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Summary

The goal of this thesis was to implement a computer vision system on a low power

platform, to see if that could be an alternative for a collision detection system. To

achieve this, research into fundamentals in computer vision were performed, and

both hardware and software implementation were carried out.

To create the computer vision system, a stereo rig were constructed using low cost

Logitech webcameras, and connected to a Raspberry Pi 2 development board. The

computer vision library OpenCV was used for interfacing with the stereo rig, and

provide tools for image acquisition and stereo matching. The system was then put

through a series of tests to evaluate the accuracy and refresh rate. For comparison

reasons, an ultrasonic system were implemented with all the necessary hardware

and software.

Based on the results obtained, a working implementation of a computer vision

system was achieved. The system performed relatively good with respect to both

the accuracy and the refresh rate, but will require some improvements depending

on what type of applications the system are intended to be used in. The result-

ing computer vision system in this thesis does not provide any more functionality

than the ultrasonic system in terms of collision detection, but it can be used as a

foundation for future work to implement new features and more functionality.

The main contributions of this thesis is a computer vision subsystem that can

be integrated for use into other applications directly. This system is also a foun-

dation to be used for improvements and construction of a better system.
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Sammendrag

Målet med denne avhandlingen var å implementere et datasyn-system p̊a en lav-

effektsplattform, for å se om det kan være et alternativ for kollisjonsdeteksjon.

For å oppn̊a dette, fundamentale egenskaper ved datasyn ble undersøkt, og b̊ade

maskinvare og programvare ble implementert.

For å lage datasyn-systemet ble et stereokamera konstruert ved å bruke et par

billige Logitech webkameraer koblet til en Raspberry Pi 2. Datasynbiblioteket

OpenCV ble brukt som grensesnitt mot stereokameraet, og som verktøy for å

utføre bildetaking og stereosamsvar. Systemet ble s̊a kjørt gjennom testing for

å evaluere nøyaktigheten og oppdateringshastigheten. For sammenligning ble et

ultralyd system implementert med all nødvendig maskinvare og programvare.

Basert p̊a resultatene som er innhentet, en fungerende implementasjon av et

datasyn-system ble oppn̊add. Systemet fungerte relativt bra med hensyn p̊a

b̊ade nøyaktigheten og oppdateringsfrekvensen, men kan trenge noe forbedringer

avhenging av hva slags applikasjoner systemer er tenkt brukt i. Det resulterende

datasyn-systemet i denne avhandlingen gir ikke noe mer funksjonalitet utover et

ultralyd system med hensyn p̊a kollisjonsdeteksjon, men det kan brukes som et

grunnlag for videre arbeid for implementasjon av nye funksjoner og funksjonalitet.

Bidraget med denne avhandlingen er et datasyn-system som kan bli integrert til

bruk i andre applikasjoner direkte. Systemet er ogs̊a et grunnlag for videre arbeid

mot et bedre system.
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Chapter 1

Introduction

1.1 Background and Motivation

Robotic systems has seen great progress over the last few decades, and the de-

velopment of robots are expanding rapidly. The initial robotic development were

seen in industries where robots could relieve humans in repetitive and heavy tasks.

Today, robots have become more available and affordable, and we see robots in

daily use such as vacuum cleaners, lawn mowers and robotic toys.

The need for improved autonomy in the robotic systems that is being developed

is increasing. Many systems, such as UAS and autonomous cars, are being in-

tegrated with existing robots, machines and humans in daily use. When several

players are coexisting in the same area, measures have to be taken to ensure safe

operation. Collision detection is a way to increase safety, by having a system that

can see other agents in the same area, and thus preventing them to crash into each

other. The need for such a system is increasing, with more and more focus on size,

power consumption and reliability.

This thesis is motivated by an interest in implementing computer vision as a

system for collision detection, to see if that can be suitable for small autonomous

applications. This is hoped to be achieved by investigating existing solutions, im-

plement necessary hardware and software to run the computer vision system, and

test this system in terms of accuracy and refresh rate.
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1.2 Goal and Method

The goal of this thesis is to implement computer vision on a low power platform

to see if that can be an alternative for collision detection. All necessary hardware

and software to run a computer vision system will be implemented, and evalu-

ation with regards to accuracy and refresh rate will be made. The results will

then be presented in a user friendly format, functioning as a basic guide for choos-

ing and comparing methods for collision detection for certain applications (e.g.

autonomous cars, warehouse robots, hobby robots etc.). The main objectives in-

cluded are:

1. Study relevant theory and fundamentals.

2. Present hardware and software used in this thesis.

3. Implement the computer vision system.

4. Test the computer vision system and evaluate the results.

To achieve these goals, background research into fundamentals of computer vision

is necessary, as well as research into suitable hardware that can be used for imple-

mentation. The development of the hardware for the system will not be discussed

in this thesis. Test procedures is also considered to be able to give an adequate

baseline for comparison.

1.3 Structure of the Report

This report is intended for readers interested in options for collision detection sys-

tems on autonomous applications, and readers interested in implementing com-

puter vision as an option for collision detection.

Chapter 2 presents the detection systems used in this thesis, as well as neces-

sary background and theory for the systems.

Chapter 3 explains the implementation of both hardware and software for the

systems presented in chapter 2.
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Chapter 4 explains the test setup and test results of the implemented systems

presented in chapter 2 and 3.

Chapter 5 presents a general discussion about the project work, as well as possible

future work that can be done for improvements.

Chapter 6 concludes the work that has been performed in this report.

3





Chapter 2

Background and Theory

In this chapter, the methods for detection systems will be presented, and relevant

background theory discussed. An ultrasonic system was chosen for use in com-

parison with the computer vision system. Available time limited the number of

methods that could be implemented and used for testing and evaluation, since

a large number of possible methods for collision detection exists. The primary

criteria for choosing the ultrasonic method were based on usage in the real world,

price and component requirements. Other methods could be used instead, but will

not be considered in this thesis.

2.1 Ultrasonic

Ultrasonic obstacle detection is a widely used method for detecting objects and

distances, and is used from cheap hobby projects, like the LEGO mindstorms

robots, to advanced car parking systems. Ultrasonic obstacle detection adapts a

range finding method to report a distance from the robot to an object. Ultrasonic

range detection is suited for close range obstacle detection, due to the relative slow

speed of sound and sound reflectance of solid objects.

2.1.1 Ultrasonic theory

Ultrasound is a sound pressure wave, with frequency greater than the human

hearing. Ultrasound has the same physical properties as audible sound, but is
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outside the human hearing range. Frequencies above 20kHz is considered ultra-

sonic [Kut91].

In a ultrasonic ranging system, a pulse is emitted from a transducer, which then

switches to receiver mode and waits for a set time to detect an echo. If an echo is

detected, the distance from the object can be found by multiplying the speed of

sound with half the time for the pulse to be detected. An illustration can be seen

in figure 2.1. Since the time measurement is from the pulse was sent to the echo

is detected, the time measurement is halved to get the time from the pulse was

sent to the pulse hit the object. The distance using TOF can be found by using

the following equation:

D =
c ∗ t

2
(2.1)

Where c is the speed of sound, and t is the measured time in seconds. Treating

air as an ideal gas, the speed of sound c can be found by using the equation

[Ens88, FS78]

c =
√
k ∗R ∗ T (2.2)

Where k = ratio of specific heat = 1.4

R = gas constant = 286.9

T is the temperature in kelvin.

For a temperature of 20◦C, the speed of sound is calculated to be 343.14 m/s.

This value will be used throughout this thesis.

Figure 2.1: Illustration of ultrasonic operation[Tea]
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2.1.2 Advantages

Using ultrasound as a method for distance measurements has several advantages

over similar systems:

• Cost effective. A cheap sensor and a development board can get you started

with a small detection system.

• For simple systems, implementation can be done relatively easy, as seen on

the LEGO mindstorm robots.

A typical scenario where measurements is taken can be seen in figure 2.2. In this

scenario the accuracy of the measured distance can be very good, as the object is

directly opposite of the sensor.

Figure 2.2: Illustration of object directly in front

2.1.3 Disadvantages

Accuracy of the measurement taken with a ultrasonic system is dependent of sev-

eral factors. The speed of sound relies on temperature measurement, and a tem-

perature difference of 10◦C may give a noticeable difference in distance readings.

If we for example have set a fixed temperature of 20◦C, the speed of sound is found

to be 343.14 m/s. For a distance of 5 meters, this gives us a time measurement

of 0.0292s. If the temperature drops by 10◦C, the speed of sound is found to be
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337.24 m/s. For the same distance of 5 meters, this gives us a time measurement

of 0.0297s. If we then still use 20◦C for temperature in our equation, the calculated

distance would be 5.1 meters, instead of 5 meters if the correct temperature value

were to be used in the calculation.

The reflection of ultrasonic waves is an important factor to consider. As seen

in figure 2.2, with the right angle, a good measurement can be taken due to the

ultrasound reflectivity in objects. This however, can also be a challenge if the

angle to the object changes drastically. In figure 2.3 and 2.4, two examples are

shown were detecting objects is difficult.

Figure 2.3: Illustration of angle leading to range error

8



Figure 2.4: Illustration of angle leading to no detection

In figure 2.3, we can see that the sensor gets the measurement on the left side of

the sensor, and not the middle line which get reflected off due to the angle. This

results in a measurement that could be different from the optimal measurement

in the middle.

In figure 2.4, the angle is so large that no energy is reflected back to the sen-

sor, which in turn implies that the object is not detected.
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2.2 Computer vision

Computer vision is a field in computer science which is often described as emulating

human vision with machines. To be able to perceive the environment, the machine

must be able to recognize different characteristics and properties in a place. This

is done with analysis of images taken with a camera or multiple cameras, to try to

identify different shapes, textures, colors etc. As small development boards and

computers are getting more and more powerful, computer vision is becoming an

interesting area to use for robotic applications.

2.2.1 Stereo vision

Human beings are in general provided with two eyes for vision, when combined

provides better precision in the depth dimension than with only one eye. In

computer vision, this can be implemented in the same way, by having two cameras

take an image at the same time and from different angles to the object. With

comparison of these two images, it is possible to get depth information in the form

of disparities, and calculate distance from the cameras to the object.

2.2.2 Epipolar geometry

Epipolar geometry is the intrinsic projective geometry between two views [HZ04].

The use of epipolar geometry is motivated by the search of corresponding points

between pictures. Two images of the same environment taken from separate po-

sitions, have numerous geometric locations between the 3D points and their 2D

projections that leads to constraints between the image points.
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Figure 2.5: Illustration of epipolar view, by Arne Nordmann, CC BY-SA 3.0

In figure 2.5, an illustration of epipolar view is shown. Each camera has a center

of projection, called OL and OR, and corresponding projection planes. The point

X has a projection to each projective planes, which is called XL and XR. The

epipoles, eL and eR, is points intersecting between the image projective planes,

and the line connecting the camera centres. The plane connected by the viewed

point X, and the camera centres is called the epipolar plane, and the lines XLeL

and XReR are called the epipolar lines.

When we see a point that is projected onto an image plane, we have no infor-

mation as to how far away that point is, just that it is on the line formed by the

camera center, Ox, and the projection point Xx. This is a consequence of not

knowing the distance to the object with only one camera. If we look at figure

2.5, the left camera only see the point XL, which is the point X projected onto

the left projection plane. The actual point X could be anywhere on the line made

by OLXL, and the line does contain point X, but also other points. What is of

interest, is to see what this line looks like projected onto the right image plane.

This is in fact the epipolar line XReR.
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If we know the position of the cameras relative to each other, and the rotation of

the cameras, we know that each projection point that is observed in one image

plane, must lie on a known epipolar line in the other image plane. This gives us

an epipolar constraint, and we can test to see if two points correspond to the same

observed point. If such a correspondance exist, we can calculate the position of

the point by using triangulation.

2.2.3 Disparity map

When finding corresponding features in the left and right picture, we can also look

at the difference in the location of those features in both images. This difference is

called the disparity [Qia97]. By doing this for every pixel, we get a disparity map

or depth map. Each point in the disparity map represent the distance between a

point in the reference picture (e.g. the left picture) and the corresponding point

in the non-reference picture (e.g. the right picture). Figure 2.6 shows an example

of disparity maps produced by a pair of images. The images are provided by

the University of Tsukuba and made available on the Middlebury Vision website

[SS03].
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(a) Left image (b) Right image

(c) Left reference disparity map (d) Right reference disparity map

Figure 2.6: Stereo image and disparity map of cones.

In this example, figure 2.6a and 2.6b constitutes the stereo pair, with their re-

spective disparity maps shown in figure 2.6c and 2.6d. The left disparity map is

made with the left image as reference, and the right disparity map is made with

the right image as reference. The disparity maps can easily be examined, as close

objects are brighter than distant objects.

Creating the disparity map is done by giving the corresponding point a disparity

value based on the distance difference. Corresponding points with no distance be-

tween them are placed at infinity and given a disparity value of 0. For points with

distance 1, a disparity value of 1 can be given, and so on. The disparity values

are often scaled to a set range, e.g. 0-255, to make it easier to view the disparity

map and inspect it visually.
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Converting to distance

Assuming we now have a stereo rig with two cameras with coplanar image planes,

a known distance between the cameras, and equal focal lengths, we can find the

distance to the point with the following equation:

Z =
f ∗ b
d

(2.3)

Where Z is the distance, f is the focal length, b is the baseline and d is the disparity

value [JKS95]. We see that the depth is inversely proportional to the disparity

between the images.

2.2.4 Stereo matching

To be able to produce the disparity map, and calculate the distance to the object,

we need to implement a stereo matching algorithm. Stereo matching is used to find

the corresponding pixels in an image pair used for the disparity map. A common

approach in computer vision is to use a block matching algorithm [HIG02]. This

approach divides the current frame into blocks, and slides the block over a search

area in the other image to find the position where the blocks are most similar (i.e.

where the minimum error in difference occurs). This gives us the disparity values

used to create the disparity map.

To find these similarities between the blocks, a cost function is implemented. In

this thesis the SAD method is used, due to the low matching time and ease of

implementation. Other cost functions can be used, such as SSD, MSE, MAD, etc,

but they typically require more computational power than SAD [HS07].

SAD:

SAD =
n∑

i=0

|(Li −Ri)| (2.4)
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Chapter 3

Hardware and Software

Implementation

This chapter will cover the various hardware and software used for evaluating the

detection methods listed in chapter 2, and the implementation of said systems.

3.1 Hardware

This section presents the various hardware used for the testing carried out in this

thesis.

3.1.1 Raspberry Pi 2

The main platform used in this thesis is the new Raspberry Pi 2 from Raspberry

Pi Foundation. Both the computer vision module and the ultrasound sensor will

interface with this board. This represent a low power ARM platform, and was

chosen for its popularity in small robotics application, wide user community, low

power requirement and relatively low cost. A list of specifications is given in table

3.1.
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CPU: Broadcom BCM2836 Arm7 Cortex-A7 (900MHz, 4 cores)
RAM: 1GB LPDDR2 SDRAM
USB: 4x USB 2 ports
GPIO: 40 pin
Ethernet: Wired port
Storage: Micro SD card slot
OS: Raspbian (Debian based distribution)
Price: $35 (as of 01.03.2015)

Table 3.1: Raspberry Pi 2 specifications

Figure 3.1: Raspberry pi 2

3.1.2 Desktop computer

A Dell Optiplex 990 desktop computer, and two monitors, was provided by NTNU

to be used with the project work. This computer was used for writing code and

text, upload code to the Raspberry Pi 2, and receive results from the Raspberry

Pi 2 to display on the screens.
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3.1.3 Logitech C920

The camera used for the computer vision system is the Logitech C920 webcamera,

which is a standard USB webcamera used in everything from internet chatting

to home surveillance. This camera model was chosen based on reviews online,

and availability at NTNU. Logitech webcameras in general also has decent driver

support in both linux and windows, making it easy to interface with. The C920

works out of the box on the default Raspbian distribution for Raspberry Pi. Other

web-cameras may also be suited, but driver support should be considered before

trying other models. A list of specifications is given in table 3.2.

Resolution: 1920 x 1080 maximum
USB: USB connector
Video formats: YUYV, H264 and MJPG
Price: $70 (as of 01.03.2015)

Table 3.2: Logitech C920 specifications

Figure 3.2: Logitech C920

3.1.4 HC-SR04

For the ultrasonic system, the HC-SR04 sensor were used. This is a cheap ranging

sensor consisting of two transducers, one transmitter and one receiver. This sensor

is used in many different robotic projects, and are often found in starter kits for
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robotic applications. This sensor was chosen based on previous experience and use

in projects, as well as its performance and price. A list of specifications is given

in table 3.3.

Working frequency: 40kHz
Min range: 2 cm
Max range: 400 cm
Resolution: 0.3 cm
Measure angle: 15◦

Price: $3 (as of 01.03.2015)

Table 3.3: HC-SR04 sensor specifications

Figure 3.3: HC-SR04
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3.2 Software

This section presents the main software used in this thesis.

3.2.1 OpenCV

OpenCV (Open Source Computer Vision Library), is an open source software

library developed by Intel and Itseez, and focuses on computer vision and machine

learning [BK08]. The library provides many functions for the necessary graphical

operations needed to create computer vision applications. The version of OpenCV

used in this thesis is 2.4.11, and being free to use under the open-source BSD

license makes it a suitable choice for computer vision projects. In this thesis,

OpenCV has been used for the following tasks:

• Set resolution for the web-cameras

• Capture images from the web-cameras

• Calibrate the web-cameras

• Convert images to gray scale

• Implements a Block Matching algorithm used for stereo matching

• Display both images from camera and disparity map after stereo matching

3.2.2 Operating systems

Raspbian

Raspbian is a Debian based operating system, optimized for the Raspberry Pi

hardware. This is the default operating system that is installed on the memory

card when buying a Raspberry Pi. It was decided to keep this as the operating sys-

tem for the Raspberry Pi 2, since hardware accelerated floating point operations

are enabled by default on this distribution.
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Windows

The desktop computer came pre-configured with windows 7 from the IT-department

at NTNU. It was decided to use this due to previous experience with this operating

system, and not wanting to use time to replace it. Other operating systems could

be used as well, and is mostly based on personal preference.

3.2.3 Miscellaneous

PuTTy

PuTTY is an open-source terminal emulator, which is used to communicate with

the Raspberry Pi 2 using SSH. The main use of the terminal window is to login to

the Raspberry Pi 2 without the need for a dedicated monitor and keyboard, and

launch code on the Raspberry Pi 2 from the desktop computer.

Xming

Xming is a X Window System Server for windows, and provides a display sys-

tem that can be used with PuTTY to display graphical applications from the

Raspberry Pi 2, on the desktop computer. This removes the need for a monitor

connected to the Raspberry Pi 2 completely, as everything can be controlled and

displayed on the desktop computer.

Notepad++

Notepad++ is a text editor, which is used for writing and displaying source code.

It supports multiple open files, displayed as tabs instead of separate windows, and

syntax highlighting for the source code making easier to look at.

FileZilla

FileZilla is a graphical FTP software, which were used to transfer files between

the Raspberry Pi 2 and the desktop computer.
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3.3 Implementing ultrasound sensor

The ultrasonic sensor has a relatively straight forward process for implementa-

tion. The HC-SR04 sensor used in this thesis, has four pins for interfacing and is

connected to the GPIO pins on the Raspberry Pi 2. A description of the GPIO

header on the Raspberry pi 2 can be seen in figure 3.4.

Figure 3.4: Raspberry Pi 2 GPIO, from element14.com

The pins on the HC-SR04 sensor for ceonnecting with external equipment is as

follows:

• Voltage

• Ground

• Echo
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• Trig

The HC-SR04 operates at 5V, that can be found directly on the Raspberry Pi 2 on

pin two and four. Ground can be connected to any ground pin. The Trig and Echo

pins are input and output pins respectively on the sensor, and can be connected

on any GPIO pin on the Raspberry Pi 2. One problem that arouse during testing

was that the GPIO pins on the Raspberry Pi 2 expects a 3.3V signal max, and the

HC-SR04 sensor sends out a 5V signal. To solve this problem, a voltage divider

was integrated in the circuit. A connection schematic can be seen in figure 3.5,

and the ultrasonic system can be seen in figure 3.6.

Figure 3.5: Connection schematic
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Figure 3.6: Ultrasonic system

Interacting with the sensor

The datasheet [Fre] specify how interaction with the HC-SR04 should be done

with regards to triggering a signal, and waiting for a reply. Figure 3.7 shows the

timing diagram used for the sensor.

Figure 3.7: Timing diagram
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The Raspberry Pi 2 sets a 10µs triggering signal on GPIO23 according to the

connection schematic, and then starts a timer on to record the waiting time for

the echo to return on GPIO24. When the echo returns to the ultrasonic sensor,

the echo pin will go high and stop the timer. Depending on how long the wait

time recorded by the timer is for the echo pin to go high, determines the calculated

range. A basic block diagram showing how the ultrasonic system operates is shown

in figure 3.8.

Figure 3.8: Ultrasonic block diagram
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3.4 Implementing computer vision

Implementing a computer vision module requires several steps to reach a point

where you can extract depth information from images. In this thesis, the following

steps have been done to create the computer vision module:

• Create stereo rig

• Calibrate stereo rig

• Use OpenCV library to interact with the stereo rig and obtaining depth

information used to calculate distance to objects

A basic block diagram showing how the computer vision module operates is shown

in figure 3.9.

Figure 3.9: Computer vision block diagram
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Stereo rig

The stereo rig used in the computer vision module to get image pairs was con-

structed using a pair of Logitech C920 webcameras. The stereo rig were con-

structed by mounting the two cameras on a firm plate taken from an old computer

case, making it portable as well as sturdy to movement. The cameras were glued

on the plate with a distance between the lenses of 10 cm, and taped down to

ensure that they did not move during testing. A more suitable stereo rig should

be considered for usage other then prototyping and testing. Figure 3.10 shows the

stereo rig.

Figure 3.10: Stereo rig

Calibration

When manufacturing cameras and camera lenses, there could be some distortion

presenting itself due to inaccurate manufacturing processes, and cost savings in

producing the cameras. The webcameras used in this thesis, the Logitech C920, is

a relatively cheap webcamera, and would need calibrating in order to work around

the distortion problem.
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Distortion most commonly presents itself as a radial distortion, due to the sym-

metry of the lens [JW76]. The radial distortions are commonly classified as either

barrel distortion or pincushion distortion. With barrel distortion, the edges ap-

pear further away than they really are, and with pincushion distortion, the edges

appear nearer than they really are. Figure 3.11 shows an example barrel distor-

tion, and figure 3.12 shows an example of pincushion distortion.

Figure 3.11: Illustration of barrel distortion [Wola]
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Figure 3.12: Illustration of pincushion distortion [Wolb]

OpenCV has built in functions to measure the distortion of the cameras, and cal-

culate the intrinsic and extrinsic properties of the cameras. These properties can

then be used to correct and undistort the images taken by the webcameras.

A standard procedure that OpenCV supports is using a chessboard for calibration.

This is used because the corners in the board are easy to locate using computer

vision algorithms, and the geometry has a simple design. Since we know the num-

ber of vertical and horizontal corners, as well as the distance between the corners

on the chessboard we are using, the calibration code from OpenCV can be used to

determine the properties of the cameras. Figure 3.13 shows the chessboard used

in this thesis, which is a 9x6 chessboard with 2.6 cm between the corners, and

figure 3.14 shows the result of the calibrated images.
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Figure 3.13: Chessboard used for calibration

Figure 3.14: Calibrated images
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3.5 Main code parts

This section will highlight some main parts in the code used to implement the

computer vision system. A more detailed explanation can be found at [BK08] and

looking at the source code appended.

Capture images

The camera properties must be set according to the hardware specification on

the camera models used, and the hardware limitation on the host board. The

height and width of the image taken can be set by using the following code:

cvSetCaptureProperty()

Acquiring images is done with the following code:

cvQueryFrame()

Both these actions must be done on both cameras in order to get correct re-

sults.

Calibrate

Calibrating is done using a chessboard pattern, as shown in figure 3.13. The

corners are detected by using the following code:

findChessboardCorners()

Which generates matrices with the extrinsic and intrinsic properties for the cam-

eras used.

Stereo matching

Using the images acquired and the properties found by calibrating the cameras,

the last step is to run the stereo matching. First, the images are rectified using

the following code:
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cvRemap()

or

initUndistortRectifyMap()

The images are then ready to be processed by the stereo matching algorithm,

which can be used with the following code:

cvFindStereoCorrespondenceBM()
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3.6 Short user manual

For the computer vision module, a short user manual is provided below. This can

be used to get the system up and running in a short amount of time.

1. Obtain all necessary hardware. The main items are the stereo rig and the

Raspberry Pi 2, with accessories to be able to power up the items.

2. Connect the stereo rig to the Raspberry Pi 2. Using a default Linux distri-

bution, drivers for Logitech webcameras are provided. The source code used

in this thesis is appended on a digital file, as shown in appendix A.

3. Assuming the use of the source code used in this thesis, the only necessary

requirements are installation of OpenCV on the Raspberry Pi 2, and com-

piling the source code. This will not be covered in this thesis. The source

code are appended on a digital file as shown in appendix A.

4. For first time implementation, calibration should be run before the stereo

matching program. This is done by taking 20 or more image pairs of a

chessboard, where the entire chessboard is shown in both images, with dif-

ferent angles and distances for each image pair. When the image pairs are

acquired, upload the images to ”home/calibration/images”. After the im-

ages are uploaded, navigate to ”home/calibration” in a terminal window,

type ”./calibrate” without the quotes and press enter. After a short while,

the resulting calibration files are produced. These files must be placed in

”home/stereomatching/calibrationfiles” for use in the main program.

5. When the calibration process is done, the stereo matching program can be

run. This is the main program used in this thesis. Navigate to ”home-

/stereomatching” in a terminal window, type ”./stereomatching” without

the quotes and press enter. This brings up a display showing both cameras,

as well as the resulting disparity map. In the terminal window, the distance

to an object identified by the pointer is displayed.
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Chapter 4

Testing and Results

In this chapter a discussion of the test procedures carried out on the computer

vision and ultrasonic systems are provided, and the results obtained from the

testing is discussed. In section 4.1, the test setup is described for the systems. In

section 4.2, the results from the testing is presented.

4.1 Test setup

The tests performed is run to investigate some basic properties of a collision de-

tection system, to see how well the implemented systems perform. In this thesis,

the test procedures will examine the following properties in a collision detection

system:

• The refresh rate.

• The accuracy.

In a basic and simple collision detection system, we check to see if anything is

closer than a set threshold; if it is, then either stop movement or change direction.

In such a system, both the refresh rate and the accuracy is important information

to have when developing applications that uses a collision detection system. This

information will limit how fast the application can move based on the refresh rate

of the collision detection system, and how much error margin must be implemented

due to errors in distance readings.
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4.1.1 Refresh rate testing

Both systems in this thesis will be tested with regards to the refresh rate, to see

how often a measurement reading can be taken. The test is implemented to take

time measurements in certain parts of the code, and then calculate after each read-

ing how much time was used on the separate parts, as well as the total running

time. This will provide data that can be used to compare other systems to the

computer vision system implemented in this thesis, or other components in sim-

ilar computer vision systems. In this thesis, time measurements will be acquired

before and after each of the items listed for the systems:

Ultrasonic

• Initializing.

• Waiting for echo.

• Calculating distance.

• Settling down.

Computer vision

• Acquire image.

• Use calibrated data on images and convert to grayscale.

• Run stereo matching.

• Calculate distance from disparity.

For the ultrasonic system, the reading that is expected to differ most is the dura-

tion of waiting for echo, as that is directly dependent on the distance to the object

that is measured. The other readings are mostly determined by the datasheet of

the sensor, and the computational power of the Raspberry Pi 2.

For the computer vision system, the readings are expected to stay mostly the

same, since to the only variable changing is the objects distance to the cameras.

If more objects were to be introduced in the scene, the time to run the stereo

matching algorithm would change due to more similarities being calculated. This

will not be looked at in this thesis.
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4.1.2 Accuracy testing

Both systems will be tested with regards to the accuracy, to see how much differ-

ence there is in calculated distance by the systems compared to measured distance

by hand to an object at a set distance. The test is implemented by placing a num-

ber of objects at known distances, and run each system to see what the calculated

distances are, and then compare the results.

The objects used for testing were:

1. A toolbox

2. A bottle

3. A backpack

4. A shelf plate

This selection of objects provides different shapes and sizes for the systems to be

tested against, and provides a decent foundation for comparison. Other objects

may be chosen, but the objects used in this thesis were considered good enough for

testing the ultrasonic and computer vision systems. Figure 4.1 shows the objects.
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Figure 4.1: Objects used for testing accuracy

All of these objects will be placed individually at the distances listed below and

then each system will perform a distance reading to the objects.

• 0.5 metres

• 1 metres.

• 1.5 metres.

This setup procedure provides a decent foundation for comparison both to the

systems tested in this thesis, as well as external systems. The following conditions

were not considered used or tested due to time limitations:

• Other objects in terms of size and shape.

• Other distances.

36



4.2 Results

In this section, the results obtained from testing the systems will be discussed.

For the refresh rate, the results from each system will be presented in separate

tables, due to different components and timing measurements as listed in chapter

4.1.1. A comparison of the total running time for each system will be presented

in a common table.

The accuracy results for each system will be presented in a common table for

each test as described in chapter 4.1.2.

4.2.1 Refresh rate

The refresh rate testing is divided into six subsections to fully give a description as

to how well the systems perform in terms of speed. A description of the subsections

is as follows:

• Test 1 presents the setup given in chapter 4.1.1 for the ultrasonic system at

a distance of 0.5 metres.

• Test 2 presents the setup given in chapter 4.1.1 for the ultrasonic system at

a distance of 1 metres.

• Test 3 presents the setup given in chapter 4.1.1 for the ultrasonic system at

a distance of 1.5 metres.

• Test 4 presents the setup given in chapter 4.1.1 for the computer vision

system at a distance of 0.5 metres.

• Test 5 presents the setup given in chapter 4.1.1 for the computer vision

system at a distance of 1 metres.

• Test 6 presents the setup given in chapter 4.1.1 for the computer vision

system at a distance of 1.5 metres.

At the end the total running time for each system is presented. This is gathered

from the results in test 1 through 6 for each system, and combined in a total
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running time.

Test 1

Initializing Waiting for echo Calculating distance Settling down

10 µs 2.9 ms 52 µs 60 ms

Table 4.1: Refresh rate for ultrasonic system at 0.5 metres

Test 2

Initializing Waiting for echo Calculating distance Settling down

10 µs 5.9 ms 51 µs 60 ms

Table 4.2: Refresh rate for ultrasonic system at 1 metres

Test 3

Initializing Waiting for echo Calculating distance Settling down

10 µs 8.8 ms 53 µs 60 ms

Table 4.3: Refresh rate for ultrasonic system at 1.5 metres

Test 1 through 3 shows the time measurements taken for the ultrasonic system at

the different distances. The initializing time is the same at every test, and is as

expected due to the specification for the ultrasound sensor. This could be reduced

by choosing a more high end ultrasound sensor, but for general purposes this value

is so low that it would not be noticeable.

The waiting for echo is increasing linearly for each test, and confirms the the-

ory of the relation between distance and the speed of sound. This value would be

the same regardless of which ultrasound sensor were used.

Calculating the distance takes roughly the same time for each test, and is lim-

ited by the computational power of the platform used for interfacing with the

ultrasound sensor. The deviation from 51-53µs may be caused by hardware limi-

tations in timing measurements on the Raspberry Pi 2, but the values are so close
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that it has no real world impact. As with the initializing time, this value is so low

that using a more powerful platform would not result in a noticeable speed-up on

the overall system.

The settling down time is the most interesting value, as it is by far the high-

est one. The datasheet suggest a settling down time of around 50-70ms, due to

some hardware limitations presented in the design. What was interesting to ob-

serve was that by lowering the settling down time to anywhere below 60ms, the

sensor would report random distance readings ranging from 0-200. By choosing a

different ultrasound sensor, this limitation could be improved, and is something

that should be considered for future implementations.

Test 4

Acquire image Use calibrated data Run stereo matching Calculate distance
on images from disparity

37 ms 45 ms 136 ms 7.5 ms

Table 4.4: Refresh rate for computer vision system at 0.5 metres

Test 5

Acquire image Use calibrated data Run stereo matching Calculate distance
on images from disparity

37 ms 46 ms 135 ms 7.4 ms

Table 4.5: Refresh rate for computer vision system at 1 metres

Test 6

Acquire image Use calibrated data Run stereo matching Calculate distance
on images from disparity

37 ms 48 ms 137 ms 7.6 ms

Table 4.6: Refresh rate for computer vision system at 1.5 metres

39



Test 4 through 6 shows the time measurements taken for the computer vision sys-

tem at the different distances. The acquire image time is the same at every test,

and is to be expected due to limitations in the camera hardware and available

bandwidth on the connection bus. Choosing other camera models could possible

change this value.

Use calibrated data on images duration is roughly the same for each test, and

describes the time taken for the platform to remap the images taken with the cali-

bration data obtained as discussed in chapter 3.4. The small deviation in duration

may be caused by the different images that is taken from the different distances.

This step could be avoided to a certain degree by choosing a stereo rig with camera

models specifically made for this purpose, where calibration would be kept at a

minimum. This is something that should be considered for future implementations.

Running the stereo matching algorithm is the most time consuming task in the

computer vision system. This is limited by the computational power on the plat-

form, as well as how much similarity has to be calculated in the image sets. The

deviation in duration may be accounted for by the different disparity values pro-

duced from the image sets taken from the different distances. This is something

that a more powerful platform could improve on, but often when choosing a more

powerful platform, the size and cost would increase.

Calculating the distance takes roughly the same time for each test, and is limited

by the computational power on the platform used. As with the stereo matching

duration, this value could be improved by choosing a different platform, but is so

low that it would not result in a noticeable speed-up.

Total running time

System Total running time Total running time Total running time
at 0.5 metres at 1 metres at 1.5 metres

Ultrasonic 62.962 ms 65.961 ms 68.863 ms
Computer vision 225.5 ms 225.4 ms 229.6 ms

Table 4.7: Total running time for the systems
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The total running time is shown above for both systems. The ultrasonic system

is much faster than the computer vision system at every distance tested in this

thesis. The ultrasonic system range from 62ms per reading to 69ms per reading,

depending on distance to the object. Compared to the computer vision system,

the ultrasonic system is about 3.5 times as fast. How this affects the application

using the systems depends entirely on the requirements for the application. For

a slow pacing unit, both the ultrasonic and computer vision system provides fast

enough readings, but for faster applications, the ultrasonic may be a better choice.

4.2.2 Accuracy

The accuracy testing is divided into four subsections representing the four objects

the tests were run on. A figure is included in each subsection showing how the

object was placed, and a table with the results from each distance reading is

presented. A description of the subsections is as follows:

• Test 7 presents the results obtained from testing on the toolbox as described

in chapter 4.1.2.

• Test 8 presents the results obtained from testing on the bottle as described

in chapter 4.1.2.

• Test 9 presents the results obtained from testing on the backpack as described

in chapter 4.1.2.

• Test 10 presents the results obtained from testing on the shelf plate as de-

scribed in chapter 4.1.2.
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Test 7

Figure 4.2: Scene for toolbox

System Calculated at Calculated at Calculated at Avg error percent
0.5 metres 1 metres 1.5 metres

Ultrasonic 50.15 cm 100.85 cm 150.34 cm
Error 0.3 % 0.85 % 0.226 % 0.46 %

Computer vision 51.62 cm 101.23 cm 150.39 cm
Error 3.24 % 1.23 % 0.26 % 1.6 %

Table 4.8: Accuracy for toolbox
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Test 8

Figure 4.3: Scene for bottle

System Calculated at Calculated at Calculated at Avg error percent
0.5 metres 1 metres 1.5 metres

Ultrasonic 50.32 cm 100.54 cm 150.91 cm
Error 0.64 % 0.54 % 0.61 % 0.6 %

Computer vision 50.87 cm 100.84 cm 150.46 cm
Error 1.74 % 0.84 % 0.3 % 0.96 %

Table 4.9: Accuracy for bottle

43



Test 9

Figure 4.4: Scene for backpack

System Calculated at Calculated at Calculated at Avg error percent
0.5 metres 1 metres 1.5 metres

Ultrasonic 50.71 cm 100.47 cm 150.78 cm
Error 1.42 % 0.47 % 0.52 % 0.8 %

Computer vision 51.52 cm 101.43 cm 151.32 cm
Error 3.04 % 1.43 % 0.88 % 1.8 %

Table 4.10: Accuracy for backpack
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Test 10

Figure 4.5: Scene for shelf plate

System Calculated at Calculated at Calculated at Avg error percent
0.5 metres 1 metres 1.5 metres

Ultrasonic 50.87 cm 100.13 cm 150.21 cm
Error 1.74 % 0.13 % 0.14 % 0.67 %

Computer vision 51.24 cm 100.45 cm 151.58 cm
Error 2.48 % 0.45 % 1.05 % 1.33 %

Table 4.11: Accuracy for shelf plate
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Test 7 through 10 shows the accuracy results for both systems according to the

test setup given in chapter 4.1.2.

In test 7, both systems were able to detect the object, and calculate a distance.

The distance that the ultrasonic system calculated were overall a bit more accu-

rate than the computer vision system, especially at closer range. At 0.5 metres,

the ultrasonic system calculates the distance with an error of 0.3%, whereas the

computer vision system calculates the distance with an error of 3.24%. This differ-

ence decreases as the distance increases, and at 1.5 metres, the ultrasonic system

calculates the distance with an error of 0.226%, and the computer vision system

calculates the distance with an error of 0.26%. The computer vision system shows

a larger deviation in the readings than the ultrasonic system. The accuracy in-

creases with larger distance, and comes close to the ultrasonic system at 1.5 metres.

This may be caused by the properties of the stereo rig constructed, and may be a

limitation in the Logitech webcameras as well as the calibration method.

In test 8, the accuracy for the computer vision system changes a bit compared

to test 7, and gets closer to the ultrasonic system. At 0.5 metres, the ultrasonic

system has an error of 0.64%, and the computer vision system has an error of

1.74%. When the distance increase to 1.5 metres, the computer vision system

delivers better accuracy than the ultrasonic system, with an error of 0.3%, versus

0.61% error for the ultrasonic system. This could be caused by the reflective prop-

erties of the bottle compared to the other objects used for testing in this thesis.

What was interesting to notice when testing on the bottle was that the ultrasonic

system required much more precise positioning to be able to get good readings,

especially at 1.5 metres. This could explain that the computer vision system was

able to get better accuracy at that distance. As with test 7, the same pattern with

error deviation occurs, in that the computer vision system gets better accuracy

with larger distance.

Test 9 and 10 shows the same as test 7, where the ultrasonic system generally

had better accuracy than the computer vision system. The computer vision sys-

tem had a bit more trouble calculating the distances on the object in test 10

compared to the ultrasonic system. This could be caused by the object shape,

where as the large, flat shelf provided a decent structure for the ultrasonic wave to

bounce off, the computer vision seemed to struggle with finding similarities when
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running the stereo matching algorithm.

Both systems delivered readings with an average error below 2% in all the tests,

which in most applications using such low cost components would be considered

good enough. The computer vision system was less depending on positioning than

the ultrasonic system, especially with smaller objects such as the bottle and at

greater distances, but had a bit higher error in the readings. The computer vision

system had a larger error deviation than the ultrasonic system, with the highest

error being 3.24%. The deviation is small enough for general applications, that

there is no real disadvantage to using the computer vision system. For more pro-

fessional applications, steps to reduce the error and error deviation should be taken.

What the best choice is, is entirely dependent on what type of application the

systems are to be used on, and in which type of environment the application

is supposed to be operating in. Based on the results obtained in this thesis, a

computer vision system can be used for collision detection.
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Chapter 5

Discussion

This chapter will present a general discussion on the project and work process used

to implement and test the detection systems, and present some ideas for future

work.

5.1 Goal and method

The goal was to implement computer vision on a low power platform, with all nec-

essary hardware and software, and then compare it against an ultrasonic system

to see if it could be a viable option for a collision detection system. The main

focus was on creating a runnable system, with as simple as possible modules to

get to a working point, before focusing on further improvement to the systems.

This turned out to be a good choice, since implementation of both hardware and

software took more time than anticipated getting to a point with runnable systems.

Looking back at the project, it may have been more advantageously to focus

on smaller parts of the overall system, instead of implementing a complete system

from scratch in the limited time available. With focus on smaller parts of the sys-

tem, we may have been able to obtain better results from specific parts that could

have been used for a more commercialized product, but implementing a complete

system that was runnable was an interesting task and provides a basis for further

work to improve on. By implementing a complete system, this thesis also provides

a guide for a complete implementation that can be used by others.
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5.2 Main results

The goal was to implement computer vision on a low power platform, with both

hardware and software to see if it could be an alternative for collision detection.

The resulting system managed to calculate distances to objects placed at different

lengths and with different shapes, with sufficient accuracy and speed compared

to an ultrasonic system, meaning the goal of implementing the computer vision

system on a low powered platform has been achieved.

The computer vision system implemented in this thesis was able to calculate all

the distances from the test setup as shown in chapter 4.2 with small variations in

refresh rate and accuracy. The results are displayed in tables under chapter 4.2

for a user friendly presentation that can serve as a foundation for comparing when

improving the system or creating other systems.

The stereo rig that was created during this thesis performed quite well consid-

ering the low price for the web cameras and what applications they are usually

used in. Overall accuracy was not quite as good as the ultrasonic sensor, but not

too far off considering the construction of the stereo rig. The downside to mak-

ing the stereo rig, including the accuracy errors, is the need for calibration using

software. This is a time consuming part as seen in chapter 4.2, and is something

that could be worked on to reduce. The alternative was to buy a pre-made and

pre-calibrated stereo rig, but they usually cost upwards of $2000. This was not

considered beneficial for this thesis, but could be considered for another imple-

mentation.

The resulting implementation of the computer vision system must be seen as a

prototype. As it stands now, it could be used directly on applications undergoing

testing and developing, or it could be used in a laboratory setting with focus on

improvement to the system. It is not a ready to use commercial system for ap-

plications both in functionality and aesthetics, as it uses parts and solutions that

has not undergone enough testing for commercial approval. This is a consequence

of the focus on creating a runnable system within the set time limit.
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5.3 Future work

As it stands now, the computer vision system implemented in this thesis does not

provide any more functionality than what a basic ultrasonic system does, in terms

of collision detection. For further work, two forks is outlined as possible routes

to follow, improving on the functionality on the existing system, and focusing on

design and user friendly operation.

5.3.1 Improving functionality

The computer vision system implemented in this thesis provides fundamental func-

tionality for a collision detection system. With computer vision, several features

could be added for improved functionality. Some ideas for features that can be

added to the system in this thesis is as follows:

• Object detection.

• Distance to multiple objects.

• A tracking mechanism that enables following of specific objects.

5.3.2 Improving design

The stereo rig built for the computer vision system consists of cheap webcameras

from Logitech, and is fastened to a plate holding them inplace. For a commer-

cial product, a more permanent solution should be considered, and may include

different cameras and mounting options. A stereorig that can be moved around

without risking movement to the placement of the cameras, as well as a rig that

can be mounted easily is desirable. A case for the entire system, with both the

stereo rig and the Raspberry Pi 2 can be designed and built.
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Chapter 6

Conclusion

This thesis is the result of the project work conducted at NTNU during the spring

2015, and has investigated the possibility of implementing a computer vision sys-

tem on a low powered platform.

A stereo rig were constructed using Logitech web cameras, and connected to a

Raspberry Pi 2. The computer vision library OpenCV was used for implementing

calibration and stereo matching on the Raspberry Pi 2, and resulted in a runnable

system. A short user manual is also provided for the computer vision system to

get it up and running in a short amount of time.

The test procedure investigated two properties in a collision detection, the re-

fresh rate and the accuracy. The test setup for both is described in the thesis,

and the results obtained presented in dedicated tables for each test. In addition

to the computer vision system, an ultrasonic system was implemented to use for

comparing the results obtained from testing the computer vision system. The re-

sults for both systems were then presented in a user friendly format which others

can use as a basis for usage and comparison. Based on the implemented computer

vision system in this thesis, and the results obtained through testing, computer

vision may be a good alternative for a collision detection system.

The main contributions of this thesis is a computer vision subsystem that can

be integrated for use into other applications directly. This system is also a foun-

dation to be used for improvements and construction of a better system.
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Appendix A

Digital attachment

A.1 Source code

Various source code and example code.

A.2 Papers

Background literature used in the thesis.

A.3 Images

Images used in the thesis.
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