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Problem Statement
Multithreading is often problematic in that effects of timing and scheduling may
lead to nondeterministic behavior. This again leads to race conditions and limits
testability of the system, in a manner that might not be acceptable for critical
systems.

The possibility of making a programming language with multithreading seman-
tics more suitable to critical systems should be explored.

The student shall:

1. Provide a short summary of systematic approaches to multithreading

2. Define a language with syntax and semantics that support writing high-
reliability, real-time multithreaded programs

3. Make a prototype implementation of this language
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Abstract
This report presents a programming language with deterministic multithreading
and its compiler. The language demonstrates that when making IO and inter-
thread communication sequential, most problems with multithreaded programming
disappears, while most of the architectural and some of the performance benefits of
multithreading are preserved. Much difficulty in modern programming is a result of
insufficient abstraction, and while the popular embedded programming languages
are unlikely to be replaced anytime soon, effort still has to be made to figure out
the next step in the language evolution. In the language presented, there are also
other changes meant to aid in the programming of critical systems besides deter-
minism: Threads are written much like functions, dependencies between functions
not contained in each other are explicit and arguments are distinguished by name,
not sequence. Finally, threads and objects shared between threads are all visible
in a single place.

Sammendrag
Denne rapporten omhandler et programmerinsspråk med deterministisk multitråd-
ing og dette språkets kompilator. Språket demonstrerer at når en gjør IO og inter-
tråd kommunikasjon sekvensielt, så forsvinner de fleste problemer med multitråd-
ing, mens de fleste arkitekturmessige og noen av de ytelsesmessige fordelene forblir.
Mange av problemene i moderne programmering er et resultat av manglende ab-
straksjon, og selv om de populære språkene for mikrokontrollere ikke ser ut til å
bli erstattet med det første, må vi fremdeles gjøre en innsats for å finne det neste
steget i språkutviklingen. I det presenterte språket er det også andre forandringer
ment å lette programmeringen av kritiske systemer: Tråder skrives som funksjoner,
avhengigheter mellom funksjoner som ikke er erklært i hverandre er uttalt og ar-
gumenter er skilt fra hverandre ved navn, ikke relativ posisjon. Til slutt er tråder
og objekter delt mellom tråder synlig på ett sted.
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Chapter 1

Introduction

It is commonly understood that writing software is hard and that writing multi-
threaded software is even harder. This report concerns itself with a new language
- Fumurt - with a functional, though incomplete, compiler. This language is in-
tended as a viability test of some new language semantics and a starting point for
further development. The semantics of the language are intended to ease develop-
ment of multithreaded real-time and reactive applications and produce programs
which require less testing and have fewer bugs than the existing state of the art.

Specifying a language and implementing a compiler are inherently difficult tasks.
The former is an exercise in subjective judgment and trade-offs and the latter is
a challenging exercise in software engineering. When starting to work with this
thesis, a language was envisioned that made manual scheduling of threads easier
than before, but it was decided that this placed too heavy of a burden on the
programmer. The ideas that culminated in this report are the result of several
weeks of reconsideration.

Fumurt is a language built with the intention that the programmer shall never
be surprised. It strives to make the least possible demands on programmers ability
to build mental models and memorize. Therefore Fumurt strives to imbue its syntax
with as much meaning as possible and to concentrate declaration of concurrent
code in one place (fork-join concurrency not affected). Language design inherently
necessitates compromise and Fumurt compromises minimally on readability and
predictability, sacrificing instead keyboard typing and rapid iteration. It favors
predictability over performance and explicitness over terseness.

1.1 Report Structure
The report is divided into chapters as follows:

• The Background chapter contains information needed to understand the rest
of the report and a summary of the state of the art

• The specification loosely outlines how the language should look and behave
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• Analysis and Design discusses the high-level choices taken during implemen-
tation and the limitations of the current design

• Implementation documents how the compiler is written

• Testing contains examples of input source code and resulting error messages
or runtime behavior

• Conclusion, Discussion and Future Work evaluates and reflects on the work
done and presents recommendations for future work

The appendices are as follows:

• System manual describes how to compile and run the compiler from source

• User manual describes how to run the compiler from Java bytecode

• Code listing contains the source code

The report layout adheres to a recommendation by University College London[4],
modified in consultation with supervisor.

The citation style is that of the Association for Computing Machinery.

A Note on Terminology
During the writing of this report, a word that described both statements and
definitions was needed, and it was decided to call them both expressions, despite
this not being the usual way to use that word.

8



Chapter 2

Background

2.1 Author’s Prior Knowledge
The inner workings of the compiler are heavily influenced by a course the author
took on compilers at the Technische Universität Berlin under Peter Pepper and
Judith Rohloff. While no code is reused, the structure of the compiler is very
similar.

2.2 Concurrency Paradigms
It is commonly understood that writing software is hard. The development of
programming languages is a response to this problem. The common pattern is
that flexible features that are easily used to write code that is hard to reason about
are replaced by, often several, less flexible features. After all, the less flexible a
feature is, the more predictable its use is. Three examples:

• goto replaced by sequence, selection and iteration [8]

• pointers replaced by indexes and references

• mutable variables replaced by immutable values

Interestingly, one can observe that as each feature becomes easier to reason about,
the total number of features increase. For example, to eliminate mutation, one
needs to also eliminate iteration. One way to do this is by using recursion, which
is a full replacement for iteration. But recursion, while allowing immutability, is
often harder for humans to understand [22]. To ameliorate this problem, a variety
of mechanisms have been implemented, for example map and fold, which performs
common functions previously performed utilizing iteration. In this manner, the
number of features often increase in the interest of analyzability. Is this generally
true? And if so, at what point does the drawbacks of increasing feature num-
ber outweigh the benefit of increased analyzability and predictability? Answering
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these questions is outside the scope of this report. Much progress has been made
in making programs easier to understand and analyze in this fashion, yet there is
always room for improvement. In later years, one feature in particular has risen to
notability: Concurrency. In the past, concurrency has not been an issue for most
programmers but as multi-processor (or multi-core) systems have gone mainstream,
so has multithreaded programming[24]. The problems inherent to concurrency can
roughly be divided into two categories: Communication and scheduling; making
sure the correct information is shared between threads in a correct way and mak-
ing sure tasks are done at correct times, respectively. One possibility is to let the
programmer deal with these problems in an application-specific way. This is notori-
ously error-prone, however. Several abstractions have been devised for dealing with
the two concurrency problems in a systematic manner, to the author’s knowledge:

• Actors [16]

• Communicating sequential processes [17]

• Transactional memory[15]

• Synchronous programming[6]

Actors Actors are nondeterministic by definition. Each actor has a function
that processes incoming messages. This function can run on its own thread, or a
more lightweight system can be used. Regardless, the only way actors can exchange
information is through messages. Each actor has a queue and each message received
ends up at the back of this queue. When there is a message to process, the actor
springs to life, processing messages (in the process probably sending some messages
of its own) until its queue is empty again. Actors are similar to computers; actors
are like processors with running software, and queues are like network buffers.
This means that there is no need to adjust the actor system when there is a desire
to spread the actors over several machines; communication over the network and
communication over shared memory can both be abstracted away by the actor
system. The two mainstream implementations of actors are Akka and Erlang.

Communicating Sequential Processes Communicating sequential processes
(CSP) are also based on messages. The crucial difference is that in CSP there’s
no queue; the sending process blocks until the receiving process has received the
message and, depending on whether this is desired, responded to the message.
A very elegant property of CSP is that calling a function can be implemented
as sending a message; the same syntax can be used for both. Two mainstream
implementations of CSP are Go and Rust.

Transactional memory Transactional memory is implemented both in hard-
ware and software, but hardware implementations are not widely available for con-
sumer systems yet. The essence of transactional memory is the same that that of
mutexes and locks - that is, shared memory where one prevent concurrent processes
from accessing shared memory objects. The difference is that, where mutexes and
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locks assume that there will be memory collisions, transactional memory assumes
that the normal state of the system is that no two threads write to the same
memory at the same time. From the perspective of a thread, it looks like this:

1. The thread locks the variable (O), and makes a read copy (C1)

2. The thread performs whatever calculations it wants to perform with the vari-
able

3. If the calculation involves writing to the variable, then the result is written
to a write copy (C2)

4. Now the thread locks the variable (O), and checks whether it is equal to the
read copy (C1). If O == C1, then the result from the calculation is still
valid. If O! = C1 then the thread deletes the copies (C1 and C2) and reverts
to step 1.

5. If the calculation involved writing to the variable (O), then the write copy is
assigned to the variable(O ← C2)

6. The thread now unlocks the variable (O)

For big structures, such as arrays, the copies made are usually only of the read
(read-set) and written (write-set) parts of the variable, which reduces copying, and
lets several threads modify the same variable at the same time as long they do
not affect the same parts of the variable. In transactional memory, it is desired to
hold locks in as short time intervals as possible. Assuming the calculation takes a
long time and no other thread tries to write to the same variables, the performance
gains can be significant. And since protecting variables like this has such a low
cost except under write contention, this technique can be applied to all memory
the threads share. Transactional memory has many popular implementations, but
it is particularly heavily used in Haskell and Clojure.

Synchronous Programming Synchronous programming provides a synchronic-
ity abstraction, the same as is used for logical circuits: Time is discretized and all
operations during a time step are done instantly and computed from memory as it
was at the beginning of the time step. Notice that the operations done in a time
step does not affect each other. Synchronous programming is thus deterministic.
Synchronous programming is a rarity and the most mainstream implementation is
Esterel, which is proprietary.

The Decision Made for This Thesis In the end a decision was made in fa-
vor of using a variation on the synchronous programming paradigm. There are
trade-offs associated with choosing synchronous programming, but they were de-
termined to be preferable to the alternatives. The main problems with synchronous
programming are

1. Difficulty in scaling beyond one physical machine. The cost of global syn-
chronization grows with latency.
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2. Performance loss due to processing resources idling as the synchronization
abstraction requires all operations to use the same amount of time.

Synchronous programming therefore has substantial problems, yet for single-machine
systems it presents a way to achieve near-multi-threaded performance and multi-
threaded architecture but with single-threaded predictability and therefore debuga-
bility. While the other abstractions place some of the responsibility for correct con-
current behavior on the programmer, synchronous programming takes care of all
of that and replaces it with the responsibility for performance, as the program per-
forms best if all threads has an equal amount of work. Let us discuss the problems
of the other abstractions:
• Actors assume infinite message queues, with the failure mode being a loss of
information. In a producer-consumer relationship, producer actors can over-
whelm consumer actors. Actors are designed to mimic distributed systems
and create a unified abstraction over these, with the limited guarantees that
requires. Distributed systems have to correctly handle hardware failures, so
loss of information is an acceptable failure mode for actors. However, this
makes actors unsuitable for real-time systems as recovering from data loss
and unpredictable memory usage are unacceptable trade-offs. Ordering of IO
is also unpredictable.

• CSP systems use synchronous communication and therefore avoid the mes-
sage queue problem of actors entirely. In exchange, they are open to deadlock,
and the ordering of IO is unpredictable. CSP therefore requires brute force
search for deadlocks, and debugging is harder than for single-threaded sys-
tems. Despite this, it is regarded as a solid choice for real time systems.

• Transactional memory, though it makes it look as if thread communication is
easy, has its own problems. The unpredictability of the sequence of writing
is a problem, as well as the unpredictable time it takes. Again, IO order is
unpredictable.

2.3 Compilers
A compiler is a program (one may regard it as a function) that accepts a program
in a source format and outputs a corresponding program in a target format. The
source and target format may differ in terms of encoding, language and any other
way one may imagine.

This figure, reconstructed from [10], illustrates the structure of a typical com-
piler:

compiler

Front End Optimizer Back EndSource Program Target Program

Consider the steps:
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1. The front end accepts source text and transforms it into an intermediate
representation that is easier to work with. It is generally independent of the
target format.

2. The optimizer improves the code as encoded in the intermediate representa-
tion. The improvement is usually done with regards to performance, code
size or memory usage .

3. The back end accepts the intermediate representation and outputs the the
program encoded therein translated to the target format. It can be inde-
pendent of the source format, depending on how general and flexible the
intermediate representation is.

Since the Fumurt compiler (described in chapter 5) does not deal with optimization
and conversion to binary itself, but rather outsources this to a C++ compiler, all
of the difficult material on instruction selection, scheduling and register allocation
is of no relevance. The parts of relevance to this report is the front end and a
relatively simple back end.

Consider the parts of the front end:

Scanner Parser

Context

Sensitive

Analysis

Front End

• Scanner: Transforms source text into a list of tokens (simple objects), possibly
ignoring some symbols (such as spaces, comments, indentation etc.)

• Parser: Transforms a list of tokens into an intermediate representation, usu-
ally an abstract syntax tree. In the process, it checks whether the syntax of
the program is correct.

• Context Sensitive Analysis: Checks the correctness of program semantics.
Most interpreted languages skip this step and deal with semantic errors at
runtime. The correct time to do semantic analysis is not a settled matter,
but in a static compiler such as the one for Fumurt it is done at compilation.
This step may or may not emit a modified intermediate representation, but
a case in which it would be expected to do so would be when the language
has type inference.

The back end is composed of successive passes, of which every step transform the
input intermediate representation into an output that is closer to the target format.
The number of passes required vary greatly and depend on the differences between
the source and output formats. In the trivial case, where the input and output
format is identical (for example C to C), the number of necessary passes would be
zero.

13



Grammars

A grammar is a formal and complete description of the syntax of a language. It
is mostly used for programming languages. It consists of the confusingly named
“production rules”. The standard used here is the Extended Backus-Naur Form of
ISO/IEC 14977[25].

Example: Consider that a lower case letter can be described like this:

1 lower case letter = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" |
"i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" |
"t" | "u" | "v" | "w" | "x" | "y" | "z" ;

Where “=” signify the division of the two sides of the production rule, “|” signify
alternation (intuitively “or”), quotes signify a string and “;” signify the end of the
rule. Let us expand the example by describing a lower case word:

1 lower case word = lower case letter , { lower case letter };

Note that the correctness of the word as it pertains to English is ignored. The
comma signify a sequence, and contents of curly brackets can be repeated from
zero up to an infinite amount of times. A lower case word, as it has been defined
here, is simply one lower case letter, followed by zero or more lower case letters.
Next, the same is done for sentences, again ignoring rules for English:

1 lower case sentence = lower case word , {(", ", lower case word) | ("
", lower case word)}, ". ";

A lower case sentence is here a lower case word followed either by a comma plus
space or just space, both followed by a new word. This is repeated as many times
as desired and terminated by a period and a space.

Parentheses allows grouping of sequences. Here, it allows us to alternate be-
tween sequences of symbols rather than just single symbols. Finally:

1 lower case text = lower case sentence , { lower case sentence };

The result is a very simple grammar, which allows us to partition up a text into
sentences and words.

Abstract Syntax Trees

Now suppose it was desired to systematize a string of characters according to
the grammar above. A data structure corresponding to the grammar would be
appropriate. Consider the following figure:
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Text

Sentence Sentence Sentence

Word Word Word

Letter Letter Letter

This is an abstract syntax tree, often abbreviated AST. An abstract syntax
tree is a tree, in the computer science sense, that represents the production of the
source string from the grammar. In code:

1 class Text(val sentences :List[ Sentence ])
2 class Sentence (val words :List[Word ])
3 class Word(val letters :List[Char ])

2.4 Parser Combinators
A parser combinator is a higher order function that accepts parsers as input and
returns a new parser[13]. The overall effect is similar to a domain specific language
for constructing recursive descent parsers.

A parser is a function that converts one data structure to a more sensible data
structure. Usually, the output data structure is more restricted and systematic
than the input one.

Example: Consider a function that accepts the string “=” and returns an object
of class equalToken or, if the string it is given is not “=”, returns an error object.
Such a function is then a parser. Such parsers can be combined to form a larger
parser that can work as a scanner, that is a parser that converts a list of characters
to a list of tokens (very simple objects). Let the previously discussed function
be called the equalParser. Let a parser that works exactly the same, save for
exchanging “=” for “-” be called the minusParser and let it return a minusToken
upon success. Consider combining the equalParser with the minusParser using
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an alternate parser combinator (the “|” operator in 2.4.1). The resulting function
would then first try the equalParser, and if that returned an error object, it would
try the minusParser, returning an error object if both of these parsers fail. This new
parser would not need to return a minusToken or equalToken, but can process the
results from equalParser and minusParser into something new. In this example,
two parsers have been formed and combined into a new parser using a parser
combinator. This new parser can be part of a scanner. Indeed, the Fumurt scanner
is formed like this (see ??).

A Note on Conflicting terminology: Unfortunately there is a case of con-
flicting terminology concerning the term “parser”. The parser is referred to in two
senses:

1. The parser as defined above. A function that converts one data structure to
a more sensible data structure.

2. A parser as a compilation step that converts a list of tokens into an abstract
syntax tree

2.4.1 The Scala Standard Parser Combinator Library
All the information here is also available at [2].

The Scala Standard Parser Combinator Library introduces many parser com-
binators, most of whom are formulated as operators.

Let’s discuss these operators:

• ~ is used to combine parsers sequentially

• ~> is used to combine parsers sequentially but ignore the result of the left
parser

• ~! is used to combine parsers sequentially but disallow backtracking.

• * applies the parser to the left as many times as it is successful, moving on
at failure

• + applies the parser to the left as many times as it is successful, moving on
at failure. Must be applied at least once

• ? applies the parser to the left zero or one time

• | used to combine parsers in a manner similar to logical “||”. Tries to apply
the left parser first. If the left parser fails, it will backtrack and attempt the
right parser. If none work then an error is returned.

• ^^ is used to apply a function to the successful result of the parser.

• ^^^ is used to apply a function to the result of the parser, successful or not.
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2.5 A Quick Tour of Scala, the Compiler Imple-
mentation Language

In order to understand the code in the compiler, which is included in appendix C,
it is helpful to understand the language it is written in. This section gives a quick
introduction to Scala.

2.5.1 Execution
There are three ways to execute Scala code:

1. In a read-evaluate-print loop (REPL).

2. Interpreted as a script.

3. As compiled Java bytecode.

The compiler is executed as compiled Java bytecode. Scala can look somewhat
different when it is compiled versus when it is interpreted, due to the requirements
imposed by the Java bytecode. As a result, methods need to be contained in an
object if the code is intended for compilation, but in the REPL and in a script
there are no such restrictions. In the REPL and script, statements are evaluated
starting from the top, while a main method is required if the program is supposed
to be compiled. This report uses only code meant to be compiled or code as it
would look in a REPL. The two are easily distinguished by the latter’s use of the
“scala>” command prompt.

2.5.2 Hello World
A simple Hello World example illustrates some main concepts.

• A singleton is called an “object”. These are sometimes called static classes in
other languages

• Scope is demarcated using curly braces

• A method is defined using the “def” keyword

• Arguments are given using parentheses (separated by commas and identified
by relative position)

• Types of values are written after the object name, separated with “:”

• Unit, as a return type, means the method returns nothing

• Some types are container types, such as List[Int] or Array[String]. These can
hold any type through generics. In this case the square brackets means that
args is an object of type Array, which in this case holds String. In other
words, args is an array of strings.
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• There are sequences, like Array or List

• lines need not be terminated with “;” (but it is optional)

1 object HelloWorld
2 {
3 def main(args: Array [ String ]):Unit =
4 {
5 println ("Hello , world !")
6 }
7 }

2.5.3 Creating and Using Objects
• All values are objects, even native types

• Functions are objects, but methods are not

– Internally, functions are objects that implement an interface, for example
Function1 for functions with one argument. This interface has a method
“apply” where the actual “function”, in the C sense of the word, is stored.
This is completely transparent to the programmer, however.

• Var lets you create mutable references to objects

• Val lets you create immutable references to objects

1 scala > def int1 = 3
2 int1: Int
3

4 scala > val int2 = 2
5 int2: Int = 2
6

7 scala > var int3 = 7
8 int3: Int = 7
9

10 scala >// reassignment to a def is illegal
11

12 scala > int1 = int1 +1
13 <console >:8: error : value int1_ = is not a member of object $iw
14 int1 = int1 +1
15 ^
16

17 scala >// so is reassignment to val
18

19 scala > int2 = int2 +1
20 <console >:8: error : reassignment to val
21 int2 = int2 +1
22 ^
23

24 scala >// reassignment to var is completely ok
25

26 scala > int3 = int3 +1
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27 int3: Int = 8
28

29 scala > int1+int2+int3
30 res0: Int = 13
31

32 scala >// all values are objects
33

34 scala > int1 .+( int2 .+( int3))
35 res1: Int = 13
36

37 scala >// even functions
38

39 scala > val square = ((x:Int) => x*x)
40 square : Int => Int = <function1 >
41

42 scala > square (3)
43 res2: Int = 9
44

45 scala > square . toString
46 res3: String = <function1 >
47

48 scala >// methods are not objects
49

50 scala > def cube(x:Int) = x*x*x
51 cube: (x: Int)Int
52

53 scala > cube (3)
54 res4: Int = 27
55

56 scala > cube. toString
57 <console >:9: error : missing arguments for method cube;
58 follow this method with ‘_’ if you want to treat it as a partially

applied function
59 cube. toString
60 ^

2.5.4 Classes and Pattern Matching
• Classes work much like they do in Java

• Case classes are different than normal classes.

– Their constructors can be used like normal functions. The “new” key-
word is not necessary

– Their constructor parameters are exported
– One can use pattern matching on them. Pattern matching allows one

to test which type an object has and extract its values, a reference to it
or both.
∗ Pattern matching looks like this:

1 val x: String = input match
2 {
3 case TypeA (" specific string ") => " specific string "
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4 case TypeB (anystring , otherstring ) => anystring + " "
+ otherstring

5 case TypeB (_, otherstring ) => "only care about
"+ otherstring

6 case TypeB (_,_) => "only care about type"
7 case reference : TypeA => "the object looks like this:

"+ reference . toString
8 case reference @ TypeA (str) => "both the reference and

the constructor parameter "
9 }

• The wildcard “_” can be used to represent anything. In pattern matching it
can be used much like “else” would in an if statement

1 scala >// classes in scala function much like classes in Java
2

3 scala > class A(int:Int , str: String )
4 defined class A
5

6 scala > val a = new A(3,"a string ")
7 a: A = A@66 ae2a84
8

9 scala >// case classes , on the other hand , have more functionality .
Their constructors are called like normal functions

10

11 scala > case class B(str:String , int:Int)
12 defined class B
13

14 scala > val b = B(" other string ", 5)
15 b: B = B( other string ,5)
16

17 scala >// and one can pattern match on them
18

19 scala > case class C( double :Double , int:Int)
20 defined class C
21

22 scala > val c = C(3.0 , 3)
23 c: C = C(3.0 ,3)
24

25 scala > def matchfunc (in:Any):Unit = in match
26 | {
27 | case B(string , integer ) => println ( string + integer . toString )
28 | case x:C => println (x. double . toString +x.int. toString )
29 | case _ => println (" unknown type")
30 | }
31 matchfunc : (in: Any)Unit
32

33 scala > matchfunc (b)
34 other string5
35

36 scala > matchfunc (c)
37 3.03

20



2.5.5 Inheritance
• A trait is like an interface, a class with only abstract methods, but one that
can also have default implementations of methods

• Classes and trait inherit from each other using “extends [first super] with
[second super] with [third super]”

• A class can inherit multiple traits. In the case where two traits have the same
signature for different method implementations, the last trait to be inherited
is the one whose implementation will be used. Inheriting two classes is not
allowed.

1 scala > trait Super
2 defined trait Super
3

4 scala > trait Side
5 defined trait Side
6

7 scala > trait Side2
8 defined trait Side2
9

10 scala > case class Sub(int:Int) extends Super with Side with Side2
11 defined class Sub

Inheritance is used very sparingly in this thesis.

2.5.6 Iteration
• While works like C while loops

• For is a sequence comprehension which works much like in Python.

– The indices of sequences are represented by 32 bit integers so “for(x <- -1
until Int.MaxValue){println(x)}” won’t work since “-1 until Int.MaxValue”
is a range with Int.MaxValue +1 elements. Put differently, the last el-
ement’s index in this case is higher than the maximum value of 32-bit
integers, which is not allowed.

– It is possible to iterate over any sequence with the for syntax

• FoldLeft, foldRight and fold allow combination of a sequence’s elements, going
left to right, right to left and in an undefined direction, respectively

• Map and flatMap allows transformation of one sequence to another by apply-
ing a function to all elements. FlatMap allows the function to additionally
eliminate elements whose results will thereby not be a part of the resulting
list.
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1 scala > var int = 0
2 int: Int = 0
3

4 scala > while (int <10){ println (int); int=int +1}
5 0
6 1
7 2
8 3
9 4

10 5
11 6
12 7
13 8
14 9
15

16 scala > for(x <- 0 until 10){ println (x)}
17 0
18 1
19 2
20 3
21 4
22 5
23 6
24 7
25 8
26 9
27

28 scala > val list = List (0 ,1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9)
29 list: List[Int] = List (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
30

31 scala > for(x <- list){ println (x)}
32 0
33 1
34 2
35 3
36 4
37 5
38 6
39 7
40 8
41 9

Fold, foldLeft, foldRight, map and flatMap examples:

• fold is supplied with a function which produces a single value from two input
values, all three of the same type, fold repeatedly uses this to produce a single
value from a list. It takes two arguments using currying syntax; the first is
the starting value and the second is the function used to fold two elements
into one. It can be executed in parallel.

1 scala > (0 to 2).fold (0) (( left , right ) => left+ right )
2 res1: Int = 3
3

4 scala > (0 to 2).par.fold (0) (( left , right ) => left+ right )
5 res2: Int = 3
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If the fold is executed in parallel, having the starting argument be non-zero
or otherwise have consequence in application will give unexpected results:

1 scala > (0 to 2).fold (1) (( left , right ) => left+ right )
2 res1: Int = 4
3

4 scala > (0 to 2).par.fold (1) (( left , right ) => left+ right )
5 res3: Int = 6
6

7 scala > (0 to 2).par.fold (1) (( left , right ) => left+ right )
8 res2: Int = 5

This is generally true: Mixing necessarily sequential operations and parallel
collections is a bad idea, and a highly unfortunate pitfall for newcomers to
Scala.

• foldLeft and foldRight are equivalent, except that the iteration over the list
goes in opposite directions. In contrast to fold, the input and output types
can be unequal. These can not be done in parallel.

1 scala > (0 to 9). foldLeft (" numbers ")(( string , number ) =>
string + number . toString )

2 res1: String = numbers0123456789
3

4 scala > (0 to 9). foldRight (" numbers ")(( number , string ) =>
number . toString + string )

5 res2: String = 0123456789 numbers

• map
1 scala > (0 to 9).map(x=>x*x)
2 res1: scala . collection . immutable . IndexedSeq [Int] = Vector (0, 1,

4, 9, 16, 25, 36, 49, 64, 81)
3

4 scala > (0 to 9).par.map(x=>x*x)
5 res2: scala . collection . parallel . immutable . ParSeq [Int] =

ParVector (0, 1, 4, 9, 16, 25, 36, 49, 64, 81)

• flatMap
1 scala > (0 to 9). flatMap (x=>if(x %2==0) {None}else{Some(x)})
2 res1: scala . collection . immutable . IndexedSeq [Int] = Vector (1, 3,

5, 7, 9)
3

4 scala > (0 to 9). flatMap (x=>if(x %2==0) {None}else{Some(x*x)})
5 res2: scala . collection . immutable . IndexedSeq [Int] = Vector (1, 9,

25, 49, 81)

Together:
1 scala > (0 to 9).par. flatMap (x=>if(x %2==0) {None}

else{Some(x*x)}).fold (0) (( left , right )=>left+ right )
2 res1: Int = 165
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2.5.7 Container Types
Scala has several container types, some more exotic than others.

• Option allows handling of values which may or may not have any content.
Both “Some(3)” and “None” can be passed as a parameter of type Option[Int].
Options can be mapped, in which case the unwrapping of the contents and
subsequent re-wrapping is handled automatically.

• Either allows handling of values which are one of two types. It’s applicability
is therefore a superset of that of Option. Left(3) and Right(“str”) can be
passed as a parameter of type Either[Int, String]

• Sets are somewhat similar to arrays in that their size is fixed. However, each
element can have a unique fixed type. So “(3, “str”, 5.0)” is a set with type
(Int, String, Double). specific places in the set are accessed using “set._n”,
where n is the 1-indexed index.

1 scala >// Option :
2

3 scala > def maybeSquare (in: Option [Int ]): Option [Int] = in.map(x => x*x)
4 maybeSquare : (in: Option [Int ]) Option [Int]
5

6 scala > maybeSquare (Some (3))
7 res0: Option [Int] = Some (9)
8

9 scala > maybeSquare (None)
10 res1: Option [Int] = None
11

12 scala >// Either :
13

14 scala > def squareOrCube (in: Either [Int ,Int ]) = in match
15 | {
16 | case Left(x) => x*x
17 | case Right (x) => x*x*x
18 | }
19 squareOrCube : (in: Either [Int ,Int ]) Int
20

21 scala > squareOrCube (Left (3))
22 res2: Int = 9
23

24 scala > squareOrCube ( Right (3))
25 res3: Int = 27
26

27 scala >// set:
28

29 scala > def change (in :(Int , String , Double )):(Int , String , Double ) =
(in._1*in._1 , in._2+"ing", in._3)

30 change : (in: (Int , String , Double ))(Int , String , Double )
31

32 scala > change ((3 , "str", 5.0))
33 res4: (Int , String , Double ) = (9, string ,5.0)
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2.6 C++11
This section covers only the features needed in order to understand the C++ code
the compiler generates. The features listed below may or may not have additional
capabilities to those mentioned:

• std::atomic provides atomic transactions for integral types, boolean and point-
ers. This means a load and a store operations to this variable will never
happen concurrently.

• std::mutex is a traditional mutual exclusion lock.

• std::condition_variable provides a variable that threads can wait on. Subse-
quently, one or all threads waiting can be awakened. A thread that wishes
to use it must hold a unique_lock first. Also allows timeouts on waiting.

• std::unique_lock allows more sophisitcated use of locks. It is not a mutex,
but instead provides more ways to acquire and release locks on mutexes,
including timed attempts at gaining locks and releasing locks when leaving
the scope of the unique_lock.

• std::thread provides a standardized wrapping around Pthread and similar
OS-specific thread libraries.

2.7 Regular Expressions
Regular expressions are programs used to match strings of text. More specifically,
they are finite automata capable of parsing regular languages. In practice, what
is called “regular expressions” are often capable of parsing more than just regular
languages due to extra features. The IEEE POSIX standard specifies their syntax.

The following explains enough to understand their use in this thesis:

• Square brackets match a single character if that character is inside the square
brackets. For instance, “[ab]” matches either “a” or “b”, while “[a-z]” matches
all Latin lower case characters.

• A question mark (“?”) signifies that the preceding element can be matched
one or zero times.

• Parentheses marks a subexpression.

• Backward slash (“\”) escapes the following character, allowing characters
that would usually be interpreted as operators to be interpreted as actual
character and vice versa. For instance, “\.” matches a period, while “\d”
matches any digit.

• A plus sign (“+”) signifies that there are one or more of the preceding element

• A star (“*”) signifies that there are zero or more of the preceding element
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• A vertical bar (“|”) signify that either the character to the left or the right is
matched

Example
Integers are matched with this regular expression: “[-+]?(0|[1-9]\d*)”. First, there
can optionally be a plus or minus sign, then comes the characters in the parenthesis:
Either 0 or a number between 1 and 9 followed by a string of digits. “00201” will
not match, but “201” and “-201” will match.

2.8 Deterministic Multithreading
All material here is based on [20] unless otherwise stated. This section is to be
understood as a discussion of contemporary approaches to multithreading deter-
minism - they have not influenced this thesis because their determinism models are
generally less strict.

Deterministic multithreading is an active area of research. Two components are
necessary for determinism:

• A deterministic logical clock, which orders synchronization operations deter-
ministically

• A deterministic memory consistency model, which ensures unsynchronized
load operations have deterministic results

2.8.1 Deterministic Logical Clock
There are two main approaches to this:

• Round-robin scheduling

• Instruction-count based scheduling[23]

Both concern themselves with which thread’s turn it is to do synchronization calls.
In normal pthread systems, it is the thread which calls first that, say, acquires
the lock. Round robin scheduling means that it is the thread that has gotten it
last that will get it next. In instruction-count scheduling, the next recipient of the
lock is determined by which thread has completed the least amount of instructions,
with a tie-breaker. Notice that in the latter model, synchronization call order is
not necessarily robust in the face of changing inputs, as some inputs may require
more instructions to be performed than others.

2.8.2 Deterministic Memory Consistency Model
The memory consistency model concerns itself with making guarantees about the
determinism of memory access. Total Store Order (TSO) guarantees that all writes
are globally visible in deterministic order, yet makes no guarantees about when.
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In both Dthreads and Consequence described below, synchronization of memory
is done whenever there is a synchronization (for example lock()) operation, which
ensures determinism since the position of these operations are determined by the
logical clock. This read determinism is then a result of implementation; TSO does
not require it. Alternatives to TSO (for example DRF0[12] and LRC[19]) relax
the total store order requirements to guaranteeing that a write with respect to a
synchronization object is only visible to the next thread that holds the synchro-
nization object. While the computational result is the same, the total store order
requires less memory than relaxed models, since all shared memory needs only one
copy and thread-local writes will always be applied and memory freed. In relaxed
models, memory copies will have to be made whenever a thread releases a syn-
chronization object and freed when the synchronization object is locked by a new
thread. This means memory use scales with the amount of synchronization objects.
That said, relaxed models can be faster than TSO since individual threads can be
isolated until they need updates, even while other threads synchronize memory
among themselves.

2.8.3 Dthreads
Dthreads[18] is a deterministic replacement for Pthreads, using round-robin schedul-
ing and total store order. DTHREADS work by giving each thread, as declared
in C/C++, its own process and then cleverly hiding this by reimplementing func-
tions such as getpid() to give the same answer for all processes that make up the
program. All threads do work in a parallel phase, and upon an event that triggers
synchronization, for instance the acquisition of a lock, a serial phase is entered.
The updates that any single thread applies to shared memory will be applied in
deterministic order in the serial phase.

2.8.4 Consequence
Consequence[20] is, like Dthreads, an deterministic implementation for C/C++. It
uses instruction-count based scheduling and provides total store order. Instruction-
count based scheduling allows Consequence to be faster than Dthreads. The down-
side is that Consequence is nondeterministic in the face of changing input and also
changes behavior when inserting debugging operations like print-statements. Con-
sequence relies on Conversion, a kernel-implemented version control system, for the
memory consistency model. Like in Dthreads, each thread is actually run in its
own process.

2.9 Related Work
There are related work which also tries to make multithreaded programs easier
to work with, using custom compilers or languages extensions. Among these are
CoreDet and Deterministic Parallel Java. CoreDet is a custom compiler for C/C++
made by modifying LLVM. Deterministic Parallel Java is a language extension for
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Java. Given that they are about making multithreading easier they are worth
mentioning, even though they have not influenced this thesis.

2.9.1 CoreDet
CoreDet is “[a] compiler and runtime system that runs arbitrary multithreaded
C/C++ POSIX Threads programs deterministically”[5].

2.9.2 Deterministic Parallel Java
DPJ extends Java with a deterministic features. It is built on the idea of regions.
The programmer divides memory into regions by annotating classes, and thereafter
annotates methods with effect summaries stating which regions are read and writ-
ten by a method. “The compiler uses the class types and method effect summaries
to check that all concurrent (read, write) and (write, write) pairs of accesses to the
same region are disjoint” [7][1].
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Chapter 3

Specification

It was decided that an approach belonging to the tradition of synchronous program-
ming would be the best choice for this thesis, as described in the background chap-
ter. Given the importance of a familiar superficialities for language adoption[21], it
was decided that the language should have a familiar C/Algol-style syntax, rather
than invent or adopt something less common.

A Note on the Finality of This Specification

Much of what has been specified has not been implemented. While everything has
been given thought, this thought has not been distributed equally, but concentrated
on the basic things and that which has been implemented. Everything herein,
especially that which is left unimplemented, is to be considered preliminary. Future
work should not give this specification undue consideration.

3.1 Language Design Goals
It is the goals of Fumurt to aid in producing correct programs suitable for real-time
applications in general, and such multithreaded programs in particular.

3.2 Runtime Execution Model
The goal of the programming language is to make a multithreaded program behave
as predictably as were it single-threaded and, more generally, to help create reliable
applications. A corollary of this is that only changes of state that are visible to
a single thread can happen concurrently. All IO and inter-thread communication
are required happen in a statically determined sequence. One way to do this is to
have the program have two alternating phases:

• Computational phase: In which computations local to a thread are performed.
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• Communicative phase: In which IO is effected and shared variables are up-
dated, all in a single-threaded manner.

In the computational phase, the order in which computations are performed on
the processor is irrelevant as nothing is shared between the thread and the rest
of the world. Since the threads have no effect on each other or the outside world
in this phase, the only difference between concurrent execution and sequential
execution is speed. In the communicative phase, however, execution has to be
single threaded. This is similar to Dthreads[18], except here IO sequence is also
deterministic and only one thread per synchronized variable have write rights to
a synchronized variable. Having only one thread have write privileges means last-
writer-wins semantics are avoided, in which everything but the last write since the
start of the computational phase will never be visible to other threads. This seems
like it would very rarely be the programmer’s intended behavior.

Using this scheme, the application appears to be single threaded both to itself
and to the rest of the world, all the while enabling separation of concerns and better
utilization of multi-core systems. The following figure illustrates the principle:

Computational phase

communicative phase

In terms of the actual execution a more detailed figure is offered:
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Observe that in the computational stage parallel list transformations like map
and fold or even futures can be made available, without affecting the outward
behavior of the system, except for performance:

Thread Thread

Thread

Time

Computation

Communication

Rendezvous point

Thread

Thread

Th Th Th

Futures and parallel list comprehensions are together applicable to all problems
which can be divided into subproblems that can be done in parallel without com-
munication. Futures are a bit of extra work to deal with, but the map-and-fold
pattern, sometimes called mapReduce[11], is easy to use and widely applicative
to many problems.[9] Indeed, map-and-fold is intensely used in the Fumurt com-
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piler. Supporting map-and-fold and futures reduces the performance problems of
all threads waiting on each other significantly as long as it can be applied to the
most time-consuming task.

The overall effect of this execution model is that phases per second becomes an
important measure of responsiveness of the system.

3.3 Inter-thread communication
Inter-thread communication is provided by synchronized variables. These are vari-
ables to which one thread has write rights, while all threads has read rights. The
writes to a synchronized variable are effected so that all threads can read them
during the communication phase. Having only one thread have write rights cir-
cumvents the entire problem of store order, and makes sure the programmer doesn’t
have to worry about the order in which a synchronized variable is written to by
the different threads.

3.4 Input and Output
Input and output sequence must be deterministic. To achieve this, output requests
are placed in a queue, and are written to the output devices during the commu-
nicative phase. Whenever input is desired, the thread will immediately pause and
wait for the communicative phase, during which the input will be returned to the
thread. In the case where several pieces of input and output do not depend on
each other, they can be combined to a composite IO action, whose effects will be
performed in the same communicative phase. The syntax for this is left unspecified.

3.5 Syntax
Syntax is by definition somewhat arbitrary but, as Brainfuck demonstrates, some
syntaxes are better than others. The following goals were decided upon:

• Look modern and familiar. This is supposed to make it easier to learn, as
well as more appealing to someone evaluating whether to learn it.

• Be simple. For ease of implementation.

• Be predictable, and aid the programmer in the understanding of the program.

A language made as part of a master thesis is simple by necessity. The two other
goals require more explanation:

3.5.1 Modern and Familiar
Fumurt adopts several conventions from contemporary languages:
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• Separating expressions with line endings instead of special characters (for
example semicolon).

• Employ “instanceOfType:Type” instead of “Type instanceOfType” when declar-
ing the type of something.

• “=” is used to perform definitions and mark the boundaries of blocks with
brackets

This results in syntax with a distinctly modern look:

1 function integerIdentity (x: Integer ): Integer = {x}

One might wish for brackets to be optional in such one-liners, though,

3.5.2 Predictable and Helpful
Although modern languages and their type systems have made the use of func-
tions safe, the syntax of modern languages insufficiently aid the programmer in
understanding what a function does, as it is called:

• Functions that perform IO or mutate shared variables are called actions and
their names must begin with “action”, like so:

1 action actionPrintFoo : Nothing =
2 {
3 actionPrint (" FOO ")
4 }

Similarly thread names begin with “thread” and synchronized variable names
begin with “synchronized”. This means that one can observe much about the
properties of a call or a variable where it is used without looking up the
definitions.

• Function arguments, if there are more than one, are distinguished not by
relative position, but by name (as is optionally available in Python). Here is
presented a call to the if function and some calls to the toString function:

1 if( condition =true , then= toString (1) , else= toString (0))

Type classes are an alternative to named arguments, the idea being that you
have one type per role a variable can play. There are multiple problems with
this:

– It’s unnecessarily verbose. Worst case, you’ll end up with one type class
declaration per argument.

– Because it’s unnecessarily verbose, the temptation will be to use the
same type class everywhere or just use a base class (like Integer) instead.
Which would mean that we’re back at square one.
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3.6 Scope
Among the goals of this programming language is to help the programmer un-
derstand the program. One way this is done is to make dependencies between
functions explicit via inclusions. It is common among languages for changes in one
function to affect the correctness of seemingly unrelated parts of the program. In
the following example, changing the definition of function c affects the output of
function a:

1 action actionA : Nothing =
2 {
3 b()
4 }
5 action actionB : Nothing =
6 {
7 c()
8 }
9 action actionC : Nothing =

10 {
11 actionPrint (" string ")
12 }

While the above example is a bit contrived, it illustrates the problem. Using
inclusions, the dependencies become explicit:

1 action actionA (b:Inclusion , c: Inclusion ): Nothing =
2 {
3 b(c=c)
4 }
5 action actionB (c: Inclusion ): Nothing =
6 {
7 c()
8 }
9 action actionC : Nothing =

10 {
11 actionPrint (" string ")
12 }

Note that inclusions are not functions as arguments - the passed function and
the name of the inclusion must have the same name; it is simply there to make
dependencies between functions explicit.

In keeping with the goal of being modern and familiar, definitions of functions
inside other definitions of functions are allowed. Recursive function definitions,
that is. This means that developers can hide functions inside other functions when
they are not needed outside them. Inclusions are not needed when functions are
defined inside each other, as dependence is implied.

3.7 Pointers
There are no pointers in the language. Any pointers required by C++ is to be
hidden by Fumurt. This is because pointers are colloquially as well as formally[22]
known to be hard to understand. Programmers should be able to specify specific

34



memory ranges that can later be written to with functions. These are intended to
be used only when the programmer needs to store data to specific addresses.

3.8 Operators
Operators are functions with two arguments and the function name in between the
arguments. There are multiple problems with them:

1. Convention suggests that their names should be information-anemically short,
often one character. This is obviously problematic

2. It can be hard to figure out what role the different arguments have

3. Operator precedence for user-defined operators is tricky. For math operators
there’s convention, but for user-defined ones this may be confusing for users
of those operators

A prime example of unhelpful operator names can be found in section 2.4.1.
Any good solutions to this have not been found, to the author’s knowledge,

but it’s hard to argue with the convenience of operators. Some predictability to
operators are provided by enforcing the following rules:

1. Either the types of the two arguments has to be the same or one of the types
have to be a container type of the other. For example Int and Int or List[Int]
and Int.

2. There’s no operator precedence, it has to be defined on a use-by-use basis
using parentheses. Ambiguous use of operators are not allowed.

3.9 Immutability
Mutable variables are a major source of bugs, and even experienced developers
create bugs when a variable that would have held the correct information previ-
ously no longer holds that information. At the same time mutable variables are
needed in order to share information across threads. Therefore mutable variables
are disallowed, except the synchronized variables that are shared across threads.

3.9.1 Loops
Loops are familiar for many people, yet are usually not included in languages with
only immutable values, because their utility is pretty limited. However, they are
convenient and they are equivalent to tail-recursion. The major advantages of tail
recursion over looping is that the assignment and dependencies are explicit. And
yet loops are far easier to understand[22]. Loops that are as safe as tail recursion
while being almost as friendly as common loops are possible:
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1 value y:Int = 5
2

3 value x:Int = loop(y=y,x=y)
4 {
5 if(
6 condition =(y >0) ,
7 then=
8 {
9 x = x*y

10 y = y -1
11 continue
12 },
13 else= break )
14 }

All variables passed to the loop would then need to be copied. In the example
above, the y modified inside the loop cannot be the same that is defined outside it.
Such scoping of variables are common in function calls, and a similar mechanism
can be used for loops.

An additional benefit of loops is that their use has constant memory consump-
tion independent of number of iterations. While the same can be achieved for
recursion using tail recursion with optimizing compilers, such compilers are still
not the norm. Mutual tail recursion optimization is particularly rare. Since opti-
mizations are not an immediate goal for the Fumurt compiler, loops would offer an
important guarantee for the programmer.

3.10 Types
3.10.1 Classes
In trying to be familiar, it is desirable to provide types along with their popular
object oriented nomenclature. So classes are present, just that they are immutable.
They are defined by their constructors, optionally with extra static methods:

1 class IntAndString (int:Integer , string : String ) =
2 {
3 function combine : String = { concatenate (left= toString (int),

right = string )}
4 }
5

6 value x = IntAndString (int =3, string =" something ")
7 actionPrint (x. combine )
8 actionPrint ("==")
9 actionPrint ( concatenate (left= toString (x.int), right =x. string ))

Fumurt does not have inheritance, because while inheritance means you get
code reuse, it also obscures the class that inherits. When one class inherits from
a hierarchy, one needs to understand not only what’s written about that class but
also the entire hierarchy in order to understand the end result.

In order to aid the programmer in understanding their own and others’ code,
the names of types always lead with a capital letter. Conversely, leading with a
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capital letter for anything else is illegal.

3.10.2 Interfaces
All classes are interfaces, but one can also create interfaces that aren’t classes using
the “interface” keyword. When implementing an interface one explicitly have to
note what interfaces the class is implementing.

1 interface IntAndString (int:Integer , string : String )
2 // or
3 class IntAndString (int:Integer , string : String )
4

5 class IntAndStringAndBool (int:Integer , string :String , bool: Boolean )
implements IntAndString

3.10.3 Modules
Modules are singletons containing only immutable values, actions and functions.
They can therefore serve as libraries. Their scope is handled the same way func-
tions’ scope is. This avoids the problem where singletons are global entities and
functions’ dependence on them are completely obscure.

3.11 Program Declaration
The program declaration is meant to give a high level overview of the behavior
of the program. It declares what threads are spawned, in what sequence their IO
should be enacted, which synchronized variables exist and which threads have write
permission to which variable.

3.12 Built-in Functions
Fumurt provides the following built-in functions:

• toString(x) gives a string representation of x

• actionPrint(x) prints the string x

• actionMutate(variable, newValue) assigns the newValue to the synchronized
variable

• if(condition, then, else) returns result of then if condition is true and returns
else if it is not

• plus(left, right) returns left + right

• minus(left, right) returns left− right

• divide(left, right) returns left
right
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• multiply(left, right) returns left ∗ right

• equal(left, right) returns left == right
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Chapter 4

Analysis and Design

4.1 Choice of Intermediate Target
For easy debugging and wide selection of binary targets it was decided to first
compile to an intermediate language and then let an external compiler perform the
final transformation to binary form. This is a well-trodden path[14], and C is often
used. Though many modern languages would be suitable for this, a wish list of
features determined which language to choose:

1. No garbage collection or other other source of run-to-run variability.

2. Wide selection of final targets, including embedded.

3. Low overhead, whether in performance or memory.

4. A solid set of features to make transformation into the language easier.

5. Mature standard that is unlikely to break backwards compatibility.

6. One, preferably more, good and mature open source implementations avail-
able.

7. Possibility of running without an operating system.

C++ seems to satisfy all these criteria, and were therefore selected as the intermedi-
ate language. Its main competitor, C, has too few features, which means a compiler
would have to make more difficult transformations and/or things like linked lists
would have to be manually implemented. Such difficulties seem unnecessary.

4.2 Choice of Compiler Implementation Language
Scala was chosen as the implementation language for the compiler partly because
it’s what the author used in the TU Berlin compiler bau course (see 2.1) and
already had lots of experience in, but it also has some highly attractive qualities
for making a compiler:
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• Solid type checking which makes the code easier to work with, especially
when refactoring

• A wide selection of functional abstractions, which allows compact code and
eliminates simple but irritating bugs as well as access to imperative constructs
like loops etc. when this is more convenient

• A parser combinator library

• Fast execution time

Other languages under consideration were C, C++ and Haskell. C has inadequate
abstractions and lackluster type checking. While C++ has much better abstrac-
tions, its type checking is still not strict enough to prevent many of the errors
that would undoubtedly have been made during development. Haskell has all the
features necessary, but the author had previously had problems learning it. It was
also a concern that Haskell does not provide non-functional mechanisms, even when
these are the best solution to a problem.

4.3 Choice of C++ Compiler
There were two compilers under consideration: GCC and Clang. While Clang is in
many ways the better compiler, GCC is installed by default on most Unix systems.
That leaves Windows. After some trial and error, it was found that installing a
C++11 compliant standard library was difficult on Windows, and that the by far
easiest solution on Windows is to install Visual Studio and use the Microsoft Visual
C++ compiler. In the end it was decided that the Fumurt compiler will compile
the C++ code using GCC, unless it is run on Windows, in which case it will ask the
user to compile the C++ code using Visual C++ manually. This is quite clearly
the lesser evil, rather than a particularly good solution.

4.4 Synchronization Mechanisms in The Interme-
diate Language

Our execution model formulated in 3.2 needs to be formulated in the compiled
C++ code.

• Each thread gets its own printList (type std::list<std::string>), and action-
Prints are translated into printList.push_back. The same principle can be
used for future output as well. When the threads are finished with the com-
putational phase, the last thread to finish will print printList.pop_front until
the printList is empty. The thread started first in the program statement gets
its printList emptied first, and so on.

• A rendezvous pattern is used:
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1. A macro NUMTOPTHREADS, with the number of threads defined in
the program statement is defined

2. A static std::atomic<int> rendezvousCounter, which holds the number
of threads that have arrived at the rendezvous point is defined.

3. A static std::mutex rendezvousSyncMutex and a static std::condition_variable
cv are defined.

4. For each synchronized variable in the source code, one variable which
holds the global state of this variable and one which holds the local state
of this variable in the thread that is allowed to write to it is defined.

5. A [[noreturn]] static void threadName() is defined for each thread, hold-
ing its values. All arguments to thread in the source code are con-
verted to static global variables. If the platform is Windows, “__de-
clspec(noreturn)” is used instead of “[[noreturn]]”, since Microsoft Visual
C++ does not support C++11 syntax for attributes.

6. A main function is defined, inside of which:
(a) rendezvousCounter is set to 0, threads (std::thread) are started with

the thread functions (defined in previous step) as arguments and fi-
nally the main function enters a loop executing std::this_thread::sleep_for(
std::chrono::seconds(1) ).

7. static void waitForRendezvous(std::string name) which a thread calls
when it is ready to wait, is defined. Inside of which:
(a) The thread locks the rendezvousSyncMutex
(b) Increments the rendezvousCounter
(c) If the value in the rendezvousCounter is less than NUMTOPTHREADS,

the thread waits using cv.wait, at which point rendezvousSyncMu-
tex will be automatically unlocked. If the rendezvousCounter equals
NUMTOPTHREADS, the thread prints all strings held in the print-
Lists as described above, sets any global synchronized variables to
its writer-local values, sets rendezvousCounter to 0 and finally noti-
fies all other threads using cv.notify_all before exiting the function.
rendezvousSyncMutex is unlocked on function exit. Example of a
generated waitForRendezvous function:

1 static void waitForRendezvous (std:: string name)
2 {
3 std:: unique_lock <std::mutex > lk( rendezvousSyncMutex );
4 ++ rendezvousCounter ;
5 if( rendezvousCounter .load () < NUMTOPTHREADS )
6 {
7 cv.wait(lk);
8 }
9 else if ( rendezvousCounter .load () == NUMTOPTHREADS )

10 {
11 while (! printthreadPrintHello . empty ())
12 {
13 std::cout << printthreadPrintHello . front ();
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14 printthreadPrintHello . pop_front ();
15 }
16 /* similarly for other thread print lists */
17 synchronizedNumber = writeSynchronizedNumber ;

// where synchronizedNumber is the name of a
synchonized variable

18 // similarly for other synchronized variables
19 rendezvousCounter . store (0);
20 cv. notify_all ();
21 }
22 /* abnormal situation diagnostics mechanism here */
23 }

4.5 A Need for Annotation
Technically, the finished code can always be determined directly from the AST,
but it was discovered that in order to do this in the Fumurt case, the same rules
would have to be encoded into the code in several different places. In the current
state of implementation, there are two rules that require annotation. The first was
the rule for determining the C++ names of function and the second is the rule for
naming arguments to threads. In both cases, Fumurt’s semantics are very different
from C++’s. There are four aspects to the naming:

1. Actions and functions that are in other functions need to get new names
because the hierarchy needs to be flattened

2. Actions need to be demultiplexed, as the C++ code they contain needs to
be different depending on which thread calls that action. For instance, an
actionPrint needs to be transformed to a push to a list whose name depends
on the calling thread

3. Function calls need to be changed so they refer to the new names

4. Arguments to threads need to have new C++ names that will be globally
unique.

This can be accomplished by doing two passes over the AST. In the first pass, all
function definitions and thread arguments are annotated with their C++ names.
In the last pass, all function calls are annotated with the C++ name of the function
they call, copying from the annotation done in pass one.

4.6 Limitations
While the specification and design is satisfactory, there are many ways in which it
could be improved:

• There are no compound statements, except in the right hand side of defini-
tions
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• Definition right hand demarcation of the begin..end [function/x] type (for
example begin..end loop) should be optional, as it can be helpful when reading
and writing deeply nested expressions, where exactly what it is that is ending
can often be unclear.

• Performance of the current execution model may be a concern for some appli-
cations. Allowing programmer-defined synchronization intervals would allow
for greater performance without sacrificing predictability. The programmer
could then specify that computation-heavy threads participate in only every
Nth communication phase. In cases where the appropriate performance and
responsiveness requires sacrifices to predictability, it seems prudent to eval-
uate the possibility of using an instruction-based logical clock system when
the programmer specifies it. Systems such as Consequence[20] may make it
possible to obtain greater performance in cases where the programmer can
allow predictability requirements to be relaxed. Likewise, software transac-
tional memory could be interesting, particularly when a thread needs to wait
on input from an unpredictable source, like a human, while the rest of the
threads needs to be responsive.

• The design of Fumurt centers around predictability, but in order to guarantee
any predictability we have to assume correctness of the underlying hardware.
Fumurt is by design not fault-tolerant, because fault tolerance deals with,
and causes, unpredictability. This is in many cases insufficient. It would
be beneficial if it was possible to construct some system wherein multiple
computers or chips running Fumurt code could be coordinated by a system
that does deal with fault-tolerance. Erlang with OTP is often used for such
applications, but no study has been carried out regarding how to combine
Erlang and Fumurt.

• As it is, the design of Fumurt has some, but very little empirical underpin-
nings. User surveys concerning how the various aspects of the language are
received , particularly by novice programmers, would shed light on whether
all the ideas introduced in this report are actually good ideas.

• There is no appropriate response in the cases where the IO buffers can no
longer fit in memory. A solution which would degrade performance but oth-
erwise work well, would be to pause all threads trying to put IO into a full
memory while letting the thread whose IO are to be effected first write di-
rectly to IO. Once that first thread is finished, the second thread whose IO
shall be effected can write directly to IO and so on until all threads are ready
to enter the communicative phase. This will serialize execution, which can
degrade performance. In those cases where responsiveness is more important
than strict IO sequentiality, special mechanisms may be provided whereby
the programmer can specify that in such cases IO buffers shall be emptied to
IO during the computational phase.

• Recursion can cause a stack overflow, leading to a segmentation fault. With
the exception of the recursion happening when a thread recurses on itself,
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no recursion is optimized away. This is problematic in a critical-application
system. Some types of recursion are easy to optimize away, some less so. The
appropriate behavior for the compiler towards recursion it can’t optimize
away is undetermined.

• There is no mechanism for direct access to memory, which is often needed in
embedded programming

• There are no lists, arrays or similar sequences. Likewise, loops, values, oper-
ators and user-defined types are missing.
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Chapter 5

Implementation

5.1 Overview
The compiler consists of four parts: The scanner, parser, checker and code gener-
ator. There is no optimizer, although the requirement for no dynamic destruction
or creation of threads allows us to use a loop in threads instead of just recursion.
This is necessary because neither Clang nor GCC could correctly optimize that tail
recursion into a loop in testing, leading to an inevitable stack overflow.

Scanner Parser Checker Code Generator

Annotator

Fumurt

code C++ code

Clang/GCC

Native

binary

Consider the steps taken by the compiler:

1. The code is scanned. If there is an error it’s printed and compilation ended.
Note that neither scanner nor parser are advanced enough to detect more
than one error at a time.

2. The tokens from the scanner is parsed. If there is an error it’s printed and
compilation ended.

3. The AST from the parser is handed to the checker, which looks for any
semantic errors. If there are any, they are printed out and compilation ended.
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4. The AST from from the parser is given to the code generator, which produces
C++ code conforming to the C++11 standard.

5. GCC is used to compile the C++ code to native binaries.

5.2 Scanner
Scanners, it should be noted, are sometimes called lexers. Drawing on experience
from the TU Berlin course (see 2.1), the Scala Standard Parser Combinator Library
was chosen.

Parsers for individual tokens are formed like this:
1 def intParser : Parser [ IntegerT ] = positioned ( new

Regex (""" (0|[1 -9]\d*) """) ^^ {x => IntegerT (x. toInt )} )
2 def equalParser : Parser [ EqualT ] = positioned ( new Regex ("=") ^^ {x =>

EqualT ()} )

The parsers are then combined into the final scanner using the alternate oper-
ator (“|”)[2].

It all goes into a list of tokens. The tokens are defined like this:
1 abstract class Token () extends Positional
2 abstract class DefDescriptionT () extends Token
3 abstract class BasicValueT () extends Token
4 abstract class SyntaxT () extends Token
5

6 case class TrueT () extends BasicValueT { override def toString =
"true"}

Positional[3] is a trait that gives the token a Position. The “positioned” call in
the parsers assigns the Position to the token. This is all inherited from the parser
combinator library, so it’s hard to understand what’s going on from looking at the
source alone. The “positioned” call assigns the source code position of the input
text to the token object produced by the parser, which allows us to output really
nice error messages later on.

Function List

• scan(in:String):Either[NoSuccess, List[Token]] takes the source file as a string
and either outputs a list of tokens or an error message

• scanInternal:Parser[Token] is the internal scanner. The parser combinator
library will use this to create a parser to serve as scanner at compile time

• xParser: Parser[XT] parses that particular type of token, for example new-
lineParser: Parser[NewlineT]

Classes

• The scanner uses token classes. These are held in Ast.scala
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5.3 Parser
Like in the scanner, the Scala Standard Parser Combinator Library was used.
Unfortunately, the tasks of the parser is a bit more complicated than those of the
scanner, and the code reflects this.

5.3.1 Grammar
The grammar serves as a formal definition of the language. Though not needed
in order to understand the language, it is included for completeness. Here’s the
EBNF ([25]) for the grammar, as implemented:

1 prog = paddedDef , { paddedDef }, EoF;
2 paddedDef = {"\n"}, def , {"\n"};
3 def = deflhs , "=", {"\n"}, defrhs ;
4 deflhs = defdescription , id , args , ":", type;
5 args = ("(", id , ":", type , { subsequentArg }) | "";
6 subsequentArg = ",", id , ":", type;
7 defrhs = "{", {"\n"}, expression , {("\n", {"\n"}, expression )},

{"\n"}, "}";
8 expression = def | statement ;
9 statement = functionCall | basicStatement | identifierStatement ;

10 callargs = "(", ( namedcallargs | callarg ), ")";
11 callarg = statement | "";
12 namedcallargs = namedcallarg , subsequentnamedcallarg ,

{ subsequentnamedcallarg };
13 subsequentnamedcallarg = ",", namedcallarg ;
14 namedcallarg = id , "=", callarg ;
15 functionCall = id , callargs ;
16 identifierStatement = id;
17 defdescription = " program " | " action " | " thread " | " function " |

" value ";
18 basicStatement = boolean | string | integer | float ;
19 float = integer , ".", digit , { digit };
20 integer = "0" | ( digit excluding zero , { digit });
21 digit excluding zero = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8"

| "9" ;
22 digit = "0" | digit excluding zero ;
23 upper case = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" |

"J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T" |
"U" | "V" | "W" | "X" | "Y" | "Z" ;

24 lower case = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" |
"j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t" |
"u" | "v" | "w" | "x" | "y" | "z" ;

25 id = lower case , {( upper case | lower case)}
26 type = upper case , {( upper case | lower case)}

For help understanding this, see section 2.3.

5.3.2 Code
This is where the grammar is encoded into the program:

1 def progParser : Parser [List[ Definition ]] = ( paddedDefParser .+) <~
eofParser
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2 def paddedDefParser : Parser [ Definition ] = { newlineParser .* ~>
defParser <~ newlineParser .* }

3 /* more here */

The relevant values are extracted from the result by using the “._x” methods,
where x is a number. This is because the result of several consecutive parsers are
combined into sets. “._1” is then the first value of the set, etc. The structure of
these sets are sometimes not immediately obvious. For the operators refer back to
2.4.1.

There are also a number of somewhat less exciting helper parsers, of which an
example is provided:

1 def equalParser : Parser [ Token ] = accept ( EqualT ())
2 def basicStatementParser : Parser [ BasicValueStatement ] =

accept (" expected string , integer , boolean or float ", {
3 case StringT ( value ) => StringStatement ( value );
4 case IntegerT ( value )=> IntegerStatement ( value )
5 case TrueT () => TrueStatement ()
6 })

This shows how the parser error messages are generated.
The entirety produces an abstract syntax tree. Both the checker and the code

generator operates on this AST, and it is the centerpiece of the implementation.
Without understanding the AST, the rest of the implementation will appear cryptic
at best:

1 class Expression () extends Positional
2 trait Callarg extends Positional
3 trait Statement extends Expression
4 trait BasicValueStatement extends Statement with Callarg with

aCallarg with aStatement
5

6 case class Definition (val leftside :DefLhs , val rightside : DefRhs )
extends Expression

7 case class DefLhs (val description : DefDescriptionT , val id:IdT , val
args: Option [ Arguments ], val returntype : TypeT )

8 case class Arguments (val args:List[ Argument ])
9 case class Argument (val id:IdT , val typestr : TypeT )

10 case class DefRhs (val expressions :List[ Expression ] )
11 case class Empty ();
12 case class DefDescription (val value : Token )
13 case class NamedCallarg (id:IdT , argument : Callarg )
14 case class NamedCallargs (val value :List[ NamedCallarg ])
15 case class NoArgs () extends Callarg with aCallarg
16

17 case class StringStatement (val value : String ) extends
BasicValueStatement

18 case class IntegerStatement (val value :Int) extends BasicValueStatement
19 case class DoubleStatement (val value : Double ) extends

BasicValueStatement
20 case class TrueStatement () extends BasicValueStatement
21 case class FalseStatement () extends BasicValueStatement
22 case class IdentifierStatement (val value : String ) extends Statement

with Callarg with aCallarg with aStatement
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23 case class FunctionCallStatement (val functionidentifier :String , val
args: Either [Callarg , NamedCallargs ]) extends Statement with Callarg

Function List

• parse(in:List[Token]):Either[NoSuccess, List[Definition]] takes a list of to-
kens and returns either an error message or an AST

• progParser: Parser[List[Definition]] is the first of the parsers, from which the
parser combinator library will generate the final parser

• xParser:Parser[X] parses that particular kind of AST node, for example def-
Parser:Parser[Definition]. Can often be a bit indirect. For example, padded-
DefParser:Parser[Definition] parses a definition with newlines around it, but
uses defParser:Parser[Definition] to parse the definition part of that.

Classes

• Class TokenReader is a wrapping around the list of tokens. It is required by
the parser combinator library and implements the Reader interface. It has
the following functions:

– atEnd which returns true if the list of tokens is empty

– first, which returns the current first element in the list

– pos, which returns the source text position of the first element in the list

– rest, which returns a new TokenReader wrapping all elements except the
first in the list

• The parser uses AST and token classes. These are in the Ast.scala file.

5.4 Checker
The checker, contrary to its in-source name (FumurtTypeChecker) checks more
than types. It does not modify, annotate or otherwise change the abstract syntax
tree. It simply returns errors found or returns nothing. When the implementation
of the checker began it was envisaged that the basic functions would be treated
equally with user defined functions, but due to the lack of generics and other
abstraction mechanisms, most of the basic functions still needed special treatment,
with “actionPrint” being the notable exception.

This graphic illustrates how the functions in the checker call each other:
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check

checktop

checkprogram checkexpressions

checkuseofthread checkexpression

checkstatement checkdefinition

checkifcall

checkbasicmathcall

checktostringcall

checkmutatecall

checknamedcallargs

checkcallarg

checkbasicvaluestatement

findinscope

Function List

• check is the interface to the rest of the program. Takes in an AST and returns
a list of errors, if there are any.

• checktop checks the top level of the program. The top is special because
it contains threads and the program statement, though only the program
statement need special treatment.

• checkprogram checks the program statement. Uses checkuseofthread and
checks whether there are any calls to non-threads or definition of non-synchronized
variables.

– checkuseofthread checks that the thread given is actually called in the
program statement. Declaring a thread and failing to call it is an error.

• checkexpressions checks a list of expressions, such as might be found in the
right-hand side of a definition. Uses indexleft to get new in-scope definitions
and passes them to checkexpression

• checkexpression checks an individual expression. Determines if the expression
is a statement or a definition, and subsequently uses checkstatement and
checkdefinition
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• checkstatement checks a statement. If it’s an identifierStatement, checks that
its return value is as expected. Uses checkbasicvaluestatement for the same for
basic values. If it’s a function call, then it either uses special case functions,
such as checkifcall or finds the function in scope and uses a general approach
using checknamedcallargs and/or checkcallarg

• checkifcall checks calls to if. Makes sure the return type of then and else is
the same and that condition is a boolean. Also checks naming.

• checkmutatecall checks that the variable is a synchronized variable and oth-
erwise has the same type as the new value

• checkbasicmathcall checks the four basic math operators, with special atten-
tion to the return type when double and int are mixed

• checktostringcall checks that there is only one argument and that the ex-
pected type is String

• checknamedcallargs checks named call arguments. Checks that the correct
names are used, that the correct number of arguments are given and uses
checkCallarg to check each argument individually.

• checkCallarg checks a call argument. Makes sure the type is correct. Uses
checkbasicvaluestatement and checkstatement.

• checkbasicvaluestatement checks that the type of the basic value is correct.

• checkdefinition checks a definition. makes sure the return type is the one
specified, that an action is not defined or used from inside a function etc.

• indexlefts(in:List[Expression]):List[DefLhs] takes a list of expressions and re-
turns a list of all the left sides of definitions in that list.

• findinscope finds a left side of the definition in the current scope with the
same name as that which is searched for.

5.5 Code generator
The code generator can best be explained step by step:

1. First the C++ include statements are determined. These are currently hand-
written.

2. We scan the program declaration and find the threads that will be started
in the main thread. The statements for those are found in the program
declaration.

3. The main function is determined from the list of thread statements and their
arguments
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4. The print list declarations are determined from the list of thread statements.

5. The NUMTHREADS macro is determined from the length of the list of
threads.

6. The abstract syntax tree and a list of the threads are passed to the annotator,
which returns an annotated tree.

(a) The definitions are annotated with their C++ names, and actions called
by several threads are demultiplexed into one per calling thread. Inclu-
sion arguments are removed from the signatures. Thread arguments are
annotated with their C++ names.

(b) The calls to functions and actions are annotated with the correct C++
name, and inclusion call arguments are removed.

7. The C++ equivalent of the threads, actions and functions are constructed
along from the annotated tree, along with their forward declarations.

8. The global synchronization variables for use in the runtime (for example
rendezvousCounter) are generated. This is currently handwritten.

9. The synchronized variables are found in the program declaration and the
C++ equivalents are later determined. These are later put in the global
scope of the C++ program.

10. The synchronizer function (waitForRendezvous) is constructed from the syn-
chronized variables and the thread list.

Function List

• generate generates the final C++ code from the Fumurt AST

• getAnnotatedTree Returns an annotated version of the supplied AST. This
version has the final C++ names for functions and their arguments and func-
tion calls

• getCallsAnnotatedTreeInternal returns an annotated version of the AST with
final C++ names for function calls. Requires that function names have been
annotated first

• annotateFunctionCall annotates a single function call

– annotateCallargs annotates that function calls call arguments. Since
call arguments can be function calls, this is often recursive.

– removeInclusions removes inclusion arguments from functions, since these
have no purpose in C++

• indexlefts indexes DefLhs’s like in the checker, but with the annotated types.
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• findinscope same as the version in the checker, but with annotated types.

• getAnnotatedTreeInternal returns an AST with with final C++ names for
functions

• getFunctionDeclarations gets the functions, in C++, from the annotated AST

– actfunrecursivetranslate gets function body and signature of a function
corresponding to the arguments as well as all functions defined in the
body of the definition.

– changeNamesToCppOnes changes all identifiers which are arguments to
a thread to their C++ names throughout the thread.

• getFunctionSignature constructs a C++ function signature from the argu-
ments

– argtranslator translates an argument as used in defining a function

• typetranslator translates Fumurt types to their C++ equivalents. Currently
there are no user-defined types, so only basic types need to be translated.

• callargTranslator translates a call argument to the C++ equivalent

• functioncalltranslator translates function calls to C++ syntax

• basicmathcalltranslator translates calls to plus, minus, divide and multiply
into +,-,/, and *

• gettopthreadstatements gets the C++ statements spawning the threads.

• getprintlistdeclarations gets the printList declarations. These are lists in
which strings to be printed are kept. One for each thread

• getmain gets the main function. The main function only spawns the threads
and then goes to sleep

• getsynchronizerfunction gets the mostly static and hand-written function that
performs all actions during the communication phase

• getGlobalSynchVariableDeclarations gets the C++ declarations of the syn-
chronized variables

• getsynchronizedvariables gets the definitions of the synchronized variables, so
that they can later be used in getGlobalSynchVariableDeclarations

Classes The generator uses classes needed to annotate the AST, for example class
aDefinition(val leftside:aDefLhs, val rightside:aDefRhs). Existing AST classes are
used unless extra information needs to be held or it is a parent of such a class.
The most dramatic example is class aDefLhs(val description:DefDescriptionT, val
id:IdT, val cppid:IdT, val callingthread:String, val args:Option[Arguments], val re-
turntype:TypeT). Here, we see the new C++ name, as well as which thread is meant
to call the function. These are in the Ast.scala file.

53



5.6 Not Implemented
Considering the nature of languages, the amount left undone could very well be
infinite. The following list are for things that make the current implementation
feel incomplete.

• Loops

• User-defined types

• Boolean functions

• Comparison functions (beside equal)

• Exit function. This is not particularly important, as the systems Fumurt is
made for are not expected to ever exit

• A check that only the thread with write rights to a synchronized variable is
allowed to write to that variable

• Some checks for the equal function

• Any other IO than print to console
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Chapter 6

Testing

6.1 Hello World
A simple repeating Hello World is written like this:

1 program helloworld : Nothing =
2 {
3 threadPrintHelloWorld ()
4 }
5

6 thread threadPrintHelloWorld : Nothing =
7 {
8 actionPrint (" Hello World \n")
9 threadPrintHelloWorld ()

10 }

Which prints Hello World forever:
1 Hello World
2 Hello World
3 Hello World
4 Hello World
5 Hello World
6 Hello World
7 /* and so on */

6.2 Multithreaded Hello World
A dualthreaded hello World is written like this:

1 program helloworld : Nothing =
2 {
3 threadPrintHello ()
4 threadPrintWorld ()
5 }
6

7 thread threadPrintWorld : Nothing =
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8 {
9 actionPrint (" World \n")

10 threadPrintWorld ()
11 }
12

13 thread threadPrintHello : Nothing =
14 {
15 actionPrint (" Hello ")
16 threadPrintHello ()
17 }

Which also prints Hello World forever:
1 Hello World
2 Hello World
3 Hello World
4 Hello World
5 Hello World
6 Hello World
7 /* and so on */

Note there is absolutely no performance benefits to dualthreading this, as the
IO is sequential and this program does nothing but IO.

6.3 Synchronized Integer
Synchronized variables are the same in all threads, and mutations are published in
the communicative phase.

1 program helloworld : Nothing =
2 {
3 synchronized variable synchronizedCounter : Integer =

{ synchronized ( variable =0, writer = threadC )}
4 threadA ( synchronizedCounter )
5 threadB ( synchronizedCounter )
6 threadC ( synchronizedCounter )
7 }
8

9 thread threadA ( synchronizedCounter : Integer ): Nothing =
10 {
11 actionPrint ( toString ( synchronizedCounter ))
12 actionPrint (" == ")
13 threadA ( synchronizedCounter )
14 }
15

16 thread threadB ( synchronizedCounter : Integer ): Nothing =
17 {
18 actionPrint ( toString ( synchronizedCounter ))
19 actionPrint ("\n")
20 threadB ( synchronizedCounter )
21 }
22

23 thread threadC ( synchronizedCounter : Integer ): Nothing =
24 {
25 actionMutate ( newValue =plus(left= synchronizedCounter , right =1) ,

variable = synchronizedCounter )
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26 threadC ( synchronizedCounter )
27 }

And we can see that the number is consistent across threads:
1 0 == 0
2 1 == 1
3 2 == 2
4 3 == 3
5 4 == 4
6 5 == 5
7 6 == 6
8 7 == 7
9 8 == 8

10 9 == 9
11 /* and so on */

6.4 Functions, Actions, Recursion and the Limi-
tations of Integers

An example with a single thread, a square and a factorial function and an action
is presented below.

1 program helloworld : Nothing =
2 {
3 threadA (d=1.0 , i=1, actionPrintSquare = actionPrintSquare )
4 }
5

6 thread threadA (d:Double , i:Integer ,
actionPrintSquare : Inclusion ): Nothing =

7 {
8 function factorial (i: Integer ): Integer =
9 {

10 if( condition = equal (left =1, right =i), then =1,
else= multiply (left=i, right = factorial ( minus (left=i,
right =1))))

11 }
12 actionPrint ("The factorial of ")
13 actionPrint ( toString (i))
14 actionPrint (" is ")
15 actionPrint ( toString ( factorial (i)))
16 actionPrint (" ")
17 actionPrintSquare (d)
18 threadA (d = plus(left=d, right =0.5) , i = plus(left=i, right =1) ,

actionPrintSquare = actionPrintSquare )
19 }
20

21 action actionPrintSquare (d: Double ): Nothing =
22 {
23 function square (x: Double ): Double = { multiply (left=x, right =x)}
24 actionPrint ("The square of ")
25 actionPrint ( toString (d))
26 actionPrint (" is ")
27 actionPrint ( toString ( square (d)))
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28 actionPrint ("\n")
29 }

When run, this example gives the following output:
1 The factorial of 1 is 1 The square of 1.000000 is 1.000000
2 The factorial of 2 is 2 The square of 1.500000 is 2.250000
3 The factorial of 3 is 6 The square of 2.000000 is 4.000000
4 The factorial of 4 is 24 The square of 2.500000 is 6.250000
5 The factorial of 5 is 120 The square of 3.000000 is 9.000000
6 The factorial of 6 is 720 The square of 3.500000 is 12.250000
7 The factorial of 7 is 5040 The square of 4.000000 is 16.000000
8 The factorial of 8 is 40320 The square of 4.500000 is 20.250000
9 The factorial of 9 is 362880 The square of 5.000000 is 25.000000

10 The factorial of 10 is 3628800 The square of 5.500000 is 30.250000
11 The factorial of 11 is 39916800 The square of 6.000000 is 36.000000
12 The factorial of 12 is 479001600 The square of 6.500000 is

42.250000
13 The factorial of 13 is 1932053504 The square of 7.000000 is

49.000000
14 The factorial of 14 is 1278945280 The square of 7.500000 is

56.250000
15 The factorial of 15 is 2004310016 The square of 8.000000 is

64.000000
16 The factorial of 16 is 2004189184 The square of 8.500000 is

72.250000
17 The factorial of 17 is -288522240 The square of 9.000000 is

81.000000
18 The factorial of 18 is -898433024 The square of 9.500000 is

90.250000
19 The factorial of 19 is 109641728 The square of 10.000000 is

100.000000
20 The factorial of 20 is -2102132736 The square of 10.500000 is

110.250000
21 The factorial of 21 is -1195114496 The square of 11.000000 is

121.000000
22 The factorial of 22 is -522715136 The square of 11.500000 is

132.250000
23 The factorial of 23 is 862453760 The square of 12.000000 is

144.000000
24 The factorial of 24 is -775946240 The square of 12.500000 is

156.250000
25 The factorial of 25 is 2076180480 The square of 13.000000 is

169.000000
26 The factorial of 26 is -1853882368 The square of 13.500000 is

182.250000
27 The factorial of 27 is 1484783616 The square of 14.000000 is

196.000000
28 The factorial of 28 is -1375731712 The square of 14.500000 is

210.250000
29 The factorial of 29 is -1241513984 The square of 15.000000 is

225.000000
30 The factorial of 30 is 1409286144 The square of 15.500000 is

240.250000
31 The factorial of 31 is 738197504 The square of 16.000000 is

256.000000
32 The factorial of 32 is -2147483648 The square of 16.500000 is

272.250000
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33 The factorial of 33 is -2147483648 The square of 17.000000 is
289.000000

34 The factorial of 34 is 0 The square of 17.500000 is 306.250000
35 The factorial of 35 is 0 The square of 18.000000 is 324.000000
36 /* and so on */

Here we see a problem with relying on integers of limited size. 32-bit integer is
clearly inadequate for the factorial calculation. As for the eventual answer to the
factorial calculation being zero, this seems to be a result of the C++ compiler’s
optimizations. No optimization gives the stack overflow we expect; running the
binary results in a segmentation fault when compiled with GCC with -O0 or -O1
or Clang with -O0. Though there are problems with integer wrap-around and stack
overflow, a recursive factorial function is a classic way to demonstrate the syntax
of a language.

6.5 Full Program Test With C++ Intermediate
The following Fumurt code:

1 program p: Nothing =
2 {
3 synchronized variable synchronizedNumber : Integer =

{ synchronized ( variable =0, writer = threadPrintHello )}
4 threadPrintHello ( synchronizedNumber )
5 threadPrintWorld ( synchronizedNumber )
6 threadPrintBaz ( actionPrintFoo = actionPrintFoo , counter =0.0 ,

integerIdentity = integerIdentity )
7 }
8

9 thread threadPrintWorld ( synchronizedNumber : Integer ): Nothing =
10 {
11 actionPrint (" world ")
12 actionPrint ( toString ( synchronizedNumber ))
13 threadPrintWorld ( synchronizedNumber )
14 }
15

16 thread threadPrintHello ( synchronizedNumber : Integer ): Nothing =
17 {
18 actionPrint ( toString ( synchronizedNumber ))
19 actionPrint (" Hello ")
20 actionMutate ( variable = synchronizedNumber ,

newValue =plus(left= synchronizedNumber , right =1))
21 threadPrintHello ( synchronizedNumber )
22 }
23

24 thread threadPrintBaz ( actionPrintFoo :Inclusion ,
integerIdentity :Inclusion , counter : Double ): Nothing =

25 {
26 action actionPrintBaz ( counter : Double ): Nothing =
27 {
28 actionPrint (" BAZ ")
29 actionPrint ( toString ( counter ))
30 actionPrint (" ")
31 }
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32

33 actionPrintBaz ( counter )
34 actionPrintFoo ( integerIdentity )
35 threadPrintBaz ( counter = minus ( right =1.0 , left= counter ),

actionPrintFoo = actionPrintFoo , integerIdentity = integerIdentity )
36 }
37

38 action actionPrintFoo ( integerIdentity : Inclusion ): Nothing =
39 {
40 action actionPrintFooo : Nothing =
41 {
42 actionPrint (" FOOO ")
43 }
44 actionPrint (" FOO ")
45 actionPrintFooo ()
46 actionPrint ( toString ( integerIdentity (5)))
47 actionPrint (" ")
48 actionPrint (if( condition =true , then= toString (6) , else= toString (3)))
49 actionPrint ("\n")
50 }
51

52 function integerIdentity (x: Integer ): Integer = {x}

The program gets compiled to the following C++11 code:
1 # include <iostream >
2 # include <thread >
3 # include <string >
4 # include <atomic >
5 # include <condition_variable >
6 # include <list >
7 # include <chrono >
8

9

10 # define NUMTOPTHREADS 3
11

12 [[ noreturn ]] static void threadPrintWorld ();
13 [[ noreturn ]] static void threadPrintHello ();
14 [[ noreturn ]] static void threadPrintBaz ();
15 void actionPrintBaz$threadPrintBaz ( double counter );
16 int integerIdentity$ (int x);
17 void actionPrintFoo$threadPrintBaz ();
18 void actionPrintFooo$threadPrintBazactionPrintFoo ();
19

20 static int synchronizedNumber = 0;
21 static int writeSynchronizedNumber = 0;
22 static std::list <std::string > printthreadPrintHello ;
23 static std::list <std::string > printthreadPrintWorld ;
24 static std::list <std::string > printthreadPrintBaz ;
25 static std::atomic <int > rendezvousCounter ;
26 static std:: mutex rendezvousSyncMutex ;
27 static std:: condition_variable cv;
28 static double threadPrintBaz$counter ;
29 static void waitForRendezvous (std:: string name)
30 {
31 std:: unique_lock <std::mutex > lk( rendezvousSyncMutex );
32 ++ rendezvousCounter ;
33 if( rendezvousCounter .load () < NUMTOPTHREADS )
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34 {
35 cv.wait(lk);
36 }
37 else if ( rendezvousCounter .load () == NUMTOPTHREADS )
38 {
39 while (! printthreadPrintHello . empty ()){
40 std::cout << printthreadPrintHello . front ();
41 printthreadPrintHello . pop_front ();
42 }
43 while (! printthreadPrintWorld . empty ()){
44 std::cout << printthreadPrintWorld . front ();
45 printthreadPrintWorld . pop_front ();
46 }
47 while (! printthreadPrintBaz . empty ()){
48 std::cout << printthreadPrintBaz . front ();
49 printthreadPrintBaz . pop_front ();
50 }
51 synchronizedNumber = writeSynchronizedNumber ;
52

53 {
54 rendezvousCounter . store (0);
55 cv. notify_all ();
56 }
57 }
58 else
59 {
60 std::cout << " error in wait for " << name << ". Rendezvouscounter

out of bounds . RedezvousCounter = " <<
rendezvousCounter .load () << "\n";

61 exit (0);
62 }
63 }
64

65

66

67 [[ noreturn ]] static void threadPrintWorld ()
68 { while (true)
69 {
70 printthreadPrintWorld . push_back (" world ");
71 printthreadPrintWorld . push_back (std:: to_string ( synchronizedNumber ));
72 waitForRendezvous (" threadPrintWorld ");
73 continue ;
74 }
75 }
76

77 [[ noreturn ]] static void threadPrintHello ()
78 { while (true)
79 {
80 printthreadPrintHello . push_back (std:: to_string ( synchronizedNumber ));
81 printthreadPrintHello . push_back (" Hello ");
82 writeSynchronizedNumber = ( synchronizedNumber + 1);
83 waitForRendezvous (" threadPrintHello ");
84 continue ;
85 }
86 }
87

88 [[ noreturn ]] static void threadPrintBaz ()
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89 { while (true)
90 {
91 actionPrintBaz$threadPrintBaz ( threadPrintBaz$counter );
92 actionPrintFoo$threadPrintBaz ();
93 waitForRendezvous (" threadPrintBaz ");
94 threadPrintBaz$counter = ( threadPrintBaz$counter - 1.0);
95

96 continue ;
97 }
98 }
99

100 void actionPrintBaz$threadPrintBaz ( double counter )
101 {
102 printthreadPrintBaz . push_back (" BAZ ");
103 printthreadPrintBaz . push_back (std:: to_string ( counter ));
104 printthreadPrintBaz . push_back (" ");
105 }
106

107 int integerIdentity$ (int x)
108 {
109 return x;
110 }
111

112 void actionPrintFoo$threadPrintBaz ()
113 {
114 printthreadPrintBaz . push_back (" FOO ");
115 actionPrintFooo$threadPrintBazactionPrintFoo ();
116 printthreadPrintBaz . push_back (std:: to_string ( integerIdentity$ (5)));
117 printthreadPrintBaz . push_back (" ");
118 printthreadPrintBaz . push_back (std:: to_string (6));
119 printthreadPrintBaz . push_back ("\n");
120 }
121

122 void actionPrintFooo$threadPrintBazactionPrintFoo ()
123 {
124 printthreadPrintBaz . push_back (" FOOO ");
125 }
126

127

128 int main ()
129 {
130 rendezvousCounter . store (0);
131

132 threadPrintBaz$counter = 0.0;
133 std:: thread tthreadPrintHello ( threadPrintHello );
134 std:: thread tthreadPrintWorld ( threadPrintWorld );
135 std:: thread tthreadPrintBaz ( threadPrintBaz );
136 while (true)
137 {
138 std:: this_thread :: sleep_for (std:: chrono :: seconds (1));
139 }
140 }

When run in a terminal, this results in the following output:
1 0 Hello world 0 BAZ 0.000000 FOO FOOO 5 6
2 1 Hello world 1 BAZ -1.000000 FOO FOOO 5 6
3 2 Hello world 2 BAZ -2.000000 FOO FOOO 5 6
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4 3 Hello world 3 BAZ -3.000000 FOO FOOO 5 6
5 4 Hello world 4 BAZ -4.000000 FOO FOOO 5 6
6 /* and so on ...*/

6.6 Error messages
Error messages are useful to detect errors in the program at compile time. Changing
the source in 6.5 to the following erroneous program allow us to test them:

1 program p: Nothing =
2 {
3 synchronized variable synchronizedNumber : Integer =

{ synchronized ( variable =0, writer = threadPrintHello )}
4 threadPrintWorld ( synchronizedNumber )
5 threadPrintLol ( actionPrintFoo = integerIdentity ,

integerIdentity = integerIdentityyy )
6 }
7

8 thread threadPrintWorld ( synchronizedNumber : Integer ): Nothing =
9 {

10 actionPrint (" world ")
11 actionPrint ( toString ( synchronizedNumber ))
12 threadPrintWorld ( synchronizedNumber )
13 }
14

15 thread threadPrintHello ( synchronizedNumber : Integer ): Nothing =
16 {
17 actionPrint ( synchronizedNumber )
18 actionPrint (" Hello ")
19 actionMutate ( variable = synchronizedNumber ,

newValue =plus(left= synchronizedNumber , right =1))
20 threadPrintHello ( synchronizedNumber )
21 }
22

23 thread threadPrintLol ( actionPrintFoo :Inclusion ,
integerIdentity : Inclusion ): Nothing =

24 {
25 action actionPrintLol : Nothing =
26 {
27 actionPrint (" LOL ")
28 }
29

30 actionPrintLol ()
31 actionPrintFoo ( integerIdentity )
32 threadPrintLol ( actionPrintFoo = actionPrintFoo ,

integerIdentity = integerIdentity )
33 }
34

35 function printFoo ( integerIdentity : Inclusion ): Nothing =
36 {
37 action actionPrintFooo : Nothin =
38 {
39 actionPrint (" FOOO ")
40 }
41 actionPrint (" FOO ")
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42 actionPrintFooo ()
43 actionPrint ( toString ( integerIdentity (5.0) ))
44 actionPrint (" ")
45 actionPrint (if( condition =0, then =6, else= toString (3)))
46 actionPrint ( toString (if( condition =false , then =6, else =3)))
47 actionPrint ("\n")
48 }
49

50 function integerIdentity (x: Integer ): Integer = { multiply (left=x,
right =1.0) }

This causes the Fumurt checker to produce the following errors:
1 0.0: thread threadPrintHello is declared but not used
2 global position
3 ^
4

5 5.33: Passed inclusion must be the same as the one referenced inside
the function

6 threadPrintLol ( actionPrintFoo = integerIdentity ,
integerIdentity = integerIdentityyy )

7

8 ^
9

10 5.66: integerIdentityyy not found
11 threadPrintLol ( actionPrintFoo = integerIdentity ,

integerIdentity = integerIdentityyy )
12

13 ^
14

15 17.15 : Expected type String . Got Integer
16 actionPrint ( synchronizedNumber )
17

18 ^
19

20 31.3: actionPrintFoo not found
21 actionPrintFoo ( integerIdentity )
22

23 ^
24

25 32.33 : actionPrintFoo not found
26 threadPrintLol ( actionPrintFoo = actionPrintFoo ,

integerIdentity = integerIdentity )
27

28 ^
29

30 39.5: Expected return type Nothin . Got Nothing
31 actionPrint (" FOOO ")
32

33 ^
34

35 37.3: actions cannot be defined in functions
36 action actionPrintFooo : Nothin =
37

38 ^
39

40 42.3: Expected return type Nothing . Got Nothin
41 actionPrintFooo ()
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42

43 ^
44

45 43.40 : Call argument type should be Integer . Call argument type was
Double

46 actionPrint ( toString ( integerIdentity (5.0) ))
47

48 ^
49

50 45.28 : Call argument type should be Boolean . Call argument type was
Integer

51 actionPrint (if( condition =0, then =6, else= toString (3)))
52

53 ^
54

55 45.36 : Call argument type should be String . Call argument type was
Integer

56 actionPrint (if( condition =0, then =6, else= toString (3)))
57

58 ^
59

60 50.48 : This call to multiply returns a Double not an Integer
61 function integerIdentity (x: Integer ): Integer = { multiply (left=x,

right =1.0) }
62

63 ^
64

65 13 errors found

6.7 Performance

In order to understand the cost of the synchronization in the execution model, a
test was performed. The C++ code generated in 6.5 was modified to exit when
synchronizedNumber was equal to or bigger than 20000. Let this be the original.
Then all synchronization mechanisms was removed. Let this be the unsynchro-
nized. Then the print statements of both was removed, as if the original Fumurt
program had had no calls to actionPrint. Let these be originalNoPrint and unsyn-
chronizedNoPrint. The times taken until completion was then measured using the
Unix time utility. The optimizations used were “-O3 -march=native” on an Intel
i5-2500 CPU. The results were very interesting:

Code Time until completion (in seconds)
original 2.399

unsynchronized 4.797
originalNoPrint 0.179

unsynchronizedNoPrint 0.002
The same results are visualized in the plot below:
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Two things can be concluded from these measurements:

1. The execution model incurs considerable cost

2. The execution model can achieve superior performance compared to an un-
synchronized model when the program is dominated by access to terminal
output. One may speculate that this is due to resource contention and ap-
plies equally to all inherently sequential IO
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Chapter 7

Conclusion, Discussion and
Further Work

7.1 Conclusion
During the writing of this thesis, a deterministic multithreaded language has been
designed and a compiler has been built for it. In this report it has been shown that
creating a programming language that eliminates almost all of the difficulties of
multithreaded programming is possible, while maintaining some of the architectural
and performance benefits of multithreading. Fumurt also presents some new ideas
regarding the ways in which code should be structured, possibly making it easier to
maintain large software projects. Yet Fumurt is not near being a usable language,
and many questions remain unanswered.

7.2 Discussion
In hindsight, the code generator could have been better written. Adding an addi-
tional two steps with the annotator was a fairly late decision, and the architecture
of the module suffered for it. There’s also numerous bugs and lacking features,
as well as corner cases where the appropriate behavior simply has not been deter-
mined. The various features of the language included with the intent of easing the
maintenance of large programs are not rooted in empirical studies, which is clearly
unfortunate. In the case where a computational phase runs for a long time, the
IO buffers may grow to be too large to be stored in memory. While this is not
an issue for desktop and laptop computers where filling up the memory takes so
long that the program’s unresponsiveness is the bigger issue, it’s a bigger problem
for microcontrollers. Fixing this problem means that the sequential IO and inter-
thread communication abstraction which the programming language provides can
in extreme cases require that the execution itself becomes sequential. It seems intu-
itively possible that this is simply a necessity when providing such an abstraction.
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In situations where performance is more important than predictability, mechanisms
need to be provided to the programmer so that determinism requirements can be
relaxed. Similarly, some kinds of recursion have memory use requirements which
are hard to optimize away. The correct way to handle this is yet to be determined.

More fundamentally, the literature concerning multithreading seems divided
over what should be required to be deterministic by the language and what should
require programmer intervention if a deterministic sequence is required. It is un-
clear whether this thesis has the best approach.

7.3 Suggestions for Future Work
It is common for programming languages to need a decade of intensive development
by several contributors before it is ready for serious usage. It is therefore not hard
to come up with ways in which Fumurt could be improved. For ideas, see section
4.6 and 5.6. But not all improvements to Fumurt are of academic interest; much
of the work is simply implementation of pretty mundane things. Improvements to
the execution model might be more interesting. There are many ideas in section
4.6 about how the model might be refined. Investigating solutions to employing
deterministic Fumurt or Fumurt-like systems while accommodating hardware faults
and distributed systems is another possibility. An Erlang/OTP system might be
able to serve as a supervisor for several networked systems running deterministic
code. Lastly, there seems to be little empirical work when it comes to programming
language design. Performing empirical studies among programmers investigating
what programming language ideas are actually helpful seems like a good idea.
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Appendix A

System manual

To avoid confusion when discussing compiling the compiler, the Fumurt compiler
will be referred to as “the program”.

To compile this code you need the Simple Build Tool (SBT), available at http:
//www.scala-sbt.org/. SBT will download the dependencies required including
the compiler and the parser combinator library. It will also allow you to run the
program. Depending on the way you install SBT and on which platform, you may
have to install a Java runtime environment in order to run SBT

To compile the code using SBT, a certain directory hierarchy is required. The
directory in which you run SBT must be the same directory that the “build.sbt”
file and “src” directory is in. “build.sbt” holds dependency and compilation op-
tions for SBT. The “src” directory holds all the source code for the project in a
structure. Since there’s only Scala code in this project, the source files shall be in
“src/main/scala”.

Once SBT is installed and the directory structure conforms to SBT rules, SBT
can be started in the directory by using the “sbt” command in a terminal in the
directory holding “build.sbt” file and “src”. SBT will then download the files needed
to compile and run the program. This usually takes a long while, depending on
your Internet connection. Once this is done, SBT will present a command prompt.
The program can then be compiled and run from this SBT command prompt using
the “run [name of Fumurt file]” command. The compilation (of the compiler)
also usually takes a while. Note that the Fumurt source file must be in the same
directory that you launch SBT in, as the the Fumurt compiler does not handle file
paths in its input.

The Fumurt compiler uses GCC, and GCC must therefore be installed. If
GCC is not installed, the user may compile the generated C++ from the generated
“generated.cpp” file. The options “-pthread” and “-std=c++11” are required when
using Clang/GCC on Linux, but not using the Microsoft Visual C++ compiler on
Windows.

If everything goes well, the output will be a binary executable named “gener-
ated”, with “-O3” and “march=native” options.

Example:

72



1 $ ls
2 build .sbt src test. fumurt
3 $ sbt
4 [info] /* current sbt state */
5 > run test. fumurt
6 [info] Running fumurtCompiler .Main test. fumurt
7 [ success ] Total time: 2 s, completed May 29, 2015 5:42:18 PM
8 > /* ctrl+c*/
9 $ ls

10 generated .cpp build .sbt generated src test. fumurt
11 $ ./ generated
12 /* program output here */
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Appendix B

User manual

You need to have Scala installed (http://www.scala-lang.org/download/) to
run the Fumurt compiler from compiled bytecode. The current directory must
be the one above the “.class” bytecode files. Because the starting point of the
program is function “main” in object “Main” in package “fumurtCompiler”, the
folder containing the bytecode files must be “fumurtCompiler” (i.e. the name
of the package), and the command to run must be “scala fumurtCompiler.Main
[fumurt source file here]”.

The Fumurt compiler uses GCC, and GCC must therefore be installed. If
GCC is not installed, the user may compile the generated C++ from the generated
“generated.cpp” file. The options “-pthread” and “-std=c++11” are required when
using Clang/GCC on Linux, but not using the Microsoft Visual C++ compiler on
Windows.

Example:
1 $ ls
2 fumurtCompiler test. fumurt
3 $ ls fumurtCompiler
4 aCallarg . class
5 FumurtParser$$anonfun$subsequentArgsParser$1$$anonfun$apply$11 . class
6 ActionT . class
7 FumurtParser$$anonfun$subsequentArgsParser$1 . class
8 ActionT$ . class
9 FumurtParser$$anonfun$subsequentArgsParser$2 . class

10 /* more bytecode files here */
11 $
12 $ scala fumurtCompiler .Main test. fumurt
13 $ ./ generated
14 /* program output here */
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Appendix C

Code listing

Comments and commented-out diagnostics are left in, as they might prove useful
to anyone improving on the work.

C.1 build.sbt

1 name := " solution "
2

3 organization := "NTNU ITK"
4

5 version := " 0.1.0 "
6

7 scalaVersion := " 2.11.6 "
8

9 scalacOptions ++= Seq("-feature ", "-optimise ", "-Xlint ",
"-Xfatal - warnings ", "-deprecation ", "-Ywarn - unused ",
"-Ywarn -infer -any", "-Ywarn -unused - import ", "-Ywarn -dead -code",
"-Ywarn - inaccessible ", "-Ywarn -numeric - widen ",
"-Ywarn -nullary - override ", "-Ywarn -nullary -unit",
"-Ywarn -adapted -args")

10

11 libraryDependencies ++= Seq( "org.scala -lang. modules " %%
"scala -parser - combinators " % " 1.0.3 ")

C.2 Main.scala

1 package fumurtCompiler
2

3 import scala .io. Source ._
4 import scala .util. parsing . input . Positional
5

6 object CompileTypeOption extends Enumeration
7 {
8 type CompileTypeOption = Value
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9 val compiledToGo , compiledToC , compiledToCpp , interpreted = Value
10 }
11

12 import CompileTypeOption ._
13

14 object Main
15 {
16 def main(args: Array [ String ]) :Unit ={
17 if(args. length <1)
18 {
19 println ("no file found in arguments \n")
20 }
21 else
22 {
23 val parts = args (0). split (""" \. """)
24 if( parts . length ==2)
25 {
26 if( parts (1) ==" fumurt ")
27 {
28 compile ( getOptions (args.drop (1) , args (0)))
29 }
30 else
31 {
32 println (" unknown file ending : " + parts (1) + "\n")
33 }
34 }
35 else
36 {
37 println ("too many arguments \n")
38 }
39 }
40 }
41

42 def getOptions (args: Array [ String ],file: String ): Options =
43 {
44 // println (args. toString )
45 new Options ( CompileTypeOption . interpreted , true , file)
46 }
47

48 def compile (opts: Options ):Unit =
49 {
50 // println (" Now compiling !")
51 val sourcestring = fromFile (opts.file). mkString
52 FumurtScanner .scan( sourcestring ) match
53 {
54 case Left( error ) => println (" Error in scanner : " +

error . toString )
55 case Right ( tokens ) =>
56 {
57 // println (" successful scan. Tokens : "+ tokens . toString +"\n")
58 FumurtParser . parse ( tokens ) match
59 {
60 case Left( error ) => println (" Error in parser : " +

error . toString )
61 case Right (ast) =>
62 {
63 // println (" Success in parser : " + ast. toString )
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64 FumurtTypeChecker . check (ast) match
65 {
66 case Some( errors ) =>
67 {
68 errors .map(x=> println (x))
69 val errornum : String = errors . length match
70 {
71 case 1 => "one"
72 case 2 => "two"
73 case 3 => " three "
74 case 4 => "four"
75 case 5 => "five"
76 case 6 => "six"
77 case 7 => " seven "
78 case 8 => " eight "
79 case 9 => "nine"
80 case x => x. toString
81 }
82 val singularplural : String = if( errors . length ==1){"

error "}else{" errors "}
83 println ( errornum . capitalize + singularplural + "

found ")
84 }
85 case None =>
86 {
87 // println ("\ nNo errors in checker ")
88 val generatedcode = FumurtCodeGenerator . generate (ast)
89 // println ("\ ncode generated : \n" + generatedcode )
90 import java.nio.file .{ Paths , Files }
91 import java.nio. charset . StandardCharsets
92 val outname = " generated "
93 val fileending = ".cpp"
94 Files . write ( Paths .get("./"+ outname + fileending ),

generatedcode . getBytes ( StandardCharsets . UTF_8 ))
95 val options = " -pthread -std=c++11 -O3 -march = native "
96 // println ("\n\n=== Starting GCC cpp compilation ===")
97 // println (" options = " + options )
98 import scala .sys. process ._
99 val command = "g++ " + outname + fileending + options

+ " -o " + outname
100 // println ( command )
101 if( System . getProperty ( "os.name"

). startsWith (" Windows ") )
102 {
103 println ("OS identified as Windows . Please use the

Microsoft Visual C++ compiler ( included in
Visual Studio ) to compile the generated
\" generated .cpp \" file")

104 }
105 else
106 {
107 ( command ).!
108 }
109 }
110 }
111 }
112 }
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113 }
114 }
115

116 }
117

118 }
119

120 class Options (val compileTypeOption : CompileTypeOption , val
debug :Boolean , val file: String )

C.3 Ast.scala

1 package fumurtCompiler
2

3 import scala .util. parsing . input . Positional
4

5

6 abstract class Token () extends Positional
7 abstract class DefDescriptionT () extends Token
8 abstract class BasicValueT () extends Token
9 abstract class SyntaxT () extends Token

10

11 case class EmptyT () extends Token
12 case class TrueT () extends BasicValueT { override def toString =

"true"}
13 case class FalseT () extends BasicValueT { override def toString =

" false "}
14 case class ProgramT () extends DefDescriptionT { override def toString

= " program "}
15 case class ActionT () extends DefDescriptionT { override def toString =

" action "}
16 case class ThreadT () extends DefDescriptionT { override def toString =

" thread "}
17 case class FunctionT () extends DefDescriptionT { override def toString

= " function "}
18 case class ValueT () extends DefDescriptionT { override def toString =

" value "}
19 case class SynchronizedVariableT () extends DefDescriptionT { override

def toString = " synchronized variable "}
20 case class OpenParenthesisT () extends SyntaxT { override def toString

= " \"(\" "}
21 case class CloseParenthesisT () extends SyntaxT { override def toString

= "\") \""}
22 case class OpenCurlyBracketT () extends SyntaxT { override def toString

= " \"{\" "}
23 case class CloseCurlyBracketT () extends SyntaxT { override def

toString = " \"}\" "}
24 case class DoubleT (val value : Double ) extends BasicValueT { override

def toString = " decimal number "}
25 case class IntegerT (val value :Int) extends BasicValueT { override def

toString = " integer "}
26 case class EqualT () extends SyntaxT { override def toString = " \"=\" "}
27 case class ColonT () extends SyntaxT { override def toString = " \":\" "}
28 case class CommaT () extends SyntaxT { override def toString = "\" ,\""}
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29 case class NewlineT () extends SyntaxT { override def toString =
" newline "}

30 case class IdT(val value : String ) extends Token { override def toString
= " identifier (\""+ value +"\")"}

31 case class TypeT (val value : String ) extends Token { override def
toString = "type (\""+ value +"\")"}

32 case class StringT (val value : String ) extends BasicValueT { override
def toString = " string "}

33 case class SpaceT () extends SyntaxT
34 case class DummyT () extends Token
35 case class EofT () extends SyntaxT { override def toString = "end of

file"}
36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54 class Expression () extends Positional
55 trait Callarg extends Positional
56 trait Statement extends Expression
57 trait BasicValueStatement extends Statement with Callarg with

aCallarg with aStatement
58

59 case class Definition (val leftside :DefLhs , val rightside : DefRhs )
extends Expression

60 case class DefLhs (val description : DefDescriptionT , val id:IdT , val
args: Option [ Arguments ], val returntype : TypeT )

61 /* case class Arguments (val id:IdT , val typestr :TypeT , val
args2 : Option [ Arguments2 ])

62 case class Arguments2 (val id:IdT , val typestr :TypeT , val
args2 : Option [ Arguments2 ]) */

63 case class Arguments (val args:List[ Argument ])
64 case class Argument (val id:IdT , val typestr : TypeT )
65 case class DefRhs (val expressions :List[ Expression ] )
66 case class Empty ();
67 case class DefDescription (val value : Token )
68 case class NamedCallarg (id:IdT , argument : Callarg ) // extends Callarg
69 case class NamedCallargs (val value :List[ NamedCallarg ])
70 case class NoArgs () extends Callarg with aCallarg
71

72 case class StringStatement (val value : String ) extends
BasicValueStatement

73 case class IntegerStatement (val value :Int) extends BasicValueStatement
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74 case class DoubleStatement (val value : Double ) extends
BasicValueStatement

75 case class TrueStatement () extends BasicValueStatement
76 case class FalseStatement () extends BasicValueStatement
77 case class IdentifierStatement (val value : String ) extends Statement

with Callarg with aCallarg with aStatement
78 case class FunctionCallStatement (val functionidentifier :String , val

args: Either [Callarg , NamedCallargs ]) extends Statement with Callarg
79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95 trait aExpression
96 trait aCallarg extends Callarg with aStatement
97 trait aStatement extends aExpression
98

99 case class aDefinition (val leftside :aDefLhs , val rightside : aDefRhs )
extends aExpression

100 case class aDefLhs (val description : DefDescriptionT , val id:IdT , val
cppid :IdT , val callingthread :String , val args: Option [ aArguments ],
val returntype : TypeT )

101 case class aArguments (val args:List[ aArgument ])
102 case class aArgument (val id:IdT , cppid :IdT , val typestr : TypeT )
103 case class aDefRhs (val expressions :List[ aExpression ] )
104 case class aNamedCallarg (id:IdT , argument : aCallarg ) // extends Callarg
105 case class aNamedCallargs (val value :List[ aNamedCallarg ])
106

107 case class aFunctionCallStatement (val functionidentifier :String , val
cppfunctionidentifier :String , val
args: Either [aCallarg , aNamedCallargs ], val returntype : String )
extends aStatement with aCallarg

C.4 Scanner.scala

1

2

3 package fumurtCompiler
4

5 import scala . language . implicitConversions
6 import scala .util. parsing . combinator . RegexParsers
7 import scala .util. matching . Regex
8 import scala . language . postfixOps
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9 // import scala .util. parsing . combinator . lexical ._
10 import scala .util. parsing . input . Positional
11

12 object FumurtScanner extends RegexParsers /* with Parsers */
13 {
14 override val skipWhitespace = false
15

16 def scan(in: String ): Either [NoSuccess , List[ Token ]] =
17 {
18 // println (in)
19

20 parseAll (( scanInternal *) , in) match
21 {
22 case Success (result , _) =>
23 {
24 val tokens = result . filter (x=>x match {case SpaceT () => false ;

case _ => true }) :+ EofT ()
25 Right ( tokens )
26 }
27 case f: Failure => Left(f)
28 case e: Error => Left(e)
29 // case Failure (message , reader ) => Left(new

FumurtError ( reader .pos , " Failure : "+ message ,"\n" +
in. lines . toList ( reader .pos.line) +"\n"))

30 // case Error (message ,_) => Left(new FumurtError (Global , " Error :
" + message , ""))

31 }
32

33 }
34

35

36

37 def spaceParser : Parser [ SpaceT ] = positioned ( new Regex (""" """) ^^
{x => /* println (" scanned space ");*/ SpaceT ()} )

38 def programStrParser : Parser [ ProgramT ] = positioned ( new
Regex (" program ") ^^ {x => /* println (" scanned program
"+x. toString );*/ ProgramT ()} )

39 def functionParser : Parser [ FunctionT ] = positioned ( new
Regex (" function ") ^^ {x => /* println (" scanned function
"+x. toString );*/ FunctionT ()} )

40 def threadParser : Parser [ ThreadT ] = positioned ( new Regex (" thread
") ^^ {x => /* println (" scanned thread
"+x. toString );*/ ThreadT ()} )

41 def synchronizedVariableParser : Parser [ SynchronizedVariableT ] =
positioned (new Regex (" synchronized variable ") ^^ {x =>
/* println (" scanned synchronized variable "+x. toString );*/
SynchronizedVariableT () })

42 def valueParser : Parser [ ValueT ] = positioned ( new Regex (" value ")
^^ {x => /* println (" scanned unsafe value
"+x. toString );*/ ValueT ()} )

43 def actionParser : Parser [ ActionT ] = positioned ( new Regex (" action
") ^^ {x => /* println (" scanned action
"+x. toString );*/ ActionT ()} )

44 def trueParser : Parser [ TrueT ] = positioned ( new Regex ("true") ^^ {x
=> /* println (" scanned true "+x. toString );*/ TrueT ()} )

45 def falseParser : Parser [ FalseT ] = positioned ( new Regex (" false ") ^^
{x => /* println (" scanned false "+x. toString );*/ FalseT ()} )
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46 def openParenthesisParser : Parser [ OpenParenthesisT ] = positioned (
new Regex (""" \( """) ^^ {x => /* println (" scanned (
"+x. toString );*/ OpenParenthesisT ()} )

47 def closeParenthesisParser : Parser [ CloseParenthesisT ] = positioned (
new Regex (""" \) """) ^^ {x => /* println (" scanned )
"+x. toString );*/ CloseParenthesisT ()} )

48 def openCurlyBracketParser : Parser [ OpenCurlyBracketT ] = positioned (
new Regex (""" \{ """) ^^ {x => /* println (" scanned {
"+x. toString );*/ OpenCurlyBracketT ()} )

49 def closeCurlyBracketParser : Parser [ CloseCurlyBracketT ] =
positioned ( new Regex (""" \} """) ^^ {x => /* println (" scanned }
"+x. toString );*/ CloseCurlyBracketT ()} )

50 def doubleParser : Parser [ DoubleT ] = positioned ( new
Regex (""" [ -+]?[0 -9]*\.[0 -9]+ """) ^^ {x => /* println (" scanned
double "+x. toString );*/ DoubleT (x. toDouble )} )

51 def intParser : Parser [ IntegerT ] = positioned ( new
Regex (""" [ -+]?(0|[1 -9]\ d*) """) ^^ {x => /* println (" scanned
integer "+x. toString );*/ IntegerT (x. toInt )} )

52 def equalParser : Parser [ EqualT ] = positioned ( new Regex ("=") ^^ {x
=> /* println (" scanned = "+x. toString );*/ EqualT ()} )

53 def colonParser : Parser [ ColonT ] = positioned ( new Regex (":") ^^ {x
=> /* println (" scanned : "+x. toString );*/ ColonT ()} )

54 def commaParser : Parser [ CommaT ] = positioned ( new Regex (",") ^^ {x
=> /* println (" scanned , "+x. toString );*/ CommaT ()} )

55 // def emptyParser : Parser [ EmptyT ] = new Regex ("") ^^ {x =>
println (" scanned empty "); EmptyT ()}

56 def newlineParser : Parser [ NewlineT ] = positioned ( new Regex ("\n")
^^ {x => /* println (" scanned newline ");*/ NewlineT ()} )

57 def idParser : Parser [IdT] = positioned ( new
Regex ("[a-z]+[a-zA -Z]*") ^^ {x => /* println (" scanned id
"+x. toString );*/ IdT(x. toString )} )

58 def stringParser : Parser [ StringT ] = positioned ( new
Regex (""" ("[^"]*") """) ^^ {x => /* println (" scanned string
"+x. toString );*/ StringT (x. toString )} )

59 def typeParser : Parser [ TypeT ] = positioned ( new
Regex ("[A-Z][a-zA -Z]*") ^^ {x => /* println (" scanned type
"+x. toString );*/ TypeT (x. toString )} )

60

61

62 def scanInternal : Parser [ Token ] =
63 {
64 (
65 spaceParser |
66 programStrParser |
67 threadParser |
68 actionParser |
69 synchronizedVariableParser |
70 functionParser |
71 trueParser |
72 falseParser |
73 openParenthesisParser |
74 closeParenthesisParser |
75 openCurlyBracketParser |
76 closeCurlyBracketParser |
77 doubleParser |
78 intParser |
79 equalParser |
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80 colonParser |
81 commaParser |
82 // emptyParser |
83 newlineParser |
84 stringParser |
85 idParser |
86 typeParser
87 )
88 }
89

90

91

92 }

C.5 Parser.scala

1 package fumurtCompiler
2

3 // import scala .util. parsing ._
4 import scala . language . postfixOps
5 import scala . language . implicitConversions
6 import scala .util. parsing . input ._
7 import scala .util. parsing . combinator ._
8 // import scala .util. parsing . combinator . PackratParsers . PackratReader
9 // import scala .util. parsing . combinator . syntactical ._

10 import scala .util. parsing . combinator . PackratParsers
11

12 object FumurtParser extends Parsers // with PackratParsers
13 {
14 override type Elem = Token
15 // type Tokens = Token
16 // type Token = Elem
17

18 def parse (in:List[ Token ]): Either [NoSuccess , List[ Definition ]]=
19 {
20 // val ast = parseAll (( progParser ), in)
21 val res = progParser (new TokenReader (in))
22 res match
23 {
24 case ns: NoSuccess =>
25 {
26 println (res+"\n")
27 // Left(new FumurtError (ns.next.pos , ns.msg , ""))
28 Left(ns)
29 }
30 case _=>
31 {
32 val ast = res.get
33 // println ("\n")
34 // println (ast. toString +"\n")
35 Right (ast)
36 }
37 }
38 }
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39

40

41 def progParser : Parser [List[ Definition ]] = ( paddedDefParser .+) <~
eofParser

42 def paddedDefParser : Parser [ Definition ] =
{/* println (" paddeddefparser ");*/ newlineParser .* ~> defParser
<~ newlineParser .* }

43 def defParser : Parser [ Definition ] = {/* println (" defparser ");*/
positioned (( deflhsParser <~ equalParser ~! newlineParser .*) ~!
defrhsParser ^^ {x=> Definition (x._1 ,x._2)}) }

44 def deflhsParser : Parser [ DefLhs ] = {/* println (" deflhsparser ");*/
( defdescriptionParser ~ idParser ~ argsParser ~! ( colonParser
~> typeParser )) ^^ {x=> DefLhs (x._1._1._1 , x._1._1._2 , x._1._2 ,
x._2)} }

45 def argsParser : Parser [ Option [ Arguments ]] =
{/* println (" argsparser ");*/ openParenthesisParser ~> (( idParser
<~ colonParser ) ~ typeParser ~ subsequentArgsParser .*) <~
closeParenthesisParser ^^{x=>Some( Arguments ( ( Argument (x._1._1 ,
x._1._2) +:
x._2). sortWith (( left , right )=>left.id.value < right .id. value ) ))}
| emptyParser ^^ {x=>None} }

46 def subsequentArgsParser : Parser [ Argument ] =
{/* println (" args2parserparser ");*/ commaParser ~> ( idParser <~
colonParser ) ~ typeParser ^^{x=> Argument (x._1 , x._2)} }

47

48 def defrhsParser : Parser [ DefRhs ] = {/* println ("- defrhsparser ");*/
( openCurlyBracketParser ~ newlineParser .* ~> expressionParser ~
( newlineParser .+ ~> expressionParser ).*) <~ newlineParser .* ~
closeCurlyBracketParser ^^{x=> DefRhs (x._1 +: x._2)} }

49 def expressionParser : Parser [ Expression ] =
{/* println (" expressionparser ");*/ positioned ( defParser |
statementParser ) }

50 /*
51 def defrhsParser : Parser [ DefRhs ] = { println ("- defrhsparser ");

( openCurlyBracketParser ~> expressionParser .+) <~
newlineParser .* ~ closeCurlyBracketParser ^^{x=> DefRhs (x)} }

52 def expressionParser : Parser [ Expression ] =
{ println (" expressionparser "); newlineParser .+ ~>
positioned ( defParser | statementParser ) }

53 */
54 def statementParser : Parser [ Statement ] =

{/* println (" statementparser ");*/ functionCallParser |
basicStatementParser | identifierStatementParser }

55 def callargsParser : Parser [ Either [Callarg , NamedCallargs ]] =
{/* println (" callargsparser ");*/ openParenthesisParser ~>
( namedcallargsParser | callargParser ) <~ closeParenthesisParser
^^{x=>x match {case x: Callarg => Left(x); case
x: NamedCallargs => Right (x)}} }

56 def callargParser : Parser [ Callarg ] = {/* println (" callargparser ");*/
positioned ( functionCallParser | identifierStatementParser |
basicStatementParser | success ( NoArgs ())) }

57 def namedcallargsParser : Parser [ NamedCallargs ] =
{/* println (" namedcallargsparser ");*/ namedcallargParser ~
subsequentnamedcallargsParser .+ ^^ {x => NamedCallargs ((x._1 +:
x._2). sortWith (( left , right )=>left.id.value < right .id. value ))} }

58 def subsequentnamedcallargsParser : Parser [ NamedCallarg ] =
{/* println (" subsequentnamedcallargsParser ");*/ ( commaParser ~!
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success (Unit)) ~> namedcallargParser }
59 def namedcallargParser : Parser [ NamedCallarg ] =

{/* println (" namedcallargparser ");*/ ( idParser <~ equalParser ) ~
callargParser ^^ {x=> NamedCallarg (x._1 , x._2)} }

60 def functionCallParser : Parser [ FunctionCallStatement ] =
{/* println (" functioncallparser ");*/ idParser ~ callargsParser
^^ {x=> FunctionCallStatement (x._1 match {case IdT(str)=>str},
x._2)} }

61

62 /*
63 def argsParser : Parser [ Option [ Arguments ]] = { println (" argsparser ");

openParenthesisParser ~> (( idParser <~ colonParser ) ~
typeParser ~ args2Parser ) <~ closeParenthesisParser
^^{x=>Some( Arguments (x._1._1 , x._1._2 , x._2))} | emptyParser ^^
{x=>None} }

64 def args2Parser : Parser [ Option [ Arguments2 ]] =
{ println (" args2parserparser "); commaParser ~> ( idParser <~
colonParser ) ~ typeParser ~ args2Parser
^^{x=>Some( Arguments2 (x._1._1 , x._1._2 , x._2))} | emptyParser
^^^{ None} }

65 */
66

67

68 def equalParser : Parser [ Token ] = accept ( EqualT ())
69 def colonParser : Parser [Elem] = accept ( ColonT ())
70 def commaParser : Parser [Elem] = accept ( CommaT ())
71 def newlineParser : Parser [Elem] = accept ( NewlineT ())
72 def emptyParser : Parser [ Empty ] = success ( Empty ())
73 def openParenthesisParser : Parser [Elem] = accept ( OpenParenthesisT ())
74 def closeParenthesisParser : Parser [Elem] =

accept ( CloseParenthesisT ())
75 def openCurlyBracketParser : Parser [Elem] =

accept ( OpenCurlyBracketT ())
76 def closeCurlyBracketParser : Parser [Elem] =

accept ( CloseCurlyBracketT ())
77 def programStrParser : Parser [Elem] = accept ( ProgramT ())
78 def actionParser : Parser [Elem] = accept ( ActionT ())
79 def threadParser : Parser [Elem] = accept ( ThreadT ())
80 def functionParser : Parser [ DefDescription ] = accept (" function ",

{case FunctionT () => DefDescription ( FunctionT ())})
81 def eofParser : Parser [Elem] = accept (EofT ())
82 def idParser : Parser [IdT] = accept (" identifier ", {case IdT( value ) =>

{/* println (" idparser accepted "+ value );*/ IdT( value )}})
83 def trueParser : Parser [Elem] = accept ( TrueT ())
84 def falseParser : Parser [Elem] = accept ( FalseT ())
85 def identifierStatementParser : Parser [ IdentifierStatement ]

={ /* println (" identifierstatementparser ");*/
accept (" identifier ", {case
IdT(str)=>{/* println (" identifierstatementparser accepted
"+ str);*/ IdentifierStatement (str)}}) }

86 def basicStatementParser : Parser [ BasicValueStatement ] =
accept (" expected string , integer , boolean or float ", {case
StringT ( value ) => StringStatement ( value );

87 case
IntegerT ( value )=>
IntegerStatement ( value )
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88 case
DoubleT ( value )
=>
DoubleStatement ( value )

89 case
TrueT ()
=>
TrueStatement ()

90 case
FalseT ()
=>
FalseStatement ()}

91 )
92 def typeParser : Parser [ TypeT ] = accept (" expected type. Types are

written with a leading capital letter ", {case x: TypeT => x})
93 def intParser : Parser [Elem] = accept (" integer ", {case x: IntegerT =>

x})
94 def doubleParser : Parser [Elem] = accept (" double ", {case x: DoubleT =>

x})
95 def defdescriptionParser : Parser [ DefDescriptionT ] =

{/* println (" defdescriptionParser ");*/ accept (" expected
function , action , thread or program ", {case x: DefDescriptionT
=> x}) }

96

97

98

99

100

101

102

103 class TokenReader (in:List[ Token ]) extends Reader [Elem]
104 {
105 def atEnd : Boolean = in. isEmpty
106 def first :Elem = in.head
107 def pos: Position = in.head.pos;
108 def rest = new TokenReader (in.tail)
109 }
110 }

C.6 Typechecker.scala

1 package fumurtCompiler
2 import scala . collection . mutable . ListBuffer
3

4 object FumurtTypeChecker
5 {
6 def check (in:List[ Definition ]): Option [List[ FumurtError ]] =
7 {
8 val print = DefLhs ( ActionT () , IdT(" actionPrint "),

Some( Arguments (List( Argument (IdT(" toPrint "),
TypeT (" String "))))), TypeT (" Nothing "))

9 val basicfunctions = List( print )
10

11
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12 // all standard library functions available everywhere ( maybe also
actions ).

13 // checkexpression (in , DefLhs ( UnsafeActionT () , IdT ("") , None ,
TypeT (" Nothing ")), None , List(List ():List[ Definition ]) ,
basics , List ():List[ DefLhs ], List ():List[ FumurtErrors ])

14

15 // println ()
16 val errors = checktop (in , basicfunctions )
17 // println ()
18 if ( errors . isEmpty )
19 {
20 None
21 }
22 else
23 {
24 Some( errors )
25 }
26 }
27

28 def checktop (in:List[ Definition ], basicFunctions :List[ DefLhs ]):
List[ FumurtError ]=

29 {
30 val topdefs = indexlefts (in)
31 val programs = in. filter (x=>(x. leftside . description match {case

ProgramT () => true; case _=> false }))
32 val implicitargs = topdefs . filter (x=>(x. description match {case

ProgramT () => false ; case _=> true }))
33 // println ("\ nimplicitargs is: "+ implicitargs )
34 val programerrors = if( programs . length ==1)
35 {
36 checkprogram ( programs (0) , implicitargs , basicFunctions )
37 }
38 else {List( FumurtError (Global , " There must be exactly one program

definition . "+ programs . length +" program definitions
detected "))}

39 val program = programs (0)
40 // val synchronizedvars = program . rightside . expressions . filter (x=>

x match {case
Definition ( DefLhs ( SynchronizedVariableT () ,_,_,_),_)=>true;
case _=> false }):List[ Definition ]

41 val synchronizedvars = program . rightside . expressions . flatMap (x=>
x match

42 {
43 case deff: Definition =>if(deff. leftside . description ==

SynchronizedVariableT ()) {Some(deff. leftside )} else
{None };

44 case _=>None
45 }
46 ):List[ DefLhs ]
47 val nonProgramDefs = in. filter (x=>(x. leftside . description match

{case ProgramT () => false ; case _=> true }))
48 val othererrors = checkexpressions ( nonProgramDefs , None ,

Some( implicitargs ++ synchronizedvars ), basicFunctions )
49

50 programerrors ++ othererrors
51 }
52
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53 def checkprogram ( program : Definition , topleveldefs :List[ DefLhs ],
basicFunctions :List[ DefLhs ]): List[ FumurtError ]=

54 {
55 def checkuseofthread ( program : Definition ,

thread : DefLhs ):List[ FumurtError ]=
56 {
57 thread . description match
58 {
59 case ThreadT () => program . rightside . expressions .find(y=>y

match {case FunctionCallStatement ( thread .id.value , _) =>
true; case _=> false })

60 match
61 {
62 case Some(_)=> List ();
63 case None=> List( FumurtError (Global , " thread

"+ thread .id. value +" is declared but not used"))
64 }
65 case _=> List ()
66 }
67 }
68 val unusedthreaderrors :List[ FumurtError ] =

topleveldefs . foldLeft (List ():
List[ FumurtError ]) ((x:List[ FumurtError ], y: DefLhs )=>

69 x++ checkuseofthread (program ,y)
70 ):List[ FumurtError ]
71

72 val lefts = indexlefts ( program . rightside . expressions )
73 val unsuitableexpressions =

program . rightside . expressions . foldLeft (List ():
List[ FumurtError ])( (x,y)=>

74 y match
75 {
76 case z: Definition =>
77 {
78 z. leftside . description match
79 {
80 case SynchronizedVariableT () =>
81 {
82 if(z. rightside . expressions . length !=

1){x++ List( FumurtError (z.pos , "only single call to
synchronized permitted "))}

83 else
84 {
85 val synchcall = z. rightside . expressions (0)
86 val signatureerror =
87 synchcall match
88 {
89 case FunctionCallStatement ( " synchronized ",

Right ( NamedCallargs (List(
NamedCallarg (IdT(" variable "),
variablearg : Callarg ),
NamedCallarg (IdT(" writer "),writerarg :
Callarg ))))) =>

90 {
91 x++ checkCallarg (z. leftside . returntype ,

variablearg , IdT(" variable "),
program .leftside , None , basicFunctions ,
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List ()) // TODO: make sure that writer is a
thread that exists .

92 }
93 case _=>x++ List( FumurtError ( synchcall .pos , "must be

call to synchronized with \" variable \" and
\" writer \" arguments "))

94 }
95 x++ signatureerror
96 }
97

98 }
99 case _=> x++ List( FumurtError (z.pos ,"Do not define

functions , actions or unsynchronized values in
Program "))

100 }
101 }
102 case z: FunctionCallStatement =>
103 {
104 if (!z. functionidentifier . startsWith (" thread ")) {x ++

List( FumurtError (z.pos , "Only threads can be called in
Program "))}

105 else
106 {
107 x++ checkstatement (z, program .leftside , None ,

basicFunctions , lefts ++ topleveldefs , TypeT (" Nothing "))
108 }
109

110 }
111 case z: Expression =>x++ List( FumurtError (z.pos , "Only

definitions and thread start statements allowed in
Program "))

112 }
113 )
114 // println ( program . rightside . expressions )
115 // println (" unsuit "+( unusedthreaderrors ++

unsuitabledefinitions . toList ))
116

117 ( unusedthreaderrors ++
unsuitableexpressions . toList ):List[ FumurtError ]

118 }
119

120 def checkexpressions (tree:List[ Expression ],
containingdefinition : Option [ Definition ],
containingdefinitionarguments : Option [List[ DefLhs ]],
basicFunctions :List[ DefLhs ]):List[ FumurtError ]=

121 {
122 val insamedefinition = indexlefts (tree)
123 // println ("\ nin checkexpressions : insamedefinition is

"+ insamedefinition +" containingdefinition is
"+ containingdefinition )

124 tree. foldLeft (List ():List[ FumurtError ]) ((x,y) =>x
++ checkexpression (y, containingdefinition ,
containingdefinitionarguments , basicFunctions ,
insamedefinition ))

125 }
126
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127 def checkexpression ( tocheck : Expression ,
containingdefinition : Option [ Definition ],
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

128 {
129 // println ("\ nIn checkexpression : tocheck :

"+ tocheck +" containingdefinition : "+ containingdefinition +"
arguments : "+ arguments )

130 tocheck match
131 {
132 case x: Definition =>
133 {
134 val (newargs , argpropagationerrors ) = x. leftside .args match
135 {
136 case None => (List () , List ())
137 case Some( Arguments (args)) =>
138 {
139 val hits = arguments match
140 {
141 case Some( contargs ) => args. flatMap (arg =>

( contargs ++ inSameDefinition ).find(y =>
y.id. value == arg.id. value ))

142 case None => args. flatMap (arg =>
inSameDefinition .find(y =>
y.id. value == arg.id. value ))

143 }
144 if (hits. length == args. length ) // used to be !=.

Don ’t know why. bug?
145 {
146 (hits , List ())
147 }
148 else
149 {
150

151 //(hits , List( FumurtError (x.pos ," One or more arguments
not found in local scope "))) TODO: Find better
solution than just abandoning compile time
dependent checking . Checking for each function call
might be possible ...

152 (hits ,List ())
153 }
154 }
155 }
156 checkdefinition (x, containingdefinition .map(x=>x. leftside ),

Some( newargs ), basicFunctions ) ++ argpropagationerrors
157 }
158 case x: Statement => containingdefinition match
159 {
160 case None => List( FumurtError (x.pos , " Statements must be

enclosed in either Program or another definition "))
161 case Some( contdef ) => /* println ("\n"+x);*/ checkstatement (x,

contdef .leftside , arguments , basicFunctions ,
inSameDefinition , contdef . leftside . returntype )

162 }
163 }
164 }
165
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166 def checkstatement ( tocheck :Statement , containingdefinition :DefLhs ,
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ], expectedreturn : TypeT ):
List[ FumurtError ]=

167 {
168 // println ("\ nIn checkstatement : tocheck :

"+ tocheck +" containingdefinition : "+ containingdefinition +"
arguments : "+ arguments )

169 tocheck match
170 {
171 case b: BasicValueStatement =>

checkbasicvaluestatement ( expectedreturn , b, " Return ")
172 case b: IdentifierStatement =>
173 {
174 val statedvalue = findinscope (arguments , inSameDefinition ,

basicFunctions , Some( containingdefinition ), b. value )
175 statedvalue match
176 {
177 case Left( string ) => List( FumurtError (b.pos , /*"in

checkstatement "+ */ string ))
178 case Right ( deflhs ) =>
179 {
180 if( containingdefinition . returntype . value !=

deflhs . returntype . value )
181 {
182 List( FumurtError (b.pos , " expected : "

+ expectedreturn . value + ". Got: "
+ deflhs . returntype . value ))

183 }
184 else
185 {
186 List ()
187 }
188 }
189 }
190 }
191 case y: FunctionCallStatement =>
192 {
193 // println (" found "+y)
194 if (y. functionidentifier =="if")
195 {
196 checkifcall (y, expectedreturn , containingdefinition ,

arguments , basicFunctions , inSameDefinition )
197 }
198 else if (y. functionidentifier =="plus" ||

y. functionidentifier ==" minus " ||
y. functionidentifier ==" multiply " ||
y. functionidentifier ==" divide ")

199 {
200 checkbasicmathcall (y, expectedreturn , containingdefinition ,

arguments , basicFunctions , inSameDefinition )
201 }
202 else if (y. functionidentifier ==" toString ")
203 {
204 checktostringcall (y, expectedreturn , containingdefinition ,

arguments , basicFunctions , inSameDefinition )
205 }
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206 else if (y. functionidentifier ==" actionMutate ")
207 {
208 checkmutatecall (y, expectedreturn , containingdefinition ,

arguments , basicFunctions , inSameDefinition )
209 }
210 else if (y. functionidentifier ==" equal ")
211 {
212 val reterror = if( expectedreturn != TypeT (" Boolean "))

{List( FumurtError ( tocheck .pos , "Call to equal always
returns boolean , not
"+ expectedreturn . value ))}else{List ()}

213 val argerrors = y.args match
214 {
215 case Right ( NamedCallargs (List( NamedCallarg (IdT("left"),

leftargument ), NamedCallarg (IdT(" right "),
rightargument )))) =>

216 {
217 List ()
218 }
219

220 case _=>List( FumurtError ( tocheck .pos , "Call to equal
requires two arguments named left and right "))

221 }
222 reterror ++ argerrors
223 }
224 /* else if (y. functionidentifier ==" lessThan " || " biggerthan ")
225 {
226 val reterror = if( expectedreturn != TypeT (" Boolean "))

{List( FumurtError ( ifcall .pos , "Call to
"+y. functionidentifier +" always returns boolean , not
"+ expectedreturn . value ))} else{List ()}

227 }
228 else if (y. functionidentifier ==" not ")
229 {
230 val reterror = if( expectedreturn != TypeT (" Boolean "))

{List( FumurtError ( ifcall .pos , "Call to not always
returns boolean , not "+ expectedreturn . value ))}
else{List ()}

231 }*/
232 else
233 {
234 findinscope (arguments , inSameDefinition , basicFunctions ,

Some( containingdefinition ), y. functionidentifier ) match
235 {
236 case Left( string ) => List( FumurtError (y.pos , /*"in

checkstatement_2 "+ */ string ))
237 case Right ( calledfunction ) =>
238 {
239 val argumenterrors :List[ FumurtError ] = y.args match
240 {
241 case Left( NoArgs ()) => calledfunction .args match
242 {
243 case None => List ()
244 case Some(_) => List( FumurtError (y.pos , " expected

arguments , but none were given "))
245 }
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246 case Left( callarg ) => calledfunction .args match
// checkCallarg (, callarg , containingdefinition ,
arguments , basicFunctions , inSameDefinition )

247 {
248 case Some( Arguments (args)) =>
249 {
250 if (args. length != 1) { List( FumurtError (y.pos ,

" expected "+args. length +" arguments , but only
one was given ")) }

251 else { checkCallarg (args (0).typestr , callarg ,
args (0).id , containingdefinition , arguments ,
basicFunctions , inSameDefinition ) }

252 }
253 case None => List( FumurtError (y.pos , " expected no

arguments , but some were given "))
254 }
255 case Right ( NamedCallargs ( value )) =>
256 {
257 // println (" checking namedcallargs "+ value )
258 checknamedcallargs ( calledfunction , value ,

containingdefinition , arguments ,
basicFunctions , inSameDefinition )

259 }
260 }
261 val returnerror :List[ FumurtError ] = if ( expectedreturn

!= calledfunction . returntype )
262 {
263 List( FumurtError (y.pos , " Expected return type

"+ expectedreturn . value +". Got
"+ calledfunction . returntype . value /* +".
containingdefinition is "+ containingdefinition */))

264 }
265 else {List ()}
266 returnerror ++ argumenterrors
267 }
268 }
269

270 }
271 }
272 }
273 }
274

275 def checkifcall ( ifcall : FunctionCallStatement , expectedtype :TypeT ,
containingdefinition :DefLhs , arguments : Option [List[ DefLhs ]],
basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

276 {
277 ifcall .args match
278 {
279 case Left( callarg ) => List( FumurtError ( ifcall .pos , "Call to if

needs three arguments "))
280 case Right ( NamedCallargs ( arglist ))=>
281 {
282 if ( arglist . length != 3)
283 {
284 List( FumurtError ( ifcall .pos , "Call to if needs three

arguments "))
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285 }
286 else
287 {
288 ( if( arglist (0).id. value !=

" condition "){List( FumurtError ( ifcall .pos , "Call to if
needs a condition argument "))} else {List ()} )++

289 ( if( arglist (1).id. value !=
"else"){List( FumurtError ( ifcall .pos , "Call to if needs
an else argument "))} else {List ()} )++

290 ( if( arglist (2).id. value !=
"then"){List( FumurtError ( ifcall .pos , "Call to if needs
a then argument "))} else {List ()} )++

291 checkCallarg ( TypeT (" Boolean "), arglist (0).argument ,
IdT(" condition "), containingdefinition , arguments ,
basicFunctions , inSameDefinition )++

292 ( checkCallarg ( expectedtype , arglist (1).argument ,
IdT("else"), containingdefinition , arguments ,
basicFunctions , inSameDefinition ))++

293 ( checkCallarg ( expectedtype , arglist (2).argument ,
IdT("then"), containingdefinition , arguments ,
basicFunctions , inSameDefinition ))

294 }
295 }
296 }
297 }
298

299 def checkmutatecall (call: FunctionCallStatement , expectedtype :TypeT ,
containingdefinition :DefLhs , arguments : Option [List[ DefLhs ]],
basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

300 {
301 // println (" mutate call "+ call)
302 call.args match
303 {
304 case Left=>List( FumurtError (call.pos , "call to mutate requires

both a variable , and a new value to assign to that
variable "))

305 case Right ( NamedCallargs (List( value : NamedCallarg ,
variable : NamedCallarg )))=>

306 {
307 val firstnameerror = if( value .id. value !=

" newValue "){List( FumurtError (call.pos , "call to mutate
requires argument \" newValue \""))} else{List ()}

308 val lastnameerror = if( variable .id. value !=
" variable "){List( FumurtError (call.pos , "call to mutate
requires argument \" variable \""))} else{List ()}

309 val variabletypeerror = variable . argument match
310 {
311 case z: IdentifierStatement =>
312 {
313 findinscope (arguments , inSameDefinition , basicFunctions ,

Some( containingdefinition ), z. value ) match
314 {
315 case Left(str) => List( FumurtError (z.pos , str))
316 case Right (defl)=>
317 {
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318 (if (defl. description != SynchronizedVariableT ())
{List( FumurtError (call.pos , " Variable must be
synchronized "))}else{List () }) ++

319 ( checkCallarg (defl. returntype , value .argument ,
IdT(" variable "), containingdefinition , arguments ,
basicFunctions , inSameDefinition ))

320 }
321 }
322 }
323 case z: Expression =>List( FumurtError (call.pos , " variable

argument must be an identifier "))
324 }
325

326 firstnameerror ++ lastnameerror ++ variabletypeerror
327 }
328 }
329 }
330

331 def checkbasicmathcall (call: FunctionCallStatement ,
expectedtype :TypeT , containingdefinition :DefLhs ,
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

332 {
333 // println (" in checkbasicmathcall . Call is "+ call)
334 call.args match
335 {
336 case Left( callarg ) => List( FumurtError (call.pos , "Call to

"+call. functionidentifier +" needs two arguments "))
337 case Right ( NamedCallargs ( arglist ))=>
338 {
339 if ( arglist . length != 2)
340 {
341 List( FumurtError (call.pos , "Call to

"+call. functionidentifier +" needs two arguments "))
342 }
343 else
344 {
345 val leftinterrors = checkCallarg ( TypeT (" Integer "),

arglist (0).argument , IdT("left"), containingdefinition ,
arguments , basicFunctions , inSameDefinition )

346 val rightinterrors = checkCallarg ( TypeT (" Integer "),
arglist (1).argument , IdT(" right "),
containingdefinition , arguments , basicFunctions ,
inSameDefinition )

347 val leftdoubleerrors = checkCallarg ( TypeT (" Double "),
arglist (0).argument , IdT("left"), containingdefinition ,
arguments , basicFunctions , inSameDefinition )

348 val rightdoubleerrors = checkCallarg ( TypeT (" Double "),
arglist (1).argument , IdT(" right "),
containingdefinition , arguments , basicFunctions ,
inSameDefinition )

349 val ( lefterrors , leftdouble ) = if ( leftinterrors . length <
leftdoubleerrors . length ){( leftinterrors , false )} else
{( leftdoubleerrors ,true)}

350 val ( righterrors , rightdouble ) = if ( rightinterrors . length
< rightdoubleerrors . length ){( rightinterrors , false )}
else {( rightdoubleerrors ,true)}
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351 val returnsdouble = leftdouble || rightdouble
352 ( if( arglist (0).id. value !=

"left"){List( FumurtError (call.pos , "Call to
"+call. functionidentifier +" needs a left argument "))}
else {List ()} )++

353 ( if( arglist (1).id. value !=
" right "){List( FumurtError (call.pos , "Call to
"+call. functionidentifier +" needs a right argument "))}
else {List ()} )++

354 ( lefterrors )++
355 ( righterrors )++
356 ( expectedtype match
357 {
358 case TypeT (" Double ")=>List ();
359 case TypeT (" Integer ") =>

if( returnsdouble ){List( FumurtError (call.pos , "This
call to "+call. functionidentifier +" returns a
Double not an Integer "))} else{List ()}

360 case TypeT (str)=>
361 {
362 if( returnsdouble ){List( FumurtError (call.pos , "This

call to "+call. functionidentifier +" returns a
Double not "+str))}

363 else{List( FumurtError (call.pos , "This call to
"+call. functionidentifier +" returns an Integer
not "+str))}

364 }
365 }
366 )
367 }
368 }
369 }
370 }
371

372 def checktostringcall (call: FunctionCallStatement ,
expectedtype :TypeT , containingdefinition :DefLhs ,
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

373 {
374 call.args match
375 {
376 case Left( callarg ) =>
377 {
378 val integererrors = checkCallarg ( TypeT (" Integer "), callarg ,

IdT("none needed as not user defined and single
argument "), containingdefinition , arguments ,
basicFunctions , inSameDefinition )

379 val doubleerrors = checkCallarg ( TypeT (" Double "), callarg ,
IdT("none needed as not user defined and single
argument "), containingdefinition , arguments ,
basicFunctions , inSameDefinition )

380 val argumenterrors = if( integererrors . length <
doubleerrors . length ){ integererrors } else{ doubleerrors }

381 val outerrors = expectedtype match { case
TypeT (" String ")=>List (); case
TypeT (str)=>List( FumurtError (call.pos , " toString returns
String not "+str))}
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382 argumenterrors ++ outerrors
383 }
384 case Right ( NamedCallargs ( arglist ))=>List( FumurtError (call.pos ,

"Call to toString needs one argument "))
385 }
386 }
387

388 def checknamedcallargs ( calledfunction :DefLhs ,
namedcallargs :List[ NamedCallarg ], containingdefinition :DefLhs ,
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

389 {
390 calledfunction .args match
391 {
392 case None => List( FumurtError ( namedcallargs (0).id.pos , "No

arguments expected , but "+ namedcallargs . length +" were
given "))

393 case Some( Arguments ( defargs )) =>
394 {
395 if ( defargs . length != namedcallargs . length )
396 {
397 List( FumurtError ( namedcallargs (0).id.pos , " expected

"+ defargs . length +" arguments . Got
"+ namedcallargs . length +" arguments "))

398 }
399 else
400 {
401 if( ! namedcallargs . groupBy (x => x.id. value ). filter (y =>

y._2.length >1). isEmpty ) // ensure uniqueness of
arguments

402 {
403 List( FumurtError ( namedcallargs (0).id.pos , "two or more

arguments were given with the same name"))
404 }
405 else
406 {
407 val individualargumenterrors =

ListBuffer (): ListBuffer [ FumurtError ]
408 for(i<-0 until namedcallargs . length )
409 {
410 individualargumenterrors ++=

(if( namedcallargs (i).id. value !=
defargs (i).id. value )

411 {
412 // println (" FOUND INCORRECT NAMES ")
413 List( FumurtError ( namedcallargs (i).id.pos , " Wrong

argument name. Argument in definition named
"+ defargs (i).id. value +". In calling named
"+ namedcallargs (i).id. value ))

414 }
415 else
416 {
417 checkCallarg ( defargs (i).typestr ,

namedcallargs (i).argument , defargs (i).id ,
containingdefinition ,
arguments : Option [List[ DefLhs ]],
basicFunctions :List[ DefLhs ],
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inSameDefinition :List[ DefLhs ])
418 }
419 )
420 }
421

422 // println (" individualargumenterrors . toList :
"+ individualargumenterrors . toList )

423 individualargumenterrors . toList
424 }
425 }
426 }
427 }
428 }
429

430 def checkCallarg ( expectedtype :TypeT , arg:Callarg , id:IdT ,
containingdefinition :DefLhs , arguments : Option [List[ DefLhs ]],
basicFunctions :List[ DefLhs ],
inSameDefinition :List[ DefLhs ]):List[ FumurtError ] =

431 {
432 // println (" in checkCallarg . arg is "+ arg)
433 arg match
434 {
435 case c: BasicValueStatement =>

checkbasicvaluestatement ( expectedtype , c, "Call argument ")
436 case c: NoArgs =>
437 {
438 println (" NoArgs got checked by checkCallarg . This is better

checked in checkstatement "); scala .sys.exit ()
439 }
440 case c: IdentifierStatement =>
441 {
442 findinscope (arguments , inSameDefinition , basicFunctions ,

Some( containingdefinition ), c. value ) match
443 {
444 case Left(str) => List( FumurtError (c.pos , /*"in

checkcallarg "+ */ str))
445 case Right ( thingdef ) =>
446 {
447 if( expectedtype . value == " Inclusion ")
448 {
449 if( thingdef .id. value != id. value )
450 {
451 List( FumurtError (c.pos , " Passed inclusion must be the

same as the one referenced inside the function "))
452 }
453 else{List ()}
454 }
455 else if( expectedtype . value != thingdef . returntype . value )
456 {
457 List( FumurtError (c.pos , " Expected type

"+ expectedtype . value +". Got
"+ thingdef . returntype . value ))

458 }
459 else {List ()}
460 }
461 }
462
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463 }
464 case c: FunctionCallStatement =>
465 {
466 // check that call end result is correct
467

468 // check that call itself is correct
469 val callerrors = checkstatement (c, containingdefinition ,

arguments , basicFunctions , inSameDefinition , expectedtype )
470 callerrors // ++ resulterrors
471 }
472 }
473 }
474

475 def checkbasicvaluestatement ( expectedtype :TypeT ,
basicstatement : BasicValueStatement ,
role: String ):List[ FumurtError ] =

476 {
477 basicstatement match
478 {
479 case c: StringStatement => {if ( expectedtype . value != " String ")

List( FumurtError (c.pos , role+" type should be
"+ expectedtype . value +". "+role+" type was String ")) else
List ()}

480 case c: IntegerStatement => {if ( expectedtype . value !=
" Integer ") List( FumurtError (c.pos , role+" type should be
"+ expectedtype . value +". "+role+" type was Integer ")) else
List ()}

481 case c: DoubleStatement => {if ( expectedtype . value != " Double ")
List( FumurtError (c.pos , role+" type should be
"+ expectedtype . value +". "+role+" type was Double ")) else
List ()}

482 case c: TrueStatement => {if ( expectedtype . value != " Boolean ")
List( FumurtError (c.pos , role+" type should be
"+ expectedtype . value +". "+role+" type was Boolean ")) else
List ()}

483 case c: FalseStatement => {if ( expectedtype . value != " Boolean ")
List( FumurtError (c.pos , role+" type should be
"+ expectedtype . value +". "+role+" type was Boolean ")) else
List ()}

484 }
485 }
486

487 def checkdefinition ( tocheck : Definition ,
containingdefinition : Option [ DefLhs ],
arguments : Option [List[ DefLhs ]], basicFunctions :List[ DefLhs ]):
List[ FumurtError ]=

488 {
489 // println ("\ nIn checkdefinition : tocheck :

"+ tocheck +" containingdefinition : "+ containingdefinition +"
arguments : "+ arguments )

490 val undererrors = checkexpressions ( tocheck . rightside . expressions ,
Some( tocheck ), arguments , basicFunctions )

491 val threadenderror :List[ FumurtError ] =
tocheck . leftside . description match

492 {
493 case ThreadT () => tocheck . rightside . expressions .last match
494 {
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495 case FunctionCallStatement ( functionidentifier ,_) =>
496 {
497 if( functionidentifier != tocheck . leftside .id. value )
498 {
499 List( FumurtError ( tocheck . rightside . expressions .last.pos ,

"A thread must recurse on itself (at least until
exit () is implemented )"))

500 }
501 else
502 {
503 List ()
504 }
505 }
506 case _ =>

List( FumurtError ( tocheck . rightside . expressions .last.pos ,
"A thread must recurse on itself (at least until exit ()
is implemented )"))

507 }
508 case _ => List ()
509 }
510 val nameerror = tocheck . leftside . description match
511 {
512 case ActionT () =>

if (! tocheck . leftside .id. value . startsWith (" action "))
{List( FumurtError ( tocheck .pos , "Name of action is not
prefixed with \" action \""))} else{List ()}

513 case ThreadT () =>
if (! tocheck . leftside .id. value . startsWith (" thread "))
{List( FumurtError ( tocheck .pos , "Name of thread is not
prefixed with \" thread \""))} else{List ()}

514 case FunctionT () => List ()
515 case ValueT () => List ()
516 case ProgramT () => println (" Program got checked by

checkdefinition . This is better checked in checkprogram ");
scala .sys.exit ()

517 }
518 val permissionerror = tocheck . leftside . description match
519 {
520 case ActionT () => containingdefinition match
521 {
522 case None=>List ()
523 case Some( DefLhs ( ValueT () ,_,_,_))=>

List( FumurtError ( tocheck .pos , " actions cannot be defined
in values "))

524 case Some( DefLhs ( FunctionT () ,_,_,_))=>
List( FumurtError ( tocheck .pos , " actions cannot be defined
in functions "))

525 case Some( something ) => List ()
526 }
527 case ThreadT () => containingdefinition match { case None =>

List (); case Some(_)=>List( FumurtError ( tocheck .pos ,
" threads must be defined on top "+ containingdefinition ))}

528 case FunctionT () => containingdefinition match { case
Some( DefLhs ( ValueT () ,_,_,_)) =>
List( FumurtError ( tocheck .pos , " functions cannot be defined
in values ")); case _=> List ()}

100



529 case SynchronizedVariableT () => List( FumurtError ( tocheck .pos ,
" synchronized variables must be defined in Program
definition "))

530 case ValueT () => List ()
531 case ProgramT () => println (" Program got checked by

checkdefinition . This is better checked in checkprogram ");
scala .sys.exit ()

532 }
533

534 undererrors . toList ++ nameerror ++ permissionerror ++
threadenderror

535 }
536

537

538 def indexlefts (in:List[ Expression ]):List[ DefLhs ]=
539 {
540 in. foldLeft (List ():List[ DefLhs ]) (( list ,y)=> y match
541 {
542 case Definition (leftside , _)=>list :+ leftside ;
543 case _: Statement => list
544 }
545 )
546 }
547

548 def findinscope ( arguments : Option [List[ DefLhs ]],
inSameDefinition :List[ DefLhs ], basicfunctions :List[ DefLhs ],
enclosingDefinition : Option [ DefLhs ],
searchFor : String ): Either [String , DefLhs ]=

549 {
550 val argsres = arguments match { case

Some(args)=>args. filter (y=>y.id. value == searchFor ); case
None=>List ():List[ DefLhs ]}

551 val inscoperes = inSameDefinition . filter (x=>x.id. value == searchFor )
552 // println ()
553 // println ( basicfunctions )
554 // println ()
555 val basicfunctionres =

basicfunctions . filter (x=>x.id. value == searchFor )
556

557 val enclosingres = enclosingDefinition match
558 {
559 case None => List ()
560 case Some(deff) => if (deff.id. value == searchFor ) {List(deff)}

else {List ()}
561 }
562

563 val res = argsres ++ inscoperes ++ basicfunctionres ++
enclosingres

564

565 if(res. length == 1)
566 {
567 Right (res.head)
568 }
569 else if(res.length >1)
570 {
571 Left(" Ambiguous reference to "+ searchFor )
572 }
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573 else if(res. length == 0)
574 {
575 enclosingDefinition match
576 {
577 case None=>Left( searchFor +" not found " /* +" arguments is:

"+ arguments +". insamedefinition is "+ inSameDefinition */)
578 case Some( DefLhs (_,_,Some( Arguments ( internalargs )),_))=>
579 {
580 internalargs .find(x=>x.id. value == searchFor ) match
581 {
582 case Some( Argument (id , TypeT (" Inclusion ")))=>

Left( searchFor +" not found " /* +" arguments is:
"+ arguments +". insamedefinition is
"+ inSameDefinition */)

583 case Some( Argument (id , typestr ))=>
Right ( DefLhs ( ValueT () ,id ,None , typestr ))

584 case None=>Left( searchFor +" not found " /* +" arguments is:
"+ arguments +". insamedefinition is
"+ inSameDefinition */)

585 }
586 }
587 case Some(_)=> Left( searchFor +" not found " /* +" arguments is:

"+ arguments +". insamedefinition is "+ inSameDefinition */)
588 }
589 }
590 else
591 {
592 Left(" error in search for "+ searchFor )
593 }
594 }
595

596 }
597

598

599

600

601 // TODO: add type for synchronized variables and use it to pass them
around , so that it can be controlled that a thread calling
actionMutate has write rights

C.7 CodeGenerator.scala

1 package fumurtCompiler
2

3 import scala . collection . mutable . ListBuffer
4

5 object FumurtCodeGenerator
6 {
7 def generate (ast:List[ Definition ]): String =
8 {
9 val includestatement = "# include <iostream >\n# include

<thread >\n# include <string >\n# include <atomic >\n# include
<condition_variable >\n# include <list >\n# include
<chrono >\n\n\n"

102



10 val topthreads = gettopthreadstatements (ast)
11 val atree = getAnnotatedTree (ast , topthreads )
12 // println ( atree )
13 val numtopthreads = topthreads . length
14 val synchronizationGlobalVars = " static std :: atomic <int >

rendezvousCounter ;\ nstatic std :: mutex
rendezvousSyncMutex ;\ nstatic std :: condition_variable cv;"

15 val main = getmain ( topthreads , atree )
16 val synchvars = getsynchronizedvariables (ast)
17 val syncfunc = getsynchronizerfunction (synchvars , topthreads )
18 val synchvardeclarations =

getGlobalSynchVariableDeclarations ( synchvars )
19 val printdecs = getprintlistdeclarations ( topthreads )
20 // val topthreaddeclarations = gettopthreaddeclarations (ast)
21 val ( funSignatures , funDeclarations ) =

getFunctionDeclarations ( atree )
22 val staticthreadargs =

getStaticThreadArgs ( atree :List[ aExpression ])
23 val topThreadNumMacroln = "# define NUMTOPTHREADS " +

numtopthreads . toString + "\n"
24

25 // println ( funSignatures )
26

27 includestatement + topThreadNumMacroln + funSignatures + "\n" +
synchvardeclarations + printdecs + "\n" +
synchronizationGlobalVars + staticthreadargs + syncfunc +
"\n\n" /*+ topthreaddeclarations */ + "\n"+ funDeclarations +
"\n\n" + main

28 }
29

30

31 def getAnnotatedTree (ast:List[ Expression ],
topthreadcalls :List[ FunctionCallStatement ]):List[ aExpression ] =

32 {
33 val treeWithAnnotatedDefinitions =

getAnnotatedTreeInternal (ast , topthreadcalls ,"", None)
34 getCallsAnnotatedTreeInternal ( treeWithAnnotatedDefinitions ,

List () , None)
35 }
36

37 def getCallsAnnotatedTreeInternal (ast:List[ aExpression ],
arguments :List[ aDefLhs ],
containingDefinition : Option [ aDefinition ]):List[ aExpression ] =

38 {
39 val inSameDefinition = indexlefts (ast)
40

41 ast. flatMap (node=>node match
42 {
43 case deff @ aDefinition ( aDefLhs (desc , id , cppid ,

callingthread , args , returntype ), aDefRhs ( expressions ))=>
44 {
45 val argumentsToDef = args match
46 {
47 case None => List ()
48 case Some( aArguments ( arglist )) => arglist . flatMap (arg =>
49 {
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50 val fromargs =
arguments .find(x=>x.id. value == arg.id. value )

51 val fromSame = inSameDefinition .find(x =>
x.id. value == arg.id. value )

52 fromargs match
53 {
54 case Some(_)=> fromargs
55 case None=> fromSame
56 }
57 }
58 )
59 }
60 // println ("\n{deff: "+ deff +"\ nargumentsToDef :

"+ argumentsToDef +"\ nargs : "+ args +"\n\nast:
"+ ast +"\n\ narguments : "+ arguments +"}\n\n\n")

61 val aexpressions =
getCallsAnnotatedTreeInternal ( expressions ,
argumentsToDef , Some(deff))

62 Some( aDefinition ( aDefLhs (desc , id , cppid , callingthread ,
args , returntype ), aDefRhs ( aexpressions )))

63 }
64 case call @ aFunctionCallStatement (fid ,_,args ,_) =>

Some( annotateFunctionCall (call , arguments ,
inSameDefinition , containingDefinition ))

65 case z: IdentifierStatement =>Some(z)
66 case z: BasicValueStatement =>Some(z)
67 }
68 )
69 }
70

71 def annotateFunctionCall ( functioncall : aFunctionCallStatement ,
arguments :List[ aDefLhs ], inSameDefinition :List[ aDefLhs ],
containingDefinition : Option [ aDefinition ] ):
aFunctionCallStatement =

72 {
73

74 def annotateCallargs (args: Either [aCallarg , aNamedCallargs ],
arguments :List[ aDefLhs ], inSameDefinition :List[ aDefLhs ],
containingDefinition : Option [ aDefinition ]):
Either [aCallarg , aNamedCallargs ] =

75 {
76 args match
77 {
78 case Left( callarg )=> callarg match
79 {
80 case z: aFunctionCallStatement =>Left( annotateFunctionCall (z,

arguments , inSameDefinition , containingDefinition ))
81 case z: aStatement =>Left(z)
82 }
83 case Right ( aNamedCallargs ( callargs )) =>

Right ( aNamedCallargs ( callargs .map( namedcallarg =>
namedcallarg . argument match

84 {
85 case z: aFunctionCallStatement =>

aNamedCallarg ( namedcallarg .id ,
annotateFunctionCall (z, arguments , inSameDefinition ,
containingDefinition ))
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86 case aCallarg => namedcallarg : aNamedCallarg
87 }
88 )))
89 }
90 }
91

92 val fid = functioncall . functionidentifier
93 val args = functioncall .args
94 if(fid ==" actionPrint " || fid ==" toString " || fid ==" actionMutate ")
95 {
96 val newargs = annotateCallargs (args , arguments ,

inSameDefinition , containingDefinition )
97 aFunctionCallStatement (fid ,fid ,newargs ," Nothing ")
98 }
99 else if(fid =="plus" || fid ==" minus " || fid ==" multiply " ||

fid ==" divide ")
100 {
101 val newargs = annotateCallargs (args , arguments ,

inSameDefinition , containingDefinition )
102 aFunctionCallStatement (fid ,fid ,newargs ," Number ") // TODO: Find

actual type like in typechecker . As it is , it only matters
if it is Nothing or not.

103 }
104 else if(fid ==" equal " || fid ==" lessThan ")
105 {
106 val newargs = annotateCallargs (args , arguments ,

inSameDefinition , containingDefinition )
107 aFunctionCallStatement (fid ,fid ,newargs ," Boolean ")
108 }
109 else if(fid =="if")
110 {
111 val newargs = annotateCallargs (args , arguments ,

inSameDefinition , containingDefinition )
112 aFunctionCallStatement (fid ,fid ,newargs ," Something ") // TODO:

Find actual type like in typechecker . As it is , it only
matters if it is Nothing or not.

113 }
114 else
115 {
116 def removeInclusions (args: Either [aCallarg , aNamedCallargs ],

ldeffargs : Option [ aArguments ]):
Either [aCallarg , aNamedCallargs ] = args match

117 {
118 case Left( callarg )=>
119 {
120 ldeffargs match
121 {
122 case Some( aArguments ( defargs ))=>
123 {
124 if( defargs .head. typestr . value == " Inclusion ")

{Left( NoArgs ())}
125 else
126 {
127 args
128 }
129 }
130 case None=>Left( NoArgs ())
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131 // case _=>Left( NoArgs ())
132 }
133 }
134 case Right ( aNamedCallargs ( namedcallargs ))=>
135 {
136 ldeffargs match
137 {
138 case Some( aArguments ( defargs ))=>
139 {
140 val mnewargs = ListBuffer (): ListBuffer [ aNamedCallarg ]
141 for(i<-0 until defargs . length )
142 {
143 if( defargs (i). typestr . value !=" Inclusion ")
144 {
145 mnewargs += namedcallargs (i)
146 }
147 }
148 Right ( aNamedCallargs ( mnewargs . toList ))
149 }
150 case None=> println ("in

getCallsAnnotatedTreeInternal "); scala .sys.exit ()
151 // case _=>Left( NoArgs ())
152 }
153 }
154 }
155 val ldeff = findinscope (Some( arguments ), inSameDefinition ,

containingDefinition .map(x=>x. leftside ), fid)
156 val newargs = annotateCallargs ( removeInclusions (args ,

ldeff .args), arguments , inSameDefinition ,
containingDefinition )

157 // println (" ldeff . cppid . value : "+ ldeff . cppid . value )
158 aFunctionCallStatement (fid , ldeff . cppid .value , newargs ,

ldeff . returntype . value )
159 }
160 }
161

162 def indexlefts (in:List[ aExpression ]):List[ aDefLhs ]=
163 {
164 in. foldLeft (List ():List[ aDefLhs ]) (( list ,y)=> y match
165 {
166 case aDefinition (leftside , _)=>list :+ leftside ;
167 case _=> list
168 }
169 )
170 }
171

172 def findinscope ( arguments : Option [List[ aDefLhs ]],
inSameDefinition :List[ aDefLhs ],
enclosingDefinition : Option [ aDefLhs ], searchFor : String ): aDefLhs =

173 {
174 val argsres = arguments match { case

Some(args)=>args. filter (y=>y.id. value == searchFor ); case
None=>List ():List[ aDefLhs ]}

175 val inscoperes = inSameDefinition . filter (x=>x.id. value == searchFor )
176

177 val enclosingres = enclosingDefinition match
178 {
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179 case None => List ()
180 case Some(deff) => if (deff.id. value == searchFor ) {List(deff)}

else {List ()}
181 }
182

183 val res = argsres ++ inscoperes ++ enclosingres
184

185 if(res. length ==0){ println ("{ arguments :
"+ arguments +"\n\ ninSameDefinition :
"+ inSameDefinition +"\n\ nenclosingDefinition :
"+ enclosingDefinition +"\n\ nsearchFor :
"+ searchFor +"}\n\n\n"); scala .sys.exit ()}

186 res.head
187 }
188

189 def getAnnotatedTreeInternal (ast:List[ Expression ],
topthreadcalls :List[ FunctionCallStatement ], hierarchy :String ,
callingthread : Option [ String ]):List[ aExpression ] =

190 {
191 val topactions :List[ aExpression ] =
192 {
193 if( hierarchy =="")
194 {
195 val mess = topthreadcalls .map( threadcall => threadcall .args

match
196 {
197 case Left( IdentifierStatement ( argname )) =>
198 {
199 val deff = ast. filter (x => x match {case

Definition ( DefLhs ( ActionT () , IdT( thisargname ), _,
_),_) => argname == thisargname ; case _=> false })

200 getAnnotatedTreeInternal (deff , List () ,
threadcall . functionidentifier ,
Some( threadcall . functionidentifier )):
List[ aExpression ]

201 }
202 case Left(_)=> List ():List[ aExpression ]
203 case Right ( NamedCallargs ( namedargs ))=>
204 {
205 val deffs = namedargs . flatMap ( namedarg =>
206 namedarg match
207 {
208 case NamedCallarg (_, IdentifierStatement ( argname ))=>
209 {
210 ast.find(y=>y match {case

Definition ( DefLhs ( ActionT () ,
IdT( thisargname ), _, _) ,_) => argname ==
thisargname ; case _=> false })

211 }
212 case _=>None
213 }
214 )
215 getAnnotatedTreeInternal (deffs ,List () ,

threadcall . functionidentifier ,
Some( threadcall . functionidentifier )):
List[ aExpression ]

216 }
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217 }
218 ):List[List[ aExpression ]]
219

220 mess. foldLeft (List (): List[ aExpression ]) ((x,y) => x++y):
List[ aExpression ]

221 }
222 else
223 {
224 List ()
225 }
226 }
227 val rest:List[ aExpression ] = ast. flatMap (x=>x match
228 {
229 case Definition ( DefLhs ( ThreadT () , id , args , returntype ),

DefRhs ( expressions )) =>
230 {
231 val aexps = getAnnotatedTreeInternal ( expressions ,

topthreadcalls . filter (x => x. functionidentifier ==
id. value ), id.value , Some(id. value ))

232 // println ("\n"+ args +"\n\n")
233 val newargs =

args.map(args=> aArguments (args.args.map(arg=>arg match
234 {
235 case Argument (id , TypeT (" Inclusion ")) =>

aArgument (id , id , TypeT (" Inclusion "))
236 case Argument (argid , typee ) =>
237 {
238 if ( argid . value . startsWith (" synchronized "))
239 {
240 aArgument (argid , argid , typee )
241 }
242 else
243 {
244 aArgument (argid , IdT(id. value +"$"+ argid . value ),

typee )
245 }
246 }
247 }
248 )
249 )
250 )
251 // println ( newargs +"\n\n\n")
252 Some( aDefinition ( aDefLhs ( ThreadT () , id , id , id.value ,

newargs , returntype ),aDefRhs ( aexps )))
253 }
254

255 case Definition ( DefLhs ( FunctionT () , id , args , returntype ),
DefRhs ( expressions )) =>

256 {
257 val aexps = getAnnotatedTreeInternal ( expressions ,

topthreadcalls , hierarchy +id.value , callingthread )
258 val newargs = args.map(args=> aArguments (args.args.map(arg

=> aArgument (arg.id , arg.id , arg. typestr ))))
259 Some( aDefinition ( aDefLhs ( FunctionT () , id ,

IdT(id. value +"$"+ hierarchy ), " shouldn ’t matter ",
newargs , returntype ), aDefRhs ( aexps )))

260 }
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261 case Definition ( DefLhs ( ProgramT () ,_,_,_),_) => None // we
don ’t really care about it ...

262 case Definition ( DefLhs ( ActionT () , id , args , returntype ),
DefRhs ( expressions )) =>

263 {
264 if( hierarchy =="")
265 {
266 None
267 }
268 else
269 {
270 val aexps = getAnnotatedTreeInternal ( expressions ,

topthreadcalls , hierarchy +id.value , callingthread )
271 val newargs = args.map(args=> aArguments (args.args.map(arg

=> aArgument (arg.id , arg.id , arg. typestr ))))
272 Some( aDefinition ( aDefLhs ( ActionT () , id ,

IdT(id. value +"$"+ hierarchy ), callingthread match
{case Some(z)=>z; case None=>"not found "}, newargs ,
returntype ), aDefRhs ( aexps )))

273 }
274 }
275 case FunctionCallStatement (fid ,args)=>
276 {
277 def annotateCallarg ( callarg : Callarg ): aCallarg =
278 {
279 callarg match
280 {
281 case z: aCallarg => z
282 case FunctionCallStatement (fid ,args)=>
283 {
284 val newargs : Either [aCallarg , aNamedCallargs ] = args

match
285 {
286 case Left(arg)=>Left( annotateCallarg (arg))
287 case Right ( NamedCallargs ( arglist )) =>

Right ( aNamedCallargs ( arglist .map(x =>
aNamedCallarg (x.id ,
annotateCallarg (x. argument )) )))

288 }
289 aFunctionCallStatement (fid ,"not filled

out",newargs ,"not filled out")
290 }
291 }
292 }
293 Some( annotateCallarg ( FunctionCallStatement (fid , args))):

Option [ aExpression ]
294 }
295 case z: IdentifierStatement =>Some(z)
296 }
297 ):List[ aExpression ]
298 rest ++ topactions
299

300 }
301

302 def getFunctionDeclarations (ast:List[ aExpression ]) :( String , String ) =
303 {
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304 def actfunrecursivetranslate ( cppid :IdT , callingthread :String ,
args: Option [ aArguments ], returntype :TypeT ,
expressions :List[ aExpression ]): Option [( String , String )] =

305 {
306 val signature = getFunctionSignature (cppid , args , returntype )
307 val functionstart = signature +"\n{"
308 val functionend = "\n}\n"
309 val generals = expressions . flatMap (
310 y=> y match
311 {
312 case aDefinition (leftside , rightside )=>None
313 case z: aFunctionCallStatement =>
314 {
315 if(z. returntype !=" Nothing ")
316 {
317 Some(" return "+ functioncalltranslator (z, callingthread )

+ "; // returntype : "+z. returntype )
318 }
319 else
320 {
321 Some( functioncalltranslator (z, callingthread ) + ";")
322 }
323

324 }
325 case IdentifierStatement ( value ) => Some(" return "+ value +";")
326 case StringStatement ( value ) => Some(" return "+ value +";")
327 case IntegerStatement ( value ) => Some(" return

"+ value . toString +";")
328 case DoubleStatement ( value ) => Some(" return

"+ value . toString +";")
329 case TrueStatement () => Some(" return true;")
330 case FalseStatement () => Some(" return false ;")
331 // case _=> "not implemented " // println (" Error in

gettopthreaddeclarations . Not implemented .");
scala .sys.exit ()

332 }
333 ). foldLeft ("")((x,y)=>x+"\n "+y)
334 val underfunctions = getFunctionDeclarations ( expressions )
335 val body = functionstart + generals + functionend
336 // Some (( signature +";" , body))
337 Some (( signature +";"+ underfunctions ._1 , body+ underfunctions ._2))
338 }
339

340 val list = ast. flatMap (node=>node match
341 {
342 case aDefinition ( aDefLhs ( ThreadT () , id , cppid , _, args , _),

aDefRhs ( expressions )) =>
343 {
344 val attributeNoreturn = if(

System . getProperty ("os.name"). startsWith (" Windows ") )
{" __declspec ( noreturn )"} else{"[[ noreturn ]]"}
// Microsoft Visual C++ does not support C++11 attribute
syntax

345 val signature = attributeNoreturn +" static void
"+ cppid . value +"()"

346 val functionstart = signature +"\n{"
347 val functionend = "\n}\n"
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348 val ( tailrecursestart , tailrecurseend ) = (" while (true)\n{",
"\n}")

349

350 def changeNamesToCppOnes (in:aCallarg ,
threadargs : Option [ aArguments ]): aCallarg = in match

351 {
352 case call: aFunctionCallStatement =>
353 {
354 val newargs : Either [aCallarg , aNamedCallargs ] =

call.args match
355 {
356 case Left( callarg ) =>

Left( changeNamesToCppOnes (callarg ,
threadargs ))

357 case Right ( aNamedCallargs ( namedcallargs )) =>
Right ( aNamedCallargs ( namedcallargs .map(
namedcallarg =>
aNamedCallarg ( namedcallarg .id ,
changeNamesToCppOnes (
namedcallarg .argument , threadargs )))) )

358 }
359 aFunctionCallStatement (call. functionidentifier ,

call. cppfunctionidentifier , newargs ,
call. returntype )

360 }
361 case IdentifierStatement ( value )=>
362 {
363 threadargs match
364 {
365 case None => IdentifierStatement ( value )
366 case Some( aArguments ( arglist )) =>
367 {
368 val arg = arglist .find(arg=>arg.id. value ==

value ) match {case Some(x)=>x;case None =>
println (" error in
functioncallargmodifier ");
scala .sys.exit ()}

369 IdentifierStatement (arg. cppid . value )
370 }
371 }
372 }
373 case _=>in
374 }
375

376 val generals = expressions . flatMap (
377 y=> y match
378 {
379 case aDefinition (leftside , rightside )=>None
380 case aFunctionCallStatement (id.value ,_, callargs ,_) =>
381 {
382 val updates = args match
383 {
384 case None => ""
385 case Some( aArguments (List( aArgument (argid ,

cppargid , _)))) =>
386 {
387 callargs match
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388 {
389 case Left( callarg ) =>
390 {
391 val newvalue = callargTranslator (callarg ,

id. value )
392 if ( argid . value . startsWith (" synchronized "))
393 {
394 if( argid . value != newvalue ){"\nwe haven ’t

figured out the correct way to handle
this yet"}

395 else{""}
396 }
397 else{"\n"+ cppargid . value +" =

"+ callargTranslator (
changeNamesToCppOnes (callarg , args),
id. value )+";\n"}

398

399 }
400 case Right (_)=>" error in generating updates1 "
401 }
402 }
403 case Some( aArguments ( defargslist )) =>
404 {
405 callargs match
406 {
407 case Right ( namedcallargs ) =>
408 {
409 namedcallargs . value . foldLeft ("\n")((l,r)=>
410 {
411 val newvalue =

callargTranslator (r.argument ,
id. value )

412 if( r.id. value . startsWith ( " synchronized "
) )

413 {
414 if (r.id. value . startsWith (

" synchronized " ) && r.id. value !=
newvalue ) {l + "\nwe haven ’t
figured out the correct way to
handle this yet"}

415 else{l}
416 }
417 else
418 {
419 val defarg = defargslist .find( defarg =>

defarg .id. value == r.id. value )
match {case Some(x) => x; case None
=> println (" error in generating
updates3 "); scala .sys.exit ()}

420 l+ defarg . cppid . value +" = "+
callargTranslator (
changeNamesToCppOnes ( r.argument ,
args ) , id. value ) + ";\n"

421 }
422 }
423 )
424 }
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425 case Left(_)=>" error in generating updates2 "
426 }
427 }
428 }
429 Some(" waitForRendezvous (\""+ cppid . value +"\");"

+ updates + "\n continue ;")
430 }
431 case z: aFunctionCallStatement =>
432 {
433 val modified = changeNamesToCppOnes (z, args) match
434 {
435 case a: aFunctionCallStatement => a
436 case _=> println ("eror when modifying function

call"); scala .sys.exit ()
437 }
438 Some( functioncalltranslator (modified , id. value ) + ";")
439 }
440 // case z: aFunctionCallStatement =>

Some( functioncalltranslator (z, id. value ) + ";")
441 // case _=> "not implemented " // println (" Error in

gettopthreaddeclarations . Not implemented .");
scala .sys.exit ()

442 }
443 ). foldLeft ("")((x,y)=>x+"\n "+y)
444 val underfunctions = getFunctionDeclarations ( expressions )
445 val body = functionstart + tailrecursestart + generals +

tailrecurseend + functionend
446 Some (( signature +";"+ underfunctions ._1 ,

body+ underfunctions ._2))
447

448 }
449 case z: aFunctionCallStatement =>None
450 case z: IdentifierStatement =>None
451 case aDefinition ( aDefLhs ( ActionT () , id , cppid , callingthread ,

args , returntype ), aDefRhs ( expressions )) =>
actfunrecursivetranslate (cppid , callingthread , args ,
returntype , expressions )

452 case aDefinition ( aDefLhs ( FunctionT () , id , cppid ,
callingthread , args , returntype ),aDefRhs ( expressions )) =>
actfunrecursivetranslate (cppid , callingthread , args ,
returntype , expressions )

453 }
454 ):List [( String , String )]
455 list. foldLeft (("",""))((x,y)=>(x._1+"\n"+y._1 ,x._2+"\n"+y._2))
456 }
457

458

459

460

461 def getFunctionSignature ( cppid :IdT , optargs : Option [ aArguments ],
returntype : TypeT ): String =

462 {
463 def argtranslator (arg: aArgument ): String =
464 {
465 typetranslator (arg. typestr )+" "+arg.id. value
466 }
467 val argsString = optargs match
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468 {
469 case None=>""
470 case Some( aArguments (List(arg)))=>
471 {
472 if(arg. typestr . value !=" Inclusion ")
473 {
474 argtranslator (arg)
475 }
476 else{""}
477 }
478 case Some( aArguments (args))=> argtranslator (args.head) +

args.tail. foldLeft ("")((x,y)=>
479 if(y. typestr . value !=" Inclusion "){x+", "+ argtranslator (y)}

else{x}
480 )
481

482 }
483

484 typetranslator ( returntype )+" "+ cppid . value +"("+ argsString +")"
485 }
486

487 def typetranslator (in: TypeT ): String =
488 {
489 in. value match
490 {
491 case " Integer "=>"int"
492 case " Double "=>" double "
493 case " String "=>"std :: string "
494 case " Nothing "=>"void"
495 case " Inclusion "=>" shouldn ’t be here"
496 case " Boolean "=>"bool"
497 case _=>"not implemented "
498 }
499 }
500

501 def callargTranslator ( callarg :aCallarg ,
callingthread : String ): String =

502 {
503 callarg match
504 {
505 case StringStatement ( value )=> value
506 case IntegerStatement ( value )=> value . toString
507 case DoubleStatement ( value )=> value . toString
508 case TrueStatement ()=>"true"
509 case FalseStatement ()=>" false "
510 case IdentifierStatement ( value )=> value
511 case call: aFunctionCallStatement =>

functioncalltranslator (call: aFunctionCallStatement ,
callingthread : String )

512 case NoArgs ()=>""
513 }
514 }
515

516 def functioncalltranslator (call: aFunctionCallStatement ,
callingthread : String ): String =

517 {
518 // println (" in functioncalltranslator . call is "+ call)
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519 // if(call. functionidentifier ==" plus "){ println (" found ")}
520 // println ("\n\n"+ call)
521 call match
522 {
523 case aFunctionCallStatement (" actionPrint ",_,

Left( StringStatement ( value )),_) => " print " + callingthread
+ ". push_back (" + value + ")"

524 case aFunctionCallStatement (" actionPrint ",_,
Left( IdentifierStatement ( value )),_) => " print " +
callingthread + ". push_back (std :: to_string (" + value + "))"

525 case aFunctionCallStatement (" actionPrint ",_,
Left(x: aFunctionCallStatement ),_) => " print " +
callingthread + ". push_back (" +
functioncalltranslator (x, callingthread ) + ")"

526 case aFunctionCallStatement (" toString ",_,
Left(x: aFunctionCallStatement ),_) => "std :: to_string (" +
functioncalltranslator (x, callingthread ) + ")"

527 case aFunctionCallStatement (" toString ",_,
Left( IdentifierStatement ( value )),_) => "std :: to_string (" +
value + ")"

528 case aFunctionCallStatement (" toString ",_,
Left( IntegerStatement ( value )),_) => "std :: to_string (" +
value . toString + ")"

529 case aFunctionCallStatement (" toString ",_,
Left( DoubleStatement ( value )),_) => "std :: to_string (" +
value . toString + ")"

530 case aFunctionCallStatement (" toString ",_,
Left( TrueStatement ()),_) => "true"

531 case aFunctionCallStatement (" toString ",_,
Left( FalseStatement ()),_) => " false "

532 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IntegerStatement (left)), aNamedCallarg (IdT(" right "),
IdentifierStatement ( right ))))), _) => left. toString +" ==
"+ right . toString

533 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IdentifierStatement (left)), aNamedCallarg (IdT(" right "),
IntegerStatement ( right ))))),_) => left. toString +" == "+
right . toString

534 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
StringStatement (left)), aNamedCallarg (IdT(" right "),
IdentifierStatement ( right ))))), _) => left. toString +" ==
"+ right . toString

535 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IdentifierStatement (left)),
aNamedCallarg (IdT(" right "),StringStatement ( right ))))),_) =>
left. toString +" == "+ right . toString

536 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IdentifierStatement (left)), aNamedCallarg (IdT(" right "),
IdentifierStatement ( right ))))),_) => left. toString +" ==
"+ right . toString

537
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538 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IntegerStatement (left)), aNamedCallarg (IdT(" right "),x:
aFunctionCallStatement )))),_) => left. toString +" ==
"+ functioncalltranslator (x, callingthread )

539 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"), x:
aFunctionCallStatement ), aNamedCallarg (IdT(" right "),
IntegerStatement ( right ))))), _) =>
functioncalltranslator (x, callingthread ) +" == "+
right . toString

540 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
StringStatement (left)), aNamedCallarg (IdT(" right "),
x: aFunctionCallStatement )))), _) => left. toString +" ==
"+ functioncalltranslator (x, callingthread )

541 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
x: aFunctionCallStatement ), aNamedCallarg (IdT(" right "),
StringStatement ( right ))))), _) => functioncalltranslator (x,
callingthread ) +" == "+ right . toString

542 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
x: aFunctionCallStatement ), aNamedCallarg (IdT(" right "),
IdentifierStatement ( right ))))), _) =>
functioncalltranslator (x, callingthread ) +" == "+
right . toString

543 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IdentifierStatement (left)), aNamedCallarg (IdT(" right "),
x: aFunctionCallStatement )))),_) => left. toString +" ==
"+ functioncalltranslator (x, callingthread )

544 case aFunctionCallStatement (" equal ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
x: aFunctionCallStatement ), aNamedCallarg (IdT(" right "),
y: aFunctionCallStatement )))),_) =>
functioncalltranslator (x, callingthread ) +" == "+
functioncalltranslator (y, callingthread )

545

546 case aFunctionCallStatement (" lessThan ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT("left"),
IntegerStatement (left)), aNamedCallarg (IdT(" right "),
IntegerStatement ( right ))))),_) => left. toString +" <
"+ right . toString

547 // TODO: Make better solution for commutative functions
548 // TODO: add more types that the comparison functions can accept
549 case aFunctionCallStatement (" actionMutate ", _,

Right ( aNamedCallargs (List( aNamedCallarg (IdT(" newValue "),
IdentifierStatement ( newval )),
aNamedCallarg (IdT(" variable "),
IdentifierStatement (vari))))),_) => vari + " = " + newval

550 case aFunctionCallStatement (" actionMutate ", _,
Right ( aNamedCallargs (List( aNamedCallarg (IdT(" newValue "),
x: aFunctionCallStatement ), aNamedCallarg (IdT(" variable "),
IdentifierStatement (vari))))), _) =>

551 {
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552 " write " + vari. capitalize + " = " + functioncalltranslator (x,
callingthread )

553 }
554 case aFunctionCallStatement ("plus",_,_,_) =>

basicmathcalltranslator (call , callingthread )
555 case aFunctionCallStatement (" minus ",_,_,_) =>

basicmathcalltranslator (call , callingthread )
556 case aFunctionCallStatement (" multiply ",_,_,_) =>

basicmathcalltranslator (call , callingthread )
557 case aFunctionCallStatement (" divide ",_,_,_) =>

basicmathcalltranslator (call , callingthread )
558 case aFunctionCallStatement ("if",_,

Right ( aNamedCallargs (List( aNamedCallarg (IdT(" condition "),
condstat ), aNamedCallarg (IdT("else"), elsestat ),
aNamedCallarg (IdT("then"), thenstat )))), _) =>

559 {
560 def translator (in: aStatement ): String =
561 {
562 in match
563 {
564 case TrueStatement ()=>"true"
565 case FalseStatement ()=>" false "
566 case StringStatement ( value )=> value
567 case IntegerStatement ( value )=> value . toString
568 case DoubleStatement ( value )=> value . toString
569 case IdentifierStatement ( value )=> value // Correct

behaviour ? .....
570 case z: aFunctionCallStatement => functioncalltranslator (z,

callingthread )
571 }
572 }
573 condstat match
574 {
575 case TrueStatement ()=> translator ( thenstat )
576 case FalseStatement ()=> translator ( elsestat )
577 case _=>
578 {
579 translator ( condstat )+" ? "+ translator ( thenstat )+" :

"+ translator ( elsestat )
580 }
581 }
582 }
583 case aFunctionCallStatement (funcid ,cppfuncid ,args ,_) =>
584 {
585 val argstr = args match
586 {
587 case Left( callarg )=> callargTranslator (callarg ,

callingthread )
588 case Right ( aNamedCallargs (args)) =>
589 {
590 val first = callargTranslator (args.head.argument ,

callingthread )
591 val subsequent = args. foldLeft ("")((x,y)=>x+",

"+ callargTranslator (y.argument , callingthread ))
592 first + subsequent
593 }
594 }
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595 cppfuncid +"("+ argstr +")"
596 }
597 case _=> "not implemented "
598 }
599 }
600

601 def basicmathcalltranslator (call: aFunctionCallStatement ,
callingthread : String ): String =

602 {
603 val operator = if(call. functionidentifier =="plus"){" + "}else

if(call. functionidentifier ==" minus "){" - "}else
if(call. functionidentifier ==" multiply "){" * "}else
if(call. functionidentifier ==" minus "){" / "}

604 call match
605 {
606 case aFunctionCallStatement (_,_,

Right ( aNamedCallargs ( callargs )),_) =>
607 {
608 val argstr = callargs .map(arg=>
609 {
610 arg match
611 {
612 case aNamedCallarg (_, IdentifierStatement ( value )) =>

value
613 case aNamedCallarg (_, IntegerStatement ( value )) =>

value . toString
614 case aNamedCallarg (_, DoubleStatement ( value )) =>

value . toString
615 case aNamedCallarg (_, f: aFunctionCallStatement ) =>

functioncalltranslator (f, callingthread )
616 }
617 }
618 ):List[ String ]
619 "(" + argstr (0) + operator + argstr (1) + ")"
620 }
621 }
622 }
623

624

625

626 def gettopthreadstatements (ast:List[ Definition ]):
List[ FunctionCallStatement ] =

627 {
628 ast.find(x => (x. leftside . description match {case ProgramT () =>

true; case _=> false })) match
629 {
630 case None => println (" Error in getthreads . Should be caught by

checker ."); scala .sys.exit ()
631 case Some(res) =>
632 {
633 res. rightside . expressions . flatMap (x => x match
634 {
635 case x: FunctionCallStatement => if

(x. functionidentifier . startsWith (" thread ")) {Some(x)}
else {None}

636 case _ => None
637 })
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638 }
639 }
640 }
641

642 def getprintlistdeclarations ( topthreads :
List[ FunctionCallStatement ]): String =

643 {
644 val topthreadnames = topthreads .map(x=>x. functionidentifier )
645 var out = ""
646 for(i<- topthreadnames )
647 {
648 out += "\ nstatic std :: list <std :: string > print "+i+";"
649 }
650 out
651 }
652

653 def getStaticThreadArgs ( atree :List[ aExpression ]): String =
654 {
655 atree . flatMap (exp=>exp match
656 {
657 case aDefinition ( aDefLhs ( ThreadT () , _, _, _,

Some( aArguments (args)), _), _) => Some(args. flatMap (arg =>
658 if (arg. typestr . value == " Inclusion " ||

arg.id. value . startsWith (" synchronized "))
659 {
660 None
661 }
662 else
663 {
664 Some(" static "+ typetranslator (arg. typestr )+"

"+arg. cppid . value +";\n")
665 }
666 ).fold("")((l,r)=>l+r)
667 )
668 case _=> None
669 }
670 ).fold("\n")((l,r)=>l+r)
671

672 }
673

674 def getmain ( topthreads :List[ FunctionCallStatement ],
atree :List[ aExpression ]): String =

675 {
676 val threaddefls :List[ aDefLhs ] = atree . flatMap (exp=>exp match
677 {
678 case aDefinition (a @ aDefLhs ( ThreadT () ,_,_,_,_,_),_) =>

Some(a)
679 case _=>None
680 }
681 )
682

683 val threadargsSet : String = topthreads .map( topthreadcall =>
684 {
685 val threaddefl = threaddefls .find( threaddefl =>

threaddefl .id. value == topthreadcall . functionidentifier )
match {case Some(x)=>x; case None=> println (" error in
getmain "); scala .sys.exit ()}
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686 topthreadcall .args match
687 {
688 case Left( callarg ) =>
689 {
690 threaddefl .args match
691 {
692 case None=>List("")
693 case Some( aArguments (List( defarg )))=>
694 {
695 if ( defarg . typestr . value == " Inclusion " ||

defarg .id. value . startsWith (" synchronized "))
696 {
697 List("")
698 }
699 else
700 {
701 val modcallarg : aCallarg = callarg match
702 {
703 case a: aCallarg => a
704 case _=> println (" error in getmain2 ( should be

forbidden )"); scala .sys.exit () // function
calls in assignment in program statement
doesn ’t make much sense and should be
forbidden

705 }
706 List( defarg . cppid . value +" =

"+ callargTranslator ( modcallarg :aCallarg ,
" shouldn ’t be here")+";")

707 }
708

709 }
710 case _=> println (" error in getmain3 "); scala .sys.exit ()
711 }
712 }
713 case Right ( NamedCallargs ( namedarglist )) =>
714 {
715 val defarglist = threaddefl .args match
716 {
717 case None => println (" error in

getmain4 "); scala .sys.exit ()
718 case Some( aArguments ( defarglist ))=> defarglist
719 }
720 namedarglist . foldLeft (List ():List[ String ]) (( list ,

namedarg )=>
721 {
722 val modcallarg : aCallarg = namedarg . argument match
723 {
724 case a: aCallarg => a
725 case _=> println (" error in getmain5 ( should be

forbidden )"); scala .sys.exit () // function calls
in assignment in program statement doesn ’t make
much sense and should be forbidden

726 }
727 val defarg = defarglist .find( defarg =>

defarg .id. value == namedarg .id. value ) match {case
Some(x)=>x; case None=> println (" error in
getmain6 "); scala .sys.exit ()}
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728 if ( defarg . typestr . value == " Inclusion " ||
defarg .id. value . startsWith (" synchronized "))

729 {
730 list
731 }
732 else
733 {
734 list :+ ( defarg . cppid . value +" =

"+ callargTranslator ( modcallarg :aCallarg ,
" shouldn ’t be here")+";")

735 }
736 }
737 )
738 }
739 }
740 }
741 ).fold(List (): List[ String ]) (( llist , rlist ) => llist ++

rlist ). foldLeft ("\n") ((str , sublist ) => if( sublist !="")
{str+"\n"+ sublist } else{str })

742

743 var threadsStart = ""
744

745 for(i<-topthreads )
746 {
747 threadsStart = threadsStart + "\n" + "std :: thread t" +

i. functionidentifier + " (" + i. functionidentifier + ");"
748 }
749

750 "int main ()\n{\ nrendezvousCounter . store (0);" + threadargsSet +
threadsStart + "\ nwhile (true)\n {\n
std :: this_thread :: sleep_for (std :: chrono :: seconds (1)); \n}" +
"\n}"

751 }
752

753 def getsynchronizerfunction ( synchvariables :List[ Definition ],
topthreads :List[ FunctionCallStatement ]): String =

754 {
755 var synchvariablestrings = ""
756

757 for(i<- synchvariables )
758 {
759 val name = i. leftside .id. value
760 synchvariablestrings += name + " = write " + name. capitalize +

";\n"
761 }
762

763 var printstatements = ""
764 for(i<-topthreads )
765 {
766 val currentprintqueuename = " print " + i. functionidentifier
767 printstatements += " while (!"+ currentprintqueuename +". empty ())

{\ nstd :: cout << "+ currentprintqueuename + ". front ();
\n"+ currentprintqueuename +". pop_front (); \n}\n"

768 }
769

770 (""" static void waitForRendezvous (std :: string name)
771 {
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772 std :: unique_lock <std :: mutex > lk( rendezvousSyncMutex );
773 ++ rendezvousCounter ;
774 if( rendezvousCounter .load () < NUMTOPTHREADS )
775 {
776 cv.wait(lk);
777 }
778 else if ( rendezvousCounter .load () == NUMTOPTHREADS )
779 {
780 """
781 + printstatements + synchvariablestrings + """
782 {
783 rendezvousCounter . store (0);
784 cv. notify_all ();
785 }
786 }
787 else
788 {
789 std :: cout << " error in wait for " << name << ". Rendezvouscounter

out of bounds . RedezvousCounter = " <<
rendezvousCounter .load () << "\n";

790 exit (0);
791 }
792 }""")
793 }
794

795 def getGlobalSynchVariableDeclarations ( synchvariables :
List[ Definition ]): String =

796 {
797 var synchdeclares = ""
798 for(i<- synchvariables )
799 {
800 val fumurttype = i. leftside . returntype . value
801 val initialValue = i. rightside . expressions (0) match
802 {
803 case FunctionCallStatement ( functionidentifier , args) => args

match
804 {
805 case Right ( namedcallargs ) =>

namedcallargs . value (0). argument match
806 {
807 case IntegerStatement ( value ) => value
808 // case DoubleStatement ( value ) => value
809 case _=> println (" Error in

getGlobalSynchVariableDeclarations . Should be caught
by checker ."); scala .sys.exit ()

810 }
811 case _=> println (" Error in

getGlobalSynchVariableDeclarations . Should be caught by
checker ."); scala .sys.exit ()

812 }
813 case _=> println (i. rightside . expressions (0). toString );

println (" Error in getGlobalSynchVariableDeclarations .
Should be caught by checker ."); scala .sys.exit ()

814 }
815 if ( fumurttype == " Integer ")
816 {
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817 synchdeclares += "\ nstatic int " + i. leftside .id. value + " =
" + initialValue + ";"

818 synchdeclares += "\ nstatic int write " +
i. leftside .id. value . capitalize + " = " + initialValue +
";"

819 }
820 }
821 synchdeclares
822 }
823

824 def getsynchronizedvariables (ast: List[ Definition ]):
List[ Definition ] =

825 {
826 ast.find(x => (x. leftside . description match {case ProgramT () =>

true; case _=> false })) match
827 {
828 case None => println (" Error in getthreads . Should be caught by

checker ."); scala .sys.exit ()
829 case Some(res) =>
830 {
831 res. rightside . expressions . flatMap (x => x match
832 {
833 case x: Definition => x. leftside . description match {case

SynchronizedVariableT () => Some(x); case _=> None}
834 case _=> None
835 })
836 }
837 }
838 }
839

840 }

C.8 Error.scala

1 package fumurtCompiler
2

3 import scala .util. parsing . input . Position
4 // import scala .util. parsing . input . NoPosition
5

6 case object Global extends Position
7 {
8 def column :Int = 0
9 def line:Int = 0

10 protected def lineContents : String = " global position "
11 }
12 case class Source (val line:Int , val column :Int , val

lineContents : String ) extends Position
13

14 case class FumurtError (val position :Position , val message : String )
15 {
16 override def toString : String =
17 {
18 position . toString + ": " + message + "\n" + position . longString +

"\n"
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19 }
20 }
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