertheless, it manages to safely pass
both vessels.

Chapter 6

Discussion

The simulation results (Chap. 5) demonstrate the capability of the VO algo-
rithm for collision avoidance. It is immediately clear that the method tackles
all main COLREGs situations (overtaking, head-on and crossing) with ease and
performs overall very well in more complex scenarios. The inherent simplicity of
the method provides predictable and robust maneuvering.

What is interesting however, is to identify the situations where the algorithm does
not perform as well. This is the focus of the following sections, where actions to
mitigate these challenges will also be discussed.

6.1 Static Obstacle Oscillations

When approaching static or near static obstacles, a situation where the algorithm
is unable to chose the side to pass the obstacle might arise (Fig. 6.1). The vessel
will start to move in an increasingly oscillatory pattern as the controller switches
the side to pass on. It should be noted that this is not a problem with the
VO method itself, but an effect of the combination with LOS for path following.
When the passing side for the obstacle is undefined, the increasing LOS velocity-
path relative angle causes the optimal set-point to switch between the opposing
boundaries of the VO cone (Fig. 6.2).

61

62 CHAPTER 6. DISCUSSION

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300
N

or
th

[m
]

(a)
47.7 s

ASV

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
95.5 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
143.3 s

Figure 6.1: The velocity obstacle experiences oscillations near static obstacles.
The VO controller is unable to choose which side to pass the obstacle and even-
tually the vessel enters the illegal region (safety buffer) around the obstacle.

LOS Vector

Next optimal
velocity

Previous optimal
velocity

Goal pose

Path

Safety region

Obstacle

Figure 6.2: Velocity obstacle oscillations explained. The LOS controller tries to
force the vessel to return to its path, unaware of the obstacle obstructing the
path. As the cross-track error, e, increases, the optimal set-point (as seen by the
VO controller) will switch to the opposite side of the VO cone – changing the
passing side.

6.1. STATIC OBSTACLE OSCILLATIONS 63

6.1.1 Solutions

Define a Lower Bound on the Lookahead Distance

One way to mitigate this problem is to define an upper bound on the size of
unknown static and dynamic obstacles and from that find a lower bound on the
lookahead distance, ∆. Ideally, as the VO planner is a local method (Sec. 3.3.1), it
should be paired with a global planner in order to not be trapped in local minima
and better plan missions and routes. Thus, large known (static) obstacles, such
as islands, is assumed to be accounted for.

Velocity field
maximum

Next optimal
velocity pair

Figure 6.3: Lower bound for LOS lookahead distance. Which side of the center
line of the VO cone the optimal velocity (the intersection between ud and ψd
given by LOS) is determines the next selected velocity. If the lookahead distance
is chosen such that is always greater than the maximum padded radius of the
unknown obstacle and the distance the VO controller “sees” combined, oscillatory
switching is avoided.

The problem arises if a sufficiently large unknown obstacle appears, either a
ship at rest or other unknown obstacles. Using an upper bound on the size
of the unknown object we may define a lower bound on the lookahead distance
(Fig. 6.3). Assuming a safety radius robs for the obstacle and a ASV safety radius
rASV the padded radius is the combined radius of these, i.e.,

rtot = rASV + robs. (6.1)

The LOS lookahead distance lower bound may then be defined as

∆ > ∆min = λmax + rtot, (6.2)

64 CHAPTER 6. DISCUSSION

where λmax is the largest distance the algorithm “sees” (Sec. 4.4.2). Using this
method, the vessel is able to pass the obstacle safely (Fig. 6.4).

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
31.0 s

ASV

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
62.0 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
93.0 s

70 m

Figure 6.4: Oscillations reduced when ∆ > robs + rASV. Here robs = 30 m,
rASV = 20 m and λmax ≈ 140 m. ∆ = 70 m is chosen lower than the bound
found in Equation (6.2) to illustrate the effect in Figure 6.3. Notice that at time
t1, the lookahead vector passes the center of the obstacle and the oscillations
stop.

Unfortunately, the bound on the lookahead distance may be very restrictive and
this solution does not take the initial choice of passing side into account. In
addition, a large lookahead distance will result in slower convergence to the path
once the obstacle is passed.

“Pick a Side”

Another approach is to simply “pick a side”, i.e., as the vessel approaches the ob-
stacle it chooses to either pass the obstacle on the left or right hand side (Fig. 6.5).
This is commonly known as edge following or wall following (Borenstein & Koren,
1989). This is quite easy to implement for the VO method as one only need to
choose the passing side and define the velocities in the opposing side of the VO
cone as “illegal”, similarly to the COLREGs behavior.

Other Solutions

A third method is to reformulate the optimization problem (Eq. (4.6)) to a similar
form as the DW objective function (Fox et al., 1997). One could, for example,

6.2. COLREGS CHALLENGES 65

Figure 6.5: Passing a static obstacle by “picking a side”. At time t1 the ASV
detects the obstacle and defines on side of the VO cone as “illegal” by adding a
significant cost to those velocities.

add a cost associated with changing course. However, with such a scheme much
care has to be taken, as the added cost may make it less desirable to change
course even if the ASV is on a collision course.

It may also be a solution to abandon the LOS controller completely during an
evasive maneuver and re-enable it when the maneuver is complete, e.g., when path
is again directly visible for the ASV. One could also argue that if a sufficiently
large static obstacle is detected on the path, a higher-level planner should be
invoked and re-plan a route past the obstacle.

6.2 COLREGs Challenges

6.2.1 In Between Rules

The ASV may find itself on the boundary between two COLREGs situations,
e.g., locked between a crossing from right and an overtaking situation. Initially,
the VO controller handles this situation poorly (Fig. 6.6a). The initial implemen-
tation monitored the COLREGs situation using only the relative bearing alone,
thus regarding a crossing situation to be over when the ASV passes the beam of
another ship. An updated controller does not change the COLREGs situation
until the other vessel is passed safely (Sec. 6.2.2). Now, the ASV does not pass
in front of the other, but the dead-locked situation remains (to some extent).

66 CHAPTER 6. DISCUSSION

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300
N

or
th

[m
]

(a)
33.1 s

ASV
Obstacle ship

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
66.2 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
99.3 s

(a) Not maintaining initial COLREGs situation

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
37.7 s

ASV
Obstacle ship

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
75.5 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
113.3 s

(b) Maintaining initial COLREGs situation

Figure 6.6: Locked in a crossing from right situation. In this situation the ASV
is on boundary of a crossing from right situation. If the control system deter-
mines the COLREGs situation by relative bearing alone (a), the vessel speeds in
front of the other, violating COLREGs. Alternatively, by maintaining the initial
COLREGs situation, the ASV passes the other vessel on the correct side (b).

A similar situation may occur if another vessel speeds in front of our own such
that the situation changes from a crossing from left situation to an overtaking
situation (Fig. 6.7). It is not necessarily straight forward to determine the right
course of action here. The other vessel is initially the give-way vessel, yet the
ASV may also be regarded as an overtaking vessel.

Ideally, these situations should be recognized by the guidance system and some

6.2. COLREGS CHALLENGES 67

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
31.0 s

ASV
Obstacle ship

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
62.1 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
93.3 s

Figure 6.7: Locked in a crossing from left/overtaking situation. The obstacle ship
speeds in front of the ASV, causing a deadlock where the ASV is in between the
overtaking and crossing from left situation. Finally, the ASV crosses in front of
the other vessel to reach its waypoint.

mitigating action taken. One approach is to monitor the relative bearing between
the vessels together with the velocity-path relative angle, χr, to see if the bearing
remains constant and χr increases. If this is the case, the deadlocked situation is
a fact and the ASV needs to take some evasive maneuver, e.g., reduce its speed
and pass behind the other vessel.

6.2.2 COLREGs Ambiguity

A recurring problem whilst developing a maritime collision avoidance system is
the imprecise language and definitions in COLREGs (Lund, 2008). For instance,
in an overtaking situation, the situation is deemed to be over when “she is finally
past and clear” (Sec. 3.5.1). The rules also repeatedly use unquantifiable phrases
such as keeping “a safe distance”.

Duration of COLREGs Maneuver

As mentioned in Section 3.5.2, the COLREGs situation does not necessarily
change when the relative bearing enters a new zone. Therefore, the current
implementation does not consider an overtaking situation to be over until the
relative bearing between the vessels is between [−15◦, 15◦), i.e., within the head-
on zone (Fig. 3.11). For the crossing from right situation, the situation is deemed

68 CHAPTER 6. DISCUSSION

to be over when the relative bearing is below −112.5◦, i.e., when the relative
bearing enters the overtaking zone.

6.2.3 Clearance During Overtaking

An issue with the current system is that it passes the overtaken vessel with not
a great deal of clearance (Fig. 6.8). This is caused by properties of both the VO
controller and the LOS controller.

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

0

50

100

150

200

250

300

N
or

th
[m

]

(a)
36.4 s

ASV
Obstacle ship

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(b)
72.7 s

-15
0

-10
0 -50 0 50 10

0
15

0

East [m]

(c)
109.1 s

Figure 6.8: Insufficient clearance during overtaking scenario. When overtaking
another vessel, the ASV shall keep away of the vessel being overtaking until it is
finally past and clear.

The distance the ASV keeps from the other ship should at all times be greater
than their combined safety radius, however because the VO controller expects
discrete jumps in velocity, this distance is slightly reduced.

To mitigate this problem, one could use a more comprehensive configuration
space and not approximate the vessels as disc shaped objects. Specifically, by
approximating the vessels as box-shaped instead and expanding the footprint of
the obstacles in their traveling direction, better clearance may be achieved. This
adds to the computational complexity as the VO region needs to be found using
the Minkowski sum. This sum results in a convex polygon for which the tangent
lines with respect to the ASV position needs to be found (Fig. 3.12a). Once the
tangent lines pAB, left and pAB, right has been identified, Equation (3.32) may be
used to determine if a velocity is inside the VO cone.

Chapter 7

Future Work

Following the discussion, it is apparent that there is room for further improvement
and more work outside of the scope of this thesis. In this section, some of the
possible extensions to this thesis will be mentioned and recommendations for
further development of the collision avoidance system as well.

7.1 Simulator

The simulator may be extended in several ways. Expecting accurate simulations
when using a first-order Euler method may be naive, and changing the integration
method should be considered. This change is expected to be relatively straight
forward, in particular for an explicit method such as the Runge-Kutta 4th order.

One could also consider increasing the complexity of the simulator by extending
the vessel model, modeling the disturbances better (wind, waves, etc.) and ex-
tending it with sensor models. Thus effectively turning it into something similar
to a Hardware-in-the-Loop (HIL) simulator (Fig. 7.1). This may greatly ease the
transition from the simulation environment to an experimental setup.

7.2 Global Planner

Today, the GNC system is without a global planner. If the vessel is to become
truly autonomous, this should be implemented. In several practical applications

69

70 CHAPTER 7. FUTURE WORK

Vessel
Model

Sensor
Model(s)

Actuator
Model(s)

Wave
Model(s)

Wind
Model(s)

Current
Model(s)

Figure 7.1: Extensions to the simulator node. By adding a more realistic in-
terface to the simulator node, the system can be tested more rigorously. The
actuator model(s) should provide an interface mimicking the actual actuator(s)
and similarly, the output of the sensor model(s) should mimic the real sensors.
For example, the sensor model(s) should simulate Global Positioning System
(GPS) position and velocity measurements, with the position given as latitude,
longitude and height.

a hybrid scheme with global path planning and local collision avoidance is pre-
ferred (Marder-Eppstein et al., 2010; Larson et al., 2006, 2007; Loe, 2008) and is
recommended here as well.

The global planner could preferably take (some of) the ASV dynamics into ac-
count. Grid searching methods will often ignore the nonholonomic nature of the
vessel and return paths containing, e.g., several 90◦ turns, which are impossible
for the ASV to follow. This is often be mitigated by post-processing the paths
with a smoothing algorithm. The hybrid-state A* search (Montemerlo et al.,
2008; Dolgov et al., 2010) is suggested as a possible candidate and is summarized
in this section. The reader is referred to Dolgov et al. (2010) for more details.

7.2.1 A* Search

The A* search (Hart et al., 1968) provides a very flexible paradigm for path plan-
ning. The basic method itself is very simple and given in Listing C.1. It is im-
mensely popular and has inspired several similar algorithms, such as D* (Stentz,
1994), Field D* (Ferguson & Stentz, 2005), Theta* (Daniel, Nash, Koenig, &
Felner, 2010) and many more. The algorithm is a best-first search that searches

7.2. GLOBAL PLANNER 71

through a set of interconnected nodes and uses heuristics to guide its search. Its
flexibility stems from its indifference towards how nodes are explored and use of
heuristics.

Heuristics or a heuristic function, is a way of ranking alternatives in a search
algorithm. A heuristic function h(n) gives an estimate of the cost of reaching
the goal from a given node n. The function is said to be admissible if it does
not overestimate the cost of reaching the goal. Furthermore, it is said to be
monotonic (or consistent) if for two adjacent nodes x, y, with the distance d(x, y),
the following holds

h(x) ≤ d(x, y) + h(y) (7.1)

A* is a complete algorithm, i.e., if a valid path to the goal exists, the algorithm
will find it.

The search graph may be represented in several ways (Campbell et al., 2012),
but an occupancy grid is the most commonly used.

7.2.2 Hybrid-state A* Search

Hybrid-state A* is, as the name suggests, based on the A* methodology, but
incorporates vehicle dynamics in the node expansion (Fig. 7.2). This ensures that
paths are drivable, an important property for non-holonomic vehicles. Moreover,
the hybrid-state A* method searches in three dimensions (x, y, θ) to keep track
of the vehicle pose at a given node.

The algorithm differs from the traditional A* in how it explores neighboring
nodes in the search grid. It associates each grid cell with a continuous state
s = (x, y, θ)>, starting at the initial state s0 = (x, y, θ)>0 it forward simulates
the system for a given steering action

δθi ∈ [δθmin, . . . , δθmax]. (7.2)

The forward simulation of node k gives a set of states

Sk = {sk,0, . . . , sk,i, . . . , sk,N}, (7.3)

each within a grid cell. If a cell has already been visited, but the state associated
with it has a higher cost than the newly expanded state sk,i, it is replaced by sk,i
and re-prioritized on the A* open set.

The hybrid-state A* search shares some of the same challenges as the traditional
A* search and other similar algorithms. In particular, contour hugging is a

72 CHAPTER 7. FUTURE WORK

(a) Hybrid-state A* (b) Traditional A*

Figure 7.2: A* search methods. The hybrid-state A* (a) considers a starting
pose s0 = (x, y, θ)>0 and applies a steering action for each node expansion in
the search, simulating the vehicle motion for a given forward velocity v0. The
traditional A* (b), on the other hand simply considers moving to the (at most)
eight neighboring nodes at any node.

problem (Fig. 7.3). Dolgov et al. (2010) suggest using a potential field, deemed the
Voronoi field, to guide the algorithm away from edges. This method is applicable
to other heuristic-based method as well and could also be used to guide an RRT
method.

Goal pose
Path

(a) Contour hugging phenomena

Goal pose

Path

Voronoi
center line

(b) Avoiding contour hugging using the
Voronoi method

Figure 7.3: Using the Voronoi field to alleviate contour hugging. The Voronoi
field assigns a higher cost to deviating from the center line.

7.3. VELOCITY OBSTACLE CONTROLLER 73

7.3 Velocity Obstacle Controller

Although the VO controller performs very good, there are several improvements
possible.

7.3.1 Better ROS Integration

The ROS distribution features a navigation stack, i.e., a generalized framework
for integrating global and local controllers together with other high-level behav-
ior1. The VO controller could benefit from an integration with this framework.
This could be done by writing the VO controller as a base_local_planner2

plugin. In the ROS distribution several planners are already implemented in this
framework, allowing the VO method to be coupled with one of these.

7.3.2 Velocity Obstacles as a Filter

In the current implementation, the VO method acts as a filter on a velocity field
by defining regions of non-COLREGs compliant and collision velocities. The
velocity field itself is a simple (u, ψ) grid with a quadratic cost function. This
approach completely ignores the dynamics of the vessel, with the advantage of
simplicity and platform independence at the cost of inaccuracy. For ships, with
slow dynamics and sway motion, this inaccuracy may prove fatal. In particular,
at close quarters (Figs. 5.6 and 5.12) neglecting the ship dynamics leads to risky
maneuvers. The potential danger may be reduced by increasing the safety regions
around the obstacle ships, however this may restrict the ASV’s mobility.

The VO method could be used to filter velocity candidates for another method.
Consider, e.g., the Dynamic Window (DW) approach (Fox et al., 1997). This is
a well known and popular method, especially in mobile robotics. By simplifying
the equations of motion for a synchro-drive WMR, it can be shown that for a
given velocity pair (ui, rj) the vehicle will follow a circular arc if rj 6= 0 and
otherwise a straight line. Based on different criteria, an arc is selected and the
corresponding velocity pair is applied as a set-point to the velocity controllers
and the process is repeated after ∆t seconds. For the velocity pair (ui, rj), the
heading ∆t seconds along its trajectory will be

ψi,j = ψ + rj∆t, (7.4)
1http://wiki.ros.org/move_base
2http://wiki.ros.org/base_local_planner

http://wiki.ros.org/move_base
http://wiki.ros.org/base_local_planner

74 CHAPTER 7. FUTURE WORK

giving a velocity vector of

vi,j =
[
ui cosψi,j
ui sinψi,j

]
. (7.5)

The velocity vi,j may now be tested against the properties found in Section 3.6.2
(Fig. 7.4).

(a) DWA velocity arcs (b) Velocity vectors in the VO field

Figure 7.4: Using the Velocity Obstacle algorithm as a filter for the Dynamic
Window method. The dotted arc in (a) signifies the position along an arc after
∆t seconds. At this point we find the velocity vectors vi,j and may test them
against the velocity obstacle regions (b).

These properties may very well be a highly efficient way of incorporating dynamic
obstacles as well as COLREGs compliance. It may also improve the run-time of
the method by eliminating velocity arcs early on. On the simulation platform
used in this thesis (Tab. 5.1) and with the current implementation, VO method
itself has a run-time of approximately 10-30 ms depending on the amount of
dynamic obstacles present.

It is possible modify the DW method to increase accuracy in the presence of sway
motion (Loe, 2008; Eriksen, 2015).

7.4 Stability

The question of stability for the collision avoidance method has not been con-
sidered in this thesis. As far as the author is aware, there is no formal proof

7.5. EXPERIMENTAL TESTING 75

of stability for the VO method and the possibility of such a proof should be
explored. The ILOS method however, is proven to be stable (Caharija, 2015).
Thus, it should be noted that without any obstacles present, the VO controller
simply follows the set-points of the ILOS controller and is therefore stable in this
situation.

7.5 Experimental Testing

Experimental testing adds an important dimension to the validity of an algorithm.
In a real environment, the method is tested for its robustness against all the
factors a simulation is unable to incorporate. The implemented system is ready
for testing on a real platform. One of the goals when working on this thesis was
to test the system on a physical platform, but due to critical sensor failure during
testing, full-scale tests were unfortunately not completed.

7.5.1 Practial Considerations

There are numerous challenges to be tackled in a practical implementation of
an ASV. This section seeks to briefly highlight the main challenges and others’
solution to these.

One of the most difficult challenges in an autonomous system is to accurately
sense and interpret the current situation. Variables such as the ASV’s state
together with an estimate of other vessels’ states are critical to know.

Several authors (Benjamin et al., 2006; van den Berg et al., 2011a) assume the
vehicles or vessels share information about position, orientation and velocity.
Others (Savvaris et al., 2014) rely solely on Automatic Identification System
(AIS) data. This is probably not sufficient in most real-world scenarios. The AIS
update rate may be between two seconds and three minutes and is only required
for passenger ships (regardless of size) and international ships with gross tonnage
of 300 or more (Wikipedia, 2015a).

Sensors

In practice, a wide range of sensors is necessary for an accurate portrayal of the
vessel state and its surroundings. The types of sensors may be divided into two
parts: sensors for estimating the vessel’s own state or sensors for estimating other
vessels’ states. The main sensors recommended are:

76 CHAPTER 7. FUTURE WORK

• Global Positioning System (GPS) receiver(s)

• Inertial Measurement Unit (IMU)

• Radar(s)

• Stereo-camera(s)

• Automatic Identification System (AIS)

• Lidar

State Estimation

There are multiple algorithms in existence today for state estimation, the most
popular being extensions to the common Kalman filter, such as the EKF or UKF,
or nonlinear observers (Fossen, 2011; Vik, 2014). The ROS standard libraries al-
ready contain implementations of several popular localization algorithms3, but
most of these are tailored towards a WMR application and thus less suited for
a maritime vessel. The reader is referred to Fossen (2011), Vik (2014) and ref-
erences therein for more on observer design and localization methods for ocean
vehicles.

Obstacle Detection

Reliably detecting and recognizing obstacles, in particular dynamic obstacles, is
in general difficult. Other systems have used a combination of radar, lidar and
computer vision (cameras) to detect other ships (Elkins et al., 2010; Huntsberger
et al., 2011; Wang et al., 2011). One may also combine the estimated position and
velocities of other ships with data and metadata provided by AIS. It is important
to note that AIS data alone is not very reliable for obstacle tracking, e.g., Loe
(2008) had faulty heading estimates during experimental testing, deteriorating
the obstacle avoidance algorithm’s performance.

3http://wiki.ros.org/robot_localization

http://wiki.ros.org/robot_localization

Chapter 8

Conclusion

In all, this thesis has presented a guidance and collision avoidance system capable
of avoiding collisions at sea whilst complying with the rules and guidelines spec-
ified in COLREGs. Based on a comprehensive literature study, the VO method
was chosen as the basis for collision avoidance. The GNC system together with
an extensive vessel simulator has been implemented in ROS, providing a solid
foundation for further development. Through simulations in diverse scenarios in
combination with discussions of situations proving extra challenging, a thorough
analysis of the VO method as a basis for a collision avoidance system is given.

The strength of the VO method lies in its simplicity. It assumes nothing about
the dynamics of the vehicle, making it versatile and possible to deploy on a wide
range of vessel types without modification. But, within its simplicity lies its
weakness as well. The naive approach to the velocity field renders close quarter
navigation difficult and dangerous. In particular, neglecting the non-holonomic
nature of the vessel results in reckless maneuvers. Conservative safety buffers are
used to mitigate this, but this restricts the ASV’s capability to perform more
high-fidelity maneuvers.

For better behavior in these situations, it is recommended that the naive velocity
field is replaced by a set of velocities that more accurately portrays the dynamic
capabilities of the vessel. This inevitably adds to the complexity of the control
system and requires better models of the dynamics of the vessel. Having said
that, even simple approximations of the vessel motion is expected to improve the
accuracy and safety of the motion planning.

77

78 CHAPTER 8. CONCLUSION

Appendix A

Robotic Operating System
(ROS)

This appendix provides a very brief introduction to the main ROS concepts and
conventions. The following sections are based on information from ROS.org1

and the reader is encouraged to check it out for more detailed information and
tutorials on ROS.

A.1 Introduction

ROS is not an operating system in the usual sense, but a software framework or
middleware for developing robot applications. Similar to a conventional operating
system, ROS provides services such as hardware abstraction, device control and
implementation of commonly used functionality (Wikipedia, 2015d). The system
is divided in nodes (or processes) that share information through message passing
(Fig. A.1).

ROS is designed to be as thin as possible. Libraries written for ROS should be
ROS agnostic with clean functional interfaces (Open Source Robotics Founda-
tion, 2015). ROS is also language independent, C++, Python and Lisp are fully
supported and experimental libraries exists for Java and Lua. ROS currently
only runs on Unix-like platforms and Ubuntu is the primary supported operating
system.

1http://wiki.ros.org

79

http://wiki.ros.org

80 APPENDIX A. ROBOTIC OPERATING SYSTEM (ROS)

/ns/topic1/ns/node1

ns

/topic2 /node2

Figure A.1: Sharing information between processes using message parsing. In this
example, the process (or node) /ns/node1 is under the namespace ns and sub-
scribes to the topic /topic2 published by /node2 and publishes to /ns/topic1.

A.2 ROS Concepts

A.2.1 ROS Filesystem Level

• ROS packages are the most common way code is organized in ROS. A
package is comparable to a computer program, it may contain one or more
nodes, configuration files, etc.

Listing A.1: Common package file structure.� �
package/
include/
package/
package.h
package_node.h

launch/
nodes/
package_node.py

src/
package.cpp
package_node.cpp

cmakelists.txt
package.xml� �

• Package manifests (package.xml) provide metadata about a package, such
as: name, version, licence, etc.

• ROS uses CMake (CMakeLists.txt) to configure compilation of ROS pack-
ages.

• Message (msg) types, stored in my_package/msg/MyMsg.msg, defines the
data structure for messages sent in ROS.

A.3. CONVENTIONS 81

• Services (srv) types, stored in my_package/srv/MySrv.srv, defines the
request and response data structures for services in ROS.

A.2.2 ROS Computation Graph Level

• Nodes are processes that perform computation. Examples of node tasks:
collect IMU data, perform localization (e.g. Kalman filter) or control motor.

• The ROS Master provides name registration and lookup to the rest of the
computation graph.

• The Parameter Server stores data by key in the Master. This allows nodes
to fetch parameters at launch or even during run-time.

• Each node may publish or subscribe to topics. There may be multiple con-
current publishers and subscribers to a single topic. In general, publishers
and subscribers are unaware of each others’ existence.

• Services provides synchronous communication through request/reply inter-
action. Services are defined by a pair of message structs: one for the request
and one for the reply.

• ROS provides bags as a format for saving and playing back ROS message
data.

A.3 Conventions

The conventions used in the ROS ecosystem are collected in ROS Enhancement
Proposals (REPs).

A.3.1 Position, Orientation and Velocity

In ROS, the position and orientation of a robot is known as its pose. The position
is given as p = (x, y, z)> coordinate and the orientation as a quaternion q =
(ε1, ε2, ε3, η)>. The velocity is split into linear velocity v = (u, v, w)> and angular
velocity ω = (p, q, r)>.

82 APPENDIX A. ROBOTIC OPERATING SYSTEM (ROS)

A.3.2 Reference Frames

REP 103 (Foote & Purvis, 2010) describes the ROS standard units of measure
and coordinate conventions. ROS coordinate frames are right handed. The body
related coordinate frame standard is

• x forward,

• y left and

• z up.

The global reference coordinate systems use the East, North, Up (ENU) conven-
tion:

• x east,

• y north and

• z up.

Furthermore, REP 105 (Meeussen, 2010) describes the three main frames used
for mobile platforms: map, odom and base_link.

map
odom

base_link

xy

z

Figure A.2: ROS coordinate frames. The red, green and blue axes are the x, y
and z axes respectively.

The map frame is a global world fixed frame, with its z-axis pointing upwards.
This frame is discontinuous, i.e., the transform from this frame to the odom
frame may “jump” discretely as new measurements arrive.

The odom frame is also a world fixed frame, however this frame can drift over
time without any bounds. It is therefore not very useful as a long-term global
reference. However, as it is guaranteed to be continuous and is accurate as a
short-term local reference, it is useful for local sensing and acting. The frame is
typically computed based on information from wheel odometry, visual odometry
or an Inertial Measurement Unit (IMU).

A.3. CONVENTIONS 83

The base_link frame is rigidly attached to the mobile robot base.

In addition, REP 103 recommends defining an additional frame with a “_ned”-
suffix for outdoor system where it is desirable to use the NED convention.

84 APPENDIX A. ROBOTIC OPERATING SYSTEM (ROS)

Appendix B

Implementation Details

The implementation of the system can be found at GitHub: https://github.com/
thomsten/ros_asv_system, and is known there as the ros_asv_system. The
main packages in the repository are:

• asv_ctrl_vo: an implementation of the VO algorithm (Fiorini & Shiller,
1998; Kuwata et al., 2011, 2014).

• asv_msgs: custom ROS message types.

• asv_obstacle_tracker: node simulating tracking obstacles. Subscribes
to all available obstacle ship states and publishes a single list of them to-
gether with various metadata.

• asv_path_trackers: implementation of the pure pursuit and LOS guid-
ance algorithms.

• asv_simulator: simulates the equations of motion of a general 3-DOF
surface vessel.

Note that the implementation follows ROS conventions, e.g., it uses the East,
North, Up (ENU) coordinate system.

B.1 Installation Guide

In order to launch the system, there are a couple of requirements that needs to
be in place. The user should be on a computer running Ubuntu with a working

85

https://github.com/thomsten/ros_asv_system
https://github.com/thomsten/ros_asv_system

86 APPENDIX B. IMPLEMENTATION DETAILS

distribution of ROS. In this thesis Ubuntu 14.04 “Trusty Tahr” was used with
ROS “Indigo Igloo”, but the system is likely compliant with other distribution
versions. For detailed installation instructions, tutorials and more, see http:
//wiki.ros.org/.

A brief step-by-step guide is given here.

1. Install a ROS distribution, e.g.,� �
~$ sudo apt-get install ros-indigo-desktop-full� �
and run the following command (and optionally add it to your .bashrc):� �
~$ source /opt/ros/indigo/setup.bash� �

2. Create a catkin workspace1� �
~$ mkdir -p ~/my_catkin_ws/src
~$ cd ~/my_catkin_ws/src
~$ catkin_init_workspace� �

3. Download the ros_asv_system package from GitHub� �
~$ git clone https://github.com/thomsten/ros_asv_system/ --recursive� �

4. Build the packages� �
~$ catkin_make� �

5. Run a launch file, e.g.,� �
~$ roslaunch asv_system overtaking_and_crossing.launch� �

If there are package dependency issues, the packages are most likely available
through the Ubuntu package manager or rosinstall2. For example, the map_

server package is not distributed as a part of the ros-indigo-desktop-full
package, but can be installed with� �
~$ sudo apt-get install ros-indigo-map-server� �
B.2 Package Details

B.2.1 ASV System

The asv_system package is for the most part a meta-package containing the top-
most launch-files. In its launch/-folder one may find the necessary launch files for

1http://wiki.ros.org/catkin/workspaces
2http://wiki.ros.org/rosinstall

http://wiki.ros.org/
http://wiki.ros.org/
http://wiki.ros.org/catkin/workspaces
http://wiki.ros.org/rosinstall

B.2. PACKAGE DETAILS 87

launching the different scenarios. An example launch file is given in Listing C.3.
Note the flexibility of using nested launch files with parameter arguments: the
same launch file is used to instantiate three asv_simulator instances.

The asv_system package contains launch files for all the scenarios in Chapter 5.
A scenario is launched by simply typing� �
~$ roslaunch asv_system scenario_name.launch� �
in a terminal. This will launch the system together with RVIZ for visualization.

B.2.2 ASV Simulator

The asv_simulator package implements a general 3-DOF surface vessel simu-
lator.

In asv_simulator.cpp the equations of motion of a general 3-DOF surface vessel
according to Section 3.1 is implemented. All parameters of the system may be
reconfigured using the ROS Parameter Server at launch. Default parameters are
found in config/parameters/viknes.yaml.

Wave Filter

In wave_filter.cpp the wave filter described in Section 3.1.2 is implemented.
The filter is implemented as its own class containing a single state space repre-
sentation of the filter in Equation (3.11). By instantiating three instances of this
class, the generalized wave forces may be generated independently.

When generating pseudo-random noise, it is important to be aware of which
seed is used to initialize the pseudo-random sequence. In C++, simply using
rand() will generate the same sequence of pseudo-random numbers each time
the code is run, as the seed defaults to srand(NULL). A common way to seed the
pseudo-random generator is to use the current time, i.e., srand(time(NULL)).
However, this is not suitable in this application as several filters are instantiated
almost simultaneously, causing all filters to be seeded with the same value. This
is overcome by seeding the generator with the number of processor cycles since
last reset using an assembler call. The wave filter uses the rand48() family of
functions instead of the default rand(). Specifically, drand48() is used, which
returns values in the range [0.0, 1.0). The rand48() functions are chosen mainly
because the rand48() functions stores the state of the pseudo-random sequence
in an internal buffer, rendering it thread safe.

88 APPENDIX B. IMPLEMENTATION DETAILS

Listing B.1: The assembler call rdtsc returns the number of processor cycles
since last reset.� �
unsigned long long rdtsc(){
unsigned int lo,hi;
__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));
return ((unsigned long long)hi << 32) | lo;

}� �
B.2.3 Velocity Obstacle Controller

The asv_ctrl_vo package implements a local collision avoidance controller using
the VO method as described in Section 4.4. A stripped down version of the main
update loop is given in Listing C.4.

B.2.4 Path Trackers

The asv_path_trackers package implements two nodes: a pure pursuit and an
ILOS controller. The code is based on the simulator from Stenersen (2014), but
adopted for ROS. Most parameters are configurable from the parameter server.

Appendix C

Source Code Examples

Listing C.1: A* implementation using Python. Courtesy of Patel (2015).� �
def a_star_search(graph, start, goal):

Open set sorted by lowest estimated cost
open_set = PriorityQueue()
open_set.put(start, 0)
came_from = {}
cost_so_far = {}
came_from[start] = None
cost_so_far[start] = 0

while not open_set.empty():
current = open_set.get()

if current == goal:
break

for n in graph.neighbors(current):
new_cost = cost_so_far[current] + graph.cost(current, n))
if n not in cost_so_far or new_cost < cost_so_far[n]:

cost_so_far[n] = new_cost
priority = new_cost + heuristic(goal, n)
open_set.put(n, priority)
came_from[n] = current

return came_from, cost_so_far� �

89

90 APPENDIX C. SOURCE CODE EXAMPLES

Listing C.2: Algorithm for checking static obstacles. By traversing the surge ve-
locity in decreasing order the algorithm may mark all subsequent surge velocities
as collision free if a velocity pair is collision free.� �
void VelocityObstacle::checkStaticObstacles() {
double px0 = asv_pose_[0];
double py0 = asv_pose_[1];
double psi0 = asv_pose_[2];

double u = MAX_VEL_;
double psi = -MAX_ANG_ + psi0, psi_max = MAX_ANG_ + psi0;

double du = -MAX_VEL_/VEL_SAMPLES_;
double dpsi = 2.0*MAX_ANG_/ANG_SAMPLES_;
double dt = map_.getResolution() / MAX_VEL_; // Proportional to the grid resolution

double px, py, dx, dy, t;

bool velocity_ok;
for (int psi_it = 0; psi_it < ANG_SAMPLES_; ++psi_it) {
// Reset u
u = MAX_VEL_;
dx = cos(psi);
dy = sin(psi);
for (int u_it = VEL_SAMPLES_-1; u_it >= 0; --u_it) {
// Reset t
t = dt;
velocity_ok = true;
while (t <= T_MAX) {
px = px0 + u*dx*t;
py = py0 + u*dy*t;

if (inObstacle(px, py)) {
velocity_ok = false;
break;

}
t += dt;

}

if (velocity_ok) {
// This direction is ok. Mark all velocities from here as ok!
for (int i=u_it; i >= 0; --i)
setVelocity(i, psi_it, VELOCITY_OK);

break;
}
else {

setVelocity(u_it, psi_it, VELOCITY_NOT_OK);
}
u += du;

}
psi += dpsi;

}
}� �

91

Listing C.3: Example of a launch file.� �
<launch>
<include file="$(find asv_simulator)/launch/default.launch">
<arg name="waypoint_file"

value="$(find asv_simulator)/config/waypoints/overtaking_headon_crossing_asv.yaml"
/>

<arg name="u_d" value="5.0" />
<arg name="initial_state" value="[150.0, 15.0, 3.14, 1.,0.,0.]" />

</include>

<!-- Obstacle ship 1 -->
<include file="$(find asv_simulator)/launch/default.launch">
<arg name="waypoint_file"

value="$(find asv_simulator)/config/waypoints/overtaking_headon_crossing_ship1.yaml
" />

<arg name="use_vo" value="False" />
<arg name="vessel_model_file" value="$(find asv_simulator)/config/models/ship1.urdf" />
<arg name="namespace" value="obstacles/ship1" />
<arg name="shipname" value="ship1" />
<arg name="initial_state" value="[110.0, 15.0, 3.14, 1.0, 0.0, 0.0]" />
<arg name="u_d" value="1.5" />

</include>

<!-- Obstacle ship 2 -->
<include file="$(find asv_simulator)/launch/default.launch">
<arg name="waypoint_file"

value="$(find asv_simulator)/config/waypoints/overtaking_headon_crossing_ship2.yaml
" />

<arg name="use_vo" value="False" />
<arg name="vessel_model_file" value="$(find asv_simulator)/config/models/ship2.urdf" />
<arg name="namespace" value="obstacles/ship2" />
<arg name="shipname" value="ship2" />
<arg name="initial_state" value="[150.0, 150.0, 3.14, 0.0, 0., 0.]" />
<arg name="u_d" value="2.0" />

</include>

<node pkg="asv_obstacle_tracker"
name="obstacle_tracker_node"
type="obstacle_tracker_node.py"
respawn="false"
output="screen">

</node>

<node pkg="rviz"
type="rviz"
name="rviz"
args="-d $(find asv_simulator)/config/rviz/three_vessels.rviz" />

</launch>� �

92 APPENDIX C. SOURCE CODE EXAMPLES

Listing C.4: Simplified pseudo-code for the main update function in the VO
controller.� �
void VelocityObstacle::updateVelocityGrid() {
double u0 = 0, u = 0;
double psi0 = -MAX_ANG_ + asv_pose_[2];
double t = 0;

double du = MAX_VEL_/VEL_SAMPLES_, dpsi = 2*MAX_ANG_/ANG_SAMPLES_;

Eigen::Vector2d va;
// Rotate body-fixed veloctiy vector to ENU velocity vector
rot2d(asv_twist_.head(2), asv_pose_[2], va);

Eigen::Matrix2d Q; // Weighing matrix
Q << 1.0, 0.0,

0.0, 1.0;

Eigen::Vector2d vref = Eigen::Vector2d(u_d_*cos(psi_d_), u_d_*sin(psi_d_));

resetVelocityField(va, vref, Q);

int ship_no = 0;
std::vector<asv_msgs::State>::iterator it;
for (it = obstacles_->begin(); it != obstacles_->end(); ++it) {
Eigen::Vector3d obstacle_pose = Eigen::Vector3d(it->x, it->y, it->psi);
Eigen::Vector3d obstacle_twist = Eigen::Vector3d(it->u, it->v, it->r);
double combined_radius = RADIUS_ + it->header.radius;

Eigen::Vector2d vb;
rot2d(obstacle_twist.head(2), obstacle_pose[2], vb);

Eigen::Vector2d pab = -asv_pose_.head(2) + obstacle_pose.head(2);

// Relative bearing (Loe, 2008)
double bearing = normalize_angle(atan2(-pab[1], -pab[0]) - obstacle_pose[2]);
double angle_diff = normalize_angle_diff(asv_pose_[2] - obstacle_pose[2], asv_pose_[2]);

bool collision_situation = inCollisionSituation(asv_pose_, obstacle_pose, va, vb);
colregs_t colregs_situation = inColregsSituation(bearing, angle_diff);

// Based on the current COLREGs state evaluate the current situation
handleSituation(collision_situation, colregs_situation, bearing, ship_no);

if (!(collision_situation || apply_colregs))
continue;

// Collsion situation detected
// Find velocity obstacle region
double pab_norm = pab.norm(), alpha = 0.5*M_PI;
if (pab_norm >= combined_radius)
alpha = asin(combined_radius / pab_norm);

// Left and right bounds pointing inwards to the VO. (Guy et. al. 2009)
Eigen::Vector2d lb, rb;
pab = pab/pab_norm;
rot2d(pab, alpha - 0.5*M_PI, lb);
rot2d(pab, -alpha + 0.5*M_PI, rb);

for (int u_it=0; u_it<VEL_SAMPLES_; ++u_it) {
for (int t_it=0; t_it<ANG_SAMPLES_; ++t_it) {

93

u = u0 + u_it*du;
t = theta0 + t_it*dtheta;
normalize_angle_diff(t, va_ref[1]);

objval = getVOFieldValue(u_it, t_it);

if (collision_situation && inVelocityObstacle(u, t, lb, rb, vb)) {
setVelocity(u_it, t_it, VELOCITY_NOT_OK);

}
else if ((apply_colregs &&

violatesColregs(u, t, obstacle_pose, vb))) {
setVelocity(u_it, t_it, VELOCITY_VIOLATES_COLREGS + objval/2.0);

}
else {
/// ALREADY SET
// setVelocity(u_it, t_it, objval);

}
}

}
++ship_no;

}
}� �

94 APPENDIX C. SOURCE CODE EXAMPLES

Bibliography

Adams, S. D. (2015, March). ReVolt: next generation short sea shipping. The
Guardian. Retrieved from http://www.theguardian.com/dnv-gl-partner-
zone/2015/mar/18/revolt-next-generation-short-sea-shipping

Benjamin, M. R., Leonard, J. J., Curcio, J. A., & Newman, P. M. (2006). A
method for protocol-based collision avoidance between autonomous marine
surface craft. Journal of Field Robotics, 23 (5), 333–346

Bibuli, M., Bruzzone, G., Caccia, M., Indiveri, G., & Zizzari, A. (2008). Line
following guidance control: Application to the Charlie unmanned surface
vehicle. In IEEE/RSJ International Conference on Intelligent Robots and
Systems, IROS ’08 (pp. 3641–3646).

Borenstein, J. & Koren, Y. (1989). Real-time obstacle avoidance for fast mobile
robots. IEEE Transactions on Systems, Man and Cybernetics, 19 (5), 1179–
1187.

Borenstein, J. & Koren, Y. (1991). The vector field histogram - fast obstacle
avoidance for mobile robots. IEEE Transactions on Robotics and Automa-
tion, 7 (3), 278–288.

Brown, R. G. & Hwang, P. Y. C. (2012). Introduction to Random Signals and
Applied Kalman Filtering (4th ed.). John Wiley & Sons, Ltd.

Caharija, W. (2015). Integral Line-of-Sight Guidance and Control of Underac-
tuated Marine Vehicles (PhD Thesis, Norwegian University of Science and
Technology).

Campbell, S., Naeem, W., & Irwin, G. W. (2012). A review on improving the au-
tonomy of unmanned surface vehicles through intelligent collision avoidance
manoeuvres. Annual Reviews in Control, 36 (2), 267–283.

Chakravarthy, A. & Ghose, D. (1998). Obstacle avoidance in a dynamic environ-
ment: a collision cone approach. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 28 (5), 562–574

95

http://www.theguardian.com/dnv-gl-partner-zone/2015/mar/18/revolt-next-generation-short-sea-shipping
http://www.theguardian.com/dnv-gl-partner-zone/2015/mar/18/revolt-next-generation-short-sea-shipping

96 BIBLIOGRAPHY

Colito, J. (2007). Autonomous mission planning and execution for unmanned
surface vehicles in compliance with the Marine Rules of the Road. (Master’s
thesis, University of Washington).

Corfield, S. J. & Young, J. M. (2006). Unmanned surface vehicles – game changing
technology for naval operations. In Advances in Unmanned Marine Vehicles
(pp. 311–328). Control, Robotics & Sensors. Institution of Engineering and
Technology.

Damas, B. & Santos-Victor, J. (2009, October). Avoiding moving obstacles: the
forbidden velocity map. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) (pp. 4393–4398).

Daniel, K., Nash, A., Koenig, S., & Felner, A. (2010). Theta*: Any-Angle Path
Planning on Grids. Journal of Artificial Intelligence Research, 39 (1), 533–
579.

Dolgov, D., Thrun, S., Montemerlo, M., & Diebel, J. (2010, January). Path Plan-
ning for Autonomous Vehicles in Unknown Semi-structured Environments.
The International Journal of Robotics Research, 29 (5), 485–501

Dragland, Å. (2014, August). Skip uten kaptein bak roret. Gemini. Retrieved
from http://gemini.no/2014/08/skip-uten-kaptein-bak-roret/

Elkins, L., Sellers, D., & Monach, W. R. (2010). The Autonomous Maritime Navi-
gation (AMN) project: Field tests, autonomous and cooperative behaviors,
data fusion, sensors, and vehicles. Journal of Field Robotics, 27 (6), 790–
818.

Eriksen, B.-O. H. (2015). Horizontal Collision Avoidance for Autonomous Un-
derwater Vehicles (Master’s Thesis, Norwegian University of Science and
Technology).

Ferguson, D. & Stentz, A. (2005). Field D*: An interpolation-based path planner
and replanner. In International Symposium on Robotics Research (ISRR).

Fiorini, P. & Shiller, Z. (1993). Motion planning in dynamic environments us-
ing the relative velocity paradigm. In IEEE International Conference on
Robotics and Automation (pp. 560–565).

Fiorini, P. & Shiller, Z. (1998). Motion planning in dynamic environments using
velocity obstacles. The International Journal of Robotics Research, 17 (7),
760–772.

Flæten, S. Ø. (2014, September). Dette skipet er utslippsfritt og har ingen men-
nesker ombord. Teknisk Ukeblad. Retrieved from www. tu . no/ industri /
2014/09/20/dette-skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord

Foote, T. & Purvis, M. (2010). Standard Units of Measure and Coordinate Con-
ventions. Open Source Robotics Foundation. Retrieved May 9, 2015, from
http://www.ros.org/reps/rep-0103.html

http://gemini.no/2014/08/skip-uten-kaptein-bak-roret/
www.tu.no/industri/2014/09/20/dette-skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord
www.tu.no/industri/2014/09/20/dette-skipet-er-utslippsfritt-og-har-ingen-mennesker-ombord
http://www.ros.org/reps/rep-0103.html

BIBLIOGRAPHY 97

Fossen, T. I., Breivik, M., & Skjetne, R. (2003). Line-of-sight path following
of underactuated marine craft. In IFAC Conference on Manoeuvring and
Control of Marine Craft (pp. 244–249).

Fossen, T. I. (2011). Handbook of marine craft hydrodynamics and motion control.
John Wiley & Sons, Ltd.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window approach to
collision avoidance. IEEE Robotics and Automation Magazine, 4 (1), 22–33.

Google Inc. (2014). Google Self-Driving Car Project. Retrieved November 19,
2014, from https://plus.google.com/+GoogleSelfDrivingCars

Guy, S. J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., & Dubey, P.
(2009). Clearpath: highly parallel collision avoidance for multi-agent simu-
lation. In ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (pp. 177–187). ACM.

Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic
Determination of Minimum Cost Paths. IEEE Transactions on Systems
Science and Cybernetics, 4 (2), 100–107

Huntsberger, T., Aghazarian, H., Howard, A., & Trotz, D. C. (2011). Stereo
vision-based navigation for autonomous surface vessels. Journal of Field
Robotics, 28 (1), 3–18.

International Maritime Organization. (2003). COLREG : Convention on the In-
ternational Regulations for Preventing Collisions at Sea, 1972 (4th). Inter-
national Maritime Organization.

Khatib, O. (1986). Real-Time Obstacle Avoidance for Manipulators and Mobile
Robots. The International Journal of Robotics Research, 5 (1), 90–98.

Klingenberg, M. (2014). Denne roboten sørger for at Ekornes ikke flagger ut.
Retrieved June 11, 2015, from http://e24.no/digital/fremtidens-arbeidsliv/
denne-roboten-soerger-for-at-ekornes-ikke-flagger-ut/23260216

Koren, Y. & Borenstein, J. (1991). Potential field methods and their inherent
limitations for mobile robot navigation. In IEEE International Conference
on Robotics and Automation (pp. 1398–1404).

Kuwata, Y., Wolf, M. T., Zarzhitsky, D., & Huntsberger, T. L. (2011). Safe mar-
itime navigation with COLREGS using velocity obstacles. In IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS) (pp. 4728–
4734).

Kuwata, Y., Wolf, M., Zarzhitsky, D., & Huntsberger, T. (2014). Safe Maritime
Autonomous Navigation With COLREGS, Using Velocity Obstacles. IEEE
Journal of Oceanic Engineering, 39 (1), 110–119.

Larson, J., Bruch, M., & Ebken, J. (2006). Autonomous navigation and obstacle
avoidance for unmanned surface vehicles. In SPIE Defense and Security
Symposium (Vol. 6230, pp. 7–18).

https://plus.google.com/+GoogleSelfDrivingCars
http://e24.no/digital/fremtidens-arbeidsliv/denne-roboten-soerger-for-at-ekornes-ikke-flagger-ut/23260216
http://e24.no/digital/fremtidens-arbeidsliv/denne-roboten-soerger-for-at-ekornes-ikke-flagger-ut/23260216

98 BIBLIOGRAPHY

Larson, J., Bruch, M., Halterman, R., Rogers, J., & Webster, R. (2007). Advances
in autonomous obstacle avoidance for unmanned surface vehicles. Space and
Naval Warfare Systems Center. San Diego, CA.

LaValle, S. M. (1998). Rapidly-Exploring Random Trees: A New Tool for Path
Planning. Department of Computer Science, Iowa State University. Ames,
IA 50011 USA.

LaValle, S. M. (2006). Planning Algorithms. Cambridge: Cambridge University
Press

Lee, S.-M., Kwon, K.-Y., & Joh, J. (2004). A fuzzy logic for autonomous naviga-
tion of marine vehicles satisfying COLREG guidelines. International Jour-
nal of Control Automation and Systems, 2, 171–181.

Loe, Ø. A. G. (2007). Collision Avoidance Concepts for Marine Surface Craft
(Project Report, Norwegian University of Science and Technology, Trond-
heim).

Loe, Ø. A. G. (2008). Collision Avoidance for Unmanned Surface Vehicles (Mas-
ter’s thesis, Norwegian University of Science and Technology).

Lund, T. (2008). Safe Speed in a Fog; Ancient Rules in a Modern Age. Retrieved
from http : / /www. jus . uio . no/nifs / forskning/prosjekter / sjosikkerhet /
ressurser/startseminar2008/tor-c-lund-bakgrunn.pdf

Majohr, J., Buch, T., & Korte, C. (2000). Navigation and automatic control of
the measuring dolphin (MESSIN). In 5th IFAC Conference on Manoeuvring
and Control of Marine Crafts (pp. 405–410).

Marder-Eppstein, E., Berger, E., Foote, T., Gerkey, B., & Konolige, K. (2010).
The Office Marathon : Robust Navigation in an Indoor Office Environment.
In International Conference on Robotics and Automation.

Meeussen, W. (2010). Coordinate Frames for Mobile Platforms. Open Source
Robotics Foundation. Retrieved May 9, 2015, from http://www.ros.org/
reps/rep-0105.html

Montemerlo, M., Becker, J., Suhrid, B., Dahlkamp, H., Dolgov, D., Ettinger, S.,
. . . Thrun, S. (2008). Junior: The stanford entry in the urban challenge.
Journal of Field Robotics, 25 (9), 569–597.

Naeem, W., Sutton, R., & Chudley, J. (2006). Modelling and control of an un-
manned surface vehicle for environmental monitoring. In UKACC Interna-
tional Control Conference.

Naeem, W., Xu, T., Sutton, R., & Tiano, A. (2008). The design of a navigation,
guidance, and control system for an unmanned surface vehicle for environ-
mental monitoring. In Institution of Mechanical Engineers, Part M: Journal
of Engineering for the Maritime Environment (Vol. 222, 2, pp. 67–79).

Naeem, W., Irwin, G. W., & Yang, A. (2012). COLREGs-based collision avoid-
ance strategies for unmanned surface vehicles. Mechatronics, 22 (6), 669–
678.

http://www.jus.uio.no/nifs/forskning/prosjekter/sjosikkerhet/ressurser/startseminar2008/tor-c-lund-bakgrunn.pdf
http://www.jus.uio.no/nifs/forskning/prosjekter/sjosikkerhet/ressurser/startseminar2008/tor-c-lund-bakgrunn.pdf
http://www.ros.org/reps/rep-0105.html
http://www.ros.org/reps/rep-0105.html

BIBLIOGRAPHY 99

Narrative Science. (2014). Natural Language Generation - Artificial Intelligence
Platform. Retrieved November 19, 2014, from http://www.narrativescience.
com/

Nord, P. (2010). Collision-Free Path Planning for Unmanned Surface Vehicles
(Master’s thesis, Norwegian University of Science and Technology).

Open Source Robotics Foundation. (2014). Robot Operating System (ROS). Re-
trieved February 9, 2014, from http://www.ros.org

Open Source Robotics Foundation. (2015). ROS Introduction. Retrieved April
22, 2015, from http://wiki.ros.org/ROS/Introduction

Patel, A. (2015). Implementation of A*. Retrieved June 2, 2015, from http://
www.redblobgames.com/pathfinding/a-star/implementation.html

Perera, L., Carvalho, J., & Soares, C. G. (2009). Autonomous guidance and navi-
gation based on the COLREGs rules and regulations of collision avoidance.
In International Workshop "Advanced Ship Design for Pollution Prevention
(pp. 205–216).

Rafael Advanced Defense Systems Ltd. (2010). PROTECTOR – Unmanned Naval
Patrol Vehicle. Retrieved May 8, 2015, from http ://www. rafael . co . il /
Marketing/288-1037-en/Marketing.aspx

Rodríguez-Seda, E. J., Tang, C., Spong, M. W., & Stipanović, D. M. (2014). Tra-
jectory tracking with collision avoidance for nonholonomic vehicles with ac-
celeration constraints and limited sensing. International Journal of Robotics
Research, 33 (12), 1569–1592.

Savvaris, A., Oh, H. N. H., & Tsourdos, A. (2014). Development of Collision
Avoidance Algorithms for the C-Enduro USV. In The 19th World Congress
– The International Federation of Automatic Control (pp. 12174–12181).

Simmons, R. & Henriksen, L. (1996). Obstacle avoidance and safeguarding for a
lunar rover. In AIAA Forum on Advanced Developments in Space Robotics.

SNAME. (1950).Nomenclature for treating the motion of a submerged body through
a fluid (1st ed.). Technical and research bulletin. Society of Naval Architects
and Marine Engineers.

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot Modeling and
Control. John Wiley & Sons, Ltd.

Stenersen, T. (2014). Guidance System for Autonomous Surface Vehicles (Project
Report, Norwegian University of Science and Technology).

Stentz, A. (1994). Optimal and efficient path planning for partially-known envi-
ronments. In IEEE International Conference on Robotics and Automation
(pp. 3310–3317).

Švec, P., Shah, B., Bertaska, I., Alvarez, J., Sinisterra, A., Von Ellenrieder, K.,
. . . Gupta, S. (2013, November). Dynamics-aware target following for an
autonomous surface vehicle operating under COLREGs in civilian traffic.

http://www.narrativescience.com/
http://www.narrativescience.com/
http://www.ros.org
http://wiki.ros.org/ROS/Introduction
http://www.redblobgames.com/pathfinding/a-star/implementation.html
http://www.redblobgames.com/pathfinding/a-star/implementation.html
http://www.rafael.co.il/Marketing/288-1037-en/Marketing.aspx
http://www.rafael.co.il/Marketing/288-1037-en/Marketing.aspx

100 BIBLIOGRAPHY

In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (pp. 3871–3878).

Švec, P., Thakur, A., Raboin, E., Shah, B. C., & Gupta, S. K. (2014). Target
following with motion prediction for unmanned surface vehicle operating in
cluttered environments. Autonomous Robots, 36 (4), 383–405

Tam, C., Bucknall, R., & Greig, A. (2009). Review of Collision Avoidance and
Path Planning Methods for Ships in Close Range Encounters. Journal of
Navigation, 62, 455–476.

Tychonievich, L., Zaret, D., Mantegna, J., Evans, R., Muehle, E., & Martin,
S. (1989). A maneuvering-board approach to path planning with moving
obstacles. In 11th International Joint Conference on Artificial Intelligence
(Vol. 2, pp. 1017–1021).

van den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011a). Reciprocal n-Body
Collision Avoidance. In Robotics Research (pp. 3–19). Springer.

van den Berg, J., Snape, J., Guy, S. J., & Manocha, D. (2011b). Reciprocal colli-
sion avoidance with acceleration-velocity obstacles. In IEEE International
Conference on Robotics and Automation (ICRA) (pp. 3475–3482).

Vik, B. (2014). Integrated Satellite and Inertial Navigation Systems. Department
of Engineering Cybernetics, NTNU.

Wang, H., Wei, Z., Wang, S., Ow, C. S., Ho, K. T., Feng, B., & Lubing, Z. (2011).
Real-time obstacle detection for unmanned surface vehicle. In Defense Sci-
ence Research Conference and Expo (DSR) (pp. 1–4).

Wikipedia. (2014). Velocity obstacle — Wikipedia, The Free Encyclopedia. Re-
trieved June 3, 2015, from http://en.wikipedia.org/w/index.php?title=
Velocity_obstacle&oldid=593276110

Wikipedia. (2015a). Automatic identification system — wikipedia, the free ency-
clopedia. Retrieved May 19, 2015, from http://en.wikipedia.org/w/index.
php?title=Automatic_Identification_System&oldid=663056059

Wikipedia. (2015b). DARPA Grand Challenge — Wikipedia, The Free Encyclo-
pedia. Retrieved May 22, 2015, from http://en.wikipedia.org/w/index.
php?title=DARPA_Grand_Challenge&oldid=646957566

Wikipedia. (2015c). International Regulations for Preventing Collisions at Sea
— Wikipedia, The Free Encyclopedia. Retrieved June 3, 2015, from http:
//en.wikipedia.org/w/index.php?title=International_Regulations_for_
Preventing_Collisions_at_Sea&oldid=663130373

Wikipedia. (2015d). Robot Operating System – Wikipedia, The Free Encyclope-
dia. Retrieved May 9, 2015, from http://en.wikipedia.org/w/index.php?
title=Robot_Operating_System&oldid=657161474

Wilkie, D., van den Berg, J., & Manocha, D. (2009). Generalized velocity ob-
stacles. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (pp. 5573–5578).

http://en.wikipedia.org/w/index.php?title=Velocity_obstacle&oldid=593276110
http://en.wikipedia.org/w/index.php?title=Velocity_obstacle&oldid=593276110
http://en.wikipedia.org/w/index.php?title=Automatic_Identification_System&oldid=663056059
http://en.wikipedia.org/w/index.php?title=Automatic_Identification_System&oldid=663056059
http://en.wikipedia.org/w/index.php?title=DARPA_Grand_Challenge&oldid=646957566
http://en.wikipedia.org/w/index.php?title=DARPA_Grand_Challenge&oldid=646957566
http://en.wikipedia.org/w/index.php?title=International_Regulations_for_Preventing_Collisions_at_Sea&oldid=663130373
http://en.wikipedia.org/w/index.php?title=International_Regulations_for_Preventing_Collisions_at_Sea&oldid=663130373
http://en.wikipedia.org/w/index.php?title=International_Regulations_for_Preventing_Collisions_at_Sea&oldid=663130373
http://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=657161474
http://en.wikipedia.org/w/index.php?title=Robot_Operating_System&oldid=657161474

BIBLIOGRAPHY 101

Zhang, R., Tang, P., Su, Y., Li, X., Yang, G., & Shi, C. (2014). An adaptive
obstacle avoidance algorithm for unmanned surface vehicle in complicated
marine environments. IEEE/CAA Journal of Automatica Sinica, 1 (4), 385–
396.

	Contents
	Introduction
	Motivation
	Assumptions
	Contribution
	Thesis Structure

	Literature Review
	Overview Papers
	Planning Algorithms for Ocean Vehicles
	Other Planning Algorithms

	Theoretical Background
	Surface Vessel Modeling
	Actuator Forces and Low-level Control
	Environmental Forces

	Configuration Spaces
	Planning Algorithms
	Local Methods
	Global Methods

	Guidance Laws
	COLREGs – Following the Rules of the Road
	The Rules
	COLREGs for an ASV

	Velocity Obstacles
	The Velocity Obstacle
	Properties of the Velocity Obstacle

	System Implementation
	System Architecture
	Simulator
	Low-level Controllers

	Guidance
	Velocity Obstacle Controller
	The Velocity Field
	Static Obstacles

	Simulation Results
	Ideal Conditions
	Overtaking and Crossing from the Right
	Overtaking, Crossing and Head-on
	Crossing Left and Right

	Wave Disturbances
	Overtaking and Crossing from the Right
	Overtaking, Crossing and Head-on
	Crossing Left and Right

	Discussion
	Static Obstacle Oscillations
	Solutions

	COLREGs Challenges
	In Between Rules
	COLREGs Ambiguity
	Clearance During Overtaking

	Future Work
	Simulator
	Global Planner
	A* Search
	Hybrid-state A* Search

	Velocity Obstacle Controller
	Better ROS Integration
	Velocity Obstacles as a Filter

	Stability
	Experimental Testing
	Practial Considerations

	Conclusion
	Robotic Operating System (ROS)
	Introduction
	ROS Concepts
	ROS Filesystem Level
	ROS Computation Graph Level

	Conventions
	Position, Orientation and Velocity
	Reference Frames

	Implementation Details
	Installation Guide
	Package Details
	ASV System
	ASV Simulator
	Velocity Obstacle Controller
	Path Trackers

	Source Code Examples

