
Object Detection and Tracking Based on 
Optical Flow in Unmanned Aerial Vehicles

Håkon Hagen Helgesen

Master of Science in Cybernetics and Robotics

Supervisor: Thor Inge Fossen, ITK
Co-supervisor: Tor Arne Johansen, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology



 



Problem Formulation

Thesis Description:

A UAV with daylight camera can be used to observe interesting objects, such
as ships, boats, persons, vehicles, marine mammals, ice and environmental spills.
The purpose of the thesis is to investigate the effectiveness of optical flow in order
to 1) detect moving objects (moving object segmentation), 2) track the detected
objects, and 3) estimate relative velocity between the UAV and the background
(sea or terrain).

The following items should be considered:

1. Literature survey, considering general methods for detection and tracking of
objects and features from a moving platform with ego-motion using opti-
cal flow, and related applications such as automotive (pedestrians and other
vehicles), aerial ocean surveillance, UAV velocity estimation, etc.

2. Develop algorithms for computing optical flow assuming no moving objects.
Use the algorithm to estimate the relative velocity between the UAV and the
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3. Develop an algorithm for computing optical flow and segmentation of moving
objects assuming one moving object in the image frame.

4. Based on 2 and 3, develop a tracking system for tracking an arbitrary number
of objects (from zero to many) from a sequence of images.

5. Use the position of the UAV to compute georeferenced position and velocity
over ground estimates for tracked objects.

6. Test the algorithms through computer simulations.
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Abstract

In recent years the Unmanned Aerial Vehicle (UAV) community has discovered the
enormous amount of information that can be extracted from a video camera. It can
be used for collision avoidance, navigation, velocity estimation, terrain mapping,
object detection and object tracking in addition to many other applications. This
thesis looks into several different ways a video camera in the payload of a fixed-wing
UAV can be utilized. The first part investigates a way to calculate the body-fixed
velocity of the UAV with the images captured by the camera. It can be achieved
with optical flow and measurements of the roll angle, pitch angle and the altitude
of the UAV. The calculated body-fixed velocity can be used as a measurement
in the navigation system. This thesis looks into a navigation system based on
a nonlinear observer that estimates attitude, position, velocity and gyro bias. In
order to estimate these states the nonlinear observer utilizes measurements from an
Inertial Measurement Unit (IMU), a Global Navigation Satellite System (GNSS)
receiver and a video camera.

The second part looks into moving object detection and tracking. An algorithm
for detection of moving objects has been developed. It utilizes the navigation
states of the UAV and optical flow in order to extract the moving objects from
the images. Furthermore a tracking system based on the moving object detection
algorithm has been proposed. The tracking system consists of the moving object
detection algorithm, a classifier that describes each object and a discrete Kalman
filter that estimates the motion of the object. The objects are tracked in the
image plane and the estimates are transformed to the North-East-Down (NED)
coordinate system.

A fixed-wing UAV experiment has been carried out to gather images captured
from an airborne UAV and collect data from an IMU and a GPS receiver. The
navigation system has been evaluated offline by computer simulations based on
the data collected at the experiment. The tracking system and the moving object
detection algorithm have also been evaluated in computer simulations. Promising
and accurate results were shown for both the navigation system and the proposed
tracking system.

Keywords: Unmanned Aerial Vehicle, Vision Based Navigation, Vision-Aided
Nonlinear Observer, Discrete Kalman Filter, Navigation System, Sensor Fusion,
Computer Vision, Optical Flow, Object Detection, Object Tracking

iii



iv



Sammendrag

De siste ti årene har bruk av kamera i ubemannede fly vært et sentralt forskn-
ingstema. Ved å montere et kamera i et ubemannet fly kan man benytte det for
å unng̊a kollisjoner, navigere, estimere hastighet, lage terrengprofiler, detektere
objekter og m̊alfølge ojekter blant annet. Denne avhandlingen ser p̊a forskjellige
anvendelser hvor et kamera montert i nyttelasten til et ubemmanet fly er nyttig.
Den første delen undersøker og presenterer en m̊ate bildene fra kameraet kan brukes
til å beregne hastigheten til det ubemannende flyet. Dette kan realiseres med optisk
flyt, m̊aling av orienteringen til flyet og en høydem̊aling. Den beregnede hastigheten
kan brukes i navigasjonssystemet til det ubemannede flyet. Denne avhandlingen ser
nærmere p̊a et navigasjonsssytem som er realisert med en ulineær observer som es-
timerer orientering, posisjon, hastighet og gyroskopbias. Den ulineære observeren
er avhengig av m̊alinger fra en IMU, et globalt posisjonerings system (GPS) og
kameraet.

Den andre delen undersøker hvordan objekter i bevegelse kan detekteres og følges
ved hjelp av kameraet. En algoritme som finner objekter i bevegelse blir foresl̊att.
Denne algoritmen benytter estimatene fra navigasjonssystemet og optisk flyt for
å finne objekter i bevegelse i bildene. I tillegg er et m̊alfølgingssystem som benytter
denne algoritmen foresl̊att. Dette systemet best̊ar av algoritmen som finner objek-
ter i bevegelse, en beskrivelse av alle objekter som detekteres slik at de kan skilles
fra hverandre og et diskret Kalman filter som estimerer bevegelsen til objektene.
Objektene m̊alfølges i bildeplanet og estimatene transformeres til Nord-Øst-Ned
(NED) koordinatsystemet.

En testflyvning med et ubemannet fly har blitt gjennomført for å samle bilder og
data fra IMU og GPS. Navigasjonssystemet har blitt testet og evaluert gjennom
simuleringer. Målfølgingssystemet og algoritmen for å finne objekter i bevegelse har
ogs̊a blitt testet og evaluert gjennom simuleringer. Simuleringene viste lovende og
nøyaktige resultater for b̊ade navigasjonssystemet og m̊alfølgingssystemet.

Nøkkelord: Ubemannet Fly, Kamerabasert Navigasjon, Kamera-Assistert Ulineær
Observer, Diskret Kalman Filter, Navigasjonssystem, Sensorfusjon, Bildebehan-
dling, Optisk Flyt, Objekt Deteksjon, Målfølging
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Chapter 1
Introduction

This master thesis explores the possibility of using a commercial video camera to
estimate the linear and angular velocity of a fixed-wing unmanned aerial vehicle
(UAV) with a principle called optical flow (OF). The estimated linear velocity is
used as a measurement in a nonlinear observer to estimate the ego-motion of the
fixed-wing UAV. In addition an approach for detection and tracking of moving
objects in images captured from a fixed-wing UAV is developed. This approach
also depends on OF and is therefore related to the estimation of the ego-motion
in this manner. Furthermore the detection and tracking of moving objects depend
on the UAV states and thus a state estimator is necessary. Finally, the estimated
ego-motion of the UAV is used to compute georeferenced position and velocity
over ground estimates for the detected objects. This chapter contains the following
topics:

• Section 1.1 provides a short introduction to the research field with UAVs as
the main focus. Furthermore the motivation behind this thesis is presented
with some of the main challenges.

• Section 1.2 presents the contributions of this thesis and specifies the problem
formulation.

• Section 1.3 presents an outline of the contents in this thesis.
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Chapter 1. Introduction

1.1 Historical View and Motivation

The use of UAVs, for both military and civil purposes, has received a lot of interest
in the last decade, and already plays a major role in military use. The field of ap-
plications for UAVs will grow even more in the future, and the demands for reliable
systems are considered to be crucial. Safe navigation is one of the most important
topics when working with UAVs since they should be able to move safely without
an operator controlling the aircraft. Camera based navigation is a globally priori-
tized research field and expected to be useful in civil and military applications for
the next decades. Integration of a camera in the navigation system increases the
redundancy in the navigation system. This can be especially important for UAVs
since magnetometer measurements of the heading might be heavily affected by elec-
tromagnetic fields from other electrical components. The limited amount of space
in the UAV increases this problem since it is difficult to shield the magnetometer
from other electrical components.

Cameras can be useful for surveillance, obstacle avoidance, velocity estimation, ob-
ject detection and object tracking in addition to several other applications. There-
fore it is a sensor that can gather an enormous amount of information. In this thesis
the images captured from a camera strapped to the UAV will be used to calculate
the linear and angular velocity of the UAV, and in addition find and track moving
objects. This illustrates the diversity of the applications for which a video camera
can be useful. The use of cameras for navigational purposes is expected to grow
fast since video cameras are lightweight, and the prices are constantly decreasing.
Therefore cameras with great quality can be used in commercial applications as
well.

The knowledge of camera based navigation is not comprehensive enough yet and
there is a research space ready to be examined. This is especially the case for
applications concerning UAVs. UAVs are moving fast which causes the images
to be more contaminated by noise than images captured from a camera at rest.
Moreover the displayed environment in the images changes rapidly when the ve-
locity is large. Therefore suitable algorithms that can handle these situations are
important to identify or develop. Detection and tracking of moving objects are
very mature research fields, but most work is developed for static environments
where the camera is at rest. Therefore most approaches developed so far are not
suitable for UAVs and other approaches are necessary to identify.

Other challenges with image processing applications in UAVs, are the limited
weight and space available for sensors in the payload. It is always desirable to
have small, light weight and power efficient sensors on an airborne vehicle. A
trade-off between price, performance, size and weight is necessary when choosing
a video camera. Therefore there is a limited set of appropriate cameras available.
The processing capacity of on-board processors today is limited, and image pro-
cessing algorithms are known to be computationally heavy. Thus the use of a video

4



1.2 Problem Formulation Specification and Contributions

camera in the navigation system requires algorithms that can be processed in an
efficient manner for online applications. The need for accurate measurements is a
contradiction to the desire for fast algorithms, and this is one of the main challenges
for real-time applications. This however is not the main focus in this thesis since
the algorithms will be tested offline.

1.2 Problem Formulation Specification and Con-
tributions

This thesis has two main objectives. The first objective is to estimate the ego-
motion of a fixed-wing UAV with a nonlinear observer. The nonlinear observer [24]
has earlier been used with a magnetometer, but in this thesis the magnetometer
is replaced by a video camera. The nonlinear observer with the camera has earlier
been proved to be uniformly semi-globally stable and verified through a computer
simulation [21]. In this thesis a real experiment has been conducted to test the non-
linear observer on real data. Several OF algorithms have been implemented and
the angular and linear velocity have been calculated with OF. The implementation
of the OF algorithms has been conducted in cooperation with fellow MSc. student
Jesper Hosen. OF and velocity calculation from OF are described in Chapter 2.
The calculated velocities have been used as a measurement in the nonlinear ob-
server. The observer has been implemented and verified through offline simulation
of real data from a flight experiment conducted at Eggemoen February 2015.

The nonlinear observer has been simulated with the data gathered at the exper-
iment at Eggemoen, and the results have been published in a paper accepted for
the International Conference on Unmanned Aerial Vehicles 2015 (ICUAS’15) in
cooperation with PhD. student Lorenzo Fusini, MSc. student Jesper Hosen, Pro-
fessor Tor Arne Johansen and Professor Thor Inge Fossen. The accepted paper is
attached in Appendix A of this thesis. A second paper has been written and sub-
mitted to the 2016 American Institute of Aeronautics and Astronautics Science and
Technology Forum and Exposition (AIAA SciTech 2016) and is based on the data
gathered from the same flight test. This paper focuses on a different way to calcu-
late the linear body-fixed velocity with OF. Furthermore the nonlinear observer is
evaluated with simulated and real data and compared with the observer from the
first paper. The second paper is attached in Appendix B and will be accepted or
rejected late in August 2015. The second paper is also written in cooperation with
the aforementioned authors. The nonlinear observer is described more closely in
Chapter 3.

The second objective of this thesis is detection and tracking of moving objects. A
comprehensive study of existing methods and important theory are presented in
Chapter 4. A new algorithm for detection of moving objects with OF has been
developed in this thesis and is also described more closely in this chapter. It has
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Chapter 1. Introduction

been implemented and evaluated through computer simulations. The algorithm has
not been verified on real data since the images from the experiment at Eggemoen
did not contain moving objects with known paths. Furthermore it was not possible
to perform a new experiment within the time limit. However objects have been
edited into the images captured at Eggemoen. In this manner the objects can be
detected and tracked in relevant images and the real data of the UAV have been
used. Therefore the results from the simulation should illustrate the performance
of the detection algorithm in a trustworthy way.

The detected moving objects are tracked in the image plane in order to create a
time dependent trajectory for the motion of the objects. A tracking system utilizing
the moving object detection algorithm, a classifier to describe each object and a
Kalman filter has been developed. OF and the position of the detected objects have
been used as measurements of the velocity and the position in the image plane.
The estimated ego-motion of the UAV (from the nonlinear observer) has been used
to compute the position and velocity of the moving objects in the North-East-
Down (NED) coordinate frame [20, Chapter 2]. The tracking system has also been
implemented and tested through computer simulations. Different paths in NED
have been created and objects inserted into the images at the correct position in
the image. The estimated trajectory in NED has been compared with the true
paths to evaluate the tracking system.

The following contributions have been made in this thesis:

• Co-author on paper accepted for ICUAS’15. The paper evaluates the nonlin-
ear observer on real data, and is attached in Appendix A.

• Co-author on paper submitted for AIAA SciTech 2016. The paper is attached
in Appendix B and proposes a new way to utilize the video camera in the
nonlinear observer. The paper evaluates the nonlinear observer on real and
simulated data.

• Derivation of how to calculate the body-fixed velocity from OF with a camera
pointing straight towards the ground (with zero roll and pitch for the UAV).
This is derived in Section 2.4.

• Development of an algorithm for detection of moving objects utilizing OF
and the navigation states of the UAV. This is described in Section 4.2.

• Development of a tracking system for multiple moving objects utilizing the
moving object detection algorithm. This is described in Section 4.2-4.5.

• Implementation of the nonlinear observer and the tracking system. This is
described in Chapter 5.

• A comparison of the performance of the nonlinear observer with a EKF based
on real data. Furthermore the performance of the observer with the camera is
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compared to the performance of the nonlinear observer with a magnetometer.
This is presented in Section 7.2-7.3.

• Case studies evaluating the performance of the moving object detection al-
gorithm and the tracking system. This is presented in Section 7.4-7.6.

1.3 Outline

This thesis is organized in eight chapters and three appendices. The chapters are
numbered 1-8 and the appendices are numbered A-C. A short description of the
contents is given below:

• Chapter 2 presents the camera system. An introduction to OF is given and
the OF algorithms used in this thesis are described. Furthermore the calcu-
lation of body-fixed linear and angular velocity from OF is derived.

• Chapter 3 presents the nonlinear observer used to estimate the ego-motion of
a fixed-wing UAV. The equations for the observer are presented and different
configurations of the observer described.

• Chapter 4 presents the moving object detection algorithm and tracking sys-
tem. This includes the moving object detection algorithm, object classifica-
tion, object tracking and transformation of estimates in the image plane to
NED (georeferencing). Related work is also comprehensively described.

• Chapter 5 describes the software implemented in this thesis. This includes
the implementation of OF algorithms, velocity calculation from OF, moving
object detection, tracking system and other related software.

• Chapter 6 describes the UAV experiment, case studies and simulations con-
ducted in this thesis. This chapter is the basis for understanding the results
presented in Chapter 7.

• Chapter 7 presents the results and discussion for the different case studies.
The result and discussion for each case study are presented separately.

• Chapter 8 presents a conclusion and the main findings of this thesis. Future
work is also described in this chapter.

• Appendix A is the paper accepted for ICUAS’15.

• Appendix B is the paper submitted to AIAA SciTech 2016.

• Appendix C shows how the transformation between NED and the camera-
fixed frame is calculated using the symbolic toolbox in Matlab.
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Chapter 2
Image Processing

Video cameras can be used for a lot of different applications including surveillance,
obstacle avoidance, safe navigation, object detection and object tracking. In recent
years commercial video cameras have been added to the payload of many UAVs
since it is a cheap and light weight sensor which can capture a huge amount of
information. In this chapter a video camera will be used to calculate the body-
fixed velocity of the UAV with a principle called OF. This chapter looks into the
calculation of velocity from OF and contains the following topics:

• Section 2.1 is an introduction to image processing and important for readers
with little experience with image processing and computer vision.

• Section 2.2 defines OF and introduces the research field.

• Section 2.3 describes different OF methods used in this thesis.

• Section 2.4 presents the calculation of body-fixed velocity from OF.

2.1 Introduction to Image Processing

Video recordings are simply a sequence of images captured closely in time. There-
fore a sequence of images is the same as a video recording. An image is a rep-
resentation of the perceived area in the field of view of the camera captured at a
time instant. Thus an image is a discrete representation and can contain different
amounts of noise. This is why two images of the exact same area, captured in
a short time period, never look exactly equal. There exist several different color
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representations for images. In this thesis color images stored with the RGB format
and monochrome images will be considered [48, Chapter 2].

Color images are based on detection of three different colors, namely red, green
and blue. Other colors are represented as a combination of red, green and blue. A
camera consists of an image sensor with a finite amounts of pixels. Color cameras
normally use an image sensor where each pixel is divided in four regions. Two of
these regions detect the color green since the human eye is most sensitive to green.
The two other regions detect red and blue. Such a pattern is called a Bayer pattern
and is displayed in Figure 2.1. Each color gets a value that describes the intensity
(amount) of the color. Monochrome images express each pixel as a single value
which determines the brightness of the image. The intensity value is normally an
eight-bit number with values from 0 to 255.

Figure 2.1: The Bayer filter at each pixel.

2.1.1 The Pinhole Camera Model

A camera model can be defined as

Definition 2.1 A camera model is a mathematical model describing the relation-
ship between the depicted object and the perceived image. It is a mathematical
model relating the position of objects in the 2D image plane to the position in a
3D coordinate frame fixed to the camera.

There are several camera models, but one of the simplest with high validity is the
pinhole camera model [29]. In order to relate pixel coordinates to other coordinate
systems, it is necessary to map a point in the 3D camera-fixed frame to the 2D
image plane. The pinhole camera model is a well known camera model which defines
this mapping in a simple manner. It is displayed in Figure 2.2. The following two
definitions define coordinates in the image plane and the camera-fixed frame:

Definition 2.2 Superscript c refers to the camera-fixed frame. The origin of this
frame is placed in the lens aperture. Position coordinates in the camera-fixed
frame are expressed as pc = (xc, yc, zc).
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Definition 2.3 r and s is the horizontal and vertical pixel coordinate in the image
plane respectively.

Figure 2.2: The pinhole camera model maps a perceived point in the camera-fixed frame
to the image plane.

By geometric considerations (similarity of form) one may see from Figure 2.2 that
the relationship between r and yc and the relationship between s and xc can be
written as

r

f
=
yc

zc
(2.1a)

s

f
= −x

c

zc
(2.1b)

where f is the focal length of the camera given by the lens specification. (2.1a)
and (2.1b) might be combined and expressed as

[
r
s

]
=

f

zc

[
yc

−xc
]
, zc 6= 0 (2.2)

(2.2) describes the relationship between the image plane coordinates (r, s) and the
camera-fixed coordinates (xc, yc, zc). zc is the distance between the lens aperture
and the plane the captured point is located in. Obviously the coordinate zc can
never be zero, but this is not a problem for UAVs since zc is proportional to the
altitude of the UAV. A necessary assumption for the pinhole model to be valid
is:

Assumption 2.1 The distance zc is known such that a one-to-one mapping
between the image plane and the camera-fixed frame is given by (2.2).

The pinhole camera model will later be used to derive the calculation of velocity
from OF. Therefore the validity of the model should be considered and necessary
assumptions stated. The pinhole camera model is a good approximation, but it
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assumes that the images are not affected by lens distortion and that the image
projection is continuous. In general all cameras are prone to lens distortion to
some extent. Lens distortion could e.g. be identified as straight lines appearing as
bended lines. This is because a lens has defects that lead to blur, color changes or
geometric distortion from the ideal ray [48, Chapter 3]. As the geometric distortion
is most present in the peripheral of an image, the assumption of no lens distortion
might be valid if one considers a region of the image extending some distance from
the centre of the image. For simplicity the following assumption is made in this
thesis:

Assumption 2.2 The lens used does not introduce significant distortion to the
images.

The distortion of a camera can be tested with the Computer Vision toolbox in
Matlab. Since the number of pixels in the image plane is finite, the image plane
consists of a fixed set of points. Therefore the image plane is not continuous, but
discrete. Thus the points in the 3D plane, which is continuous, are not mapped
perfectly to the image plane. In order to find the velocity from OF the pinhole
camera model needs to be differentiated and this is derived in the continuous time
space. Therefore the following assumption is necessary:

Assumption 2.3 The image projection is continuous such that the image coor-
dinates can be differentiated with respect to time.

With the large number of pixels in cameras today, the assumption of continuous
image projection is not far from reality.

2.2 Optical Flow

OF has been studied for nearly 50 years and belongs to the research field of com-
puter vision. This section will define OF and explain the most important topics
within this research field.

2.2.1 Definition of Optical Flow

[5] and [37] defines OF as a velocity field that transforms one image into the next
image in a sequence of images. It is therefore necessary to have two subsequent
images to calculate OF. In this thesis another, but closely related, definition will
be considered. OF can be understood as the difference between two images. It says
something important about how images in a sequence change to create the next
image. Each image consists of a finite number of OF vectors where the resolution of
the image is an upper bound for the number of vectors. For simplicity a single OF
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vector can be considered as the vector between the same feature in two consecutive
images. It has a magnitude and a direction. This is illustrated in Figure 2.3. It is
important to notice that different features in the same image can have different OF
vectors. This can be the case if one of the features is located closer to the camera
than other features or if the image contains moving objects. In this report OF will
be defined as

Definition 2.4 An optical flow vector is the change in position for a feature
displayed in two consecutive images. Optical flow of an image is the set of all
calculated OF vectors in the image.

Figure 2.3: The circle, which is a feature, changes position in two consecutive images
and the arrow is used to illustrate the optical flow.

Dense and Sparse Optical Flow Algorithms

In Figure 2.3 OF was illustrated as the movement of a common point in two con-
secutive images. This however is just the OF of a single point (pixel) in the image.
In Section 2.4 it is justified that at least three OF vectors from each image are
necessary to compute the angular and linear velocity from OF. Different OF meth-
ods have different approaches to decide the number of calculated OF vectors. The
methods can be classified as either dense or sparse. The dense methods calculate
OF at each and every pixel of the image. They are in general computationally
demanding since the number of OF calculations is equal to the image resolution.
The sparse methods on the other hand calculate OF at a subset of the pixels.
These pixels can be picked randomly or be identified through a feature detector for
instance. Feature detectors locate parts in an image that are easy to identify. This
can for example be regions with large contrast in intensity, edges or corners.

Definition 2.5 Dense optical flow methods calculate optical flow at each and
every pixel of the image. Sparse optical flow methods calculate optical flow at a
subset of the pixels.

It is important to notice that dense methods not necessarily are more computation-
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ally demanding than sparse methods. This is because the methods can use different
approaches for calculating OF at a single pixel. Therefore, a dense method that cal-
culates OF at each pixel very efficiently might be less computationally demanding
than sparse methods that requires long computation time at each pixel.

A problem with dense algorithms in UAV applications may be when flying over
areas with smooth surfaces or over dynamic surfaces which are changing. Such
a surface may be the ocean. When flying over a homogeneous surface such as
still water one would expect non-zero OF vectors since subsequent images change.
However the algorithms may propose that the OF is zero. This is because the
image might look equal at several image regions. Then a change at one pixel might
be neglected since a new equal pixel is moved to the same location as the original
point. Another possibility is that the algorithms are unable to distinguish between
two equal pixels. Therefore the pixels are mixed together and wrong OF vectors
are generated. An illustration of this problem is given in Figure 2.4. This can lead
to OF vectors that are wrong both in magnitude and direction.

Figure 2.4: Two equal points (pixels) mixed together and erroneous OF vectors are
computed.

Sparse algorithms on the other hand are free to choose points in the image (regions
of interest), and thereby avoid using homogeneous areas when calculating the OF.
For this to work it is necessary to avoid areas of an image that are inappropriate
for OF calculation. This is a very challenging problem and it is impossible to
find a solution that works in all cases. Therefore it is impossible to be completely
protected from erroneous optical flow vectors. [56], [19] and [5] are all examples of
dense methods, while OF calculation based on [33] and [3] are examples of sparse
methods.

2.3 Optical Flow Methods

The algorithms for calculating OF have evolved greatly over the last decades. This
section will describe some of the methods implemented in this thesis. For a more
comprehensive study of available methods the reader should investigate [2, 37].
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The algorithms implemented in this thesis are chosen based on the findings in
related literature and experiences from when the project report was written. [37]
evaluated some algorithms in an offline evaluation based on images captured from
a UAV. Other researchers [9, 54, 58] have used a lot of resources on evaluating
different algorithms in UAV applications. In this thesis the following methods are
considered:

• Template matching

• Feature-matching based OF methods

A single gradient [6] method is implemented in this thesis, but not used in the UAV
experiment in Chapter 6 due to the poor results in [37] and findings in the project
report. Thus the method will not be described in this thesis. Template matching
and feature-matching based methods will be examined further in this section and
later used in a UAV experiment.

2.3.1 Template Matching

Template matching [51] is also referred to as region matching. A single OF vector
is calculated by identifying the displacement of a small region between subsequent
images. This can be conducted for several image regions the get the desired number
of OF vectors for every image. The process of calculating a single OF vector is
illustrated in Figure 2.5. A region around the pixel of interest, called a template,
from the first image is searched for in the second image. The goal is to locate
the same region in the second image. The OF vector is the displacement of the
template from the first to the second image in the image plane. This process is for
the rest of this thesis referred to as template matching.

Figure 2.5: a) A template is extracted from the first image. b) The template by itself.
c) The template is matched at the marked region in the second image and displacement
calculated. The arrow is the OF vector.

Template matching will in this thesis be based on normalized cross correlation.
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This process can be mathematically described as

R(x, y) =

∑
x′ ,y′ (T (x

′
, y

′
)I(x+ x

′
, y + y

′
))

√∑
x′ ,y′ T (x′ , y′)2

∑
x′ ,y′ I(x+ x′ , y + y′)2

(2.3)

where R(x, y) is the result which indicates the quality of the match, T (x, y) is the
template, I(x, y) is the image where the template is searched for and (x, y) is a pixel
position. In practice the template is placed over a part of the image (with the same
size as the template) and compared with that part. If the areas are similar, R(x, y)
will be equal to one. To find the best match this operation must be performed for
every pixel (x, y) in the image I(x, y). Thus the number of times (2.3) is computed
is related to the image resolution. The process is illustrated in Figure 2.6.

Figure 2.6: Pattern for performing normalized cross correlation at every pixel.

Figure 2.7 shows an example of template matching performed on a real image cap-
tured by a UAV. In practice the template matching is performed on a single color
channel or a monochrome image. This is because matching of several color chan-
nels is to computationally expensive. In this thesis it is only performed template
matching on monochrome images which in practice means that the brightness of
the image is the matching criterion.

Advantages and Disadvantages With Template Matching

The images in Figure 2.7 illustrates an environment that might be a problem for
template matching techniques. If the extracted template displays a homogeneous
area, such as snow with no texture, several locations might match the template.
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a) b) c)

Figure 2.7: a) Template is extracted from the first image. b) The template. c) The
template is matched at the marked region in the second image.

Therefore erroneous OF vectors might be created. These techniques are therefore in
general not that reliable in homogeneous environments. A possibility for increasing
the reliability is to match every color channel independently, and reject the results if
every color channel do not provide the same result. This however is computationally
demanding since it requires three operations with template matching instead of
one.

The main advantage with the region-based methods is their performance for fast
motion. A disadvantage is that the procedure is computationally demanding and
not appropriate for real-time applications on computers with limited processing
power. The template matching is computationally heavy, both in time and space as
illustrated in Figure 2.6. Another issue with template matching is that the template
should look equal in both images in order to find it. Therefore the displayed area
in the template should have the same angle with respect to the camera, and the
same number of pixels covering the region, as well as equal light conditions. The
problem is minimized by a sufficiently high frame-rate for the camera.

One solution to increase the speed, is to divide the image in smaller regions and
search for the template in each region. It is then possible to use parallelism and
find the most likely regions for the correct match. A more detailed search can be
conducted in the best regions. Decreasing the template size is also a solution to
increase the computational speed. Larger templates increase the search time, but
gives more reliable results since the search algorithm has more information about
the area of interest (a larger number of pixels). Neither of these strategies are used
further in this thesis.

How to Choose Templates

One challenge with these methods is to find pixels where OF should be calculated.
One approach is to divide the image in regions, and find the OF of the centre of each
region. Naturally the region must be larger than the size of the template for this
to be reliable. The regions should be equal in size to get OF vectors from all parts
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of the image. Another approach is to use a feature detector (see section 2.3.2) to
choose appropriate features to match between consecutive images. However there
will always be a risk of detecting features in one area of the image only. In the
worst-case scenario the detector cannot find any features, and thus not a single OF
vector is calculated. An example of an OF field created with template matching,
is displayed in Figure 2.8.

Figure 2.8: Optical flow calculated with template matching.

2.3.2 Feature-Matching Based Methods

Feature-matching based methods calculate OF in three steps:

1. Find interest points, so called features, with a feature detector.

2. Connect a descriptor to each feature that describes the neighbourhood of
the feature. The descriptor is used to separate different features and match
features together.

3. Match all descriptors from two consecutive images together to find common
features. OF vectors are created by the displacement of each feature located
in both images.

The process is illustrated in Figure 2.9. Typical features extracted in the first
step are edges, lines and corners. The most important property of the detector is
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the repeatability. The repeatability describes the detectors ability to identify the
same interest points in different viewing conditions. These conditions can include
properties such as light conditions, angle of rotation, different scale (changes in
size) and of course displacements compared to the environment.

Figure 2.9: Illustration of Feature-Based Matching Methods.

The descriptor from step two in Figure 2.9 is often a vector describing the pixels
in the neighbourhood of the feature. The vector could include color information,
intensity information, information about the gradient of the colors and so on. The
descriptors most important property are to uniquely describe each feature. It needs
to be robust to noise and other disturbances such as image distortions. Distinctive
descriptors for each interest point is critical such that different interest points are
not matched together.

The matching technique in step three is in most cases based on least squares or
a similar error minimization method. If the similarity is above a given threshold,
the descriptors are considered to be a match. The threshold can be adjusted by
the best match to exclude insecure matches. The Harris Algorithm [10], SURF [3]
and SIFT [33] are famous feature-matching based OF algorithms. Both SIFT and
SURF have been implemented, but only SIFT has been used in the case studies
described in Chapter 6.

Advantages and Disadvantages

The main disadvantage with these methods is that they are computationally de-
manding, and the performance depends heavily on the matching technique chosen.
However template matching at several locations is more computationally demand-
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ing. The main advantage is that several of these methods are scale and rotation
invariant. This means that the features can change in size and rotation, but still
be detected by the feature detector and given the same descriptor. Furthermore
these methods have the same advantage as template matching with respect to fast
motion as well.

Scale Invariant Feature Transform (SIFT)

The SIFT algorithm [33] was the first scale and rotation invariant OF algorithm.
It is also partially invariant to brightness changes. The features are detected by
locating maxima and minima of a difference-of-Gaussian [33] function at different
image resolutions. A vector of 64 or 128 elements is used as the descriptor. An
example of OF vectors calculated on a real image with SIFT is displayed in Figure
2.10. SIFT is often able to identify several features as illustrated by the number of
OF vectors in the image.

Figure 2.10: Optical flow vectors calculated with the SIFT algorithm.

2.4 Calculation of Velocity From Optical Flow

This section presents a way to calculate the six-degrees of freedom (6 DOF) body-
fixed velocity of a UAV based on OF. The method described in this chapter utilizes
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OF vectors, roll, pitch and altitude of the UAV in order to calculate the linear and
angular body-fixed velocity. This section begins with an introduction to why it
is desirable to calculate velocity from OF. Thereafter a relationship between OF
vectors and 6 DOF motion of a UAV is derived.

OF based velocity calculation has received a lot of interest the latter years, and
multiple researchers have published work in this field [37, 54]. The motivation for
studying velocity calculation from OF is mostly justified in the sense of robustness.
A vision-aided navigation system should be able to maintain reliable estimates
of the states of the UAV, even in the case of GPS drop-outs or magnetometer
disturbances.

2.4.1 Calculating the Velocity of the Terrain With Respect
to the Camera

The problem of recovering velocity from OF has been studied in [37], [54] and [21]
among others. When dealing with Euler angles, the formulas from the aforemen-
tioned researchers would yield a singularity when pointing the camera downwards
(pitch at 90 degrees). In order to solve the singularity problem with the Euler an-
gles, the transformation between OF and velocity is derived in this thesis, assuming
that the camera on the UAV is pointing straight down. This leads to a slightly
different transformation from OF to velocity. This transformation was also pub-
lished in the paper submitted to ICUAS’15 (Appendix A). The placement of the
camera is illustrated in Figure 2.11 The camera-fixed coordinate system is depicted
in Figure 2.2.

Figure 2.11: The placement of the camera in the UAV. In reality the camera is placed
closer to the center of gravity.

From now on vectors and matrices are written as bold upper-case and lower-case
letters respectively (r and R), while scalars are written as non-bold letters (r).
In Section 2.1.1 a relationship between points in the 2D image plane and the 3D
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camera-fixed coordinate frame was established through the pinhole camera model.
By assuming that every feature corresponding to an OF vector is at rest, (2.2) can
be differentiated with respect to time in order to derive the relationship between
velocity and OF (by assumption 2.3).

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc
−1 0 xc

zc

]

ẋc

ẏc

żc


 (2.4)

Definition 2.6 The vector [ṙ, ṡ]T is the optical flow vector at pixel (r, s) in the
image plane, and is a measure of how fast a feature in the image plane moves in
horizontal (r) and vertical (s) direction between consecutive images.

The vector [ẋc, ẏc, żc]T of the right hand side can be recognized as

ṗc =



ẋc

ẏc

żc




= vcT/c + ωcT/c × (pc − ocT )

(2.5)

where the following definitions are necessary:

Definition 2.7 vcT/c is the linear velocity of the terrain with respect to the camera
represented in the camera-fixed coordinate system.

Definition 2.8 ωcT/c is the angular velocity of the terrain with respect to the
camera represented in the camera-fixed coordinate system.

Definition 2.9 ocT is the terrain origin/point of rotation in camera coordinates.
All rotations of the terrain seen in the image will be rotations about the camera,
hence the rotation point ocT coincides with the origin of the camera frame.

Definition 2.10 pc is the position of the OF vector in the camera-fixed coordinate
system.

(2.4) might be rewritten by inserting (2.5)

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc
−1 0 xc

zc

]
(vcT/c + ωcT/c × (pc − ocT )) (2.6)

=
f

zc

[
0 1 −yczc 0 1 −yczc
−1 0 xc

zc −1 0 xc
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][
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]
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=
f

zc
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A A

]
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]
(2.8)
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[
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−1 0 xc
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]
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By the properties of the crossproduct

ωcT/c × (pc − ocT ) = −(pc − ocT )× ωcT/c
= −S(pc − ocT )ωcT/c

(2.9)

where S(v) is the skew-symmetric matrix

S(v) =




0 −v3 v2
v3 0 −v1
−v2 v1 0


 (2.10)

It is now possible to rewrite (2.8) as

[
ṙ
ṡ

]
=

f

zc
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]
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]

=
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[
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]
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]
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[
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]
(2.11)

where pc = [xc, yc, zc]T , ocT = [xc0, y
c
0, z

c
0]T and

M′(f,pc,ocT ) = (2.12)
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zc

[
0 1 −yczc −y

c(yc−yc0)
zc − (zc − zc0)

yc(xc−xc0)
zc xc − xc0

−1 0 xc

zc
xc(yc−yc0)

zc −x
c(xc−xc0)
zc − (zc − zc0) yc − yc0

]

(2.13)

A relationship between linear and angular velocity and OF is now established
through (2.11). It is necessary to argue for the centre of rotation ocT . All rotations
of objects seen in the image will be rotations about the UAV, hence the rotation
point ocT coincides with the origin of the body frame. As the camera is placed close
to the centre of Gravity of the UAV the following assumption is reasonable:

Assumption 2.4 The camera-fixed coordinate system coincides with the body-
fixed reference frame.

By this assumption

ocT = [0, 0, 0]T (2.14)

which means that the centre of rotation coincides with the origin of the camera-
fixed coordinate system (body-fixed reference frame of the UAV). Inserting (2.14)
into (2.11) one finally arrive at an expression for the linear and angular velocity of
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the terrain with respect to the camera in the camera-fixed frame

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc −y

c(yc)
zc − zc ycxc

zc xc

−1 0 xc

zc
xcyc

zc −x
c(xc)
zc − zc yc

][
vcT/c
ωcT/c

]

= M(f,pc)

[
vcT/c
ωcT/c

] (2.15)

There is one problem with (2.15). There are six unknowns (vcT/c and ωcT/c), but
only two equations. Thus the system is underdetermined. The solution is to
extended the equation to concern N points (r1, s1) . . . (rN , sN ):




ṙ1
ṡ1
...
˙rN
˙sN




=




M(f,pC1 )
...

M(f,pCN )



[

vcT/c
ωcT/c

]
(2.16)

This is possible since the velocity of the terrain with respect to the UAV is fixed,
but the OF might vary at different points in the terrain. By calculating the pseu-
doinverse of M in (2.16) the angular and linear velocity can be computed as

[
vcT/c
ωcT/c

]
=




M(f,pc1)
...

M(f,pcN )




+




ṙ1
ṡ1
...
˙rN
˙sN




= D+




ṙ1
ṡ1
...
˙rN
˙sN




(2.17)

where

D =




M(f,pc1)
...

M(f,pcN )


 (2.18)

D+ is the pseudoinverse of D and can be calculated as (DTD)−1DT . It exists if
DTD has full rank for all states. This can only happen if the number of OF vectors
are greater or equal to three. In addition the three vectors cannot be located on
the same line. This is because the system of equations will be linearly dependent
in this case and the system undetermined. A minimum demand is therefore that at
least three OF vectors must be present when calculating velocities, and the vectors
cannot be located on the same line. Nevertheless more than three OF vectors are
desired in order to find a more accurate solution. The following assumption is made
for the rest of this thesis:

Assumption 2.5 The matrix D is assumed to have full rank as long as the
number of OF vectors is sufficient. Thereby it is possible to calculate the linear
and angular velocity from (2.17)
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2.4 Calculation of Velocity From Optical Flow

2.4.2 Calculating the Velocity of the Terrain With Euler An-
gles and Altitude

The matrix D in (2.17) depends on pc. pc is the position of a feature corresponding
to an OF vector in the camera-fixed frame. However it is more convenient to express
A as a function of the roll, pitch and altitude of the UAV instead of a position in the
camera-fixed coordinate frame. This is because only the position in the image plane
for the feature is known. Therefore it is necessary to find a relationship between
the velocity and the states of the UAV. This section will derive a relationship
between pc and the focal length of the camera and roll, pitch and altitude of the
UAV.

The rotation matrix Rn
c (Θ) and displacement vector cn represent a rotation and

a translation between NED and the camera-fixed frame. They can be merged
to form a homogeneous 4 × 4-transform Tn

c between NED and the camera-fixed
frame

Tn
c =

[
Rn
c (Θ) cn

01×3 1

]
(2.19)

If tn = [xn, yn, zn, 1]T is a vector expressed in NED and tc = [xc, yc, zc, 1] a vector
expressed in the camera-fixed frame, the relationship between the vectors is given
as

tc = (Tn
c )−1tn (2.20)

where the inverse of the homogeneous transformation is given as

(Tn
c )−1 =

[
(Rn

c (Θ))T −(Rn
c (Θ))cn

01×3 1

]
(2.21)

By (2.20), tc is now a function of cn and Θ. That are the UAV position in NED and
the Euler angles (attitude of UAV). By inserting (2.20) into the pinhole camera
model (2.2) one can solve the equation with respect to xn and yn by assuming
that the Down position of the feature zn and image coordinates (r, s) are known.
The solution is defined as xnT and ynT . The equation can be solved in Matlab
using the symbolic toolbox (Appendix C). By constructing a new vector with the
solution tnT = [xnT , y

n
T , z

n, 1]T , one can calculate the corresponding solution in the
camera-fixed frame. tcT can be calculated by employing the 4 × 4-transformation
again.

tcT = (Tn
c )−1tnT (2.22)

Now by defining pc as the three first rows of tcT , one ends up with

pc =



xc

yc

zc


 =




s(cnz−zn)
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− r(cnz−zn)
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− f(cnz−zn)
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))


 (2.23)
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where the rest of the terms in (2.23) are defined as:

Definition 2.11 cnz is the z-component of the camera position in NED frame.
This is the altitude of the UAV (with a minus sign since positive direction is
downwards). φ and θ is the roll and pitch angles of the UAV respectively.

The Down position zn of the feature is unknown. The altitude of the UAV is on
the other side known and thus the following assumption is made:

Assumption 2.6 The terrain is flat such that all features are located in the same
plane. In practice this means that zn = 0.

A relationship between OF and roll, pitch and altitude of the UAV is derived
by inserting (2.23) into (2.15). The roll and pitch angles can be measured by
an inclinometer and the altitude by GPS or altimeter. Therefore the velocity
calculation from OF can be performed with available sensors and not depend on a
state estimator.

2.4.3 Calculating the Body-fixed Velocity of the UAV With
Euler Angles and Altitude

(2.17) expresses the velocity of the terrain with respect to the camera-fixed frame
(vcT/c and ωcT/c). However an expression for the body-fixed velocity of the UAV is
desirable. This is the same as the camera-fixed velocity with respect to the terrain
given in the camera-fixed coordinate frame, namely vcc/T and ωcc/T . Since it is

assumed that the body-fixed frame coincides with the body-fixed frame, {c} = {b}
and the body-fixed velocity is given as

[
vcc/T
ωcc/T

]
=

[
vbb/T
ωbb/T

]
= −

[
vcT/c
ωcT/c

]
(2.24)

This results in the following transformation for body- fixed velocity based on
OF:

[
vbb/T
ωbb/T

]
=




u
v
w
p
q
r




=

[
vcc/T
ωcc/T

]
= −




M(f, φ, θ, cnz , r1, s1)
...

M(f, φ, θ, cnz , rN , sN )




+




ṙ1
ṡ1
...
˙rN
˙sN




(2.25)

For clarity the M-matrix is now defined:
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2.4 Calculation of Velocity From Optical Flow

Definition 2.12 The matrix M(f, φ, θ, cnz , r, s) relates optical flow to angular
and linear velocity

M(f, φ, θ, cnz , r, s) =
f

zc

[
0 1 −yczc −y

c(yc)
zc − zc ycxc

zc xc

−1 0 xc

zc
xcyc

zc −x
c(xc)
zc − zc yc

]



xc

yc

zc


 =




scnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− rcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− fcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))




How Velocity Calculation is Affected by Difference in Terrain Eleva-
tion

For the derived relationship to be valid it was necessary to assume that the terrain
being recorded is flat. This section looks into the ramifications if the assumption
is violated. This can be that the level of the ground is constant, but that the UAV
is flying above some trees. Then the distance down to the perceived object (here
the trees) would be less than the distance to the ground. This problem will now be
illustrated through an example, in order to illustrate how the calculated velocities
are influenced when assuming wrong distance down to the perceived object.

Example 2.1 Assume that the UAV is flying 150 meters above the ground level.
At time t, the UAV flies over a forest. The height of the trees in the forest is
20 meters. Thus the distance from the camera to the object perceived by the
camera is 130 meters. The UAV has roll and pitch equal to zero. Furthermore
assume that the UAV is moving straight forward with zero angular velocity. Hence
v = w = p = q = r = 0. The relationship between optical flow and velocity can
then be simplified to:

[
ṙ
ṡ

]
=

[
0
f
zc

]
u

=

[
0
f

− fcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

]
u

=

[
0

− f
cnz

]
u

=

[
0
−f 1

cnz

]
u

(2.26)
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Now for simplicity assume focal length of camera lens f = 0.01m, and that the
OF algorithm measures an optical flow of [ṙ = 0, ṡ = 2.3 ∗ 10−3]m/sec.
Since one are expecting the UAV to be 150 meters (meaning cnz = −150) above
the ground, the speed is calculated to be

u = −ṡ× cnz ×
1

0.01
= −2.3 ∗ 10−3 × (−150)× 100 = 34.5[m/s]

However, since the true distance down to the perceived object is only 130 meters,
the real linear forward velocity u is:

u = 2.3 ∗ 10−3 × 130× 100 = 29.9[m/s]

This shows that the calculated velocity is actually greater than the real velocity
by a factor of 15

13 .

In general the calculated linear velocity is scaled by a linear scale factor

scale factor in linear velocity =
assumed height above perceived object

real height above perceived object

This would in fact mean that when flying over trees the linear velocities will appear
larger if the variations in terrain elevations are not compensated for. However the
calculated angular velocity is not affected by a change in elevation.

When calculating the velocity from OF the terrain has been used to find the ve-
locity. Thus only OF vectors that belongs to the terrain should be used. Moving
objects are not moving in the same manner as the terrain with respect to the cam-
era. Therefore using OF vectors from moving objects might cause the calculated
velocity to be erroneous. A simple outlier detector developed in the project report
is utilized to remove erroneous OF vectors.
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Chapter 3
State Estimation With a Nonlinear
Observer

Navigation can be defined as the problem of determining the position, velocity
or attitude of an object in motion by combining measurements from several sen-
sors [25]. Nonlinear observers and the well known Kalman filter [31] are possible
solutions for the navigation problem. Nonlinear observers have received a consid-
erable amount of attention in recent years and is a way to estimate the unknown
parameters of interest. This thesis focuses on a nonlinear observer for fixed-wing
UAVs that estimates position, velocity, attitude and gyro bias with measurements
from different sensors. The Kalman filter is an expensive estimator with respect
to computationally complexity. Furthermore the tuning of the Kalman filter is
time consuming. Nonlinear observers on the other hand are less demanding and
suits systems with low computational power, such as the on-board computer in a
UAV. The nonlinear observers often can be proved to be globally or semi-globally
stable which in theory guarantees convergence for the estimates. This is especially
an advantage for nonlinear systems since the Extended Kalman Filter cannot be
proven to be optimal in the same way as the linear Kalman filter. Exponential
stability also increases the resistance to environmental disturbances and uncertain
initial values [21].

This chapter will present a nonlinear observer which is proven to be semi-globally
exponentially stable. The observer uses inertial measurements of acceleration, an-
gular velocity and GNSS (GPS) measurement of position and velocity. In addition
both a video camera and a magnetometer can be used, but not in combination.
Therefore the equations with a magnetometer and a video camera will be presented.
Both versions of the nonlinear observer will be evaluated through an experiment.
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Altimeter and inclinometer measurements of the roll and pitch angle are necessary
if the camera is used. Furthermore the results from the camera-based observer is
used as a basis for the paper submitted and accepted for ICUAS’15. The paper
is attached in Appendix A, but the main findings will be presented later in this
thesis as well. The following topics will be the main focus of this chapter:

• Section 3.1 provides an introduction to nonlinear observers. Some history
will be presented as well as related work. Important definitions for the rest
of the chapter will also be given in this section.

• Section 3.2 presents the equations for the nonlinear observer and the necessary
measurements. Furthermore a theorem regarding the stability of the observer
is given.

• Section 3.3 contains information about the adjustable parameters in the ob-
server.

3.1 Introduction

Nonlinear observers have been studied for the last two decades for navigation pur-
poses. The first nonlinear observer for attitude estimation was presented in [44].
It was extended in [52] to include estimation of gyro bias and linear velocity by
utilizing GPS measurements. The nonlinear observer studied in this thesis uses
an attitude observer first proposed in [36]. It uses inertial measurements to find
the attitude, and global stability results were proved for the observer (attitude)
error. The attitude observer was developed further in [22] to get rid of some of
the assumptions made in [36]. It was expanded to to estimate position, velocity,
attitude and gyro bias in [25]. In addition global exponential convergence was
proved for the observer. The observer utilizes measurements from GNSS, inertial
measurements and a magnetometer. This observer estimated attitude through a
rotation matrix between the body-fixed frame and NED, and neglected the rota-
tion of the earth (local navigation). [23] simplified the attitude estimation to use
quaternions instead of the rotation matrix and considered the effect of the rotation
of the earth.

The work in this thesis is closely related to the articles mentioned above. [21] uses
the observer presented in [25], but replaced the magnetometer measurement with
measurements from a video camera. The observer with the video camera is the
main focus of this chapter. However the same observer with magnetometer instead
of camera is also examined.

The estimates can be represented in other reference frames than the measurements.
Therefore the different reference frames need to be defined. Two coordinate frames
are of interest in this chapter. That is NED (earth-fixed) which can be assumed to
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be inertial if the rotation of the earth is neglected. This is often assumed in local
navigation applications since the deviation caused by the rotation of the earth is
limited locally, and in a limited time period.

Definition 3.1 A vector represented in NED is given with superscript n. A
position vector in NED is represented as pn. The gravity vector g expressed in
NED is gn = [0, 0, 9.81]T .

The other reference frame of interest is the body-fixed frame which is attached to
the UAV. The body-fixed reference frame is illustrated in Figure 3.1. The rotation
between the body-fixed frame and NED is given by the Euler angles. The rotation
matrix between these frames are given in [20, Chapter 2].

Definition 3.2 A vector represented in the body-fixed frame is given with super-
script b. The body-fixed linear velocity is represented as vb.

Figure 3.1: The body-fixed reference system.

Matrices are written as bold upper-case letters, vectors as bold lower-case letters
and scalars as non-bold letters. The skew-symmetric matrix S of a vector x ∈ R3

is defined in Section 2.4.1. The opposite operation is denoted vex(x) which means
that vex(S(x)) = x. The skew-symmetric part of a square matrix A is expressed as
Pa(A) = 1

2 (A−AT ). Sat(A) is an element-wise saturation of a vector or matrix A
in the interval [-1,1]. The parameter projection Proj(·, ·) is defined in [25] as

Proj(b̂b, τ )=

{(
I− c(b̂b)

‖b̂b‖2 b̂
bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ , otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂b
− L2

bb)} and ‖ · ‖ denotes the standard
euclidean norm.
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3.2 A Nonlinear Observer for Attitude, Position,
Velocity and Gyro Bias Estimation

As mentioned in Section 3.1 an observer that estimates position, velocity, attitude
and gyro bias is of interest. The necessary measurements for this to be possible
are

• NED position pn from GPS.

• NED velocity vn from GPS.

• Angular velocity in body relative to NED with bias ωbimu = ωbb/n + bb.

• Acceleration from accelerometer in body abimu. This measurement is related
to the NED by the rotation matrix Rn

b , later referred to as R.

• Camera computed body-fixed velocity vbb/n through OF. This measurement

can be replaced by a body-fixed magnetometer measurement mb related to
the earth magnetic field in NED through R.

• Altitude from an altimeter (or GPS) and roll and pitch angles from an incli-
nometer to compute the body-fixed velocity from the OF vectors.

Furthermore two assumptions are necessary for the observer to guarantee stabil-
ity.

Assumption 3.1 The gyro bias bb is constant and bounded by a known upper
limit Lb such that ‖bb‖ < Lb

The first assumption depends on the gyro bias. The upper limit can often be found
in the data sheet of the gyro. Furthermore the gyro bias is often constant for
limited time periods and thus the assumption is assessed to be reasonable.

Assumption 3.2 The body-fixed velocity (or magnetometer measurement) com-
puted from the OF vectors and acceleration are linearly independent.

The second assumption is related to the reference vectors used to find the attitude.
Since the accelerometer measurement in NED contains the gravity vector, the only
possibility for the velocity and acceleration to be linearly dependent is with motion
straight up or down. This can be the case for helicopters, but not fixed-wing UAVs
since they always have forward motion. Therefore the second assumption is also
reasonable.
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Estimation

3.2.1 Observer Equations

This section presents the observer equations. The equations for the observer with
camera and magnetometer are almost similar. However the equations for both
versions of the observer will be presented for clarity. Furthermore the differences
will be highlighted.

Camera-Aided Nonlinear Observer

The observer with the camera is illustrated in Figure 3.2. The equations for the
nonlinear observer with camera are

Σ1

{
˙̂
R = R̂S(ωbimu − b̂b) + σKP Ĵ
˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂T

s KP Ĵ)))
(3.1)

Σ2





˙̂pn = v̂n + Kpp(p
n−p̂n) + Kpv(v

n−v̂n)
˙̂vn = ân + gn+Kvp(p

n−p̂n) + Kvv(v
n−v̂n)

ξ̇ = −σKP Ĵab + Kξp(p
n−p̂n) + Kξv(v

n−v̂n)

ân = R̂abimu + ξ

(3.2)

OF





[
vbb/n
ωbb/n

]
= −




M(f, φ, θ, cnz , r1, s1)
...

M(f, φ, θ, cnz , rN , sN )




+




ṙ1

ṡ1
...

˙rN

˙sN




(3.3)

Ĵ





Ĵ(vbb/n, v̂n,ab, ân, R̂) := ÂnAT
b − R̂AbA

T
b

Ab := [ab, ab × vbb/n, ab × (ab × vbb/n)]

Ân := [ân, ân × v̂n, ân × (ân × v̂n)]

(3.4)

The observer can be divided in two parts. Σ1 in (3.1) is the attitude estimator. It
is based on biased angular velocity measurements from the IMU, the velocity mea-
surement from the camera and accelerometer measurements from IMU (through

Ĵ). Σ1 estimates the rotation matrix R (between NED and the body-fixed frame)

and the gyro bias b̂b. The matrix Ĵ in (3.4) is an injection term constructed from
the camera velocity measurement used to stabilize the attitude estimates. Kp is a

symmetric positive matrix with gains for the injection term Ĵ. σ ≥ 1 is a constant
adjusted to achieve stability. KI is a positive scalar which determines how fast the
estimate of the gyro bias is allowed to change. R̂s is the saturation sat(R̂).

Σ2 in (3.2) estimates the translational motion. That is the position and velocity in
NED, the acceleration in NED and ξ̇ is a term to correct the position and velocity
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Figure 3.2: Observer with body-fixed velocity from camera.

estimates through the acceleration ân. Kpp, Kpv, Kvp, Kvv, Kξp and Kξv are
diagonal matrices used to tune the translational part of the observer.

OF in (3.3) is the calculation of linear and angular velocity from OF vectors de-
scribed more closely in Section 2.4. vbb/n is the linear velocity computed from the
camera by OF and considered as a measurement in the observer. The angular
velocity calculated from the OF vectors are not used since the angular velocity is
measured with the gyro. Only the direction of the linear velocity is of interest.
Therefore the linear velocity used in (3.4) is normalized and the same is true for

the other vectors in Ĵ.

Feedback of Roll, Pitch and Altitude to Find Velocity From OF

In Section 2.4 a transformation between OF, roll, pitch and altitude and velocity
was derived. It was mentioned that the transformation required measurements of
the roll and pitch angles from an inclinometer and altitude from GPS or altimeter.
However estimates of the altitude, roll and pitch exist and they are in general
more accurate than measurements of the same states. Therefore a possibility for
calculating velocity from OF in (3.3) is to use the estimates in the calculation
instead of measurements. This is illustrated in Figure 3.3. By using feedback of
the estimates, (3.3) is changed to

OF





[
vbb/n
ωbb/n

]
= −




M(f, φ̂, θ̂, ĉnz , r1, s1)
...

M(f, φ̂, θ̂, ĉnz , rN , sN )




+




ṙ1

ṡ1
...

˙rN

˙sN




(3.5)

while the rest of the equations are equal.
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Estimation

Figure 3.3: Observer with camera and feedback.

Magnetometer-Aided Nonlinear Observer

The velocity computed from the camera by OF can be replaced by magnetometer
measurements. This is fairly simple and only the injection term Ĵ needs to be
changed. The velocity vbb/n in Ab are replaced by the body-fixed magnetometer

measurement mb. Furthermore the estimate of v̂n in Ân is replaced by the local
magnetic field in NED mn. The equations for the observer with a magnetometer
are then

Σ1

{
˙̂
R = R̂S(ωbimu − b̂b) + σKP Ĵ
˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂T

s KP Ĵ)))
(3.6)

Σ2





˙̂pn = v̂n + Kpp(p
n−p̂n) + Kpv(v

n−v̂n)
˙̂vn = ân + gn+Kvp(p

n−p̂n) + Kvv(v
n−v̂n)

ξ̇ = −σKP Ĵab + Kξp(p
n−p̂n) + Kξv(v

n−v̂n)

ân = R̂abimu + ξ

(3.7)

Ĵ





Ĵ(mb, m̂n,ab, ân, R̂) := ÂnAT
b − R̂AbA

T
b

Ab := [ab, ab ×mb, ab × (ab ×mb)]

Ân := [ân, ân ×mn, ân × (ân ×mn)]

(3.8)

The only other consideration is the adjustable parameters for the observer. Some of
the gains should possibly have different values for the magnetometer in comparison
with the camera. The nonlinear observer with magnetometer instead of camera is
displayed in Figure 3.4.
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Figure 3.4: Observer with magnetometer.

3.2.2 Stability of the Nonlinear Observer

The stability properties of the nonlinear observers are often more conclusive than
the EKF since global stability properties can be proved. The stability properties
for the observer with camera and magnetometer will be given in this section.

Theorem 3.1 The error dynamics of the nonlinear observer in 3.2.1 with body-
fixed velocity measurements from the camera are uniformly semi-globally expo-
nentially stable.

Proof 3.1 The proof of the observer with the camera is given in [21].

Theorem 3.2 The error dynamics of the nonlinear observer in 3.2.1 with body-
fixed velocity measurements from the camera replaced by magnetometer measure-
ments are globally exponentially stable.

Proof 3.2 The proof is given in [25].

The stability proofs show exponential convergence rate for the estimates. This in
theory guarantees that the estimates converge to the true value in finite time. The
same properties cannot be proven for the EKF and is one of the advantages for
nonlinear observers. However it is worth noting that the proofs only guarantee
that there exist tuning values that ensure the stability properties. In practice it is
necessary to find values that works for the application of interest, and it might be
hard to find the best values.

It is important to notice that stability of the nonlinear observer with feedback of
roll, pitch and altitude to the M-matrix is not proved. A proof for the stability
is not the focus of this thesis and the feedback will only be tested in practice.
Nevertheless it is highly probable that the stability properties are equally good,
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especially after convergence for the estimates.

3.3 Parameter Tuning

This section discusses the adjustable parameters in the nonlinear observer in Sec-
tion 3.2.1. The best values can vary in different conditions. Therefore the purpose
of this section is to provide some knowledge about what the gains affect. The
nonlinear observer with camera and magnetometer both consist of the same tuning
parameters and they will not be described separately.

Tuning of the attitude part of the observer

The attitude part of the observer is given by (3.1). The adjustable parameters are
σ, Kp and kI . Kp is a 3 × 3 matrix and normally diagonal (and symmetric). For
the stability proof to hold σ needs to be chosen according to σ > 1. Kp decides the
influence of the injection term and how much the gyro is trusted compared to the
body-fixed velocity measurement from the camera or equivalently magnetic field
from magnetometer. Since the gyro normally runs at a much higher frequency than
the camera, the gyro decides the high frequency motion and the camera decides
the main trend. Higher gains on the diagonal let the camera have higher influence.
Different values on the diagonal give different weighting to the different parts of
the rotation matrix. Therefore decreasing the diagonal elements in the dimensions
where the camera provide inaccurate measurements might be beneficial. kI is used
to update the gyro bias and decides how fast the estimate is allowed to change.
Increasing the value increases the rate of change.

Tuning the translational motion part of the observer

The translational part of the observer consists of six adjustable matrices. That
is Kpp, Kpv, Kvp, Kvv, Kξp and Kξv. They are often a scalar multiplied by
the identity matrix. Kpp decides how fast the position measurement from GPS
is allowed to correct the position estimate. Kpv decides how fast the position
estimate is corrected by the measured velocity from the GPS. Kpp is often much
larger than Kpv since the position measurement should affect the position estimate
more than the velocity measurements. By the same logic Kvp and Kvv are used
to correct the velocity estimate. However Kvv should be larger than Kvp since the
velocity measurement should affect the velocity estimate more than the position
measurement. ξ is used to correct the estimated acceleration. Kξp and Kξv are
used to correct the estimated acceleration. These values are often smaller than the
other adjustable matrices in the translational part of the observer.
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Chapter 4
Object Detection and Tracking

Object detection and tracking are two of the most important topics in computer
vision. Object detection is the process of automatically detecting objects of impor-
tance with respect to some criterion in an image. Object detection can for instance
be used to find humans in an image [15]. Object tracking is the process of gener-
ating a trajectory for an object detected in several image frames. Therefore it is
important to uniquely describe objects in order to identify common objects in dif-
ferent images and match objects in different images together. This is called object
classification. Several important research areas require automatic detection and
tracking of objects. Surveillance [28], search and rescue applications (human body
detection and geo-localization) [17, 43], collision avoidance [1], driver assistance
[26], face detection [45] and vehicle tracking [11] are all common examples.

This chapter looks into the problem of object detection, classification and track-
ing in images captured from an airborne fixed-wing UAV. This can be extremely
challenging because the projected area displayed in the image will change rapidly
because of the large velocity of the UAV. The possibility of using OF for object
detection and tracking will be the main focus in this chapter which contains the
following topics:

• Section 4.1 provides an introduction to object detection and tracking. This
includes related work and important definitions for the rest of the chapter.

• Section 4.2 contains image segmentation and object detection. How can ob-
jects be detected automatically in images? This section includes a description
of some important methods in addition to development of a new algorithm
that utilizes OF.
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• Section 4.3 contains object classification. How can objects from different
image frames be associated? This includes a description of several object
classification methods.

• Section 4.4 contains development of a tracking system. How can position
trajectories be generated for objects detected in several image frames? The
tracking system utilizes the moving object detection algorithm.

• Section 4.6 contains an approach for transforming the tracking estimates in
the image plane to position and velocity in NED.

4.1 Introduction to Object Detection and Track-
ing

Cameras, including both infra-red cameras and regular color cameras, can gather an
enormous amount of information about the flight area. In this thesis it is assumed
that the images contain information about the terrain below the UAV. In other
words, the camera points towards the ground. This is illustrated in Figure 4.1.
The images captured of the ground can be used for object detection and tracking.
One of the greatest challenges in object detection is to extract the same kind of
information that a human operator would do in real time. This is crucial to solve
before computer vision can replace human operated surveillance tasks.

Figure 4.1: Camera placement in the UAV. It points straight towards the ground as
long as the UAV has zero roll and pitch.

There are a lot of issues when object detection and tracking are performed on
images captured from a UAV. The UAV moves with large velocity. Since a finite
amount of images are captured each second, the velocity and altitude determines
how much consecutive images change. Larger altitude leads to less change. Un-
fortunately larger altitudes also causes each object in the image to be smaller and
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harder to detect and distinguish. An example of a image captured at a height of
approximately 140 meters above ground level is given in Figure 4.2. The objects in
the image are in fact large cars and people. The cars are not very easy to see in the
image because of the altitude, but also because of the white color. This illustrates
the problem an algorithm might have to find objects, and especially smaller objects
than cars.

Figure 4.2: Image captured at an altitude of approximately 140 meters. Two large cars
and a trailer are visible on the right hand side of the runway.

For tracking purposes it is beneficial to have the object of interest inside the field of
view of the camera during the tracking period. A UAV moving with large velocity
will capture images where the object of interest is visible for a limited amount of
image frames only. This is especially an issue for objects moving in the opposite
direction of the UAV. In many situations only moving objects are of interest. Slowly
moving objects might be hard to detect, since the static parts of the image will
change almost equally much as the object. Therefore it might hard to separate
slowly moving objects from noise. The static part of the image is defined as

Definition 4.1 The static part of an image, also referred to as the background,
is the parts of the image that belong to the terrain.

In practice this means that the static part is every pixel that belongs to something
at rest, like the terrain. However light conditions or noise might still change the
pixel.

The OF is a measure of the motion field between consecutive images (Section
2.2.1). Therefore, in theory, it should be possible to separate moving objects from
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the background with OF. For this to work OF vectors must be present on the
moving objects. A dense OF method should be used in order to evaluate every
single pixel in the image. This removes the chance of missing OF vectors on the
moving objects. Sparse methods might miss some objects since objects might be
located where the OF is not calculated. However the dense methods are often
inaccurate [37] or too computationally expensive. Therefore a sparse approach will
be presented in the next section.

4.2 Moving Object Detection

Object detection can be defined as

Definition 4.2 Object detection is the art of detecting interesting features or
areas in an image with respect to a set of criteria.

One might ask what an object is? An object could actually be anything in an image.
It could be every place with a red color, every shadow, every human face or a boat.
The main concern is to find only the objects of interest and this might be the main
reason for the many different existing approaches. The most suitable method for
object detection depends on the application. If the main goal is to detect and track
humans, the object detector should utilize the unique characteristics of a human
and look for familiar shapes. If the goal is to track every moving object in a scene,
the motion field of the image might be the best way to detect objects. The first
part of this section will classify and say something about different approaches for
object detection. The second part will focus on object detection from UAVs.

4.2.1 Related Work

Every object detection algorithm utilizes information given in the image. It could
be the intensity value (color intensity values in color images) or the gradient of the
intensity value. The difference lies in the way the raw image information is used.
Some methods might benefit from image smoothing [48, Chapter 5] before object
detection, while some methods use the image directly. The goal of this section is to
describe different object detection approaches and say something about the most
suitable application for each approach. In this way the reader will be provided with
knowledge that explains and highlights the choices made later in this chapter. For
a more comprehensive study the reader should investigate [55].

The process of looking for objects in an image can be defined as a segmentation
process. Motion segmentation, which is the process of finding moving objects, is
particularly interesting for this thesis. For a static camera, background segmen-
tation is the most common way to locate moving objects [55]. The purpose is to
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generate a model of the fixed background and subtract the background from the
current image. This is called image differencing [48]. With this approach the mov-
ing objects will be the only thing left if the background is static. This is however
not appropriate for UAV applications because the UAV moves and a background
model can not be used. Another possibility is to look for differences in consecutive
image frames. This is also not appropriate for UAV since every pixel will change
because of the movement of the UAV. Adaptive background models, which con-
tinuously updates the background model, might work for small velocities, but the
fixed-wing UAV velocity is too large for this to work. Mean shift segmentation [13]
is a famous segmentation algorithm.

Point detectors locate pixels in an image with a clear texture with respect to its
environment. Objects of just a single pixel might be detected with the necessary
texture. Famous point detectors include the Harris corner and edge detector [27],
SIFT [33], Haar-like features [32] and the KLT detector [46]. Point detectors might
be one of the best ways to detect objects from a UAV since the detection is per-
formed independently of the previous images and the background. They simply
look for objects in every image. The main challenge with these methods is their
repeatability which can be stated as the ability to detect the objects for consecutive
images.

Supervised learning [55] uses a training set to detect objects. The detection consists
of a training stage where the detector learns different object views automatically
from a set of examples. This approach needs a priori information to work correctly.
More specifically information about the appearance of the objects of interest are
necessary. So for this to work it is necessary to know if boats or humans should
be detected for instance. Supervised learning makes it possible to separate the
same types of objects. If boats are of interest, it is possible to distinguish large
vessels from smaller vessel. Therefore, if a single type of boat should be detected
a detection algorithm based on the features of this type of vessel can be trained.
[53] uses supervised learning to detect walking humans. A method for supervised
learning is the support vector machine [48]. Supervised learning is not appropriate
in this case since all moving objects are of interest, and it is naturally impossible
to find training sets for every possible object. A training set for a human might
consists of up to ten thousand images where at least half of them have a human in
the image.

OF can in theory be used as a segmentation approach even in the case of camera
motion. For a flat static background the flow field should be homogeneous. There-
fore moving objects might be detected by looking for image patches where the OF
differs from the neighbourhood. Important objects might be very small because of
the altitude of the UAV. An example of OF based segmentation is given in [38].
[40] presents a method of object detection from a UAV for collision avoidance.
[16] presents a method of object tracking through motion segmentation and OF.
However a fixed camera is assumed.
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4.2.2 Detection of Moving Objects in Images Captured From
a UAV

How can reliable object detection be achieved from a fixed-wing UAV moving at
large velocities? This is an important question for many applications. Search and
rescue applications in areas where there are limited accessibility or too danger-
ous for humans, might require reliable human detection. This thesis focuses on
detection of moving objects. There are some issues that need to be examined.
Most importantly, no prior knowledge of the examined area is available. The ob-
jects of interest can be humans, boats, animals or other vehicles. Secondly, the
projected area changes rapidly which excludes simple background segmentation
methods.

So which methods are left then? Point detectors and dense OF methods are still
not excluded. However, as mentioned before, the dense OF algorithms are prone to
errors. Therefore dense OF algorithms are considered to be too unreliable. Three
possible approaches will be described in this section. One of them is implemented
and described thoroughly. Before the different methods are described the following
definition is necessary:

Definition 4.3 Theoretical flow is defined as the inverse transformation of (2.25).
Thus it is the OF calculated by the M-matrix from Section 2.4 given roll, pitch,
altitude, linear velocity, angular velocity and a pixel position (r,s). It results in
OF vectors where all features are assumed to be at rest.

It is possible to compare the measured OF from the images with the theoretical
flow which is given by the states of the UAV, and look for differences.

[12] investigates the possibility of using OF for object detection from a moving
airborne platform. Their approach is to compensate for the UAV motion and use
OF to find moving objects after the compensation. Each image is transformed to
a reference frame. A possible approach is to find the geometric transform between
two successive images. The second image can be transformed to the reference frame
of the first image. OF can be used to find moving regions since the OF should be
zero elsewhere. This approach requires an accurate geometric transformation and
images with small amount of noise. Background segmentation could also be used
instead of OF, but also requires an accurate transform.

[49] uses another approach for object detection from a moving robot (not airborne).
The 6-DOF motion of the robot is calculated. The theoretical flow field can be
calculated based on the 6-DOF motion. The difference between theoretical and
measured flow can be calculated and the difference should be non-zero in every
location where a moving object is present.

The third approach, which is proposed in this thesis, is very similar to the second
approach. A point detector like SURF [3] or SIFT [33] is used to find features in
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the image. These detectors find features independently of their motion. Therefore
static features have the same probability of being detected as moving features. OF
can be measured at the position of the extracted features and compared with the
theoretical flow at these positions. Moving objects can then be located by using
the statistical properties of the difference between theoretical and measured OF
for every OF vector in the image. The noise level of the measured OF in UAVs are
much larger than for a robot at rest, and thus it is not appropriate to just look for
non-zero differences. An algorithm based on the difference and simple statistical
properties of the OF vectors is described more closely in the next section.

4.2.3 An Algorithm for Moving Object Detection

This section is going to describe an algorithm that have been developed in this thesis
to extract only the moving objects of an image. It is one of the contributions of
this thesis. In the problem formulation the following assumption was made

Assumption 4.1 Only one moving object appears in each image.

Assumption 2.1 is used to develop an algorithm for extracting a moving object
from an image. The assumption results in OF vectors where most of them belongs
to the background. Therefore the standard deviation of the difference between the
theoretical and measured OF should be very low. This is because the majority of
the OF vectors belongs to features at rest.

Even though Assumption 2.1 states that only one moving object is present in each
image, there are no restrictions on the number of objects that are classified as
moving. Therefore the algorithm should be able to find more than one moving
object if it exists. The algorithm is illustrated in Figure 4.3 and described more
closely in Table 4.1.

Figure 4.3: Flow chart for algorithm for moving object detection

For this algorithm to be reliable the following assumption is made:

Assumption 4.2 The feature detector is able to find at least one feature on the
moving objects of interest.

To the authors knowledge this algorithm is the first one that combines a point
detector and theoretical flow to find moving objects from a UAV.
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Table 4.1: Moving Object Detection Algorithm

# Description
1. Use a point detector, such as SURF [3] or SIFT [33], to find every feature

of interest in two consecutive images. This includes both static and moving
objects.

2. Measure the OF for every feature appearing in both images.
3. Calculate the theoretical flow according to definition 4.3 at every pixel

where the OF is measured in step 2.
4. Calculate the difference between the theoretical flow and the measured OF

by SURF or SIFT.
5. Find the mean µ and standard deviation σ of the difference between the

theoretical flow and measured OF.
6. Classify every pixel with an OF vector as moving or static by the pseudo-

code given in Listing 4.1.
7. Combine OF vectors that are classified as moving if they are located closely

together.

Step six in the algorithm is the most important factor for the performance of the
algorithm. The parameters Kσ, Kµ, Lσ and Lµ in Listing 4.1 can be adjusted
to decide how large the difference between theoretical flow and computed flow is
before it is classified as a moving object. The algorithm can be replaced by more
advanced statistical methods to find moving objects. Furthermore results from
several image frames could be combined before a decision is made of whether an
object is moving or not. However this was considered to be outside of the scope of
this thesis.

Kσ is a tuning variable used to decide how large the difference between theoreti-
cal and measured flow should be compared to the standard deviation before it is
considered to be a moving object. Lσ is an lower limit for the difference before it
is considered to be a moving object. In the same manner Kµ decides how large
the difference should be compared to the mean difference of all vectors before it
is considered to be a moving object. Lµ is a value used for thresholding. If the
difference between theoretical and measured flow exceeds the mean difference plus
a threshold, the vector is considered to be moving. The implementation of the
algorithm is described in Chapter 5 and evaluated in Chapter 7.

Different tests are conducted to check if an OF vector belongs to a moving ob-
ject. The difference in vertical and horizontal direction are checked independently.
Thus a large difference in one direction is enough before it is classified as moving.
Furthermore both a pure test of the difference and a test related to the standard
deviation of the difference are used to check if the object is moving.

The algorithm has one main limitation. Only moving points can be detected.
Therefore it is impossible to say something about what the moving point physi-
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cally is. It can be a boat or a person. It is also not possible to say something
about the shape and size of the object since only a pixel position is identified
through the algorithm. Different techniques exist for extracting objects from an
area. The complete shape of the object surrounding a moving point could be ex-
tracted through thresholding [48, Chapter 6] combined with erosion and dilation
[48, Chapter 13]. This is however not the main focus in this thesis and will not be
examined further.

Listing 4.1: Pseudo code showing how moving objects are detected

%% C l a s s i f y one v e c t o r as s t a t i c or moving .

% 1. O F d i f f r i s the d i f f e r e n c e between t h e o r e t i c a l and
% measured OF in r f o r a s i n g l e OF v e c t o r .
% 2. O F d i f f s i s the d i f f e r e n c e between t h e o r e t i c a l and
% measured OF in s f o r the same v e c t o r .
% 3. σr and σs are the standard d e v i a t i o n in r and s between
% measured and t h e o r e t i c a l f low , f o r a l l OF v e c t o r s
% 4. µr and µs are the mean d i f f e r e n c e between measured
% and t h e o r e t i c a l f l o w in r and s , f o r a l l OF v e c t o r s

% Choose ga ins Kσ , Lσ , Kµ and Lµ b e f o r e s t a r t .

movingObject = f a l s e

i f (abs ( OFd i f f r ) > max(Kσ∗σr , Lσ ) )
movingObject = true

end

i f (abs ( OFd i f f s ) > max(Kσ∗σs , Lσ ) )
movingObject = true

end

i f (abs ( OFd i f f r ) > max(abs (Kµ∗µr ) , abs (µr ) + Lµ ) )
movingObject = true

end

i f (abs ( OFd i f f s ) > max(abs (Kµ∗µs ) , abs (µs ) + Lµ ) )
movingObject = true

end

return movingObject

An example of how the algorithm works is shown in Figure 4.4. Areas where
movement is detected are marked with a green rectangle. The black car is detected
as a moving object in this particular example. The red arrows are the OF vectors
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measured by the SIFT algorithm. Every vector not belonging to the car have the
approximately same magnitude and direction. The vectors fixed to the car on the
other hand have another magnitude and direction because the car moves. This is
in fact why the detection algorithm is able to find moving objects.

Figure 4.4: Example of the moving object segmentation for a single image.

4.3 Object Classification

Assuming that several objects are detected in different images. How can these
objects be separated? How can the same objects in different images be classified
as the same object? This can be achieved with object classification.

Definition 4.4 Object classification is the process of assigning a unique descrip-
tion to objects of interest. The description can be a set of features related to each
object, such as color, edges, OF, intensity, the intensity gradient or a template of
the image. The appropriate choice depends on the application and type of object.

The main focus of this thesis is not object classification, but detection and tracking.
Therefore it will not be given that much attention. However a short description of
related work and possibilities for UAV applications will be given in the following
sections. Furthermore a classifier for the tracking system is chosen since it is nec-
essary to associate measurements of detected objects with tracked objects.
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4.3.1 Related Work

There are several approaches for object description and classification. A review is
given in [30] and classification is also described in [28], [42] and [55]. SURF [3] and
SIFT [33] also provide a way to represent features in addition to detect them. A
combination between Mean-shift and SIFT is presented in [57]. Adaboost [50] is a
method for creating a strong classifier based on several weak classifiers.

4.3.2 Object Classification for UAV Applications

What is the most important factor for object classification in images captured from
a UAV? The most important factor for all classifiers are their ability to uniquely
describe each object. The ability to describe the same objects in the same manner,
even during different conditions (translation, rotation with respect to the camera,
brightness and so on), is especially important. This is because the object might
change its illumination when the UAV moves. If a unique classifier is achieved, a
similarity measure can be used to connect the same objects from different images.
This is crucial for tracking applications.

One important consideration for UAV applications is that the objects are smaller
for large altitudes. Therefore less information might be available compared to
other applications. Since classification is not the main focus of this thesis, simple
approaches are considered.

The first obvious possibility is to use a nearest neighbour approach to connect
objects from different images. However this might cause problems for objects en-
tering or leaving the image between successive frames. Nevertheless this might be
sufficient for object detection that yields few objects with a minimum distance be-
tween each detected object. Furthermore the tracking algorithm might be accurate
enough to decide when objects are supposed to leave the images. For this appli-
cation this approach is not considered to be reliable enough since the number of
possible objects to track is unlimited and there are no constraints on the placement
of the objects.

Another possibility is to use the classifier in SURF [3] or SIFT [33] directly. This is
a simple approach since the SURF and SIFT detector are used to find objects. One
disadvantage is the lack of possibility to classify the objects as vehicles or humans
for example without adding another description layer for each object. Since several
OF vectors might be combined to form a moving object, a single SIFT descriptor
is not reliable. The main challenge is that the classifier will be related to a single
feature of a moving object. This feature might only be visible for a subset of the
images. Therefore a more general description of the object is desired.

For simplicity a template matching approach is chosen for this thesis. A rectangular
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template (part of the image) is extracted from the areas where moving objects are
detected. Every detected moving object gets a template as its classifier. For every
new image this template can be matched with areas where movement is detected to
check for common objects. It is the same approach as the template matching for OF
calculation described in Section 2.3.1. However the results of the template matching
is only used to associate objects in this case and not for OF calculation.

a) b)

Figure 4.5: a) Template at the beginning b) Template rotated.

There are two main issues with the template matching approach. First of all, the
template is an image of the object extracted from a single image. Therefore it is
very sensitive to changes in the appearance of the object. Rotations and changes in
size might destroy the possibility of associating the same object in different images.
This is illustrated in Figure 4.5. The car is equal in images, but if the templates
are matched they will not be classified as the same object because of the rotation.
However this problem is minimized by updating the template for every new image
with match, such that the template at all times represents the latest appearance of
the object. The second issue is that the size of the objects is unknown. Therefore
it is hard to know how large the template should be. The template should be
large enough to easily separate different objects, but small enough to minimize the
amount of background in the template. The size of the template can be adjusted
in the tracker to find the best performance.
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4.4 Object Tracking

If several objects are detected and classified, what is the next step? For many
applications it would be interesting to locate objects of interest for a certain time
period. This is the art of object tracking.

Definition 4.5 Object tracking is to locate objects through several image frames
and generate a time dependent position trajectory for each object.

Object tracking is possible if the same objects can be located in several image
frames. Therefore the importance of accurate object classification and the unique-
ness of the classifier are easily illustrated. The location of each object in the image
can be used to find the position in other coordinate frames such as NED or ECEF if
the position of the UAV is known. This is called georeferencing and is described in
Section 4.6. Object tracking is of great importance for many applications. Surveil-
lance operations such as vehicle or human tracking, collision avoidance and surveil-
lance of human behaviour are just a few examples of how object tracking is utilized.
This section seeks to find an appropriate way to track moving objects detected from
a UAV. The first part will present related work and well-known tracking principles.
The latter part will focus on developing an approach for tracking of moving objects
from a UAV.

4.4.1 Related Work

Tracking can either be performed jointly with detection or done individually. In the
joint case the tracking layer can be used to narrow down the search for the object
in the next image. This will obviously limit the computational load. However a
narrow search will not guarantee that objects entering the image will be detected.
Therefore it is most appropriate for applications where a fixed set of objects are
tracked. [4] is an example of a multi object tracker. [55] divides existing tracking
methods in three categories. That is point trackers, kernel-based trackers and
silhouette trackers.

Point trackers consider the detected objects to be a point, for example the centre of
the object. This is represented as a pixel in the image. Occlusions, misdetections
and objects leaving or entering the image are challenges with point based trackers.
Point trackers can either be deterministic or statistical-based. Deterministic meth-
ods uses a set of constraints and minimizes an associated cost. The constraints
can be based on maximum velocity, displacement or bound on acceleration for
example. Statistical methods can use a Kalman filter to track each object [48].
A new instance of the Kalman filter can be created for each object. In this case
the position of the detected objects is considered as a measurement with Gaussian
noise. Therefore the position trajectory will be the optimal combination of the
previous states and the new measurement with respect to minimum variance. [47]
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is an example of a point based tracker which in addition uses OF for segmentation.
However the background needs to be static.

Kernel tracking is based on the motion of each object. Each object is classified by
a simple region (a rectangle or a circle and for example) and the motion of each
region is estimated. In the simplest case template matching (see Section 2.3.1) can
be used for kernel tracking. OF algorithms can also be used for Kernel tracking.
[14] is an example of a Kernel-based object tracker. Another example of a Kernel-
based tracker is [41] where OF is used to predict the motion of the objects. However
the approach assumes that the objects of interest are manually defined through a
simple region in the first image frame.

Silhouette trackers use accurate shape descriptions of the objects. While kernel
trackers uses simple geometric forms for object tracking, silhouette trackers use
more advanced shapes. An object model is generated and then the tracker tries to
locate this shape in the next images. The model can be updated online such that
changes in the appearance are accounted for. Silhouette tracking is appropriate
when the whole region of the object should be tracked. This can for example be the
case for collision avoidance to make sure that the boundary (and not just the centre)
avoids collision. [12] and [35] are examples of silhouette based trackers.

4.4.2 Object Tracking for UAV Applications

One of the main approaches described in the previous section needs to be utilized
to design a tracker. The objects are tracked in the image plane for simplicity.
The position of the UAV can then later be used to compute georeferenced position
and velocity trajectories for the tracked objects (Section 4.6). Since every moving
object appearing in the scene should be tracked, the objects are not known a
priori. Furthermore the objects are not in the scene for long time periods, unless
they have the same motion as the UAV. The objects are assumed to be covered
by the camera for a limited time-period. Thus silhouette trackers are assessed
to be too complicated. They normally need some time to develop a model of a
silhouette and this is not available here. Furthermore the silhouette might change
rapidly when the UAV turns for example. This might be a problem for kernel-based
trackers as well. Furthermore the algorithm for moving object detection results in
a point where a moving object should be present. Therefore a point-tracker seems
to be the best choice. There are no limits on the motion for the moving objects
and a deterministic point tracker is not considered to be appropriate. The obvious
alternative is to use the Kalman filter [31]. A new instance of the Kalman filter
is created for each detected object. Tracking of objects with a Kalman filter is
described in the next section.
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4.4.3 The Kalman Filter

It is assumed that the object only has linear translational motion in the image plane.
Thus a linear Kalman filter can be used for tracking. Object tracking in images is
a discrete process. This is because the frame rate of video cameras is limited. Thus
new images will appear at discrete time instants. A discrete Kalman filter (from
now on referred to as KF) is therefore going to be utilized. The KF is a recursive
process that tries to estimate a set of states related to the process. Measurements
exposed to noise are combined with a motion model to create estimates that are
optimal with respect to minimum variance. These estimates are more accurate than
the measurements. The optimality criterion holds if the following assumptions are
satisfied

Assumption 4.3 The process noise and measurement noise are white and Gaus-
sian. The process noise and measurement noise are uncorrelated. The initial state
is Gaussian.

Assumption 4.4 The system is linear and observable.

In addition to the optimality criterion, the estimates are unbiased and asymptot-
ically stable when the assumptions are satisfied. The KF is a combination of two
steps. First, the motion model is used to predict the next state based on the
the previous state. Then, a correction is performed based on available measure-
ments. The process is displayed in Figure 4.6. If the measurements are lost for a
while, the KF can be used to predict the states. The states can be corrected when
measurements are available again.

Figure 4.6: Illustration of correction step in Kalman filtering. xi is the state that is
estimated.
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Motion Model

In order to use a KF for tracking a motion model must be identified. Both the
position and velocity in the image plane can be measured and should therefore be
estimated. The detected objects move around in the real world, and are projected
into the 2D image-plane. Motion is represented as a displacement in the image
plane. Since the frame rate of the camera is quite large, the following assumption
is made

Assumption 4.5 The motion of the detected objects in the image plane is fairly
smooth. This means that the change in velocity between two consecutive images
is close to zero.

With this assumption the following motion model for the horizontal position r and
vertical position s in the image plane can describe the motion of an object

r[i+ 1] = r[i] + ur[i] + wr[i]

s[i+ 1] = s[i] + us[i] + ws[i]
(4.1)

where i refers to a discrete time step. wr and ws are process noise for the position
in the image plane (assumed to be white) and ur and us are velocity in the image
plane between consecutive images (OF). By the assumption of smooth motion the
model for the velocity in the image plane might be described as

ur[i+ 1] = ur[i] + wur [i]

us[i+ 1] = us[i] + wus [i]
(4.2)

where wur and wus are process noise for the velocity in the image plane, assumed
to be white.

The moving object detection algorithm locates a pixel position for a moving object.
Furthermore the OF of that point is available. This is the velocity between the
images. Therefore OF is a measurement of the velocity in the image plane. Both
the measured OF and location are contaminated by noise since they are inaccurate.
By assuming that the noise is white the following measurement model can be used
to describe the measurements

yr[i] = r[i] + vr[i]

ys[i] = s[i] + vs[i]

yur [i] = ur[i] + vur [i]

yus [i] = us[i] + vus [i]

(4.3)

The motion model can now be expressed in the standard matrix form for linear
systems

x[i+ 1] = Ax[i] + Bu[i] + w[i]

y[i] = Cx[i] + v[i]
(4.4)
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4.4 Object Tracking

The process is assumed to be stationary and therefore the matrices are constant.
Furthermore the matrix B is zero since no external forces (input) affect the system.
Thus the system is merely driven by the previous state and the noise. By combining
(4.1), (4.2) and (4.3) the system matrices are

A =




1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1


 ,C =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




x =




r
s
ur
us


 ,w =




wr
ws
wur
wus


 ,v =




vr
vs
vur
vus




(4.5)

This model is called a constant velocity model. A constant jerk or acceleration
model could also have been used. Furthermore the statistical properties of the
noise is given by

E[w(k)wT (j)] =

{
Qk, j = k

0, j 6= k

E[v(k)vT (j)] =

{
Rk, j = k

0, j 6= k

E[w(k)vT (j)] = 0,∀i, k

(4.6)

The matrices Qk and Rk need to be symmetric and positive definite. A common
choice can therefore be to make the matrices diagonal with entries on the diagonal
larger than zero. The system is linear and by investigating the observability matrix
the system is observable. This is not a surprise since every state can be measured.
Thus the assumptions for the Kalman filter to be optimal is partly fulfilled. The
process and measurement noise are assumed to be white to fulfil the rest of the
assumptions, but it can affect the performance of the filter.

Equations for the Discrete Kalman Filter

The optimality of the KF will not be proven in this thesis. A proof is given in [8,
Chapter 4]. However the equations for the KF will be given in Table 4.2. These
equations are simplified to be customized to the system in (4.4)

Tracked objects may sometimes not be detected in every image. Therefore a mea-
surement of the object is not always available and a prediction must be used. In
practice this is solved by adjusting the corresponding elements in the matrix C to
zero. Thus the state estimate is simply equal to the prediction. An illustration of
how the Kalman filter is recursively updated is given in Figure 4.7.
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Table 4.2: Equations for the Linear Discrete Kalman Filter.

Initial Conditions x̄(0) = x0

P̄(0) = E[(x(0)− x̂(0))(x(0)− x̂(0))T ]
Kalman gain K(k) = P̄(k)CT (k)[C(k)P̄(k)CT (k) + R(k)]−1

State estimate update x̂(k) = x̄(k) + K(k)[y(k)−C(k)x̄(k)]

Error covariance update P̂(k) = [I−K(k)C(k)]P̄(k)[I−K(k)C(k)]T

+ K(k)R(k)KT (k)
State prediction x̄(k + 1) = Ax̂(k)

Error covariance prediction P̄(k + 1) = AP̂(k)AT + Q

Figure 4.7: Illustration of the discrete Kalman filter.

4.5 How to Combine Object Detection and a Kalman
Filter for Object Tracking

This section will sum up the previous sections and describe the process of tracking
an unknown number of moving objects. The process is illustrated in Figure 4.8 and
described more closely in Table 4.3. The implementation of the tracking system is
described in Chapter 5.
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4.6 Transformation of Estimates From the Image Plane to NED

Table 4.3: Tracking System for several moving objects.

# The following steps are conducted for every image
1. Calculate the optical flow and use the technique described in Section 4.2

to locate moving objects. This step finds a measurement for the position
and velocity of moving objects in the image plane.

2. Create a classifier for each object with a technique from Section 4.3. The
classifier can be a template centered around the detected point.

3. Iterate through every detected moving object and compare each classifier
with objects already being tracked. Find out if detected objects are being
tracked already.

4. Update the position and velocity of all detected objects that already are
tracked with the new measurements. If a detected object is not tracked
before, it is the first detection of the object. Create a new instance of the
Kalman filter to start tracking of the object. The initial position is given
by the detection.

5. Update every object being tracked, but not detected in the last image.
These objects must be updated with a prediction step only since the posi-
tion and velocity cannot be measured.

6. Stop tracking of objects not detected for a long time (described more closely
in Section 5.6.

Figure 4.8: Illustration of the tracking system.

4.6 Transformation of Estimates From the Image
Plane to NED

Section 4.4 looked into the problem of tracking moving objects in the image plane.
However a position and velocity trajectory in the image plane are not that inter-
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Chapter 4. Object Detection and Tracking

esting. The position and velocity in a world-fixed frame, such as NED, are on the
other hand much more interesting. This is especially the case for UAV applica-
tions. This is because the UAV is constantly moving, which causes the image plane
to change location with respect to NED. Therefore the position trajectory in the
image plane is of less use since it is directly related to the UAV position and not
the object position. A transformation between the position in the image plane and
in NED is therefore desired. This is actually already described in Chapter 2. For
clarity the transformation will be given in this chapter as well. It is illustrated
in Figure 4.9. In order to transform a trajectory in the image plane to NED the
following assumptions are made

Assumption 4.6 The UAV position in NED, velocity and attitude are known.

Assumption 4.6 can be handled with the nonlinear observer. A pixel in the image
plane can be converted to the camera-fixed frame through the pinhole camera
model (2.2). The body-fixed frame coincides with the camera-fixed frame and thus
the position in body-frame can be calculated. However to convert a pixel position
to body a conversion between meters and pixels is necessary. Lets assume that a
pixel position (r, s) in the image plane of a moving object is known. The goal is to
find the position of the object in NED. A transformation from the image plane to
the body-fixed frame can be calculated by rearranging (2.2) (by assuming that the
body-fixed frame coincides with the camera-fixed frame)

[
xb

yb

]
= m

zb

f

[
−s
r

]
(4.7)

where m is meters per pixel and f is the focal length of the camera. zb is the
z-position of the object in the body-fixed frame and given by (2.23) as

zb = zc = − fcnz
s sin(θ) + cos(θ)(f cos(φ) + r sin(φ))

(4.8)

where cnz is the altitude of the UAV, φ is the roll angle and θ is the pitch angle. It
is necessary to assume that the terrain is flat for this to be valid. The position of
the object in the body-fixed frame is now known. A transformation from body to
NED is given by the homogeneous transform (2.19). Thus the position in NED is
calculated as

pn =



xn

yn

zn


 = Tn

b (Θ, cn)pb =

[
Rn
b (Θ) cn

01×3 1

]

xb

yb

zb


 (4.9)

where Rn
b (Θ) is the rotation matrix from body to NED given by the Euler angles

and cn is the UAV position in NED. The velocity of the object might also be of
interest. However since the estimate of the velocity in the image plane is far more
inaccurate than the position the velocity will be calculated from the change in
position. Thus the velocity is

vn[i] =
pn[i]− pn[i− 1]

δt
(4.10)
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4.6 Transformation of Estimates From the Image Plane to NED

where δt is the time between consecutive images and [i] refers to a discrete time
step. Only the position in North and East are of interest since the terrain is assumed
to be flat. Thus the velocity in down position is assumed to be zero.

Figure 4.9: Illustration of how to calculate NED position of object from position in the
image plane.
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Chapter 5
Software Implementation

Extensive theory has been presented so far in this thesis. It is time to use this
knowledge in practice through experiments. However before this is possible it is
necessary to implement the theory in software (SW). Therefore this chapter will
look into the implemented SW and is divided in the following sections:

• Section 5.1 gives a brief introduction to the overall SW architecture.

• Section 5.2 describes the synchronization of different sensors.

• Section 5.3 describes the implementation of OF algorithms.

• Section 5.4 describes the implementation of the nonlinear observer.

• Section 5.5 describes the implementation of the moving object detection al-
gorithm.

• Section 5.6 describes the implementation of the tracking system.

5.1 Overview

This section seeks to provide the reader with a brief description of the SW archi-
tecture. The architecture is illustrated in Figure 5.1. The SW is implemented in
C++ and Matlab. The OF algorithms and the tracking system are implemented
in C++. The nonlinear observer and the detection of moving objects are imple-
mented in Matlab. The use of two different frameworks leads to some challenges,
but is a consequence of simplicity and work started in the project report. Every

65



Chapter 5. Software Implementation

part of this thesis is implemented on a computer with specification given by Table
5.1.

Figure 5.1: Software architecture.

Table 5.1: Computer specification.

Manufacturer Dell
Operative system Windows 7 Enterprise
Processor Intel(R) Core(TM) i5-2500 CPU @ 3.30GHz
Installed memory(RAM) 8GB
System type 64 bit

5.2 Synchronization of Data

One of the largest challenges related to the implementation is the synchronization
of data. As previously mentioned the observer depends on different sensors that
log data at different rates. More information about the sensors is given in Chapter
6. All of these measurements need to be stored with a time stamp. Both the
accelerometer, inclinometer and the gyroscopes are measured from the IMU. Thus
they share a common time frame. The GPS and the video camera has their own
time frame. The GPS is synchronized with the IMU through a synchronization
board in the payload. Therefore the GPS and IMU stores data in the same time
frame. The camera however can not be synchronized with the IMU as easily as the
GPS.

The camera images are only time stamped with the Coordinated Universal Time
(UTC). The time stamps of the images have a resolution of one hundredth of
a second. The GPS also logs the UTC time with the same resolution. Thus the
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5.2 Synchronization of Data

camera images can be synchronized with the GPS through the UTC time. However
since the clocks can have an offset, it is necessary to define a common point in time
that can be recognized on both sensors. Take-off, landing, power-up or power-off
are all possible intuitive reference points. However the power-up is not reliable
since the GPS needs lock before the logging begins, and the camera also needs
some calibration before images are captured. Furthermore it can be hard to spot
the exact take-off and landing on the images. This is because the camera is pointed
straight down on the asphalt, and it is hard to spot the take-off without at least a
second in uncertainty. Power-off is not a reliable choice as well, since it is impossible
to be certain that the sensors stop logging at the same time.

Another and more accurate way to synchronize data were chosen based on experi-
ence from a previous experiment. A reference point can be created before take-off.
A visible item, such as a screw-driver, can be placed in the field of view of the
camera. Then the tip of the UAV can be lifted quickly up and down one time
such that the movement is detected by the IMU. It is illustrated in Figure 5.2.
The maneuver can easily be recognized in the images, by studying the visible item,
down to an accuracy of one image. Furthermore the gyroscope registers the change
in pitch. Thus the IMU could be synchronized with the images at the reference
point with a low uncertainty. Since the IMU and GPS are synchronized through
the synchronization board, the GPS and camera have a common reference point.
By calculating the offset between the GPS UTC time and the camera UTC time
at the reference point, it is possible to synchronize each image. However for the
synchronization to be reliable the following assumption is necessary

Assumption 5.1 The clock offset between the GPS and the camera is constant
during the whole flight.

This assumption is considered to be reliable since the clock offset should be constant
in short periods of time.

Figure 5.2: UAV maneuver for data synchronization.
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5.3 Optical Flow Algorithms

The OF algorithms are implemented in C++, utilizing the Open Source Computer
Vision Library[7]. This library has support for several OF algorithms. Furthermore
it is documented properly and highly respected. Matlab also have some OF meth-
ods, but openCV and C++ were assessed to be the most appropriate framework.
The following OF methods have been implemented for this thesis

• SIFT (Section 2.3.2)

• SURF [3]

• Fixed-point template matching (Section 2.3.1)

• Feature-based template matching (Section 2.3.1)

• A sparse version of the Lucas-Kanade algorithm [6]

• Farneback [18]

All of the algorithms follow the scheme in Figure 5.3. The images are read one
by one. Thus the computation time for each iteration consists of the sum of read-
ing images, convert the images to the desired format and run the OF algorithm.
The images are stored as matrices in OpenCV. They are converted to the desired
resolution and converted to necessary color representation. For the Lucas-Kanade
algorithm, Farneback, feature based template matching and fixed-point template
matching the images needs to be monochrome. The rest of this section will de-
scribe the implementation of SIFT and fixed-point template matching since these
methods are used later for the UAV experiment in Chapter 6.

Fixed-Point Template Matching

Fixed-point template matching is implemented with functions from OpenCV. There
are some important parameters to consider. The horizontal and vertical dimension
of the template are important variables. They should be adjusted with the desired
image resolution. The template should decrease with the resolution of the image.
The fixed-point template matching divides the image in regions as illustrated in
Figure 5.4. The number of regions can be chosen by the user. A template, shaped
as a rectangle, is extracted from the centre of each region. Naturally the tem-
plates should be smaller than the regions. The maximal template size in horizontal
direction (width) is given by the following formula

Tmaxx =
Resx

nRegionsx
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5.3 Optical Flow Algorithms

Figure 5.3: Optical flow software structure.

where Tmaxx is the maximal width of the template, Resx is the horizontal resolution
of the image and nRegionsx is the number of horizontal regions. The same formulas
are valid for the vertical direction by using the vertical parameters instead. The
templates are matched with the next image to find the displacement (OF vector).
A OF vector is only calculated if the match for the template is above a threshold
of 99%. This value might seem high, but there is still a chance for mismatches,
even with this value.

The number of regions will naturally affect the computation time since no paral-
lelism is implemented. Thus each new region will increase the computation time
almost linearly. A linear increase will be the case if the templates have the same
size independently of the number of regions. However the templates are normally
smaller when the number of regions increases (to keep the template smaller than
the size of the region).

The following parameters have been used in the experiments

• Image resolution = 1600× 1200 pixels

• Template width = 120× 90 pixels

• Number of regions = 4 · 3 = 12 regions
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• Threshold for successful match = 99%

• Template matching performed on monochrome images.

Figure 5.4: The image is divided in symmetrical regions.

SIFT

The SIFT algorithm is implemented with OpenCV. There exist a class for the
SIFT algorithm. The class is used to find features and calculate descriptors for
each feature. A descriptor matcher in OpenCV is used to find common features
in consecutive images. The matching algorithm is called FLANN (Fast Library
for Approximate Nearest Neighbours) [39]. The matcher is based on a nearest
neighbour search in high dimensional spaces. The library contains a collection
of algorithms for nearest neighbour matching and a system for choosing the best
algorithm for the application.

Since the matching algorithms are based on a nearest neighbour search, every fea-
ture from the image with least features is provided a match. However some of these
matches might be incorrect and should be removed. Each match is returned with
a value that expresses the least squares distance between the descriptors matched
together. It is simply a measure of the similarity between the features. Thus er-
roneous matches can be removed by comparing the best match with the rest of
the matches. Every match that is within 2,5 times of the value of the best match
is kept. Thus only the best matches are taken further for OF calculation. This
decreases the number of OF vectors, but at the same time increases the robustness
by avoiding insecure OF vectors. The displacement of the features between consec-
utive images are stored as the OF. The following list sums up the most important
points for the SIFT implementation

• The number of maximal features extracted from the images is unlimited.

• A vector of 128 elements is used as the descriptor. That is the maximal size of
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the descriptor and is used to maximize the possibility of unique descriptors.

• A FLANN-based matcher is used to connect features from different images.

• Only the best matches are kept by comparison with the best match.

5.4 The Nonlinear Observer

The nonlinear observer is implemented in Matlab. This is an advantage since the
flight data from the experiments are converted to matrices in Matlab. The data are
synchronized by the approach described in Section 5.2. OF vectors from C++ are
read from a csv file and transformed to velocities through the method in Section
2.4. OF vectors from SIFT and template matching are combined to maximize the
probability of having a sufficient number of OF vectors. The implementation of
the nonlinear observer follows the scheme illustrated in Figure 5.5. The observer
runs at a rate given by the sensor with the largest measurement rate. The different
sensors are described in Chapter 6.

Figure 5.5: Observer software structure.

In the first box in Figure 5.5 the data are loaded and synchronized. Every mea-
surement from the IMU is looped through. A large lookup-table is created in order
register the indices where new GPS and IMU measurements are available. When
the loop is at these indices measurements from the camera and GPS are used in the
calculation of next estimate. The camera and GPS measurements are in general
not available at the same indices.

Body-fixed velocity of the UAV is calculated at every index where a new OF mea-
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surement is available. The OF vectors are first filtered through an outlier detector
(developed in the project report) in order to remove erroneous OF vectors. Roll
and pitch angles from the inclinometers and the latest height measurement from
the GPS are used to calculate the body-fixed velocity after the removal of out-
liers. The body-fixed velocity calculated from the camera is normalized before it
is sent further to update the estimates. All available measurements at the current
index are used to update the estimates in the nonlinear observer. The updates are
conducted with the first order Euler method. The first order derivative of a state
ẋ = f(t, x(t)) can be approximated by

ẋ =
xi+1 − xi

δt

where xi+1 is the current time step, xi is the previous time step and δt is the time
difference between xi+1 and xi. By rearranging the equation and inserting for ẋ
the estimates can be updated by

xi+1 = xi + δt · f(i, xi) (5.1)

(5.1) is called the first order Euler method. The first order approximation of the
derivative is very simple and more accurate approximations exists. However other
methods have not been tested in this thesis. The large measurement rate of the
IMU (300Hz) makes sure that the approximation is performed in a short time
interval which increases the accuracy of the approximation.

5.5 Moving Object Detection Algorithm

The moving object detection algorithm is implemented in Matlab. The OF vectors
and the position of each vector are loaded in Matlab. The search for moving objects
is conducted by calculating the theoretical flow (Section 4.2). The theoretical flow
depends on data from other sensors. Thus one of the most important factors of the
implementation is the synchronization of data described earlier. This is crucial since
the theoretical flow is calculated from the sensor data. Thus correct sensor data for
each set of OF vectors are necessary to create reliable results. The implementation
of the moving object detection algorithm is illustrated in Figure 5.6.

The first block in Figure 5.6 loops through every OF vector in a single image,
and tries to find OF vectors belonging to moving objects. That is the algorithm
described in Section 4.2.3. This block sends out the OF vectors and the position
of the OF vectors. However only one detection in a local area of the image is
desired. Thus every OF vector belonging to moving objects are compared in the
second block. If the start position of some of the vectors are within a small pixel
displacement of another OF vector, they are assumed to be fixed to the same object.
All OF vectors assumed to be related to the same object are combined to find one
position and OF value for each moving object. That is the mean position and OF.
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Figure 5.6: Moving object detection software structure.

OF vectors positioned within a square of 100 pixels are assumed to belong to the
same object. Thus the following assumption is necessary for the approach to be
reliable.

Assumption 5.2 Only one moving object exists within a square of 100 pixels.

5.6 Tracking System

The tracking system is implemented in C++ with OpenCV. OpenCV has support
for easy implementation of Kalman filters. A new instance of the Kalman filter
is created for every new moving object. The segmentation algorithm in Matlab
provides a single OF vector and position for moving objects. Every moving object
found in a single image must be compared with previously detected objects. Every
detection corresponds to an already detected object or a new object. A template
centered around the position of the OF vectors is used as a classifier. Template
matching between previously detected objects and the new objects are used to
decide if the object have been detected before. Previously detected objects are
updated with new measurements. New objects are initialized with position and
OF given by the measurement. Moving objects not detected for several frames are
removed from the tracking system. The implementation of the tracking system
is illustrated in Figure 5.7. The first block in Figure 5.7 decides if an object has
been detected before. This is a critical part of the tracking system in order to
avoid objects being mixed. Every single detected object goes through the following
process, which is a description every block in the figure.

1. Extract the part of the image where a moving object is detected. That is an
image of 100× 100 pixels centered around the position of the moving object.

2. Run template matching with every previously tracked object. Every tracked
object has a template of 60 × 70 pixels. Find the previously tracked object
with the best match and perform one of the following prioritized strategies.
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Figure 5.7: Tracking system software structure.

(a) If the best match is above 99%, the object is tracked already and the
match is very reliable. Update estimate of the best match with new
measurement and update the template with the last image.

(b) If the best match is above 95% and the position of the detected object
is within a square of 200 pixels from the last estimate, the match is
considered to be reliable. Update estimate for the best match with new
measurement, but do not update the template.

(c) If the best match is above 90% the result is inconclusive. The moving
object might be tracked already. Therefore a new tracker is not cre-
ated for the object and the best match is not updated with the new
measurement.

(d) If neither of the conditions above are satisfied, the object is considered
to be new. Initialize a new instance of the Kalman filter with the new
measurement and create a template of the object from the last image.

3. Update the estimates of every tracked object not detected in the last frame
by prediction.

4. Delete every tracked object that satisfies one of the following conditions:

(a) Object detected at least 40 times, but not in the last 60 images.

(b) Object detected below 20 times and not in the last 10 images.

(c) Object detected below 10 times and not in the last 5 images.

The following assumption is necessary for this process to be valid.

Assumption 5.3 Every moving object can be sufficiently described by a template
of 60 × 70 pixels. In practice this means that the object should be smaller than
the chosen template size.

74



Chapter 6
UAV Experiment and Description
of Case Studies

Theory and the SW implementation have been described so far in this thesis. It
is time to evaluate the theory and SW in practice. This chapter concerns a UAV
experiment carried out in February, at Eggemoen Norway. Figure 6.1 is a picture
of the team who conducted the experiment. The chapter is divided in the following
sections:

• Section 6.1 describes the UAV and payload used to carry out the experiments.

• Section 6.2 describes a UAV test flight carried out in February 2015.

• Section 6.3 describes the case studies carried out to evaluate the nonlinear
observer.

• Section 6.4 describes a case study conducted to evaluate the moving object
detection algorithm.

• Section 6.5 describes two case studies conducted to evaluate the tracking
system.

6.1 UAV and Payload

A fixed-wing Penguin B UAV, produced by UAV Factory, was used to carry out
the flight experiment. The UAV was equipped with a custom payload module,
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Figure 6.1: Picture from the experiment February 2015, Eggemoen Norway.

developed by Lorenzo Fusini, Sigurd M. Albrektsen, Jakob M. Hansen and Kasper
T. Borup, in order to record the desired data. The payload is the main focus of this
section. The Penguin B UAV is displayed in Figure 6.2 and the most important
properties are given in Table 6.1.

Table 6.1: Specification Penguin B fixed-wing UAV.

Name Penguin B
Manufacturer UAV FACTORY
Length 2,27 m
Wing Span 3,3 m
Weight (without fuel and payload) 10 kg
Maximal payload weight 10 kg
Take-off method Runway
Cruise speed 22 m/s
Maximal Level Speed 36 m/s
Power supply payload Batteries
Power supply Engine Gasoline
Autopilot Piccolo

The penguin autopilot uses an Extended Kalman Filter (EKF) to estimate the
states. The autopilot is called Piccolo and the data from Piccolo are used for
comparison in the results. Piccolo stores data at a rate of 1Hz.
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Figure 6.2: The Penguin B fixed-wing UAV on the runway at Eggemoen.

The Payload

The UAV has a payload with different sensors displayed in Figure 6.3. Accelerom-
eters, gyroscopes, inclinometer, GPS, altimeter and a video camera are present in
the payload. A complete list of the most important sensors in the payload for this
thesis is given in Table 6.2.

Table 6.2: Sensors used in the flight experiment.

Sensor Manufacturer Device name Measurement Rate
Camera IDS UI-5250CP-C-HQ 10 Hz
GPS uBlox EVK-6 5 Hz
IMU Sensonor AS STIM 300 300 Hz
IMU Analog Devices Adis 16488 410 Hz

The individual parts of the payload will be described separately.
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Figure 6.3: The payload.

Camera

A commercial video camera manufactured by IDS is placed in the payload to cap-
ture images of the ground. The lens is produced by Tamron. The camera and
lens specification are given in Table 6.3. The lens has a constant focal length (no
optical zoom), which in practice means that the field of view in both horizontal
and vertical direction are constant. The camera is displayed in Figure 6.4.

Figure 6.4: The camera.

GPS

A uBlox EVK-6 GPS displayed in Figure 6.5 was used in the experiment. GPS
measurements were logged at a rate of 5Hz. The GPS logs the longitude, lati-
tude and the height of the UAV. These measurements are converted to position
measurements in NED which is used in the nonlinear observer.
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Table 6.3: Camera and lens specification. h is the altitude of the UAV.

Name UI-5250CP-C-HQ
Resolution(h x v) 1600 x 1200
Sensor Size(h x v) 7,2 mm x 5,4 mm
Frame rate 10 Hz
Color depth 12 bit
Size of single uncompressed image 2,75 MB
Focal length 8mm
Horizontal field of view αh 48,46 degrees
Vertical field of view αv 37,3 degrees
Width captured 2 · h · tan(αh2 )
Height captured 2 · h · tan(αv2 )
Number of pixels per meter(max resolution) 1600

2·h ˙tan(
αh
2 )

Data transmission Gigabit ethernet
Input Voltage 12-24 VDC

Figure 6.5: uBlox EVK-6 GPS.

IMU STIM 300

The STIM 300 is displayed in Figure 6.3. It logs data at a rate of 300 Hz. STIM
300 measures angular velocity in body-fixed coordinates through three gyroscopes
(deg/s) and acceleration in body-fixed coordinates through three accelerometers
(g). It also measures inclinometer readings in g. The inclinometer measurements
can be converted to roll and pitch angles [20, Chapter 11]. The STIM 300 is not
placed exactly in the centre of gravity. The measurements are not converted to the
centre of gravity and thus the following assumption is necessary:

Assumption 6.1 The IMU is placed close enough to the centre of gravity such
that the inaccuracy related to the misalignment is negligible.

In practice the misalignment vector in body-fixed coordinates is [0.2, 0,−0.05]T

given in meters.
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IMU Adis 16488

The Adis 16488 IMU is displayed in Figure 6.3. It logs data at a rate of ap-
proximately 410 Hz. The sensor measures angular velocity in body-fixed coordi-
nates through three gyroscopes (deg/s) and acceleration in body-fixed coordinates
through three accelerometers (g). In addition it measures the magnetic field in
body-fixed coordinates (mG) and barometer readings (bar). Assumption 7.1 is
also necessary for this sensor. The misalignment vector for the Adis 16488 is
[0.15, 0,−0.05]T given in meters.

6.2 Description of Flight Experiment at Eggemoen

This section provides a short description of the flight experiment at Eggemoen
February 2015. Three flights were performed. The first flight lasted approximately
five minutes and was used to check the camera parameters and the image quality.
The images captured in the first flight were to bright. Thus the lens was adjusted
to capture less light. Another short flight of approximately four minutes was con-
ducted to check if the new settings worked better. The images from the second
flight were much better and the camera settings were kept for the third flight. The
third flight was the longest and lasted for approximately 30 minutes.

The data from the second and third flight were stored successfully on the hard-drive.
For simplicity only the data from the second flight are used in the case studies.
This is mainly because it is easier to work with a smaller amount of data.

6.3 Experiments With the Nonlinear Observer

This thesis has investigated different themes (Chapter 2-4). Therefore several case
studies are performed in order to evaluate and test the theory in practice. This
section concerns simulations related to the nonlinear observer. The observer is
simulated offline. Two separate case studies will be carried out.

6.3.1 Case Study 1: Calculation of Body-Fixed Velocity from
Optical Flow

The first case study evaluates the calculation of body-fixed velocity from OF. The
body-fixed velocity are calculated from OF both by measurements of the roll, pitch
and altitude and estimates of the same states. Roll, pitch and altitude are mea-
sured by an inclinometer and GPS. With estimates, roll, pitch and altitude are
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extracted from a state estimator (the nonlinear observer). The nonlinear observer
are evaluated in case study 2.

6.3.2 Case Study 2: Simulation of the Nonlinear Observer

The second case study is simulation of the nonlinear observer. The goal of the case
study is to compare the estimates from the nonlinear observer with the estimates
from the Piccolo autopilot (EKF). The performance of the nonlinear observer with
camera and magnetometer is going to be compared and evaluated. The nonlinear
observer is initialized with attitude (Euler angles) of zero degrees. The position
and velocity are initialized by the first GPS measurement. The following observer
gains were chosen for the observer with camera. I3 is the 3×3 identity matrix and
diag([x1, x2, x3]) a diagonal matrix with x1, x2 and x3 on the diagonal and zeros
in the rest of the matrix.

• Lbb = 2.0 rad/s and Lb̂b = 2.1

• σ = 1, Kp = diag([0.16, 0.12, 0.16]) and kI = 0.002

• Kpp = 30I3, Kpv = 2I3

• Kvp = I3, Kvv = 100I3

• Kξp = I3, Kξv = 50I3

For the observer with magnetometer the following observer gains were chosen

• Lbb = 2.0 rad/s and Lb̂b = 2.1

• σ = 1, Kp = 0.14*diag([0.55, 0.5, 0.45]) and kI = 0.001

• Kpp = 30I3, Kpv = 2I3

• Kvp = I3, Kvv = 100I3

• Kξp = I3, Kξv = 50I3

Measurements from the accelerometer, gyroscope and inclinometer are extracted
from the logged data by the STIM300 IMU. Magnetometer measurements are ex-
tracted from the data logged by Adis 16488. The magnetometer was not calibrated
before the experiment. However the data have been aligned with the magnetome-
ter measurements in the Piccolo autopilot after the experiment. The piccolo mag-
netometer was calibrated before take-off. This is conducted by identifying the
mean difference between the Adis and Piccolo for the all of the measurements.
This calibration is likely to increase the accuracy, but the magnetometer mea-
surements are still not very reliable. The magnetic field at Eggemoen in NED is
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[150.06, 6.71, 488.59] mG.

6.4 Experiment With the Moving Object Detec-
tion Algorithm

In order to test the moving object detection algorithm images with a moving object
present is necessary. However moving objects did not exist in the experiment
conducted at Eggemoen. Therefore several image sequences extracted from the
flight at Eggemoen have been edited to include a moving object. In this manner a
large test set of images have been created with moving objects. The test set have
also been expanded with several of the original images to include images both with
and without moving objects. Some images from the test set are displayed in Figure
6.6. Information about the test set is given in Table 6.4.

Table 6.4: Specification of moving object detection test set.

Number of images 366
Number of images with a moving object 238
Number of images with object partly visible 0
Number of images without a moving object 128

A red rectangle and a black car are the moving objects and edited into some of
the images. The red rectangle is created manually and the black car is an image
of a real car displayed in Figure 4.5. Figure 6.6 contains examples of images with
and without the moving object. There are never two moving objects in the same
image which is in accordance with the problem formulation. Four different paths
in the image plane have been used to insert the moving object to make the test
set reliable. Common for all paths are constant velocity in the image plane. In
practice this means that the paths have constant displacements in pixels between
subsequent images. The displacement is different for the image paths in order to
create a reliable test set. Furthermore the paths are directed in different directions
in the image plane. The minimum speed of the object is 30 km/h. Thus slowly
moving objects are not present in the test set. The moving objects are chosen
to be clearly visible in the image. The white diagonal lines in the rectangle are
edited in to increase the possibility of the feature detector to find features on the
object.

In addition to the images with moving objects, several of the original images with-
out moving objects have been added to the test set. This is to evaluate the algo-
rithms ability to resist false detections.
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a) Red rectangle b) Original image c) Black car

Figure 6.6: Example images from the test set for moving object detection algorithm.
The red rectangle in a) and black car in c) are moving objects. b) is an image without a
moving object.

6.4.1 Case Study 3: Moving Object Detection

The performance of the moving object detection algorithm with different tuning
values will be evaluated in this case study. The algorithm is evaluated on the test
set described in Table 6.4. Several features can be detected on a single moving
object which means that several OF vectors belonging to the object might be
measured. The detection algorithm should be able to find all vectors belonging to
a single moving object and also keep track of the total number of moving objects
in an image.

Three different sets of tuning values have been chosen. The first set is considered
to default tuning values and most appropriate in general. The second set contains
tuning values that lead to softer constraints before a OF vector is classified as
moving. Thus it could be more sensitive to false detections, but at the same time
easier find the moving objects. Thus if the object is moving slowly with respect to
the background these tuning values might be appropriate. The third set contains
tuning values that lead to stronger constraints. It is the least sensitive to false
detections, but also increases the chance of missing moving OF vectors. The tuning
set is given in Table 6.5.

Table 6.5: Specification of the tuning set for the moving object detection algorithm.

Test Set Kσ Lσ Kµ Lµ
Default 2,5 15 2,5 7
Soft Constraints 2 12 2 5
Hard Constraints 3 20 3 11
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6.5 Experiments With the Object Tracking Sys-
tem

It is also necessary to create images with a moving object to test the tracking
system. Two case studies have been created to evaluate the tracking system.

6.5.1 Case Study 4: Tracking of Single Object

A path for a moving object in NED has been designed. The path is created such
that the object is visible in several images. The pinhole camera model and the
position of the UAV have been used to find the correct image coordinates for the
object. A car have then been inserted into the images with center at the calculated
image coordinate. The car is tracked in the image plane. The tracking path is
then converted back to the NED to compare it with the true path. Noise will be
present since detected objects will have position given by the OF vectors and these
are not necessarily given by the center of the object. Furthermore the calculation
of the OF vectors are also noisy which means that all measured states have noise
to make the simulation realistic.

The true position and velocity of the object are described in Figure 6.8. The
position in the image plane is used to find out if the object is visible or not. The
image resolution is 1600× 1200 (r× s). Therefore the r-coordinate must be in the
closed pixel interval of [1, 1600] and the s-coordinate in the closed interval [1, 1200]
in order to be visible in the image. Figure 6.7 displays two images with the car. It is
clearly visible on the runway and the size of the car is assessed to be fairly realistic.
Two real other cars at rest are visible in the left image, but are quite difficult to see
because they are white. The shadows are visible though. The size of the car edited
in is slightly larger than the real cars, but not significantly larger. It is important
to notice that other objects might be tracked in the case of misdetections. There
is only one moving object in the scene, but there are no upper limit on the number
of tracked objects. Thus the segmentation algorithm might start tracking of other
objects as well (if they are classified as moving).

The Kalman filters for each newly detected moving object is initialized with the
following covariance matrices (given in pixels)

Qk =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 , Rk =




0.4 0 0 0
0 0.4 0 0
0 0 1 0
0 0 0 1
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Figure 6.7: Example images for tracking of car.

6.5.2 Case Study 5: Tracking of Multiple Objects

Multiple object tracking is a much harder problem than tracking of single objects.
This case study considers tracking of two different cars. Two different paths in
NED have been designed and objects edited into the images at the correct pixel
position. The purpose of this case study is to evaluate the performance of the
tracking system when multiple objects are moving at the same time. Furthermore
the objects are visible at the same time in the images and that might be a challenge.
The true path of the objects are illustrated in Figure 6.10. The first car has the
same path and velocity as in Case Study 4. The second car has a constant velocity
and a slightly different path. The paths have been designed such that the the first
car eventually drives past the other car as illustrated in Figure 6.9.

The second car has a constant velocity in NED. However the velocity in the image
plane is not constant since the UAV has a time-varying attitude. Nevertheless since
the second car has a constant velocity in NED, the velocity in the image plane is
not varying as much as for the first car. Furthermore the second car is visible in
the image from the first detection until it eventually disappears.

The Kalman filter for each newly detected moving object is initialized with the
following covariance matrices (given in pixels) in this case study

Qk =




3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3


 , Rk =




2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2
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a) b)

c) d)

Figure 6.8: Simulated object path Case Study 4. a) Object and UAV path in North-
East plane. b) Object and UAV velocity in North and East. c) Pixel position object in
the image plane. d) Visibility of object.
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Figure 6.9: Example images for tracking of two different cars.
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a) b)

c) d)

Figure 6.10: Simulated object paths Case Study 5. a) Object and UAV paths in North-
East plane. b) Object and UAV velocities in North and East. c) Pixel position objects in
the image plane. d) Visibility of objects.
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Chapter 7
Results and Discussion

This chapter presents the results and discussion for the case studies described
in Chapter 6. The results for each case study will be presented and discussed
independently. The chapter contains the following topics:

• Section 7.1 defines common performance measures for every case study.

• Section 7.2 presents the results of case study 1 described in Section 6.3.1.

• Section 7.3 presents the results of case study 2 described in Section 6.3.2.

• Section 7.4 presents the results of case study 3 described in Section 6.4.1.

• Section 7.5 presents the results of case study 4 described in Section 6.5.1.

• Section 7.6 presents the results of case study 5 described in Section 6.5.2.

7.1 Notation

Some common performance measures are defined before the results of the different
case studies are presented. The estimation error is defined as

e = x̂− xref
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where x̂ is the estimate and xref is the reference used for comparison. The mean
error is defined as the mean of the error for all time steps

ē =
1

n

n∑

i=0

e(i)

where n is the total number of time steps. The square root of the mean squared
error (RMSE) is defined as

RMSE =

√√√√ 1

n

n∑

i=0

e(i)2

RMSE represents the accuracy of the estimates and the noise level.

7.2 Case Study 1: Calculation of Body-Fixed Ve-
locity from Optical Flow

This case study evaluates the calculation of body-fixed velocity from OF described
in Section 2.4 and 6.3.1. The calculated velocities with measurements and estimates
of roll, pitch and altitude are compared with the body-fixed velocity from the
EKF in Piccolo. Figures displaying the calculation of body-fixed velocities will be
presented. The results will be presented first and then a discussion ends the case
study. This case study is solely based on real data.

Results

Figure 7.1 displays the calculated body-fixed velocity with measurements and es-
timates (from nonlinear observer) of roll, pitch and altitude. Table 7.1 and Table
7.2 presents the mean error and RMSE of the calculated body-fixed velocity with
measurements and estimates, respectively. The values are calculated with the EKF
in Piccolo as reference.

Table 7.1: RMSE and mean error in calculated body-fixed velocity with measurements
of roll, pitch and altitude.

Velocity Mean Error ē RMSE
u 7,19 10,8
v -0,62 7,57
w -0.46 1,75

The mean of the body-fixed velocities calculated from OF are not very far from
the true values, but the longitudinal velocity (u) has a mean significantly above
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a) With Measurements b) With Estimates

c) Body-fixed velocity piccolo

Figure 7.1: Body-fixed velocity calculated from optical flow

Table 7.2: RMSE and mean error in calculated body-fixed velocity with estimates of
roll, pitch and altitude.

Velocity Mean Error ē RMSE
u 5,71 8,02
v -1,27 4,20
w -0,20 0,94

the reference. However the RMSE is large and this is easy to see in Figure 7.1
by the noise level. The noise level is especially large for the body-fixed velocity
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calculated with measurements of roll, pitch and altitude. The noise level is reduced
significantly with estimates, but the RMSE is still quite high. Furthermore there
are some oscillations in the longitudinal velocity. The local maxima of these oscil-
lations are located at times where the UAV turns. Thus roll motion is probably
not recognized properly, and instead assumed to be an increase in longitudinal
velocity.

The accuracy of the transformation from OF to velocity is going to be examined
further. Theoretical flow can be calculated with the body-fixed velocity, roll, pitch
and altitude given by Piccolo. Thus it is possible to compare the theoretical flow
with the measured OF. The difference between the theoretical and measured OF is
displayed in Figure 7.2 together with the mean measured OF. The mean measured
OF is the mean of every OF vector in an image which means that every image
gets a single value for the OF. The mean error and RMSE between measured and
theoretical flow are listed in Table 7.3.

a) b)

Figure 7.2: a) Mean measured optical flow. b) Difference between theoretical and
measured optical flow.

Table 7.3: Root of mean squared error and mean error for the optical flow measurements.

Optical Flow Mean Error ē RMSE
ṙ 0,17 3,32
ṡ 2,18 2,99

A difference of zero indicates that the measured OF and correct measurements of
roll, pitch and altitude give the correct body-fixed velocity. The mean error is
small compared to the measured flow. The RMSE is slightly larger. It is a surprise
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that the RMSE in r is larger than s, since the measured flow in s is much larger
than measured flow in r. It might be a coincidence, but the results indicate that
the measured OF is least accurate in r. Figure 7.2 b) supports this statement
since the error in r has a higher noise level. Nevertheless Figure 7.2 and Table
7.3 indicate that the measured OF is fairly good. The noise level is quite large
in r, but the mean error is small. The mean error in s is above zero. Larger
OF in s directly increases the body-fixed longitudinal velocity. Thus the error in
longitudinal velocity is related to the error in measured OF.

Discussion

The large RMSE with measurements are likely to be caused by the inclinometer
and the GPS. The roll and pitch angle from the inclinometers are very noisy and the
altitude from the GPS is not completely reliable. Since the noise level is reduced
with estimates, the estimates seem to increase the performance. Thus the results
indicate that the inclinometer and GPS reduces the accuracy and that estimates
should be used. Nevertheless it is important to use estimates in situations where
they have converged.

The assumption of flat terrain in the calculation of velocity from OF is probably
an error source. In practice the points in the image plane are not located in the
same horizontal plane in the terrain. This is related to the displayed depth which
is assumed to be constant in the image. Varying depth in the image leads to OF
vectors with different magnitude. Therefore this will directly affect the scale and
direction of the calculated velocity. The magnitude of the velocities are larger
than the real values and this could be related to depth variations. A more accurate
mapping of points in the image plane would be possible with a known terrain profile
and might increase the accuracy of the velocity calculation. A completely flat area
would most likely increase the performance of the results significantly.

The altitude also directly influences the magnitude of the velocities as illustrated
in Example 2.1. The velocity is scaled up if the assumed altitude is larger than the
actual altitude. Since the altitude is measured by the GPS, trees and elevations in
the terrain give depth variations. Therefore the mean error in u is probably caused
by wrong altitude and depth variations. In the observer only the normalized body-
fixed velocity is of interest. Therefore the scaling errors disappear and only the
direction is of importance. This decreases the dependence on the altitude. The
direction of the velocity is not necessarily affected by the noise level since the noise
level seems to be related to the magnitude of the velocity components. However
the RMSE in v is almost equally large as the RMSE in u. Thus the direction might
be slightly wrong since the noise level in v is larger than the noise level in u with
respect to the magnitude (signal-noise level).

When the measured and theoretical flow are compared in Figure 7.2 discrete and
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continuous OF are compared. This is because the theoretical flow is derived in
continuous time and the measurement of the OF is given between two consecutive
images which is a discrete time difference. Furthermore the mean measured (or
estimated) roll, pitch and altitude, in the time between the images, are used in the
calculation. As pointed out above, the difference between theoretical and measured
flow are larger in r than s. This might be because the UAV has more roll motion
than pitch motion and roll motion affect the OF in r. Thus different results might
have been the case for maneuvers with a larger amount of pitching motion.

This case study has illustrated that it is possible to calculate body-fixed velocity of
a UAV with OF. The accuracy is quite good, even though the transformation is very
sensitive to errors in altitude, roll and pitch. Furthermore the flat horizontal terrain
assumption seems to be a weakness since flat terrain is hard to find in practice.
Thus a transformation without this assumption is desired. This can be achieved
by epipolar geometry [34] and is utilized in the paper submitted to AIAA SciTech
2016 (Appendix B). Estimates of roll, pitch and altitude seem to increase the
accuracy of the transformation. For the nonlinear observer only normalized velocity
is of interest. Therefore the magnitude is of less importance and altitude related
problems are not important. This is because the altitude dependency disappears
with normalization because every velocity component is directly proportional to
the altitude. It is also important to emphasize that the accuracy of the reference
not necessarily are perfect. Thus the results must be interpreted with this in mind.
Nevertheless EKF is a reliable state estimator and the reference is likely close to
the true values.

7.3 Case Study 2: Simulation of the Nonlinear
Observer

This case study evaluates the performance of the three different versions of the
nonlinear observer presented in Chapter 3. The case study is described in Section
6.3.2. The estimates from the nonlinear observer will be compared with the esti-
mates from the EKF in piccolo. Piccolo is assumed to have estimates very close to
the real values. However it is important to remember that the EKF might not be
correct at all time instants and the tuning of the EKF (which is unknown) affects
the performance. In this case study the results and discussion for the attitude
and translational part of the observer will be presented independently. The first
version of the nonlinear observer is with camera where the body-fixed velocity is
calculated with measurements of roll, pitch and altitude. This version is called the
nonlinear observer without feedback. The second version is the nonlinear observer
with camera where the body-fixed velocity is calculated with feedback of the esti-
mates of roll, pitch and altitude. The third version is the nonlinear observer with
magnetometer instead of the camera.
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A reference for the gyro bias is not available. Thus the estimates of the gyro bias
are compared with the gyro measurements before take-off when the UAV was at
rest. This reference is highly insecure since the bias can be different when the UAV
is airborne. The RMSE value and the mean error is calculated from 20 seconds
after the start-up until the end. The first time interval is not considered in order
to give the observer some time to converge. In the figures this interval corresponds
to a time between 1060 and 1310 seconds.

Attitude and Gyro Bias Estimates

This section presents the results and the discussion for the attitude and gyro bias
estimates for the nonlinear observer with camera (with and without feedback) and
with magnetometer.

Results

Figure 7.3 displays the estimates of the Euler angles for the nonlinear observer with-
out feedback. Table 7.4 describes the mean error and RMSE. Figure 7.4 and Table
7.5 displays the results for the nonlinear observer with feedback. Figure 7.5 and
Table 7.6 displays the results for the nonlinear observer with magnetometer.

Table 7.4: Mean error and RMSE in attitude for nonlinear observer without feedback.

Attitude Mean Error ē RMSE
φ 1,45 2,29
θ 0,76 1,54
ψ -1,23 3,73

Table 7.5: Mean error and RMSE in attitude for nonlinear observer with feedback.

Attitude Mean Error ē RMSE
φ 1,16 1,85
θ 0,93 1,51
ψ -0,61 2,83

Table 7.6: Mean error and RMSE value in attitude for nonlinear observer with magne-
tometer.

Attitude Mean Error ē RMSE
φ 1,36 6,82
θ 2,07 8,18
ψ -10,8 15,1
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Figure 7.3: Attitude and gyro bias nonlinear observer without feedback.

The estimates of the roll and yaw angle are quite accurate for every version of the
nonlinear observer. However the yaw estimate from the nonlinear observer with
magnetometer converges significantly later than the other versions. Furthermore
the roll angle is less accurate with magnetometer. The pitch estimate converges to
the reference with camera, both with and without feedback. The pitch estimate is
very close to the reference, even though the magnitude is slightly above the refer-
ence at some time instants. The pitch estimate from the nonlinear observer with
magnetometer is on the other hand not correct. The magnitude is much greater
than the reference, but the estimate seems to follow the trend of the reference
sometimes. The estimate seems to be correlated with the yaw estimate and it
looks like it is affected by the yaw motion. This is for example visible in Figure 7.5
at the time interval between 1150 and 1170. The yaw changes rapidly in this time
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Figure 7.4: Attitude and gyro bias nonlinear observer with feedback.

interval and the pitch estimate does the same. The same behaviour is also visible
in the time between 1240 and 1260.

The RMSE for the observer with feedback is smaller than corresponding values
without feedback and with magnetometer. The observer with magnetometer has
the largest RMSE values for all Euler angles and thus the largest amount of noise.
This is especially visible for the yaw estimate which has a RMSE value of 15,1
degrees, which means that the estimate in yaw in general deviates 15,1 degrees
from the reference. However the RMSE is calculated in the time interval between
1060 and 1310. Therefore the RMSE in yaw for the nonlinear observer with mag-
netometer is larger than it is after convergence. The observer without feedback
has a limited amount of noise, but feedback increases the accuracy of the esti-
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Figure 7.5: Attitude and gyro bias case study 2. Nonlinear observer with magnetometer.

mates.

The estimates of the gyro bias does not converge to a stationary value for any
version of the nonlinear observer. Thus it is hard to believe that they are correct.
The gyro bias with and without feedback have the same behaviour. The gyro bias
estimate from the observer with magnetometer has the least amount of dynamic
motion. However this is likely because of different gains in the design of the ob-
server. The true gyro bias is unknown. The reference in the figures is calculated
before take-off with the engine off. Thus noise from the engine might affect the
bias, and it is hard to say something about the true bias when the UAV is airborne.
Nevertheless the results indicate that the estimates of the gyro bias are inaccurate
for every version of the observer since they do not converge.
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Discussion

The attitude estimator, with and without feedback, is guided by the body-fixed
velocity measurement from the camera and the accelerometer measurements from
the IMU. The attitude estimator in the nonlinear observer with magnetometer is
guided by the magnetometer and accelerometer. The direction of these measure-
ments are used with reference vectors in NED to find the attitude. Each set of
vectors provides information about two angles. The direction of the accelerometer
is dominated by gravity and thus directed mainly along the body z-axis. There-
fore it is a small amount of information about the yaw angle in the accelerometer
measurements. The body-fixed velocity is mainly directed forward along the x-axis.
Therefore the camera measurement provides little information about the roll angle.
Information about the pitch angle should be available in both the accelerometers
and the camera measurements. However if these measurements disagree it might
decrease the accuracy of the pitch estimate. The magnetometer measures the mag-
netic field and at the location of the experiment that was directed mainly along
the NED z-axis. Therefore the direction of the body-fixed magnetometer measure-
ment is close to the direction of the accelerometer measurement. In practice this
means that it can be hard to find three different angles with the magnetometer.
That might the case in the results where the nonlinear observer with magnetometer
fails to estimate the pitch accurately. Several different observer gains have been
tried out, but it seems difficult to estimate both the pitch and yaw accurately with
magnetometer.

An important thing to notice is that the order of the reference vectors in the matrix
Ab and Ân in (3.4) and (3.8) can be exchanged. In practice this means that the
order of ab and vbb/n (mb) can be switched. The most trustworthy measurement
should be placed first because this measurement will be weighted the most in the
injection term. In this case that is considered to be the accelerometer. Both orders
have been tried out and the results were most accurate with the accelerometer as
the first vector.

Case study 1 shows a large noise level in the measured body-fixed velocity from
the camera, and this might decrease the accuracy of the attitude estimates. This
is likely since the estimates are more accurate with feedback and the body-fixed
velocity from the camera was also more accurate with feedback. Nevertheless in
situations where the estimates are far off the true value the feedback will reduce
the performance. Another error source might be accelerometer bias. Accelerometer
measurements without bias are assumed, but a small bias in the accelerometer is
likely. Thus this will also decrease the accuracy of the estimates. Vibrations caused
by the engine are also something that could affect the estimates.

In the nonlinear observer with magnetometer the roll angle is the most accurate
estimate in the beginning and the yaw converges much less rapid. This indicates
that the accelerometer is more accurate than the magnetometer measurements.
The pitch is far off, and this might be because of wrong calibration of the mag-
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netometer. However it is still important to remember that the direction of the
magnetometer is close to the accelerometer direction compared with the camera,
and this can also be the reason for the inaccurate pitch estimate. The attitude es-
timates from the nonlinear observer with magnetometer are the least accurate. In
addition to the direction issue, the magnetometer might by exposed to noise from
other electrical components in the payload. The camera trigger might be such an
error source because it is triggered by the GPS. Thus for reliable magnetometer
measurements in a UAV (with limited space) proper shielding of the magnetometer
is necessary. The reference vector for the magnetometer measurement is the mag-
netic field at the location of the experiment in NED. The reference vector at the
location of the experiment is calculated after the experiment with a magnetic field
calculator. A manual measurement of the magnetic field in NED at the location
of the experiment might be better than offline calculation. That is something that
could be considered for later experiments.

Position and Velocity Estimates

This section presents the results and the discussion for the translational part of
the nonlinear observer with camera (with and without feedback) and with magne-
tometer.

Results

Figure 7.6 displays the estimates of the position in NED for the nonlinear observer
without feedback. Table 7.7 describes the mean error and RMSE. Figure 7.7 and
Table 7.8 displays the results for the nonlinear observer with feedback. Figure 7.8
and Table 7.9 displays the results for the nonlinear observer with magnetometer.

Table 7.7: Mean error and RMSE in position for nonlinear observer without feedback.

Position Mean Error ē RMSE
N -1,14 8,16
E -0,73 7,34
Altitude 0,26 1,13

Table 7.8: Mean error and RMSE in position for nonlinear observer with feedback.

Position Mean Error ē RMSE
N -1,15 8,15
E -0,72 7,33
Altitude 0,26 1,13
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Figure 7.6: Position estimates nonlinear observer without feedback.

Figure 7.7: Position estimates nonlinear observer with feedback.

Table 7.9: Mean error and RMSE in position for nonlinear observer with magnetometer.

Position Mean Error ē RMSE
N -1,08 8,14
E -0,58 7,26
Altitude 0,27 1,16

The path in the NE-plane and the altitude are estimated accurately for every
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Figure 7.8: Position estimates nonlinear observer with magnetometer.

version of the observer. The estimated path in the NE-plane follows the reference
closely. The altitude is also estimated accurately. The RMSE values are almost
equal for every part of the observer. The error are approximately eight meters in
north and east position and one meter in altitude. The estimates are considered
to be reliable for every version of the observer.

Figure 7.9 displays the estimates of the velocity in NED for the nonlinear observer
without feedback. Table 7.10 describes the mean error and RMS. Figure 7.10 and
Table 7.11 displays the results for the nonlinear observer with feedback. Figure 7.11
and Table 7.12 displays the results for the nonlinear observer with magnetometer.

Table 7.10: Mean error and RMS value in velocity for nonlinear observer without
feedback.

Velocity Mean Error ē RMS
N velocity -0,15 1,19
E velocity -0,16 0,98
D velocity -0,01 0,35

Table 7.11: Mean error and RMS value in velocity for nonlinear observer with feedback.

Velocity Mean Error ē RMS
N velocity -0,15 1,19
E velocity -0,15 0,98
D velocity -0,01 0,34
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Figure 7.9: Velocity estimates case study 2. Nonlinear observer without feedback.

Table 7.12: Mean error and RMS value in velocity for nonlinear observer with magne-
tometer.

Velocity Mean Error ē RMS
N velocity -0,13 1,18
E velocity -0,07 0,97
D velocity 0 0,35

The velocity in NED is also estimated accurately. The estimates follow the reference
closely and the RMS values are low compared to the actual velocity. The RMS
values in north and east are close to 1 m/s and the velocity in these directions are
typically 20 m/s. The RMS values in down are approximately 0,4 m/s. Therefore
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Figure 7.10: Velocity estimates case study 2. Nonlinear observer with feedback.

the errors are small compared to the actual velocity.

Discussion

The position estimates are equally good for every version of the observer. That
is not a surprise since the observer use the same measurements of position and
velocity. Furthermore the translational part of the observer is tuned with the same
gains. Thus only marginal differences should be visible and that is the case. An
error of eight meters in north and east directions is quite accurate. However the
data sheet of the GPS give an error in North and East direction within 2,5 meters.
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Figure 7.11: Velocity estimates case study 2. Nonlinear observer with magnetometer.

This might imply that the GPS measurement of position is more accurate than
the estimate. It is not possible to discuss this further since the reference is highly
insecure when errors of an magnitude of eight meters are considered. Therefore the
RMSE in position and velocity are just an indication of the noise level and can not
be interpreted as true values. Piccolo uses the same GPS antenna, but has its own
receiver and thus different measurements. The observer gains are chosen such that
the GPS is heavily trusted. Thus errors in the GPS might be a problem. However
in areas where GPS are less reliable the gains could have been changed. Therefore
it is not a weakness of the observer, but rather something to notice.

Some spikes in the north and east velocity are visible for every version of the ob-
server. Four of them occur in the time interval between 1130 and 1160 seconds.
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These spikes are caused by erroneous GPS measurements. The velocity measure-
ment is calculated by differentiating the position measurements from the GPS.
Therefore errors in the position measurements will heavily affect the velocity mea-
surement. That is the case at the spikes. Since the translational part of the observer
is tuned to trust the GPS very much, the spikes are larger than they would be with
smaller gains in the translational part of the observer (Kvp and Kvv). A solution
to reduce the problem might be to compare the velocity measurements with the
previous reliable measurements and discard erroneous measurements. However this
would require a filter that decides what a reliable measurement is. Furthermore it
is necessary to know that the first measurements are reliable which is hard online.
It could increase the performance if just single non-consecutive measurements are
erroneous. Such a solution is not implemented in this thesis, but could possibly
remove the spikes.

Overall Performance for the Nonlinear Observer

This case study has evaluated three different configurations for the nonlinear ob-
server presented in Chapter 3. The attitude estimates in the observer with a cam-
era, both with and without feedback, resulted in reliable and accurate estimates.
The noise level was reduced with feedback which indicates that feedback should be
used, at least after convergence of the estimates. Therefore an experimental valida-
tion for this configuration of the observer have been conducted. A stability proof
for the feedback of roll, pitch and altitude should be derived in the future. The
feedback of roll and pitch is considered to be the most important factor and thus
feedback from the attitude estimator should be first priority. This was pointed out
in Case Study 1 where it was argued that the altitude was less important because
the velocities are normalized and every component of the velocity are proportional
to the altitude. The nonlinear observer with magnetometer did not manage to
provide accurate estimates of the attitude. Tuning parameters that resulted in
convergence for both yaw and pitch where not identified, even with a large amount
of time dedicated to find appropriate values. This might be because the magne-
tometer measurement is directed mainly in the same direction as the accelerometer
measurement and because the magnetometer is weak for interference from other
electrical components. It is hard to shield the magnetometer in the payload and
thus is assessed to be a viable alternative to the magnetometer.

The position and velocity estimates were almost equal for the different nonlinear
observers. This was expected since the translational part of the observer consists
of the same equations and gains. Thus only minor differences related to deviations
in estimated attitude were expected. In addition the translational part of the
observer was tuned to trust the GPS heavily for every configuration. An important
consideration is that the the chosen tuning is weak for erroneous measurements from
the GPS. Thus it might be necessary to filter the GPS measurements or change the
tuning if a less accurate GPS receiver is utilized. The velocity was measured by
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differentiation of the position. GPS receivers based on the Doppler shift are much
more accurate and can be used to increase the reliability.

This case study has also shown the weakness of the magnetometer. Thus the
camera is a viable alternative for attitude estimation even though the calculation
of body-fixed velocity with a camera was quite noisy in case study 1. An interesting
possibility is to combine the measurements from the camera and the magnetometer
to estimate the attitude more accurately. A combination of these measurements
can be based on identifying the most reliable measurement at each time instant
or creating a new measurement that depends on both the magnetometer and the
camera. If the accuracy of the body-fixed velocity calculation from the camera can
be increased, the camera can be very useful for dead reckoning. Even with the
demonstrated accuracy in this case study, the camera should be useful for dead
reckoning.

7.4 Case Study 3: Moving Object Detection

This case study evaluates the moving object detection algorithm described in Sec-
tion 4.2. The case study and the applied test set of images are described in Section
6.4.1. The performance of the algorithm will be evaluated with the following cri-
teria

• Detection Rate - The number of images where the moving object is detected
compared to the total number of images with the moving object.

• False Positive Detections - The number of false detections.

• SIFTs ability to find a feature on the object.

• The number of OF vectors classified as belonging to a moving object com-
pared to the true number.

• The number of OF vectors wrongly classified as belonging to a moving object.

Results

The results of the case study with the different tuning parameters are described in
Table 7.13. Figure 7.12 illustrates two images where the object detection algorithm
successfully detected the moving object. One of the images also includes a false
detection, which is the detection of a non-existing moving object. Figure 7.13 shows
an example of detected OF vectors for two images in the image plane.

Tuning 1 is later referred to as the default tuning, while tuning 2 is the soft tuning
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Table 7.13: Results Case Study 3.

Evaluation criteria Tuning 1 Tuning 2 Tuning 3

Number of images where SIFT found
OF vector on moving object

82,4 % 82,4 % 82,4 %

Number of OF vectors on moving ob-
ject

3,6% 3,6% 3,6%

Number of OF vectors correctly clas-
sified as belonging to moving object

98,1% 98,8% 95,1%

Number of OF vectors not classified as
belonging to moving object (wrongly)

1,9% 1,2% 4,9%

Number of OF vectors wrongly classi-
fied as belonging to a moving object

0,06% 0,17% 0,05 %

Number of images moving object de-
tected with OF vectors on object

97,5% 99,5% 92,3 %

Number of images moving object not
detected with OF vectors on object

2,5% 0,5% 7,7%

False Positive Detections 19 33 18
Detection Rate 80,3% 81,9 % 76,1 %

Figure 7.12: Example of segmentation case study 3. The green rectangle marks an area
where a moving object is detected. The image to the right contains a rectangle where a
moving object wrongly is detected.

and tuning 3 is the hard tuning. SIFT is able to find OF vectors on the moving
object in 82,4% of the images with the object. The mean number of OF vectors
on the object is 7,7 when SIFT is able to find a feature on the object. The moving
object detection algorithm is very reliable when OF vectors exist on the object. It
correctly locates 95,1% - 98,8% of the OF vectors on the moving object. The num-
ber of OF vectors wrongly classified as belonging to a moving object is negligible
(maximum 0,17%) compared to the total number of OF vectors. Thus the false
detection rate is very low. Since only one wrongly classified vector is necessary
before a false detection, the number of false positive detections are ranging from 18
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Figure 7.13: Example of OF vectors in the image plane. The green vectors are classified
as belonging to a moving object. The red vectors are the OF vectors measured by SIFT
and the blue vectors are the theoretical OF. The second image (to the right) has one
vector wrongly classified as belonging to a moving object on the right hand side.

to 33. The algorithm is able to find the moving object in almost every image with
the default tuning (97,5%) when a OF vector is present on the object. However
since SIFT only finds features on the object in 82,5% of the images in the test set,
the total detection rate is 80,3% with the default tuning. Thus the main challenge
with the algorithm is for SIFT to find the object.

Discussion

SIFT has the poorest performance when the object is homogeneous and if it hard
to separate it from the background. Large amount of sun and shadows can be
a challenge since it is so easy to find features in the image on other places than
the object. However large amount of sun might also increase the contrast on the
image which is an advantage. Features are found when the intensity gradient in
the image is large. SIFT had much larger problems of finding features on the red
rectangle than the black car. That is mainly because the car has a larger amount
of contrast. The red rectangle is too homogeneous, especially since the boundary
has a constant color intensity. Every image where SIFT was unable to find a OF
vector on the object, contained the red rectangle and not the black car. Thus it was
much easier to find features on the black car, which is an image. This implies that
it could be easier to detect real objects than the manually created red rectangle.
However small homogeneous objects, such as small cars with the same color as the
environment, would increase the difficulty of finding features on the object.
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The results are fairly similar with the different tuning parameters. Larger differ-
ences could possibly be detected with a larger and more realistic test set, which
would be beneficial in the future. The hard tuning is created to achieve the least
amount of false detections. However the number of false detections compared to the
default tuning is almost equal and the detection rate is lower for the hard tuning.
Thus the default tuning works better than the hard tuning on the test set. The
soft tuning has the largest number of false positive detections as expected. It also
has the highest detection rate which is anticipated because it is created to achieve
the largest detection rate. Therefore it could be beneficial to use the soft tuning if
it is more important to find the moving object than limiting the number of false
positive detections.

The algorithm works very well on the test set. Since the algorithm is based on
the difference between measured and theoretical OF, it is important that moving
objects have a velocity sufficiently larger than zero in order to separate them from
the background. Furthermore the difference needs to be greater than the noise level.
In practice this means that a difference of several pixels is necessary. The algorithm
is evaluated on images with a resolution of 1600× 1200. Smaller resolution would
lead to smaller OF vectors in magnitude, and increase the difficulty of finding
features on the object and separate them from the background. Therefore smaller
resolution would require objects with a larger velocity. It is beneficial to process the
images on the largest resolution, even though it also increases the computational
load.

The case study has shown that it is possible to detect moving objects with OF
and that it works very well when the objects have a velocity greater than 30 km/h.
Therefore it is possible to detect cars and other vehicles moving with large velocity.
However OF is not appropriate for detection of humans and vehicles with a small
velocity from a UAV. This is because the noise level is relatively large, and it would
be hard to separate the object from the background because the UAV moves with a
much larger velocity than slowly moving objects. The noise level of the OF vectors
were shown in case study 1 (Figure 7.2). OF can on the other hand be used for
detection of slowly moving objects if the camera is at rest. The main challenge
with the algorithm is that SIFT needs to locate at least one feature on the object.
This is only possible with sufficient contrast on the object.

7.5 Case Study 4: Tracking of Single Object

This case study evaluates the tracking system described in Section 4.5 on a single
moving object, in this case study a black car. The case study is described more
closely in Section 6.5.1. The tracking system tracks objects detected by the moving
object segmentation algorithm evaluated in Section 7.4. The true path is known
and referred to as the reference.
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Results

The estimated position in the NE-plane is displayed in Figure 7.14. The calculated
velocity through first order differentiation is displayed in Figure 7.15. Figure 7.16
illustrates the tracking error in position and velocity. The tracking error in pixels
is displayed in Figure 7.17.

Figure 7.14: Estimated and real position.

The position estimate in Figure 7.14 follows the real path closely when the tracking
system has lock on the black car. Lock is considered to be a situation where the
moving object is detected in current or previous image. This also illustrated by
Figure 7.16 where the error in North and East position are displayed. The error
in estimated position is close to zero for most of the time. The tracking system
looses lock on the car in the time interval between 1180 and 1185 approximately,
and thus the estimate deviates from the true path in that time interval. The
tracking system looses lock because the car is outside of the field of view of the
camera (not in the image) in that time interval. This is illustrated in Figure 6.8
in the description of the case study (Section 6.5.1). The tracking error in position
increases rapidly because the car accelerates in the time interval where the system
looses lock. A constant velocity model is used in the Kalman filter. In practice
this means that tracked objects are assumed to have constant velocity or at least a
very small acceleration in the image plane. That is not the case when the system
looses lock on the car. The estimated velocity in NED is calculated by first order
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Figure 7.15: Estimated velocity. It is calculated by first order differentiation.

Figure 7.16: Tracking error position and velocity.

differentiation and thus the noise level is quite high in Figure 7.15. Nevertheless
the estimated velocity follows the trend of the real velocity. The error in velocity is
displayed in Figure 7.16 where the error increases rapidly when the tracking system
looses lock. The mean error is close to zero when the tracking system has lock on
the car. The down position of the car is known by the altitude of the UAV and
not interesting since it (hopefully) stays on ground level.

The estimation error in pixels displayed in Figure 7.17 shows an estimation error
close to zero for most of the time. The error increases rapidly when the system
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Figure 7.17: Estimation error in pixels

looses lock on the object. The mean tracking error is very close to zero in r, but
slightly below zero in s. The mean tracking error in s is approximately minus five
pixels when the system has lock on the car. This is due to the fact that the OF
vectors are not uniformly distributed on the car. The mean position of the OF
vectors on the car is used as the position measurement. Evidently the mean of
the OF vectors is slightly displaced from the true center in. Furthermore the noise
on the position measurement of the OF vectors are not solely white since SIFT
usually finds features on the same locations on the car. Therefore the estimated
pixel position will be slightly displaced from the true center when the OF vectors
are not uniformly distributed around the true center. The estimation error in pixels
would be closer to zero if the noise on the position measurement was white. However
a single pixel captures a real distance of approximately 10 cm at an altitude of 150
meter (Height Captured in Table 6.3). Thus an error of five pixels is negligible in
practice.

Discussion

The position estimate is very accurate and reliable as long as the car is detected.
Another motion model could have been used to increase the accuracy of the es-
timate when the car accelerates. A constant acceleration model could have been
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used instead of the constant velocity model. This would be interesting to work
with in the future and should increase the performance of the tracking system.
However the main issue is the movement of the UAV which leads to changes in
the image plane. A constant attitude for the UAV would increase the performance
significantly since small changes in attitude can lead to large changes in the image
plane, especially at lower altitudes. Nevertheless the performance is clearly good
enough with lock on the object. Lock on the object is achieved in almost every
image where the car is visible. Therefore the moving object segmentation algo-
rithm works as intended in this case study where the car moves with large velocity.
Tracking of a car with constant velocity will be a part of case study 5 in Section
7.6.

A possible weakness with the tracking system could be in case of misdetections.
Misdetections are situations where the car wrongly is detected somewhere far of the
true location. The Kalman filter is tuned with small noise on the measurements.
Therefore the measurements are heavily trusted and wrong measurements would
lead the estimate away from the true path. On the other side the correct path
would be reached rapidly whenever accurate measurements becomes available again
with the chosen tuning. The Kalman filter could be tuned differently if several
objects have the same appearance or at least look quite similar. This could be
the case for several cars tracked from the air because the color of the roof is the
most visible attribute. Another approach is to locate erroneous measurements
through the RANSAC algorithm [48, Chapter 10], but it requires storage of previous
measurements. RANSAC locates inappropriate points from a set of points by
finding the best model for the majority of the points. Therefore it requires that
most of the measurements are valid which is a reasonable assumption.

The problem illustrated in the previous paragraph is related to the classification
of objects. The tracking system uses template matching to distinguish objects.
The template is updated when new measurements are reliable and the classifier is
therefore time varying. Nevertheless rapid changes in the appearance of the object
might cause problems because previously detected objects might be considered to
be new objects. It is not an issue in this case study because the object has the
same appearance in every image. In practice though the update of the template
could be crucial, especially if the object rotates with respect to the camera or
changes appearance because of different light conditions for example. This is the
main reason for implementing a time varying classifier for objects in the tracking
system. If the object changes its appearance so rapidly that the tracking system
considers it to be a new object, two paths of the same object are updated. One
of the paths will be updated by new measurements while the old path will be
solely updated by prediction. The old path will be removed after a while if new
detections are absent. In order to get the complete path of the object an algorithm
for combining resembling paths could be created. This can also be achieved with
the RANSAC algorithm by comparing the old path with the first points in the new
path. This can be very useful if the object is exposed to occlusion and then looks
slightly different after the occlusion.
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The velocity estimate is quite noisy. This is, as mentioned already, because it
is based on the difference between the two most recent position measurements.
Such an update of the velocity was chosen for simplicity in this thesis because the
position estimate was considered to be the most interesting state. However it is
possible to utilize OF and the velocity of the UAV through the M-matrix to find
the velocity with (2.25). It is necessary to assume that the angular velocity of
the object is zero and thus only the rotation of the camera matters. One could
then use the estimated OF with the angular velocity of the UAV (measured by the
IMU) to find the velocity of the object in the camera-frame by equation (2.25). It
is necessary to assume zero velocity in down direction to limit the system to two
unknowns (u and v). By using the body-fixed velocity of the UAV they can be
added together to find the velocity of the object in the camera frame with respect
to the ground. It is then possible to find the velocity in NED by calculating the
rotation matrix with the Euler angles. For this to work a state estimator for the
UAV, such as a nonlinear observer, is necessary.

This case study has shown that the tracking system is able to track a single object
very accurately as long as the object is visible in the images captured by the camera.
When the object is visible in the images, the object detection algorithm is able to
find the position and velocity in the image plane and track the object with high
performance. The estimates are converted to position and velocity in NED. The
velocity estimate is quite noisy since it is calculated by first order differentiation
in the image plane. When the object is outside the field of view of the camera the
tracking system predicts the motion of the object. The predicted position is quite
inaccurate since the velocity in the image plane varies rapidly. This is because
the car accelerates and that the attitude and velocity of the UAV vary. Thus the
constant velocity model should be evaluated and most likely replaced by a model
with higher order. A new model could for instance be based on constant jerk in
the image plane with the same measurements. This will be discussed further in the
results for Case Study 5 in section 7.6.

7.6 Case Study 5: Tracking of Multiple Objects

This case study evaluates the tracking system described in Section 4.5 on two
moving objects. The objects are a black and white car. The case study is described
more closely in Section 6.5.2. The tracking system tracks objects detected by the
moving object segmentation algorithm evaluated in Section 7.4.

Results

The estimated position and the real position in the NE-plane is displayed in Figure
7.18. The calculated velocity for the first object is displayed in Figure 7.19 and
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for the second object 7.20. Figure 7.21 and 7.22 illustrates the tracking error in
position and velocity for object 1 and object 2, respectively. The tracking error in
pixels for both objects are displayed in Figure 7.23.

Figure 7.18: Estimated and real position for both objects.

The position estimates in Figure 7.18 show that the estimated paths follow the real
path when the objects are visible in the image. It is important to note that the
references for the first and second object are in fact different, but looks very similar
because the distance between the cars are short. The first object has a short period
where it is outside of the field of view of the camera and the position estimate drifts
away from the true path. The second object stays in the image continuously from
the first detection until the last detection. The time intervals where the objects
are in the field of view of the camera are displayed in Figure 6.10. The second
object is not visible in the end of the tracking period and the estimated path
drifts away from the true path. The position estimates deviate rapidly from the
true paths when position measurements for the objects are unavailable for several
consecutive images. This is mainly because the velocity in the image plane varies
much because of the UAV motion. A small roll motion would for example move
the object significantly in the image plane. Therefore the constant velocity model
is not the most appropriate model it seems. Nevertheless the estimated paths are
very reliable when the objects are visible in the image and the performance is in
general satisfactory.

The velocities in Figure 7.19 and 7.20 are calculated by first order differentiation.
The noise level is very similar for both objects. The mean velocity is very close
to the real value and the velocity calculation works pretty well. If the goal is to
estimate the velocity more precisely, another method than first order differentiation
should be used. Another method for calculating the velocity, utilizing the velocity
in the image plane, is shortly discussed in Case Study 4 (Section 7.5).
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Figure 7.19: Estimated velocity object 1.

Figure 7.20: Estimated velocity object 2.

The estimation error in position and velocity for both objects, in Figure 7.21 and
7.22, show that the estimates are very accurate (as long as position measurements
are available). The error in position is close to zero for both objects. The second
object has a small offset in North position which leads a constant error slightly
above zero. This is simply because the OF vectors on the second object are dis-
placed from the center of the car. Thus the measured position is displaced slightly
form the true position, but only a meter. The accuracy is satisfactory as long as
the objects are visible. The estimation error grows rapidly when the objects are
outside of the field of view of the camera. It is visible in North position for object
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Figure 7.21: Estimation error position and velocity object 1.

Figure 7.22: Estimation error position and velocity object 2.

1 where the error grows to 50 meters in five seconds when the object is outside the
field of view of the camera. 50 images are captured in five seconds. Thus the error
is approximately one meter per image. This is not that much, but the error grows
rapidly without measurements of the position. The error in velocity is close to zero
for both objects as long as they are visible. The noise level is approximately 2-3
m/s. The RMSE value can probably be reduced by a more accurate method for
calculating the velocity.

The estimation error for the position in the image plane in Figure 7.23 shows that
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Figure 7.23: Estimation error in pixels for both objects.

both objects are tracked accurately when they are visible. The estimation error in
r grows much faster than the estimation error in s when the objects are outside
the field of view. The r coordinate is aligned along the body y-axis of the UAV.
The UAV flies mainly straight above the objects. Thus the motion in r is very
limited for the objects. Therefore it seems that the velocity in r varies too much
and that the measurement noise in r velocity should be increased significantly.
This is supported by the fact that the measurement error in s is much smaller for
object 2, which has a constant velocity. The error does not exceed 100 pixels in
50 images, which means that the prediction error in s is below two pixels for each
image.

The RMSE for the second object is displayed in Table 7.14. The values are cal-
culated during the time span where the object is visible in the image. Therefore
the values indicate the accuracy and noise level of the estimates as long as position
measurements in the image plane are available. The RMSE in North and East
position are very low and the accuracy is within one meter of the real position.
The mean error in North is 0,52 meters which indicates a slight displacement. This
is related to the mean error in the image plane. The RMSE in s is 5,98 and just
above the mean error in s. This indicates that the object constantly is displaced
6 pixels in s (since the noise level is equal to the mean error). Furthermore it ex-
plains why the mean error in position is above zero. The mean error descends from
the fact that the OF vectors are located on approximately the same part of the
object. Thus the measurement noise is not white in reality. Nevertheless the error
in position, both in the image plane and NE-plane, is very small and considered to
be negligible with lock on the objects.

The RMSE value in r is 9,68 pixels. This is a significantly larger value than in
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s. Therefore the position estimate in r is more insecure than the estimate in s
and explains the rapid drift away from the true path in r when measurements are
lost. The velocity in r seems to vary too much to have a reliable prediction of
position in r. This would almost certainly be a smaller issue with a camera at
rest. Nevertheless the performance is very reliable for position in the image plane
and NE-plane as long as measurements are unavailable for just a few consecutive
images. In fact, it is likely to believe that the performance would be great even
if just one measurement is available in five images. The main issue appears when
measurements are unavailable for more than ten consecutive images. An error
of 50 pixels in the image plane is relatively small in NE since one pixel covers
approximately 10 cm in the NE-plane.

Table 7.14: Mean error and RMSE value for the second object during the period when
measurements are available.

Error Mean Error ē RMSE
Position North 0,52 0,70
Position East 0,10 0,58
Velocity North -0,22 2,02
Velocity East -0,13 2,04
Position Image Plane r -3,33 9,68
Position Image Plane s -5,95 5,98

Discussion

The observant reader might notice that the position estimate of object 1 drifts away
more rapid in this case study than in Case Study 4 (even though the path is equal).
This is kind of a surprise since the measurements are lost and reacquired at the
same time. In both case studies the car is lost for the same amount of images and
one would suspect the same error dynamics. However the problem can be explained
by different values for the noise matrices in the Kalman filter. The process noise
was increased by a factor of three in this case study and the measurements noise
was increased by a factor of 5 in position and 2 in velocity (in the image plane).
The increase in process noise is likely the main reason for the larger drift away from
the true path. Therefore the process noise should maybe be decreased slightly, at
least in position. The same noise level was assumed in the position and velocity
measurements. If another case study had been carried out, the measurement noise
in velocity would have been increased and the noise in position kept or decreased.
However it would still be quite challenging with accurate prediction because small
changes in roll, pitch or yaw has a large influence on the object position and velocity
in the image plane.

The main issue with the estimates in the image plane is that the motion of the UAV
varies too much to know the velocity in the image plane. Even small vibrations
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might displace the object several pixels in the image plane and appear as a sudden
change in velocity. Thus the results indicate that frequent measurements of the
position in the image plane are necessary, but that one measurement per second
might be sufficient. This is based on the tracking error in the image plane which is
limited for ten images without a measurement. Another case study in the future
should investigate a situation where one measurement is available each second (one
measurement in ten images) instead of up to ten each second.

The similar noise level in NED velocity for both objects is somewhat surprising since
object 2 moves with a constant velocity in NED. Thus one might expect that the
constant velocity model would be more accurate for the second object. However the
constant velocity model refers to constant velocity in the image plane. Constant
velocity in NED leads to constant velocity in the image plane, but only if the
UAV moves with a constant velocity and more importantly has the same attitude.
Therefore the issues discussed in the previous paragraph lead to a varying velocity
in the image plane for both objects, and it is understandable that the accuracy are
similar for both objects.

Overall the performance of the tracking system is satisfactory, even in the case
of multiple objects in the image plane at the same time. The tracking system
successfully managed to distinguish the objects. Furthermore the moving object
detection algorithm worked equally well with another object in the image plane. An
interesting point is that approximately ten OF vectors were calculated on the first
object, but just two to three OF vectors on the second object. Therefore it seems
that a single OF vector is enough for reliable measurements. The important factor
is that at least one OF vector is located on the object frequently, and of course
that the moving object segmentation algorithm locates that OF vector. The main
challenges with the tracking system in its current state are that the objects needs
to move with a significant velocity with respect to the background and that it
might be hard to separate objects that are very similar. In Case Study 4 and 5
the objects moves with a velocity almost equal to the UAV in order to keep them
in the image plane for a sufficient amount of images (time). The classification of
objects are, as mentioned before, based on template matching. Therefore objects
with approximately the same size and color are a problem. Tracking of a large
amount of objects might be challenging for the tracking system in its current state.
A solution could be to add another layer to the classification algorithm to increase
the reliability. The second layer could for instance be based on a nearest neighbour
approach to confirm the the results from the template matching (first layer).

An example of six consecutive images from the tracking system finishes this case
study. They illustrate the performance of the tracking system. The rectangle are
centered around the estimated position. A green color indicates that measurements
of position and velocity were available in that image (the moving object detection
algorithm located the object). A blue color indicates that measurements are un-
available and that the estimates are based on prediction. The images are displayed
in Figure 7.24.
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a) image 1 b) image 2

c) image 3 d) image 4

e) image 5 f) image 6

Figure 7.24: The figure shows six consecutive images. A green rectangle around the
objects indicates that measurements are available for the objects in the image. A blue
rectangle indicates that the estimates are based on prediction.
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Chapter 8
Conclusion and Future Work

In the present thesis, several different topics have been investigated. The first part
focused on computer vision and the camera system. The second part focused on the
design of a camera-aided nonlinear observer for the estimation of attitude, position,
velocity and gyro bias for a fixed-wing UAV. The latter part focused on detection
and tracking of moving objects based on the camera system and the nonlinear
observer. The last part of this thesis have been dedicated to the implementation of
necessary SW and experiments carried out to evaluate how the navigation system
and the tracking system work in practice. This chapter will conclude the work and
summarize the most important findings. It contains the following topics:

• Section 8.1 gives a brief overview of the work carried out in this thesis.

• Section 8.2 summarizes and underlines the most important findings

• Section 8.3 describes future work that might be worth investigating based on
the findings in this thesis.

8.1 Overview

The main objectives of this thesis have been to calculate the body-fixed velocity
of a fixed-wing UAV with optical flow, evaluate a vision-aided navigation system
for fixed-wing UAVs, develop a moving object detection algorithm and develop a
tracking a system for moving objects. The navigation system is based on estima-
tion of attitude, position, velocity and gyro bias with a nonlinear observer. The
attitude part of the nonlinear observer is aided by calculation of the body-fixed
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linear velocity of the UAV with images captured by a video camera. The tracking
system is based on an algorithm for detection of moving objects, a classifier used
to describe each object and a Kalman filter for motion estimation. The moving
object detection algorithm uses the attitude, velocity and position of the UAV to
find moving objects. Therefore it uses the estimates from the nonlinear observer
to find moving objects. This is done by calculating the theoretical optical flow and
compare it with the measured optical flow. If the measured optical flow deviates
significantly from the theoretical flow at some pixels, a moving object is assumed
to be located at that position. The detected objects are tracked by creating a
unique instance of the Kalman filter for each object. A template of the area with
the detected object is used as a classifier and describes the object. The classifiers
are used to distinguish different objects in order to associate new measurements
with already tracked objects.

Several case studies have been conducted in order to evaluate the navigation and
tracking system in practice. Therefore the navigation and tracking system have
been implemented in SW in order to evaluate the performance through computer
simulations. Furthermore several optical flow algorithms have been implemented.
A UAV experiment have been carried out to gather images captured from a UAV
and collect measurements from inertial sensors and GPS. In addition two papers
have been written in cooperation with fellow MSc. student Jesper Hosen, PhD.
student Lorenzo Fusini, Professor Thor I. Fossen and Professor Tor A. Johansen.
The first paper has been accepted for ICUAS’15 and the second paper is submitted
to AIAA SciTech 2016 with acceptance or rejection in august.

8.2 Findings

Case study 1 focused on the calculation of body-fixed velocity for the UAV through
optical flow and was based solely on real data. The results showed that the cal-
culation was exposed to noise when measurements of roll, pitch and altitude were
used, but that estimates of the same states decreased the noise level significantly.
The longitudinal velocity was calculated to be slightly greater than the longitudinal
velocity from the autopilot and the lateral velocity oscillated more than excepted.
However the case study showed that it is possible to calculate reasonable values
for the body-fixed velocity through optical flow. More accurate calculation of the
body-fixed velocity requires a flat horizontal terrain in the images and an altimeter
to get a more precise altitude measurement. If the normalized velocity (direction)
is more important than the up-to scale velocity, epipolar geometry can be used
without the dependency on the Euler angles and the altitude. Epipolar geometry
and the approach to calculate normalized body-fixed velocity is described in the
second paper (Appendix B).

The second case study compared three different configurations for the nonlinear
observer presented in Chapter 3 on real data gathered at a UAV experiment. The
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results showed that the attitude could be estimated accurately with the vision-aided
navigation system. Normalized body-fixed velocity (from Case Study 1), calculated
both with and without feedback of the estimated states, was used to aid the attitude
estimator. The attitude was not estimated correctly with magnetometer aiding.
This might be because of wrong calibration, but the case study illustrated some of
the issues with a magnetometer in a UAV. The limited amount of space increases the
difficulty in proper shielding of the magnetometer. Furthermore the magnetometer
measurement had a direction not very far from the accelerometer measurement. It
is harder to find three different angles (Euler angles) when the reference vectors are
more similar. The normalized body-fixed velocity from the camera has a direction
very different from the accelerometer and thus it is easier to find three separate
angles. The case study showed that the nonlinear observer managed to estimate
the states with comparable performance to the EKF in the autopilot of the UAV.
In addition to evaluating the different configurations of the nonlinear observer, one
of the main contributions from this work is the work related to the publication of
the two papers attached in Appendix A and B.

The third case study evaluated the moving object detection algorithm proposed in
Section 4.2.3. The algorithm is one of the contributions in this thesis and the case
study showed that the algorithm, which is based on optical flow, could be used to
detect moving objects. The simulated results illustrate that objects with a certain
velocity can be detected with high reliability as long as the objects are not too
homogeneous. The algorithm detects fast moving objects, such as cars, but slowly
moving objects, such as walking humans, can not be detected because of the large
UAV velocity. Slowly moving objects could probably be detected with a camera
at rest, but the noise level is too high to detect slowly moving objects from an
airborne fixed-wing UAV. The detection rate was shown to be quite reliable with
very few false detections. The main challenge with the algorithm is its dependency
on finding features on the objects of interest.

The fourth case study evaluated the proposed tracking system on a single moving
object. The tracking system consists of the moving object detection algorithm,
a classifier to distinguish different objects and a Kalman filter for each tracked
object. The results illustrated that the tracking system worked satisfactory on a
single object and that the estimation errors were negligible as long as measurements
were available. The object was tracked in the image plane with high accuracy.
Furthermore the estimates were transformed to NED and the estimated path in
NED converged to the true path when measurements were available. The velocity
in NED was calculated by first order differentiation of the estimated position in
NED. The calculated velocity had a pretty large noise level, but the mean was
close to the true value. For applications with larger requirements to the accuracy
another way to estimate the velocity should be investigated.

The fifth case study evaluated the tracking system with multiple objects in the
images. Two different moving objects were visible in the images. The tracking sys-
tem was able to distinguish the two objects and track both objects accurately, as
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long as measurements of position were available. Furthermore the estimates were
transformed to NED and compared with the true paths. The root mean squared
error showed that accuracy was within one meter in NED as long as measurements
were available. However one of the main challenges with the tracking system is to
predict the motion of the objects correctly. This is very difficult since small UAV
vibrations, UAV velocity variations and small changes in attitude for the UAV can
displace the objects significantly in the image plane. This is especially challenging
with a fixed-wing UAV moving with large velocity. Therefore the performance of
the tracking system depends on measuring the position regularly, and preferably at
least once each second. Even though the estimates are inaccurate if measurements
are unavailable the estimates converges quickly if measurements become available
again. The overall performance of the tracking system was assessed to be satisfac-
tory.

8.3 Future Work

This section is going to discuss the most important factors for future work with re-
spect to the findings in this report. The most exciting and promising improvements
will receive extra attention.

The nonlinear observer should be investigated further, both theoretically and ex-
perimentally. A stability proof for the feedback of roll, pitch and altitude in the
calculation of body-fixed velocity should be derived. This is because case study 1
and 2 indicated that feedback increases the accuracy in practice. The flat terrain
assumption in [21] should be relaxed by epipolar geometry as suggested in the pa-
per submitted to AIAA SciTech 2016. However for dead reckoning applications the
body-fixed velocity up-to scale is of importance. Therefore it is also important to
evaluate the velocity calculation presented in Section 2.4 further. If the assumed
altitude is larger than the actual altitude, the body-fixed velocity is calculated to
be larger than in reality. This is the case when flying over rugged terrain such as
trees. Therefore the altitude measurements from an altimeter should replace the
altitude measurement from the GPS in order to increase the accuracy. An experi-
mental evaluation of the performance with altimeter should be conducted in order
to check if the accuracy surpasses the accuracy in case study 1.

Another possibility for increasing the performance of the nonlinear observer is to use
a combination of a magnetometer and video camera to aid the attitude estimator.
This can be achieved by creating a filter that extracts the measurement from the
most accurate sensor at each time step, or ideally combines the measurements
to create a more accurate and reliable measurement. The misalignment of the
inertial sensors might be an error source. It can be measured and accounted for
in the equations to check if it increases the accuracy of the estimates. It would
also be adequate to investigate if the inclinometer measurements can be utilized
in the attitude estimator. In addition it would be interesting to investigate if it is
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possible to find some directives in how the observer gains can be chosen. For the
moment they are mostly based on trial and error. Therefore it would be beneficial
to identify a way to tune the observer more efficiently.

A future flight experiment should be carried out and include more difficult maneu-
vers. Turns with smaller radius and an increased amount of pitching motion can
be used to evaluate the performance of the nonlinear observer in more challenging
conditions. A flight experiment at lower altitudes would also be interesting since
features in the images are larger at smaller altitude. The accuracy of the calcu-
lated body-fixed velocity can be different, and most likely better at lower altitude.
This is because the calculated body-fixed velocity is proportional to the altitude
and the optical flow measurement. Thus an error in measured optical flow will be
multiplied by the altitude. Therefore the same noise level (as in Case Study 1) in
measured optical flow leads to more accurate body-fixed velocity measurements at
smaller altitudes.

A factor that can increase the reliability of the gathered data is to develop a
more accurate way to synchronize the images from the camera with the rest of the
sensors. The current method is described in Section 5.2 and depends on performing
the synchronization manually. It would be beneficial to store the images with a
time stamp directly related to the rest of the sensors instead of conducting a manual
synchronization after the UAV experiment.

Future work should improve and evaluate the moving object detection algorithm
on real data. Most importantly, images with moving objects should be gathered
at a flight experiment. This can be achieved by driving a car below the UAV for
example. The car can be equipped with a GPS receiver in order to collect velocity
and position measurements of the car, and use those measurements to test the
tracking system on real data. The captured images can be used to validate if the
moving object detection algorithm is able to locate the car. Furthermore if the
algorithm can be tested on real data the weaknesses of the algorithm will be more
prominent and the algorithm can be developed further. More advanced statistical
methods would probably be more reliable and should be investigated. A viable
option would be to use the RANSAC algorithm when looking for moving objects.
RANSAC can be used to identify optical flow vectors that do not coincide with the
majority of the optical flow vectors.

The tracking system should also be evaluated experimentally in the future. In
addition more case studies based on computer simulation can be carried out to
investigate the tracking system further. It would be particularly interesting to
check if another motion model in the Kalman filter can increase the accuracy of
the predicted paths. Furthermore different noise models should be tested in order
to increase the performance. A possibility is to change the process noise when
measurements are unavailable. Another interesting topic would be to investigate if
it is possible to account for changes in the attitude of the UAV. If this is possible,
the prediction step in the Kalman filter can be conducted more accurately. The
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main issue today is the fact that the velocity in the image plane varies rapidly
because even small changes in attitude (between images) can displace the object
several pixels in the image plane. Therefore a way to limit the dynamics of the
predicted velocity in the image plane should be investigated.
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Appendix A
Paper Accepted for ICUAS’15

This appendix includes the paper submitted and accepted for the International
Conference on Unmanned Aerial Vehicles 2015 (ICUAS 15’) in Denver in June.
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Lorenzo Fusini, Jesper Hosen, Håkon H. Helgesen, Tor A. Johansen
and Thor I. Fossen

Norwegian University of Science and Technology
Centre for Autonomous Operations and Systems

Department of Engineering Cybernetics
Trondheim, Norway

E-mail: {lorenzo.fusini, tor.arne.johansen}@itk.ntnu.no, thor.fossen@ntnu.no,
{jesperho, hakonhhe}@stud.ntnu.no

Abstract—This paper provides experimental valida-
tion of a uniformly semi-globally exponentially stable
(USGES) non-linear observer for estimation of attitude,
gyro bias, position, velocity and acceleration of a fixed-
wing Unmanned Aerial Vehicle (UAV). The available
sensors are an Inertial Measurement Unit (IMU), a
Global Positioning System (GPS) receiver, a video cam-
era, and an inclinometer. The UAV is flown with the
sensor payload and all data is stored locally on a hard
drive, which is recovered at the end of the flight. The non-
linear observer is then tested offline with the recorded
sensor data. An optical flow algorithm is used to calculate
the UAV velocity based on the camera images, which is
used as a reference vector of the body-fixed velocity in
the attitude observer. The results are compared with an
Extended Kalman Filter (EKF) and illustrate that the
estimates of the unmeasured states converge accurately to
the correct values, and that the estimates of the measured
states have less noise than the measurements.

I. INTRODUCTION

The estimation of position, velocity, and at-
titude of a vehicle at any time is commonly
referred to as ”navigation”. The most used tool
for this purpose has been the EKF, but in the
last decades researchers have started to investigate
new solutions, alternative to the Kalman filter,
to the navigation problem, namely by developing
non-linear observers with complete stability proofs
and experimental validation. Non-linear observers

have the advantage, over the EKF, of featuring a
smaller computational footprint and often being
globally exponentially stable (GES), a result that
renders the observers robust to disturbances and
initialization uncertainties. The problem of atti-
tude estimation has received significant attention
as a stand-alone problem [1]–[11]. In addition
to this, other researchers have integrated Inertial
Navigation System (INS), magnetometer/compass
and GNSS to estimate the navigation states of a
vehicle.

In [12] the authors expanded the vector-based
observer proposed by [6] and [7] to include GNSS
velocity measurements. [1] and [2] built glob-
ally exponentially stable (GES) attitude estimators
based on multiple time-varying reference vectors
or a single persistently exiting vector. A similar
observer was developed in [13] and [14] to include
also gyro bias and GNSS integration. An extension
of this [15] replaced the rotation matrix with the
unit quaternion for representing attitude, consid-
ered Earth rotation and curvature, a non-constant
gravity vector, and included accelerometer bias
estimation.

Another sensor commonly used in navigation is
the camera. Low weight, low power consumption,
and a wide range of machine vision software



make it a viable choice for navigation purposes.
Some drawbacks are its dependence on lighting
and weather conditions, which directly affect the
availability of features in the scene, and the dif-
ficulty in separating camera motion from moving
objects in complex non-stationary environments.

Optical flow (OF) is how features in an im-
age plane move between two consecutive images,
caused by relative motion between the camera and
the object being depicted. In the simplest case it
could be understood as the pixel displacement of
a single feature between two successive images.
The OF can be represented as multiple vectors
describing the change in the image plane in time.
Several methods exists for determining the OF of
a series of images, e.g. [16]–[19].

Machine vision and OF have been used for
different applications in UAV navigation includ-
ing indoor manoeuvring [20], [21], linear and
angular velocity estimation [22]–[24], and obstacle
avoidance [20], [25]–[29] as well as height above
the ground estimation in [30]. [31], [32] use OF
in assisting a landing of a UAV independent of
external sensor inputs. OF from a single camera
is used in [33], [34] to estimate body axes angular
rates of an aircraft as well as wind-axes angles.
[24], [35], [36] have used OF as input in Kalman
filter-based navigation systems, fusing OF mea-
surements with acceleration and angular velocity
measurements. [37], [38] have used camera as
sensor for navigating in GPS-denied environments.

A comparison of the performance of different
methods of estimating the attitude of UAV based
on machine vision is presented in [39], and differ-
ent OF algorithms are evaluated in [23], [40] by
estimating UAV velocity.

In [41] OF vectors are used to calculate the
normalized body-fixed velocity of the UAV, and
fed into the non-linear observer as a reference
vector.

A. Contribution of this Paper

This paper provides experimental tests of a
USGES non-linear observer for estimation of atti-
tude, gyro bias, position, velocity, and acceleration

of a fixed-wing UAV [41]. Exponential stabil-
ity guarantees strong convergence and robustness
properties, hence it is an important property to
have in systems that are exposed to disturbances
and uncertain initialization. The camera can some-
times replace the magnetometers: in small UAVs
the magnetometers are heavily affected by distur-
bances and noise generated by the engine, while
the camera is not conditioned by this.

The sensor data are logged during the UAV
flight and used offline on a PC to test the ob-
server. An OF algorithm is used to calculate the
body-fixed velocity of the UAV based on the
camera images, altitude and inclinometer data. To
demonstrate their validity, the estimated states are
compared with those evaluated via the EKF.

II. NOTATION AND PRELIMINARIES

Vectors and matrices are represented by lower-
case and uppercase letters respectively. X−1, X+,
and tr(X) denote the inverse, pseudoinverse, and
trace of a matrix respectively, XT the transpose of
a matrix or vector, X̂ the estimated value of X ,
and X̃ = X− X̂ the estimation error. ‖ ·‖ denotes
the Euclidean norm, In the identity matrix of order
n, and 0m×n the m× n matrix of zeros. A vector
x = [x1, x2, x3]

T is represented in homogeneous
coordinates as x = [x1, x2, x3, 1]T . The function
sat(·) performs a component-wise saturation of its
vector or matrix argument to the interval [−1, 1].
The operator S(x) transforms the vector x into the
skew-symmetric matrix

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0


The inverse operation is denoted as vex(·), such
that vex(S(x)) = x. For a square matrix A, its
skew-symmetric part is represented by Pa(A) =
1
2
(A− AT ).

Two reference frames are considered in the pa-
per: the body-fixed frame {B} and the North-East-
Down (NED) frame {N} (Earth-fixed, considered
inertial). The rotation from frame {B} to {N} is
represented by the matrix Rn

b ≡ R ∈ SO(3), with
SO(3) representing the Special Orthogonal group.



A vector decomposed in {B} and {N} has
superscript b and n respectively. The camera loca-
tion w.r.t. {N} is described by cn = [cnx, c

n
y , c

n
z ]T .

A point in the environment expressed w.r.t. {N}
is tn = [xn, yn, zn]T : note that a point located
on the ground corresponds to zn = 0 and such
it will be throughout the paper. The same point
expressed w.r.t. {B} is tb = [xb, yb, zb]T . It will
also be assumed that every point is fixed w.r.t.
{N}. The greek letters φ, θ, and ψ represent the
roll, pitch, and yaw angles respectively, defined
according to the zyx convention for principal
rotations [42], and they are collected in the vector
Θ = [φ, θ, ψ]T . A 2-D camera image has coor-
dinates [r, s]T , aligned with the yb- and xb-axis
respectively (see Fig. 2). The derivative [ṙ, ṡ]T of
the image coordinates is the OF. The subscript F

indicates a quantity evaluated by means of the OF.

A. Measurements and Sensors

The sensor payload consists of an IMU, a GPS
receiver, a video camera, and an inclinometer,
providing the following information:

• GPS: NED position pn and, by differentia-
tion, NED velocity vn;

• IMU: biased angular velocity ωbm = ωb +
bb, where bb represent the gyro bias, and
acceleration ab;

• camera: 2-D projections [r, s]T onto the
image plane of points [xn, yn, zn]T from the
3-D world;

• inclinometer: roll φ and pitch θ angles.

Further information on the actual sensors em-
ployed in the experiment is presented in Section
V.

III. OPTICAL FLOW

The observer presented in Section IV depends
on velocity measurements from the on-board cam-
era decomposed in the body-fixed frame. These
measurements are generated from OF, therefore
it is necessary to compute the OF vectors from
consecutive images before these vectors are trans-
formed to velocity measurements. The OF calcu-

lation and the transformation is presented in the
forthcoming section.

A. Optical flow computation

There exist several methods for computing OF.
For the experiment presented in Section V two
specific methods are combined. The first one
is SIFT [18] which provided the overall best
performance in [23]. SIFT uses a feature-based
approach to compute OF. The total number of OF
vectors in each image depends on the number of
features detected and matched together. Since the
transformation in Section III-B requires at least
three OF vectors [41], it is necessary to make sure
that this is handled. It is not possible to guarantee
three OF vectors with SIFT since homogeneous
environments, like snow or the ocean, increase the
difficulty of finding distinct features. Therefore the
OF vectors created by SIFT are combined with a
second method, which is based on region matching
[43].

The region matching method used here is a
template matching approach based on normal-
ized cross-correlation [44]. The displacements of
twelve templates, created symmetrically across
the images, are used to find twelve OF vectors.
Template matches below a given threshold are dis-
carded and the corresponding OF vector removed.
Unreliable matches can occur in case of uniform
terrain, changes in brightness or simply when the
area covered by the template has disappeared from
the image in the time between the capture of
images. An example of OF vectors computed with
SIFT and template matching is displayed in Fig.
4.

In case of mismatches, both methods will create
erroneous OF vectors. It is desired to locate and
remove these vectors. Therefore an outlier detector
is implemented before the vectors are used to
calculate body-fixed velocities. The outlier detec-
tor utilizes a histogram to find the vectors that
deviate from the mean with respect to direction
and magnitude.

B. Transformation from optical flow to velocity

For the OF computations to be useful in the ob-
server, a transformation to body-referenced veloc-



(a) (b)

(c)

Fig. 1. a) Image captured at time t0. b) Image captured at time
t0+∆t. c) Optical flow vectors between image a) and b), generated
by SIFT (red) and Template Matching (green).

ity is necessary. The transformation is motivated
by [41] and the pinhole camera model is used [45].
The camera-fixed coordinate system is related to
the body-fixed coordinate system through Fig. 2,
where the downward-looking camera is aligned
with the body z-axis. The focal point of the camera
is for simplicity assumed to coincide with the
origin of {B}.

xb

yb zb

Ob

image plane

Ors

r

s

Fig. 2. Pinhole camera model. The camera is oriented downwards,
while xb is the direction of flight.

It is necessary to relate a point in the terrain
expressed in {N} tn to {B}, since points in the

terrain are used to compute the body-referenced
velocity. The matrix Rn

b and vector cn represent a
rotation and a translation between {N} and {B}.
They can be merged to form a homogeneous 4×4-
transformation T nb

T nb (Θ) =

[
Rn
b (Θ) cn

01×3 1

]
such that tn = T nb (Θ)tb where tn and tb is the same
homogeneous point represented in {N} and {B}
respectively. The transformation can be inverted to
find tb from tn

tb = T nb (Θ)−1tn =

[
Rn
b (Θ)T −Rn

b (Θ)T cn

01×3 1

]
tn

(1)
and tb is now a function of xn, yn, zn, cnx, cny , cnz ,
φ, θ, ψ.

The relationship between tb and its projection
onto the image plane is expressed by the well-
known pinhole camera model [45] [46].[

r

s

]
=
f

zb

[
yb

−xb

]
, zb 6= 0 (2)

where f is the focal length of the camera. As tb

in itself is not available, the relationship in (1) is
used to express tb in (2) asx

b

yb

zb

 =


scnz

s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− rcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− fcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

 (3)

All features tracked by the camera are assumed
to be stationary with respect to {N}. Hence the
UAV linear and angular velocity relative to a fea-
ture tracked by the OF algorithm, vbF and ωbF , will
be equal for every tracked feature. Furthermore it
is assumed that the terrain is flat, such that every
feature is located at the same altitude. For every
feature j, the relationship between OF and body-
fixed linear/angular velocity is given as

[
ṙj

ṡj

]
= −Mj(f, rj , sj , φ, θ, c

n
z )

[
vbF

ωbF

]

Mj =
f

zbj

 0 1 −y
b
j

zbj
−y

b
j
2

zbj
− zbj

ybjx
b
j

zbj
xbj

−1 0
xb
j

zbj

xb
jy

b
j

zbj
−x

b
j
2

zbj
− zbj ybj


(4)



where Mj ∈ R2×6 in (4) is motivated by [41]. If
the number of features being tracked is k, then the
OF vector has dimension 2k. A matrix M ∈ R2k×6

might be created by concatenating the matrices
Mj, j = 1 . . . k, and the following relationship is
obtained



ṙ1

ṡ1
...
ṙk

ṡk

 = −M
[
vbF
ωbF

]
,M =

M1

...
Mk

 (5)

By calculating the pseudoinverse of M in (5)
the angular and linear velocity can be computed
as

[
vbF
ωbF

]
= −M+



ṙ1

ṡ1
...
ṙk

ṡk

 (6)

M+ exists only if MTM has full rank. This can
only happen if the number of flow vectors are
greater or equal to three. This is always the case
in the experiment.

IV. OBSERVER DESIGN

A. Dynamic System

The dynamics of attitude, position, and velocity
is described by

Ṙ = RS(ωb) (7a)
ṗn = vn (7b)
v̇n = an + gn (7c)

The objective is to estimate the attitude R, the
position pn, and the velocity vn with exponential
convergence rate. In addition to this, an estimator
for the gyro bias bb is also provided.

B. Assumptions

The observer design is based on the following
assumptions:

Assumption 1: the OF algorithm uses a suffi-
cient number of image features, such that M has
full rank and Eq. (6) can be used.

Assumption 2: the gyro bias bb is constant.

Assumption 3: there exists a constant cobs > 0
such that, ∀t ≥ 0, ‖vbF × ab‖ ≥ cobs.

Assumption 3 is a condition of non-collinearity
for the vectors vbF and ab, i.e. the angle between
them is non-zero and none of them can be iden-
tically zero (see, e.g., [12], [6]). For a fixed-wing
UAV this means that the observer cannot work
while the vehicle stands still on the ground, but
presents no issues during flight.

C. Observer Equations

The full observer was introduced in [41] as

Σ1


˙̂
R = R̂S(ωbm − b̂b) + σKP Ĵ

˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂Ts KP Ĵ)))

(8)

Σ2



˙̂pn = v̂n +Kpp(p
n−p̂n) +Kpv(v

n−v̂n)

˙̂vn = ân + gn+Kvp(p
n−p̂n) +Kvv(v

n−v̂n)

ξ̇ = −σKP Ĵa
b +Kξp(p

n−p̂n) +Kξv(v
n−v̂n)

ân = R̂ab + ξ

(9)

OF

{[
v̂bF

ω̂bF

]
= −M̂+

[
ṙ

ṡ

]
(10)

The subsystem Σ1 represents the attitude observer,
whereas Σ2 represents the translational motion
observer. In addition, (10) is given by machine
vision. σ ≥ 1 is a scaling factor tuned to achieve
stability, kI is a positive scalar gain, Proj(·, ·)
represents a parameter projection [47] that ensures
that ‖b̂b‖ does not exceed a design constant Lb̂b >
Lbb (see Appendix), and R̂s = sat(R̂). The matrix
Ĵ is the output injection term, whose design is
inspired by the TRIAD algorithm [48] and defined



Σ2Σ1
R̂

pn, vn p̂n

v̂n

ân

vbF

ωbm, a
b

φ, θ

vbF

ωbF

cnz

r, s
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Fig. 3. Block diagram of the observer. Σ1 represents the attitude
observer, and Σ2 the translational motion observer.

as

Ĵ(vbF , v̂
n, ab, ân, R̂) := ÂnA

T
b − R̂AbATb (11a)

Ab := [vbF , v
b
F × ab, vbF × (vbF × ab)] (11b)

Ân := [v̂n, v̂n × ân, v̂n × (v̂n × ân)] (11c)

The subsystem Σ2 represents the translational
motion observer, where Kpp, Kpv, Kvp, Kvv, Kξp,
and Kξv are observers gains yet to be defined, and
gn = [0, 0, 9.81]T is the gravity vector in NED.

The system Σ1–Σ2 is a feedback interconnec-
tion, as illustrated by Fig. 3.

D. Stability Proof

The error dynamics of the non-linear observer
can be written in a compact form as

Σ1


˙̃R = RS(ωb)−R̂S(ωbm−b̂b)−σKP Ĵ

˙̃bb = −Proj(b̂b, τ(Ĵ))

(12a)

Σ2

{
˙̃w = (A−KC)w̃ +Bd̃

(12b)

where w̃ = [(p̃n)T , (ṽn)T , (ãn)T ]T collects the es-
timated position, velocity and acceleration vectors,
d̃ = (RS(ωb)− R̂S(ωbm− b̂b))ab + (R− R̂)ȧb, and
the four matrices in (12b) are defined as

A =

[
06×3 I6

03×3 03×6

]
, B =

[
06×3

I3

]
,

C =
[
I6 06×3

]
, K =

 Kpp Kpv

Kvp Kvv

Kξp Kξv

 .

Theorem 1 provides conditions that ensure
USGES of the origin of the error dynamics (12).

Theorem 1: Let σ be chosen to ensure stability
according to Lemma 1 in [13] and define HK(s) =
(Is−A+KC)−1B. There exists a set (0, c) such
that, if K is chosen such that A−KC is Hurwitz
and ‖HK(s)‖∞ < γ, for γ ∈ (0, c), then the origin
of the error dynamics (12) is USGES as defined by
[49] when the initial conditions satisfy ‖b̂b(0)‖ ≤
Lb̂b .

Proof: For the proof, see [41].

V. EXPERIMENTAL RESULTS

This section describes the experiment carried
out to gather the necessary data and the results
obtained with the non-linear observer and OF.

A. Setup

The UAV employed is a UAV Factory Penguin-
B, equipped with a custom-made payload that
includes all the necessary sensors. The IMU is a
Sensonor STIM300, a low-weight, tactical grade,
high-performance sensor that includes gyroscopes,
accelerometers, and inclinometers, all recorded at
a frequency of 300 Hz. The chosen GPS receiver
is a uBlox LEA-6T, which gives measurements at
5 Hz. The video camera is an IDS GigE uEye
5250CP provided with an 8mm lens. The camera
is configured for a hardware-triggered capture at
10 Hz: the uBlox sends a digital pulse-per-second
signal whose rising edge is accurately synchro-
nized with the time of validity of the recorded GPS
position, which guarantees that the image capture
is synchronized with the position measurements.
The experiment has been carried out on 6 February
2015 at the Eggemoen Aviation and Technology
Park, Norway, in a sunny day with good visibility,
very little wind, an air temperature of about -8◦C.
The terrain is covered with snow and flat enough
to let all features be considered as lying at zero
altitude.

The observer is implemented using forward
Euler discretization with a time-varying step de-
pending on the interval of data acquisition of
the fastest sensor, namely the STIM300, and it
is typically around 0.003 seconds. The various



parameters and gains are chosen as Lbb = 2◦/s,
Lb̂b = 2.1◦/s, σ = 1, KP = diag[0.1, 0.1, 0.5],
kI = 0.006, Kpp = 30I3, Kpv = 2I3, Kvp = I3,
Kvv = 100I3, Kξp = I3, and Kξv = 50I3. All the
gains are obtained by running the observer several
times and correcting the gains until a satisfactory
performance was achieved. Concerning the gains
of the translational motion observer, it is also pos-
sible to tune them with the help of a linear matrix
inequality formulation that allows ‖HK(s)‖∞ to
satisfy the conditions of Theorem 1 (see [13], [50]
for details).

The reference provided for the attitude, posi-
tion, and velocity is the output of the EKF of
the autopilot mounted on the Penguin-B. An exact
reference for the gyro bias is not available, but
an approximation of the real value is calculated
by averaging the gyro measurements at standstill
before and after the flight. The accelerometer bias
is not estimated, but it is computed the same
way as the gyro bias and subtracted from the
accelerometers measurements before being used in
the observer.

All the images are processed with a resolu-
tion of 1600×1200 (width×height) pixels and in
their original state, without any filtering. The lens
distortion of the camera is not accounted for,
and no correction is applied to the images. SIFT
is implemented with the open source computer
vision library (OpenCV) [51] with default settings.
Each match is tagged with a value indicating the
accuracy of the match, and the smallest of these
values is considered to be the best match. To in-
crease the reliability of the OF vectors, each match
is compared to the best one. Every match with
an uncertainty more than double the uncertainty
of the best match is removed. Also the template
matching algorithm is implemented with OpenCV.
The size of the templates is chosen to be 120×90
pixels and a correlation of 99% is required in order
for a template match to be considered reliable and
not removed.

B. Results

The results here presented refer to a complete
flight of the Penguin-B, from take-off to landing,
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Fig. 4. Body-fixed velocity in the x, y, and z axis (blue, red, and
green, respectively) calculated via machine vision.

which correspond to a travelled distance of ap-
proximately 9 km in around 5 min. The time on the
x-axes is the elapsed time since the data logging
begins, and only the significant part involving the
flight is represented. The manoeuvres performed
include flights on a straight line and turns with
a large and small radius of curvature, namely ap-
proximately 200 m and 100 m, as it can be noticed
from Fig. 6. The body velocity calculated via the
OF is represented in Fig. 4 and is the result of
(6). The estimated attitude, position, and velocity
are illustrated in Fig. (5)–(7): it is clear that the
observer (blue, solid line) performs well when
compared to the EKF (red, dashed line). The pitch
estimate presents some deviation, probably due to
a misalignment of the sensor on the payload. The
estimated North and East velocities show some
small peaks at around 1130–1150 s and 1240 s,
which are due to the presence of outliers in the
GPS data. The estimated gyro bias is presented in
Fig. 8: the estimates do not converge as well as the
other states, but they remain within 0.2◦ of their
initial estimate.

VI. CONCLUSIONS

In this paper a USGES non-linear observer
has been tested on experimental data obtained
by flying a fixed-wing UAV with a custom-made
payload of sensors. An OF algorithm has been
employed to calculate the body-referenced ve-
locity of the vehicle by means of IMU, camera
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images and GPS measurements. Such velocity,
accelerometers measurements, estimated NED ve-
locity, and estimated NED acceleration have been
used as reference vectors in the injection term
of the observer in order to provide the desired
estimates. The results presented for different types
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Fig. 8. Gyro bias calculated at standstill (dashed) and estimated
by the observer (solid). The x, y, and z components are blue, red,
and green, respectively.

of manoeuvres confirm the validity of the analysis
and design.
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APPENDIX

The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2
b̂bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂b
− L2

bb
)}.

This operator is a special case of that from Ap-
pendix E of [47].
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Abstract—This paper presents a vision-aided uniformly
semi-globally exponentially stable (USGES) nonlinear ob-
server for estimation of attitude, gyro bias, position,
velocity and specific force of a fixed-wing Unmanned
Aerial Vehicle (UAV). The nonlinear observer uses mea-
surements from an Inertial Measurement Unit (IMU), a
Global Navigation Satellite System (GNSS) receiver, and
a video camera. This paper present a nonlinear observer
representation with a computer vision (CV) system without
any assumptions related to the depth in the images and the
structure of the terrain being recorded. The CV utilizes a
monocular camera and the continuous epipolar constraint
to calculate body-fixed linear velocity. The observer is
named a Continuous Epipolar Optical Flow (CEOF) non-
linear observer. Experimental data from a UAV test flight
and simulated data are presented showing that the CEOF
nonlinear observer has robust performance. Experimental
results are compared with an Extended Kalman Filter
(EKF) and illustrate that the estimates of the states
converges accurately to the correct values. Results show
that using the proposed CV in addition to IMU and GNSS
improves the accuracy of the estimates. The CV provides
accurate information about the direction of travel of the
UAV, which improves the attitude and gyro bias estimate.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) has
in the last decade gained an increasingly interest,
and already plays a major role in military use. The
field of applications for UAVs will grow even more
in the future, and the demands for robustness, safety
and reliability are considered to be crucial. Robust

navigation is one of the most important parts when
working with UAVs. A challenge in navigation sys-
tems is to maintain accurate estimates of the states
with low-cost measurement units. The output of
such low-cost sensors are typically contaminated by
noise and bias. As it is desirable to have low energy
consumption on UAVs, it is necessary to find light
weight navigation systems with good performance.
The Kalman filter has been the preferred filter
algorithm, but in recent years nonlinear observers,
like the nonlinear complementary filter, have gained
increased attention [1]–[6].

The use of cameras for navigational purposes is
expected to grow quickly since video cameras are
lightweight, energy efficient and the prices are con-
stantly decreasing. As magnetometers are sensitive
to disturbances, such as electromagnetic fields [7],
cameras might be a good alternative or complemen-
tary to the magnetometer. The camera images can be
used to output the body-fixed velocity of a UAV [8],
but depend on favourable atmospheric conditions,
light and detection of visual stationary features.

Computer Vision and Optical flow (OF) have
been used for different applications in UAV naviga-
tion including indoor maneuvering [9], [10], linear
and angular velocity estimation [8], [11], [12] and
obstacle avoidance [9], [13]–[17], as well as height
above the ground estimation in [18]. [19], [20] uses
OF in landing assistance for UAVs without external



sensor inputs. OF from a single camera is used in
[21], [22] to estimate body axes angular rates of
an aircraft as well as wind-axes angles. [12], [23],
[24] have used OF as input in Kalman filter-based
navigation systems, fusing OF measurements with
acceleration and angular velocity measurements.
[25], [26] have used camera as sensor for navigating
in GPS-denied environments.

Attitude estimation has received significant at-
tention as a stand-alone problem [1], [27]–[35]. In
addition, other researchers have integrated Inertial
Navigation System (INS), magnetometer/compass
and GNSS to estimate the navigation states of
a vehicle. [4] expanded the vector-based observer
proposed by [1] and [32] to include GNSS velocity
measurements. [27] and [28] built globally expo-
nentially stable (GES) attitude estimators based on
multiple time-varying reference vectors or a single
persistently exiting vector. A similar observer was
developed in [5], [36] to include also gyro bias and
GNSS integration. [3] extended [36] to use linear
velocity and specific force as reference vectors. [3]
proved that feedback of estimated NED velocity and
specific force in NED from the translational motion
observer to the attitude observer, yield USGES in
the origin of the error dynamics.

In this paper the observer presented in [3] is
denoted as Ground Truth Optical Flow (GTOF)
nonlinear observer. By assuming known distance
to every feature in the camera image, the body-
fixed velocity was recovered from the relationship
between ego-motion and theoretical optical flow.
This relationship is called the GTOF relationship
between velocity and OF. The distance to every
point was recovered by assuming flat horizontal
terrain coinciding with NED, measured distance to
the terrain by a laser altimeter and measured attitude
of the UAV relative to NED by an inclinometer.
The assumption of flat and horizontal terrain will
cause the CV in the GTOF nonlinear observer to
produce erroneous velocity measurements in the
case of flying over rugged terrain. Therefore it is
desirable to exchange the CV of the GTOF nonlinear
observer with a CV system with no requirement of
flat horizontal terrain.

Optical flow (OF) describes how objects in an

image plane moves between two consecutive im-
ages. The motion in the image plane is caused by
relative motion between the camera and the visual
features being detected. In the simplest case it could
be understood as the pixel displacement of a single
feature between two successive images. The OF can
be represented as multiple vectors describing the
change in the image plane in time. Several methods
exists for determining the OF of a series of images
[37]–[40].

A camera fixed to a UAV can be used to recover
the motion of the vehicle relative to the scene. An
effective principle for recovering ego-motion of a
camera is epipolar geometry. Epipolar geometry has
been applied in e.g. navigation, landing and collision
avoidance [12], [23], [41]–[45]. [46] presented the
epipolar constraint in the continuous case. [47] and
[48] have used the continuous epipolar constraint to
recover the velocity of a UAV.

In this paper OF vectors together with the con-
tinuous epipolar constraint [46] are used to calculate
the normalized body-fixed velocity of the UAV,
and fed into the nonlinear observer as a reference
vector. The use of the continuous epipolar constraint
eliminates the dependency on the depth in the image.
In practice this means that prior information about
the distance and structure of the terrain are not
required any more. Thus the observer is applicable
when flying over any terrain.

A. Contribution of this Paper

This paper presents a more robust CV subsystem
for the nonlinear observer from [3]. In [3] the ground
truth optical flow (GTOF) relationship between mo-
tion and OF were used to recover the ego-motion
of the UAV. A fundamental restriction from [3] was
that the distance to every feature corresponding to
an OF vector must be known in order to calculate
the body-fixed linear velocity. The CV in this paper
utilizes epipolar geometry [49] and only depends
on the angular velocity of the UAV. Furthermore it
works without knowing the distance to the features
in the image. To the authors knowledge, this is the
first time the continuous epipolar constraint has been
employed in a USGES nonlinear observer.

Experimental and simulated results show that the



proposed CEOF observer has comparable perfor-
mance with the GTOF observer from [3] when flying
over flat horizontal terrain. Simulations show that
the proposed CEOF observer is structure indepen-
dent, and that it outperforms the GTOF observer
when flying above rugged and elevated terrain.
Moreover, results show that using CV increases the
accuracy of the estimates, compared to using only
IMU and GNSS measurements. This is particularly
clear in the attitude, as CV provides information
about the direction of the body-fixed velocity. A
pure IMU and GNSS approach assumes zero crab
and flight path angle, and thus looses important
information about the attitude. The experimental
results are compared to an EKF, while the simulated
results are compared to the known reference. The
results imply that the CEOF observer is a robust
option to the GTOF nonlinear observer.

The last contribution is a stability proof show-
ing that the CEOF observer has the same stability
properties as the GTOF observer, namely a USGES
equilibrium point at the origin of the error dynamics.

II. NOTATION AND PRELIMINARIES

Matrices and vectors are represented by upper-
case and lowercase letters respectively. X−1 and X+

denote the inverse and the pseudoinverse of a matrix
respectively, XT the transpose of a matrix or vector,
X̂ the estimated value of X , and X̃ = X − X̂ the
estimation error. ‖ · ‖ denotes the Euclidean norm,
In×n the identity matrix of order n, and 0m×n the
m×n matrix of zeros. A vector x = [x1, x2, x3]T ∈
R3 is represented in homogeneous coordinates as
x = [x1, x2, x3, 1]T . The function sat(·) performs a
component-wise saturation of its vector or matrix
argument to the interval [−1, 1]. The operator [x]×
transforms the vector x into the skew-symmetric
matrix

[x]× =




0 −x3 x2

x3 0 −x1

−x2 x1 0




The inverse operation is denoted as vex(·), such
that vex([x]×) = x. The determinant of a matrix
A is denoted det(A). The skew symmetric part
of a square matrix A is obtained by the operator
Pa(A) = 1

2
(A− AT ).

The North-East-Down, camera- and the body-
fixed reference frames are used in this paper as
shown in Fig. 1: the body-fixed frame are denoted
{B} and the North-East-Down (NED) frame denoted
{N} (Earth-fixed, considered inertial), while the
camera frame is denoted {C}. The rotation from {B}
to {N} is represented by the matrix Rn

b ∈ SO(3),
with SO(3) representing the Special Orthogonal
group. The image plane is denoted {M}. {B} and
{C} are assumed to be aligned, ie. the camera is
strapped to the body.

A vector decomposed in {B} and {N} has super-
script b and n respectively. The subscript of a vector
indicates which frame is measured relative to what.
For instance pnb/n is the position of {B} relative
to {N} expressed in {N}. The camera location
w.r.t. {N} is described by cn = [cnx, c

n
y , c

n
z ]T . A

point in the environment expressed w.r.t. {N} is
pn = [xn, yn, zn]T . The same point expressed in
{C} is pc = [xc, yc, zc]T . It will also be assumed
that every point is fixed w.r.t. {N}. The Greek
letters φ, θ, and ψ represent the roll, pitch, and
yaw angles respectively, defined according to the
zyx convention for principal rotations [6], and they
are collected in the vector Θb/n = [φ, θ, ψ]T . A 2-D
camera image has coordinates xm = [r, s]T , aligned
with the yb- and xb-axis respectively (see Fig. 3).
The corresponding homogeneous image coordinate
is denoted xm = [r, s, 1]T . The derivative [ṙ, ṡ]T

of the image coordinates is the OF. The subscript
cv indicates a quantity evaluated by means of the
computer vision, imu indicates a quantity measured
by the IMU, while GPS indicates that the quantity is
measured by the GNSS.

A. Measurements and Sensors

The observer is designed to take use of a IMU,
a GPS receiver and a video camera, providing the
following measurements:

• GPS: NED position pn and NED velocity vn.

• IMU: biased angular velocity ωbimu = ωbb/n +

bbgyro, where bbgyro represents the gyro bias,
and specific force f bimu = f bb/n.

• Camera: 2-D projections xm = [r, s]T onto
the image plane {M} of points [xn, yn, zn]T

in {N}.



Fig. 1. Body frame is denoted {B}, camera frame is denoted {C},
and NED frame is denote {N}. Points in the terrain are projected by
the pinhole camera model onto the image plane {M}, as illustrated
by the blue plane.

Detailed information on the actual sensors employed
in the experiment is presented in Section V.

III. COMPUTER VISION

The observer presented in Section IV depends
on body-fixed velocity measurements from the on-
board camera. These measurements are generated
through OF, therefore it is necessary to compute the
OF vectors for consecutive images before these vec-
tors are transformed to velocity measurements. The
OF calculation and the transformation are presented
in the forthcoming section.

A. Optical flow computation

There exist several methods for computing OF.
For the experiment presented in Section V two
specific methods are chosen. The first one is SIFT
[39] which provided the overall best performance
in [8]. The second method is a region matching-
based method [8], namely template matching util-
ising cross-correlation [50]. SIFT uses a feature-
based approach to compute OF. A set of features
are extracted from two consecutive images with
a feature detector. The detected features are then
matched together to find common features in suc-
cessive images. An OF vector is created from the
displacement of each feature. The total number of
such vectors in each image depends on the number
of features detected and successfully matched.

It is desired to make sure that the OF algorithm
produces at least two OF vectors to calculate the

body-fixed velocity. It is not possible to guarantee
a given number of vectors with SIFT since ho-
mogeneous environments, like snow or the ocean,
increase the difficulty of finding distinct features.
Therefore the OF vectors created by SIFT are
combined with OF vectors from template matching
[51]. The displacement of twelve templates, created
symmetrically across the images, are used to find
twelve OF vectors. Template matches below a given
threshold are discarded and the corresponding OF
vectors removed. Unreliable matches can occur in
case of homogeneous terrain, changes in brightness
or simply when the area covered by the template has
disappeared from the image in the time between the
capture of images.

The combination of two individual OF methods
increases the probability of having OF vectors dis-
tributed across the whole image, as well as main-
taining a high number of OF vectors. An example
of OF vectors computed with SIFT and template
matching from UAV test flights is displayed in Fig.
2.

In case of mismatches, both methods create erro-
neous OF vectors. It is desired to locate and remove
these vectors. Therefore a simple outlier detector is
implemented before the vectors are used to calculate
body-fixed velocities. The outlier detector utilizes a
histogram to find the vectors that deviates from the
mean with respect to direction and magnitude.

B. Transformation from optical flow to velocity

For the OF computations to be useful in the
observer a transformation to body-fixed velocity
is necessary. The transformation is motivated by
the continuous epipolar constraint and the pinhole
camera model [52]. The camera-fixed coordinate
system, {C}, is related to {N} as illustrated in Fig.
3. The focal point of the camera is for simplicity
assumed to coincide with the origin of {B}. A point
p in the terrain is projected from {C} to {M} by the
pinhole camera model by

xm =
1

zc
Kpc (1)

where xm is the homogeneous image coordinate
and K is a projection matrix mapping points in the



(a) (b)

(c)

Fig. 2. a) Image captured at time t0. b) Image captured at time
t0 + ∆t. c) Optical flow vectors between image a) and b), generated
by SIFT (red) and Template Matching (green).

camera frame to the image plane. It is defined as

K =




0 f 0

−f 0 0

0 0 1


 (2)

where f is the focal length of the camera. The focal
length of a camera can be verified by the com-
puter vision toolbox in Matlab. The same toolbox
can be used to estimate coefficients describing the
distortion of the camera. These coefficients can be
used to generate undistorted images. For the rest
of this paper, it is assumed that the distortion is
insignificant.

uc is defined as the back-projected point lying on
the projection ray between the origin of {C} and pc

with unity z-component

uc = K−1xm (3)

Epipolar geometry [49] relates the motion of
the camera frame with the motion in the image
plane independent of the distance to the scene and
the structure being recorded. By assuming that all

Fig. 3. Pinhole camera model. The camera frame is denoted {C},
image plane is illustrated in blue and denoted {M} and NED frame
is illustrated in green and denoted {N}. The gray plane is called
the back projected plane. The back projected plane is located at unit
length away from the camera frame in camera z-direction.

matched features are at rest w.r.t {N}, the continuous
epipolar constraint [46] can be expressed as

(
u̇cT + ucT

[
ωcc/n

]
×
T
)

(vcc/n × uc) = 0 (4)

where ωcc/n and vcc/n = [vx, vy, vz]
T are the angular

and linear velocity of the camera relative to {N}
expressed in {C}, respectively. Note that the epipo-
lar geometry has an inherited sign ambiguity due to
the fact that the scale is not preserved. This means
that it is only possible to determine the body-fixed
velocity up to scale.

Using now the properties of a triple product [53],
(4) can be rewritten as

vcc/n
T

(
uc ×

(
u̇cT + ucT

[
ωcc/n

]
×
T
)T)

= vcc/n
T
(
uc ×

(
u̇cT +

[
ωcc/n

]
×u

c
))

= 0 (5)

(5) might be rewritten as a linear equation in vcc/n.
The crossproduct term is defined as:

c := uc ×
(
u̇cT +

[
ωcc/n

]
×u

c
)

= [cx, cy, cz]
T

If the angular velocity is measured, then all quan-
tities in the crossproduct term c are known. Using
the definition of c, (5) is rewritten as

vcc/n
T c = cTvcc/n = 0 (6)

Assuming that a fixed-wing UAV will never have
zero forward velocity, then since {C} and {B} are



aligned, one can divide (6) by the forward velocity
component vx 6= 0

1

vx
cT



vx

vy

vz


 = cT




1
vy
vx
vz
vx


 = cx + [cy, cz]

[
vy
vx
vz
vx

]
= 0

[cy, cz]

[
vy
vx
vz
vx

]
= −cx (7)

As can be seen from (7), one ends up with a linear
equation. Assuming N features, the scaled body-
fixed velocity with unity forward component can be
found as:

vcc/n = vxA
+b, vx 6= 0

A =



cy,1 cz,1

...
cy,N cz,N




b = −



cx,1

...
cx,N




ucj ×
(
u̇cj
T +

[
ωcc/n

]
×u

c
j

)
= [cx,j, cy,j, cz,j]

T (8)

This gives a correct solution only if A has full
rank. This can only happen if the OF algorithm
chooses linearly independent feature points and OF
vectors as defined in Def. 1. Linearly independent
OF vectors are in general obtained by not choosing
all features from the same line in the image plane.
ucj = K−1xmj and u̇cj = K−1[ṙj, ṡj, 0]T are the back
projected coordinate and OF of feature j respec-
tively. Recall the sign ambiguity of the epipolar
geometry, meaning that one must know the sign of
vx to recover the normalized linear velocity. For a
fixed-wing UAV the forward velocity will always be
greater than zero, vx > 0.

Definition 1. Linearly Independent Optical Flow
Vectors
A pair of image features and their corresponding
optical flow vectors xm1 , ẋm1 and xm2 , ẋm2 , are said
to be linearly independent if and only if the rank
of A in (8) is full, yielding [vy, vz]

T = vxA
+b to

be uniquely defined. The rank is full if and only if

some 2× 2 sub-matrix of A, A2×2, has det(A2×2)
6= 0.

IV. OBSERVER DESIGN

A. Kinematics

The kinematics of attitude, position, and velocity
are described by

Ṙn
b = Rn

b

[
ωbb/n

]
× (9a)

ṗnb/n = vnb/n (9b)

v̇nb/n = fnb/n + gn (9c)

The objective is to estimate the attitude Rn
b , the

position pnb/n, and the velocity vnb/n with exponential
convergence rate. In addition to this, an estimator
for the gyro bias bbgyro is also provided.

B. Assumptions

The observer design by [3] is based on the
following assumptions:

Assumption 1. The gyro bias bbgyro is constant,
and there exists a known constant Lb > 0 such
that ‖bbgyro‖ ≤ Lb.

Assumption 2. There exists a constant cobs > 0
such that, ∀t ≥ 0, ‖vbcv × f bimu‖ ≥ cobs.

Assumption 2 states that the UAV cannot have
a specific force parallel to the velocity of the UAV.
Furthermore neither the specific force nor the ve-
locity can be identically equal to zero. In practice
this condition restricts the types of maneuvers that
ensure guaranteed performance of the proposed ob-
server. This is however not a problem for fixed-wing
UAVs as they always have forward speed to remain
airborne. Moreover the observer does not converge
while the vehicle is at rest without aiding from e.g.
a magnetometer, but presents no issues during flight.

For the CEOF observer, two assumptions are
introduced to ensure that CV can recover the body-
fixed velocity.

Assumption 3. The UAV has forward body-fixed
velocity, vx > 0.



Assumption 4. The OF algorithm provides at
least two linearly independent OF vectors, as
defined in Def.1.

C. Observer Equations

Provided Assumptions 1-4 hold, the CEOF ob-
server representation is stated as

Σ1





˙̂
Rn
b = R̂n

bS(ωbimu − b̂bgyro) + σKP Ĵ

˙̂
bbgyro = Proj(b̂bgyro,−kIvex(Pa(R̂T

sKP Ĵ)))

(10)

Σ2





˙̂pnb/n = v̂nb/n +Kpp(p
n
GPS−p̂nb/n)

+Kpv(v
n
GPS−v̂nb/n)

˙̂vnb/n = f̂nb/n + gn+Kvp(p
n
GPS−p̂nb/n)

+Kvv(v
n
GPS−v̂nb/n)

ξ̇ = −σKP Ĵf
b
imu +Kξp(p

n
GPS−p̂nb/n)

+Kξv(v
n
GPS−v̂nb/n)

f̂nb/n = R̂n
b f

b
imu + ξ

(11)

CV





vbcv = sign(vx)
ve
‖ve‖

ve =
vb
b/n

vx
= [1, (A+b)T ]T , vx 6= 0

ucj ×
(
u̇cj
T +

[
ωbimu − b̂bgyro

]
×
ucj

)

= [cx,j, cy,j, cy,j]
T

(12)

The subsystem Σ1 represents the attitude ob-
server, whereas Σ2 represents the translational mo-
tion observer. The CV gives (12), together with (8).
σ ≥ 1 is a scaling factor tuned to achieve stability, kI
is a positive scalar gain and KP is a symmetric pos-
itive definite gain matrix. Proj(·, ·) represents a pa-
rameter projection [54] that ensures that ‖b̂bgyro‖ does
not exceed a design constant Lb̂ > Lb (see Appendix
A), and R̂s = sat(R̂n

b ). Kpp, Kpv, Kvp, Kvv, Kξp, and
Kξv are observers gains, and gn is the gravity vector
in {N}. The matrix Ĵ is the output injection term,
whose design is inspired by the TRIAD algorithm
[55] and defined as

Fig. 4. Block diagram of the observer. Σ1 represents the attitude
observer, and Σ2 the translational motion observer. The feedback
illustrated in green have been proved to yield USGES stability of the
nonlinear observer. The stability of the gyrob bias feedback illustrated
in blue has not been analysed.

Ĵ(vbcv, v̂
n
b/n, f

b
imu, f̂

n
b/n, R̂

n
b ) := ÂnA

T
b − R̂n

bAbA
T
b

(13a)

Ab := [f bimu, f
b
imu × vbcv, f bimu × (f bimu × vbcv)]

(13b)

Ân := [f̂nb/n, f̂
n
b/n × v̂nb/n, f̂nb/n × (f̂nb/n × v̂nb/n)]

(13c)

The system Σ1–Σ2 is a feedback interconnection,
as illustrated by Fig. 4.

D. Stability Proof

The error dynamics of the nonlinear observer can
be written in a compact form as

Σ1





˙̃Rn
b = Rn

b

[
ωbb/n

]
×
− R̂n

b

[
ωbimu − b̂bgyro

]
×
− σKP Ĵ

˙̃bbgyro = −Proj(b̂bgyro,−kIvex(Pa(R̂T
sKP Ĵ)))

(14a)

Σ2

{
˙̃w = (Aw −KwCw)w̃ +Bwd̃

(14b)

where w̃ = [(p̃nb/n)T , (ṽnb/n)T , (f̃nb/n)T ]T collects the
estimated position, velocity and acceleration vectors,

d̃ =

(
Rn
b

[
ωbb/n

]
×
− R̂n

b

[
ωbimu − b̂bgyro

]
×

)
f bb/n +

(
Rn
b − R̂n

b

)
ḟ bb/n, and the four matrices in (14b) are

defined as

Aw =

[
06×3 I6

03×3 03×6

]
, Bw =

[
06×3

I3

]
,

Cw =
[
I6 06×3

]
, Kw =



Kpp Kpv

Kvp Kvv

Kξp Kξv


 .



The following theorem can be stated about the
stability of the nonlinear observer (10)-(12), if as-
suming that b̂bgyro is kept constant in (12).

Theorem 1. (Stability of the CEOF observer) Let σ
be chosen to ensure stability according to Lemma 1
in [5] and define HK(s) = (Is−Aw+KwCw)−1Bw.
There exists a set (0,c) such that, if Kw is chosen
such that Aw−KwCw is Hurwitz, and ‖HK(s)‖∞ <
γ, for γ ∈ (0, c), then the origin of the error dynam-
ics (10)-(12), provided Assumptions 1-4, is USGES
when the initial conditions satisfy ‖b̂bgyro(0)‖ ≤ Lb̂.

Proof: Proof is based on Theorem 1 in
[3], where we have replaced M with the new
computer vision subsystem from (12). We must
show that vbcv is uniquely defined. Then it follows
from Theorem 1 in [3] that the origin of the error
dynamics (10)-(12) is USGES.

vbcv has a one to one mapping to the scaled
body-fixed velocity with unit forward component
ve. Moreover if the sign of vx is known, then
vbcv =

vb
b/n

‖vb
b/n
‖ . From Assumption 3 vx > 0,

hence the uniqueness of vbcv can be shown by
the uniqueness of ve. ve = [1, (A+b)T ]T has a
unique solution if and only if the rank of A is full
[53]. Given that the computer vision algorithm
extracts features such that Assumption 4 is not
violated, then A has full rank, and ve is uniquely
determined. Hence vbcv is uniquely determined,
and it follows from Theorem 1 in [3] that the
system is USGES.

V. EXPERIMENTAL RESULTS

An experiment is carried out to validate the
theory in practice. The UAV employed is a UAV
Factory Penguin-B, equipped with a custom-made
payload that includes all the necessary sensors.
The IMU is a Sensonor STIM300, a low-weight,
tactical grade, high-performance sensor that includes
gyroscopes, accelerometers, and inclinometers, all
recorded at a frequency of 300 Hz. The chosen
GPS receiver is a uBlox LEA-6T, which gives
measurements at 5 Hz. The video camera is an
IDS GigE uEye 5250CP provided with a 8mm lens.
The camera is configured for a hardware-triggered

capture at 10 Hz. The experiment has been carried
out on 6 February 2015 at the Eggemoen Aviation
and Technology Park, Norway, in a sunny day with
good visibility, very little wind, an air temperature of
about -8◦C. The terrain is relatively flat and covered
with snow.

The observer is evaluated offline with the flight
data gathered at the experiment. It is implemented
using first order forward Euler discretisation with a
time-varying step depending on the interval of the
data acquisition of the fastest sensor, namely the
STIM300, and it is typically around 0.003 seconds.
The gyro bias is initialized by averaging the gyro-
scope measurement at stand still before take-off. The
position estimate is initialized by using the first GPS
measurement, while the NED velocity is initialized
by the difference between the two first consecutive
GPS measurements. The various parameters and
gains are chosen as Lb = 2◦/s, Lb̂ = 2.1◦/s,
σ = 1, KP = diag[0.08, 0.04, 0.06], kI = 0.0001,
Kpp = 30I3×3, Kpv = 2I3×3, Kvp = 0.01I3×3,
Kvv = 20I3×3, Kξp = I3×3, and Kξv = 50I3×3.

The reference provided for the attitude, position,
and velocity is the output of the EKF of the autopilot
mounted on the Penguin-B. A reference for the gyro
bias is not available.

All the images are processed with a resolution of
1600×1200 (width×height) pixels and in their orig-
inal state, without any filtering. The lens distortion
of the camera is not accounted for, and no correction
is applied to the images. SIFT is implemented with
the open source computer vision library (OpenCV)
[56] with default settings. Each match is tagged with
a value indicating the accuracy of the match, and the
smallest of these values is considered to be the best
match. To increase the reliability of the OF vectors,
each match is compared to the best one. Every match
with an uncertainty more than double the uncertainty
of the best match is removed. Also the template
matching algorithm is implemented with OpenCV.
The size of the templates is chosen to be 120×90
pixels and a correlation of 99% is required in order
for a template match to be considered reliable and
not removed.

In addition to the CEOF and GTOF observer,
a nonlinear observer without CV is implemented.



This is done by removing the CV subsystem in
(12) from the nonlinear observer, and approximat-
ing the body-fixed linear velocity measurement by
vb = [1, 0, 0]T . The nonlinear observer without
CV is denoted NoCV. Although Theorem 1 does
not cover feedback of the gyro bias estimate to
CV in the CEOF nonlinear observer, this feedback
is implemented. This is assumed to increase the
accuracy without being destabilizing, as the bias
estimator is tuned to have slow dynamics.

A. Results

The results presented here refer to a complete
flight of the Penguin-B, from take-off to landing.
The time on the x-axis is the elapsed time since
the data logging began, and only the significant part
involving the flight is presented. The maneuvers
performed include flights on a straight line and
turns with a large and small radius of curvature,
approximately 200 m and 100 m.

Fig. 5 shows the measured body-fixed velocity
from the GTOF CV. The measurements are contam-
inated by noise. The mean values are close to the
reference, although the mean forward velocity (u)
is slightly greater than the reference. The measured
crab and flight path angle of the UAV are shown
in Fig. 6. It is seen that both the GTOF and CEOF
CV succeeds in measuring the correct direction, but
GTOF has a larger noise level than CEOF.

Fig. 7 illustrates the estimated attitude. It can
be seen that all observers need approximately 60
seconds to converge. The estimates of the roll angle
are fairly similar for NoCV, GTOF and CEOF. The
estimated pitch angle has a small offset for all
nonlinear observers throughout the entire flight. The
yaw angle estimate is almost identical for the NoCV,
GTOF and CEOF. Fig. 8 and Fig. 9 illustrates the
estimated velocity and position in {N}, and shows
small differences for NoCV, GTOF and CEOF. The
estimated gyro bias is seen in Fig. 10. No bias
reference is available, but the estimated bias is close
to equal for NoCV, GTOF and CEOF. The flight
terrain is relatively flat and the UAV has small crab
and flight path angle during the flight. Therefore
the weaknesses of the GTOF and NoCV observer
are not significant in the results. However the ex-
perimental results show that the nonlinear observers

Fig. 5. Measured and estimated body-fixed velocity by GTOF and
autopilot EKF respectively.

Fig. 6. Measured and estimated crab and flight path angle.

yield small deviations from the reference EKF, and
that the CV give reasonable estimates of normalized
body-fixed velocity.

VI. SIMULATION RESULTS

In order to evaluate the NoCV, GTOF and CEOF
observer representations in the presence of more
rugged terrain and to compare with an exactly
known reference, a simulator is implemented in
Matlab. An elevation profile of a coastline is gener-
ated, and a UAV flight is simulated.

The following parameters and gains are cho-
sen identical for the NoCV, GTOF and CEOF
observer: Lb = 2◦/s, Lb̂ = 2.1◦/s, σ = 1,
Kpp = diag[5, 5, 0.7], Kpv = diag[50, 50, 50], Kvp =



Fig. 7. Estimated attitude by the observers.

Fig. 8. Estimated velocity by the observers.

Fig. 9. Estimated position by the observers.

Fig. 10. Estimated gyro bias by the observers.

diag[0.1, 0.1, 0.01], Kvv = 10I3×3, Kξp = 0.1I3×3,
and Kξv = 5I3×3. For the GTOF and CEOF observer
KP = I3×3 and kI = 0.03 are chosen. The NoCV
is tuned with KP = diag[1, 0.2, 0.1] and kI = 0.01.

All observers are initialised with R̂n
b = I3×3,

b̂bgyro = 03×1. p̂nb/n and v̂nb/n are initialised as the
first GNSS position and velocity measurement re-
spectively.

A. UAV Path

Linear and angular velocity, vbb/n and ωbb/n, are
generated over a time interval of 200 sec. Wind
directed straight north with magnitude 5m/s is sim-
ulated causing the UAV to have a crab angle. As the
camera measures the velocity relative to the ground,
one does not have to consider the sideslip angle.
Kinematic equations are used to generate positions
and attitude of the UAV.

vnb/n = Rn
b (Θb/n)vbb/n (15)

fnb/n = Rn
b (Θb/n)(v̇bb/n + ωbb/n × vbb/n)− gn (16)

f bb/n = (Rn
b )T (Θb/n)fnb/n (17)

Θ̇b/n = TΘ(Θb/n)ωbb/n (18)

Rn
b (Θb/n) and TΘ(Θb/n) being the rotation matrix

between {B} and {N} and the angular transforma-
tion matrix respectively. The variables are integrated
numerically with first order Euler integration

Θb/n(k + 1) = Θb/n(k) + δtΘ̇b/n (19)
pnb/n(k + 1) = pnb/n(k) + δtvnb/n (20)



B. Sensor Data

Sensor data are generated before running the
observer. A gyroscope, accelerometer, inclinometer,
GNSS and CV are simulated. The GNSS is
simulated to measure {N} position and velocity, and
CV is simulated to measure the OF. The gyroscope,
accelerometer, inclinometer are configured to
output measurements with a rate of 100 Hz. The
GNSS is configured to output measurements at
5Hz. The noise on the position measurement from
GNSS is modelled as a Gauss-Markov process by
ν(k + 1) = e−KGNSS∆Tν(k) + ηGNSS, with noise
parameters given in Table I.

TABLE I. GAUSS-MARKOV ERROR MODEL PARAMETERS FOR
GNSS POSITION MEASUREMENTS.

Direction Std. dev. ηGNSS[m] 1/KGNSS[s] ∆TGNSS[s]
North 0.21 360 0.2
East 0.21 360 0.2
Down 0.4 360 0.2

The camera is simulated to capture 25 frames per
second. The camera extracts features and calculates
OF as described in Appendix B. White noise is
added to the IMU, inclinometer, camera and velocity
from GNSS sensor data by the multivariate normal
random noise-function, mvnrnd, in Matlab. Incli-
nometer measurements are denoted Θb

incl = [φ, θ]T .
The following mean and covariance are used:

wωb
imu
∼ N (03×1,Σωb

imu
),Σωb

imu
= (0.135 deg)2I3×3

wfbimu
∼ N (03×1,Σfbimu

),Σfbimu
= (1.29 · 10−3g)2I3×3

wΘb
incl
∼ N (02×1,ΣΘb

incl
),ΣΘb

incl
= (0.18 deg)2I2×2

wvnGNSS
∼ N (03×1,ΣvnGNSS

),ΣvnGNSS
= (0.21m/s)2I3×3

No bias on the accelerometer is assumed, and
a constant bias is assumed on the gyroscope. The
gyroscope is simulated with the following bias

bbgyro =




0.1deg/s

−0.3deg/s

−0.35deg/s




White noise is also added to the OF data from the
simulated camera. Every extracted feature is given
white noise with variance, σ2

dr = σ2
ds = σ2

d =
(4.5 · 10−5mm)2. As two corresponding features are
needed to get an OF vector, the resulting noise of
the OF vector has variance σOF = σ2

dI2×2. On a

Fig. 11. The simulated UAV path and the elevation profile of the
terrain model.

camera chip with 1600×1200 pixels and dimension
7.2× 5.4 mm, this would yield a small variance of
(
√

2 · 0.01px)2 for the OF vector noise.

C. Terrain Simulation

In order to evaluate the performance of the GTOF
and CEOF observer representations with a realistic
environment, a terrain model is generated. The ter-
rain model is a matrix, Z, with values corresponding
to the elevation profile of the terrain. It is also called
the elevation profile of the terrain, as it describes the
elevation of the terrain. The terrain model is made to
mimic a coastline, and has a resolution of 1m× 1m
meter. The covered area is 1km× 1km. At position
x, y of the matrix the elevation h of the terrain at x
meters North and y meters East is found. A point on
the surface of the terrain will have NED coordinate
x, y,−h. Fig. 11 displays the simulated UAV path
and the terrain model.

D. Results

Fig. 12 shows the crab angle error and the flight
path angle error in the measured normalized body-
fixed velocity from CV. It can be seen that the GTOF
fails to produce correct measurement of the body-
fixed velocity when the terrain is non-planar (at time
110-220 seconds). Any crab and flight path angle
of the UAV causes NoCV to fail as it assumes pure
forward motion.

Fig. 13 and Fig. 14 show the attitude estimates
and the error in the estimates. The NoCV observer



fails to produce accurate estimates of the attitude.
It is seen that the accuracy of the GTOF observer
is heavily reduced when flying over the non-planar
area. The CEOF observer on the other hand is not
limited by the rugged terrain, and provides accurate
estimates during the entire flight. The estimated and
real gyro bias is displayed in Fig. 15. It is seen
that the bias values from NoCV does not converge
to the correct value. The shortcomings of the GTOF
observer is again illustrated when the UAV flies over
the non-planar area.

Fig. 16 and 17 show the real and estimated
velocity and position. The estimates are close to the
reference and quite similar for GTOF and CEOF.
This is expected as the velocity and position mea-
surements from GNSS have the largest influence on
these estimates.

Table II provides numerical evaluation of the
observers in means by the Root Mean Squared
(RMS) error. The CEOF observer has lower RMS
in the estimates of the attitude than the GTOF
observer. NoCV has the least accurate estimates in
attitude, and is outclassed by CEOF. There are no
major differences in estimated position and velocity.
However CV seem to slightly increase the accuracy
in estimated position. The estimated gyro bias is
most accurate with the CEOF and least accurate with
NoCV. The crab angle and flight path angle error
are reduced significantly with CV. This is because
NoCV assumes zero crab and flight path angle,
which is not the case.

Overall the CEOF observer proves to be much
more reliable than GTOF and NoCV, with a robust
and accurate performance. The GTOF performs bet-
ter than NoCV, which supports the use of CV in
the observer. However the validity of the GTOF
observer is restricted to horizontal planar terrain,
which limits the range of use in practice. CEOF is
not restricted by the same limitations and thus more
applicable in practice.

VII. CONCLUSIONS

In this paper two different vision-aided nonlinear
observers, and one nonlinear observer without CV,
for estimation of position, velocity and attitude have
been evaluated on real experimental data obtained

Fig. 12. Error in crab (χ̃) and flight path angle (γ̃) for the measured
normalized body-fixed velocity.

Fig. 13. Estimated attitude. When the UAV flies over the rugged
terrain, the GTOF observer fails to produce correct estimates of the
attitude.

by flying a fixed-wing UAV with a custom-made
payload of sensors. The nonlinear observers have
also been tested on simulated data to compare the
performance of the observers with the presence of
non-planar terrain and with an exact known refer-
ence for comparison. The results show that using
CV increases the accuracy of the nonlinear observer,
especially in estimated attitude. This is because
CV provides useful information about the direction
of the body-fixed velocity. Furthermore the CEOF
nonlinear observer has shown to be a more robust
option than the GTOF nonlinear observer, as it is
terrain independent.



Fig. 14. Error in estimated attitude. When the UAV flies over the
rugged terrain, the GTOF observer fails to produce correct estimates
of the attitude. The NoCV observer fails to estimate correct pitch
angle.

Fig. 15. Estimated gyro bias together with the real gyro bias. After
100 sec the gyro bias has converged. When flying over the rugged
terrain the GTOF observer produces erroneous gyro bias estimates,
while the CEOF observer is unaffected.
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REFERENCES

[1] R. Mahony, T. Hamel, and J. M. Pflimlin, “Nonlinear com-
plementary filters on the special orthogonal group,” IEEE
Transactions on Automatic Control, vol. 53, no. Xx, pp. 1203–
1218, 2008.

[2] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of
Nonlinear Attitude Estimation Methods,” Journal of Guidance,
Control, and Dynamics, vol. 30, no. 1, pp. 12–28, 2007.

[3] L. Fusini, T. I. Fossen, and T. A. Johansen, “A Uniformly
Semiglobally Exponentially Stable Nonlinear Observer for
GNSS-and Camera-Aided Inertial Navigation,” in Proceedings
of the 22nd IEEE Mediterranean Conference on Control and
Automation (MED’14), 2014.

[4] M. D. Hua, “Attitude estimation for accelerated vehicles us-
ing {GPS/INS} measurements,” Control Engineering Practice,
vol. 18, no. 7, pp. 723–732, 2010.

[5] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi,
“A nonlinear observer for integration of {GNSS and IMU}
measurements with gyro bias estimation,” American Control
Conference (ACC), pp. 4607–4612, 2012.



TABLE II. RMS VALUES FOR THE ESTIMATED STATES IN THE
DIFFERENT CASES USING THE GROUND TRUTH OPTICAL FLOW

(GTOF) AND THE CONTINUOUS EPIPOLAR OPTICAL FLOW
(CEOF) OBSERVER REPRESENTATION. χ̃ AND γ̃ ARE THE CRAB
ANGLE- AND FLIGHT PATH ANGLE ERROR IN THE BODY-FIXED

VELOCITY MEASUREMENT FROM THE COMPUTER VISION (CV),
GIVEN IN DEGREES. THE GYRO BIAS CONVERGES AFTER

APPROXIMATELY 100 SECOND, HENCE THE RMS VALUES OF THE
ATTITUDE AND BIAS IS CONSIDERED FROM 100 SECONDS AFTER

START.

Nonlinear Observer
NoCV GTOF CEOF

Roll 1.1255 0.48963 0.16426
Pitch 1.2942 0.3906 0.15134Θb/n (◦ RMS)
Yaw 16.1414 4.9359 0.31014
North 9.5084 6.9281 6.9506
East 4.4114 4.2439 4.2623pnb/n (m RMS)
Down 1.2397 0.79603 0.80051
North 0.63969 0.1526 0.15025
East 0.32982 0.10317 0.084081vnb/n(m/s RMS)
Down 0.1619 0.15283 0.15257
Roll 0.029879 0.018871 0.0054807
Pitch 0.063454 0.021199 0.0062694bbgyro (◦/s RMS)
Yaw 0.095493 0.10302 0.0088266
χ̃ 12.1701 4.7667 0.46633CV (◦ RMS)
γ̃ 6.8836 2.2066 0.16025

[6] T. I. Fossen, Handbook of Marine Craft Hydrodynamics and
Motion Control, 2011.

[7] M. Euston, P. Coote, R. Mahony, J. Kim, and T. Hamel, “A
complementary filter for attitude estimation of a fixed-wing
UAV,” 2008 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS, pp. 340–345, 2008.

[8] M. Mammarella, G. Campa, M. L. Fravolini, and M. R.
Napolitano, “Comparing Optical Flow Algorithms Using 6-
DOF Motion of Real-World Rigid Objects,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 42, no. 6, pp. 1752–1762, Nov. 2012.

[9] S. Zingg, D. Scaramuzza, S. Weiss, and R. Siegwart, “MAV
navigation through indoor corridors using optical flow,” in
Proceedings - IEEE International Conference on Robotics and
Automation, 2010, pp. 3361–3368.

[10] S. Shen, N. Michael, and V. Kumar, “Autonomous multi-floor
indoor navigation with a computationally constrained MAV,”
Proceedings - IEEE International Conference on Robotics and
Automation, pp. 20–25, 2011.

[11] D. Dusha, W. Boles, and R. Walker, “Attitude Estimation for
a Fixed-Wing Aircraft Using Horizon Detection and Optical
Flow,” Biennial Conference of the Australian Pattern Recog-
nition Society on Digital Image Computing Techniques and
Applications, pp. 485–492, 2007.

[12] S. Weiss, R. Brockers, and L. Matthies, “4DoF drift free navi-
gation using inertial cues and optical flow,” IEEE International
Conference on Intelligent Robots and Systems, pp. 4180–4186,
2013.

[13] J. C. Zufferey and D. Floreano, “Toward 30-gram autonomous
indoor aircraft: Vision-based obstacle avoidance and altitude
control,” Proceedings - IEEE International Conference on
Robotics and Automation, vol. 2005, pp. 2594–2599, 2005.

[14] S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts,
“Combined optic-flow and stereo-based navigation of urban

canyons for a UAV,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, pp. 302–309, 2005.

[15] P. C. Merrell, D.-J. Lee, and R. W. Beard, “Obstacle avoidance
for unmanned air vehicles using optical flow probability distri-
butions,” Society of Photo-Optical Instrumentation Engineers
(SPIE) Conference Series, vol. 5609, no. 1, pp. 13–22, 2004.

[16] J. Conroy, G. Gremillion, B. Ranganathan, and J. S. Humbert,
“Implementation of wide-field integration of optic flow for au-
tonomous quadrotor navigation,” Autonomous Robots, vol. 27,
no. 3, pp. 189–198, 2009.

[17] F. Ruffier and N. Franceschini, “Visually guided micro-aerial
vehicle: automatic take off, terrain following, landing and
wind reaction,” IEEE International Conference on Robotics
and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 3,
no. April, pp. 2339–2346, 2004.

[18] P. C. Merrell, D.-J. Lee, and R. W. Beard, “Statistical anal-
ysis of multiple optical flow values for estimation of un-
manned aerial vehicle height above ground,” Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series,
vol. 5608, pp. 298–305, 2004.

[19] R. Brockers, S. Susca, D. Zhu, and L. Matthies, “Fully self-
contained vision-aided navigation and landing of a micro air
vehicle independent from external sensor inputs,” SPIE De-
fense, Security, and Sensing, pp. 83 870Q–83 870Q–10, 2012.

[20] B. Herisse, F. X. Russotto, T. Hamel, and R. Mahony, “Hover-
ing flight and vertical landing control of a VTOL Unmanned
Aerial Vehicle using optical flow,” 2008 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, IROS,
pp. 801–806, 2008.

[21] J. J. Kehoe, A. S. Watkins, R. S. Causey, and R. Lind, “State
estimation using optical flow from parallax-weighted feature
tracking,” Collection of Technical Papers - AIAA Guidance,
Navigation, and Control Conference, vol. 8, pp. 5030–5045,
2006.

[22] R. J. D. Moore, S. Thurrowgood, and M. V. Srinivasan,
“Vision-only estimation of wind field strength and direction
from an aerial platform,” IEEE International Conference on
Intelligent Robots and Systems, pp. 4544–4549, 2012.

[23] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart,
“Real-time onboard visual-inertial state estimation and self-
calibration of MAVs in unknown environments,” Proceedings
- IEEE International Conference on Robotics and Automation,
pp. 957–964, 2012.

[24] D. A. Mercado, G. Flores, P. Castillo, J. Escareno, and
R. Lozano, “GPS/INS/optic flow data fusion for position and
Velocity estimation,” International Conference on Unmanned
Aircraft Systems, ICUAS - Conference Proceedings, pp. 486–
491, 2013.

[25] M. Bibuli, M. Caccia, and L. Lapierre, “Path-following algo-
rithms and experiments for an autonomous surface vehicle,”
IFAC Proceedings Volumes (IFAC-PapersOnline), vol. 7, no. 6,
pp. 81–86, 2007.

[26] S. Ahrens, D. Levine, G. Andrews, and J. P. How, “Vision-
based guidance and control of a hovering vehicle in unknown,
gps-denied environments,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 2643–2648, 2009.

[27] P. Batista, C. Silvestre, and P. Oliveira, “{GES} Attitude
Observers - {Part I}: Multiple General Vector Observations,”
Proceedings of the 18th IFAC World Congress, vol. 18, pp.
2985–2990, 2011.



[28] ——, “{GES} Attitude Observers - {Part II}: Single Vector
Observations,” Proceedings of the 18th IFAC World Congress,
vol. 18, pp. 2991–2996, 2011.

[29] H. F. Grip, T. I. Fossen, T. A. Johansen, and A. Saberi, “Atti-
tude Estimation Using Biased Gyro and Vector Measurements
With Time-Varying Reference Vectors,” IEEE Transactions on
Automatic Control, vol. 57, no. 5, pp. 1332–1338, 2012.

[30] J. Guerrero-Castellanos, H. Madrigal-Sastre, S. Durand, L. Tor-
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APPENDIX A
PARAMETER PROJECTION

The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2
b̂bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂

bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂b
− L2

bb
)}.

This operator is a special case of that from Appendix
E of [54].



APPENDIX B
CAMERA SIMULATOR

A camera is simulated in order to get measure-
ments of the OF. Here it is our objective to describe
how a camera and OF algorithm can be simulated
without having access to real images. The objective
is to find the displacement of a projected point in
the image plane between time tk−1 to tk, that is
dr = r(tk)− r(tk−1) and ds = s(tk)− s(tk−1). Lets
first consider how one can choose features to project
given the UAVs attitude, position and a elevation
profile of the terrain. These features are the one that
we wish to find the OF of.

At a time tk a ray is drawn in the camera z-
axis as shown in Figure 18. The ray intersects the
ground plane at a point tncentre = [xncentre, y

n
centre, 0]T

or expressed in {C} tccentre = (T nc )−1tncentre, T
n
c be-

ing the homogeneous transformation matrix relating
{C} and {N}. The point tccentre is named the ”centre
ground point”.

Points are chosen deterministically around the
centre ground point, tccentre, distributed on a plane
perpendicular to the ray from {C} to the centre
ground point. This plane is named the field of view
(FOV) plane. The points are distributed on the FOV
plane, ranging from the centre ground point −30 to
30 meters in camera x-direction −40 to 40 meters
in camera y-direction, separated with 10 meters in
both dimensions. Lets call these points ”FOV fea-
tures” and denote them by pcFOV. The FOV features
in camera coordinates is then defined as pcFOV ∈
tccentre + [x, y, 0]T , x ∈ [−30,−20, . . . , 20, 30], y ∈
[−40,−30, . . . , 30, 40]. Lets now consider only one
of the FOV features, and denote this FOV feature
pcFOV.

The FOV feature pcFOV is transformed to {N} by
pn

FOV
= T nc p

c
FOV

. Let the FOV feature be defined as
pnFOV = [xnFOV, y

n
FOV, z

n
FOV]. The FOV feature is then

projected onto the terrain by using xnFOV, y
n
FOV and

the elevation h at the xnFOV, y
n
FOV coordinate of the

elevation profile. The projected point is then pn =
[xnFOV, y

n
FOV, h]T , which is called a ”feature”.

Now that the feature location in {N} is found,
it is in our interest to find the projection of this
feature at time tk and tk−1. The camera moves
between tk−1 and tk, meaning the homogeneous

Fig. 18. Features on the surface of the terrain are chosen based
on the attitude and position of the UAV. A ray along the camera z-
axis intersects the ground plane at tcentre. A plane denoted field of
view (FOV) is constructed perpendicular to the ray. FOV features are
distributed along the FOV plane. Features are constructed with zn-
component from the elevation profile and xn, yn coordinate from the
corresponding FOV feature. Features p are projected onto the image
plane by the pinhole camera model to find the image plane coordinate
xm = [r, s]T . This is done at time tk and tk+1 with the same features,
p, to get the discrete OF dr and ds.

transformation matrix T nc is time variant. The fea-
ture can then be transformed to {C} by pc(tk) =
(T nc )−1(tk)p

n and pc(tk−1) = (T nc )−1(tk−1)pn. The
points pc(tk), pc(tk−1) represents the feature on the
surface of the terrain given in camera coordinates at
time tk and tk−1 respectively.

The feature at time tk−1 and tk can then be pro-
jected onto the image plane by the pinhole camera
model from (1), yielding xm(tk) = [r(tk), s(tk)]

T

and xm(tk−1) = [r(tk−1), s(tk−1)]T . The discrete OF
can then be found as dr = r(tk) − r(tk−1) and
ds = s(tk)− s(tk−1).

Fig. 18 illustrates the relationship between the
”centre ground point” tcentre, ”FOV features” pFOV,
and ”features” p.
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Appendix C
Transformation of Position From
NED to Camera Frame Using
Matlab Symbolic Toolbox

The following listing shows how the expression for pc in (2.23) is found.

Listing C.1: Matlab code showing how pc = [xc, yc, zc] is related to UAV height and
attitude, focal length f and pixel positions s and r.

%% C a l c u l a t e t ranformat ion
clc ;
clear ;
cn = sym( ’ cn ’ , [ 3 1 ] ) ; % Camera p o s i t i o n in NED
Theta = sym( ’ Theta ’ , [ 3 1 ] ) ;

Rnc = Rbn( Theta ) ’ ;

Tnc = [ Rnc cn ; 0 0 0 1 ] ;
syms xc yc zc ; %P o s i t i o n P in Camera−frame
syms xn yn zn ; %P o s i t i o n P in NED−frame

tn = [ xn ; yn ; zn ; 1 ] ;
t c = inv (Tnc)∗ tn ;
syms r s ;
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syms f ;

xc = t c ( 1 ) ; yc = t c ( 2 ) ; zc=t c ( 3 ) ;

eqn = [ r ; s ] ==(f / zc ) ∗ [ yc ;−xc ] ; % Pinhole
[ xnT , ynT ] = s o l v e ( eqn , xn , yn ) ;
tnT= [ xnT ; ynT ; zn ; 1 ] ;
tcT = inv (Tnc)∗ tnT ;
tcT = s i m p l i f y ( tcT ) ;

pc = tcT ( 1 : 3 )
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