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Project description

Today’s industrial processes tend to be larger and more complex as well as dynamic. As such,

the requirements to the operators’ competence and skills increase. In a control room setting, it

is both of interest as well as feasible to understand the user as an integrated part of the system,

in order to improve the operator’s working conditions as well as improving the system in itself.

This project aims to explore the potential of using brain sensing technology as an interaction

device with a control system, by sensing deviations in the operator’s mental state. Brain sensing

is not intended to be used for controlling, but to explore the possibility for the system to adapt

to the operator’s mental state. Different states could represent the operator’s ability to stay fo-

cused, current level of stress, level of drowsiness etc.

EEG (electroencephalography), is the recording of electrical activity along the scalp. It is com-

monly used in clinical contexts where the brain’s spontaneous electrical activity is measured

over time. It can be used for diagnostics, but is also a valuable tool for research purposes. Re-

cently, off-the-shelf systems have become available on the market.

The main objectives will be to:

1. Develop a concept demonstrator based on a use case

2. Perform initial user tests to evaluate the potential of using brain sensing technology as an

interaction device for a control system regime

Research question

The main research question to be answered in this project is:

Is it possible to use today’s low cost brain sensing technology to identify deviations

in the states of the mind, and to use this in interaction with a control system?
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Tasks

This project has a major focus on testing and evaluating brain sensing technologies in order to

evaluate the potential of using such interaction technologies in a control room environment.

The project includes the following tasks:

1. Perform a state-of-the art review of interaction devices with a focus on brain sensing tech-

nologies and the usages of these

2. Define a use case (simulator scenario)

3. Investigate how mental states can be found from EEG signals

4. Become familiar with the brain sensing technology

5. Develop a concept demonstrator based on the brain sensing technology to control simple

functions in a control system environment. This should include:

- Obtain raw data from the brain sensing system

- Create algorithms for processing and evaluation of raw data

- Calibrate initial measurements from test subjects

- Real time feedback to a control room simulator to potentially enforce a new scenario

6. Perform user tests

7. Evaluate the potential of such technology based on the initial user tests

8. Write the M.Sc. thesis

The project will be performed in close collaboration with ABB Chemicals, Oil and Gas. The

concept demonstrator is expected to be designed and tested in ABB’s offices in Oslo under su-

pervision of ABB specialists. The use case(s) should describe the setting such as tasks, total

workload and phase of operation (normal, start-up, . . . ). The tests will be limited to evaluating

simple interactions with the system. If time allows, more functionality will be tested.
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Preface

This thesis was written after completing a master thesis in the fifth year of a M.Sc. program at

the Institute of Engineering Cybernetics, NTNU in spring 2015. The project was conducted in

cooperation with ABB, which came up with the idea of the project and provided a neuroheadset

and a control room simulator. The thesis will give an introduction to all fields necessary for the

understanding this thesis such as operators and contol room, digital signal processing, brain

sensing technology and human factors. The overall purpose of the thesis is to develop a brain

sensing application which could help improve an operator’s working conditions, and then eval-

uate the potential of today’s low cost neuroheadsets.

The thesis deviates from the project description in that instead of completing a concept demon-

strator based on deviations in a mental state, a study on how to identify workload from EEG sig-

nals was conducted.

Trondheim, 01-06-2015

____________________________

Lise Bjørkvoll
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Summary

The aim of this project has been to evaluate the possibility of identifying an operator’s men-

tal state from electroencephalography (EEG) signals in a control room setting using a low cost

neuroheadset. This has been done through the development of a brain sensing application. To

carry out the project, the neuroheadset Epoc from Emotive has been utilized. Epoc has 14 sen-

sors, and the EEG signals measured by the neuroheadset are acquired via a wireless connection.

A thorough study on brain sensing technology, in conjunction with extensive research in iden-

tifying mental states from EEG signals has been crucial. After designing a number of possible

use cases, it was decided to focus on an overall goal of improving work conditions for opera-

tors. This can be achieved either through utilization of the application in operator training or

in developing improved control room systems and better user interfaces. The brain sensing

application was designed and implemented based on using raw EEG data and identifying men-

tal states through a spectral analysis. The application provides the option of either processing

a data set for analysis, or in real time for use in a concept demonstrator. The application has

been tested and shown to work well through initial measurements from test subjects, as well as

through a concept demonstrator based on the use cases that were developed, by integrating the

application in a control room simulator.

A study within the field of neuroscience, neurophysiology and brain sensing technology showed

that in the state of the art, researchers are currently working to identify mental states from EEG

signals. So far, they lack a simple, accepted methodology for identifying any of the desired men-

tal states for this project; workload, fatigue and mental stress. Seeing as no methodology was

ready for implementation, it was decided to utilize the developed brain sensing application to

investigate if prior research explaining how to identify workload from EEG signals was valid. A

study with ten participants performing an IQ-test was conducted, and the participants EEG sig-

nals were analyzed. The NASA-TLX assessment form was used to obtain subjective workload for

the study. The results of the study showed that power in the parietal lobe decreases significantly

under increasing workload for signals within the alpha-, beta- and theta- frequency bands.

According to previous research, all indications should mainly be seen in frontal lobe. Alpha
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power should decrease under increasing working memory load, concentration and hard think-

ing, whereas theta power should increase. A recent paper points to alpha power as the main

indication of variation in workload, but despite identifying a trend of decreasing alpha power,

too few of the results are significant and the test group is too small to confirm any methodology.

The potential of low cost brain sensing technology for use in a control room setting has been

evaluated in this project. A significant portion of the project has been a theoretical study as

well as a technology review. This, in addition to obtained results, experiences working with the

Epoc neuro-headset, and the development of a brain sensing application have provided the ba-

sis for such an evaluation.The evaluation has shown that the neuroheadset can be utilized for

operator training, or development of user interfaces and control room systems. In an opera-

tive control room setting, the technology must be further developed before it can be used, as

the unit is uncomfortable to wear over an extended period of time. The brain sensing applica-

tion has been proven to work well through testing, and the project shows that it is feasible to

integrate a brain sensing application in a control room setting, and thus interact with a control

system. Research on identifying mental states from EEG signals is the constraining factor, and

once research within this field has progressed, the developed brain sensing application can be

updated, and a use case fully implemented. This will provide a concept demonstrator ready for

further testing.
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Sammendrag

Formålet med prosjektet har vært å utforske muligheten for å detektere endringer i en operatørs

mentale tilstand via hans hjerneaktivitet og prøve å utnytte dette i en kontrollromsammenheng.

I prosjektet er det designet og implementert en applikasjon for et billig headset (neuroheadset)

som måler elektroencefalografi-signaler (EEG-signaler). Flere rimelige headsett ble vurdert og

Epoc fra Emotiv ble funnet å være best egnet. Epoc har 14 sensorer og overfører data trådløst.

Det er gjennomført en studie av hva slike neuroheadset kan benyttes til, og hvor langt utviklin-

gen har kommet når det gjelder systemer som kan styres av hjernesignaler. Det er også gjen-

nomført et studie for å kartlegge hvordan man kan identifisere mentale tilstander ved hjelp av

EEG signaler.

Flere bruksområder av applikasjonen er forslått og det er utarbeidet et konsept som beskriver

hvordan applikasjonen kan brukes både i forbindelse med trening av kontrollromoperatører og

ved utvikling av kontrollromsystemer med tilhørende brukergrensesnitt. For demonstrasjon av

konseptet ble applikasjonen integrert i en kontrollromssimulator. Applikasjon benytter rå EEG-

data og detekterer mentale tilstander gjennom en spektralanalyse. Den kan brukes til å pros-

essere et helt datasett for analyse i etterkant eller til å prosessere data i sann tid. Applikasjonen

er testet og er vist å fungere godt.

Et grundig studie innen nevrovitenskap, nevrofysiologisk måling og teknologi for måling av

hjerneaktivitet har vist at per dags dato arbeides det med å gjenkjenne mentale tilstander fra

EEG signaler. Så langt mangler man en akseptert metode for å gjenkjenne de mentale tilstandene

som har vært aktuelle for dette prosjektet; arbeidsbelastning, tretthet og stress. En slik metode

kunne dermed heller ikke implementeres i konseptet. Det ble derfor bestemt å gå videre med

å teste applikasjonen, for å se om den kunne fungere til å avdekke indikasjoner på endringer i

mentale tilstander i samsvar med funn i litteraturen.

Arbeidet ble avgrenset til å finne endringer i arbeidsbelastning og det ble gjennomført et forsøk

der 10 personer utførte en IQ-test i to trinn hvor første halvdel av testen var lettere enn siste
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halvdel. Arbeidsbelastningen i de to trinnene ble målt ved hjelp av verkøyet NASA TLX som gir

et subjektiv mål på arbeidsbelastning. På basis av NASA-TLX ble det fastslått at arbeidsbelast-

ningen økte gjennom testen. Dette gjaldt alle forsøkspersonene. Forsøkspersonenes EEG sig-

naler ble målt med neuroheadset. Analysene av EEG- signalene viste at power i parietallappen

(isselappen) minker signifikant ved økende arbeidsbelastning for både alfa-, beta-, og theta-

frekvensbåndene. I følge tidligere studier vil man se tydeligst endringer i frontallappen. Power

i alfa -frekvensbåndet bør i følge tidligere forskning minke ved økende arbeidsbelastning, kon-

sentrasjon og hard tenking. Resultatet fra forsøket i alfa frekvensbåndet er dermed i tråd med

tidligere forskning, mens power i theta-frekvensbåndet burde økt. En nyere publikasjon viser

dog til at alfa power er den mest interessante indikator på endring i arbeidsbelastning. Selv om

vi påviste redusert alpha power i forsøket, er det grunn til å peke på at få av resultatene er sig-

nifikante og testgruppen er for liten til å kunne konkludere med at vi har funnet rett metode for

å identifisere økende arbeidsbelastning fra EEG-signaler.

På grunnlag av bredt teoristudie, resultater fra utført forsøk og erfaringer ved bruk av Emotiv’s

Epoc ble potensialet til neuroheadsettet evaluert for bruk i en kontrollrom-setting. Neurohead-

settet viste seg å være tilfredsstillende for bruk til utvikling av brukergrensesnitt og kontrollrom-

systemer, samt for operatørtrening. Dessverre var det tidkrevende å plassere neuroheadsettet

korrekt og ubehagelig å benytte det over lengre tid. Det ble dermed ikke vurdert som realistisk

å kunne benytte det i et operativt kontrollrom i dag. Applikasjonen som er utviklet for å pros-

essere og analysere EEG data fungerte godt, og prosjektet har vist at det er mulig å integrere en

slik type applikasjon i en kontrollromsammenheng for interaksjon med et kontrollsystem. Per

i dag er dermed aksepterte metoder for gjenkjenning av mentale tilstander den begrensende

faktoren for en slik anvendelse. Når forskningen kommer lengre kan applikasjonen raskt opp-

dateres, og et konsept for bruk i kontrollrom vil være klart for videre testing.
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Chapter 1: Introduction

1.1 Background

Measurement of electroencephalogram (EEG) signals provides a possibility to measure the brain’s

electrical activity along the scalp [48], and has been used for many years by neurophysiologists

and neurologists to understand and diagnose certain diseases and disorders such as epilepsy

and multiple sclerosis [22, 41].

In recent years, a group of new EEG devices that go under the term neuroheadsets have be-

come available on the market. The neuroheadsets were originally designed for gaming 1, and

are cheaper than medical equipment designed to measure EEG signals. They are wireless, and

have a smooth design. The neuroheadsets are capable of measuring EEG signals and transmit

these as digital data, which can then be processed by a computer and utilized in a brain com-

puter interface (BCI). BCIs open a communication link between a brain and a computer, and

provide an opportunity of controlling a system with your mind. With this technological devel-

opment, researchers and developers have grasped the technology.

It is expected to see a great development in the field within near future [26] and one can already

see the field growing in terms of international attention; the Institute for Knowledge Discovery at

Graz University of Technology, Austria, introduced one of the first EEG-based BCIs over 20 years

ago, and has now held 6 huge international BCI conferences over the past 10 years 2. Controlling

1http://www.madshrimps.be/articles/article/551/OCZ-Actuator-lets-you-control-video-
games-with-your-brainaxzz3UXvsZyTi visited: 16.03.2015

2 https://bci.tugraz.at/ visited: 08.01.2015

1

http://www.madshrimps.be/articles/article/551/OCZ-Actuator-lets-you-control-video-
games-with-your-brainaxzz3UXvsZyTi
https://bci.tugraz.at/
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a system with brain signals has opened up the possibility of helping impaired individuals, and

one can see that most BCI systems developed so far are based on this. BCI systems are based

on the recognition of patterns in thoughts or facial movements. Because EEG signals are unique

for all humans, it often requires months of training to get a BCI to work properly, with a varying

degree of success. One of the biggest problems in developing a system based on thoughts is that

it is hard to decide which thoughts are meant for controlling the system, and which thoughts

occur uncontrolled [35].

Another way of utilizing EEG signals is to identify mental states by doing a frequency analysis

of the signals. Historically, this approach has mainly been used for neurofeedback, a technique

aiming to recover people by teaching them to control their own brain signals 3. Recently, one

can see that a lot of research is being done to try to understand mental states from this approach.

Several new areas of BCI application are frequently emerging, and it is interesting to investigate

the possibility of utilizing the technology in the industry. One of the strongest industries in Nor-

way is the oil and gas industry. Within this field, control rooms are an area where a high level

of human performance is essential, and with the ongoing development of BCI systems we see

today, it is possible to imagine this as an up and coming area off application for BCI systems.

Since 1950-1960, centralized control rooms have been an important part of the Norwegian pro-

cess industry [4, 25]. Since then, engineers have aimed at developing better and more logical

control rooms, either in the sense of design of the room itself, or the control systems displayed

on the monitors. The user interfaces have improved over the years, but research points to the

fact that many of the systems still are quite complicated and alarms are hard to spot. Another

challenging factor is that unexpected situations seldom occur; it could take months or years

between each unexpected situation. To maintain skills and competence, many operators go

through a routine training procedure each year.

3 http://www.ntr.no/html/hva_er_neurofeedback-.htm visited: 24.01.2015

http://www.ntr.no/html/hva_er_neurofeedback-.htm
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1.2 Objective

Many researchers and developers focus on developing BCIs where we can actively control a sys-

tem with our minds. What if we could be able to obtain a passive measure of our brain signals,

and let the system adapt to our mind states? One could imagine a BCI being able to sense which

out of two choices a person prefers, or having a laptop telling you to go to sleep, because you are

too tired. These are toy examples, but a lot of possibilities will open up if brain-sensing technol-

ogy can identify mental states.

Applying this idea to the industry, one could imagine it being a great asset to get passive mea-

surements of an operator’s brain signals and utilize these measurements either to enforce a new

scenario in a system, or to get additional and valuable information on an operator’s mental

state. If the answer to this is yes, how could this be utilized in a good manner? This leads us to

the research question of this project

Is it possible to use today’s low cost brain sensing technology to identify deviations

in the states of the mind, and to use this in interaction with a control system?

To answer this question, one main focus will be on developing a brain sensing application that

can improve the working conditions for control room operators. To do this, it is necessary to

analyze EEG data to identify one or more mental states, and utilize the analyzing algorithms in

a BCI. To develop such an application it is essential for the application to work in real time, and

be able to connect to an independent system, either a control room system or a control room

simulator, and alter the scenario depending on changes in mental states. If this can be achieved,

it will provide a possibility to create a new link between human and computer, which can help

us understand an operator’s ability to perform correct actions by exploring new technology.
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1.3 Limitations

The project assignment has been quite open, which requires constraining the project assign-

ment due to limited time. It has been necessary to start with a broad overview of relevant tech-

nology and to understand which options are available, before concentrating on a smaller area

and investigating a given mental state. With a background in cybernetics, it has been necessary

to see the assignment from a computer science point of view, and the neurological insight to

this subject is therefore somewhat limited.

The assignment specifies utilization of a low cost neuroheadset. Cheaper equipment often in-

troduces more uncertainties and noise, which might lead to somewhat uncertain results. The

results should therefore be seen in the light of this.

Due to the scope of this project and limited time, implementation has been limited to using

soft real time requirements, meaning that it was not prioritized to set any hard requirements to

how fast data processing should be done.

1.4 Approach

In order to investigate if brain sensing technology can give additional information about an op-

erator at work, it is important to start with a technology review of brain sensing, focusing on

both cheap headsets and more expensive solutions. Such a review provides information on

what brain sensing is used for today and how far researchers and developers have come. This

provides a good starting point for which information one can expect to find and what it can be

used for. Another aspect is to identify cognitive processes that are important for an operator,

and investigate if mental states can be detected. Throughout this process, it is of importance to

understand brain signals from a neuroscientific perspective.

Next, it is essential to understand the user in this context; the control room operator. How does

a control room operator work, what kind of problems can occur for an operator at work, what is
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done to prevent such problems, and how can brain sensing potentially help in these situations?

These are just some of many questions that need to be answered. Understanding a human work-

ing in a loop with machines also requires some insight into cognition.

Evaluating today’s low cost brain sensing technology requires access to a low cost brain sens-

ing headset. It was necessary to choose and buy a low cost headset and become familiar with

this technology. From this point in time, a brain sensing application based on the technology

review and the objectives could be designed, implemented, tested and evaluated.

1.5 Structure of the report

All background theory that is needed for a thorough understanding of the work carried out in

this project is described in chapter 2. This include theory on the four areas

• Operators and control room

• Human factors explained by cognition and neuroscience

• Brain sensing technology

• Digital signal processing

• Statistics

In chapter 3, two use cases are discussed and defined. Chapter 4 describes the choise of which

EEG sensor system that is to be utilized for this project, and the given software and interface for

this particular system is described. Lastly, this chapter includes design and implementation of a

brain sensing application. Chapter 5 includes a test program. It was deemed necessary to con-

duct initial testing of the brain sensing application and the neuroheadset. This is described in

the first section of the chapter. The next section of the chapter shows how a real time application

can work together with an ABB control room simulator whereas the last section supports and

describes a test conducted for identifying workload from EEG signals. A detailed description of

how this test was carried out is also included. Chapter 6 consists of the test results on all parts

of chapter 5. Chapter 7 discusses these results as well as puts the results in a bigger perspective
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and evaluates the possibility of utilizing brain sensing in an control room setting using today’s

brain sensing technology and the newest research in the area. The project is summed up with a

conclusion together with proposals for further work.



Chapter 2: Theory

2.1 Operators and control room

In a control room, the operators perform tasks such as to monitor, evaluate, plan and take ac-

tions for optimal operation of the process. The operator supervises the process state through

a control system. The process is displayed through process monitors. Control rooms can have

different ways in presenting measured values and information on the monitors. It can be seen

as e.g. numbers, trends, bars and levels, and indicators for alert and alarms [25].

In the process industry, you will usually find large screens displaying the overall system state

and smaller monitors on the operators’ working stations, which display details of the process.

The operators usually work in teams and either observe automatically controlled processes, or

control a process manually by e.g. changing setpoints. The operators are responsible for de-

tecting incorrect values and performing correcting actions for these. They coordinate tasks with

maintenance personnel, have responsibility for planned changes in production and report pro-

cess states and possible errors [4].

The human machine interaction (HMI) in a process control room setting is illustrated in fig-

ure 2.1, where the operators are in a closed loop with the system.

7
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Figure 2.1: HMI in a process control room setting

2.1.1 Development of process control rooms and HMI systems in Norway

Towards the end of the 1960s, centralized control rooms became common in the Norwegian pro-

cess industry. The rooms were often huge, and the operators had to walk quite a long distance

to keep the whole process plant up and running. A development from pneumatic to electric in-

struments led to smaller control rooms, and digital computers and monitors were utilized from

the mid-1970s [4, 25]. During the last 40 years, one can see a strong technological development

in the industry in general, towards more automatization.

Today, most information on the process plant can be displayed on monitors, and the develop-

ment of user interfaces have been important. A lot of research and user surveys have therefore

been conducted to develop better user interfaces. Introducing more automation does not mean

less focus on operators or separation of operators from the process. Developers seem to put em-

phasis on the human as a part of the system. This can be seen both through reports and specific

models for good HMI development such as “Operator centered system working model”, which

puts the focus directly on the operator and his needs through the entire developing process [9].

The development of control rooms is an ongoing process, and developers urge to find solu-

tions that can create better overview and control of the process and improve both the physical

and mental working environment. Humans are in general quite adaptive to new settings and

solutions, but good working conditions will result in improved productivity, improved health

and safety and overall better employee satisfaction [16].
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2.1.2 Erroneous actions and operator training

A part of understanding the operator is to investigate what an erroneous action involves, and

the reasons to why this occurs. Only then, we are able to point at the real problems and weak-

nesses of the HMI, and will know how to improve it.

In addition to not taking an action, erroneous actions by operators can be understood by the

following [4]:

• A necessary action is performed wrong

• A necessary action is performed in a wrong order

• A necessary action is performed at a wrong time

• An unnecessary action is performed

These actions can be performed either with a fully operational system, or in an already erro-

neous system. A well designed control system should, on the other hand, incorporate robust-

ness. It is a requirement that error handling is implemented, to avoid an erroneous action. Also,

design faults or unpredicted situations can be detected and compensated for [4].

Although not all erroneous actions lead to hazardous consequences for the overall process, a

good developed HMI will result in less risk and better working conditions for the operators. Even

though good user interfaces have been widely studied and the development process is contin-

uous, some operators may still claim that their interests are not preserved when user interfaces

for control room systems are developed. Problems mentioned include:

• Too many alarms

• Alarms are hard to spot

• Some alarms are unnecessary

They point to a main problem, namely that operators have to process a lot of data in a short

time, and it becomes hard to maintain the process overview. Stress can be an important factor
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that influences our cognitive processes [3]. To avoid operators being overwhelmed by stress, it

is normal practice to arrange stress reduction courses.

Operators does also have to go through a lot of training to be better prepared in given situa-

tions. With the increasing automation that we have seen in the process industry over the past

decades, simulators have been developed, mainly to help in the following situations [16]:

• Training and education of new operators

• Training and education of operators in relation to a plant change

• Rehearsal in order to maintain old knowledge

• Rehearsal of situations that only occur in rare occasions

In many companies, training to maintain competence and rehearsal of situations that only oc-

cur in rare occasions, is carried out at least twice a year.

2.2 Human factors explained by cognition and neurosience

In a human-machine-interaction approach, we can look at the human as a part of a system. All

humans are different; we have for example different knowledge, experience and perceptions.

This makes us unpredictable elements. According to a well referred theory by the Danish engi-

neer J. Rasmussen [44] humans process information and behave according to his skills, knowl-

edge and interpreted rules when conducting a complex, cognitive task. Such competence is

built up and depends on educational background, training, motivation, goal and experience.

These elements can be seen as limiting factors, and we can therefore suggest that a person might

lack some type of skills, knowledge or interpreted rules if a task is not completed correctly. To

develop good human-machine interactions, it is important to understand the human. This may

not be fully possible, but psychology and neurosience can take us part of the way [9].



2.2. HUMAN FACTORS EXPLAINED BY COGNITION AND NEUROSIENCE 11

2.2.1 Cognition

A person’s mental activity is a combination of acquisition, storage, transformation and use of

knowledge. In psychology, this term is known as cognition [34].

Human information processing and memory

Two of the main fields within cognition is human information processing and memory. A the-

ory on how human process information evolved in the late 1940s by Shannon and Weaver [31].

This theory was influenced by how computers worked; information is perceived sequentially,

taking in one bit at a time. According to a model by Atkinson and Shiffin (1968) [34], all infor-

mation we get from our senses will be received by a storage system called “the sensory mem-

ory”. The sensory memory has high capacity, but will only store information for about two sec-

onds. Most of the information is then lost, while the rest of it is saved to short-term memory

(or working memory). In this working memory, we find all information that we are currently

using. Rehearsed information is stored in the long time memory, and include all memories and

knowledge [14, 34].

Skill learning

When learning a new skill, a person often begins by drawing on what he or she already know.

During the next stage of skill learning, practice will involve that one less frequently have to recall

memories on how to perform a given action. Eventually, a skill becomes rapid and effortless [18].

Situation awareness, attention and workload

Situation awareness (SA) could easily be described as “knowing what is going on”, and is es-

sential when making decisions and performing tasks. Two important and limiting factors for

situation awareness is workload and attention. Attention is defined as concentration on a task

or to be prepared to receive information [34]. Workload is an abstraction of several terms that

when combined represents the cost of carrying out a task and is often defined different in litera-

ture and amongst people. According to a thorough study carried out by NASA, workload can be

seen as a combination of the degree of mental demand, physical demand, temporal demand,
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performance, effort and frustration [20].

High situation awareness does not necessarily mean that a task is easy, or a situation is under

control. In [14], Endsley define the following four combinations of situation awareness and

workload that is of relevance when a person is performing a task

• low SA - low workload

• low SA - high workload

• high SA - low workload

• high SA - high workload

With low situation awareness and low workload, a person cannot see the complexity of a task.

Low situation awareness and high workload might imply that a person has not understood the

triviality of a task, or that a task is obscure. Having high situation awareness and low workload

would imply that a person is focused but is in control of the situation, and a high situation

awareness with a high workload could indicate that a person is working hard on a problem he

or she is well aware of.
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2.2.2 Cognitive neuroscience

Cognitive neuroscience as a field has its focus on how cognitive processes can be explained by

the brain, and the mapping of these. A brain has four sections that makes up the cerebral cortex;

the frontal, paritetal-, temporal- and occipital lobe. The four lobes can be seen in figure 2.2.

Figure 2.2: The four lobes of the brain (Courtesy of A.D.A.M http://www.nlm.nih.gov/
medlineplus/ency/imagepages/9549.htm visited: 13.05.2015)

The paritetal-, temporal- and occipital lobe make up the sensory cortex. Pain and taste are per-

ceived by the paritetal lobe, hearing and memory by the temporal, and vision-related tasks are

processed in the occipital lobe. Information is then passed further to a number of other ar-

eas [34]. The frontal lobe is associated with emotions, problem solving, speech and movement,

so a part of it makes up the primary motor cortex. The primary motor cortex controls e.g. facial

movements such as movement of lips, eyes, jaw and tongue [11, 26].

Cognitive neuroscience expanded as an area of research in the 1980s, when brain-image tech-

niques became available. Examples of localized areas include brain areas important for atten-

tion and learning a new skill. Attention has been pinned to the back of the parietal lobe, and

the front of the frontal lobe [34]. When learning a new skill, researchers have found that in addi-

tion to the cerebral cortex, several other brain regions contribute such as the Basal ganglia and

the cerebellum. Mental processes are however intricate, and research has shown that it is hard

to determine the origin of a task’s execution [34]. The cerebral cortex is closely related to skill

http://www.nlm.nih.gov/medlineplus/ency/imagepages/9549.htm
http://www.nlm.nih.gov/medlineplus/ency/imagepages/9549.htm
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learning and performance, but it is hard to know exactly how everything is connected [18].

Additional means of measurement: The NASA-TLX

Doing research on the human brain could also be challenging due to the fact that it is hard

to obtain an objective measure on how a person really feel about something. Because of this,

other means than brain sensing has been utilized to obtain a correct measurement of a cogni-

tive process. One of these is measurement of heart rate, which will vary as a function of mental

load [51]. It is also known that a person tends to blink more when being stressed. Studies have

shown that the eye blink rate decreases under cognitive load [7] and increases when a person is

tired 1. Another mean that has been developed as a compensator for this exact problem is sub-

jective assessment tools, such as the The NASA Task Load Index (NASA-TLX). The NASA-TLX

is a subjective workload assessment tool. It was developed by the Human Performance Group

at NASA Ames Research Center over 20 years ago for operators working with human machine

systems 2, and has since then been widely used [20].

In order to obtain an individual estimate of workload in a test, a form is filled out for every

participating person. Six subscales are defined which each represent different parts of what

one can define as workload as a concept; mental demand, physical demand, temporal demand,

performance, effort and frustration. All six sub-scales are paired up, giving a total of 15 pairs.

The user is told to pick the member of each pair that he consider most important for increasing

workload. This gives each of the six sub-scales a weighted score.

After finishing a test, every person weigh the six subscales in an interval from 0 to 20 ranging

from very low to very high, to evaluate how they found the test. This scale score is presented as

a value from 0 to 100.

The weighted score calculated prior to the test is then multiplied with the scale score from after

the test is completed. All the products are then added, and the result is divided by 15, the num-

1http://www.nbcnews.com/id/3076704/t/why-do-we-blink/.VVNKTpNKWDc visited: 13.05.2015
2http://humansystems.arc.nasa.gov/groups/tlx/ visited: 27.05.2015

http://www.nbcnews.com/id/3076704/t/why-do-we-blink/.VVNKTpNKWDc
http://humansystems.arc.nasa.gov/groups/tlx/
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ber of weighted scores, giving a mean workload score of the overall task between 0 and 100 [21].

The NASA TLX form can be found in appendix A.

2.3 EEG signals and brain sensing technology

2.3.1 EEG measurement and interpretation

EEG signals

Electroencephalographic (EEG) signals are electric potentials that can be detected along the

scalp. The electrical signals have their origin from neurons, or nerve cells, that utilize the signals

for transferring and processing information. When measuring EEG, one will find the summa-

tion of this activity. The EEG-signals are measured in microvolts due to their small amplitudes,

which usually range between 10-100 µV, and most of the signals power can be found at frequen-

cies bellow 30 Hz [26, 48]. Frequencies are divided into the following bands:

Table 2.1: Frequency bands

Name Frequency

Delta <4 Hz

Theta 4-8 Hz

Alpha 8-13 Hz

Beta 13-31 Hz

Gamma 32+ Hz

EEG signals have high temporal resolution, but low spatial resolution. The signals are continu-

ous, nonlinear and nonstationary [26].
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Event-related potentials and neural networks

An event-related potential (ERP) is a tiny fluctuation in the brain. The response comes to a

spesific sensory, cognitive or motoric event. It can often be seen after external stimuli, but is also

associated with spontaneous mental activity [35]. An examle is attention, which can be seen as

an ERP lasting only milliseconds [34]. Event-related potentials are recognizable in EEG signals

through pattern recognizing algorithms (neural networks). This is usually done by averaging the

EEG response from several trials [26]. ERP’s can therefore be different amongst different people.

10-20 system and the cerebral cortex

The 10-20 system is an internationally recognized location system for the placement of elec-

trodes on the scalp when recording EEG signals. The system was developed so that one could

easily compare different EEG studies. The system has it’s name from the placement of the elec-

trodes relative to the Nasion, Inion and the ears, see figure 2.3.

Figure 2.3: Original figure of the 10-20 system (jasper, 1958), note that the electrodes are placed
inside the scull, on the cortex

The electrode placement in the 10-20 system is organized with a capital letter and a number.

and an overview with names and position of the electrode placement in the 10-20 system can

be seen in figure 2.4.
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Figure 2.4: Electrode placement in the 10-20 system from (Sharbrough, 1991)

The capital letters in the 10-20 system is given after which of the brains four lobes it is placed

over

F - Frontal

T - Temporal

C - Central 3

P - Paritetal

O - Occopital

3Central is for reference purposes, a central lobe does not exist



18 CHAPTER 2. THEORY

Identifying mental states from EEG signals

EEG signals are very complex signals that are hard to analyze. They are highly susceptible to

noise and can vary severely from one person to another. This does not provide much hope

when seeking to discover our brain’s secrets. Researchers and psychologists have been working

for years to identify mental states from EEG signals. Many questions stand unanswered, but

still, there are some findings that seem robust after years of research and testing:

Frequency bands:

• The power of alpha waves will increase if a person is relaxed or has closed eyes, and de-

crease under excitement or if the eyes are open [38]. They are also found decreasing under

concentration and hard thinking [39]. Alpha waves are the easiest to detect, and can be

seen mainly in the occipital area (see figure 2.2).

• The power of beta waves increases with muscle activity or anxiousness, and decreases

with active concentration and thinking [6] [26].

• Delta waves are mostly seen in infants and during given stages of sleep. The waves tend

to have high amplitudes [19].

• Most of the brains activity during sleep is Theta waves [45].

• Gamma waves have been associated with consciousness, attention, perception and cog-

nition [43].

The following examples of mental states; general emotions, workload, stress and fatigue, are in-

cluded because they are of relevance for a working control room operator:

General emotions

Emotions are not easy to recognize through EEG signals, because emotions are highly personal

and therefore vary widely from person to person. Research has proven that to some extent, it

is possible to recognize given patterns in EEG signals using pattern recognizing algorithms or

neural networks when people look at pictures that give them a feeling of different emotions
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e.g. happiness, sadness and fear [2, 37]. One particular study using this method is able to dif-

ferentiate between five different emotions, although with the varying results of detecting 30-40

% of vague emotions and 70-80 % of extreme emotions [23]. Often, physiological signals such

as heartbeat and skin conductivity is used over EEG signals when investigating human emo-

tions [28].

Workload

There is no accepted methodology that states how one can find the overall level of workload

from EEG signals. Results from previous studies reports that power in the alpha frequency band

decreases with increased working memory load due to increasing task difficulty [10, 17, 29],

whereas theta activity, especially in the frontal lobe, is found to increase together with higher

workload for adults [24,29,40]. Another frequency band investigated in context with identifying

workload is the beta frequency band, although few results are reported in the literature on how

beta waves are affected [10]. In a recent review (2012) it is suggested that focus should be on

alpha band activity [30]. It is argued that the classical view about alpha band response is chal-

lenged as under certain task demands increased power can be observed. Besides, alpha band

oscillations are the dominant oscillations of the brain and the alpha band is the only frequency

domain that responds to a task demand either with a decrease or increase in power. Thus, the

alpha band is therefore assumed to be of particular interest, also compared to the other bands.

One of these studies is conducted with operators in AIR traffic control and claims that one can-

not know for sure that higher workload results in more errors [10]. The study provides results

showing that most errors occur under medium workload. The concept of workload has also

been used to investigate diverging levels of performance for experienced and less experienced

operators [5]. The study found large difference between experienced and newly hired operators.

Fatigue

EEG signals are often used to determine quality of sleep, and use the correlating factor between

quality of sleep and fatigue as a measure of fatigue [1]. Increasing fatigue is also reported to
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be associated with increased activity in the theta frequency band [17, 46] and increasing alpha

power [50], both at frontal sites.

Mental stress

Researchers have tried to map stress through investigating EEG signals. Several research groups

find increasing or decreasing activity in some part of the brain being correlated to increasing

level of mental stress. One interesting example is a research group providing results of increas-

ing level of stress leading to higher activity in frontal cortex and amygdala [3]. Still, there does

not seem to be any accepted theory that explains how to deduce the level of mental stress from

EEG signals.

All results on how to identify mental states from EEG signals are based on statistical tests – and

thus reported valid for groups of test subjects. However, the findings are not unambiguous. In

fact, it is also reported that effects show a high variability or even reverse effects across experi-

mental settings and also across subjects [30, 50]. In a number of studies the alpha band is split

and reported results are related to specific sub-bands [17, 29]. Several EEG indices have also

been proposed [27, 46], such as ratio of theta power to alpha power, and also for such indices

results are reported to vary [27].

2.3.2 Utilization of brain sensing technology in today’s industry

EEG is a electrobiological measurement method, such as electrocardiography (ECG, heart) and

electrogastrography (EGG, stomach) [47]. The signals EEG are recorded by metal electrodes on

a cap or on a headset, and good connection to the scalp is ensured by a conductive media [39].

Since the electrodes are placed on the scalp, EEG recording is non-invasive. This means that it

can be used with very little risk.

Another mean of detecting active brain areas is imaging techniques, where the two most used

are PET scan and fMRI. PET scan is conducted by injecting a test subject with a radioactive

chemical, before measuring the blood flow. In fMRI, one measure the amount of oxygen in the
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blood in various areas of the brain, and sees areas where the blood is rich of oxygen, as active

areas [34]. Because brain imaging techniques are slow to provide any precise information about

timing of the brain activity, EEG is often preferred over brain imaging techniques because of its

high temporal resolution.

Clinical use

Since the first human electroencephalograms was recorded in 1924 [8], the most beneficial use

of EEG has been clinical, by assessment of functional disturbances in the brain 4. A clinical EEG

recording can correctly diagnose 90 % of people with epilepsy [22]. EEG recordings are used

to evaluate people in coma for diagnosing brain death 5, under intensive care and to diagnose

demyelinating diseases such as multiple sclerosis (MS) [41]. The EEG recordings are interpreted

by a specialist, such as a clinical neurophysiologist or a neurologist. Today’s research within the

medical industry using EEG signals involve e.g. trying to diagnose schizophrenia and placing

cognitive centers 6.

Neurofeedback

A different branch of EEG utilization is neurofeedback, offered by clinics that claim to provide

treatment for a multiple of conditions e.g. ADHD, anxiety, depression and migraine 7 based on

EEG feedback. The theory behind this treatment method is that people are able to manipulate

their own brainwaves by being presented to the wave’s frequency via sounds or images. Depend-

ing on which condition you have, it is desirable to raise the amplitudes of some waves relative

to others.

A search for research papers that proves the efficiency of neurofeedback gives several results

8 9 10. Other papers point to the fact that it is hard to know if the change is due to placebo or

4 http://tidsskriftet.no/article/2953219visited:08.01.2015
5http://tidsskriftet.no/article/2949306 visited: 08.01.2015
6http://www.news-medical.net/news/20111212/New-method-for-detailed-analyses-of-electrical-activity-in-brain.

aspx visited: 09.01.2015
7 http://www.ntr.no/ visited: 15.01.15
8http://www.innsikt.org/index.asp?id=28464 visited: 16.01.15
9http://www.sciencedaily.com/releases/2010/03/100310114936.htm visited: 16.01.15

10http://www.sas.upenn.edu/psych/history/orne/paskewitzorne1973science360363.html visited:
16.01.15

http://tidsskriftet.no/article/2953219 visited: 08.01.2015
http://tidsskriftet.no/article/2949306
http://www.news-medical.net/news/20111212/New-method-for-detailed-analyses-of-electrical-activity-in-brain.aspx
http://www.news-medical.net/news/20111212/New-method-for-detailed-analyses-of-electrical-activity-in-brain.aspx
http://www.ntr.no/
http://www.innsikt.org/index.asp?id=28464
http://www.sciencedaily.com/releases/2010/03/100310114936.htm
http://www.sas.upenn.edu/psych/history/orne/paskewitzorne1973science360363.html
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if it actually works 11. Although critics seem to define Neurofeedback as expensive alternative

medicine, where you have to pay around $ 165 for a single session, a lot of research is still being

conducted to prove the theories behind Neurofeedback.

BCI and technology development

An area for utilizing EEG that seems to be growing rapidly over the past few years is research

and development of brain computer interface (BCI) systems. A BCI is an interaction between

a brain and a computer, which allows processing of EEG data in real time. Brain computer in-

terface systems allows the brain to communicate with- or control an external device, where a

program changes only based on the users brain signals [47]. BCI systems are often developed by

researchers and developers with an engineering background. Such systems require a high level

of efficiency and performance. One of the main reasons the field is growing is due to the fact that

since 2007 12, a multiple of low cost neuroheadsets has become available on the market. As the

brain sensing technology becomes cheaper, it becomes easier for researchers and developers

to embrace the technology and find new areas of application. Within this low cost technology

branch, one can see a development that lean towards helping disabled and developing control

systems for gaming.

The paper “Combining Brain–Computer Interfaces and Assistive Technologies: State-of-the-Art

and Challenges” [36] from 2010 states:

We identify four application areas where BCI assistive technology can have a real, measurable

impact for people with motor disabilities; namely “Communication and Control”, “Motor Substi-

tution”, “Entertainment”, and “Motor Recovery”.

These four areas provides a good representation of areas where brain sensing devises are uti-

lized. The following list shows a few examples of what has been done using low cost brain sens-

11http://www.psychologytoday.com/blog/brain-myths/201302/read-paying-100s-neurofeedback-therapy-0
visited: 16.01.15

12http://www.digi.no/372232/skal-la-deg-styre-spill-med-hjerne-folere visited: 10.01.2015

http://www.psychologytoday.com/blog/brain-myths/201302/read-paying-100s-neurofeedback-therapy-0
http://www.digi.no/372232/skal-la-deg-styre-spill-med-hjerne-folere
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ing equipment:

• In the 1980’s, L.A. Farwell and E. Donchin [15] developed a BCI helping people not ca-

pable to talk, to type. This BCI, referred to as “P300 BCI system”, has been implemented

toghether with the low cost brain sensing system Epoch. 13

• Motor wehicles reacting to facial expressions or thoughts can help people with motor dis-

abilities. A group of researchers has been able to steer a wheelchair trough ERPs 14, while

the autonomos lab at Freie universität Berlin are using ERP’s to steer a car 15.

Every year since 2010, the Annual BCI Research Award has been given to a project that pro-

vides outstanding and innovative research in the field of Brain Computer Interfaces. The award

committee receives around 70 contributions every year, with research projects from leading uni-

versities and some of the most prestigious research institutions 16. Taking a look at nominated

and winning projects gives a good indication of where the technology is today, and what one

can expect to be developed in the near future. Examples of nominated and winning projects

include:

• Rehabilitation of stroke patients (winner 2010 and 2014)

• Predictive Spelling with a P300-based BCI

• Neurofeedback training by motor imagery

• Eye Tracking to control a robot arm

Taking a look at the bigger picture, the development utilizing higher cost EEG equipment also

seem to lean towards a desire to help people with disabilities.

The contributors reasons for development initiatives

What drives the brain sensing technology forward has it background in where the interest lies

and where the money is found. The medical industry and the gaming industry seems to be big

initiators, whereas the low cost technology opens up for more creativity.

13http://www.biomedical-engineering-online.com/content/12/1/56 visited: 10.01.2015
14https://ece.uwaterloo.ca/~schoudhu/projects/fydp/ visited: 08.01.2015
15http://autonomos-labs.com/ visited: 10.01.2015
16http://www.gtec.at/ visited: 08.01.2015

http://www.biomedical-engineering-online.com/content/12/1/56
https://ece.uwaterloo.ca/~schoudhu/projects/fydp/
http://autonomos-labs.com/
http://www.gtec.at/
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Low cost brain sensing technology

As mentioned in the previous section, one can see an evident development towards cheaper

brain sensing devices over the last decade. A company called OCZ Technology launched the

"Neural Impulse Actuator" at the end of 2007, as one of the first low cost BCI devices that uti-

lized EEG.

Figure 2.5: OCZ Technology’s Neural Impulse Actuator (Courtesy of amazon http://www.
amazon.com/OCZ-OCZMSNIA-NIA-Impulse-Actuator/dp/B00168VU4U visited: 08.01.2015)

OCZ wanted to bring the brain sensing technology to the consumer market, making the tech-

nology available to a lot more people. Selling more and cheaper devices opened up a possibility

of a very low market prize for the "Neural Impulse Actuator", which had a prize around $100 as

opposed to $2000 for advanced equipment from the medical sector at that time 17.

After 2007, several actors has entered the market. Emotiv’s neuroheadset "Epoc" was launched

in 2009 to a prize of $300. This headset was primarily designed for use in the gaming industry.

NeuroSky launched a neuroheadset called "MindWave" in 2011 for $80. In 2014, Muse launched

a neuroheadband for $300, while Emotiv launched the upgraded Epoc+ for $499 . Emotiv is

planning to launch the neuroheadset "Insight" in summer 2015, as an easier and more comfort-

able option to Epoc. See table 2.2 for comparison of the neuroheadsets currently on the market.

17http://www.madshrimps.be/articles/article/551/OCZ-Actuator-lets-you-control-video-
games-with-your-brainaxzz3UXvsZyTi visited: 16.03.2015

http://www.amazon.com/OCZ-OCZMSNIA-NIA-Impulse-Actuator/dp/B00168VU4U
http://www.amazon.com/OCZ-OCZMSNIA-NIA-Impulse-Actuator/dp/B00168VU4U
http://www.madshrimps.be/articles/article/551/OCZ-Actuator-lets-you-control-video-
games-with-your-brainaxzz3UXvsZyTi
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Table 2.2: Specifications of neuroheadsets currently on the market

Muse Emotiv Epoc Emotiv Epoc+ NeuroSky Mind-

Wave

EEG sensors 7 14 14 1

Sampling

rate

220 Hz 128 Hz 256 Hz 512 Hz

Axis sensors 3x accelerometer 2x gyroscope

3x gyroscope

3x accelerometer

3x magnetometer

-

Connection bluetooth wireless bluethooth and

wireless

wireless

Battery

capacity
>5 hrs >12 hrs >6 hrs bluetooth

>12hrs wireless

>8 hrs

Compatibility Windows, Mac,

iOS, Linux, An-

droid, Ubuntu

Windows, Mac,

Android, Linux

Windows, iOS,

Mac, Android,

Linux

Windows, Mac

Prize $ 300 $ 300 $ 499 $ 80

Access to raw

data

No If purchased If purchased Yes
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Figure 2.6: Muse (Cour-
tesy of Muse http:
//muse.totemapp.com
visited: 08.01.2015)

Figure 2.7: Emotiv Epoc
(Courtesy of Emotiv
http://emotiv.com vis-
ited: 08.01.2015)

Figure 2.8: Neu-
roSky Mind-
Wave (Cour-
tesy of NeuroSky
http://press.
neurosky.com/
visited:
08.01.2015)

2.4 Digital signal processing

2.4.1 Sampling of analog signals

Sampling of an analog signal is done as follows:

x[n] = xa(nT ), −∞< n <∞ (2.1)

Where x(n) is the digital sampling of the analog signal xa(t ) taken every T seconds [42]. T is the

sampling period, and the sampling rate is given as

Fs = 1

T
(2.2)

2.4.2 Nyquist-Shannon sampling theorem

When sampling an analog signal, one need a sampling rate that is greater than twice the highest

frequency that appears in the analog signal

http://muse.totemapp.com
http://muse.totemapp.com
http://emotiv.com
http://press.neurosky.com/
http://press.neurosky.com/
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Fs > 2Fmax (2.3)

The sampling rate Fs is then twice the bandwidth, and is called the Nyquist rate. When the

sampling rate is higher than the Nyquist rate, the spectrum of the analog signal can be fully re-

covered from the spectrum of the discrete-time signal. This means that no spectral information

is lost, we avoid aliasing [42].

2.4.3 Highpass filter

EEG signals are highly susceptible to noise, and have a DC-offset due to hardware [26]. Although

the degree of noise will depend on the quality of the sensors, the EEG signals still needs to be

filtered. A highpass filter can be used for this purpose. A highpass filter is a digital frequency-

selective filter. It has the following frequency response characteristics

H(ω) =
 1, ωc <ω≤π

0, |ω| ≤ωc

The highpass filter will pass signals with a frequency higher than the cutoff frequency ωc (pass-

band), and suppress signals with a frequency lower than the cutoff frequency ωc (stopband).

Ideal filters are not physically realizable, and an transition band between a passband edge fre-

quency ωp and a stopband edge frequency ωs is seen for for real-time signal applications [42].

2.4.4 Discrete Fourier Transform

Frequency analysis of discrete-time signals can be performed by applying the Discrete Fourier

Transform to a time-domain sequence. The time-domain sequence will then be converted to

an equivalent frequency-domain representation [42].

We have the following syntesis equation for a discrete-time signal x[n] with a sample size N [42]

x(n) =
N−1∑
n=0

ck e j 2πkn/N , 0 ≤ k ≤ N −1 (2.4)
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And the following analysis equation

ck = 1

N

N−1∑
n=0

x(n)e− j 2πkn/N , 0 ≤ k ≤ N −1 (2.5)

Where ck is the fourier coefficients. The fourier coefficients represents the amplitude and phase

associated with the frequency component e− j 2πkn/N .

There exist several algorithms for computing Discrete Fourier Transforms. Fast Fourier Trans-

form (FFT) algorithms can be used for efficient computation if N is a power of 2 or a power of

4 [42]. FFT is a standard processing algorithm for EEG-signals, and since FFT is a linear method,

one assume stationarity in EEG signals. The most used FFT algorithm is called the Radix-2 FFT

algorithm.

2.4.5 Power spectral density

The power spectral density (PSD) is found when it is of interest to find the power of a signal over

all present frequencies. A periodic signal has infinite energy and finite average power, and we

have the following relation for average power

Px = 1

N

N−1∑
n=0

| x(n) |2 (2.6)

Following the deduction in [42], the power of the discrete-time periodic signal in terms of the

Fourier coefficient ck can be derived

Px = 1
N

∑N−1
n=0 x(n)∗x(n)

By equation 2.4 we obtain

Px = 1
N

∑N−1
n=0 x(n)

(
c∗k e− j 2πkn/N

)
And by equation 2.5 we get

P x =∑N−1
n=0 c∗k

[
x(n)e− j 2πkn/N

]
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Which gives the power of the frequency components in a signal

Px =
∞∑

k=−∞
| ck |2 (2.7)

Where ck is the fourier coefficients, and equation 2.7 is called Parseval’s relation for power sig-

nals.

2.4.6 Mean frequency and mean power

A mean frequency can be calculated from the fourier transform by taking the weighted sum of

spectral estimates in a frequency band and divide it by the power in the same band [29]

∑ f2

f1
(a( f )× f )∑ f2

f1
a( f )

(2.8)

In equation 2.8, a( f ) is the power of a signal from the power spectral density at frequency f , and

in a frequency band, f1 is the lowest frequency and f2 is the highest frequency.

A mean power can be calculated from the fourier transform by adding the spectral estimates in

a frequency band and divide it by the number of spectral estimates added

∑ f2

f1
a( f )

n
(2.9)

In equation 2.9, a( f ) is the power of the signal at frequency f , and in a frequency band, f1 is the

lowest frequency and f2 is the highest frequency. The number of powers added between f1 and

f2 is denoted n.
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Chapter 3: Use Case

The idea behind this project is to explore the possibility of sensing deviations in a control room

operator’s mental state, and find a way to exploit this aspect in order to improve an operator’s

ability to take correct actions. The approach investigates the possibility of quantitatively charac-

terizing an operator’s mental state and help us understand the human in the human-computer

interaction even better.

The concept is that the measured mental state will impact a system passively trough a feedback

loop, see figure 3.1. This principle allows the system to adapt to the operator’s mental state.

Figure 3.1: Overview of active sensors

Current neuroheadsets are unfortunately rather uncomfortable to wear. Seeing as it often takes

days or weeks between challenging situations for the operator, the use such a headset on a daily

basis in a will most likely not be desirable. Additionally, the development of a concept demon-

strator requires a significant amount of testing. In light of these facts, one can conclude that

with current technology, the use of a neuroheadset during normal operation in a control room

is currently not a viable option. However, if the technology discussed in this project can be fully

31
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developed and the design of neuroheadsets improve, several areas of application will emerge:

• A led light can indicate the operator’s mental state. E.g. red can indicate that the person is

busy working on something, and green can indicate a relaxed situation. This will tell co-

workers when to interrupt and when to stay away.

• Tasks can be scheduled between operators based on their mind state

• An alarm can trigger if a person is too tired

• Words and symbols can be enlarged and sounds can be higher if a person is tired

• If for example the mental state indicate that workload imposed on the operator is “very

high” or the operator is too tired or too stressed, the control system may shift into a “safe

mode”, more easily controlled by the operator. Here, the control room system can be set to

use automatic routines or alarms can be filtered differently. Normal mode can be resumed

as an indicator based on EEG signal is reduced to a “low” level.

Based on the brain sensing technology today, two use cases are established to pursue the idea

of this project:

1. Brain sensing technology for improving operator training

2. Brain sensing technology for improving user interfaces and control room systems

These two use cases are designed so that they are suitable for use in a concept demonstrator and

will allow repeated testing within a shorter period of time.

Operator training

If it is possible to measure the level of stress, fatigue or workload under operator training, the

brain sensing technology could be beneficial both during a stress reduction course and for reg-

ular operator training. In this use-case the operator could practice a given scenario until the

assignment is mastered sufficiently and the scenario is under control. When this is achieved,

the operator is given a new assignment. To indicate performance, it is a possibility is to give an

overall score after a scenario is over. Another possibility is to trigger an alarm if a mental state



33

exceeds a given limit during the assignment. To implement brain sensing in operator training,

one can then develop a control room simulator including a BCI, and having the system adapt

according to the operator’s mental state following figure 3.1.

Letting the operator be in control of the system will probably create a more confident envi-

ronment for the operator, and avoid the possibility of having the operator feeling supervised.

However, this question is not addressed further in this project and the operator’s perception of

the situation in such a setting appears to be an interesting issue itself.

Improving user interface and control room systems

As mentioned, a lot of research is done to investigate what types of user interface fit best in

a control room setting. It is interesting to look at the possibility of designing these interfaces

based on measurement of how operators react unconsciously, to reveal which alternative the

operator prefers.

Using brain sensing technology under development of control systems opens a possibility to

investigate several additional aspects. One could for example find out what happens when an

error occurs or detect changes in the mind under stressful or increasing workload, assuming

that the brain signals change when an operator detects an alarm. This would increase our in-

sight to how an operator reacts to different control room systems.It will in general improve our

understanding of the human being a part of the system, and it might even be possible to deter-

mine, which of two systems an operator not only prefers, but objectively operates best.

Developing an application for use cases

All concepts in the two use cases can be tested as a single concept by developing a brain sensing

application that incorporates and processes EEG signals, and sends the level of a mental state

as a controlling signal.

The brain sensing application can be used for initial testing of a neuroheadset as well as to pro-
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vide an opportunity to find out if it is possible to have a control room system that adapts due to

deviations in an operator’s mental state. Once such an application is developed, it can easily be

adjusted to a given use case. This will help answering the research question stated in the project

assignment.



Chapter 4: Developing a brain sensing ap-

plication with Emotiv’s Epoc

4.1 Choosing a neuroheadset

One of the challenges in this master project was choosing an appropriate neuroheadset. All

neuroheadsets available on the commercial market provide discretization of continuous EEG

signals, but to be able to investigate mental states, raw data access was needed. Based on the

specifications in table 2.2, this requirement excluded the Muse headset. It was decided that the

NeuroSky’s MindWave would not be sufficient, because it only includes one EEG sensor. The

headset will therefore not provide enough information about more areas of the brain.

The Emotiv’s Epoc seemed like a good choice; raw data access is available and the sampling rate

of 128 Hz is sufficient to investigate frequencies up to 64 Hz according to the Nyquist-Shannon

sampling theorem (equation 2.3). This is sufficient to investigate all frequency bands in chapter

2.3.1. As seen from table 2.2, Epoc includes 16 sensors of which 14 sensors measure the voltage

potential in mV to the remaining 2 reference sensors. Having more sensors within one area

makes it easier to detect voltage spikes, which can be deviating or erroneous measurements.

The sensors cover a large area of the brain, which provides an opportunity of a more extensive

analysis than any of the other headsets. The Emotive’s Epoc has been on the market for several

years, giving it time to be thoroughly tested by researchers and developers. Epoc has received

good reviews and provides a wiki/blog and a forum where one can find a lot of information, such

as solutions to potential problems and tips on how to get the system up and running. Based on

35
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all these positive specifications, it was decided to order an Epoc.

4.2 User guidance to Epoc

To ensure good and correct usage of the Emotiv’s Epoc, it is important to follow the user guidance.

All of the Epoc’s 14 sensors have a felt pad that needs to be hydrated to achieve sufficient contact

with the scalp. The saline used is a contact lens saline solution. The two reference sensors

can easily be identified since they have rubber instead of felt. When placing the headset, it is

important to follow figure 4.1, where the reference sensors are placed on the bone behind the

ears.

Figure 4.1: Correct placement of the Epoc neuroheadset (courtesy of Emotiv)

When the headset is placed correctly, the sensors will be positioned according to the 10-20 sys-

tem:
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Figure 4.2: EEG Sensors

The Emotive Epoc’s wireless connection is established by inserting a USB stick to a computer

before turning on the headset for pairing.

4.3 Included software

When purchasing the Emotiv’s Epoc you will get access to an application called Control Panel,

see figure 4.3. The control panel has a graphical user interface and provides valuable informa-

tion of engine status. It detects if a new headset has been paired and displays such as system

status, system up time, wireless signal, battery power and how well each of the 14 sensors are

connected to the scalp. The contact quality is represented by a colour code:

Table 4.1: Indicators of connection quality

Black - No signal
Red - Very poor signal
Orange - Poor signal
Yellow - Fair signal
Green - Good signal
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This existing software is of great value as it allows one to verify that the headset is well connected,

and identify sensors with a poor connection. These sensors can then be omitted in further pro-

cessing and investigation.

Figure 4.3: EPOC control panel

The control panel can be used for initial testing of the Emotiv Epoc, allowing a user to create

a profile and train thoughts in a cognitiv suite, display facial movements in an expressiv suite

or show mental states in an affectiv suite. The different actions in the expressiv suite are blink,

right wink, left wink, look right, look left, raise brow, furrow brow, smile, clench, right smirk, left

smirk and laugh. The different mental states in the affectiv suite are excitement/calm, engage-

ment/disinterest and meditiation.
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4.4 Interface

Epoc’s application programming interface (API) is an ANSI C interface declared in three header

files (edk.h, EmoStateDLL.h, edkErrorCode.h) and implemented in two Windows DLLs (edk.dll,

edk _ utils.dll). The communication between API and the Epoc that is provided in edk.dll, is

called Emotiv EmoEngineT M . This logical abstraction is exposed by the Emotiv API, through

commands like EE_Eng i neConnect (), that will open the connection between API and Epoc.

An example code provided by Emotiv extracts raw data from the headset and saves such data to

a .txt file. The example code is written in C++, which makes it possible to run the .exe file from

cmd and concurrently choose in which .txt file you want to save the raw EEG data. The raw data

in the .txt file is saved as comma separated values with a new row for each new measurement,

as be seen in table 4.2.

Table 4.2: Example of a .txt file with EEG raw data

COUNTER,AF3,F7,F3, FC5, T7, P7, O1, O2,P8, T8, FC6, F4,F8, AF4,GYROX, GYROY, TIMESTAMP,

45,4271.28,4627.69,4096.41,4277.44,4347.18,4263.08,4200,3928.72,4568.21,3924.1,4276.41,4367.18,3942.05,4432.82,2259,1736,6.027,

46,4286.67,4630.77,4089.74,4277.95,4343.08,4256.41,4184.1,3937.44,4573.33,3924.1,4282.56,4356.92,3947.69,4430.77,2259,1734,6.027,

47,4271.79,4626.67,4088.72,4276.92,4339.49,4248.21,4169.74,3952.82,4585.13,3924.62,4280.51,4359.49,3936.92,4412.82,2260,1733,6.029,

48,4261.54,4623.08,4093.85,4274.36,4336.41,4248.21,4169.23,3969.74,4589.74,3922.56,4277.44,4370.26,3933.85,4402.56,2260,1733,6.037,

49,4281.03,4621.54,4090.26,4265.13,4335.38,4246.15,4163.08,3971.28,4584.62,3923.08,4282.05,4369.74,3943.08,4402.05,2261,1733,6.045,

The Emotiv API also provides available open source code for automatic detection of prepro-

grammed ERPs, such as detecting facial movements (expressiv) or mental commands (cogni-

tive). It also provides an opportunity to get the level of the mental states in the affectiv suite as a

performance matrix. After initial testing, this was not used further in this project.
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4.5 Design and implementation of a brain sensing application

4.5.1 Design

Working with EEG signals requires extensive data analysis, and it was decided to use Matlab for

this purpose. Matlab offers a lot of tools that can process and plot data fast and easily. From

Mental states chapter 2.3.1, we know that investigating signals power and frequency in various

frequency bands will be the right approach to detect mental states from EEG signals. A brain

sensing application for processing and evaluation of raw EEG data was therefore needed for this

purpose. This application was designed to consist of two parts; one for processing and evaluat-

ing a whole data set, and one for processing and evaluation of raw data in real time. The option

of analysing a whole data set is good for initial testing and to get familiar with the technology,

whereas a real time application can be used for feedback to a control room simulator.

The brain sensing application’s main tasks will be to take in the given .txt file after the Emo-

Engine is connected, process the data and calculate mean power and mean frequency of vari-

ous frequency bands. Part one will do this once for a whole data set, whereas part two will do

this during time as new data are saved to the .txt file. For a full flowchart of the brain sensing

application see figure 4.4.
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Figure 4.4: Structure of brain sensing application
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4.5.2 Details on implementation

Extracting data from the .txt file

The brain sensing application has to run before connecting the EmoEngine. When the appli-

cation is set running, a "date- and time stamp" is saved, containing information about when

the .txt file was last modified. This time stamp is then evaluated relative to a new date and time

stamp, which is concurrently updated. These will diverge when EmoEngine is connected and

raw data is saved to the .txt file. Part one will take in the entire file and run a data processing

script once. If the real time application is chosen, new data from the .txt file will be extracted

and saved every 0.5 second, providing a constant stream of new data available for processing

during run time. Keeping track of which line is read in the .txt file ensures no loss of data. Al-

ways processing data after extraction will ensure that data is not pulled faster than it is saved.

Initialization and data processing

When the brain sensing application is started, the user will get a number of choices. These

choices are gathered in an initialization procedure. Data processing is also done through a pro-

cedure. Both these scripts are run from the brain sensing application, see figure 4.5.
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Figure 4.5: Overview of brain sensing application with subsystems

The initialization procedure is included to specify choices prior to running the brain sensing

application. It provides an opportunity to choose, which .txt file to be analyzed, which sensors

to extract data for analysis and whether it is of interest to run a real time application or to analyze

either a data set or parts of one. Figure 4.6 illustrates this.
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Figure 4.6: Structure of initializing process

After the raw EEG data is extracted from the .txt file, it needs to be processed. The following

routine for data processing is implemented:

• A high pass filter is enforced to remove DC noise, by setting the stopband frequency to

2 Hz and the passband frequency to 4 Hz. This is OK since we are only interested in the
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power of frequencies higher than 4 Hz.

• To find the power spectral density (PSD) of the EEG signals, a fast fourier transform algo-

rithm is employed. Equation 2.8 and refeq:meanPow are then used to calculate the mean

power and mean frequency for the three frequency bands theta (4-8 Hz), alpha (8-13 Hz)

and beta (13-31).

• Since the fast fourier transform finds power and frequency of periodic signals, it needs to

be applied to a time interval. This interval has to be long enough to provide sufficient in-

formation, but cannot be too long since we want to see how the mean frequency and mean

power of different frequency bands develop over time. To calculate developing trends it is

chosen to find the fast fourier transform (FFT) from the previous 5 seconds of data. This

implies that the FFT is found from 640 samples of data, since we have a sampling rate of

128 Hz. Employing the fourier transform on the previous 5 seconds of data excludes the

need of a windowing function. If a real time application is chosen, the first FFT is found

after 5 seconds, and then updated every 0.5 second, to have the updated mean power and

mean frequency values available. If it is chosen to analyze an entire data set, developing

trends will be calculated in the same way, but instead of being updated every 0.5 second,

they are calculated for the entire data set. In addition to calculating developing trends,

it is provided a possibillity to calculate the mean frequency and mean power of an enitre

data set. The fourier transform is then employed to the entire data set.

• A routine to avoid loosing data when using the brain sensing application in real time is

implemented. This is done by choosing chunks of 0.5 second data and add this to the pre-

vious 4.5 seconds prior to processing. If there is less than 0.5 seconds of unprocessed data

available, the application will end the processing routine temporarily to extract more data

from the .txt file. The remaining, less than 0.5 second of data is then still left unprocessed.

In order not to loose these data, they are always saved prior to ending the processing rou-

tine, before being added to the beginning of the new extracted and unprocessed data.

The whole "EEG data processing"-routine can be seen in 4.7. Note that all calculated values are

saved to .txt files.
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Figure 4.7: Structure of EEG data processing
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Several functions that for example identifies correct intervals, plot developing trends and save

results to .txt files are used in the brain sensing application. These functions are not described in

detail in this thesis, as they are not needed for understanding how the brain sensing application

function.

All scripts for the brain sensing application in addition to files needed to acquire EEG data from

Epoc, can be found by reading appendix F.
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Chapter 5: Test program

A test program was developed for the brain sensing application, with the following purpose:

• Get familiar with the Epoc neuroheadset

• Check that the brain sensing application worked as expected

• Integrate the brain sensing application with a control room simulator to see if it was pos-

sible to have an adaptive control room system that changes due to deviations in an oper-

ator’s mental state

• Try to identify workload from EEG signals

The program was divided into three parts:

1. Initial testing

2. Testing the brain sensing application in real time with a control room simulator

3. Developing and conducting a test program for identifying workload

5.1 Initial testing

It was seen necessary to conduct initial testing of the included software for Emotiv’s Epoc in

order to get familiar with the neuroheadset and to test the brain sensing application by checking

that all algorithms were correctly implemented and provided the expected results.

49
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5.1.1 Algorithms

The first part of the initial testing included to check that the following algorithms worked as

expected:

• Algorithms for data processing

• Algorithms for finding mean of frequency and power in different frequency bands

• Algorithms for finding development of frequency and power in different frequency bands

This was done for testing purposes only, by changing the frequency of a sinousoidal function

from 10 Hz to 15 Hz after 10 seconds, see equation 5.1.

f (t ) =
 10si n(20πt ), 0 < t ≤ 10

10si n(28πt ), 10 < t ≤ 20
(5.1)

5.1.2 Using Epoc and observing events

The second part of the initial testing was conducted to get the Epoc system up and running, to

try out the included software and to see how easy it would be to recognize motoric movements.

The neuroheadset was placed on a test subject. Initially, it was checked to see if it was possible

to detect the three facial movements; blinking, nodding and looking up and down. These are

some of the facial movements that are most relevant for an operator at work. A test subject was

therefore asked to repeatedly perform each of the three facial movements for about 30 seconds.

Out of these three, eye blinking was investigated further. The PSD, mean frequency and mean

power for the three frequency bands alpha, beta and theta were found, in addition to the de-

veloping power and frequency. The purpose of this was to get an indication of how much facial

movements will affect the results.

5.2 Connecting to a control room simulator

It is significant to investigate if the brain sensing application is able to send updated values to

a control room system. To explore this, it was decided to integrate the brain sensing applica-
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tion with a control room simulator. If this can be conducted smoothly, we have established a

foundation that can be utilized to test various future use cases.

5.2.1 ABB Simulator

The simulator used is developed by ABB and simulates an inlet separator at an oil platform. The

separator separates water, gas, sand and other particles from the oil. In the interface display, gas

can be seen as yellow pipelines, whereas water is green and both oil and the stream from the

wells are brown. The bars and graphs display trends of oil, gas and water to get a good overview

of the situation by only glancing at the display, see figure 5.1.

Figure 5.1: ABB simulator

5.2.2 Adaptive control room simulator

One of the ideas from the use case was to develop an adaptive control room system where the

simulator adopts changes according to an operator’s mental state, see figure 5.2.
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Figure 5.2: System flow

For a proof of concept, it was decided to calculate and send updated values of the mean power

in alpha and beta frequency bands from one sensor to the ABB simulator, in addition to raw data

from the Epoc. Based on initial testing and calibration from a test subject, threshold values were

set for alpha- and beta power to trigger alarms if the power became too high. The simulator

interfaces to OPC. Through a provided C++ script that connects to a OPC client, the .txt file with

updated EEG data were sent at 10 Hz, and the updated alpha and beta values was sent at 2 Hz.

The EEG data is then displayed in the simulator, together with two bars showing "alpha level"

and a bar to show "beta level" for the given chosen sensor.

5.3 Identifying workload

5.3.1 Objective

Through the use case, it was decided to focus on using brain sensing for operator training and/or

development of control room systems. Several areas of application were suggested and in order

to implement a use case, it was critical to go further with a given mental state and to develop a

concept demonstrator. As we could see in chapter 2.3.1, none of the mental states investigated

provided a good and straightforward theory ready for implementation. The lack of such a theory
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explaining how to find mental states from EEG signals is hard to work around, when searching

for a good utilization of a brain sensing device in a control room setting. It was therefore decided

to investigate if it is possible to detect a chosen mental state from the brain signals acquired by

the chosen neuroheadset. Three of the mental states were judged to be relevant in this setting:

• Fatigue

• Stress

• Workload

Fatigue will have a huge impact on a persons ability to perform a task. It is easy to imagine

that one becomes less efficient and makes more mistakes when fatigued. Of the three mental

states mentioned, fatigue is the mental state that specialists have investigated mostly, through

analyzing sleeping patterns (see chapter 2.3.1). This provides a high probability of finding good

techniques for analyzing EEG signals, but can not be used in this project as we wish to inves-

tigate the mental state of a working operator. Intricate techniques will also be problem from a

non-medical perspective, as EEG signals ideally should only be interpreted by a specialist. This

can however be solved by conducting a simple and non-parametric test, in order to make the

test result easy to interpret. A methodology based on previous research is also provided in chap-

ter 2.3.1, but it is hard to come up with a fast and simple test to investigate increasing fatigue.

The level of stress could be utilized as an indicator on how well an operator performs with a

new control room system, or a high stress level could trigger an external alarm. On the other

hand, finding a simple way to mitigate a stressful situation in a safe setting, with the goal of

identifying stress from EEG signals might be challenging. One could, for example, poke a test

subject with a needle, but this would neither create a realistic setting for an operator at work or

perhaps be ethically accepted. However, there exists a lot of other biophysical stress indicators

that could be measured in a thoroughly stress study, such as sweat and increased heart rate, as

mentioned in chapter 2.2.2.

A well-designed and well-conducted study focusing on the mind might be able to show what

happens in a person’s mind under increasing workload. Despite various findings among papers
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in chapter 2.3.1, we know from chapter 2.2.1 that the workload level must be seen together with

the level of situation awareness. Being able to identify workload will provide a measure, not only

on the complexity of an operator’s task and his ability to perform the task, but also indicate, for

instance, how concentrated, awake or stressed the operator is. This would provide a good base

for understanding an operator’s mental state and can be useful for several of the concepts dis-

cussed in chapter 3, Use case.

Customizing two of the concepts in use case to workload, will provide a possibility of developing

the following two use cases

• For operator training: an operator have to practice a routine until his workload level is at

an acceptable level

• For development of control room systems: An operator should not experience “overflow”

in workload when using a new system, and the average workload level for a routine should

be lower in the newest version of the control room system

Identifying workload can also help to get a better understanding of human factors; to help us

to understand if the level of workload is correlated with erroneous decisions in a high-pressure

situation.

As we could see in chapter 2.2.2, the well established NASA-TLX tool was available for subjec-

tive workload assessment. In addition, robust results providing a possible methodology on how

to identify increasing workload from EEG signals was provided in chapter 2.3.1. This made it

possible to define a hypothesis which could be tested, and it was therefore chosen to go further

with workload.
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5.3.2 Intelligence quotient (IQ) test

An intelligence quotient (IQ) test was used to examine EEG signals under increasing workload

to identify workload in EEG signals. An IQ-test is a good tool for testing increasing workload.

For this purpose, Mensa1 Norway’s online IQ test 2, was chosen. The online IQ test is a figure

reasoning test with 35 tasks with increasing difficulty. The test person gets 25 minutes to solve

it. The online IQ test is not a scientifically designed test, but will provide a good indication of

the IQ. Since the test includes tasks with increasing difficulty, it suits perfectly for the purpose

in this project.

The 35 tasks in the online IQ test was divided into two groups; one with the first 20 tasks to

create an easier tasks, and a second with the 15 last harder tasks. Although some tasks may be

easier to solve for some people, both groups of tasks will have an overall increasing difficulty.

This provides an opportunity to detect a difference in workload between the two parts of the

test.

Prior to the test, all test subjects had to fill out a safety and information form. This form is

found in appendix B. It provides detailed information about the experiment, so that test subjects

understand what to do and the purpose of the experiment. It also explains that the test subjects

will be handled anonymously.

5.3.3 NASA Task Load Index

The NASA Task Load Index was used to obtain a subjective workload estimate of each of the two

parts of the IQ test. The NASA Task Load Index is found in appendix A.

1Mensa is a high IQ society with members from 100 different countries. All members have proven their IQ to be
among the top 2 % in the population through an approved IQ test http://www.mensa.org/ visited 23.04.2015

2Developed by Olav Hoel Dørum in 2007-2008 http://www.mensa.no/iq/hjemmetest/ visited: 15.04.2015

http://www.mensa.org/
http://www.mensa.no/iq/hjemmetest/
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5.3.4 Methodology and statistical tests

From chapter 2.3.1 we know that increasing task difficulty might be seen by decreased activity

in the alpha frequency band and increased activity in the theta frequency band, mainly in the

frontal lobe. In addition, the beta frequency band might be of interest. The program described

in chapter 4.5 is able to find mean frequency, mean power and developing trends for these fre-

quency bands, and was therefore used to analyze data after conducting the IQ-tests. Calculating

mean frequency and mean power for both the first and the second part of the IQ test allows us

to see if the values goes up or down.

The significance of the results was examined by a binomial test and a Wilcoxon signed-rank

test, calculated in Excel. For details on all statistical tests see appendix E. Because it is of interest

to see if any of the measurement values goes up OR down, both directions of deviation from the

null hypothesis are interesting, and so it was necessary to find a two-tailed probability. The Kol-

mogorov–Smirnov test was used to check if the measurement variables came from a normally

distributed data set, by the Matlab command

h = kstest (x)

The test returns 1 if H0 is rejected, and 0 if H0 holds.

The statistical null hypothesis was given as following

The probability of the frequency or power of a frequency band to go up under increasing work-

load is equal to the probability of the frequency or power of a frequency band to go down

With the nominal variables

• First part of IQ test

• Second part of IQ test

And the following measurement variables for both the entire brain, the frontal lobe, the parete-
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rial lobe and the occipital lobe

• Power and frequency of alpha frequency band

• Power and frequency of beta frequency band

• Power and frequency of theta frequency band

This gives 48 measurement variables, where 24 are for the first part of the IQ test and 24 for the

second part.

5.3.5 Executing the IQ-test

All test subjects were given 5 minutes to get used to wearing the headset, by playing around in

the control panel. The purpose of this was to reduce additional stress and discomfort caused by

wearing the headset, to avoid impact on the testresults. After starting to capture EEG data, the

test subjects were given an additional 30 seconds to relax before starting the test.

The individual time of the first part and the second part of the IQ test was measured with a stop-

watch. This was considered to be sufficient because of the length of the test (25 minutes), and a

few milliseconds margin of error would not have a huge impact in this non-parametric test.

The test was stopped either when the test subject ran out of time, or when the test subject had

completed all questions. After the data capturing was ended, the connection of the sensors was

checked and saved. Only sensors with a fairly good connection indicator or better, see table 4.1,

was included as a source for the further data processing.
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Chapter 6: Simulation and results

6.1 Initial testing

6.1.1 Algorithms

In equation 5.1, FFT identified the two frequency components of the sinusoidal function cor-

rectly, as can be seen in figure 6.1. The average alpha frequency of the whole data set was found

to be 11.8830 Hz, whereas the development of mean frequency can be seen in figure 6.2.
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Figure 6.2: Development of mean frequency

6.1.2 Using Epoc and observing events

To obtain good contact with the scalp, a lot of contact lens solution had to be applied to each

felt pad. Figure 6.3 shows that it was possible to obtain good and fair signals from all sensors.

Note that sensors T7 and T8 are the two reference sensors.
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The included software "Control panel" worked well, except for the affective suite; two of the

mental states went up and down without any obvious correlation to the user, while the last was

constantly disconnected. Connecting the EmoEngine and extracting EEG data worked as ex-

pected, with less than 3 lost packages per 30 seconds.

Figure 6.3: Overview of active sensors

Having a "good" connection to almost all sensors, the test subject was asked to perform the

predefined facial movements for about 30 seconds. On average, it took 4.05 seconds from the

EmoEngine was connected to the beginning of data logging. Figure 6.4, 6.5 and 6.6 show that

several types of motoric movement will have an impact on the raw data to be analysed, and that

the effect of facial movements is largest for the sensors in the frontal lobe, AF3, F7, F3, FC5, FC6,

F4, F8 and AF4.
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Figure 6.5: Measured EEG signals of looking up and down
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Figure 6.6: Measured EEG signals of nodding

It was decided to further investigate the impact of facial movements further. The fourier trans-

form should be taken from at least two ERPs, and accuracy of the result increases when the

fourier transform is calculated over a longer time interval. Data were therefore captured for one

minute, where the test subject was instructed to relax for the first 30 seconds, see figure 6.7 , and

then relax while blinking his eyes rapidly during the next 30 seconds, see figure 6.8.
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Figure 6.7: Thirty seconds of EEG data from frontal lobe when relaxing
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Figure 6.8: Thirty seconds of EEG data from frontal lobe under rapid eye blinking

Facial movements are mainly detected in the frontal lobe. Therefore, it was decided to use the

sensors covering this lobe when analyzing data to investigate the impact of eye blinking. These

sensors are marked with a red square in figure 6.9.

Figure 6.9: Contact quality of sensors to scalp during eye blink investigation
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For both intervals in figure 6.7 and 6.8, data were processed and the PSD was found. The PSD of

sensor F7 is included in 6.10 for figurative reasons. This sensor was chosen because it had good

contact with the scalp under data capturing, as clearly seen in figure 6.9.
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Figure 6.10: PSD of F7 when relaxing and blinking rapidly

Table 6.1 illustrates the values for sensors in the frontal lobe obtained from the data set when

the test subject was first relaxing (left) and then blinking rapidly(right).

Table 6.1: Mean values in different frequency bands when relaxing or blinking rapidly

Alpha freq Beta freq Theta freq Alpha pow Beta pow Theta pow

Relaxing 10.27 Hz 21.78 Hz 5.81 Hz 282.56 µV 2

H z 113.84 µV 2

H z 368.48 µV 2

H z

Blinking 10.28 Hz 20.44 Hz 5.78 Hz 383.95 µV 2

H z 100.28 µV 2

H z 1235.3 µV 2

H z

Plotting the development of mean power and frequency over the last 5 seconds gave the results

in figure 6.11 and 6.12. In figure 6.11 one can see that power in the theta band increases with 70.2

% when the test subject is blinking rapidly, whereas nothing significant can be seen in the power

in alpha- and beta frequency bands. Note that frequencies bellow the theta frequency band is

filtered out. In figure 6.12 the frequency in the beta band drops when the test subject is blinking

rapidly, whereas nothing significant can be seen in the frequency for alpha- and theta frequency

bands.The calculated mean values in table 6.1 appeared to correlate well with the developing

trends in figure 6.11 and 6.12.
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Figure 6.11: Development of power in theta-, alpha- and beta frequency bands
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Figure 6.12: Development of frequency in theta-, alpha- and beta frequency bands

6.2 Connecting to a control room simulator

It was critical to test thoroughly in order to set threshold values for the simulator. The maxi-

mum and minimum values that occurred during initial testing for power in the alpha- and beta

frequency bands are found in table 6.2, in addition to the average value when relaxing and the

threshold for alarm triggering.
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Table 6.2: Simulator threshold values for alpha- and beta power

Max Min Relax Threshold alarm

Alpha 1050 µV 2

H z 25 µV 2

H z 500-600 µV 2

H z 700 µV 2

H z

Beta 600 µV 2

H z 11 µV 2

H z 50-60µV 2

H z 100 µV 2

H z

Table 6.2 shows that there were clearly distinct differences between the different threshold val-

ues for power in alpha- and beta frequency band.

Figure 6.13 shows the original simulator for an inlet separator, now with the developing trends

of alpha- and beta power for one sensor (F7) in the left corner. Figure 6.14 illustrates that a high

value in beta power has triggered an alarm.

Figure 6.13: Integrated brain sensing in control room simulator
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Figure 6.14: Alarm triggered by brain signals in control room simulator

Figure 6.15 shows a new tab in the simulator, which shows the the brain sensing demo. The up-

per graph shows developing power in alpha- and beta frequency bands for one sensor (F7). The

bottom graph, shows raw EEG data. To the left, one can see bars indicating power level.
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Figure 6.15: Brain sensing demo in simulator

6.3 Identifying workload

6.3.1 Information on test subjects and execution of the test

The felt pads on the headset were wetted, and the headset was placed correctly for every test

subject, so that all sensors had a good connection (green or yellow).

The test group contained three females and seven males, nine in the age of 23-26, one in the age

58-61. None of the participants had previous neurological diseases.
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6.3.2 NASA TLX

The NASA-TLX test for validation of subjective workload can be seen in table 6.3.
Table 6.3: Workload levels for IQ test by NASA-TLX

Test

subject #

First part of IQ

test

Second part of

IQ test

1 66,0 81,3

2 40,0 63,0

3 53,0 61,7

4 38,0 50,7

5 25,0 64,0

6 35,3 61,3

7 14,7 31,3

8 44,3 46,0

9 28,3 88,0

10 68,7 75,3

From table 6.3 we can see the following:

• All participants ended up with a higher workload score in part II than in part I

• The mean workload for part I was 41.3

• The mean workload for part II was 62.3

6.3.3 Results

Testing for statistically significance it is of interest to check individual responses. For all test

subjects, the mean power and the mean frequency in equations 2.8 and 2.9 of the alpha-, beta-

and theta frequency interval were found for both parts of the IQ test, for all sensors but also

the sensors covering the paritetal lobe, the occopital lobe and the frontal lobe (temporal lobe is

covered by reference sensors). Table 6.4 shows the nonparametric results for the parietal lobe;

one can see if each measurment variable increases or decreases from the first part of the IQ test
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to the second.

Table 6.4: Nonparametric results of Parietal lobe from IQ test

Parietal Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Test sub. 1 Up Up Down Down Up Up

Test sub. 2 Up Up Up Down Down Down

Test sub. 3 Down Down Up Up Up Up

Test sub. 4 Up Down Down Down Down Down

Test sub. 5 Down Down Down Down Down Down

Test sub. 6 Down Up Up Down Down Down

Test sub. 7 Up Up Up Down Down Down

Test sub. 8 Up Up Up Down Down Down

Test sub. 9 Up Up Up Down Down Down

Test sub. 10 Up Down Down Down Down Down

Table 6.4 shows that in the paritetal lobe, alpha power increases for only one subject. Beta- and

theta power increases for only two subjects. Results on the frequencies are more mixed.

The nonparametric results from the entire brain, frontal lobe and occipital lobe can be seen

together with all parametric results from the IQ test in appendix C.

Binomial probability

All four properties of a Bernoulli process (see appendix E section II) was fulfilled for the experi-

ment, so a binomial distribution was used when testing the null hypothesis. With a significance

level of 0.05, the null hypothesis was rejected for alpha power in the parietal lobe, because the

probability of getting 1 or fewer out of 10 in a two-tailored test is P= 0.0215.This mean that it is

significantly unlikely to obtain the results for alpha power in table 6.4 by pure chance.
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Kolmogorov–Smirnov test

A paired t-test seem reasonable for investigating the significance of the results. However, the

measurement variables appeared to vary noticeably. Accordingly, the Kolmogorov–Smirnov test

was used to check normality.

The Kolmogorov–Smirnov test was conducted with a significance level of 0.05 %. Due to a small

sample size, the residuals of the data sets were examined. The test showed that the null hypoth-

esis on normality was rejected for 44 out of 48 measurement variables, see appendix D, table D.1

and D.2. It was therefore not possible to assume that the measurement variables came from a

normally distributed dataset.

Wilcoxon signed-rank test

Due to the result on the Kolmogorov–Smirnov test, it was chosen to run a Wilcoxon signed-rank

test, which do not assume that the data fit the normal distribution. The Wilcoxon singed-rank

test with a significance level of 0.05 showed that only the median difference for alpha-, beta-

and theta power in the parietal lobe was significantly less than zero, see table 6.5.

Table 6.5: P values in Wilcoxon signed-rank test

P-value

Alpha power 0.0098

Beta power 0.0137

Theta power 0.0273

This means that based on the measurement value’s parametric range between the first and sec-

ond part of the IQ test, it is significant unlikely to obtain the results for alpha-, beta- and theta

power in the parietal lobe on pure chance.



Chapter 7: Discussion and conclusion

7.1 Discussion

7.1.1 Decisions made

Epoc review

It turned out to be a good choice to use Emotiv’s Epoc for the purpose of this project; to test low

cost neuroheadsets and to develop a BCI system for a use case. Connecting Epoc to the USB

pin was easy, the included software provided important, usable information and nearly all data

were logged correctly. However, Emotiv’s software is in general quite confusing due to a lot of

software concepts. Emotiv keep changing names of neuroheadset editions, software and other

terms. It is hard to find manuals and needed libraries, and it is confusing to understand what is

accessible depending on which edition you have of the neuroheadset. The wiki and blog pages

were of great support when starting up the project, and the fact that a C++ script example of

data logging was available made the process of getting the system up and working much easier.

The headset is wireless and therefore very mobile. The headset has good design in the manner

that it looks good and connects well with the scalp of different people. It is rather uncomfort-

able to wear for more than a few minutes, and it is time consuming to put it on and to get a

good signal from all sensors. Imagine an operator wearing an uncomfortable device through a

whole shift is not realistic. This factor is so critical for the Epoc that it is not satisfactory to use

in a control room setting. A design like Muse or NeuroSky MindWave would be more beneficial

seeing as these are simpler in their design (see figure 2.6 and 2.8) and more comfortable to wear.

71
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Both are promoted for this, in addition to that they can be worn without the need of a contact

lens solution to wet the felt pads for the sensors. Still, the downsides of using these simpler

neuroheadsets are discussed in chapter 4.1. The main disadvantage is that they comprise fewer

sensors. Utilizing a neuroheadset in a control room therefore requires further development of

the technology.

Not utilizing included software from Epoc

As mentioned in chapter 4.4, it is possible to get a value representing the level of the mental

states (excitement/calm, engagement/disinterest and meditation) through the Emotiv API. The

control panel provides the user possibilities to test these mental states in the Affectiv suite (per-

formance metrics), but these did not work satisfactory. Developers seems to know the problems:

Performance Metrics detections are the most heavily filtered and the most likely to

be shut down temporarily by excess noise. 1

Using this in a brain sensing application for a control room setting would appear as a black box,

without access to or control over the algorithms for identifying mental states. It was therefore

decided to go further with extraction and processing of raw data, instead of building a BCI ap-

plication based on automatic detection of mental states.

7.1.2 Initial testing

Initial testing was conducted to test the Epoc headset, to get the system up and running and to

test the implemented processing algorithms for analyzing data sets. The processing algorithms

were shown to work as intended through figure 6.1 and 6.2, and provided a good representation

of the results. In figure 6.2, one can see that developing trends will be correctly updated every

0.5 second, and it takes 5 seconds to obtain the correct value.

1 https://emotiv.zendesk.com/hc/en-us/articles/200782279-How-do-you-measure-emotions-in-the-first-
place-so-you-can-compare-the-outputs-and-come-up-with-a-number-
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Figure 6.3 shows that it was possible to get good and fair signals from all the sensors, although

a lot of contact lens solution was needed to achieve this. Trying to detect events showed that

the system was working properly, and that it was possible to get a significant indication on what

affects EEG signals the most; motoric motion.

As mentioned in chapter 2.3.1, facial movements should mainly be seen in the frontal lobe. This

can be confirmed by comparing the frontal response when blinking (figure 6.4), looking up and

down (figure 6.5) and nodding (figure 6.6), to the response of the other sensors.It became clear

that the facial motion cannot be detected to the same extent in other areas. This shows that the

Epoc most likely is able to measure EEG signals for correct brain areas.

A single test on eye blinking was conducted in order to calculate how much eye blinking in-

fluences frequency and power in different frequency bands. Although this needs to be further

tested to confirm results, it was found that the largest difference could be seen for low frequen-

cies, where we could see a 70.2 % increase in mean power in the theta frequency band. The

theory is strengthened by a study on eye blinking from EEG signals in [32], where it was found

that the PSD of eye blinks is concentrated in the range 0.5 to 3 Hz.

A concern is the fact that eye blinking and other facial- or motoric movements may cause an im-

pact on calculated power- and frequency values for the frequency bands. An eye blink clearly has

an impact on the amplitude spectrum and might therefore result in erroneously results when

searching for changes in the EEG signals due to changes in a mental state. A queston is whether

these movements should be filtered out.

Removing motoric events would require the use of pattern recognizing algorithms to recognize

events. These algorithms should be developed to recognize the average pattern amongst several

people, and this would then have to be implemented and tested. There exist a wide range of dif-

ferent motoric events that potentially could be filtered out. Considering the scope of the work in

this project in addition to the available time, it was decided to leave the EEG data unfiltered for

motoric events. To support this decision is the fact that the tests designed for identifying work-
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load were carried out on a computer (this working situation is to some extent transferable to an

operator at work), and the test subjects were instructed to perform the tests without too much

motoric movement. As described in chapter 6.1.2, eye blinks mainly appear in EEG signals as in-

creasing activity in the theta frequency band in the frontal lobe and will therefore not influence

all available data after an experiment. Rather the contrary, including eye blinks could provide

additional information. As we saw in chapter 2.2.2, eye blinks are correlated with increasing

stress, tiredness and cognitive load.

7.1.3 Identifying workload

Due to the fact that we are dealing with unconfirmed theories, it is significant to have a low

significance level, to achieve a very clear result in order to reject the null hypothesis. Because

the number of test subjects is n=10, it will only be possible to reject a null hypothesis with a

significance level of 0.01 for a binominal probability test, if we see a decrease or increase for all

subjects for a specific measurement value. This was not the case for any of the measurement

values. However, the null hypothesis was rejected for alpha power, using a significance level of

0.05.

It is difficult to spot a concrete pattern that either confirms or rejects that under increasing work-

load one will see increasing activity in the theta frequency interval, and decreasing activity in the

alpha frequency interval. Supporting the theory of identifying workload is the results from both

the binominal probability test and the Wilcoxon signed-rank test on decreasing power in the

alpha frequency band in the parietal lobe, whilst the power in the theta- frequency band in the

parietal lobe is also found to be decreasing, something that conflicts with the methodology pro-

vided. In addition, it is not possible to draw any conclusions about the development of mean

frequency in general or mean power in other brain lobes, but the Parietal lobe. There are several

potential sources of error:

• Using the entire brain area for data collection might be too generalizing

• The IQ test might not be a good test for identifying workload

• The sensors are not able to collect correct data
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• The methodology is inferior

• The test group is too small to say anything significant

• Results are affected because test subjects are not used to wear the neuroheadset

• The results would have been more evident if they had been compared to a relaxed situa-

tion

The mentioned potential sources of error are discussed below.

Using the entire brain area for data collection might be too generalizing

Due to the fact that we are not completely sure on how well the low-cost neuroheadset works

compared to a more expensive, it was decided to investigate the average over the entire brain

lobes. As we are testing a methodology without knowing exactly how we can expect to see

changes under increasing workload, changes could potentially be seen in smaller areas than

for the entire brain lobe.

The IQ test might not be a good test for identifying workload

A problem with the IQ test is that people conducting such a test will experience a cycle of con-

centration while trying to find an answer followed by a release when selecting the correct an-

swer. This cycle will not result in a smooth increasing workload. In addition, if the second part

of the IQ test is too hard for some people, participants might lose their concentration. One could

generalize and say that due to the fact that all participants rated the workload of the second part

higher, the test is actually good enough. What one has to keep in mind, is that people might

have been influenced in their answers knowing that IQ tests often have an increase in difficulty

throughout the test.

The IQ test is a good test, because it is equal for every person conducting the test which provides

a good basis of comparison. An IQ test can also be conducted on a computer with minimal fa-

cial movement, where the subject only has to think and click with the mouse. This can easily

be related to an operator at work. These two factors were strong enough to choose this specific
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test.

The sensors are not able to collect correct data

EEG signals are known to be noisy. They have high temporal resolution, but low spatial reso-

lution. Noninvasive measurements also leave an uncertainty in signal quality. The question is

how well a low cost neuroheadset really works compared to expensive equipment.

Few articles seem to have investigated how well the cheap brain sensing equipment performs

compared to the more expensive. One of the most positive articles is found in [13]. This article

concludes that the EEG signals from the Emotiv’s Epoc are satisfactory compared to high cost

technology, but it is hard to evaluate its objectiveness as the article mainly has citations from

the Emotiv’s web page. Another study comparing the Epoc headset to a medical device finds

that the low cost headset is able to read EEG data far above chance level, but with a signal-to-

noise level worse than for the medical device [12]. They encourage using Epoc in trivial and

non-critical settings such as for communication and gaming, but question the reliability for use

in medical settings such as for rehabilitation and prosthesis control.

The methodology is inferior

As mentioned previously, there is no accepted theory on how to easily identify workload or sev-

eral other mental states from EEG signals. The methodology in this project could be inferior, and

there might be other ways of identifying workload. The signals are complex. Hence, it might be

that finding an easy solution to identifying workload from EEG signals also is non-existing.

The test group is too small to say any significant

A test group of ten people is good enough to spot a trend, but in order to confirm or reject any

hypothesis the test group should have been larger.

Results are affected because test subjects are not used to wear the neuroheadset

Wearing a neuroheadset, perhaps for the first time, as well as taking an IQ test might result in
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additional stress for the test subjects. This could be a source of creating an unrealistic situation,

which again can affect the participants’ EEG signals. It would therefore be beneficial to let the

test subjects wear the neuroheadset for a longer period of time, prior to conducting the test, or

conduct several tests and see if the results are consistent.

The results would have been more evident if they had been compared to a relaxed situation

For comparing purposes, it could be of interest to let the test subjects relax while wearing the

neuroheadset. As mentioned in the previous point, people might be affected by wearing a neu-

roheadset, and it is hard to know how good a person is at relaxing and not thinking or concen-

trating on something, particularly knowing that a neuroheadset is tracking your brain signals.

As such, a baseline value corresponding to zero workload is difficult to determine. Once a test

subject has started a test, their focus shifts to working on a problem in front of them. Comparing

easy tasks with more difficult tasks gives a better basis for comparison od workload level and is

the reason that a relaxing test was left out.

Although it is hard to spot a concrete pattern in the obtained results and there are several po-

tential sources of errors, a recent paper [30] mentioned in chapter 2.3.1 reported that the focus

should be on alpha band activity. If this holds, the conflicting result in the theta frequency band

and the remaining unambiguous results for both beta- and theta frequency bands can be disre-

garded, and the obtained results on decreasing alpha power under increasing workload in the

parietal lobe stands stronger.

7.1.4 Connecting to a control room simulator

During the second part of the test program, a real time application was developed to send up-

dated values to a control room simulator. Figures 6.13, 6.14 and 6.15 show the resulting adaptive

simulator. This adaptive simulator worked smoothly, and although it was implemented only as

a concept demonstrator, it was possible to trigger an alarm through a lot of motoric motion. The

concept demonstrator showed that it is possible to enforce a scenario in a control room simula-

tor based on brain sensing.
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The initial plan was to implement a use case with this adaptive simulator based on the results

from chapter 6.3. Because no evident result could be extracted, it was not possible to implement

the given use case. Therefore, no further features were included in the adaptive control room

simulator. The adaptive control room simulator still shows that it is possible to integrate brain

sensing in a control room simulator, which can easily be extended once an evident theory on

identifying mental states is ready.

7.2 Further work

7.2.1 Ethics

Closing up on a working BCI system for a control room setting, it will be of importance to con-

sider the ethics in order to ensure a person’s privacy protection and well-being. It would proba-

bly not be beneficial to develop a BCI system where an employee feels that he is under surveil-

lance, or that forces the employee to be fully concentrated until he is so tired that sleeping is the

only solution for recovery.

This is however not a concern with respect to using brain sensing for developing better user

interfaces and control room systems, seeing as the operator will in such a case have chosen to

participate.The concern will be for utilizing brain sensing for operator training or in an opera-

tional control room.

It is advisable to have close communication with operators, so that a BCI which ensure all parts

interests can be developed.

7.2.2 Other means of measurement for mental states

Identifying an operator’s mental states could potentially be improved by obtaining additional

information by combining several types of measurement methods, such as e.g. heart rate, fMRI

or eye blinks, as mentioned in chapter 2.2.2 and 2.3.2.
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7.2.3 Future testing

Much more work and testing needs to be conducted in order to obtain evident theories on how

to identify mental states from EEG signals. Preferably the theories have to be simple enough to

be implemented through algorithms so that they can be utilized in a BCI system.

To achieve this, it is advisable that the studies are conducted with a larger test group and that

testing is performed by a multidisciplinary team of people representing such as; clinical neu-

rophysiologists or neurologists, psychologists and engineers. It is also advisable to use more

expensive equipment than the low cost neuroheadsets, seeing as these can affect results by not

being able to detect correct EEG signals to the same extent as more expensive equipment. One

should also urge to remove the potential sources of error mentioned in chapter 7.1.3.

Another thing that must be investigated trough more extensive studies is the uniqueness of each

persons EEG signals. Because EEG signals are different amongst different people, initial calibra-

tion and training is very important for BCI systems that is based on recognizing events. Likewise,

classification of mental states will probably also be unique for every person using the BCI. This

must be investigated and atone for.

7.2.4 Motoric impact on EEG signals

It is advisable to investigate further the influence motoric movements have on EEG signals. The

Control Panel can detect and distinguish 11 different facial actions, and this shows that there are

a lot of recognizable actions that potentially could be filtered out. Emo Engine is capable of au-

tomatic detection of expressive actions, and it is an idea to utilize this property and get a notice

if any facial movements have been recognized. If one performs a lot of testing, it might be pos-

sible to find out how much each of these events influences and improve filtering by compensate

for these in a feedback loop.
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7.2.5 Implementing a BCI real time application

Matlab was very useful for the scope of this project. The Emotive Epoc’s interface is compatible

with both Matlab and C/C++, but if a real time BCI control application is to be developed, it is

advised to use C/C++ for implementation. This is because Emotiv provides more examples for

C/C++ than Matlab, in addition to C/C++ being a far better language for real time programming.

It will provide an opportunity of directly capture, process and send EEG data from a neurohead-

set to a real time control room simulator.

As it looks today, we would most likely want to investigate how the power and frequency changes

over time when identifying changes in a mental state. A change in power or frequency can easily

be detected by comparing how the newest values are compared to previous values, or by eval-

uating the rates. Once an evident theory is ready, this needs to be implemented. It may be of

interest to base an application on the idea from the simulator, and set constraints on high or low

levels.

When developing a real time application, one should also keep in mind to find a good way of

handling large data sets.

7.3 Final evaluation and conclusion

The purpose of this project was to investigate if detection of changes in an operator’s mental

state trough EEG signals can help improve user interfaces, control room systems or operator

training. Through the project, we have seen that development of BCIs is an emerging field of

study. A thorough technology review in chapter 2.3.2 showed that projects including brain sens-

ing where engineers and developers are performing the projects, mostly utilizes pattern recog-

nition in BCI systems, and is a good approach for engineers. In chapter 2.3.1 one could see this

approach also can be used for mental states, because it is possible to detect a sudden given ERP

as a response to a provoked external stimulus. For the purpose of this project, it was of interest

to observe and analyse the state of the mind, and therefore, the focus of the project was identi-



7.3. FINAL EVALUATION AND CONCLUSION 81

fying mental states through a frequency analysis. This has shown to be difficult as the research

field is in an early phase of its development. Although we cannot conclude whether or not it

is possible to identify workload based on the results from this project, we can spot a trend and

conclude that more research and studies should be conducted. For this it is advised that a per-

son with a neurological background performs interpretation of EEG signals.

This project has shown that once we have an evident hypothesis for identifying mental states,

this can be implemented in the developed brain sensing application, which has proven to work

well. The completed BCI can then be utilized for operator training or for development of control

room systems, by any of the use cases developed. For use in a control room setting, one would

preferably have to wait for a neuroheadset that provides all the features of Emotiv’s Epoc, but is

more comfortable and even easier to put on, to be developed.

In light of an increasingly technologically developing world, this project has identified the need

for technology that can offer robustness to the human mind. The development of a low cost

neuroheadset and the increasing utilization of these is a step in right direction to achieve this.

Once a BCI that can identify mental states automatically is developed, one can only imagine the

areas of application.



82 CHAPTER 7. DISCUSSION AND CONCLUSION



Appendix A: NASA Task Load Index scale

NASA Task Load Index

Please pick the member of each pair that you feel is more important for workload

mental demand - physical demand

mental demand - temporal demand

mental demand - performance

mental demand - effort

mental demand - frustration

physical demand - temporal demand

physical demand - performance

physical demand - effort

physical demand - frustration

temporal demand - performance

temporal demand - effort

temporal demand - frustration

performance - effort

performance - frustration

effort - frustration

1
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Figure A.1: NASA-TLX



Appendix B: Instructions and information

Instructions and safety information on the
experiment

"Identifying workload through EEG-signals"

Information and safety: This consent form is written for test subjects being part of an expe-
riment performed in conjunction with a master thesis at the Insti-
tute of cybernetics NTNU, spring 2015. The goal of the experiment
is to recognize workload in EEG signals after the subject has con-
ducted an online IQ test. All results from the experiment will be ma-
de anonymous, so that it will be impossible to trace resulting IQ or
other experimental results back to the correct subject. The experi-
ment is non-invasive and considered safe.

Instructions: To obtain an individual estimate of workload in the test, the form
NASA-TLX needs to be filled out. The form has six subscales which
each represent different parts of what one can define as workload
as a concept; mental demand, physical demand, temporal de-
mand, performance, effort and frustration. The form has two parts.
Part one is to be filled out prior to the test. In this part, all the six
sub-scales are paired up, giving a total of 15 pairs. Please pick the
member of each pair that you feel is more important for workload.

After filling out part one of the NASA-TLX form, an EEG head-
set will be placed on you head. The felt pads are soaked in a contact
lens saline solution. Place the headset on your head according to
figure 1.

Figur 1: Correct placement of neuroheadset (courtesy of Emotiv)

1
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1

The online IQ test used is Mensa Norway’s online IQ test and is
a figure reasoning test with 35 tasks. You will have 25 minutes to
solve the tasks. After the time is up, your IQ will be calculated. The
online IQ test is not a scientifically designed test, but will provide a
good indication of your IQ.

Please follow the instructors lead to complete the test.

After the test is finished, you will be asked to fill out part two
of the NASA-TLX form twice. In this part, you will be asked to
weigth the six subscales in the form from 0 to 20 ranging from very
low to very high, to choose how you found the test. You will need to
do this twice. Once for the first 20 tasks of the IQ test and once for
the last 15 tasks.

Please complete the following:

Place, date:

Name:

Age:

Gender:

Previous or current neurological conditions or disorders (yes/no):

I hereby confirm that I have read and understood the content in the form "Instructions and
safety information on workload experiment", and I consent taking part in this experiment.

Signature: ________________________________



Appendix C: Results from IQ test

I Frequencies for test subjects

Table C.1: Mean frequencies in IQ test for test subjects

1st Alpha

frequency

2nd Alpha

frequency

1st Beta

frequency

2nd Beta

frequency

1st Theta

frequency

2nd Theta

frequency

SUB 1

Frontal 9.9827 10.0012 20.0174 19.9621 5.5383 5.4639

Parietal 10.1582 10.1852 20.9976 21.3440 5.6605 5.5748

Occipital 10.1635 10.1611 20.8545 20.3911 5.6797 5.6592

All 10.0539 10.0754 20.3809 20.3039 5.5894 5.5395

SUB 2

Frontal 10.1371 10.1649 19.8582 20.6653 5.5591 5.6228

Parietal 10.1407 10.4356 19.9137 21.4700 5.5569 5.6221

Occipital 10.1329 10.2559 19.7963 20.7239 5.5594 5.6770

All 10.1370 10.2252 19.8571 20.8092 5.5588 5.6317

SUB 3

Frontal 10.1037 10.0744 19.7182 20.0493 5.5044 5.5231

Parietal 10.3432 10.2826 20.6765 20.5967 5.8539 5.8667

Occipital 10.2745 10.2463 19.4455 19.7360 5.8341 5.8291

All 10.1721 10.1378 19.8325 20.0883 5.6176 5.6313
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1st Alpha

frequency

2nd Alpha

frequency

1st Beta

frequency

2nd Beta

frequency

1st Theta

frequency

2nd Theta

frequency

SUB 4

Frontal 10.2369 10.3143 20.6056 20.6965 5.5916 5.5676

Parietal 10.5946 10.6708 22.3571 21.3258 5.7620 5.7182

Occipital 10.4300 10.5900 20.5759 20.6240 5.6595 5.7496

All 10.3287 10.4197 20.8926 20.7893 5.6313 5.6230

SUB 5

Frontal 9.6641 9.6447 20.1233 19.2375 5.5813 5.5272

Parietal 10.0223 10.0000 20.4143 19.8060 5.4831 5.3900

Occipital 10.0217 9.8683 20.4769 19.5844 5.7036 5.6670

All 9.7834 9.7412 20.2307 19.3901 5.5853 5.5277

SUB 6

Frontal 9.9779 9.9484 20.4904 20.3367 5.4000 5.3723

Parietal 10.5280 10.4705 22.1806 22.5145 5.7307 5.7667

Occipital 10.2840 10.3887 21.4849 21.8368 5.8124 5.8638

All 10.0836 10.0759 20.8249 20.8074 5.5053 5.4975

SUB 7

Frontal 10.1002 10.4090 19.3831 20.8484 5.4911 5.6114

Parietal 10.0798 10.6089 19.3776 21.0762 5.5209 5.8996

Occipital 10.1130 10.6919 19.5090 20.9374 5.5006 5.9196

All 10.0989 10.4895 19.4031 20.9012 5.4976 5.7108
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1st Alpha

frequency

2nd Alpha

frequency

1st Beta

frequency

2nd Beta

frequency

1st Theta

frequency

2nd Theta

frequency

SUB 8

Frontal 10.1613 10.6071 20.0781 21.3070 5.5560 5.5812

Parietal 10.1808 10.7419 20.0803 21.8057 5.5562 5.7644

Occipital 10.2571 10.8189 20.0889 21.0418 5.5658 5.8005

All 10.1805 10.6648 20.0803 21.3459 5.5576 5.6483

SUB 9

Frontal 10.0991 10.0991 19.8728 21.3273 5.5270 5.5341

Parietal 10.1672 10.6045 20.0139 21.7189 5.5332 5.8097

Occipital 10.1915 10.7118 20.0458 21.6845 5.5397 5.7898

All 10.1258 10.2855 19.9252 21.4521 5.5302 5.6227

SUB 10

Frontal 10.3429 10.3526 20.9358 20.5296 5.5877 5.6896

Parietal 10.6164 10.6345 21.5440 21.2727 5.8956 5.7861

Occipital 10.5277 10.4957 20.9955 20.4382 5.8327 5.6829

All 10.4193 10.4235 21.0471 20.6382 5.6799 5.7046
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II Power for test subjects

Table C.2: Mean power in IQ test for test subjects

1st Alpha

power

2nd Alpha

power

1st Beta

power

2nd Beta

power

1st Theta

power

2nd Theta

power

SUB 1

Frontal 455.7816 848.6176 109.2893 210.2314 1.6248e+03 2.7401e+03

Parietal 39.6043 36.9039 13.9873 16.4902 104.0253 107.8603

Occipital 57.4339 120.3938 16.5278 35.3015 126.6032 306.6142

All 292.8766 482.4195 71.6766 124.1025 1.0210e+03 1.7269e+03

SUB 2

Frontal 1.3215e+03 214.6392 385.4500 75.3960 4.1285e+03 436.6598

Parietal 1.2863e+03 161.2113 382.7460 70.7609 3.9562e+03 183.8434

Occipital 1.1002e+03 126.5404 316.8782 37.1395 3.4372e+03 149.2648

All 1.2788e+03 191.0514 373.5707 68.2474 3.9846e+03 346.6246

SUB 3

Frontal 271.6456 250.7380 75.5473 75.6474 1.1188e+03 1.1354e+03

Parietal 66.1309 97.8567 30.1067 41.4682 66.1918 94.9911

Occipital 105.3023 148.1378 39.4973 50.6443 138.6230 174.9532

All 209.6693 208.1578 61.9655 65.7837 780.0172 801.9325

SUB 4

Frontal 157.9497 130.8607 66.9256 54.7110 495.2946 464.9628

Parietal 130.6111 84.3005 127.7713 45.8095 119.7894 91.8820

Occipital 132.8424 101.8050 44.7101 36.5676 150.1207 123.6014

All 149.2087 118.2580 73.3640 50.2035 375.1814 345.8891
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1st Alpha

frequency

2nd Alpha

frequency

1st Beta

frequency

2nd Beta

frequency

1st Theta

frequency

2nd Theta

frequency

SUB 5

Frontal 860.7902 2.6962e+03 137.4273 417.5232 2.5124e+03 9.8545e+03

Parietal 381.5216 317.9030 80.6963 53.1694 938.7107 693.9316

Occipital 404.9379 439.3079 90.7096 71.1257 765.5045 697.7680

All 704.9368 1.9237e+03 120.1859 299.0646 1.9589e+03 6.8016e+03

SUB 6

Frontal 211.0563 250.9255 36.6337 42.3225 1.4563e+03 1.7443e+03

Parietal 39.9300 39.8092 43.5497 38.4221 55.8318 54.7918

Occipital 86.0932 96.5572 47.0772 55.6609 104.9371 93.9739

All 172.7788 203.6662 39.1613 44.3931 1.0833e+03 1.2906e+03

SUB 7

Frontal 735.8808 256.7954 157.0870 76.0240 2.6602e+03 602.4659

Parietal 773.8226 165.9413 171.2605 69.4855 2.6745e+03 120.7615

Occipital 627.8710 182.3342 145.2285 76.5539 2.1283e+03 132.4777

All 724.2028 229.2428 157.4728 75.0225 2.5739e+03 443.8505

SUB 8

Frontal 731.2034 137.1614 216.1254 70.1986 2.2326e+03 232.8261

Parietal 665.0929 121.8233 203.6933 94.6831 1.9612e+03 100.1821

Occipital 658.5128 194.6592 198.8441 87.7730 1.7336e+03 134.1131

All 708.0699 144.1880 211.1732 77.2084 2.1042e+03 194.2666

SUB 9

Frontal 885.4818 250.8257 226.1367 80.3258 2.8928e+03 822.8859

Parietal 791.2142 171.8301 216.6186 80.7372 2.3337e+03 107.9760

Occipital 683.0134 165.6179 186.6502 69.8593 2.0059e+03 113.9344

All 836.0258 223.4585 217.9692 78.6500 2.6518e+03 585.5757
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1st Alpha

frequency

2nd Alpha

frequency

1st Beta

frequency

2nd Beta

frequency

1st Theta

frequency

2nd Theta

frequency

SUB 10

Frontal 244.4063 157.2926 102.7785 57.0787 1.0035e+03 256.4259

Parietal 222.9764 127.9808 243.4773 108.3414 158.4019 116.4273

Occipital 215.7769 174.6672 117.8212 73.2946 225.4589 233.6818

All 236.0631 155.3031 128.7354 68.3251 733.0065 229.3021

III nonparametric results

Table C.3: Nonparametric results of Frontal lobe

Frontal Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Test sub. 1 Up Down Down Up Up Up

Test sub. 2 Up Up Up Down Down Down

Test sub. 3 Down Up Up Down Up Up

Test sub. 4 Up Up Down Down Down Down

Test sub. 5 Down Down Down Up Up Up

Test sub. 6 Down Down Down Up Up Up

Test sub. 7 Up Up Up Down Down Down

Test sub. 8 Up Up Up Down Down Down

Test sub. 9 Eq Up Up Down Down Down

Test sub. 10 Up Down Up Down Down Down

Table C.4: Nonparametric results of Occipital lobe
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Occipital Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Test sub. 1 Down Down Down Up Up Up

Test sub. 2 Up Up Up Down Down Down

Test sub. 3 Down Up Down Up Up Up

Test sub. 4 Up Up Up Down Down Down

Test sub. 5 Down Down Down Up Down Down

Test sub. 6 Up Up Up Up Up Down

Test sub. 7 Up Up Up Down Down Down

Test sub. 8 Up Up Up Down Down Down

Test sub. 9 Up Up Up Down Down Down

Test sub. 10 Down Down Down Down Down Up
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Table C.5: Nonparametric results of entire brain

All Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Test sub. 1 Up Down Down Up Up Up

Test sub. 2 Up Up Up Down Down Down

Test sub. 3 Down Up Up Down Up Up

Test sub. 4 Up Down Down Down Down down

Test sub. 5 Down Down Down Up Up Up

Test sub. 6 Down Down Down Up Up Up

Test sub. 7 Up Up Up Down Down Down

Test sub. 8 Up Up Up Down Down Down

Test sub. 9 Up Up Up Down Down Down

Test sub. 10 Up Down Up Down Down Down



Appendix D: Kolmogorov–Smirnov test

I First part of IQ-test

Table D.1: Results on Kolmogorov–Smirnov test for first part of IQ-test

First part Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Frontal 0 1 1 1 1 1

Parietal 1 1 1 1 1 1

Occipital 0 1 1 1 1 1

All 1 1 1 1 1 1

II Second part of IQ-test

Table D.2: Results on Kolmogorov–Smirnov test for second part of IQ-test

Second

part

Alpha

frequency

Beta

frequency

Theta

frequency

Alpha

power

Beta

power

Theta

power

Frontal 0 1 1 1 1 1

Parietal 1 1 1 1 1 1

Occipital 0 1 1 1 1 1

All 1 1 1 1 1 1
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Appendix E: Statistics

I Hypothesis testing

I.I Null hypothesis and alternative hypothesis

A null hypothesis, denoted H0, is an assumption that one would want to test in order to find out

if it holds or if it should be rejected. The null hypothesis is often formulated to be "no change is

expected to occur". The alternative to the null hypothesis is the alternative hypothesis, denoted

H1.

I.II One- and two-tailed test

When testing a null hypothesis, a one-tailed test is a test where the pair of null hypothesis and

alternative hypothesis is given by

H0 : θ = θ0

H1 : θ > θ0

or by

H0 : θ = θ0

H1 : θ < θ0

97
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A two-tailed test is a test where the pair of null hypothesis and alternative hypothesis is given by

H0 : θ = θ0

H1 : θ 6= θ0

The null hypothesis will therefore be rejected in the two-tailed test either if θ > θ0 or θ < θ0 [49].

I.III Significance level

When investigating if we should accept or reject a given null hypothesis, we want to evaluate

the probability of getting a given result or a more extreme result. This is done by predefining

a significance level α. If the resulting probability from a test is bellow the significance level, we

can say that we have found a significant result that is strong enough to reject the null hypothesis.

Significance levels are often found to be in the interval [0.01, 0.1], depending on how evident the

result needs to be in order to reject the null hypothesis.

II Binomial distribution

When doing an experiment, one often label an outcome with success or failure. In this context,

a Bernoulli process is defined as a process where the following four properties are fulfilled [49]

• The experiment consist of repeated trials

• Each trial result in an outcome that may be classified as a success or failure

• The probability of success, denoted by p, remains constant from trial to trial

• The repeated trials are independent

The probability distribution of getting X successes in a Bernoulli process is called a binomial

distribution, denoted b(x;n, p). When a trial in a Bernoulli process has n independent trials,

a probability for success p, and the probability of failure is q=p-1, the binomial distribution is

given by [49]
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b(x;n, p) =
(

n

x

)
·px qn−x , x = 0,1,2, ...,n (E.1)

If it is of interest to find the probability of the number of successes X being r or less, P(X<r),

binomial sums are used

B(r ;n, p) =
r∑

x=0
b(x;n, p) (E.2)

This can be used in hypothesis testing to find the probability of a given, or a more extreme result.

III Kolmogorov–Smirnov test

A Kolmogorov–Smirnov test is based on goodness of fit, and can be used to test a data set for

normality, with the following null hypothesis

H0 : The data sampled are from a normal distribution

One will then expect the data set of N random samples to be fairly close to a normal distribution,

and comparing is done by finding the largest difference between Fn(x), the empirical cummu-

lative distribution, and F (x), is the hypothetical cummulative distribution

Dn = sup
x

|Fn(x)−F (x)| (E.3)

A decision rule is used to test H0:

δ=


H0 : Dn ≤ c

H1 : Dn > c
(E.4)

Where c depends on the significance level α, which can be found in a standard table for a Kol-

mogorov–Smirnov test, e.g. table 1 in [33].
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IV Wilcoxon signed-rank test

The Wilcoxon signed-rank test is a nonparametric test with a null hypothesis saying that the

median difference between the pair of two datasets are zero, H0 : µ̃1 = µ̃2. The two data sets are

nominal variables, n1 and n2, and the test is conducted by taking the absolute value of the mea-

surement variables in these two datasets, sorting them in ascending order, and give each a rank

of 1,2,..., n1+n2 . If two values are equal, both receives the mean of the two ranks they would be

assigned if they were not equal. The sum of ranks for all measurement values in n1 is denoted

w1 and The sum of ranks for all measurement values in n2 is denoted w2. As both w1 and w2

will vary, we can look upon them as random variables W1 and W2.

The null hypothesis will be rejected if W1 is large and W2 is small, because then µ̃1 > µ̃2. The

same logic follows if W2 is large and W1 is small, because then µ̃1 < µ̃2 which also leads to a re-

jection of the null hypothesis [49].

In practice, the two values

u1 = w1 − n1(n1 +1)

2
or u2 = w2 − n2(n2 +1)

2

are used to decide if the null hypothesis H0 should be rejected or not, by checking if they are less

or equal to a standard Wilcoxon signed-rank test table of critical values found in e.g. table A17

in [49].



Appendix F: Navigating the appended .zip folder

I Contents

The folder "br ai nSensi ng Appl i cati on.zi p", is appended to this thesis. The .zip folder in-

cludes all Matlab files for the brain sensing application developed in this project.

Files needed to acquire raw EEG data from Epoc is not open source and therefore not available

in the .zip folder. These files include example code, .dll files and libraries and are available for

download from Emotiv’s web page: www.emotiv.com.

II Brain sensing application

To use the brain sensing application run "br ai nSensi ng Appl i cati on.m" from Matlab. An

example .txt file with EEG data acquired from Epoc is provided and can be used for testing the

brain sensing application.

101
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