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Abstract

This thesis presents the system design of an automatic ship landing system for a
fixed-wing unmanned aerial vehicle (UAV) intended to land in a net. It involves path
planning, guidance and control, accurate navigation and ship motion prediction.
Fully functional, the automatic landing system is intended to remove the need for a
pilot when operating UAVs from a ship or other platforms with confined space.

Dynamic flight paths for landing were developed using both piece-wise continuous
interpolation (for simplicity) and Dubins path (for feasibility). The system uses the
Pixhawk autopilot and a software toolchain from Underwater Systems and Technol-
ogy Laboratory (LSTS), Porto, for vehicle control, mission review and communica-
tion. Either waypoints or climb rate and bank angle commands can be calculated in
the LSTS toolchain and sent to Pixhawk. Real-Time Kinematic GPS (RTK-GPS)
is used for accurate navigation. To ensure safe landing on a ship influenced by wind,
waves and current, artificial neural network (ANN), an artificial intelligence (AI)
method, is used for ship motion prediction.

Software-in-the-loop (SIL) simulations demonstrated successful performance of the
automatic landing system, where the UAV hit the landing target with reasonable
accuracy. This was done by developing a decoupled guidance system to send climb
rate and bank angle commands to the Pixhawk. Using simulated data from a ship
influenced by waves and current, the ANN ship motion prediction system sufficiently
performed predictions of heading and heave displacement for up to 60 seconds. A
novel approach to ANN pre- and post-processing was found to increase heading
prediction accuracy compared to conventional approaches, while ANN data fusion
increased the performance and robustness of heave prediction compared to using a
single data type.

Keywords: Unmanned Aerial Vehicle (UAV), Guidance Navigation and Control
(GNC), Net Landing, Real-Time Kinematic GPS (RTK-GPS), Artificial Neural Net-
work (ANN), Artificial Intelligence (AI), Ship Motion Prediction, Data Fusion
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Sammendrag

Denne avhandlingen presenterer systemdesignet til et automatisk landingssystem for
et ubemannet fly (drone) til bruk ved landing i nett ombord på skip. Det innebærer
baneplanlegging, kontrollsystemer, nøyaktig navigering og bevegelsesprediksjon. Fer-
dig utviklet er det automatiske landingssystemet ment å kunne fjerne behovet for
en pilot ved droneopperasjoner fra skip eller andre plattformer med begrenset plass.

Dynamisk flygebane for landing er utviklet ved bruk av stykkevis kontinuerlig inter-
polasjon (rette baner, for enkelhets skyld), samt Dubins bane (for økt gjennomfør-
barhet). Systemet bruker autopiloten Pixhawk og Underwater Systems and Tech-
nology Laboratory (LSTS), Porto, sin programvarekjede for fartøyskontroll, opp-
dragsanalye og kommunikasjon. Enten rutepunkt eller høyderate- og rullvinkel-
kommandoer kan bli utregnet i LSTS programvarekjeden og sendt til Pixhawken.
Real-Time Kinematic GPS (RTK-GPS) brukes for nøyaktig posisjonering. For å
sikre en trygg landing ombord på et skip påvirket av vind, bølger og strømninger,
blir kunstig nevrale nettverk (ANN), en metode inne kunstig intelligens (AI), brukt
for bevegelsesprediksjon av skipet.

Programvare-i-sløyfen (SIL) simuleringer demonstrerte suksessfulle tester for det
automatiske landingssystemet, hvor dronen traff målet med relativt god presisjon.
Dette ble gjort ved å utvikle et dekoblet overordnet kontrollsystem som sendte
høyderate- og rullvinkel-kommandoer til Pixhawken. Ved bruk av simulert data
fra et skip påvirket av bølger og strømninger, utførte systemet for ANN beveg-
elsesprediksjon vellykkede tester for prediksjon av kurs og hiv opp til 60 sekunder
frem i tid. En ny tilnærming til ANN pre- og postprosessering viste seg å øke
nøyaktigheten for kursprediksjon sammenlignet med ordinære metoder, mens ANN
datafusjon økte nøyaktigheten og robustheten til hivprediksjon sammenlignet med
bruk av bare en type data.
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Chapter 1

Introduction

As an introduction, Section 1.1 presents the background and motivation for this
thesis, Section 1.2 presents some previous work of relevance, Section 1.3 presents
the contribution and goal of this thesis and Section 1.4 presents its organization.

1.1 Background and Motivation

Unmanned aerial vehicles (UAVs) have for long primarily been used for military
purposes, but have in the recent years seen increased civilian use with applications
like aerial photography and power line inspections.

UAVs are also predicted to have a significant influence in the maritime sector, with
possible future applications including search and rescue missions, ice management
in the Arctic, environmental monitoring of oil spills and maritime traffic monitoring.

Operating fixed-wing UAVs from ships is considerably more challenging compared
to land based operations. Launching UAVs from maritime platforms can be done
with catapults, like those of an aircraft carrier. However, landing on a ship without
a flight deck poses several problems. Firstly, the UAV must be brought to a halt in
a confined space without damaging the UAV. Most UAV landing methods on ships
involves either net or cable-gripping systems, that catches and slows down the UAV
allowing it to be recovered undamaged. Secondly, the ship is a moving platform
affected by environmental forces like wind, waves and current. Successfully landing
a UAV in such a challenging environment requires a high-precision navigation system
and the ability to deal with possibly large and fast ship movements.

Although Global Navigation Satellite System (GNSS), e.g. Global Positioning Sys-
tem (GPS), is widely used for navigation, it lacks the accuracy needed for shipboard
landings, especially when it comes to vertical positioning. Errors of just over a meter
may cause the UAV to miss and crash into the ship or water.

This thesis considers the problem of designing an automatic net-landing system
using Real-Time Kinematic GPS (RTK-GPS) to provide positioning with centimeter
accuracy. To deal with ship motions, an artificial intelligence (AI) approach to ship
motion prediction is designed using artificial neural networks (ANNs).

1
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1.2 Previous Work

An autonomous landing can be divided into the two sub problems path planning
and guidance, where each field have been subject to extensive research. This is
also the case for forecasting, with both AI methods and statistical approaches being
researched.

A commercially available autonomous landing system is the ScanEagle UAV and
SkyHook recovery system [31]. It features fully autonomous aircraft approach and
capture using RTK-GPS for consistently accurate positioning. The downside of this
system is that it is closed source with a small selection of UAVs at a high price.

As part of a NTNU MSc thesis from 2014, Skulstad and Syversen [73] successfully
performed net landing of a fixed-wing UAV using a low-cost RTK-GPS system. The
real life test was with a static net, while additional simulations were performed for
a target moving with a constant heading. A decoupled guidance system was used,
consisting of two Proportional-Integral-Derivative (PID) controllers for longitudinal
guidance and a nonlinear controller for lateral guidance.

Autonomous landing of a fixed-wing UAV using Differential GPS (DGPS) was tested
by Smith [74]. A model of the aircraft was used to create decoupled linear controllers.
An inner loop controlled the high-bandwidth specific accelerations and roll rate,
while an outer loop controlled the low-bandwidth point-mass dynamics.

By integrating a vision system into a UAV platform already consisting of various
avionic sensors and a flight control system, Kim et al. [40] managed to safely land
a small fixed-wing UAV into a net. This visual-based net-recovery system does not
require a clean runway, complex instrumented landing systems or expensive sensors
such as a DGPS.

A spiral landing path and associated guidance laws for UAV net-recovery is proposed
by Yoon et al. [88]. Landing is divided into the two following phases: a spiral descent
phase to reach both an altitude and horizontal position sufficiently close to the net,
and a final approach (FA) phase leading into the net.

The heave motion of a ship was predicted in [84] and for up to 50 seconds in [52]
by using ANNs. Similarly, the roll motion was predicted in all of [34–36, 58, 86] for
up to 10 seconds, while [57] predicted the yaw motion for 3 seconds. [83] used ANN
to predict the ship trajectory. In all cases the prediction method only required time
series of the ship motion, and without the need for a model of the ship.
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1.3 Contribution and Goal of the Thesis

The goal of this project is to design and verify the performance of an automatic
landing system for a fixed-wing UAV to be used with a net on board a moving ship.
This involves:

• Developing a modular payload for the X8 Skywalker UAV using the LSTS
software toolchain to command either waypoints or bank angle and climb rate
to the Pixhawk autopilot (Chapter 4).

• Preparing the payload module for integration with RTK-GPS for accurate
navigation (Section 4.6).

• Developing a feasible and dynamic flight path for automatic landing (Section
4.3).

• Developing a system for ship motion prediction to ensure a safe landing on a
moving ship (Section 4.2).

• Performing ship motion prediction on simulated ships (Section 5.1).

• Performing software-in-the-loop simulations for the guidance and control sys-
tem developed (Section 5.2).

1.4 Organization of the Thesis

This thesis is organized in six chapters and three appendices. The chapters are
indexed 1-6 and the appendices are indexed A-C. A short description of the chapters
and appendices are given below.

Chapters

• Chapter 2 contains a general description of the path planning and guidance
problems that are discussed in this thesis, in addition to an introduction to
artificial neural networks and time series forecasting.

• Chapter 3 describes the software and hardware components of the automatic
landing system.

• Chapter 4 describes the overall system architecture as well as the design de-
cisions and setup of all parts of the automatic landing system and the later
experiments.

• Chapter 5 presents the experiments performed and results obtained through
simulations.

• Chapter 6 summarizes the conclusions drawn from the results and provides
recommendations for further work.
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Appendices

• Appendix A contains the preliminary experiments and tuning values for the
guidance and control system.

• Appendix B contains supplementary information and results for the time series
forecasting experiments.

• Appendix C contains supplementary information and results for the software-
in-the-loop landing simulations.



Chapter 2

Background Theory

This chapter contains a brief introduction to the theory behind path planning in
Section 2.1, guidance in Section 2.2, artificial neural networks in Section 2.3 and
time series forecasting in Section 2.4. It is the basis for the discussions in the rest
of this thesis.

2.1 Path Planning

Path planning is the task of finding a way, or path, to go from location A to B. This
path is optimized with respect to one or more criteria such as distance, travel time,
energy consumption, simplicity etc. As opposed to motion planning and trajectory
planning, path planning results in a purely geometrical path and does not include a
time law for the vehicle to follow [41]. Some literature differentiate path planning as
the task of finding waypoints and path generation as the task of making a path from
those waypoints [70], but path planning will be used as a collective term henceforth.

An essential division when performing path planning is regarding the presence of
obstacles. When obstacles need to be taken into account, the path planning problem
can be very complex. Especially when working with a dynamic environment. Safety
regions around the obstacles need to be defined, both because of the size of the
moving vehicle and due to uncertainty in the movements. Planning the optimal
path with obstacles present is a Nondeterministic Polynomial time (NP)-complete
problem [14].

Another division of path planning is between deliberative path planning, when global
world knowledge is assumed, and reactive path planning, when local sensor informa-
tion is used [7]. When there are no obstacles to take into account, or the positions of
all obstacles are known prior to execution, deliberative path planning can be used.

After a path is planned, the guidance controller assures the vehicle follows the path.
To make this task easier, it is desirable to make a feasible path, a path for which there
exists a sequence of inputs that executes the path. This means the path needs to be
continuous, and in most cases also in its first and second derivative (C2 continuity)
[80]. This is to avoid instantaneous changes in position/angle, speed/rotation or
acceleration/torsion, which may not be physically possible to execute.

The path should also satisfy the dynamic and kinematic constraints, such as min-
imum curvature, minimum torsion, maximum climb/dive angle and saturation of

5
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every individual actuator. For a UAV, this is called a flyable path [80]. This is
especially important in the presence of obstacles to ensure a collision free travel.
The rest of this section is devoted to exploring the most common path planning
methods.

2.1.1 Piece-Wise Continuous Interpolation

The most basic way of generating a path, and probably the most widely used, is to
plot waypoints and draw straight lines between them [24]. A lot of care needs to be
taken on the placement of the waypoints in the presence of obstacles. These kind of
paths work well for vehicles with medium or low demand on precision, and a large
variety guidance systems have been created to deal with them. A big problem is
that the path is not feasible or flyable, as it at every waypoint has an instantaneous
change of direction when going from one straight line to another.

𝑝𝑘

𝑝𝑘+1

𝑝𝑘+2

𝑝𝑘+3

Figure 2.1: Piece-wise continuous interpolated path

2.1.2 Dubins Path

A Dubins path is the shortest path connecting two poses, when a maximum curva-
ture bound is considered. This is proven mathematically by Lester Eli Dubins in
1957 [21]. The path consists exclusively of linear segments and constant-curvature
segments. A problem with this path is that, even though there is a smooth change
of direction around the waypoints, it is still not entirely feasible for most vehicles.
This is because it includes curvature discontinuities in the transition between the
arc and the straight line. One solution to this problem is to include clothoids.
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𝑝𝑘

𝑝𝑘+1

𝑝𝑘+2

𝑝𝑘+3

Figure 2.2: Dubins path

2.1.3 Clothoids

For a clothoid arc there are no curvature discontinuities [80]. It has a spiral shape
with linearly increasing curvature. This property can be used in a variation of Dubins
path where it either replaces the circular arcs or works as a transition between the
arcs and the straight lines. A downside of using clothoids is that it has no analytic
solution and needs to be calculated numerically.

𝑝𝑘

𝑝𝑘+1

𝑝𝑘+2

𝑝𝑘+3

Figure 2.3: Clothoid path
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2.1.4 Fermat’s Spiral Path

Fermat’s spiral is also known as a parabolic spiral and follows the equation r2 = k2θ
in polar coordinates [42]. One advantage of using this kind of spiral for path planning
is that the curvature is zero at the origin, and thus can seamlessly be connected to
a straight line. Using this property, the discontinuity of Dubins path is avoided.
Another advantage is that it is described by a very simple parametric equations.
It needs to be computed numerically, but is much less computationally demanding
than clothoids. In appearance, a Fermat’s spiral path often looks very much like the
clothoid path (Figure 2.3).

2.1.5 Monotone Cubic Hermite Spline Interpolation

Cubic Hermite spline interpolation is a spline with piecewise cubic polynomials that
interpolates the given waypoints [26, 43]. Including the given waypoint locations, it
also needs to know the first derivatives at these points. These values may be esti-
mated if not provided. The result is a smooth continuous function with a continuous
first derivative. One downside of this method is that it will not have a continuous
second derivative.

Monotone cubic Hermite spline interpolation is a method to ensure monotonicity
of the resulting Hermite spline. By knowingly selecting the interpolating tangents,
overshoot is prevented, meaning that the monotonicity of the path is not violated.
This is of special interest when there are obstacles present, and an overshoot can
have fatal consequences as objects may be hit.

𝑝𝑘

𝑝𝑘+1

𝑝𝑘+2

𝑝𝑘+3

𝑝𝑘+3

Figure 2.4: Monotone cubic and regular cubic path
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2.2 Guidance

Guidance can be seen as the process of guiding an object towards a given point that
may be stationary or moving [85]. Guidance is described by Breivik and Fossen
as the basic methodology concerned with the transient motion behavior associated
with the achievement of motion control objectives [11].

It is clear that the guidance of a vehicle is closely connected to the control system.
Fossen [24] describes the different motion control objectives related to guidance as

• Set-point regulation is a special case where desired position and
attitude are chosen to be constant.

• Trajectory-tracking, where the objective is to force the system out-
put y(t) ∈ <m to track a desired output yd(t) ∈ <m. Feasible
trajectories can be generated in the presence of both spatial and
temporal constraints.

• Path following is following a predefined path independent of time.
No restrictions are placed on the temporal propagation along the
path. Spatial constraints can, however, be added to represent obsta-
cles and other positional constraints if they are known in advance.

Thus, the purpose of a guidance system, seen from a control point of view, is to
generate the control commands necessary to achieve said control objectives. In fact,
Yanushevsky defines the guidance law of a system as an algorithm that determines
the required commanded acceleration [85]. The rest of this section will be devoted to
exploring the most common guidance strategies related to the path following control
objective, based on Siouris’ book Missile Guidance and Control System [72].

As mentioned above, the guidance system and the control system are closely con-
nected and often implemented together in a guidance and control system. There are
two different approaches in designing such a system. The first separates the vehicle
guidance and control problem into two separate loops. The inner control loop fol-
lows acceleration commands generated by the outer guidance loop. The second is an
integrated approach where the inner and outer loops are designed simultaneously.
This method allows the use of control design techniques like receding horizon [67]
and sliding mode [81] controllers.

The first approach is commonly favored due to its simplicity and the fact that it
utilizes the well-established classical control design techniques for the inner loop.
The guidance strategies used in the outer loop are heavily influenced by the guid-
ance laws used to control missiles. According to Park et al. [62], several of the
missile guidance laws may be modified to perform trajectory/path following by us-
ing an imaginary point moving along the desired flight path as a pseudo target. The
majority of these guidance laws are of the Line-of-Sight (LOS)-type, i.e. the LOS
vector and its rates are the primary source of guidance information. A few of the
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most relevant strategies will be briefly outlined in the following subsections.

2.2.1 Beam-Rider

Beam-rider is a three point guidance strategy involving a stationary reference point
together with the interceptor and target. The vehicle is constrained to follow the
straight line between the reference point and the target. This makes it suitable for
following paths defined by straight lines between waypoints. A lookahead based
approach is given by Fossen [24], where the desired course angle is given by

χd = αk + arctan
(−e

∆

)
(2.1)

where αk is the path tangential angle, ∆ is the lookahead distance along the path
and e is the cross-track error, seen in Figure 2.5.

𝛼𝑘
𝜒𝑑

𝑒

𝑥𝑛

𝑉

𝑝𝑘

𝑝𝑘+1𝑑𝑢𝑚𝑚𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

𝑈𝐴𝑉

𝐿𝑂𝑆

Δ

Figure 2.5: Beam-rider guidance

2.2.2 Pure-Pursuit

In pure-pursuit guidance the velocity of the vehicle is aligned with the LOS vector,
i.e. the vehicle will steer directly towards the target at all times, seen in Figure 2.6.
Fossen [24] performs the velocity assignment by defining it as

V = −κ p− pt

||p− pt||
(2.2)
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where p is the vehicle position, pt is the target position and κ > 0 is a design
parameter.

𝑉

𝐿𝑂𝑆

𝑉𝑡

𝑈𝐴𝑉

Figure 2.6: Pure-pursuit guidance

2.2.3 Constant Bearing

Constant bearing guidance involves keeping the LOS rate at zero. This leads to the
LOS vector being parallel to the initial LOS vector, seen in Figure 2.7. Constant
bearing guidance is therefore often referred to as parallel navigation.

𝑉

𝐿𝑂𝑆

𝑝𝑜𝑖𝑛𝑡 𝑜𝑓
𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛

𝑉𝑡

𝑈𝐴𝑉

Figure 2.7: Constant Bearing

Constant bearing is usually implemented by rotating the velocity vector proportional
to the rate of the LOS vector. This is known as proportional navigation which will
be described in the next section.
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2.2.4 Proportional Navigation

The by far most popular guidance law is Proportional Navigation (PN) [72, 85]. It
involves measuring the rate of rotation of the line of sight angle with respect to fixed
space coordinates, and commands a lateral acceleration proportional to that of the
LOS rate, seen in Figure 2.8. This can be expressed mathematically as

an = NVc

(
dλ

dt

)
(2.3)

where

an = commanded lateral acceleration
N = navigation constant
Vc = closing velocity
dλ

dt
= LOS rate of change

𝑉𝑐 𝐿𝑂𝑆

𝑎𝑛

𝑑𝑢𝑚𝑚𝑦
𝑡𝑎𝑟𝑔𝑒𝑡

𝜆

Figure 2.8: Proportional Navigation

When dealing with vehicles in all three dimensions (3D), like for UAVs, it is common
to decouple the longitudinal and lateral motions. As a consequence, PN is often
implemented as two separate 2D-guidance loops. However, the PN guidance problem
has also been formulated as a 3D control problem [7, 72, 85].
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2.2.5 Proportional-Integral-Derivative Controller

The proportional-integral-derivative (PID) controller is often used in industrial sys-
tems, but can also be used for guidance, as described by Beard and McLain [7]. By
using loop feedback from the difference between a desired and a measured value, an
input either directly into an actuator or to a second controller can be computed to
reduce the error. The value controlled can for example be the distance to a path,
and the output can be the vehicles orientation towards it. This control law can be
expressed mathematically as

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

d

dt
e(t) (2.4)

where

u(t) = commanded input
Kp = proportional gain
Ki = integral gain
Kd = derivative gain
e(t) = error (desired - measured value)
t = time

The proportional part is there to adjust the output depending on the magnitude
of the present error. The integral part is the memory term adjusting the output
based on the accumulation of past errors, e.g. it increases if the error is positive
persistently. The derivative part is predicting future errors and dampens the output.

Integral windup is a situation where the PID controller experiences a large change
in the set-point, making the integral term accumulate a significant error while the
set-point is being reached (windup). Once the new set-point is reached, the huge
integral term leads to an excess overshoot while the accumulated error unwinds.
Several solutions to this problem has been proposed, called anti-windup.

A simple anti-windup solution is to limit the value of the integral term. If the
saturation of the actuator is known, the integral part of the PID controller can be
limited to this value. Another option is to reset the integral part to zero when the
PD-effect alone is enough to saturate the output.

2.3 Artificial Neural Network (ANN)

This section introduces the artificial intelligence (AI) class of systems called artificial
neural network (ANN), some of its varieties and a few applications.
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2.3.1 Overview of ANNs

An artificial neural network (ANN) is a learning algorithm inspired by the biological
neural network, like the one found in the human brain. By giving it a series of inputs
where the output is known, it can learn complex input-output relationships. It is
a highly parallel system consisting of interconnected simple processing units, called
nodes or neurons. Each neuron receives a series of weighted inputs, sums them
up, processes this resulting value through an activation function and sends out a
single transformed output. There is connectivity between the individual neurons in
a network, in addition to external inputs and outputs connected to this network.

An external input can for example be pixels of a facial image, and the output, after
the input has passed through the entire ANN, can be activation of an output neuron
representing a specific person. This is called classification. The network can also
be used for function approximation on the general vector form ~̂y = f̂(~x), where the
input to the ANN is ~x, and f̂ is an approximation of the real function f , giving the
network output ~̂y.

A human brain has in the order of 1010 neurons and about 60×1012 interconnections.
A single neuron in the brain is measured to operate at 10−3 sec [78], compared to a
silicon gate operating at 10−9 sec. Because of the extreme high degree of parallelism
in the brain, it still outperforms the fastest computers in many tasks like pattern
recognition and perception.

McCulloch and Pitts were in 1943 the first to propose an artificial neuron model [54].
They based it on summation and a binary threshold activation function. This special
case of artificial neurons with a threshold activation function is what Rosenblatt in
1957 called a perceptron [65]. More on activation functions later. Mathematically,
the output of an artificial neuron is given as [36]:

out = f(net) = f

(
n−1∑
i=0

Iiwi + wn

)
(2.5)

where {Ii|i = 0, ..., n − 1} is the input to the neuron, {wi|i = 0, ..., n − 1} is the
weight associated with its respective input Ii, and wn is a bias weight. f() is the
activation function. Equation 2.5 is illustrated in Figure 2.9 below. The bias neuron
itself is usually a constant, often set to 1, letting its associated weight adjust the
bias entering the summation.

When building an artificial neural network, several neurons are combined into layers.
There is always an input layer with the same number of neurons as inputs, an output
layer with the same number of neurons as outputs and in between those there can be
any number of additional layers, called hidden layers. The neurons in these hidden
layers are called hidden neurons.



2.3. ARTIFICIAL NEURAL NETWORK (ANN) 15

𝑏𝑖𝑎𝑠 = 1𝐼0

𝑤0

𝑤1

𝑤2

𝐼1

𝐼2

𝑤3

𝑓(𝑥)

Activation function

𝑜𝑢𝑡

Inputs

Output

Bias

Weights

 

𝑖=0

𝑛−1

𝐼𝑖𝑤𝑖 +𝑤𝑛

Single neuron

Figure 2.9: A single artificial neuron with three inputs

The structure of the neural network makes it hard to get an intuitive understanding
of how it works, and it cannot be used directly to say anything about the model
parameters of the approximated function. In fact, there does not seem to be any
strict mathematical verification of all the neural networks capabilities [35]. Despite
this, a mathematical demonstration of ANN as a universal approximator is presented
by Funahashi [27], but is considered outside the scope of this thesis. A trained ANN
is often regarded as a "black box", although some people work on finding meanings
in the different network weights [46].

One of the great strengths of neural networks is its generalization and approximation
capabilities. This means, despite both noisy input and target values, a well designed
and properly trained neural network is capable of finding a good approximation of
the underlying function for the training data.

On the other hand, since the neural network does not find a model of the actual
function, merely an approximation of the training data, it has problems with ex-
trapolation. This means an ANN often performs poorly on test data beyond the
range of its training data, emphasizing the importance of a properly trained net-
work. Training on a data set from a too specific range can lead to extrapolation,
while a too wide range may lead to an overly generalized approximation that fails
to capture important details in the data.

Categorization of ANNs can be defined by four parameters, which will each be
discussed below:

1. The interconnection pattern between the different layers and neurons
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2. The activation functions of the neurons

3. The number of hidden layers

4. The learning process of updating the weights

2.3.1.1 Interconnection Pattern

The most common interconnection pattern is a feed forward network structure where
the connections between the neurons do not form a directed cycle, like the example
depicted in Figure 2.10 below. In the opposite case, a network structure with cycles
is called a recurrent network. Depending on the degree of connectivity between the
layers, the network may also be classified as either fully or sparsely connected.

Hidden 
layer

Input 
layer

𝑥1

Output 
layer

𝑥2

ℎ1

ℎ2

ℎ3

𝑦1

Figure 2.10: A three layer feed forward ANN with two inputs, three hidden neurons
and one output. A circle represents an artificial neuron and an arrow a direct
connection

2.3.1.2 Activation Function

The activation functions are important choices depending on the application, like
function approximation or classification, and the training method. All the neurons
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of a network may have individual activation functions, but it’s rare to have different
activation functions within the same layer. Below follows brief descriptions of some
commonly used function types.

Binary threshold function

As previously discussed, the first neuron model used a binary threshold activation
function [54], as seen in Figure 2.11. This means the output can only be one of two
values, usually {0, 1} or {−1, 1}. When performing classification this is a desired
property, but it has limitations with regards to training. Because it can not be
differentiated, training methods like the later discussed back-propagation algorithm
will fail.
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Figure 2.11: Two activation functions: binary threshold and sigmoid

Sigmoid function

The most commonly used activation functions in ANN applications are varieties of
the sigmoid function. An example of such a function is seen depicted in Figure 2.11.
The steepness of this function can be varied, thus it can be adjusted to resemble a
binary threshold function by setting the steepness factor high enough. One great
advantage with sigmoid functions is that they are often easy to differentiate. A
commonly used sigmoid function is the hyperbolic tangent, transforming neuron
Equation 2.5 into:
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out = tanh
(

n−1∑
i=0

Iiwi + wn

)
(2.6)

Linear function

When an ANN is used for function approximation, and not classification, the output
needs to be continuous and able to take any value. A linear activation function, as
seen in Figure 2.12, provides this by not truncating what’s summed up in the neuron.
A linear activation function is thus often used in the output layer when performing
function approximation.
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Figure 2.12: Two activation functions: linear and Gaussian

Gaussian function

The Gaussian function has a bell shape, seen in Figure 2.12. This is the most popular
and widely used function by radial basis function (RBF) networks [68], which is a
variety of single-layer ANN first formulated by Broomhead and Lowe in 1988 [12].

2.3.1.3 Number of Hidden Layers

A feed forward network with no hidden layers is called a single-layer perceptron [65].
Minsky and Papert famously demonstrated in a book published in 1969 how this
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network is unable to learn an XOR function [55]. The single-layer perceptron will
only be able to perform a linear operation on the input data.

To handle all non-linear problems, one or more hidden layers are needed in addition
to a non-linear activation function. A feed forward network with one or more hidden
layers is called a multi-layer perceptron (MLP). Although it’s called a multi-layer
perceptron, the neurons may have other activation functions than the threshold
function used in the strict definition of a perceptron. In 1989 Cybenko published
an article on function approximation with the use of neural networks and sigmoidal
activation functions [18]. He there proved what’s known as Cybenko’s theorem:

A MLP with only one hidden layer is capable of approximating any func-
tion, provided there are enough number of hidden neurons whose activa-
tion functions are non-linear.

While this theorem states that only one hidden layer is enough to approximate any
function, there may be reasons to have additional hidden layers. Experienced de-
signers may adjust the number of hidden layers and neurons to reduce the training
time, as the computational burden is dependent on the number of neuron intercon-
nections. The network structure may also be adjusted to exploit a partially known
input-output relationship.

2.3.1.4 Training

Training of a neural network can be seen as a minimization problem where the
weights of the network are adjusted to minimize the error between the output of the
ANN and the desired output (target). As with most optimization tasks, an ANN
may contain several minima, thus obtaining the global minimum is often very time
consuming and practically impossible. Luckily, finding the global minimum of the
network’s error function is in many cases not needed or even desired. This is due to
the problem of over-fitting.

Over-fitting is when the network approximates the learning data too perfectly and
fails to generalize, leading to wrong outputs when presented with inputs different
from the training data. In the opposite case, under-fitting is when the network gen-
eralizes too much and fails to capture important details in the underlying function.
This trade-off makes it hard to know exactly when to stop the training process. One
common trick is to validate the accuracy of the trained network on a separate data
set, a validation set independent of the training set. This way training can halt when
generalization stops improving. A flow chart of this training process is presented in
Figure 2.13 below (from Khan et al. [35]). Below follows only a selected few of the
most widely used training methods.
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Figure 2.13: Simplified flow chart of a general training process for ANN, from [35]

Back-propagation

The back-propagation (BP) algorithm was originally discovered by Werbos in his
PhD thesis in 1974 [82], but not made famous until it was rediscovered in 1986
by Rummelhart et al. [66]. Although several other algorithms for neural network
training have come along since then, it remains a widely used and effective training
method.

The algorithm is a form of gradient descent where the error between the ANNs
output and target value is propagated backwards through the network, from the
output of the network to the input layer. Along the way, the weights of each layer is
altered in the direction of the negative gradient, the weights of one layer at a time.

As with the regular gradient descent algorithm there is the problem of local minima,
in addition to the design choice trade-off of step size, known as learning rate η. A
large step size ensures a fast algorithm with the chance of missing the minimum,
while a small step size ensures a minimum is found at the expense of computation
time. A common technique to compensate for this trade-off is to introduce a mo-
mentum term, where the previous search direction is included in the new search
direction. This may also help avoid getting trapped in local minima.

Using this algorithm on an ANN requires that the activation functions of the artificial
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neurons are differentiable. This means that the binary threshold function does not
work with this algorithm, while the sigmoid function is a popular choice because of
its easy and efficient differentiation.

input : A training set (and optionaly a validation set)
output: A trained ANN
initialize the network weights (to small random values);
while stopping criteria not met do

// forward propagation
out = ANN_prediction(input_sample);
target = ANN_target_value(input_sample);
error = target - out;

// backward propagation
compute ∆wh for all weights from hidden layer to output layer;
// further backward propagation
compute ∆wi for all weights from input layer to hidden layer;

update all weights based on ∆w;
end
Algorithm 1: Back-propagation algorithm for a three-layer MLP, based on [29]

The general function for the back-propagation algorithm outlined in Algorithm 1
can be written as

w
(s)
ji (n+ 1) = w

(s)
ji (n) + ηδ

(s)
j (n)x(s−1)

out,i (n) (2.7)

where each weight w is described by the neuron it’s connected from, neuron i in
layer s − 1, and the neuron it’s connected to, j in layer s. η is the learning rate
and δ(s)

j is calculated as a function of the back-propagated error at neuron j in layer
s. Further details of the learning algorithm is considered beyond the scope of this
thesis, and interested readers are directed to Haykins book on neural networks [29].

Conjugate gradient algorithm

The conjugate gradient (CG) algorithm was developed by Hestenes and Stiefel in
1952 [30] as an iterative algorithm for solving systems of linear equations. It was
first used for training of neural networks many decades later, like Møller (1990) [56]
and Charalambous (1992) [15].

As the original paper from 1952 demonstrates, CG is able to obtain the exact min-
imum in n steps if the n-dimensional function can be expressed as quadratic. The
error function of ANNs is quadratic close to the minimum, hence it is expected that
once close to a minimum, convergence to the local minimum will be very rapid [36].
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The fundamentals of the CG algorithm shares commonality with the BP algorithm,
but is often regarded as superior. It does not move straight down the new gradient,
but the search direction is instead conjugate to the old gradient and to previous
directions traversed.

2.3.2 Data Fusion Using ANNs

Because neural networks don’t rely on any prior knowledge about neither the under-
lying function nor the inputs to the network, it can easily be used for data fusion.
The simplest approach is to collect all the data that is to be fused into the input
vector of the network. During training, the ANN will by itself find the relationship
between the different inputs without knowing which data set or sensors the different
inputs originate from.

Another approach is feature-based data fusion. Different kinds of data are either
separately or in groups sent through different ANNs for feature extraction, before the
output of those ANNs are fused in a final network, like the example network depicted
in Figure 2.14. A group at Carnegie Mellon University successfully implemented a
network like this, called feature neural network (FeNN), for autonomous outdoor
navigation with the use of a CCD camera and laser scanner [19].
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𝑖𝑛1

𝑖𝑛2

𝑖𝑛3

𝑜𝑢𝑡

Figure 2.14: Feature-based data fusion using ANNs in cascade

2.4 Time Series Forecasting

Forecasting is the process of predicting the future, while a time series is a sequence
of data points collected over a time interval. Khashei and Bijari offers the following
definition to time series forecasting:
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With the time series approach to forecasting, historical observations of
the same variable are analyzed to develop a model describing the un-
derlying relationship. Then the established model is used in order to
extrapolate the time series into the future. [38]

This approach is particularly useful when there is too little knowledge of the under-
lying function to build a reliable model. Time series forecasting is an active research
area with a large variety in both forecasting methods and application areas. Below
follows a brief introduction to a small selection of the most common methods.

2.4.1 Autoregressive Integrated Moving Average

The autoregressive integrated moving average (ARIMA) model is a statistical method
used for time series analysis and forecasting. Box and Jenkins popularized the use
of ARIMA in the 1970’s [9, 10], and their approach is known as the Box-Jenkins
method.

For ARIMA forecasting the predicted value is assumed to be a linear function of
past samples and random errors [39]. The assumed linearity is a strong limitation
for this method. Compared to non-linear methods like ANN, multiple attempts at
time series forecasting have demonstrated that ARIMA is inferior [34, 37, 90].

2.4.2 Kalman Filter

The Kalman filter is a recursive filter able to estimate linear and nonlinear dynamics
from noisy measurements [24]. It is based on a model of the dynamics. The first
version, a discrete-time linear filter, was proposed by Kalman in 1960 [33].

In its essence the Kalman filter uses the current state estimates and system model to
predict the next step, updates the prediction based on measurements, outputs new
state estimates and repeats this process recursively. If the filter does not receive new
measurements, it will work as a predictor. By rapidly iterate multiple steps forward
in time, this can be utilized for forecasting.

When used for ship motion forecasting in high sea states, past attempts [16, 17, 71]
have demonstrated that Kalman filters are unable to maintain a high prediction
accuracy beyond 3-4 seconds [35].

2.4.3 Artificial Neural Network

ANNs are able to deal with highly non-linear systems without the need of a system
model, are noise tolerant, has a natural high degree of parallelism and can adapt
to the circumstances. This makes it a good choice for forecasting. Time series



24 CHAPTER 2. BACKGROUND THEORY

forecasting is a special case of the function approximation problem, where the inputs
and outputs of the network are samples of the same observed data set [58].

By training the network on a time series the ANN can learn the data patterns to
find the continuation of the time series [28]. Figure 2.15 below illustrates such a
MLP network designed to output the estimated value at time k + m according to
Equation 2.8:

ŷ(k +m) = f (y(k), y(k − 1), ..., y(k − n+ 1)) (2.8)

where k is the current time, m is the prediction step, n is the number of input
samples to the network and f() is the ANN network giving the predicted value ŷ.
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Figure 2.15: Time series forecasting using ANNs

There is only one output in the figure, corresponding to only one prediction step.
It is advised to use a single ANN for every prediction step [34]. If predictions at
multiple time steps ahead are required, a separate ANN should be used for each
time step even though a single ANN could be equipped with multiple outputs. This
is based on the reasoning that the optimal weights in all layers vary depending on
the desired prediction step. The optimal network architecture may also be different.

It is important to notice that when using ANNs for forecasting, it is not guaran-
teed that the network will perfectly learn the patterns of the data, even though it
theoretically is capable of it. This depends on variables like network architecture,
training method and size of the data set used for training. In addition, while an
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ANN is good at handling noise, the degree of randomness in the time series affects
how correct the predictions will be.

The more complex the time series is, the more information about the past is needed,
and the size of the input layer and the corresponding number of weights are increased
[28]. The size of the forecasting step, given by the variable m, will also affect the
number of input samples n needed. For a more accurate approximation of the time
series, the number of hidden nodes, denoted s, may be increased.

However, when the data sets are affected by noise, determination of the number of
hidden units becomes more complicated [44]. A too low number of hidden nodes
will lead the ANN to fail on approximating the underlying function of the time
series, i.e. under-fitting. In the opposite case of over-fitting, a too high number of
hidden nodes will result in a very good approximation on the training data, but fail
to capture the generality of the time series, hence lead to poor estimations on new
test data.

2.4.4 Hybrid Approaches

Several hybrid approaches to time series forecasting has been proposed. It can be
homogeneous, e.g. different configurations of ANNs, or heterogeneous, e.g. both
linear and nonlinear models, [37]. For the most common forecasting models, none
of them are universally superior to the other. This may give hybrid approaches an
edge. The disadvantage is that it is much more time consuming to implement as
all the models need to be tuned individually before combined together in a hybrid
model.

Khashei et al. have proposed three hybrid models for time series forecasting using
ARIMA and ANNs [37–39]. The great linear capabilities of ARIMA is utilized
together with the nonlinear capabilities of the ANN. Li et al. have presented a
wind speed forecasting methodology based on a Bayesian combination algorithm
[45]. It combines the three artificial neural network models adaptive linear element
network (ADALINE), back-propagation (BP) network (the most common ANN)
and radial basis function (RBF) network. This provides an adaptive, reliable and
comparatively accurate forecast result.
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Chapter 3

System Components

This chapter describes the selection of individual components for the automatic
landing system, with software presented in Section 3.1 and hardware presented in
Section 3.2.

3.1 Software

This section presents the software components of the automatic landing system.

3.1.1 LSTS Toolchain

This is an open-source control architecture and software toolchain developed by
the Underwater Systems and Technology Laboratory (LSTS), which is an inter-
disciplinary research laboratory established in 1997 at the Faculty of Engineering,
University of Porto [47]. The toolchain supports networked heterogeneous air and
ocean vehicle systems [64], and is composed of the embedded operating system
GLUED, on-board software DUNE, shore-side control software Neptus and IMC,
the communication protocol which is shared by all components.

3.1.1.1 GLUED

GNU/Linux Uniform Environment Distribution (GLUED) is a minimal Linux distri-
bution targeted at embedded systems developed by LSTS. GLUED has the following
features:

• Cross compilation ready

• Small footprint - 10 MB

• Lightweight

• Fast boot time - 2-5 seconds depending on target system

• Easy to configure

• Portable to Intel x86, ARM and MIPS architectures

27
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GLUED is configured for a target system in a configuration file that is created
for each specific system. The configuration file specifies the system architecture,
network settings and which packages that will be a part of the target distribution.
The standard GLUED distribution contains only the packages necessary to run on
an embedded system, adding or removing packages is done through the configuration
file.

Finally, the distribution is usually cross-compiled for the target distribution, i.e.
building the binaries for a platform other than the one on which the compiler is run-
ning. This makes it possible to develop the software systems on powerful desktop
computers instead of working on the embedded system itself. This greatly decreases
the build time and completely removes the need for boot-loaders and kernel cus-
tomization.

3.1.1.2 IMC

Inter-Module Communication (IMC) is a communication protocol developed by
LSTS to be used in their toolchain. It defines a common control message set un-
derstood by all the vehicles, sensors and consoles [49]. The IMC protocol does not
impose or assume a specific software architecture for client applications. IMC al-
ready contains many different message types, but also has the ability for users to
easily add new and customized message types.

3.1.1.3 DUNE

DUNE: Unified Navigation Environment (DUNE) is an open-source on-board soft-
ware solution for unmanned vehicles [48]. It is a runtime environment used to write
generic embedded software in C++, and is responsible not only for every interaction
with sensors, payload and actuators, but also for communication, navigation, con-
trol, maneuvering, plan execution and vehicle supervision. It is designed to contain
multiple relatively small independent tasks running in separate threads of execu-
tion. They are all connected to an IMC bus where they can publish and subscribe
to messages for communication in between them, using the commands dispatch and
consume, respectively. This leads to a high degree of modularity, where new tasks,
like new sensors, actuators or controllers can be easily added, and old tasks can
be enabled and disabled freely. Messages passed to and from the bus are speci-
fied by the communication protocol IMC. DUNE provides an operating-system and
architecture independent platform abstraction layer.
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Figure 3.1: IMC message bus serving DUNE and Neptus

3.1.1.4 Neptus

Neptus is an open-source command and control software for a single or fleets of
unmanned vehicles and different types of non-actuated sensors [50]. Operators using
Neptus can observe real-time data of networked vehicles, review previous missions
and plan and simulate future missions. Independently of the main Neptus source
code, plug-ins can be developed using the Java programming language. This way
new components can be added without affecting the main program or having to
share the source code among developers. The main Neptus communication interface
is IMC.

A mission in Neptus is specified as a set of maneuvers and transitions between
them, forming a graph. This can for example be a set of waypoints, each containing
parameters such as three-dimensional position and speed. When connected with a
transition between those waypoints, they form a path. Missions can either be sent
to Neptus from DUNE using IMC over User Datagram Protocol (UDP), or made
within the program itself using the user interface.

Neptus provides three different types of simulations: software-in-the-loop (SIL) sim-
ulation, hardware-in-the-loop (HIL) simulation and behavior prediction. SIL simu-
lation is where sensor values and actuations are simulated with the help of one or
more simulated vehicles. To perform a test of actual vehicles, real sensors and/or
actuators, HIL simulation may be used. While a mission is being executed, Neptus
provides a rough behavior simulation of the vehicles currently disconnected from the
base station. Their states are predicted to aid the operator, especially in fleets of
vehicles with complex behavior.
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Mission execution in Neptus’ consoles enables operators to monitor vehicle execu-
tion, change or create new plan specifications, send plans for execution, operate
vehicles, etc. The user interface can be customized according to type or phase of
mission, type or number of vehicles, or other operator demands. By displaying only
the information the operator needs at every phase of the mission, it makes executing
even complex missions fairly simple.

After a mission is completed, it can be reviewed with Neptus Mission Review and
Analysis (MRA). Vehicles store mission data of both generated and received IMC
messages. Neptus MRA provides several visualizations and utilities to process and
export data, and decompress data into text files for later importation to programs
like ExcelTMand MatlabTM. Replays of entire missions can also be visualized.

3.1.2 Mission Planner

Mission Planner is part of the ArduPilot Mega (APM) open source autopilot project,
sponsored by 3DRobotics [3]. It is a ground control station application with similar-
ities to Neptus, but is specialized to work with the APM autopilots like APM:Plane.

3.1.3 MAVProxy

MAVProxy is a UAV ground station software package for MAVLink based systems
(such as APM) [79]. It differs mostly from Mission Planner by being only for UAVs
and that it is a command-line, console based app. Because of this it is much lighter
on CPU and memory usage.

3.1.4 APM:Plane

ArduPilot Mega Plane (APM:Plane) (formerly ArduPlane), is an autopilot firmware
running on Pixhawk [1]. The firmware gives a fixed-wing aircraft fully autonomous
capabilities with its functions such as three-dimensional waypoint handler, mission
planning and automatic take-off and landing on runways. It also provides different
possibilities for assisted flying with a combination of manual and automatic control
of the plane.

3.2 Hardware

This section presents the hardware components of the automatic landing system.
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3.2.1 UAV

The UAV chosen for the project is the X8 Skywalker seen in Figure 3.2, from Sky-
walker Technology. It is based on a flying-wing design, giving it excellent glide
performance as well as fast low-power cruise speed. The airframe is constructed
from molded expanded polyolefin (EPO) foam, making the frame very robust. It
has a large space within the fuselage, making it ideal for experimental payloads.

Figure 3.2: X8 Skywalker

The wingspan of 2120 mm allows for a maximum aircraft gross weight (AUW) of
3500 g. The UAV has to be fitted with the following components by the NTNU
UAV-Lab in order to be flyable:

TX Spektrum DX7s

RX Spektrum Remote Receiver SPM9645

Servo Hitec HS-5085MG

Motor Hacker A40-12S V2 14-Pole

ESC Master Spin 66 Pro

Propeller Aeronaut 13x8 folding prop.

Battery 2x Zippy Compact 4S 5000 mAh 25C

Autopilot 3DRobotics Pixhawk w/3DR uBlox GPS with

compass kit and airspeed sensor.

Telemetry link 3DRobotics radio (433 MHz) (VLOS operations) or

Ubiquiti Rocket M5 radio (5,8 GHz)(BLOS operations)
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3.2.2 Embedded Computer

The embedded computer in the UAV is the core of the automatic landing system,
and there are multiple requirements that have to be satisfied. Firstly, the embedded
computer has to be able to run the LSTS toolchain and RTK positioning algorithms
in real-time. Secondly, weight and size are key factors in terms of flight endurance
and payload capabilities, respectively. Furthermore, it must support the communi-
cation interfaces used by the peripheral components of the landing system.

The Pandaboard ES has been used in previous projects and theses at NTNU [73].
The Pandaboard has an OMAP4430 Dual-core ARM Cortex-A9 MPCore with Sym-
metric Multiprocessing (SMP) at 1 GHz each. It features 1 GB of low-power DDR2
RAM and a card reader for high-speed and capacity SD-cards.

Beaglebone Black

Weight: 39.68 grams

Pandaboard ES

Weight: 81.5 grams

4
.4

6
 cm

8.64 cm

10.01 cm
1

1
.4

3
 cm

Figure 3.3: Pandaboard and BeagleBone Black dimensions

An alternative to the Pandaboard ES is the BeagleBone Black seen in Figure 3.4. It
is a low-cost, open source community-supported development platform built around
the 1 GHz Sitara AM335x ARM Cortex-A8 processor from Texas Instruments. The
single Cortex-A8 processor is weaker in terms of computing power when compared
to the Pandaboard. It is however more than enough to run the software needed for
this project. It also features 69 GPIO pins, 5 serial ports and an I2C-bus, making
it ideal for experimental and prototyping applications. Another advantage is the
dimensions, seen in Figure 3.3, shaving of half the weight and freeing up valuable
space inside the fuselage compared to the Pandaboard.

Further information and complete specifications can be found at the BeagleBone
Black [6] and Pandaboard [61] specification pages.
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Figure 3.4: BeagleBone Black

3.2.3 Autopilot

The Pixhawk, seen in Figure 3.5, is an advanced autopilot system designed by an
open-hardware project and manufactured by 3DRobotics. It is based around a 32-bit
STM32F427 ARM Cortex M4-Processor and has an additional 32-bit STM32F103
co-processor as failsafe. The Pixhawk features a powerful internal sensor packet

• ST Micro L3GD20 3-axis 16-bit gyroscope

• ST Micro LSM303D 3-axis 14-bit accelerometer / magnetometer

• Invensense MPU 6000 3-axis accelerometer/gyroscope

• MEAS MS5611 barometer

in addition to an external airspeed sensor and GPS with integrated compass. The
Pixhawk also features connectivity options for additional peripherals through UART,
I2C and CAN interfaces. Complete specifications can be found at the Pixhawk au-
topilot specification page [4].



34 CHAPTER 3. SYSTEM COMPONENTS

Figure 3.5: Pixhawk from 3DRobotics



Chapter 4

Method

In this chapter follows a description of the overall system architecture as well as
design decisions and setup of all parts of the automatic landing system and later
experiments. Section 4.1 describes briefly how the whole system is connected, Sec-
tion 4.2 discusses ship motion prediction, Section 4.3 describes the designed landing
path, Section 4.4 describes the designed guidance and control system, Section 4.5
describes the setup for the software-in-the-loop landing simulations and Section 4.6
describes a system designed to facilitate for accurate navigation.

4.1 System Overview

The complete system overview is described pictorially in Figure 4.1. It is divided
into two main modules, the base station and the UAV. Communication between the
modules is done over a long range WiFi link provided by two Ubiquiti M5 Rocket
radios.

The base station placed on the landing ship consists of a base station computer,
a GPS receiver (uBlox EVK-6T) with a Novatel GPS-701-GG GPS antenna and
a telemetry link. All main data processing is done on the base station computer,
where Real-Time Kinematic Library (RTKLIB) (str2str) is used to interface the
RTK-GPS receiver and Neptus is used as the command and control software. To
allow ship motion prediction, the Euler angles of the ship needs to be calculated in
addition to the position obtained from the RTK-GPS. An inertial measurement unit
(IMU) or inertial navigation system (INS) can be utilized, e.g. a Pixhawk like the
one used for the UAV can be connected. DUNE is meant to perform the forecasting
at the base station.

The UAV has slightly different software and hardware compared to the base station.
The module is centered around the on-board embedded computer BeagleBone Black
running GLUED. DUNE is responsible for forwarding and calculating the RTK-GPS
solution using RTKLIB (rtkrcv). It also sends guidance commands to the Pixhawk
and arranges communication with the base station through the telemetry link. The
Pixhawk autopilot, containing both sensors and the autopilot software APM:Plane,
is responsible for control of the UAV, i.e. controlling the servos and engine. The
GPS receiver of the UAV is identical to that of the basestation, the uBlox EVK-6T,
but is connected to the smaller M1227HTC-A-SMA GPS antenna.

35
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Figure 4.1: Software and hardware architecture of the automatic landing system
with the base station to the left and UAV to the right

Below follows sections describing the design decisions and setup of all parts of the
automatic landing system, including the simulations for the experiments.



4.2. SHIP MOTION PREDICTION 37

4.2 Ship Motion Prediction

The reason for performing ship motion prediction in a UAV ship landing system is to
increase the chance that the planned position and orientation of the landing target
coincides with the actual case upon impact. If this is not the case, the UAV might
miss the target. Constantly updating the path according to the target’s current
pose may lead to oscillations for the UAV. This increases wear and tear. The UAV
will also lag behind the always updating path, hence the net will not be hit at the
optimal position and angle.

It is not expected that an algorithm will predict the ship motion exactly, but it
is expected that it is capable of predicting the motion to an accuracy where the
prediction will be of practical importance. When deciding which method to use
for ship motion prediction, several criteria are considered. It should be adaptable
to any ship or sea state. This means a method involving a specific system model
is undesirable. In addition, the system needs to handle nonlinearities. Due to the
roughness of the sea and unknown sensor specifications, the forecasting method
should also handle noise well.

Accurate prediction steps of up to 60 seconds for yaw and heave displacement is
advantageous for a safe and smooth transient to the updated path, with 30 seconds
as a recommended minimum. When performing forecasting during flight, the system
needs to be fast enough to not cause significant delays. This also applies to training
time if this is done on-line during flight.

The forecasting method considered to best meet the criteria is (MLP) ANN time
series forecasting. Based on collected time series, the system will predict certain
parts of the ship’s pose on impact. This involves a calculation of the estimated time
of arrival (ETA) to the net, which is briefly explained later.

4.2.1 Performance Measurements

When comparing different forecasting techniques, like varying network architectures
or other approaches, several performance measurements are used.

Performance measurements
• Training time
• Percentage of forecasting errors within a defined range
• Percentage of forecasting errors at peaks within a defined range
• Mean absolute error (MAE)
• Mean squared error (MSE)

Mean squared error (MSE) is the most commonly used performance measurement
for time series forecasting (like in [20, 37–39, 87]). It can be calculated using the
formula given in Equation 4.1, where N represents the total number of vectors in
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the data set. Similarly, the mean absolute error (MAE) can be calculated according
to Equation 4.2 (like in [37–39, 45]).

MSE = 1
N

N∑
n=1

(outn − targetn)2 (4.1)

MAE = 1
N

N∑
n=1
|outn − targetn| (4.2)

Another useful measurement is the percentage of errors within a certain limit (like
in [34–36, 89]), both for the whole test set and at all the peaks (local minima
and maxima). Looking specifically at the errors at all the peaks may be important
because these points are often the most critical and hard to predict correctly. Figure
B.3 in Appendix B.2 illustrates all the calculated peaks of a heave displacement
plot. The training time is also used to compare the forecasting methods (like in
[36]). This is the time it takes to completely train the forecasting method. It is
especially important when the system is trained onboard a computer with limited
computation power and when it needs to be trained/retrained on-line/inflight.

The data set used for calculating the forecasting performance related to forecasting
errors is new to the network; it is not used for neither training nor validation. This
way the generalization of the network is tested, instead of only how well it can learn
the training set.

4.2.2 ANN Time Series Forecasting

Because the UAV landing system is meant to work on any ship, independent on
ship design or changing sea states, on-line training of the ANN is preferred. This
means the network is not static, but gets retrained as new data is collected during
runtime. The reasoning behind this is that every ship moves differently in the sea,
and a system prepared for every wave, wind and current condition would either be
very big and complicated or too generalized. In addition, it is safe to assume that
the ship used for net landing will lie in the water for some time before performing
the landing, leaving time to collect enough samples for training.

For this thesis, a simple yet effective approach to on-line training is used. Instead
of retraining the network at every new sample, the system collects a batch of data
samples on-line before training the network with this data set. After some time, the
sea state may change due to a change in weather and/or the ship may have moved. It
is therefore wise to retrain the network periodically. The training window, meaning
the period of time where the training samples are collected from, is chosen to be the
last five minutes. Retraining can be performed every one minute, using a sliding
training window.
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The data that must be collected by the system is at least the same data to be
forecasted. For this thesis it means a minimum of heave and yaw motion. In
addition, by using data fusion, supplementary sensor information can be utilized.
An experiment with data fusion of heave, roll and pitch will later be presented. The
forecasting system needs to be connected to a position/orientation estimation unit,
like the Pixhawk with an attached GPS.

4.2.3 ANN Forecasting for Oscillations With Varying Mean

A large number of time series used in artificial neural network (ANN) forecasting
contains some kinds of oscillation. The mean around which it oscillates is often
a constant, like zero, but in some cases it is not known prior to execution or it
can even vary. One example is the yaw motion of a ship influenced by waves and
wind; it is an oscillatory motion, but around an unknown mean (0 − 360◦). This
may cause problems for the ANN when performing both training and execution of
time series forecasting, as it prefers the data to be centered around zero and to be
evenly scaled. In the following subsections an introduction to the problems will be
presented, followed by a novel set of solutions.
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Figure 4.2: Simple example of yaw motion for a wave influenced ship
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4.2.3.1 Problem Review

A shortcoming of ANNs is the problem of extrapolation described briefly in Subsec-
tion 2.3.1. ANN is a good tool for function approximation of the data given to the
network during training, but may fail if tested on data too different from what it
was trained for. For example, in the case of yaw motion of a ship, the network may
be perfectly trained for the yaw range 0 − 20◦. When this network receives inputs
in the range of 100− 120◦ instead, the network is not prepared for inputs this big.

As described in the background theory chapter, time series prediction using ANNs
is performed by collecting a given number of previous time samples into an input
vector, and training the network to predict the value m time steps ahead. The
general function for the back-propagation (BP) algorithm presented in Equation 2.7
gives us the following equation for weight adjustments in the first hidden layer (the
equation and following reasoning is based on Haykin’s book Neural Networks and
Learning Machines [29]):

∆w(1)
ji (n) = ηδ

(1)
j (n)xi(n) (4.3)

where ∆w(1)
ji is the weight adjustment for the weight in the jth neuron coming from

input i, xi. η is the learning rate and δ(1)
j is the back-propagated error at neuron j.

Focusing on all the weights connected to the jth neuron in the first hidden layer,
ηδ

(1)
j (n) will be constant. This means the algebraic signs of the different weight

changes, ∆w(1)
ji (n), will only vary if the signs of the individual inputs xi(n) vary.

Hence, if all the inputs are of the same sign, all weights connected to the same
neuron j will decrease or increase together. The problem with this is that the
weight adjustments loose freedom which leads to a less efficient updating process.
When the average input is shifted away from zero, there will be introduced a bias
in the update direction and thus slow down the learning. On the other hand, if
the mean of the input data is close to zero, more freedom is given to the weight
adjustments and consequentially faster learning is achieved.

From Equation 4.3 another conclusion about the inputs can be drawn. The bigger
the input xi, the larger the weight update ∆wji. If the input vectors in the training
set are unevenly scaled, meaning that it in some cases contains only small values
while in other cases only big values, an unbalance in the weight’s update rate occurs.
Scaling the inputs to become more even helps balance out the learning rate and thus
improves and speeds the learning.

In the general case, neural network training is often made more efficient by minimiz-
ing these mentioned problems with pre- and post-processing of the training data.
This means the entire set of training data is processed before entering the ANN, and
then reversed back to its original form as it is outputted by the network, as illus-
trated in Figure 4.3. After the training is done, new data entering and exiting the
network will be processed in the similar way and with the same parameters as when
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the network was trained. The following normalization is often used for preprocessing
of ANNs, and will result in a data set with zero mean and unit variance:

xi =

N∑
n=1

xi(n)

N
, σ =

√√√√√ N∑
n=1

(xi(n)− xi)2

N
, x′i(n) = (xi(n)− xi)

σ
(4.4)

where xi is the original data, N is the number of samples and x′
i is the normalized

data.

Input OutputPreprocessing
Artificial 

neural 
network

Post-
processing

Figure 4.3: Pre- and post-processing for an ANN

The main problem with the example of yaw motion for a ship is that, although it
oscillates around a mean, this mean may vary within the same training set, between
different training sets and/or from the training set to the test set. For example
(see Figure 4.2 above), an input set may consist of samples from a long period of
oscillations between −10◦ to 0◦ followed by a short period of similar oscillations
between 120◦ to 130◦. This renders regular normalization or scaling useless as the
input set, as a whole, may have zero mean and a well defined variance, but still
suffer from the problems highlighted above.

In this example, all of the data in the input vector will have the same algebraic sign;
all inputs are negative in the first period of −10◦ to 0◦, but positive in the second
period of 120◦ to 130◦. In addition, there is an unbalance in the scaling. In the
second period the yaw oscillates around a mean (125◦) that is 25 times larger than
the absolute value of that in the first period (5◦), while the amplitude remains the
same (5◦).

The same heuristic should also be applied to the outputs of all the hidden layers,
and is therefore a reason to why the hyperbolic tangent is a preferred activation
function for the hidden layers. Its output is evenly distributed around zero, between
−1 and 1.

4.2.3.2 Suggested Solutions

The problems presented above can be summarized into three main problems:

• Extrapolation during execution

• Different scales on the input vectors during training

• Overweight of one algebraic sign in the input vector during training
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To deal with these problems, originating from the fact that various input vectors
may have different means, a novel approach is introduced. When preprocessing the
data, instead of normalizing the entire data set or shifting all samples by the same
amount, each individual input vector and its corresponding target value is treated
individually. Five preprocessing methods are explained and compared in this thesis.

1. Unchanged - No individual processing applied

2. Mean - The mean of the input vector is subtracted

3. Median - The median of the input vector is subtracted

4. Current - The most current sample is subtracted

5. Normalization - Individual normalization is applied

The reasoning behind these methods is that by shifting all the individual input
vectors to lie around zero, all three main problems are to a large degree removed.
Concerning extrapolation, no matter what the original values were, the altered input
vector will now always be close to zero. Hence, the extrapolation problem due to
unexpected means of the input vectors is removed. If no individual preprocessing is
applied, the network has to be trained for a very wide range of possible means. When
the preprocessing methods presented above are applied, the network can specify its
training for values around zero.

During training there will also be a more evenly distribution of positive and negative
values for the inputs, and there will not be the possible huge scaling differences
between the different input vectors. It is important to notice that after training
of the network with preprocessing, the output will not be the final predicted value
directly, but first needs the preprocessing "reversed" with post-processing.

Below follows explanations of the five methods with accompanying figures.

Unchanged

The unchanged method does not do any processing on the data. This is used for
comparison purposes. Figure 4.4 illustrates a sine wave y = 5 sin(x) + 5 working as
the unprocessed example of the values in a single input vector.
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Figure 4.4: Unchanged example

Mean

When calculating the mean value of an input vector and then subtracting this from
each element, the new mean value of the modified input vector becomes zero. The
output of the network, meaning the predicted value m time steps ahead, will be the
deviation from the input vector’s mean.

This is a slightly indefinite concept for the neural network to learn, because the
prediction is not a deviation from a fixed input. How the different inputs relate to
the mean may vary. The most current sample may for example sometimes have the
same value as the mean, or in other cases be far off. Figure 4.5 illustrates the same
sine wave as displayed in Figure 4.4, but with the mean value subtracted.
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Figure 4.5: Mean processing example

Median

Subtracting the median value of the input vector guarantees the same amount of
inputs above and below zero, thus maximum freedom in weight adjustments is
achieved. There is no bias in the update direction that will slow down the learning.
The output of the network will in this case be the deviation from the input vector’s
median.

This method will in many cases look very similar to mean. It also has the same
problem of a changing relationship between the prediction and the different inputs,
as which input that has the median value will vary. Figure 4.6 illustrates the afore-
mentioned example sine wave with the value of the median input subtracted and
marked in red.
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Figure 4.6: Median processing example

Current

The current processing method is invented to avoid the problems of the two afore-
mentioned methods regarding which input becomes zero after subtraction. By sub-
tracting the value of the most current sample from the input vector, the output of
the network will always be the deviation from the currently newest sampled value.
Hence, there is a more constant relationship between the inputs and the output.

When the most current sample is subtracted, the input corresponding to this sample
will always be zero (usually the last element in the input vector). Hence, this element
can be omitted as input to the network with no loss of information. This presupposes
that no other processing is later done to the inputs, which is often done by default
when using neural network packages like the one for Matlab. The same reasoning
could have been used for median, but there is only guaranteed to be a zero input
when the number of inputs is odd, and even then which input becomes zero varies
according to where the median is.

The downside of the current processing method compared to the two aforementioned
is that there is only a guarantee that the last element in the input vector becomes
zero. The rest of the vector may for example contain only large all positive elements,
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leading to the problems previously described. In practice, this method will lead the
input vectors to be more even in size than unchanged, as large biases are canceled
out by the subtraction. There is also a higher chance that the modified input vector
will be better distributed around zero than it originally was. Figure 4.7 illustrates
the sine wave example with the value of the most current sample subtracted and
marked in red.
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Figure 4.7: Current processing example

Normalization

Normalization is the processing method where each individual input vector is nor-
malized, and its training target and the network output also needs to be normalized
and de-normalized, respectively, using the same parameters. Unlike the other meth-
ods that only shifts the inputs by a certain amount, normalization also scales the
inputs. This means not only a close to evenly distribution between positive and
negative inputs, but also that all input vectors are scaled to lie in the same range.
Depending on the normalization method, the input vector will either get a specific
variance, e.g. the unit variance example in Equation 4.4, or be normalized to the
same range, e.g. between −1 and 1.
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Considering the theory discussed earlier, normalization processing method should
yield the fastest training. On the other hand, when the individual normalization
process has made all the input vectors this similar, it is very hard for the ANN to
find the characteristics that gives a certain target output. Figure 4.8 illustrates the
sine wave after normalization to {−1, 1}.
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Figure 4.8: Normalization processing example

For all the last four methods, the extra computational time caused by the pre- and
post-processing is not discussed, as it is neglectable compared to the training time.
Another small additional cost of using these methods is the parameters needed
to be saved from pre- to post-processing, input vector to prediction output. For
mean, median and current, one parameter needs to be temporarily saved; what was
subtracted from the input vector needs to be added to the predicted output. For
normalization, two parameters must be temporarily saved to reversely perform the
de-normalization of the output.

An interesting problem only discussed briefly here is the problem of heading mea-
surements around 0/360◦. This may lead some values in the unchanged input vector
to be right above 0, while others are right below 360. In reality they belong to the
same continuous motion spanning only a few degrees, but the discontinuity at 0/360◦
leads to problems for the ANN. A solution is to not normalize the heading when it
passes 360◦, but this may not be possible. Marinkovic and Markovic [51] proposes
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a solution for preprocessing of data entering an ANN that involves transformation
to polar coordinates. The same problem occurs when using the range ±180◦.

4.2.4 Estimated Time of Arrival

When using the technique of motion forecasting for ship-net landing it is important
to know the estimated time of arrival (ETA) to the landing net. Uncertainty in the
ETA may in the worst case render motion forecasting useless as ETA is the value
used for the prediction step.

The simplest calculation of ETA is done using the linear distance to the target
divided by the current speed towards it. This follows from the basic physics equation
of time as a function of distance and speed [69]:

Total time = total distance
average speed (4.5)

Instead of the linear distance, the length of the remaining path can be used when
this is known. This stresses the importance of a flyable path, which increases the
chances of the planned path equaling the actual trajectory being flown. The speed
value will be more accurate if filtered, e.g. with a low-pass filter or averaging over
a predefined time period. If the speed is planned to be altered along the path, like
being lowered before net impact, this should be included into the average speed
calculation.

The frame of reference for the speed should also be considered. Airspeed is relative
to the air or wind, while ground speed is the horizontal speed relative to the ground.
If ground speed is used, only the horizontal part of the path should be used for total
distance. When using the total remaining path length for distance calculation, speed
relative to the three dimensional path needs to be considered.

For reasons of simplicity, the rest of this thesis related to forecasting assumes a
perfectly calculated ETA, while the ETA used during landing simulations is already
implemented in DUNE as:

ETA = norm(∆x,∆y)
norm(vx, vy) (4.6)

where ∆x and ∆y are the longitudinal error and cross-track error respectively, re-
lated to the straight line path from the previous to the next waypoint. vx and vy
are the horizontal and vertical speed respectively.

4.3 Landing Path

The UAV is supposed to fly and land on open water. Hence, it is assumed no
obstacles in the landing path other than the water below, i.e. path planning in
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obstacle free space. Since there are no obstacles to take into account, deliberative
path planning is used. The only variables needed to know when planning the landing
path is the location and orientation of the net, and the height of the UAV when
landing is executed.

Waypoints will build the basis for the landing path. It is divided into three phases:
approach, glideslope and final approach (FA). In the approach phase the goal is to
place the UAV at a distance sufficiently far away from the net to ensure it has time
to descend down to the net’s height. It also makes sure the UAV is on a straight line
perpendicular to the landing net. When entering the glideslope phase, the altitude
decreases with a constant rate. After the altitude is sufficiently decreased and the
UAV is close enough to the net, the FA phase begins. Its task is to make sure
the UAV converges straight into the middle of the net at a certain vertical angle of
attack and at a low speed.

A problem may arise if the guidance laws have a large acceptance radius around the
waypoints or if there is a position error making the autopilot believe it has reached
the last waypoint before it actually hits the net. To ensure the autopilot does not
prematurely finishes but keeps aiming at the center of the net all the way through
it, another waypoint is added on the other side of the net as an extrapolation of the
path in the FA phase.

A decoupled approach to path planning is used where the lateral and longitudinal
paths are described separately, but combined together they give a complete three-
dimensional path.

4.3.1 Lateral Path

The main objective is to make sure the UAV lands safely in a net. It needs to be
able to do this from any initial in-air position. The lateral path only consists of
straight lines. This is because there are no obstacles or time constraints needed
to be taken into account. A straight line into the net is the easiest for the UAV’s
guidance and control systems to follow. The straight lines are normal to the net,
with the exception of the initial line from the current UAV position to the beginning
of the lines leading into the net. Figure 4.9 illustrates an example path.

The length of the approach phase is chosen to be long enough for the UAV to con-
verge onto the straight line path before glideslope starts. This is necessary because
the lateral path is not flyable due to the sharp turn leading into the approach phase.
There will be oscillations, but the approach phase assures they are eliminated before
entering glideslope.
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Figure 4.9: Lateral path example

4.3.2 Longitudinal Path

The longitudinal path defines the desired height along the lateral path. In the
context of this path, all mentions of height are in the meaning of height above the
ground level (ship deck) on which the net stands.

For simplicity, the desired height is constant from the initial position all the way
through the approach phase. This is because the approach phase is only meant to
align the UAV horizontally. The desired height is set to equal the actual height of
the UAV at the moment the land command is requested by the operator, as long as
this is above a safety height. During glideslope the goal is to loose altitude as fast
as possible. The descend angle is a function of the maximum descend rate of the
UAV. FA has a constant vertical angle of attack ensuring a safe landing into the net.
Figure 4.10 and Table 4.1 gives a description of the longitudinal path consisting of
straight lines.

Because the rate of the desired height changes multiple times along the path, and
possibly changes close to the net when FA starts, it is important to ensure a flyable
path. The straight line path in Figure 4.10 is not flyable as it has discontinuities
in its first derivative, meaning there will be sudden jumps in the desired climb rate
(height derivative). This will lead the UAV to overshoot the desired path as it does
not manage to change desired climb rate instantaneously.

The APM:Plane autopilot system takes said desired climb rate as input. Hence, the
longitudinal path should be continuous in its first derivative, resulting in no sudden
changes in the desired climb rate. A Dubins path solves this problem by connecting
the straight lines with constant-curved segments. This way the tangent of the path
will change in a smooth manner. The only parameter needed for this design is the
maximum curvature bound.
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Figure 4.10: Longitudinal straight line path. Description of variables in Table 4.1

To make a path fully flyable, continuity in the second derivative is also required to
avoid curvature discontinuities. Due to the rough conditions when flying a UAV
outdoors and the fact that the low-level controller only takes climb rate as input,
making the path continuous in the second derivative does not have any practical
significance. Because of its simplicity and that it is proven to be the shortest path
connecting two poses in the presence of a maximum curvature bound, Dubins path
is chosen as the basis for the longitudinal path.

The radius of the circles connecting the straight lines is inversely proportional with
its curvature, and the curvature is limited to not being greater than the maximum
curvature bound of the UAV. This ensures that the desired change of climb rate is
not happening faster than the physical limitations of the UAV. Figure 4.11 illustrates
an exaggerated example of such a path. The UAV will follow the straight lines until
it reaches a circle. It then switches to follow the circumference of this circle until
a new straight line segment is reached. To find the desired climb rate required to
follow this path, the derivative is calculated (Figure 4.12). This derivative represents
the ratio between the horizontal ground speed and the vertical speed, meaning that
the desired climb rate is ground speed multiplied with the Dubins path derivative.

The maximum curvature bound is not necessary constant as it in addition to the
maximum aileron/elevator deflection also is a function of variables like airspeed
and wind [22]. Therefore, the optimal/fastest switching between the straight lines
requires on-line calculation of the circles radii. For this landing system there is
no strong requirements for optimality around the intermediate waypoints. Since
the distances between the waypoints are also controlled, a constant and common
radius for all circles can be set. This radius needs to ensure that both the bound
on maximum curvature is never breached and that the circles are small enough to
switch between the straight line segments in time for the next waypoint.
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Table 4.1: Description of variables mentioned in Figure 4.10

Variable Brief description
h0 Vertical distance from center of the net to the aiming point
h1 Vertical distance from center of the net to where FA starts
h2 Relative height of the UAV above center of the net, measured at the

execution of the land command
d0 Horizontal distance from the net to the aiming waypoint, making sure

the UAV keeps flying all the way "through" the net
d1 Horizontal distance from the net to where FA starts
d2 Horizontal length of the glideslope phase
d3 Horizontal length of the approach phase, ensuring enough distance for

the UAV to align properly before glideslope begins
α Angle of attack on net impact
β Descend angle during the glideslope phase
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4.3.3 Dynamic path

Because the UAV is supposed to land on a ship, the net can not be expected to
be static. As the ship rotates, the path should rotate along with it. Movements in
surge, sway and heave should also be followed by adjustments of the landing path.
If this is not done, the net pose upon impact may vary enough from the original
pose to make the UAV miss it and crash.

As discussed in details later, ship motion prediction may be used to predict where
the ship will be when the UAV reaches the net. Together with a dead zone around
movement changes, this ensures the path does not need constant updates for every
small movement.

When an update of the path is desired, a new path is constructed based on the
calculations from the old one. The waypoints already reached are omitted, while the
remaining ones are rotated according to the change of ship heading, and translated
according to the change of position. To make sure the UAV aligns on the straight
line going through the updated waypoints, and new waypoint is added at almost the
same distance from the net as the current position, but on the line perpendicular to
the net.

initial pos.

update
requested

N

E

Figure 4.13: An example of a dynamic path with an update requested during the
approach phase

Figure 4.13 demonstrates the new lateral path when a large update of the heading
and position of the net is requested during the approach phase. The longitudinal
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path will be shifted up or down according to the heave displacement.

4.3.4 Evasive Maneuver

If there is a big risk the UAV will miss the target when approaching the landing net,
the landing should be aborted in time to avoid a possible accident. Below follows
the criteria used to evaluate it the risk of missing is too high. These criteria will
be evaluated only from FA is entered, as the UAV may have time to correct itself
further away from the net.

Criteria for evasive maneuver
• Cross-track error exceeds ±1 m
• Altitude error exceeds ±1 m
• Course over ground vs. heading exceeds ±45◦
• RTK-GPS solution quality below 1
• Ignore evasive maneuver

The above criteria and following explanations are a further development of the
criteria found in the NTNU MSc thesis by Skulstad and Syversen [73].

Cross-track error

The net used as landing target is 5 m wide, while the wing span of the X8 UAV
is 2.1 m (as described in Subsection 3.2.1). This gives less than 1.5 m from the
horizontal edges of the net to the tip of each wing. From this a cross-track error of
less than ±1 m was chosen as a criterion for successful landing.

When deciding if the cross-track error criterion is violated, several samples are ex-
amined. An evasive maneuver is only executed after 5 consecutive violations at a
sampling rate of 10 Hz. This is because it may be noise in the position data, like
RTK-GPS "spikes" leading to short temporary "false" errors. Another reason for not
ordering an evasive maneuver based on a single sample is to give the UAV time to
correct the error.

Altitude error

The net height is 3 m, but the height of the X8 is minimal. This leads to slightly less
than 1.5 m from the edges to the UAV, giving ±1 m as a criterion. Similar to the
cross-track error, 5 consecutive violations are required for an evasive maneuver to be
ordered. The reasoning for this is the same as previously described in "Cross-track
error".
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Course over ground vs. heading

When there is a strong crosswind, the course over ground (COG) will differ from
the UAV’s heading and the heading of the net. If the difference between the COG
and UAV heading is larger than 45◦, the UAV will hit the net wing first. To avoid
stress on the UAV fuselage this should be avoided.

Figure 4.14: Course over ground vs. heading - NE plane, from [73]

The same sampling technique and reasoning as described in "Cross-track error" is
used. A wind gust may cause a temporary large difference between COG and UAV
heading, but the series of samples avoids an immediate execution of an evasive
maneuver.

RTK-GPS solution quality

Quality of the RTK-GPS positioning solution is measured by the ambiguity resolu-
tion (AR) ratio. Any value above zero means it has sufficient information to start
position estimation. Skulstad and Syversen [73] considers an AR ratio below one
to give a too large standard deviation of the position estimate, concluding that the
value should be above one. For the rest of this thesis, the RTK-GPS solution quality
is not considered. More information on AR ratio can be found in said paper.
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Ignore evasive maneuver

There may be reasons to ignore an evasive maneuver and force landing. If the UAV
has a low battery level it may not be able to do an evasive maneuver and initiate
a new landing. In this case it is better to land with a small violation of some of
the evasive maneuver criteria and risk damaging the fuselage, than to loose power
over open water and risk damaging valuable payload or possibly loose the UAV
completely.

In situations with damaged equipment or extreme weather conditions there may be
some criteria that are always violated. To ensure automatic landing is still possible
and not constantly aborted by the system, it is important to have the option of
ignoring a request for an evasive maneuver. The choice to ignore an evasive maneuver
could be decided by the system, e.g. by monitoring the UAV battery level or after a
number of consecutive failed landing attempts, but it is safer to have it as an option
for the operator.

A last reason to ignore an evasive maneuver request is if the distance from the UAV
to the net is too short to properly complete the maneuver. What may originally
have been only a small deviation a second away from the net may lead the UAV too
try a steep climb and sharp turn in an attempt to follow the evasive plan, but due
to the limited time lead to a crash into the net edge or the boat. In these cases, it
is better to continue aiming at the center of the net. To allow enough time for a
proper evasive maneuver (including computational delay and servo delay), a request
will be ignored if issued later than an estimated time of arrival of 4.0 seconds. This
"time of arrival factor" is tested experimentally later in Subsection 5.2.5.

4.3.4.1 Evasive Maneuver Path

The purpose of the evasive maneuver is to abort/reset a landing sequence and avoid
a possible crash with the boat or water. To ensure this, the requested path when
an evasive maneuver is ordered involves both a steep climb and a quick turn at the
same time.
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Figure 4.15: Lateral path after an evasive maneuver is ordered during FA

4.4 Guidance and Control System

This section presents all the guidance systems and controllers implemented to en-
sure a secure landing for the UAV. The autopilot software APM:Plane supports
a decoupled approach where the longitudinal dynamics (forward speed and climb
rate) can be commanded separate from the lateral dynamics (roll angle). By using
this approach, two high-level guidance systems can be implemented independently
in DUNE, while taking advantage of the built in low-level controllers in APM:Plane.

An easier option would be to send waypoint commands straight to APM:Plane,
leaving it to deal with both guidance and control. Preliminary SIL experiments
were performed to evaluate this option. Because this thesis focuses on the final
UAV landing system, little focus is placed on the implementation and execution
of the preliminary experiment, other then a brief explanation found in Appendix
A.1.1. It also contains plots illustrating the performance of the APM:Plane height
controller when it receives the five waypoints directly.

The conclusion from the waypoint test is that the UAV altitude is not controlled in a
sufficiently good manner to be used for UAV net landing; it has a constant deviation
from the desired path, and the desired path generated by APM is itself infeasible for
the UAV to follow. The great advantage of controlling the desired climb rate and
roll angle directly, as opposed to only demanding a set of waypoints, is that more
control is gained over the actual trajectory taken by the vehicle. Hence, this is the
method used for the rest of this thesis.



4.4. GUIDANCE AND CONTROL SYSTEM 59

4.4.1 Lateral Guidance

The first lateral guidance system tested was a controller named Aerosonde, based
on a paper by Niculescu [59]. It was implemented in DUNE by E. Marques, R.
Bencatel and F. Ferreira from University of Porto, Portugal. The input to this
controller is a set of waypoints, and the output is a bank angle. This is the desired
input-output architecture for the lateral guidance system, but Aerosonde does not
have any proper means to compensate for constant disturbances like wind or a small
drift. This means it in some cases has a small deviation from the desired straight
line path between two waypoints. Appendix A.1.2 illustrates a preliminary SIL
simulation using this controller, and demonstrates how it in lateral direction leads
to both oscillations and a constant deviation from the desired path. There was no
wind during the simulation.

To ensure disturbances are compensated for and the lateral path is followed closely,
integral action can be added. An integral line-of-sight (ILOS) guidance law based
on a paper by Caharija et al. [13] was chosen. It is LOS guidance with an additional
integral term. Originally it was designed and tested for ship control, but it can easily
be used for UAVs after some tuning. The DUNE implementation was done by W.
Caharija from University of Porto, Portugal. In Appendix A.2 the ILOS tuning
values are listed.

A problem with the implemented ILOS guidance law is that it outputs desired
course, while the low-level controller in APM:Plane expects desired bank. There
is no direct conversion for this as it is for course rate to bank angle. Therefore,
a new intermediate bank-to-turn (BTT) controller was designed to convert course
into bank.

The BTT controller was designed using a PID. Appendix A.3 presents the PID
tuning values in addition to a step response plot from a straight line test. The whole
lateral guidance system is designed based on successive loop closure [7]. Figure 4.16
illustrates a simplified version of the successive loop closure for lateral guidance.
The outer most loop is the ILOS guidance system that takes the path as input and
outputs commanded heading based on UAV position updates. Commanded course
enters the BTT-PID controller in the middle loop together with measured course
angle. It outputs commanded roll angle to the APM:Plane low-level controllers in
the inner most loop. Measured roll angle is also an input her, and the output is
commanded aileron deflection for the UAV.

Separation of bandwidths is important when using successive-loop-closure design.
This involves the inner loops having higher bandwidths than the outer. When
the inner loop is adequately tuned with a high frequency, the outer loop may see
it as a single unit gain. Hence, after tuning the inner loop, the outer loop can be
designed and tuned independently. For the lateral guidance system used, this means
that the PID controller can be tuned independent of the controllers in APM:Plane,
considering the bandwidth separation is high enough. At the same time, the PID
needs to be fast enough to not affect the ILOS.
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Figure 4.16: Simplified successive loop closure for lateral guidance

Because the lateral guidance system is designed as a modular system, where the
ILOS and BTT controllers are designed and tuned independently, the outer guidance
block can be changed with any controller that outputs desired course angle.

4.4.2 Longitudinal Guidance

When choosing the height controller, a preliminary SIL simulation was performed
on a sliding mode controller already implemented in DUNE by R. Bencatel and
J. Fortuna, called Height. It takes waypoints as input and sends climb rates to
APM:Plane. A plot of the height from the simulation can be found in Appendix
A.1.3.

The controller proved insufficient to make the UAV follow a predefined path. This
is because it works like set-point regulation. Instead of following a smooth path
between the waypoints, the UAV tries to reach the height defined by the next way-
point as fast as possible, and keeps that height until the waypoint is reached. This
makes it hard to ensure the net is reach at a specific vertical angle of attack. In
addition, there will normally be an overshoot at every new set-point because the
UAV enters the waypoints with a low vertical angle, demanding an instantaneous
change of climb rate.

To gain more control over the vertical trajectory taken by the UAV and the angle at
which it enters the net, a new height controller was implemented. Instead of using a
guidance system to follow fixed set-points or straight lines between the waypoints,
like for lateral guidance, a controller was implemented to be able to follow the
feasible longitudinal Dubins path described in Section 4.3.

Since the input to APM:Plane should be commanded climb rate, and that climb
rate is the time derivative of height, the new controller can use the derivative of
the longitudinal path. The path is defined as desired height at specific distances
from the net, not with time as the x-axis. Thus, to get desired climb rate from the
path derivative, it needs to be multiplied with the current ground speed. In an ideal
scenario where the UAV starts at the correct height given by its path, it should be
sufficient for the height controller to always output the current path time derivative
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in order to follow the path perfectly. Mainly because of disturbances, this will not
work in practice.

The new height controller has a novel proactive design based on the derivative of
the desired path, but with a PID part in addition. Fundamentally, the regular PID
controller is for set-point regulation. By letting the set-point vary with the desired
height from the path, it can be used for path following. The derivative of the desired
height lays the foundation for the controller output, but the PID makes additional
adjustments based on the height error. Algorithm 2 presents a simplification of the
height controller.

initialize PID tuning values Kp, Ki and Kd;
loop

[altitude, position, speed] = getUAVEstimates();
altitudeDesired = getAltDes(position);
error = altitudeDesired - altitude;
integral = integral + error*∆t;
derivative = (error - prevError)/∆t;
prevError = error;
lookahead = speed*lookaheadTime;
climbRateRatio = getAltDesDerivative(position-lookahead);
climbRateDesired = speed*climbRateRatio;
climbRateDemanded = climbRateDesired +
(Kp*error + Ki*integral + Kd*derivative);
climbRateDemanded = saturate(climbRateDemanded);
climbRateDemanded = antiWindup(climbRateDemanded);
dispatch(climbRateDemanded);

end
Algorithm 2: Proactive PID controller for height

The benefit of not only basing the controller on PID is that it reacts faster when
the path changes. Instead of waiting for the reaction from an increase in the height
error, the desired climb rate will react directly to the change of the desired height
derivative.

Nevertheless, the controller will still have limitations. Most prominent is probably
the lag time [22]. This is a small time delay from the issuing of a commanded climb
rate to the actual execution, caused by computational delay and physical constraints
like the discussed curvature discontinuity. It will make the UAV lag behind at the
circle segments of the Dubins path. The solution is to not use the current desired
height derivative as the foundation for the controller output, but the desired height
derivative at a forward sighted lookahead time, outweighing said time delay. This is
illustrated in Figure 4.17. Thus, the PID controller becomes proactive. It intervenes
to outweigh the lag time and prepares for the expected change in desired climb rate.
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Figure 4.17: Demonstration of the lookahead distance for the proactive PID con-
troller

Control of the UAV during the approach phase, with zero desired climb rate, com-
pared to the glideslope/FA phase, with a negative desired climb rate, may require
different tuning values. Appendix A.4 presents the PID tuning values for the height
controller, with different gains for approach and descend, but with the same values
for min/max climb rate, anti-windup and the PID lookahead time described above.

Speed control is done in APM:Plane using a controller called Total Energy Control
System (TECS) [5]. It receives a new desired speed as a set-point at every waypoint.
When the UAV hits the net, its propeller should already have quickly stopped and
folded in order not to damage either the net or the UAV. This is ensured by designing
the longitudinal guidance system to dispatch a brake message, called IMC::Brake,
at a tunable ETA.

4.4.3 APM:Plane

The autopilot software for the Pixhawk, ArduPilot Mega Plane (APM:Plane), is
used for low level control of the UAV. This is by using the flight mode called Fly-
By-Wire B (FBWB). It is a mode for assisted flying where the UAV holds a roll



4.5. LANDING SIMULATION, SOFTWARE-IN-THE-LOOP 63

angle and altitude/climb rate specified by the users control sticks when using a
remote control transmitter [2]. In DUNE there is an ArduPilot task that converts
roll angles and altitude rates into the pulse-width modulated (PWM) signals that
resembles what APM:Plane would normally have received from the corresponding
moves of the control sticks. All communication between DUNE and APM:Plane
is done through the ArduPilot task, and the guidance and control system designed
in this thesis is made to use the unaltered version of this task in order to ensure
modularity.

By using the FBWB mode, low-level controllers in APM:Plane are utilized, while
the high-level guidance laws can be implemented in DUNE for increased control.
An overview of the software architecture is illustrated pictorially in Figure 4.18
below. The feedback needed from the Pixhawk is both the estimated position and
attitude of the UAV. Based on the defined path and the feedback received from
the Pixhawk, the guidance task calculates a desired climb rate and roll angle, in
addition to sending desired speed.

The design of the automatic landing system is made modular to be able to use the
unaltered version of APM:Plane. This means the Pixhawk can easily be updated
to another version or changed with another hardware/software, as long as it can
handle the desired roll angle and climb rate that the guidance system dispatches.
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Figure 4.18: Software architecture for climb rate and roll angle guidance
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4.5 Landing Simulation, Software-In-the-Loop

Simulations allow extensive testing and tuning of the landing system without risk of
damaging valuable equipment by prematurely testing in the real world. The UAV
is meant to use the Pixhawk autopilot system. Therefore, tests of the controllers
utilized by the Pixhawk, APM:Plane, are performed. Instead of doing a hardware-
in-the-loop (HIL) simulation for UAV landing, software-in-the-loop (SIL) simulation
was chosen. The reason for this is that a SIL simulation is much simpler to perform,
while still using the same controllers as if a HIL simulation was performed. Thus,
both the performance of the controllers and feasibility of the flight path can in large
be concluded from this simpler test. In addition, there would not have been possible
to perform a thorough enough HIL simulation to make a big difference. Sensor and
actuator data would have had to be simulated and fed to the Pixhawk using the
MAVLink protocol, instead of UART and I2C as the real system uses. This implies
additional time delay and processing for the Pixhawk, rendering the HIL simulation
unrealistic.

4.5.1 Simulation Softwares

To perform SIL simulations, an additional software to the ones described in Sec-
tion 3.1 is needed. The simulation software of choice is Jon S. Berndt Simulator
(JSBSim).

JSBSim is an open source, platform-independent, software library conceived in 1996
[8]. Its purpose is to be a lightweight, non-linear, six-degree-of-freedom (6DOF)
simulation application that is aimed at modeling flight dynamics and control for
aircraft. This flight dynamics model is a good tool for preforming SIL and HIL sim-
ulations, as it defines the movements of the aircraft under the forces and movements
applied to it from both control mechanisms and simulated nature.

Many different softwares need to work together to perform the APM:Plane SIL
simulation. This is summarized pictorially in Figure 4.19. DUNE is the software
responsible for handling of guidance, and feeds desired climb rate, roll angle and
speed to the APM:Plane controller. This is done through a task called ArduPilot
Task which includes low-level drivers for communication with the APM autopilot
softwares. It is also responsible for forwarding of messages between APM:Plane and
Neptus to display updated information about the UAV.

DUNE uses IMC messages both internally and when communicating with Neptus
through UDP. This is similar to when DUNE is running on the payload computer
and Neptus is running on the base station computer, with communication through a
telemetry link. APM:Plane also uses UDP to communicate with JSBSim, the flight
dynamics simulator. To initialize the UAV and give commands to Neptus, either
MAVProxy or Mission Planner can be used. MAVProxy was used for this simulation
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because it is lighter on CPU than the alternative. It connects to APM:Plane using
the MAVLink protocol.

DUNE

JSBSimAPM:PlaneArduPilot
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UDP
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MAVLink UDP

UDP

IM
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Figure 4.19: System architecture of the APM:Plane SIL simulations

4.5.2 Neptus Automatic UAV Landing Plug-In

To make it easier for an operator to request an automatic UAV landing, a new
plug-in was developed for the command and control software Neptus. It allows the
operator to define where the landing net is placed by either marking it directly on a
map or by entering latitude and longitude coordinates for a more accurate placing.
In addition, all the other settings defining the landing path can be changed by right
clicking and selecting Settings from the appearing context menu, as showed in Figure
4.20. This includes net orientation, descend and attack angle, ignore evasive option
etc. All the changeable parameters can be seen in Figure 4.22, showing the settings
menu. When the net is placed, it appears as an arrow on the map that makes it easy
to inspect both the position and orientation of the net, before and during landing.
The net arrow is illustrated in Figure 4.20.

When the net is placed, the settings are changed and the operator wants the au-
tomatic landing to start, the operator right-clicks anywhere and selects Start land
plan from the appearing context menu. Actions will then be taken to automatically
generate and execute the landing path. If the net heading gets updated during
landing, i.e. dynamic path, the arrow representing the net on the map will rotate
correspondingly.
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Figure 4.20: Neptus plug-in context menu (right-click) and net arrow icon

The plug-in is represented by an icon that is made to resemble the arrival signs seen
at airports. This helps making it easy for new operators to recognize the landing
plug-in. Figure 4.21 shows how the icon appears in the Neptus plug-in menu.

Figure 4.21: Plug-in menu with land icon marked in a red circle
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Figure 4.22: Neptus plug-in parameter settings menu
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4.5.3 Landing Path Implementation

The landing path is calculated in DUNE, but receives the fundamental settings of
the path from the Neptus plug-in. An operator only needs to be concerned with
the Neptus plug-in. Below follows a description of the program flow for the new
DUNE implementation made for processing of the landing path, which is illustrated
in Figure 4.23.

All the landing parameter information is sent with an IMC message over UDP from
Neptus to the DUNE task Plan.Generator_DubinsPath. The message type used is
a standard message type called IMC::PlanGeneration, with the path settings added
as parameters. When Plan.Generator_DubinsPath receives this message, it uses the
parameters to calculate all the waypoints and the Dubins path.

The lateral path (and desired speeds) are defined only using waypoints, as it is a
straight line path. Waypoints in DUNE are defined by the message type IMC::Goto.
The longitudinal path, meaning the Dubins path, is calculated on the basis of way-
points, but with information about the position and size of the circle segments
calculated in addition. All the Dubins path information is later retrieved with a
get-function by the height controller, that utilizes it to calculate both the desired
height and desired climb rate at every distance from the landing net.

To construct a landing path from individual waypoints, they are collected in a
list of the type IMC::MessageList<IMC::Maneuver>, where IMC::Maneuver is a
super-class that includes IMC::Goto. This maneuver list is transformed into an
IMC::PlanSpecification, and in the end into an IMC::PlanDB. This is the waypoint
path message being dispatched from the task Plan.Generator_DubinsPath. Other
tasks in Neptus and DUNE consumes this message to make sure that the plan is
displayed in Neptus and to guide the UAV.
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DUNE

Plan.Generator_DubinsPath

- Consume
-> IMC:PlanGeneration

- Convert into waypoints
-> IMC:Goto

- Convert into path
-> IMC:MessageList

- Convert into plan spec.
-> IMC:PlanSpeification

- Convert into plan database
-> IMC:PlanDB

- Dispatch plan

Neptus

Landing plug-in

- Define setting
- Create and dispatch

-> IMC:PathGeneration

DUNE Neptus

Real-time monitoring

- Consume
-> IMC:PlanDB

ArduPilot

- Consume
-> IMC:PlanDB

Guidance

- Consume
-> IMC:PlanDB

Figure 4.23: Overview of the landing path generation process
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Dynamic path implementation

Since the ship motion simulator is in Matlab while the UAV flight simulator is
in JSBSim, they are decoupled and can not be used together. To simulate a
change in the predicted ship pose, leading to a change in the landing path, the
new net pose message is sent manually. From Neptus it is sent as the IMC mes-
sage type IMC::DeviceState using the already present Neptus tool IMC Message
Sender illustrated in Figure 4.24. This message is received by the newly made
DUNE task Plan.DynamicLanding. The message is defined to contain the predicted
displacement in the net position and the predicted net orientation. Further, an
IMC::PlanGeneration message with id land_dynamic is automatically dispatched
from Plan.DynamicLanding to Plan.Generator_DubinsPath, where the old path is
updated and processed as previously explained. Figure 4.25 demonstrates a simplis-
tic view of the program flow.

Figure 4.24: The Neptus tool IMC Message Sender

Ship motion prediction

- Predict net pose
- Create and dispatch

-> IMC:DeviceState

DUNE

Plan.DynamicLanding

- Consume 
-> IMC:DeviceState

- Create and dispatch
-> IMC:PlanGeneration

Plan.Generator_DubinsPath

- Consume 
-> IMC:PlanGeneration

- . . . 
- Dispatch plan

Figure 4.25: Overview of the dynamic landing path generation process
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4.6 Accurate Navigation

When landing in a net there is a relatively small position error tolerance. Regular
navigation using Global Navigation Satellite System (GNSS) have to expect several
meters of position error. Far more accurate navigation with the use of low-cost RTK-
GPS systems is an ongoing research area, where students at the NTNU UAV-Lab
are researching both standalone systems (Piksi [76]) and calculations done in DUNE
(RTKLIB [77]), with and without IMU integration. The theory behind RTK-GPS
and DUNE integration is omitted in this thesis, but interested readers are directed
to a 2015 NTNU MSc thesis by Spockeli [75].

When the Pixhawk is used as autopilot system, it has a regular GPS receiver con-
nected to it for position estimation. To fully take advantage of the increased RTK-
GPS position accuracy that can be calculated in DUNE, a soft- and hardware setup
was developed as part of this thesis to directly connect the calculations to the Pix-
hawk. By connecting a cable from the embedded computer running DUNE to the
GPS input connector on the Pixhawk, it can process the incoming signal as it would
with any other GPS receiver. This means no alterations of the Pixhawk software is
needed, and it can easily be replaced with other autopilot software and/or hardware
systems.

Figure 4.27 presents a picture of the Universal Asynchronous Receiver/Transmitter
(UART) cable that was made to connected to the Pixhawk. In the other end it
is connected to a computer running a DUNE task created to consume RTK-GPS
messages (or other navigation messages), convert it to a National Marine Electronics
Association (NMEA) format and finally send the command over UART to the Pix-
hawk. The NMEA format used is GGA. This is the most common GNSS sentence
that includes 3D location and accuracy data. For more information about NMEA
and the GGA sentence the interested reader is directed to the NMEA web page [60].

The new task that was created, called Sensors.RtkGps2UartGps, takes advantage of
a DUNE NMEA parser when setting all the parameters defining the GPS message.
After the correct sentence is created, a serial port DUNE class is utilized to construct
and send the GPS sentence over UART to the Pixhawk.

The described setup has been tested with a HIL simulation, which strongly resem-
bles the SIL simulation described in Section 4.5. The difference is that the autopilot
APM:Plane now runs on the physical Pixhawk, similar to during real flights, instead
of on a desktop computer. Figure 4.26 presents a simplified flow chart of the simula-
tion setup. The processing done in JSBSim, Neptus and the Pixhawk is unchanged
compared to what was described in Section 4.5, while the DUNE task and physical
connection between the task and the Pixhawk is what is new in this test.

A UAV was simulated on a desktop computer using JSBSim. Through a USB cable
it communicates with the autopilot software (APM:Plane) on the Pixhawk. The sim-
ulated position of the UAV was consumed as a regular GPS message (IMC::GpsFix)
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JSBSim (desktop)

UAV Simulator

DUNE (desktop)

Sensors.
RtkGps2UartGps

Pixhawk (external)

APM:Plane
Position Estimator

Neptus (desktop)

UAV Real-Time 
Observer

Figure 4.26: Flowchart of RTK-GPS-Pixhawk HIL simulation. Software from the
desktop computer (desktop) is connected to the external Pixhawk autopilot (exter-
nal)

by the newly made DUNE task Sensors.RtkGps2UartGps, converted to the correct
NMEA-GGP format and sent from another USB port on the desktop computer to
the Pixhawk using the custom made UART cable. A RTK-GPS IMC message is
under development at the NTNU UAV-Lab, and will eventually replace the GPS
message currently being consumed. As JSBSim moved the UAV, the correct po-
sition was successfully received by the Pixhawk from DUNE, and forwarded back
through DUNE to Neptus that displayed the movements in real time.

When the Sensors.RtkGps2UartGps task was modified to always send a constant
GPS position to the Pixhawk, ignoring the simulator that continued to dispatch
messages of UAV motion, it was verified using Neptus that the Pixhawk thought
the UAV had stopped at that position. This ensures that there were no connection
errors in the HIL simulation, as the Pixhawk successfully received the static UAV
position message through the UART cable, independent of the position message
dispatched by JSBSim.

The conclusion is that the presented method provides a solution for how accurate
navigation calculated in DUNE (like with RTKLIB) can be sent to the Pixhawk
autopilot system without any need for alterations in the latter’s software. The
only thing needed is to run the DUNE task Sensors.RtkGps2UartGps and connect
a UART cable from the embedded computer to the GPS input connector on the
Pixhawk.
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Figure 4.27: RTK-GPS-Pixhawk integration



Chapter 5

Experimental Testing

This chapter presents the experiments performed and results obtained through vari-
ous simulations for time series forecasting in Section 5.1 and UAV landing in Section
5.2.

5.1 Time Series Forecasting

This section presents tests and discusses results from experiments of the time series
forecasting methods presented in Section 4.2. This includes both the general case
of ANN forecasting in the presence of oscillations around a varying mean, and ANN
ship motion prediction of yaw and heave based on simulated data.

For all computations, Matlab version 8.3.0.532 (R2014a) computer package with
the neural network toolbox version 8.2 was used. To incorporate the time series
forecasting with the rest of the UAV landing system, ANN can be implemented in
DUNE from scratch or using a C/C++ library.

5.1.1 Forecasting Criteria

When forecasting the yaw and heave motion of the ship for UAV landing, a predic-
tion step of up to 60 seconds is advantageous, with 30 seconds as a recommended
minimum. As a measurement to evaluate this ability, the following performance
criteria are used:
Performance criteria
• Training time is situation dependent (on-line/off-line training)
• 90% of heave displacement predictions within 0.25 m
• 90% of heave displacement peak predictions within 0.25 m
• 90% of heading predictions within 5◦
• 90% of heading peak predictions within 5◦
• Mean absolute heave displacement prediction error below 0.15 m
• Mean absolute heading prediction error below 3◦

When performing off-line training, the training time is to a large degree irrelevant.
On the other hand, when training is decided to be done on-line, the time spent
on a single training run is important in two ways. If training takes too long, the
fully trained network will at worst already be outdated due to severe changes in the

75
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weather conditions. In addition, since forecasting methods like ANN does not have
an intuitive optimal architecture for all situations, a short training time may give a
forecasting system the chance to test multiple architectures on-line and retrain.

The performance criteria for heave displacement is based on the fact that a too high
allowed error may lead the UAV to miss the net. At the same time there are already
many sources of error making a too low heave prediction error criterion unnecessary,
like navigation error, guidance error and error in the estimated time of arrival to the
landing net. To compensate for this the landing net already has a size that gives
the UAV a safety zone in both horizontal and vertical direction.

The heading plays an important role in the desired path for the UAV landing into
the net. Influenced by waves, wind and current the heading of the ship may change
while the UAV is descending towards the net. If the heading of the ship changes
without updating the landing path, the UAV may miss the ship or hit parts of the
ship standing in the way of the new acute angled path towards the rotated net.

In addition, if the net orientation changes, the target area of the net becomes smaller.
The horizontal width of the projected net area can be calculated as a function of
the horizontal angle of approach according to Equation 5.1:

Wp = Wnet × cos(α) (5.1)

where Wp is the projected width, Wnet is the actual net width and α is the angle
between the normal of the net and the approach angle.

The heading of a ship with limited actuations does generally not move that many
degrees in a minute. Even though it may oscillate due to waves, these oscillations
usually have a low amplitude. The performance criteria set for heading prediction is
relatively low, although a UAV landing system could handle a larger heading error.

5.1.2 Oscillations Around a Varying Mean

To demonstrate clearly the problems discussed in Subsection 4.2.3.1, a test is per-
formed on the yaw motion example depicted in Figure 5.1. It is a sine wave with
constant amplitude of 5◦, oscillating first around a mean of −5◦, before rising to a
mean of 125◦ following a sigmoid curve. The exact equation and implementation
can be seen in Listing B.1 in Appendix B.1.

Including the standard no-processing method used as reference, the following novel
solutions presented in Subsection 4.2.3.2 will be tested:

• Unchanged

• Mean

• Median

• Current
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Figure 5.1: Simple yaw motion, split into training set (300 seconds) and test set
(200 seconds)

• Normalization

All the five ANNs constructed for the different methods have the same settings,
only varying the pre- and post-processing. The prediction step is 10 seconds ahead,
and 4 samples from the previous 8 seconds are used as inputs to the network. In
the only hidden layer there are 5 hidden nodes. All nodes have the linear acti-
vation function, including the single output neuron. The training method used is
Levenberg-Marquardt back-propagation, which is an offspring of the BP algorithm
described in Subsection 2.3.1.4. For more information about the Matlab implemen-
tation of the training algorithm, the reader is directed to its web page [53].

Figure 5.2 illustrates a combined plot of the outputs from the five ANNs, together
with the target function. It is evident from this figure that the unchanged method,
meaning the one with no pre- and post-processing, does not manage to sufficiently
approximate the underlying function and perform time series forecasting. On the
other hand, all the other methods perform well. Detailed information about the
performance can be found in Table 5.1. Several alternative network configurations
have also been tested, like changing the number of hidden nodes and activation
functions in the hidden layer, but the results are always similar.

Focusing on the performance of the four most effective methods, median and current
gives the smallest error, mean follows just behind and normalization has a slightly
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Figure 5.2: ANN test on a simple yaw motion, demonstrating performance of dif-
ferent methods. Mean, median, current and normalization are almost completely
overlapping on top of the target function

larger error, albeit still functioning well. This coincides with the theory presented
in Subsection 4.2.3.2. The first three methods only shifts the values in the input
vector, while the latter also scales the values. The additional scaling makes it harder
for the ANN to distinguish the differences in the input vectors, hence reducing the
forecasting performance.

The training time of the unchanged method is more than 2.5 times more than that
of the second longest training time. This confirms the theory presented about how
data spread around zero and more evenly scaled data speeds up the training process.
Normalization has the lowest training time, as all values in the input vectors gets
normalized to lie between -1 and 1. Mean and median are almost having the same
effect of spreading the values in the input vector around zero. Current is not as
effective in this as the previous three methods, hence the training time is slightly
longer.
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Table 5.1: Results from simple yaw motion test

Methods Training
time [s]

Errors
within 5◦
[%]

Errors
at peaks
within 5◦
[%]

MAE [◦] MSE [◦]

Unchanged 0.390 16.8 16.1 14.89 278.129
Mean 0.125 100.0 100.0 0.998 1.600
Median 0.125 100.0 100.0 0.957 1.517
Current 0.148 100.0 100.0 0.959 1.523
Normalization 0.117 100.0 100.0 1.022 1.722

5.1.3 Discussion - Oscillations Around a Varying Mean

Because the setup with no preprocessing does not compensate for the varying mean,
the neural network does not manage to cope with oscillations around a mean it has
not been trained for. This is the problem of extrapolation. For all other processing
methods, the values in the input vectors are altered to be less dependent on the
original mean.

The conclusion of this test is that the extrapolation problem of unknown means
is significant, but it can be reduced with some easy pre- and post-processing of
the training and test data. All processing methods presented as possible solutions
worked well for this constructed exampled, with median and current giving the
smallest error.

Training time was also greatly affected by the different methods, with the unpro-
cessed data slowing down the training time notably. Normalization gave the lowest
training time, followed by mean and median. This supports the earlier presented
theory.

5.1.4 Ship Simulation

To ensure results that are applicable in the real world, efforts have been made to get
good data for the forecasting tests. The choice fell on the Marine Systems Simulator
(MSS) toolbox for Matlab/Simulink R© developed by Fossen and Perez [25]. It is used
to simulate a six degrees of freedom (6DOF) ship influenced by waves and current.

The waves generated are based on an International Towing Tank Conference (ITTC)
[32] spectrum type. Figure 5.3 illustrates a depiction of the sea state realization,
and demonstrates the complexity of the waves. Significant wave height is 3 meters.
Other settings used for the wave simulation can be found in Appendix B.2.

The ship models used are based on parameters from either a 175.0 m long container
ship called ShipX: S175 or a 82.8 m long supply vessel called ShipX: Supply Vessel
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Figure 5.3: Simulated sea state realization, generated from MSS [25]

[23]. Further details of the ships can be found in Appendix B.2. For an introduction
to the MSS toolbox the reader is directed to a paper by Perez et al. [63].

From the simulated ship models all of the 6DOF variables and their derivatives are
observable, often referred to as the vectors η and ν [24]. The variables used in
the following forecasting experiments are heave, roll, pitch and yaw. Figure B.2 in
the appendix illustrates the power spectrum density (PSD) for the heave motion of
ShipX: S175, describing how the power of the signal is distributed over the different
frequencies. It has a wide peak centered at 0.1 Hz (0.63 rad/s), meaning that
the most common period of the heave motion is about 10 seconds, albeit it is not
constant.

In Section 4.2 a batch on-line training method was proposed. The training window
was suggested to be 5 minutes. To replicate this forecasting setup during experi-
ments, only the five first minutes (300 seconds) of the simulated data set is used for
training. The separate test set used for performance measurements is the next 1000
seconds, following from where the training window ended. Using a test set that big
ensures a good basis for performance measurements.
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Figure 5.4: Yaw motion of the simulated ship S175

5.1.5 Ship Heading Prediction

This test tries to predict the future heading of ShipX: S175 using ANN. A section
of the heading or yaw motion is illustrated in Figure 5.4. To give the UAV time to
react properly and converge safely onto the newly recalculated path with an updated
angle of approach, the prediction step should be far ahead. A prediction step of 60
seconds is tested. If this test is successful, the capability of shorter prediction steps
follows as a consequence.

Subsection 5.1.2 above demonstrated with a simple example how no pre- and post-
processing of the training and testing data may lead to failure in ANN forecasting.
This is now tested on the more realistic data set. All the same processing methods
are used.

The ANN architecture has many parameters to vary:

• Processing method

• Sample frequency

• Number of inputs

• Number of hidden layers

• Number of hidden neurons
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• Activation functions

Because time series forecasting is a form of function approximation, linear activation
functions in both the hidden and output layer is recommended. Other activation
functions, like the hyperbolic tangent, could also have been used for the hidden
layer. From a test performed on the simulated data, with results illustrated in
Appendix B.3.1, it can be concluded that the linear activation function yields better
performance for all the processing methods.

The number of inputs used as basis for further tests is chosen to be 10, with a sample
frequency of 0.5 Hz. This gives the ANN samples from the previous 20 seconds.

Following Cybenko’s theorem, only one hidden layer is used. Thorough testing
shows that each method reacts differently to the number of hidden nodes. Figure
5.5 depicts a section of the results from a test where the number of hidden nodes
was varied from 1 to 6. For the figure including unchanged and normalization, see
Figure B.4. Each ANN variation (5 × 6) was ran 20 times, with the median value
of those runs saved for performance comparison. The reason for doing multiple
trials and taking the median is that ANN training is prone to local minima and
every training ends up with slightly different network weights. To ensure a result
that best captures the general performance, without being influenced by extremal
values, median is a good method.
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Figure 5.5: Ship heading prediction with different methods and numbers of hidden
nodes. Only results for mean, median and current are presented
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Looking at the computed training time, the time it takes to train the ANN on the
training set, it is evident that the number of neurons also has a large impact for
this. Figure 5.6 illustrates how the training time more than triples for all but one
method when going from 2 to 3 hidden neurons.
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Figure 5.6: Training time for different methods and numbers of hidden nodes

The result of the tests shows that the optimal numbers of hidden neurons with
regards to MSE are: 3 for unchanged, mean and current, 5 for median and 6 for
normalization. If training time is highly important in the scale of less then half a
second, which is not the case for the UAV landing system, one should limit the num-
ber of hidden neurons to a maximum of 2. For more detailed results see Appendix
B.3.

Using the optimal settings found from the above tests, comparison of the forecasting
performance for the different processing methods is performed. In Table 5.2 both
the MAE and training time is presented for the 5 methods. All methods manages
to predict the ship’s heading 60 seconds ahead of time with an average error less
than 0.3 degrees. A reason for the low errors is the slow movements of the ship’s
heading. It is still evident that mean, median and current outperforms unchanged
with a factor of about 1

2 , in addition to also having a lower training time.

An example of the actual forecasts made by the ANN using the median method is
illustrated in Figure 5.7 together with the corresponding target value.
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Table 5.2: Ship heading prediction for 60 seconds

Method Training time [s] MAE [◦]
Unchanged 0.546 0.288
Mean 0.530 0.143
Median 0.476 0.143
Current 0.452 0.142
Normalization 0.374 0.185
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Figure 5.7: Ship heading prediction test using processing method median

5.1.6 Ship Heading Prediction - Supply Vessel

Due to the large size of the ship in the previous test, the heading changed very
slowly. This test will use the smallest ship available for the MSS ship simulation,
82.8 m long ShipX: Supply Vessel. This is both to see if the performance criteria
can be met with faster changes in the heading, and to test the capabilities of the
presented ANN processing methods as forecasting tools for various ships. Figure 5.8
illustrates the simulated yaw motion.

Based on knowledge gained from the previous tests, the ANN settings are as follows:

• Prediction step: 60 s

• Processing methods: All (5)
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Figure 5.8: Yaw motion of the simulated supply vessel

• Sample frequency: 0.5 Hz

• Time range used for inputs: 60 s

• Number of hidden layers: 1

• Number of hidden neurons: 5

• Activation function: Linear

• Training time range: 300 s

• Test time range: 1000 s

After 20 trials for every processing method, the median of the MAE and training
time were calculated and is presented in Table 5.3. Figure 5.9 illustrates an example
of forecasting when using processing method current.

Even though the mean absolute error is about 1.4◦ for most of the processing meth-
ods and 100 % of the predicted values are within 5◦ of their target, the performance
in Figure 5.9 looks somewhat inaccurate. It is important to keep in mind the added
random nature of this simulation, i.e. the parts which no forecasting technique can
predict.
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Table 5.3: Ship heading prediction for 60 seconds, supply vessel

Method Training time [s] MAE [◦]
Unchanged 0.437 1.635
Mean 0.398 1.304
Median 0.382 1.305
Current 0.390 1.214
Normalization 0.390 1.407
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Figure 5.9: Ship heading prediction test for supply vessel using processing method
current
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5.1.7 Discussion - Ship Heading Prediction

The proposed prediction system managed to predict the simulated ships’ heading
with a low prediction error well within the criteria. This was for a prediction step of
60 seconds, and the only information required by the system was ship motion data
gathered from the last five minutes. This was used to train the ANN.

The proposed pre- and post-processing methods all led to lower errors and shorter
training times than the unchanged method with no individual processing of the data
vectors. This finding is similar to the one from Subsection 5.1.3. Of all the methods
tested, current stood out as the best alternative for ship heading prediction.

5.1.8 Heave Displacement Prediction
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Figure 5.10: Heave motion of the simulated ship S175

When landing on a ship it is important to take into account the vertical movement
of the landing target, called heave displacement. Figure 5.10 illustrates a section
of the heave motion of the simulated ship used for the coming experiments, ShipX:
S175. Depending on the size of the waves, the amplitude of the heave displacement
may be big enough to make the UAV miss the landing net, i.e. fly over or crash into
either the boat beneath the net or the water. To minimize this risk, a system for
prediction of the landing target’s heave displacement will be tested based on ANN.
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Prediction is done in multiple steps. It is reasonable to assume that longer prediction
steps will have greater errors. Weather conditions may change, measurement noise
propagates with time and the estimated time of arrival (ETA) may be wrong. As
the UAV approaches the net, the predicted heave displacement on impact will be
updated. The prediction steps used are 5, 10, 20, 30, 40, 50 and 60 seconds. Because
the heave displacement varies more and is more critical than the yaw motion, more
prediction steps are tested. This is also to inspect the different ANN architectures
needed for different prediction steps.

Because the heave motion of a ship already oscillates around zero, there is not the
same need to preprocess the data going into the ANN. The methods used in the pre-
vious experiments are therefore omitted in the following tests, only the unchanged
data is used. As with ship heading prediction, the linear activation function was
found to give best results. Figure 5.11 illustrates how the linear function (pure-
lin) outperforms the activation functions hyperbolic tangent (tansig), log-sigmoid
(logsig) and radial basis (radbas).
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Figure 5.11: Heave displacement prediction MSE for different numbers of hidden
neurons and different activation functions

To further investigate the optimal number of hidden nodes, a test with the prediction
steps 10-60 s in 10 s intervals were tested with the number of hidden neurons varying
from 1 to 10. It is clear from this test, as seen in Figure B.5 in the appendix, that
an increase in the number of hidden neurons does not decrease the MSE noticeably
in any of these cases. Hence, only one is used for the rest of this experiment.
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When deciding the number of inputs it is chosen indirectly by adjusting two other
parameters; the sampling frequency and the time range back in time that’s sampled
from. Each prediction step may have its own optimal combination, meaning for
every step a test is preformed varying both parameters. A thorough test with 10
runs for each combination was conducted where the number of training vectors was
300 and the number of test vectors was 500. The prediction steps 5 second ahead
and 10-60 s ahead in 10 s intervals were all examined. The different time ranges
sampled from was the previous 6 s and previous 10-120 s in 10 s intervals, and the
sampling frequencies tested were 0.5, 1.0, 1.5, 2.0, 4.0, 6.0 and 8.0 Hz. This means
the number of inputs to the network ranged from 3 (6 s × 0.5 Hz) to 960 (120 s ×
8.0 Hz) samples.

The performance measure used for comparison is the percentage of predictions within
0.25 meters of the target value. Table 5.4 presents the minimum input parameter
combinations necessary to obtain 90 %, 95 % and 100 % of errors within 0.25 meters
for each prediction step. Figure B.8 in the appendix presents the plot used to find
the optimal combinations for the 60 seconds prediction step. A conclusion from
looking at all the plots from these tests is that, in general, the accuracy of the
prediction increases both with an increasing sampling frequency and an increasing
range backwards in time that is sampled from.

Table 5.4: Prediction steps with their necessary combinations of input time
range/sampling frequency

Prediction step [s] Min. 90 % within
0.25 m [s/Hz]

Min. 95 % within
0.25 m [s/Hz]

100 % within 0.25
m [s/Hz]

5 6/0.5 6/0.5 6/0.5
10 6/0.5 10/0.5 20/0.5
20 20/0.5 40/1.0 80/2.0
30 50/1.0 60/2.0 50/8.0
40 70/1.0 120/1.0 40/8.0
50 70/0.5 80/2.0 80/8.0
60 120/1.0 120/1.0 120/4.0

Using the knowledge gained from all the preliminary tests above, evaluation of heave
displacement prediction is performed. Performance measurements from tests on var-
ious prediction steps are presented in Table 5.5. The ANN architecture parameters
used in these tests are for all prediction steps linear activation functions and 1 hid-
den neuron. The two input parameters used are based on the column in Table 5.4
containing the parameters that gave minimum 95 % of the predicted values within
0.25 meters of the target value.

To demonstrate the performance of the ANN forecasting system, Figure 5.12 and
5.13 illustrates two sections of predicted values 10 and 60 seconds ahead, respectively.
It is clear that for the data set used, it is possible to perform satisfactory heave
motion prediction 60 seconds ahead with a mean absolute error less than 10 cm.
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Figure 5.12: Heave displacement prediction 10 seconds ahead
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Figure 5.13: Heave displacement prediction 60 seconds ahead
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Table 5.5: Final test with different steps for heave displacement prediction

Prediction
step [s]

Training
time [s]

Within
0.25 m [%]

Within
0.25 m at
peaks [%]

MAE [m] MSE [m]

5 0.281 100.0 100.0 0.045 0.003
10 0.257 98.6 98.4 0.089 0.012
20 1.170 96.7 93.1 0.098 0.015
30 1.388 93.3 87.7 0.114 0.020
40 1.318 93.3 90.5 0.110 0.019
50 1.357 93.0 88.2 0.117 0.021
60 1.373 96.6 93.7 0.097 0.014

5.1.9 Heave Displacement Prediction - Data Fusion

To test if a better forecasting result is possible, data fusion is tested. In addition to
the described heave and yaw motion of the ship, the waves will also affect the roll
and pitch movements. Because the yaw motion to a large degree can be influenced
by control of the ship, it is not used for fusion. Similar to heave motion, the roll and
pitch motions are affected almost exclusively by the waves. Hence, they are suitable
for data fusion with heave.

As input to the ANN there will be an equal amount of samples from heave, roll and
pitch, while the output target is still only the heave displacement. Like the previous
test, 300 input vectors in the training set and 500 in the test set were used. Only
linear activation functions are used and there is only one hidden neuron. Table 5.6
displays the minimum input parameter combinations necessary to obtain 90 %, 95
% and 100 % of errors within 0.25 meters for each prediction step. Figure B.9 in the
appendix presents the plot used to find the optimal combinations for the 60 seconds
prediction step in the data fusion case.

Table 5.6: Prediction steps, data fusion, with their necessary combinations of input
time range/sampling frequency

Prediction step [s] Min. 90 % within
0.25 m [s/Hz]

Min. 95 % within
0.25 m [s/Hz]

100 % within 0.25
m [s/Hz]

5 6/0.5 6/0.5 6/0.5
10 6/0.5 10/0.5 10/1.0
20 20/0.5 30/0.5 30/1.0
30 20/0.5 30/0.5 30/1.5
40 20/1.0 40/1.5 −
50 20/1.5 30/4.0 −
60 30/1.5 30/4.0 −

The results from tests with the input parameter combination that gave minimum
95 % of the errors within 0.25 meters are presented in Table 5.7.
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Table 5.7: Final test, data fusion, with different steps for heave displacement pre-
diction

Prediction
step [s]

Training
time [s]

Within
0.25 m [%]

Within
0.25 m at
peaks [%]

MAE [m] MSE [m]

5 0.140 100.0 100.0 0.043 0.003
10 0.172 99.0 98.4 0.083 0.010
20 0.671 96.4 96.8 0.102 0.016
30 0.858 96.0 95.7 0.097 0.015
40 1.092 97.4 98.5 0.106 0.017
50 8.159 93.6 96.0 0.118 0.019
60 4.602 94.2 100.0 0.106 0.018

When comparing the performance achieved from this data fusion test (Table 5.6)
with the standard test using only the heave time series (Table 5.4), it is evident that
input samples from a smaller time range is needed when using data fusion. To get
a minimum of 95 % of the errors within 0.25 meters, samples from no more than 40
seconds backwards in time is needed, compared to up to 120 seconds required for the
standard test. A major advantage of looking at a smaller time span is that, because
real life weather is highly dynamic and always changing, possibly obsolete old data
is excluded and only the most recent data is used for forecasting. A disadvantage
with data fusion is that for this data set it is hard to achieve 100 % of the errors
within 0.25 m for long prediction steps.

Looking at Table 5.5 and Table 5.7, a comparison of the training times for the
standard test and data fusion test, respectively, can be made. Data fusion requires
samples from three sensors, but from a much smaller time range. The tests show
that the training time for a prediction step of 5 to 40 seconds is less for data fusion
than for the pure heave time series. On the contrary, for a prediction step of greater
than 50 seconds, data fusion leads to a longer training time.

5.1.10 Heave Displacement Prediction - Added Noise

In the above tests it is assumed that all the values are measured perfectly. When
using the system with data collected in real time from sensors on board a ship,
there will always be some degree of measurement noise. To see how well the ANN
predictors constructed above will cope with this, noise is added to the data used.
Only the target values of the test data are retained original, as the predicted value
should be compared with the true value, independent of measurement noise.

The noise added to the data is random values from a normal distribution with zero
mean and a standard deviation depending on the standard deviation of the different
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data sets. The formula for the normal distribution is:

xi =

N∑
n=1

xi(n)

N
, σ =

√√√√√ N∑
n=1

(xi(n)− xi)2

N
(5.2)

y = f(x|sσ, µ = 0) = 1
sσ
√

2π
e

−x2

2(sσ)2 (5.3)

where xi is the original data, N is the number of samples, s is the scaling factor for
the standard deviation σ and y is the normal probability density function, i.e. the
function describing the relative likelihood for a random variable x to take a specific
value.

The scale factor used for the normal distributed noise is s = 0.1, meaning 10 % of
the data’s standard deviation is added as noise. This results in sσheave = 0.026 m,
sσroll = 0.028◦ and sσpitch = 0.056◦. An example of how this noise influences the
heave data can be seen in Figure 5.14.
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Figure 5.14: Heave data plus added noise

Heave displacement prediction for a prediction step of 30 seconds is tested for both
the standard and the data fusion approach. The ANN architecture discussed in their
respective subsections that gave 95% of the errors within 0.25 meters is used. Table
5.8 presents the median result after 20 runs.
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Table 5.8: Heave displacement prediction, 30 seconds prediction step. With and
without added noise

Prediction
approach

Training
time [s]

Within
0.25 m [%]

Within
0.25 m at
peaks [%]

MAE [m] MSE [m]

Without noise:
Standard 1.927 95.2 91.8 0.111 0.018
Data fusion 0.827 95.2 94.1 0.104 0.018
With added noise:
Standard 0.655 88.0 73.5 0.130 0.025
Data fusion 0.499 91.4 87.2 0.121 0.023

When noise is added to the training set and the test input vectors, data fusion gives
the best results for all the performance measurements. Data fusion also experiences
the least performance degradation with noise added. This demonstrates that the
data fusion approach to ANN heave displacement prediction is more robust than
the standard approach.

One reason may be that for all time steps used as inputs, data fusion takes three
samples (heave, roll and pitch) with independent measurement noise. Because the
noise from the three samples are uncorrelated, they will generally push the ANN
prediction in different directions (e.g. higher or lower heave displacement). Com-
bined, the three samples will to some degree cancel each others effect out, hence
making more accurate predictions than with only one noisy sample.

It is interesting that the training time is reduced drastically in both cases even
though the only change is that noise is added. In the general case, noisy data may
help the ANN to both generalize better (avoid over-fitting) and easier escape from
local minima during training. This is because noisy data leads to a noisy estimate
of the true gradient in the training algorithm, helping the network to jump out of
the local minimum and move into a better minimum. This helps reassure that the
training time will not be a problem for a real life on-line system.

5.1.11 Discussion - Heave Displacement Prediction

ANN has proven a successful forecasting tool for heave displacement of the simulated
ship. Prediction steps of up to 60 seconds have been tested and found feasible within
the given performance criteria. As with ship heading prediction, no other prior
information is required than the automatically logged ship motion from the last five
minutes.

Different prediction steps require different ANN architectures for optimal perfor-
mance. In the general case of heave displacement prediction, only one hidden layer
and one hidden neuron is necessary, only linear activation functions should be used
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and more samples from a larger time range generally leads to better performance.

Two reasons for not to always use the maximum sampling frequency and largest
time range available are training time and over-fitting. The execution time for
a single prediction once the ANN is fully trained will also be negatively affected
by the increasing number of inputs, as more inputs leads to more computations
being necessary when making a new prediction. Despite this, when considering the
relatively low number of inputs discussed in these tests and the time requirements
for the UAV landing system, the execution time for a prediction will always be small
enough to be neglected (in the order of 10 milliseconds).

When comparing ANN settings that gave approximately the same prediction errors,
the data fusion approach was found to generally need less training time, require a
shorter time range of previous samples and be more robust to measurement noise
compared to the standard heave time series approach. The only exception was at the
longest prediction steps (50 and 60 seconds) where the same maximum performance
obtained with standard prediction was not achieved using data fusion.

5.2 UAV Landing - Software-In-the-Loop (SIL)

To test the capability of the landing system’s guidance laws and controllers, SIL
simulations are performed according to what was described in Section 4.5. During all
simulations the initial landing path is similar. In Appendix C.1 follows both a table
presenting all the values used to define the waypoints and a table presenting their
calculated latitudes, longitudes and heights. The necessary landing net information
gets sent from the developed Neptus automatic landing plug-in, and in DUNE the
complete landing path gets created according to Subsection 4.5.3.

Before landing is initiated, the UAV is manually set to take off and loiter (flying in
a circle motion). To ensure easily comparable simulations where the UAV initiates
landing at approximately the same place every time, the same loiter path settings
are always used, summarized in Table C.3 in the appendix. Figure 5.15 illustrates a
simplified version of the static landing path with the loiter circle drawn with dotted
line.

Review of the performance is done using Neptus MRA and Matlab. MRA allows
data collected during execution of the landing to be exported to Matlab, where code
has been developed to calculate and plot information like comparison of desired
and estimated altitude, cross-track error and the trajectory projected onto the East-
North plane.

Below follows tests of UAV landing with both a static and dynamic target/net. Sim-
ulated weather conditions are also varied to examine the robustness of the guidance
laws and controllers, and the ability to perform an evasive maneuver is evaluated.
All tests are performed 5 times each to give enough samples to say something about
the general performance.
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Figure 5.15: Example of lateral landing path with the added loiter circle

5.2.1 Landing Criteria

To evaluate if a simulated net landing is successful, a set of landing criteria is used.
The performance is measured at the moment of impact with the position of the
simulated net.
Criteria for successful net landing
• Cross-track error less than ±1 m
• Altitude error less than ±1 m
• Course over ground vs. heading less than ±45◦

All criteria and supporting explanations can be found in Subsection 4.3.4 "Evasive
Maneuver".

5.2.2 SIL Simulation - Static Path, No Wind

To tune and investigate the feasibility of the guidance systems and controllers, the
initial test is with a static net and no wind disturbance.

Plots of the desired path and flown trajectory from a single flight can be seen in
Figure 5.16 and 5.17 in longitudinal and lateral direction respectively. When landing
is initiated, the UAV is already in the air. The approach phase contains some vertical
oscillations and divergence from the desired path because of insufficient tuning. This
thesis mostly concerns performance when descending in the FA phase and not during
horizontal flight.

Figure 5.18 and 5.20 illustrate the altitude- and cross-track error, respectively, of the
10 last seconds for 5 different flights. During the entire 10 last seconds before net
impact, the altitude error is within ±1 m and the cross-track error is within ±0.5 m
for all five flights. Error plots for the entire landing sequence can be found in Figure
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Figure 5.16: Altitude plot of one flight, static path - no wind

5.20 and Appendix C.3. Due to no wind, the COG and heading are approximately
equal. This satisfies all the successful net landing criteria.
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Figure 5.17: Lateral trajectory plot of one flight, static path - no wind
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Figure 5.18: Altitude error of 5 flights, 10 last seconds, static path - no wind
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Figure 5.19: Cross-track error of 5 flights, static path - no wind
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Figure 5.20: Cross-track error of 5 flights, 10 last seconds, static path - no wind
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5.2.3 SIL Simulation - Static Path, Wind and Turbulence

For a more realistic test, wind and turbulence was added to the simulation. Wind
speed was set to 6 knots (3 m/s) going north with a turbulence of 0.5 knots. This
gives a tail and crosswind during landing that is reasonably strong considering the
light weight of the X8 UAV. Appendix C.4 presents plots of the resulting varying
wind speed and wind direction.

Plots of the height error and cross-track error from the landing of five flights can
be seen in Appendix C.4, while Figure 5.21 and Figure 5.22 below only illustrates
the 10 last seconds before net impact. Figure 5.23 illustrates the difference between
COG and heading for the UAV during the entire landing sequence.
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Figure 5.21: Altitude error of 5 flights, 10 last seconds, static path - wind and
turbulence
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Figure 5.22: Cross-track error of 5 flights, 10 last seconds, static path - wind and
turbulence
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Figure 5.23: Difference between COG and heading, static path - wind and turbulence
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During the entire 10 last seconds before net impact, both the altitude error and
cross-track error are within ±1 m for all five flights. As wind is introduced in this
test, there is a difference between COG and heading. It is always less than ±25◦
and around −10◦ on impact. All of the successful net landing criteria are satisfied.

5.2.4 Discussion - Static Path

Looking at the tests performed in Subsection 5.2.2 and Subsection 5.2.3, the control
system manages to withstand wind disturbance and hit the target within the landing
criteria. The lateral controller shows great performance, while the height controller
is somewhat suboptimal.

The lateral controller manages to converge the cross-track error towards zero both
with and without wind. It has some oscillations to begin with, but they are quickly
removed or reduced to an acceptable level. Oscillations are a trade-off between fast
response to large cross-track errors and a smooth trajectory. Because the guidance
system is based on integral LOS (ILOS), it is able to compensate for the crosswind
without introducing an offset. The cascade coupling with the output of the ILOS
connected to the input of the BTT-PID provides a robust and stable response.

The longitudinal controller manages to follow the vertical Dubins path. Even in
the presence of tail- and cross-wind, the error is kept low. During the approach
phase where the desired altitude is constant and the desired climb rate is zero, there
were some oscillations and deviations. A reason for this is that most effort has
been put into tuning the controller for the descend and FA phase. During descent
the proactive PID controller works better, albeit it could be fine-tuned to further
reduce the oscillations in FA. In the absence of a mathematical model of the system,
limiting the choices of guidance systems, the proactive PID controller proves to be
a good choice.

5.2.5 SIL Simulation - Evasive Maneuver

If an evasive maneuver is needed during FA, it is important to know that the ship
in fact will be avoided. The criterion for this is that the UAV does not pass the
simulated target by less then 2.5 m vertically upwards and 3.5 m horizontally to
each side. This ensures a safety zone of 1.0 m around the net.

To test the evasive capability, an evasive maneuver is automatically triggered regard-
less of errors when the UAV is 4 seconds away from hitting the net, as is defined
in Subsection 4.3.4 to be the minimum ETA before an evasive request is ignored.
Figure 5.24 illustrates the lateral trajectory taken by the UAV.
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Figure 5.24: Lateral trajectory plot of one flight with net marked as green circle,
evasive maneuver

Figure 5.25 below illustrates a plot of the lateral trajectory from five flights when
an evasive maneuver is executed. It shows the relative position in meters, where the
net is positioned at (0, 0). A circle around the net with a radius of 3.5 m clarifies
that all flights avoids getting too close to the net.
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Figure 5.25: Relative lateral trajectory of 5 flights right after an evasive maneuver
is requested. 3.5 m safety radius around the net is marked as a black circle

Figure 5.26 and Figure 5.27 illustrate the vertical trajectory of the UAV when the
evasive maneuver is requested at time 0 s and the altitude is shifted to be 0 m at
this point. They illustrate the trajectories for the whole simulation and a zoomed
in view respectively.
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Figure 5.26: Relative altitude of 5 flights, where request for evasive maneuver is at
time 0 s and altitude 0 m
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Figure 5.27: Relative altitude of 5 flights, where request for evasive maneuver is at
time 0 s and altitude 0 m. Zoomed in view
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There is for all flights a consistent delay of about 2 seconds before the UAV changes
climb rate. A reason for this is that the height controller designed is high-level,
so the change in climb rate has to propagate through the low-level controllers in
APM:Plane instead of the aileron deflection being controlled directly. The DUNE
environment also adds some computational delay. Despite this, when the UAV starts
to change climb rate, it reacts quickly. After about 3.5 s it is at the altitude it was
when the evasive maneuver was requested.

From the tests it is evident that when an evasive maneuver is requested 4 seconds
before net impact, the UAV has time to avoid the net horizontally with about twice
the required 3.5 m and vertically the descent is turned into ascent after 2 seconds.
This gives redundancy, meaning that if the height controller fails to react the UAV
will still avert a crash laterally, and if the lateral controller is too slow the UAV will
still fly about 5 meters above the net.

As the evasive maneuver in this test demonstrates a relatively fast response, the
minimum ETA required for an evasive maneuver could be lowered from 4 to 3 seconds
without getting too close to the net. However, further tests should be carried out
with different weather conditions before this change in required minimum ETA can
be fully justified.

5.2.6 SIL Simulation - Dynamic Path, No Wind

If the ship carrying the net changes pose after landing is already initiated, the
landing path gets updated without needing to reset the entire landing sequence. By
utilizing ship motion prediction, the path can be updated far ahead in advance. For
the following two tests, the pose of the net is changed approximately 30 seconds
away from the net, in accordance to the recommended minimum prediction step for
accurate ship motion prediction presented in "Forecasting Criteria" in Subsection
5.1.1.

The change in net pose was manually sent from Neptus IMC Message Sender, and
the values is listed in Table 5.9 below. It involves a change in horizontal position,
heave displacement and heading/yaw angle. Only the two latter is forecasted in the
ship motion predictions presented earlier in this thesis, but the change in horizontal
position is added as it may be applicable later. By updating all the four pose
parameters of the landing net at the same time, the guidance and control system’s
response to a dynamic path is thoroughly tested.
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Table 5.9: Net pose change, sent as IMC::DeviceState

Variable Value
x (East) 5.0 m
y (North) −5.0 m
z (Up) 2.5 m
phi (roll) 0.0◦
theta (pitch) 0.0◦
psi (yaw) 5.0◦

Figure 5.28 and Figure 5.29 illustrate the height plot and lateral trajectory of a
single flight, respectively. The path update is seen as an abrupt change in the red
line representing the desired path.
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Figure 5.28: Altitude plot of one flight, dynamic path - no wind
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Figure 5.29: Lateral trajectory plot of one flight, dynamic path - no wind

Plots of the height error and cross-track error from the moment of the path update
until simulated net impact can be seen in Figure 5.30 and Figure 5.32 respectively.
They demonstrate how a large error is introduced at the moment of path update, but
relatively quickly reduced. The lateral controller demonstrates better performance
than the hight controller, albeit they both perform satisfactory.
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Figure 5.30: Altitude error of 5 flights - starting from path update, dynamic path -
no wind
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Figure 5.31: Altitude error of 5 flights, 10 last seconds, dynamic path - no wind
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Figure 5.32: Cross-track error of 5 flights, from path update, dynamic path - no
wind

−10 −8 −6 −4 −2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cross Track error − APM:Plane−SIL Simulation

Time [s]

E
rr

or
 [m

]

 

 
Flight1
Flight2
Flight3
Flight4
Flight5

Figure 5.33: Cross-track error of 5 flights, 10 last seconds, dynamic path - no wind
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During the entire 10 last seconds before net impact, both the altitude error and
cross-track error are within ±1 m for all five flights, as seen in Figure 5.31 and
Figure 5.33 respectively. Due to no wind, the COG and heading are approximately
equal. This satisfies all the successful net landing criteria.

5.2.7 SIL Simulation - Dynamic Path, Wind and Turbulence

It is more realistic to assume that a dynamic path is needed when there is rough
weather. The same wind conditions are used as in the static path test, meaning
wind speed of 6 knots going north with a turbulence of 0.5 knots. The change in
net pose is the same as earlier (Table 5.9).

Complete plots of the height error and cross-track error from the landing of five
flights can be seen in Appendix C.5, while Figure 5.34 and Figure 5.35 below only
illustrates the 10 last seconds before net impact. Figure 5.36 illustrates the difference
between COG and heading for the UAV during the entire landing sequence.
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Figure 5.34: Altitude error of 5 flights, 10 last seconds, dynamic path - wind and
turbulence



112 CHAPTER 5. EXPERIMENTAL TESTING

−10 −8 −6 −4 −2 0
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Cross Track error − APM:Plane−SIL Simulation

Time [s]

E
rr

or
 [m

]

 

 
Flight1
Flight2
Flight3
Flight4
Flight5

Figure 5.35: Cross-track error of 5 flights, 10 last seconds, dynamic path - wind and
turbulence
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Figure 5.36: Difference between COG and heading, static path - wind and turbulence
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The performance is slightly worse than with no wind, but both the altitude error and
cross-track error are still within ±1 m for all five flights, except for a 0.5 s period for
Flight 2, 4 s before net impact. As wind is introduces, there is a difference between
COG and heading, illustrated in Figure 5.36. It is always less than ±25◦ and around
−10◦ on impact. All of the successful net landing criteria are satisfied.

5.2.8 Discussion - Dynamic Path

Subsection 5.2.6 and Subsection 5.2.7 present results from tests where the net pose
is changed and the landing path is updated dynamically during landing. They
demonstrate how the control system successfully manages to converge the UAV
onto the new path in a smooth manner, without a need to reset the landing process
or lead the UAV on a detour.

Especially the lateral controller demonstrates a fast and smooth convergence onto
the new path leading into the translated and rotated landing target. The height
controller is also fast, albeit a bit less smooth. This suggests that the use of a
dynamic path, updated based on ship motion prediction, is feasible. Even severe
changes to the landing target as close as 30 seconds before estimated impact can be
handled by the landing system.
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Chapter 6

Closing Discussion and Conclusion

This chapter concludes the thesis in Section 6.1, and provides recommendations for
further work in Section 6.2.

6.1 Closing Discussion and Conclusion

The goal of this project was to design and verify the performance of an automatic
landing system for a fixed-wing UAV to be used with a net on board a moving ship.
A sufficient system design was proposed that uses RTK-GPS for accurate navigation,
ANN for ship motion prediction and that guides the UAV with a combination of
climb rate and roll angle commands. It is controlled from a simple Neptus plug-in.
Successful tests with simulations were performed that separately landed a UAV into
a net and predicted ship motion, all within the performance criteria.

A novel approach to ANN time series forecasting has been presented and tested
for data containing oscillations around an unknown/varying mean. Pre- and post-
processing of the individual data vectors have proven superior to the regular process-
ing of the data set as a whole. In this thesis it was used for ship heading prediction.
The yaw oscillates due to waves, but the average yaw angle may also change as a
result of rudder and thrust actuations of the ship. The proposed method current
gave the best result.

This finding is a further improvement of ANN pre- and post-processing and can be
utilized in other situations with a similar problem of oscillations around an unknown
or varying mean. For instance, all time series with a higher frequency oscillation on
top of a slow varying oscillation may also benefit from this approach.

The ANN ship motion prediction presented in this thesis builds upon multiple pre-
vious studies, with the contribution of this thesis being increased prediction steps,
performance and robustness coming from improved pre- and post-processing and
data fusion. Based on the tests performed on data from simulated ships influenced
by both waves and current, ANN has proven to be a good tool for ship motion pre-
diction with no need for knowledge of the specific ship dynamics. Both yaw motion
and heave displacement was successfully predicted 60 seconds in advance within
reasonable error limits. Using data fusion, where time series from multiple variables
are utilized, heave displacement prediction showed an increased performance and
robustness to data noise. The nature of ANN makes data fusion an easy task.
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The only requirement for the forecasting system is that the ship movements for the
last five minutes are being logged as time series. These are first used to train the
ANN. Later, when performing the forecasting, a period of up to 60 seconds of the
last samples are used as inputs to the network. Because the system is trained on-
line and may automatically be retrained repeatedly during operation, it is robust to
changes in the weather and will work on any ship type. This is with no need for an
operator to set parameters or perform tuning.

Software-in-the-loop (SIL) simulations with the Pixhawk autopilot software APM:Plane
have successfully been carried out using DUNE, Neptus, MAVProxy and JSBSim in
order to evaluate the performance of different guidance and control systems. The
SIL simulations sending only waypoint commands to APM:Plane proved insufficient
in a preliminary test, leading to a decoupled guidance system sending desired climb
rate and roll angle instead.

The constructed feasible landing path contains the three phases approach, glideslope
and final approach (FA), assuring alignment, descent and aiming, respectively. In
the horizontal plane it is a purely straight line path based on five waypoints. From
the same waypoints a Dubins path is constructed for the desired UAV height, used
by the longitudinal guidance system. The slopes are constrained by the maximum
allowed descent rate of the UAV and the desired vertical angle of attack into the net.
In order to accommodate the possibility of ship motion during landing, a system
for a dynamic landing path was created. The initial position and orientation of the
landing target can be updated during flight.

For calculation of the desired roll angle, a lateral guidance system based on successive
loop closure was designed. The contribution of this thesis is a bank-to-turn (BTT)
controller based on proportional-integral-derivative (PID) design that connects an
integral line-of-sight (ILOS) heading controller to APM:Plane. Careful tuning of
the ILOS and BTT-PID controller provided a stable lateral guidance system that
withstands wind disturbance, has few oscillations and leads the UAV into the net
with a small error. The designed BTT controller may also be used to connect other
heading controllers then ILOS to APM:Plane.

To calculate the desired climb rate, a novel proactive PID controller was constructed
for longitudinal guidance. In addition to having the regular PID characteristics of
the UAV height being controlled to equal the height of the desired Dubins path, the
well defined path derivative is also used in the controller. Ground speed multiplied
with the path derivative gives the desired climb rate. By using the calculated climb
rate at a lookahead time, the controller manages to react in time for the actual
change in desired climb rate to happen, despite the system lag time.

Although previous studies have successfully landed a UAV in a net, this thesis
contributes by having increased modularity in the automatic ship landing system, a
dynamic landing path and integration of ship motion prediction.

SIL simulations demonstrated great performance of the automatic landing system,
where the UAV successfully hit the target within ±1 meter in both the horizontal
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and vertical direction. This included both with and without moderate wind and
turbulence, for both a stationary and moving target. The dynamic path was updated
about 30 seconds before the estimated time of arrival. This was to simulate a change
in the predicted ship pose of 5.0 m east, 5.0 m south, 2.5 m up and a rotation of 5.0◦
clockwise. Despite all the drastic changes happening at the same time, the UAV hit
the target within the landing criteria.

An evasive maneuver was prepared and tested for the cases where the landing system
predicts that the UAV will miss the target, by detecting that some boundaries are
breached during FA. An evasive maneuver was triggered by the system only four
seconds before net impact, demonstrating that the UAV had enough time to avoid
the net by a large safety distance in both horizontal and vertical direction.

The sufficient DUNE software and connector hardware was developed to successfully
connect RTK-GPS navigation messages calculated in DUNE to the Pixhawk GPS
connector. This ensures easy integration of accurate navigation without the need
of altering the Pixhawk software, thus preserving the modularity of the automatic
ship landing system.

6.2 Future Work

During the main UAV SIL simulations of this thesis, a generic UAV model has been
used. A fellow student from the NTNU UAV-Lab is developing a mathematical
model of the X8. It has been tested with the automatic landing system, showing
promising results. When it is fully developed, more realistic SIL simulations can
be performed as preparation for real-life tests of the landing system. In addition, a
mathematical model of the UAV will enable the use of more advanced controllers.

Further integration and real-life tests should be performed with the accurate nav-
igation system RTK-GPS. Fellow students from the NTNU UAV-Lab are working
on systems showing promising results involving the stand-alone system Piksi and
software library RTKLIB.

Similar to the way ANN was used for forecasting of yaw motion and heave dis-
placement, it can also be used to predict roll, pitch and the trajectory of the ship.
Predictions of roll and pitch can be used in extreme cases where there is danger
for the safety of the landing if the angles exceed a predefined operational limit. A
change of the landing target position has already successfully been tested as part of
the dynamic path, but forecasting of the ship position is yet to be developed.

Data fusion demonstrated an increased performance for the heave displacement pre-
diction. To further increase robustness, more data can be tested for data fusion.
This may for instance include velocity measurements, where the heave velocity can
be fused in heave displacement prediction and yaw rate can be fused in heading
prediction.
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When relying on ship motion prediction for landing on a ship with large and fast
movements, the system is heavily dependent on a correct estimated time of arrival
(ETA). The current ETA calculation in DUNE assumes a constant speed and a
straight line towards the next waypoint. This is poor assumptions for a system
following a Dubins path that lowers the ground speed right before net impact.



Appendix A

Guidance and Control System

This appendix presents some preliminary experiments of the guidance and control
system in Section A.1 and tuning values for the ILOS controller, bank-to-turn PID
controller and PID height controller in Section A.2, A.3 and A.4, respectively.

A.1 Preliminary Experiments

This section contains some preliminary experiments done as preparatory work to
find the final guidance and control system for the UAV landing system.

A.1.1 Waypoint Guidance

Figure A.1 and Figure A.2 below demonstrates the performance of the APM:Plane
height controller when waypoints are sent directly. The desired height seen in the
plots is calculated by APM:Plane based on the five waypoints that was sent.

To ensure APM:Plane uses the defined waypoints directly when controlling the UAV,
instead of DUNE calculating and sending desired climb rate and roll angle, the
APM’s flight mode GUIDED is used. It gets activated by setting the DUNE au-
topilot parameter Ardupilot Tracker to true when defining the waypoints making up
the landing path. Otherwise the similar procedure is used as in the SIL simulation
described in Section 4.5.
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Figure A.1: SIL simulation with waypoints sent directly to APM:Plane
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Figure A.2: SIL simulation with waypoints sent directly to APM:Plane, 15 last
seconds
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A.1.2 Aerosonde Lateral Controller

Aerosonde is a lateral controller already programmed in DUNE. A test using this
controller was conducted according to the SIL simulation described in Section 4.5.
Figure A.3 and Figure A.4 illustrate with plots of the cross-track errors from two
flights how the controller in lateral direction leads to both oscillations and constant
deviation from the desired path. This is despite that there was no wind present
during the simulations. Tuning has been performed in an effort to minimize the
oscillations.
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Figure A.3: Cross-track error from SIL simulation with Aerosonde lateral controller
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Figure A.4: Cross-track error from SIL simulation with Aerosonde lateral controller,
last 30 seconds

A.1.3 Sliding Mode Height Controller

A test was performed with a sliding mode height controller already programmed in
DUNE. The test was conducted according to the SIL simulation described in Section
4.5. Figure A.5 demonstrates how the sliding mode controller works as a set-point
regulator with a constant set-point between the waypoints.
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Figure A.5: Height plot from SIL simulation with sliding mode height controller

A.2 ILOS Controller Tuning Values

Table A.1 displays the most relevant integral line-of-sight (ILOS) controller param-
eters related to the lateral guidance system described in Subsection 4.4.1.

Table A.1: Tuning values for the ILOS controller implemented in DUNE

Tuning parameter Value
Control Frequency 10
ILOS Lookahead Distance 50.0
ILOS Integrator Gain 2.5

A.3 Bank-To-Turn Controller Tuning Values

Table A.2 displays the most relevant bank-to-turn (BTT) controller parameters
related to the lateral guidance system described in Subsection 4.4.1. It were tested
on several straight line response tests, giving the controller a desired heading of
constant 0◦. Figure A.6 and A.7 illustrate the response from two tests where the
initial COG was approximately −120◦ and −50◦ respectively.



A.4. PID HEIGHT CONTROLLER TUNING VALUES 125

0 5 10 15 20 25 30
−120

−100

−80

−60

−40

−20

0

20
Straight line heading test

Time [s]

E
rr

or
 [d

eg
]

 

 

Desired COG
Estimated COG

Figure A.6: Straight line test of BTT response, from −120◦
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Figure A.7: Straight line test of BTT response, from −50◦
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Table A.2: Tuning values for the BTT controller implemented in DUNE

Tuning parameter Value
PID Gain Prop (Kp) 1.2
PID Gain Int (Ki) 0.1
PID Gain Der (Kd) 0.6
Maximum Bank 35.0
Anti Windup Maximum Bank 3.0

A.4 PID Height Controller Tuning Values

Table A.3 displays the most relevant proportional-integral-derivative (PID) height
controller parameters related to the lateral guidance system described in Subsection
4.4.2.

Table A.3: Tuning values for the PID height controller

Tuning parameter Value
Approach – PID Gain Prop (Kp) 0.15
Approach – PID Gain Int (Ki) 0.05
Approach – PID Gain Der (Kd) 0.10
Descend – PID Gain Prop (Kp) 0.80
Descend – PID Gain Int (Ki) 0.20
Descend – PID Gain Der (Kd) 1.00
Climb Rate Min −2.0
Climb Rate Max 1.5
Anti Windup Max Climb Rate 0.60
PID Lookahead Time 0.5



Appendix B

Time Series Forecasting

This appendix contains supplementary information and results for the experiments
regarding time series forecasting. Section B.1 contains a Matlab code snippet to pro-
duce a simple yaw motion example, Section B.2 presents information for the ship
simulation, Section B.3 presents additional results for experiments regarding ship
heading prediction, Section B.4 presents additional results for simple heave displace-
ment prediction and Section B.5 presents additional results for heave displacement
prediction using data fusion.

B.1 Oscillations Around a Varying Mean
1 a = −5;
2 b = 125 ;
3

4 s h i f t = 300 ;
5 s l ope = 1/30 ;
6

7 x = 0 : 0 . 0 5 : 5 0 0 ;
8 z = a + (b−a ) ∗ l o g s i g ( s l ope ∗(x−s h i f t ) ) ;
9 yaw = 5∗ s i n ( 0 . 5∗ x ) + z ;

Listing B.1: Matlab code to produce the simple yaw motion used in Subsection 5.1.2

B.2 Ship Simulation

The main dimensions for the simulated ships are found in Table B.1, wherem denotes
mass, Lpp is length between perpendiculars, B is breadth and T is the draught.
More information about the ship descriptions can be found in a description paper
by Fossen [23].

Table B.1: ShipX main dimensions

Vessel mass [tonnes] Lpp [m] B [m] T [m]
S175 24.609 175.0 25.4 9.5
Supply Vessel 6.362 82.8 19.2 6.0

Figure B.1 presents the settings used for the wave block in the ship motion simula-
tions.
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Figure B.1: Wave settings for the ship simulation
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Figure B.2 illustrates the power spectral density (PSD) plot of the heave motion
for ShipX: 175. The PSD is calculated using the discrete Fourier transform from
Matlab. It shows a wide peak centered at 0.1 Hz.
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Figure B.2: PSD plot of the heave motion with ShipX: S175

Figure B.3 illustrates a plot highlighting all the calculated peaks in a heave displace-
ment plot. These peaks are where the "error at peaks" are measured.
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Figure B.3: Peaks in a heave displacement plot

B.3 Ship Heading Prediction

Below follows results from the tests described in Subsection 5.1.5.

B.3.1 Methods and Activation Functions

Tests have been performed to find the best activation function for the hidden neu-
rons. As can be read from Table B.2 and Table B.3, the linear activation function,
called purelin in Matlab, is the best alternative for all methods. This is both consid-
ering the lowest MSE and the shortest training time. The other activation functions
tested were hyperbolic tangent (tansig), log-sigmoid (logsig) and radial basis (rad-
bas).
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Table B.2: MSE [◦] for all methods and activation functions

Method purelin tansig logsig radbas
Unchanged 0.0928 16.29 19.03 28.03
Mean 0.0301 0.0320 0.0317 0.0342
Median 0.0298 0.0341 0.0344 0.0352
Current 0.0305 0.0326 0.0329 0.0334
Normalization 0.0504 0.0748 0.0769 0.0787

Table B.3: Training time [s] for all methods and activation functions

Method purelin tansig logsig radbas
Unchanged 0.507 0.671 0.686 0.718
Mean 0.515 0.585 0.554 0.601
Median 0.476 0.530 0.577 0.601
Current 0.515 0.523 0.562 0.569
Normalization 0.312 0.608 0.593 0.577

B.3.2 Methods and Hidden Neurons

Different number of hidden neurons were tested against all the methods. Below
follows both tables with individual results and combined plots.

Table B.4: Method - Unchanged

Hidden nodes Training time [s] MSE [◦] MAE [◦]
1 0.164 0.1309 0.3317
2 0.171 0.1246 0.3049
3 0.546 0.1075 0.2876
4 0.515 0.1175 0.3058
5 0.491 0.1141 0.3089
6 0.515 0.1106 0.2923
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Table B.5: Method - Mean

Hidden nodes Training time [s] MSE [◦] MAE [◦]
1 0.140 0.0307 0.1433
2 0.140 0.0306 0.1422
3 0.530 0.0303 0.1430
4 0.491 0.0306 0.1428
5 0.530 0.0307 0.1429
6 0.530 0.0305 0.1434

Table B.6: Method - Median

Hidden nodes Training time [s] MSE [◦] MAE [◦]
1 0.140 0.0307 0.1427
2 0.140 0.0313 0.1432
3 0.530 0.0306 0.1432
4 0.523 0.0306 0.1448
5 0.476 0.0305 0.1433
6 0.484 0.0309 0.1424

Table B.7: Method - Current

Hidden nodes Training time [s] MSE [◦] MAE [◦]
1 0.156 0.0309 0.1437
2 0.140 0.0306 0.1441
3 0.452 0.0302 0.1419
4 0.515 0.0305 0.1435
5 0.499 0.0305 0.1434
6 0.523 0.0305 0.1420

Table B.8: Method - Normalization

Hidden nodes Training time [s] MSE [◦] MAE [◦]
1 0.140 0.0527 0.1893
2 0.133 0.0546 0.1931
3 0.406 0.0538 0.1912
4 0.374 0.0521 0.1867
5 0.367 0.0522 0.1845
6 0.374 0.0515 0.1851
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Figure B.4: MSE for different methods and numbers of hidden nodes
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B.4 Heave Displacement Prediction
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Figure B.5: MSE for different prediction intervals and number of hidden neurons
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Figure B.6: Percentage of errors withing 0.25 m at peaks for different prediction
intervals and number of hidden neurons
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Figure B.7: Percentage of errors withing 0.25 m for different prediction intervals
and number of hidden neurons
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Figure B.8: 60 seconds prediction step performance with combinations of input time
range/sampling frequency



B.5. HEAVE DISPLACEMENT PREDICTION - DATA FUSION 137

B.5 Heave Displacement Prediction - Data Fu-
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Figure B.9: 60 seconds prediction step performance, data fusion, with combinations
of input time range/sampling frequency



138 APPENDIX B. TIME SERIES FORECASTING



Appendix C

Landing Simulation, Software-In-the-
Loop

This appendix contains supplementary information and results for the software-in-
the-loop landing simulations. Section C.1 presents information about the landing
path, Section C.2 presents information about the loiter alignment path, Section
C.3 presents additional results for the static path test without wind, Section C.4
presents additional results for the static path test with wind and Section C.5 presents
additional results for the dynamic path test with wind.

C.1 Waypoint Path Calculation

During simulation the waypoints building up the basis of the initial landing paths
were calculated from the values given in Table C.1, which resulted in the 5 waypoints
given in Table C.2.

Table C.1: Values defining the landing path from Figure 4.10. The UAV height is
assumed 50.0 m (h2), but varies with every individual flight

Variable Value
land_lat 63.628600◦
land_lon 9.727570◦
land_head 66.5◦
net_hight 3.0 m

min_turn_radius 150.0 m
h0 d0 ∗ tanα = 7.0 m
h1 d1 ∗ tanα = 7.0 m
h2 50.0 m
d0 100.0 m
d1 100.0 m
d2 (h2− h1)/ tan β = 615.0 m
d3 2 ∗min_turn_radius = 300.0 m
α 4◦
β 4◦
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Table C.2: Calculated waypoints for the landing path described in Table C.1

Waypoint Latitude [◦] Longitude [◦] Z_Altitude [m] Speed [m/s]
Wp1 63.623346 9.700949 50.0 18
Wp2 63.624438 9.706479 50.0 18
Wp3 63.628236 9.725726 8.5 16
Wp4 63.628600 9.727570 1.5 16
Wp5 63.628958 9.729420 −5.5 16

C.2 Loiter Alignment Path

Table C.3 below presents the parameters defining the loiter path followed by the
simulated UAV before the landing sequence is initiated. It helps the UAV align in
the same way before every landing, making comparisons easier.

Table C.3: Values defining the loiter path used before initiating landing

Variable Value
Latitude 63.627633◦
Longitude 9.705761◦
Z 50.0 m
Z-Units HEIGHT
Direction Clockwise
Speed 18.0 m/s
Radius 150.0 m

C.3 Static Path, No Wind

Figure C.1 and Figure 5.19 below present plots for five flights of altitude error and
cross-track error respectively. The entire landing sequence is included in the plots.
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Figure C.1: Altitude error of 5 flights, static path - no wind

C.4 Static Path, Wind and Turbulence

Figure C.2 and Figure C.3 below present plots of an estimation of the simulated
wind direction and wind speed respectively. Only the wind from a single simulation
is presented. Note that what is displayed is not the direct wind output from the
simulator JSBSim, but an estimation done in DUNE based on how the UAV is
affected during flight.

Figure C.4 and Figure C.5 below present plots for five flights of altitude error and
cross-track error respectively. The entire landing sequence is included in the plots.
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Figure C.2: Wind direction during static path landing - wind and turbulence
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Figure C.3: Wind speed during static path landing - wind and turbulence
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Figure C.4: Altitude error of 5 flights, static path - wind and turbulence
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Figure C.5: Cross-track error of 5 flights, static path - wind and turbulence
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C.5 Dynamic Path, Wind and Turbulence

Figure C.6 and Figure C.7 below present plots for five flights of altitude error and
cross-track error respectively. The period from path update to net impact is included
in the plots.
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Figure C.6: Altitude error of 5 flights, from path update, dynamic path - wind and
turbulence
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Figure C.7: Cross-track error of 5 flights, from path update, dynamic path - wind
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