
Software Design and Controller
Evaluation for the ADCS on the NTNU
Test Satellite

Marius Fløttum Westgaard

Master of Science in Cybernetics and Robotics

Supervisor: Jan Tommy Gravdahl, ITK

Department of Engineering Cybernetics

Submission date: July 2015

Norwegian University of Science and Technology

i

Problem Description

The NTNU Test Satellite project was started in September 2010, the goal is to build a launch

ready double CubeSat. This thesis aims to further develop the Attitude Determination and

Control System to a near flight ready version.

• Simulate the satellite with the previously chosen pointing and detumbling controllers

to see how they perform with the current actuator and software design. Retune con-

trollers if necessary.

• Simulate the pointing controller when there are noise on the angular velocity measure-

ments to check robustness.

• Design, evaluate and simulate a controller to increase the angular velocity of the satel-

lite, a tumbling controller.

• Design a second Attitude Determination and Control System hardware prototype. The

second prototype will be based on the first prototype, but with additional sensors

added for redundancy.

• Design the overall software architecture for the Attitude Determination and Control

System.

• Find and implement an algorithm to calculate the best value for the data provided by

the sensors that have hardware redundancy.

• Perform a failure analysis for the Attitude Determination and Control System to show

how it might fail and how it can be avoided.

To be handed in by: 13.07.2015

Supervisor 1: Professor Jan Tommy Gravdahl

Supervisor 2: Roger Birkeland

ii

Abstract

The NTNU Test Satellite is a student satellite program at NTNU that is part of the Norwegian

Student Satellite Program run by the Norwegian Center for Space Related Education. The

goal of the project is to send a student built and designed CubeSat to space. This thesis con-

tinues the work of developing a Attitude Determination and Control System for the NTNU

Test Satellite.

In this thesis simulations have been run for two previously chosen controllers (detumbling

and pointing) to ensure that the controllers will work with the hardware and software design

of the Attitude Determination and Control System. A third controller has been developed

to increase the angular velocity of the satellite, called a tumbling controller, and simulations

have been performed to check its performance. Simulations have also been performed to

check how the pointing controller works when there are noise on the angular velocity mea-

surements. The simulations shows that all of the controllers will work satisfactory. Instability

evidence is also presented for the tumbling controller.

A second prototype for the Attitude Determination and Control System hardware has been

designed with a focus on redundancy, and the overall software architecture has been de-

signed. Most of the software have been tested on a evaluation kit for the chosen microcon-

troller. A median voter has been implemented to handle the sensor redundancy in software.

Lastly a simple failure analysis have been performed, fault trees have been used to show how

the Attitude Determination and Control System might fail to perform as designed. Some

steps that can be taken to reduce the risk of failures are also discussed.

iii

Sammendrag

NTNU Test Satellitt er et student satellitt program på NTNU som er del av det norske stu-

dent satellitt programmet drevet av nasjonalt senter for romrelatert opplæring. Målet med

prosjektet er å sende en student bygget og designet Cubesat til verdensrommet. Denne opp-

gaven fortsetter arbeidet med å utvikle et Attitude Determination and Control System for

NTNU Test Satellitt.

I denne oppgaven har simuleringer blitt kjørt for de tidligere valgte kontrollerne (detum-

bling og pointing) for å sjekke at de virker med hardwaren og softwaren designet til Attitude

Determination and Control Systemet. En tredje kontroller har blitt utviklet for å øke vinkel-

hastigheten til satellitten, kalt en tumbling kontroller, simulering har også blitt utført for å

teste denne. Simulering har også blitt gjort for å sjekke hvordan poining kontrolleren virker

når det er målestøy på vinkelhastigheten. Simuleringen har vist at alle kontrollerne virker.

Bevis på ustabilitet er også presentert for tumbling kontrolleren.

En ny prototype har blitt utviklet for Attitude Determination and Control System hardwaren

med et fokus på redundans. Den overordnede software arkitekturen har også blitt designet.

Mesteparten av softwaren har blitt testet på et evaluasjons kit for den valgte microcontrolleren.

En median voterings algoritme har blitt implementert for å behandle redundansen i soft-

ware. Til sist har en kort feil analyse blitt gjennomført, feiltrær har blitt brukt for å visse hvor-

dan Attitude Determination and Control System kan slutte å fungere som designet. Noen

alternativer for å redusere risikoen for feil har også blitt diskutert.

iv

Acknowledgement

I would like to thank Henrik Rudi Haave and Antoine François Xavier Pignède who have also

worked on the Attitude Determination and Control System for the NTNU Test Satellite for

their support and cooperation this last year.

I would also like to thank Amund Gjersvik who works on the NTNU Test Satellite project

for helping with design of the Attitude Determination and Control System hardware, and the

project leader Roger Birkeland for his help.

Lastly I would like to thank my supervisor professor Jan Tommy Gravdahl for the help and

guidance he has given during the semester, and professor Amund Skavhaug for the invalu-

able guidance on the software side.

Contents

Problem Description . i

Abstract . ii

Sammendrag . iii

Acknowledgement . iv

1 Introduction 1

1.1 NUTS . 1

1.2 Previous Work . 3

1.3 Contributions of this Thesis . 3

1.4 Thesis Outline . 5

2 Background Theory 7

2.1 Reference Frames . 7

2.1.1 Earth-Centered Inertial Frame . 7

2.1.2 Earth-Centered Earth-Fixed Frame . 8

2.1.3 Orbit Frame . 8

2.1.4 Body-Fixed Frame . 8

2.2 Attitude Representation . 8

2.2.1 The Rotation Matrix . 9

2.2.2 Euler Angles and Quaternions . 10

3 Satellite Theory 13

3.1 Satellite Dynamics and Kinematics . 13

3.2 Magnetorquers . 14

3.3 Environmental Disturbances . 15

3.4 Error Sources . 16

v

vi CONTENTS

4 Control 19

4.1 B-Dot Estimator . 20

4.2 Detumbling Controller . 21

4.3 Pointing Controller . 22

4.4 Tumbling Controller . 23

4.4.1 Instability . 24

4.5 Pulse Width Modulation and Controller Timing 28

5 Simulations 33

5.1 Detumbling . 34

5.2 Pointing . 38

5.2.1 Without Measurement Noise . 39

5.2.2 With Measurement Noise . 42

5.3 Tumbling . 48

6 Hardware 51

6.1 Sensors . 51

6.1.1 Magnetometers . 51

6.1.2 Gyroscopes . 52

6.1.3 Sun Sensors . 53

6.2 Microcontroller . 53

6.3 Clock . 53

6.4 ADCS Prototype . 54

7 Software 57

7.1 Operating System . 57

7.2 FreeRTOS Scheduling . 58

7.3 FreeRTOS Tasks and Task Communication . 58

7.4 Communication . 59

7.5 Persistent Variables . 59

7.6 Logging . 59

7.7 Software Architecture . 60

7.7.1 States . 61

7.7.2 Subsystems . 61

CONTENTS vii

7.7.3 Tasks . 63

7.7.4 Data Sharing . 66

8 Sensor Redundancy Algorithm 67

8.1 Voting Algorithms . 69

9 Failure Analysis 71

9.1 Fault Tree Analysis . 72

9.2 Failure Prevention . 74

10 Discussion and Results 77

10.1 Controllers and Simulations . 77

10.2 Hardware . 78

10.3 Software . 79

10.4 Sensor Redundancy Algorithm . 80

10.5 Failure Analysis . 81

11 Conclusion 83

12 Future Work 85

A Data Structures 87

B Messages 91

C Sequence Diagrams 93

viii CONTENTS

List of Figures

1.1 Concept for the inside of NUTS . 2

4.1 Figure showing an example of PWM in an idealized inductor 28

4.2 Figure showing coil output on NUTS . 29

4.3 Figure showing the system flow . 30

5.1 Detumbling Simulation 1, Angular Velocities . 35

5.2 Detumbling Simulation 2, Angular Velocities . 36

5.3 Detumbling Simulation 3, Angular Velocities . 37

5.4 Pointing Simulation 1, Euler Angles . 40

5.5 Pointing Simulation 1, Magnetic Moment . 40

5.6 Pointing Simulation 2, Euler Angles . 41

5.7 Pointing Simulation 2, Magnetic Moment . 41

5.8 Pointing Simulation 4, Euler Angles . 43

5.9 Pointing Simulation 5, Euler Angles, with white noise 44

5.10 Pointing Simulation 5, Magnetic Moment, with white noise 44

5.11 Pointing Simulation 5, Angular Velocities, with white noise 45

5.12 Pointing Simulation 6, Euler Angles, with sinusoidal noise 45

5.13 Pointing Simulation 6, Magnetic Moment, with sinusoidal noise 46

5.14 Pointing Simulation 6, Angular Velocities, with sinusoidal noise 46

5.15 Tumbling Simulation, Angular Velocity . 49

6.1 Figure showing the different hardware modules on the ADCS 55

6.2 Figure showing the second prototype board for the ADCS 56

7.1 ADCS State Diagram . 61

ix

x LIST OF FIGURES

7.2 Visual representation of

approach 1 of the software design . 65

7.3 Visual representation of

approach 2 of the software design . 65

7.4 Startup Sequence . 65

8.1 Classification of voting algorithms . 68

8.2 Median Voter Algorithm . 70

9.1 Error sources and their connections to service failures 71

9.2 Fault tree for the sensors . 73

9.3 Fault tree for the estimation mode . 73

9.4 Fault tree for the detumbling mode . 73

9.5 Fault tree for the tumbling mode . 73

9.6 Fault tree for the pointing mode . 74

C.1 Idle state sequence diagram . 93

C.2 Detumbling state sequence diagram . 94

C.3 Estimate state sequence diagram . 95

C.4 Pointing state sequence diagram . 96

C.5 Tumbling state sequence diagram . 97

List of Tables

3.1 Magnetorquer specifications . 15

3.2 Single Event Phenomena . 17

4.1 Attitude Control System Requirements . 19

5.1 Satellite Parameters . 34

5.2 Initial Values for Detumbling Simulation 1 . 35

5.3 Initial Values for Detumbling Simulation 2 . 36

5.4 Initial Values for Detumbling Simulation 3 . 36

5.5 Initial Values for Pointing Simulation 1 . 39

5.6 Initial Values for Pointing Simulation 2 . 39

5.7 Initial Values for Pointing Simulation 4-6 . 43

5.8 Noise Types for Simulations . 43

5.9 Initial Values for Tumbling Simulation . 48

A.1 Global variables used in ADCS to store data . 87

A.2 Persistent variables to be stored in the user page 88

A.3 Global data structures used in the ADCS to store data 88

A.4 Table showing which subsystem needs access to what global data 89

B.1 Messages that can be sent to the ADCS . 91

B.2 Messages that can be sent from the ADCS . 92

xi

xii LIST OF TABLES

Acronyms

I 2C Inter-Integrated Circuit. 54, 59

ADC Analog-to-Digital-Converter. 53

ADCS Attitude Determination and Control System. 1–6, 16, 17, 19, 29, 30, 47, 51–55, 57,

59–61, 63, 66–69, 71, 72, 75, 77–81, 83, 85

ANSAT Norwegian Student Satellite Program. 1

COTS Commercial Off The Shelf. 1, 16

CSP Cubesat Space Protocol. 53, 57, 59

ECEF Earth-Centered Earth-Fixed. 8

ECI Earth-Centered Inertial. 7, 8, 13, 33

EKF Extended Kalman Filter. 3

EPS EPS. 2, 55

EQUEST Extended Quaternion Estimator. 3

FIFO First In First Out. 52, 58

FMEA Failure Mode and Effects Analysis. 81

FreeRTOS Free Real Time Operating System. 57, 58, 64, 66, 83

IGRF International Geomagnetic Reference Field. 34

JTAG Joint Test Action Group. 54

xiii

xiv Acronyms

MSS Marine Systems Simulator. 33, 34

NAROM Norwegian Center for Space Related Education. 1

NASA National Aeronautics and Space Administration. 16

NRP NUTS Reliable Protocol. 59, 63, 64, 66, 80, 85

NTNU Norwegian University of Science and Technology. 1

NUTS NTNU Test Satellite. 1, 3, 5, 8, 10, 11, 16, 17, 19, 21, 22, 33, 47, 53, 57, 59, 60, 77–79

OBC On Board Computer. 2, 53, 55, 57, 59, 60, 80

P-POD Poly-Picosatellite Orbital Deployer. 38

PD Proportional-Derivative. 23

PWM Pulse Width Modulation. 3, 20, 28, 29, 33

RTC Real-Time Clock. 53, 75, 78

SEB Single Event Burnout. 17

SEGR Single Event Gate Rupture. 17

SEL Single Event Latchup. 17

SEP Single Event Phenomena. 16, 72, 74

SET Single Event Transient. 17

SEU Single Event Upset. 17

SPI Serial Peripheral Interface. 52, 53

USART Universal Synchronous/Asynchronous Receiver/Transmitter. 54

Chapter 1

Introduction

1.1 NUTS

The Norwegian University of Science and Technology (NTNU) test satellite project, called

NTNU Test Satellite (NUTS), was started in 2010. The goal of the project is to send a stu-

dent built and developed double (2U) CubeSat [1] into space. NUTS is part of the Norwegian

Student Satellite Program (ANSAT), which is run by the Norwegian Center for Space Related

Education (NAROM). NUTS will be the fifth CubeSat built in Norway by students after N-

CUBE 1, N-CUBE 2, HinCube and CubeSTAR. N-CUBE 1 and 2 where nationally built and

much of the experience gained from these projects have been included in NUTS.

NUTS is a student driven cross disciplinary research and development project at NTNU,

with students from fields such as electronics, communications, physics, cybernetics and me-

chanics. Many of the parts are being built at NTNU, the remaining are mostly Commercial

Off The Shelf (COTS) components. Originally, NUTS was planned to be equipped with an

infrared camera as payload, but due to cost considerations this idea was scrapped and the

payload was changed to a regular camera. Unfortunately, due to a lack of students to work

on it the camera will not be finished in time. As a consequence, the Attitude Determination

and Control System (ADCS) that was originally developed with the purpose of pointing the

camera at Earth will no longer serve this function. The system will however still be finished

and used on the satellite since it can be considered a payload in itself and there is a lot of

learning value for the students and any future CubeSat projects. The work done here and for

the ADCS previously can be used directly in another CubeSat in the future.

1

2 CHAPTER 1. INTRODUCTION

The satellite consists of 5 modules connected to a backplane, an example of what this might

look like is given in Figure 1.1.

• Mechanical System

• On Board Computer (OBC)

• Attitude Determination and Control System (ADCS)

• EPS (EPS)

• Communication System

In addition there is also a ground station segment to track and control the satellite.

Figure 1.1: Concept for the inside of NUTS

1.2. PREVIOUS WORK 3

1.2 Previous Work

The NUTS project was initiated in 2010 and a lot of work has been done on the project so

far. Several different control strategies have been investigated and simulated in [2, 3, 4, 5].

Most of the theoretical work for the controllers is built on what was found in [6]. Attitude de-

termination algorithms like the Extended Quaternion Estimator (EQUEST) and a Extended

Kalman Filter (EKF) have been explored in [7, 8, 9]. The first prototype for the ADCS was

developed in [10].

Two other master student have been working on the ADCS in parallel with the work pre-

sented here. Henrik Rudi Haave have been working on the sun sensors used for the ADCS

and design of the new hardware in cooperation with myself and Amund Gjersvik. Unfor-

tunately the thesis written by Haave will be handed in later, so any references to his work in

this thesis will simply be done by using his name. Antoine François Xavier Pignède has devel-

oped an algorithm to find out where the satellite is in orbit, estimate a magnetic field vector,

estimate a sun vector, and find the satellites orbital speed. In addition he has investigated

robust spacecraft attitude stabilization [11].

1.3 Contributions of this Thesis

The main focus for the NUTS project in this stage has been to finish as many components

as possible. This master thesis and the other theses written for the ADCS this semester are

thus focused on finishing different parts of the system. Here the main contributions from

the work described in this thesis are listed.

Pulse Width Modulation Evaluation

Several more simulations for the chosen controllers have been performed to see how

they perform with the one cycle Pulse Width Modulation (PWM) actuator design in a

discrete environment where the time period is relatively long.

Pointing controller robustness

Simulations have been performed for the pointing controller with noise added to the

angular measurements. This have been done since noisy angular velocity measure-

ments were a problem in [5].

4 CHAPTER 1. INTRODUCTION

Tumbling controller

A tumbling controller have been found and proven unstable, this will be used to in-

crease the angular velocity of the satellite. Simulations have been performed to check

the performance of the controller.

Attitude Determination and Control System hardware prototype

A second ADCS prototype board has been developed in cooperation with Henrik Ruudi

Haave and Amund Gjersvik based on the first prototype. Changes and improvements

have been made to make a flight ready version. The main difference between the first

and second prototype is that more sensors have been added for redundancy.

Attitude Determination and Control System Software design

The overall software architecture for the ADCS has been designed. This includes def-

initions of which data structures are going to be used, how they are being shared be-

tween modules, and which subsystems goes in which task. A definition for which mes-

sages the ADCS can send and receive has also been made.

Sensor redundancy algorithm

Algorithms to handle sensor redundancy for gyroscope and magnetometer measure-

ments have been investigated, and a median voter algorithm has been implemented.

Failure Analysis

A short failure analysis for the ADCS is also presented. Fault trees have been used to

show how the ADCS might fail to perform what it have been designed to. A discus-

sion on how to reduce the likelihood of errors are also included. Nothing has been

implemented in software, but it is meant as a guide for any further development of the

software.

A thorough effort has been made to clear up some of the problems with previous works that

this thesis is built upon, and to summarize where the design of the ADCS stands. This is

especially true for the control algorithms and the hardware, since no more work should be

needed on these systems after this thesis.

The ADCS is a project that relies on several people. This has lead to delays that have affected

this thesis, like the hardware not being delivered, and some software subsystems being fin-

ished late or not at all. Some tasks that might have seemed natural to include in this thesis

1.4. THESIS OUTLINE 5

have therefore not been performed, tasks such as timing of the software subsystems and de-

veloping new drivers for the new hardware. That being said, everything presented here is of

use to the NUTS project and helps bring the ADCS closer to completion.

1.4 Thesis Outline

Chapter 2 focuses on the basic mathematical principles that are being used for modeling and

simulation of the satellite. This includes an explanation of the rotation matrix, Euler angles

and quaternions.

Chapter 3 introduces the satellites dynamics, explains how the magnetorquers work, de-

scribes the forces working on the satellite in space and some important theory for a failure

analysis is introduced.

Chapter 4 presents the different controllers that have been used in this project. A point-

ing controller, a detumbling controller and a tumbling controller. It also shortly describes

pulse width modulation and presents instability evidence for the tumbling controller.

Chapter 5 presents the simulation results for all the controllers. An analysis of the results

for each individual controller is also included. This includes the simulations of the pointing

controller where noise has been added to the angular velocity measurements.

Chapter 6 presents the changes done on the hardware for this second ADCS prototype. The

important changes and additions are listed and shown.

Chapter 7 discusses some software concepts, which are then used to define a software ar-

chitecture for the ADCS. The different subsystems are listed, how data should be stored and

shared are defined and two architectures are presented.

Chapter 8 investigates some options for processing the sensor data from the gyroscopes and

magnetometers to find the best value. The demands of such an algorithm is defined, and

some different algorithms are presented. A software implementation for a median voter al-

6 CHAPTER 1. INTRODUCTION

gorithm is also included.

Chapter 9 investigates how the ADCS might fail and how failures can be handled. Fault trees

are being used to show how the ADCS may fail in doing what it was designed to.

Chapter 10 discusses and summarizes the results that have been presented trough this thesis.

Chapter 11 presents the conclusion of this thesis.

Chapter 12 focuses on what has to be done in the future to finish the ADCS.

Chapter 2

Background Theory

Most of this chapter is taken from [5] (the authors 5th year project), with modifications to

suit this thesis. This chapter will cover reference frames, the rotation matrix, Euler angles

and quaternions.

2.1 Reference Frames

A reference frame is a coordinate system that is being used to represent the position and

orientation of an object. For satellite navigation it is clearly necessary to specify where the

satellite is, and how it is oriented (what its attitude is), but this has to be done with respect to

some other point in space, reference frames allows us to do this. Which frame one choose to

use depends on what one is trying to describe.

2.1.1 Earth-Centered Inertial Frame

The Earth-Centered Inertial (ECI) frame is a coordinate frame that has its origin at the center

of the Earth. Its axis are defined by the vectors {i } = (xi , yi , zi). The zi axis is defined as a

vector directed from the center of the Earth towards the celestial north pole. The xi axis

points in the vernal equinox direction. This is a vector pointing from the center of Earth to

the center of the Sun on the vernal equinox. The vernal equinox is the time of year when the

Sun crosses the Earths equatorial plane going from south to north, the sun is then directly

over the equator. I.e the center of the Sun lies in the same plane as the Earths equator. The

yi axis is defined by the right hand rule to complete the coordinate system.

7

8 CHAPTER 2. BACKGROUND THEORY

2.1.2 Earth-Centered Earth-Fixed Frame

The Earth-Centered Earth-Fixed (ECEF) frame is like the ECI frame except that it is rota-

tional. Its axis are defined by the vectors {e} = (xe , ye , ze). The ze axis is defined as a vector

directed from the center of the Earth towards the celestial north pole. The xi axis points in

the direction of 0° longitude and 0° latitude, thus the frame rotates with Earth around the ze

axis with a angular speed of ωe = 7.2921×10−5 r ad
sec . Again the ye axis is defined by the right

hand rule to complete the coordinate system.

2.1.3 Orbit Frame

The orbit frame is a moving coordinate frame that has its origin at the center of the satellite.

Its axis is defined by the vectors {o} = (xo , yo , zo). The zo axis is defined as a vector pointing in

the nadir direction (towards the center of the Earth). The xo axis is defined so that it points

in the orbit normal direction, e.g along the satellites linear velocity vector. Again the yo axis

is defined by the right hand rule to complete the coordinate system. This definition of the

orbit frame is only valid for a circular orbit.

2.1.4 Body-Fixed Frame

The body-fixed frame is also a moving coordinate frame with its origin at the center of the

satellite. Its axis is defined by the vectors {b} = (xb , yb , zb). Unlike the orbit frame the body-

fixed frame is fixed to the satellite, as the name implies, it moves and rotates with the satellite.

For NUTS it have been define so that zb is the axis of minimum inertia, yb is the axis of

maximum inertia and the xb axis is defined by the right hand rule to complete the coordinate

system. xb is the roll axis, yb is the pitch axis and zb is the yaw axis. The reasoning behind

this choice of axis follows from the stability analysis done in [6]. This frame is also referred

to as the body frame.

2.2 Attitude Representation

The attitude of a satellite (or any craft) describes how the craft is oriented relative to some

reference frame. In this thesis, the rotation matrix, Euler angles and Quaternions are being

used to represent the satellites attitude and they will be defined here.

2.2. ATTITUDE REPRESENTATION 9

2.2.1 The Rotation Matrix

The rotation matrix is used to rotate or transform a vector from one reference frame to an-

other, or to rotate a vector within a reference frame. A rotation of the vector v from frame a

to b is denoted as vb = Rb
a v a . The rotation matrix is an element in SO(3) which is formally

defined as:

SO(3) :=
{

R | R ∈R3×3, RT R = I, det(R) = 1
}

(2.1)

A useful way to look at the rotation matrix is to describe it as a rotation β about a unit vector

λ as follows:

Rλ,β = I3×3 + sin(β)S(λ)+
[

1−cos(β)
]

S2(λ), λ=


λ1

λ2

λ3

 (2.2)

Where S is a skew-symmetric matrix defined as:

S(λ) =−S(λ)T =


0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 , λ=


λ1

λ2

λ3

 (2.3)

The skew-symmetric matrix, S, is also called a cross product operator:

S(λ)a =λ×a, λ=


λ1

λ2

λ3

 , a =


a1

a2

|a3

 (2.4)

For more on the rotation matrix see Chapter 6 in [12].

The rotation matrix from the body frame b, to the orbit frame o, can be written as:

Rb
o =


xb · xo xb · yo xb · zo

yb · xo yb · yo yb · zo

zb · xo zb · yo zb · zo

=


c11 c12 c13

c21 c22 c23

c31 c32 c33

=
[

c1 c2 c3

]
(2.5)

The elements of the first matrix are the x, y and z components defining the satellites attitude

in the body and orbit frame, as defined in Chapter 2.1. When talking about the satellites

attitude we are referring to how the body frame is oriented relative to the orbit frame. This

10 CHAPTER 2. BACKGROUND THEORY

rotation matrix can thus be used to describe the satellites attitude. The elements in the sec-

ond matrix are called direction cosines, that is they are the cosines of the angles between the

two vectors from the first matrix. Direction cosines can also be used to represent attitude,

but they have not been used in the NUTS project, except to prove stability or instability.

2.2.2 Euler Angles and Quaternions

The most common way to describe the attitude of any system is by using the Euler angles,

roll (φ), pitch (θ) and yaw (ψ). As mentioned earlier, for this satellite roll describes rotation

around the xb axis, pitch describes rotation around the yb axis and yaw describes rotation

around the zb axis. The Euler angle vector is:

Θ=


φ

θ

ψ

 (2.6)

The already mentioned rotation matrix can, with this notation, be rewritten into a set of

principal rotations defined as:

Rx,φ =


1 0 0

0 cos(φ) −sin(φ)

0 sin(φ) cos(φ)

 (2.7)

Ry,θ =


cos(θ) 0 sin(θ)

0 1 0

−sin(θ) 0 cos(θ)

 (2.8)

Rz,ψ =


cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 (2.9)

Rx,φ is a rotation of φ around the x-axis, Ry,θ is a rotation of θ around the y-axis and Rz,ψ is a

rotation of ψ around the z-axis. The full rotation matrix can be written as:

Rb
o = Rx,φRy,θRz,ψ (2.10)

2.2. ATTITUDE REPRESENTATION 11

This attitude representation is easy to understand, but it can lead to singularities in the equa-

tions of motion. For example at a pitch angle of θ = ±90° a singularity will appear in the

equations of motion, which is a big problem. For our satellite system, that can rotate more

than 90° in all directions, this is not a suitable way to describe the attitude in a controller.

The alternative used for this project are quaternions, they are harder to interpret directly but

will not lead to any singularities and are thus much better to use for a satellite. The quater-

nions are a number system that extends the complex numbers, a quaternion, q, consists of

one real part η and three imaginary parts ε=
[
ε1,ε2,ε3

]T
. The set Q of unit quaternions can

be formally defined as:

Q :=
{

q | qT q = 1, q =
[
η,εT

]T
, ε ∈R3 and η ∈R

}
(2.11)

The unit quaternion is defined as:

η := cos

(
β

2

)
(2.12)

ε=
[
ε1,ε2,ε3

]T
=λsin

(
β

2

)
(2.13)

whereλ=
[
λ1,λ2,λ3

]T
is a unit vector that satisfies:

λ=± εp
εTε

if
√
εTε 6= 0 (2.14)

This is the same λ and β as in Equation 2.2. The definition given above is that of a unit

quaternion representing a rotation matrix through its Euler parameters. Throughout the

NUTS project the unit quaternion as defined above has often been referred to only as a

quaternion. For more on Euler angles and quaternions see Chapter 6 in [12].

12 CHAPTER 2. BACKGROUND THEORY

Chapter 3

Satellite Theory

Most of this chapter is taken from [5], with modifications to suit this thesis. In this chapter

the satellite dynamics and kinematics is presented. The theory behind the magnetic actu-

ators and how they work is explained. Furthermore, the environmental disturbances that

can affect the satellite is presented. Lastly, some important theory for a failure analysis is

presented.

3.1 Satellite Dynamics and Kinematics

Treating the satellite as a rigid body its equation of motion for rotational movement can be

expressed as [6]:

τb = Iω̇b
i b +ωb

i b × (Iωb
i b) (3.1)

Where ωb
i b is the angular velocity of the satellite in the body frame with respect to the ECI

frame given in the body frame. I is the satellites moment of inertia matrix around its mass

center and τb is the moment affecting the satellite, given in the body frame. The angular

velocity of the satellite,ωb
i b , can be expressed as:

ωb
i b =ωb

ob +ωb
i o =ωb

ob +Rb
oω

o
i o (3.2)

Where ωo
i o = [0, −ωo , 0] and ωo =

√
GME

R3
o

is the satellites orbital speed. G is the gravitational

constant, ME is the mass of the earth and Ro = Rs +RE , where RE is the earths radius and

Rs is the satellites altitude. Here ωb
ob is the angular velocity of the satellite in the body frame

with respect to the orbit frame, given in the body frame.

13

14 CHAPTER 3. SATELLITE THEORY

The kinematic differential equation for quaternions are given as [13]:

η̇=−1

2
εTωb

ob (3.3)

ε̇= 1

2
(ηI+S(ε))ωb

ob (3.4)

3.2 Magnetorquers

The satellite uses magnetic actuators, called magnetorquers. These magnetorquers are coils

that have been wound up a number of times. The satellite will have three magnetorquers

mounted in alignment with the defined body frame, one on the z-axis, one on the y-axis, and

one on the x-axis. Running current trough the coils creates a magnetic moment m perpen-

dicular to the coil that reacts with the magnetic field B and creates torque according to:

τb = mb ×Bb (3.5)

Since all the measurements and calculations are either being done in or transformed to the

body frame the body superscript is used. To find the direction of the magnetic moment one

can look at the current and use the right-hand rule. The magnetic field created by the coils

will attempt to align itself with the local geomagnetic field, this will in turn create torque,

making the satellite rotate. The magnetic moment is given by:

mb =


Nx ix Ax

Ny i y Ay

Nz iz Az

 (3.6)

Where N is the number of windings in the coil, A is the area the coil covers and i is electric

current. A problem that comes with using magnetorquers is that it gives us an underactu-

ated system if one of the axis are aligned with the local magnetic field. If that happens and

the goal is to turn the satellite around that axis the coils will provide no torque and the sys-

tem will be underactuated. This leads to the system being uncontrollable whenever one of

the axis are parallel to the local magnetic field.

3.3. ENVIRONMENTAL DISTURBANCES 15

The satellites magnetorquers developed in [10] have the specifications given in Table 3.1.

The table is included again here since some of these values are needed in the simulations.

Notice that the X- and Y-coils are identical, while the Z-coil is different, this is so that the

actuators creates the same magnetic moment when the same power is applied to all three.

Since Az < (Ax = Ay) the following must be true, iz > (ix = i y) and/or Nz > (Nx = Ny), to

produce the same magnetic moment, as can be seen from Equation 3.6.

Table 3.1: Magnetorquer specifications, taken from [10]
Parameter X and Y-coil Z-coil
Windings 155 238
R theoretical 26.7Ω 19.2Ω
R measured 27.2Ω 18.5Ω
f 590 Hz 580 Hz
L 8.53 mH 9.13 mH
τ 313 µs 494 µs

3.3 Environmental Disturbances

Even though the satellite is going to operate in a low Earth orbit, there are several environ-

mental factors that are going to affect it and create disturbance torques. The most prominent

disturbances are:

• Gravity

• Aerodynamic torque

• Solar radiation torque

• Internal magnetic dipole moments and other electrical noise

The most important disturbance to model is gravity, since the controller is based on the

satellite working with the torque generated by the gravity of Earth. Simulations have been

done with all these disturbances in [2].The simulations that have been performed here have

been done with the gravity gradient torque only.

For an unsymmetrical satellite the Earths gravity will pull differently on different parts of

16 CHAPTER 3. SATELLITE THEORY

the satellite, creating torque according to [14]:

τb
g = 3ω2

oc3 × (Ic3) (3.7)

Where ωo is the satellites orbital speed, and c3 is a vector of direction cosines from the rota-

tion matrix given in equation 2.5. This is the gravity gradient torque.

3.4 Error Sources

This section is based on the work done for NUTS in [15]. One of the main errors sources

for satellites is the hard radiation operating environment [16]. Chapter 9 deals with how the

ADCS might fail, and how it can be avoided. Here the necessary theory for such a analysis is

introduced. Some important terminology is given below, this is taken from [17].

Failure is an event that occurs when the delivered service deviates from the specified ser-

vice, failures are caused by errors.

Error is the manifestation of a fault within a program or data structure, errors can occur

some distance from the fault sites.

Fault is an incorrect state of hardware or software resulting from failures of components,

physical interference from the environment, operator error, or incorrect design.

Permanent describes a failure or fault that is continuous and stable, in hardware permanent

failures reflect an irreversible physical change.

Intermittent describes a fault that is only occasionally present due to unstable hardware or

varying hardware or software states.

Transient described a fault resulting from temporary environmental conditions.

Radiation errors are divided into two classes, Single Event Phenomena (SEP) and total radi-

ation dosage effects. Table 3.2 shows the different kinds of SEP that can occur. While a SEP

can occur at any time, total radiation dosage errors will occur after the components have re-

ceived a certain amount of radiation. NUTS, and most CubeSats, use only self made or COTS

components, these are especially sensitive to the different kinds of space radiation. The Na-

tional Aeronautics and Space Administration (NASA) estimates that COTS components will

3.4. ERROR SOURCES 17

Table 3.2: Single Event Phenomena, taken from [15]
Name Effect

Single Event Transient (SET) Soft intermittent fault
Propagating through circuit

Single Event Upset (SEU) Soft transient fault
State change on latch or memory
Often refereed to as a bit-flip

Single Event Latchup (SEL) Apparent short circuit
Can be mitigated with power cycling
Can cause destructive thermal runaway

Single Event Gate Rupture (SEGR) Permanent Failure
Single Event Burnout (SEB) Permanent Failure

suffer from a SEU error rate of 10−5 errors/bit-day and tolerate a total radiation dose of about

2 to 10 krad (100rad = 1gray(Gy) = 1 J
kg) [16].

SEGR and SEB failures are hard to counteract and have not been dealt with for NUTS. SEL

failures can mostly be cleared by power cycling the ADCS, a function that is already built into

the backplane of NUTS [15]. SET and SEU errors can to a certain extent be counteracted in

software. Total radiation dosage effects can postponed by shielding the components. For a

more detailed description of space radiation effects and how a CubeSat can be built to detect

and correct such errors see [15].

A common way to reduce the likelihood of critical systems failing is to include redundancy

in those systems. Redundancy is defined as the inclusion of extra components so that the

system can continue to function as specified even if some components stop working as they

should. It is important to note that having redundancy can also greatly increase the complex-

ity and maintainability of a system, since having more components increases the amount of

errors being introduced [18].

18 CHAPTER 3. SATELLITE THEORY

Chapter 4

Control

Parts of this chapter have been taken from [5]. The target of the ADCS is to point the satellites

positive z-side towards Earth, this is the case when the body frame is aligned with the orbit

frame. This can be expressed in an Euler angle as:

Θ= [0 0 0]T (4.1)

Or in a quaternion as:

q = [1 0 0 0]T (4.2)

Usually the term nadir pointing is used for this because of the definition of the orbit frame.

The maximum error allowed on the pointing accuracy and drift rate while still considering

the ADCS to be pointing in the nadir direction is given in Table 4.1.

Table 4.1: Attitude Control System Requirements
Roll Pitch Yaw

Pointing Accuracy [deg] ±25 ±25 −
Angulvar Velocity [rad/sec] ±1 ·10−3 ±1 ·10−3 ±1 ·10−3

Several simulations have already been performed for the pointing controller and the detum-

bling controller, [2, 19, 3], but no one has investigated how the controllers will work with

the actuator design on NUTS. One of the main goals of this thesis is to investigate how the

controllers will behave in a discrete environment with the current actuator design. The actu-

19

20 CHAPTER 4. CONTROL

ators (the magnetorquers) are controlled by using a one cycle PWM. The behavior of the con-

trollers will therefore be investigated by running simulations with a one cycle PWM control

output. Here the different controllers will be presented again, as well as a short description

of PWM.

4.1 B-Dot Estimator

Because of some issues with how the B-Dot estimator was presented in [2] it is repeated here.

For the detumbling controller Ḃb is needed, but this cannot be measured directly. An esti-

mator to calculate Ḃb from Bb has been developed. The analysis for the estimator is mostly

given in the Laplace domain and is presented below.

Ḃ can be found from Bb in the following way:

H(s) = Ḃb

Bb
= s (4.3)

The measurements of Bb might be noisy, so a low-pass filter is also desired:

G(s) = K
ωc

s +ωc
(4.4)

The estimator is then given by:

J (s) = H(s)G(S) =
ˆ̇B

B
= K

ωc s

s +ωc
(4.5)

This is a first order state variable filter. A discrete version of this estimator is needed, to find

it the estimator is first transformed to the z-domain:

J (z) =
ˆ̇B

B
= Kωc

z −1

z −e−ωc Ts
= b(1− z−1)

1−az−1
(4.6)

This can be rewritten to:

ˆ̇B(1−az−1) = b(1− z−1)B (4.7)

4.2. DETUMBLING CONTROLLER 21

The discrete estimator can then be written as a recurrent filter:

ˆ̇Bk = a ˆ̇Bk−1 +b(Bk −Bk−1) (4.8)

Here ωc is the cut-off frequency, K is the filter passband gain and Ts is the sampling time.

A good value for the cut-off frequency has been found to be ωc = 0.7 [2, 20]. The sampling

time, Ts , has varied with the discrete period used in the simulations. The filter coefficients

are given by:

a = e−ωc Ts (4.9)

b = Kωc (4.10)

4.2 Detumbling Controller

The detumbling controller chosen for NUTS is the B-dot controller first proposed in [21]. It

has since become a popular controller in the CubeSat community, where it has taken slightly

different forms, [22, 6]. The B-dot control law used by NUTS is [6]:

mb =−kḂb , k > 0 (4.11)

mb is the magnetic dipole moment, k is the positive control gain and Ḃb is the time derivative

of the local magnetic field.

Since we cannot measure Ḃb directly the estimate is used:

mb =−k ˆ̇Bb , k > 0 (4.12)

[6] suggests choosing the gain, k, as:

k = d

|Bb |2 , d > 0 (4.13)

With this gain the B-dot detumbling control law becomes:

mb =− d

|Bb |2
ˆ̇Bb , d > 0 (4.14)

22 CHAPTER 4. CONTROL

A stability analysis for this controller has been presented in [2] and is therefore not repeated

here. The stability analysis finds that energy is dissipated so that the angular velocity will

decrease. It is found that the satellites inertia matrix needs to satisfy the following equation:

Iy > Ix > Iz (4.15)

4.3 Pointing Controller

The pointing controller chosen for NUTS is based on the work in [6]. The derivation of this

control law from an ideal controller is shown here. A controller on the following form is

desired:

τb
d =−pε−dωb

ob , p,d > 0 (4.16)

p and d are constant positive gains, ε equals the three last elements of the quaternion vec-

tor as defined in Chapter 2 and ωb
ob is the angular velocity of the satellites body frame with

respect to the orbit frame given in the body frame.

Unfortunately, this controller is completely hypothetical since the magnetorquers cannot

be used to set up an arbitrary magnetic moment. The torque is given by τb = mb ×Bb , this

will be in the plane that Bb is normal to. A solution to this is to project τb
d so that it is nor-

mal to Bb . Using the controller in Equation 4.16 the actual torque would still be in the plane

normal to the magnetic field, but for the controller to be as efficient as possible it should be

projected to the right plane.

The direction of the magnetic moment mb is given by the cross product between Bb and

τb
d , multiplied by some f to get the right length:

mb = f Bb ×τb
d (4.17)

The torque is then given by:

τb = f (Bb ×τb
d)×Bb (4.18)

4.4. TUMBLING CONTROLLER 23

Defining the angle between Bb and τb
d as α the length of τb can be defined as:

|τb | = |mb ||Bb | = f |Bb | |τb
d | |Bb |sinα (4.19)

This length can also be defined as:

|τb | = |τb
d |sinα (4.20)

From this it is clear that f is:

f = 1

|Bb |2 (4.21)

This is also the reason for choosing the gain, k, in Equation 4.13 in this way. The resulting

pointing controller becomes:

mb =− 1

|Bb |2
(
p(Bb ×ε)+d(Bb ×ωb

ob)
)

, p,d > 0 (4.22)

This is a nonlinear Proportional-Derivative (PD) controller. Linearization has shown that the

controller is locally stable [6], but unfortunately no clear stability evidence has been found.

It is found that the satellites inertia matrix should satisfy the following equation:

Iy > Ix > Iz (4.23)

Efforts have been made to find a better stability evidence for this controller, unfortunately

there have been no results.

4.4 Tumbling Controller

A controller to increase the angular velocity of the satellite is presented here. This might not

seem useful at first glance, but the idea is to check how components like the radio performs

when the satellite is spinning. A tumbling controller could simply be a feedback from the

angular velocity:

τb
d = gωb

ob , h > 0 (4.24)

Here ωb
ob is the angular velocity of the satellites body frame with respect to the orbit frame

given in the body frame. Just like for the pointing controller this control expression should

24 CHAPTER 4. CONTROL

be projected to the plane normal to Bb , the procedure is exactly the same as for the pointing

controller. The tumbling controller can then be expressed as:

mb = h
1

|Bb |2 (Bb ×ωb
ob) , h > 0 (4.25)

A short analysis to prove that this controller will actually increase the angular velocity of the

satellite is included next.

4.4.1 Instability

This instability analysis is based on Lyapunov Theory. Here a Lyapunov function and its

derivative will be found and used to prove that the controller in Equation 4.25 is unstable.

The Lyapunov analysis is based on what was done in [6] and [14].

The potential energy for a rigid body in a circular orbit is [14]:

U =−GME m

Ro
− 1

2
ω2

o(Ix + Iy + Iz)+ 3

2
ω2

ocT
3 Ic3 (4.26)

Similarly, the kinetic energy is [14]:

T = 1

2
mω2

oR2
o +

1

2
(ωb

i b)T Iωb
i b (4.27)

The first term is the translational energy, and the second term is the rotational energy.

The kinetic energy, T , can be split into three parts by inserting a rewritten form of Equation

3.2:

ωb
i b =ωb

ob −ωoc2 (4.28)

The kinetic energy is:

T = 1

2
mω2

oR2
o +

1

2
ω2

ocT
2 Ic2 −ωocT

2 Iωb
ob +

1

2
(ωb

ob)T Iωb
ob (4.29)

4.4. TUMBLING CONTROLLER 25

This leads to:

T = T0 +T1 +T2 (4.30)

T0 = 1

2
mω2

oR2
o +

1

2
ω2

ocT
2 Ic2 (4.31)

T1 =−ωocT
2 Iωb

ob (4.32)

T2 = 1

2
(ωb

ob)T Iωb
ob (4.33)

There exists an energy function on the form [14]:

H = T2 + (U −T0) (4.34)

H = 1

2
(ωb

ob)T Iωb
ob −

GME m

Ro
− 1

2
ω2

o(Ix + Iy + Iz)+ 3

2
ω2

ocT
3 Ic3

− 1

2
mω2

oR2
o +

1

2
ω2

ocT
2 Ic2 (4.35)

From this energy function a Lyapunov function can be derived [14]:

V = H −H0 (4.36)

H0 is the value for H in the equilibrium of interest, this is ωb
ob = 0 and Rb

o = I. This is the

attitude where the satellites body frame is aligned with its orbit frame and there are zero

angular velocity.

H0 = 1

2
ω2

o(3Iz − Iy)− 1

2
mω2

oR2
o −

GMm

Ro
− 1

2
ω2

o(Ix + Iy + Iz) (4.37)

Equation 4.36 becomes:

V = H −H0

= 1

2
(ωb

ob)T Iωb
ob +

3

2
ω2

o(Ixc2
13 + Iy c2

23 + Iz(c2
33 −1))− 1

2
ω2

o(Ixc2
12 + Iy (c2

22 −1)+ Izc2
32) (4.38)

Since one of the properties of the rotation matrix, Rb
o , is that it is orthogonal, the following

relationships are true: c2
12 + c2

22 + c2
32 = 1 and c2

13 + c2
23 + c2

33 = 1. Using these relationships to

26 CHAPTER 4. CONTROL

simplify Equation 4.38 a Lyapunov function can be found to be:

V (x) = 1

2
(ωb

ob)T Iωb
ob

+ 3

2
ω2

o(Ix − Iz)c2
13 + (Iy − Iz)x2

23

+ 1

2
ω2

o(Iy − Ix)c2
12 + (Iy − Iz)x2

32

Define the state vector to be:

x =
[

(ωb
ob)T c13 c23 c12 c32

]T
(4.39)

This Lyapunov function satisfies V (0) = 0 and V (x) > 0 for x 6= 0 if:

Iy > Ix > Iz (4.40)

This is also a requirement for the detumbling controller to be stable [2] and for the pointing

controller [6].

To prove instability the time derivative of this Lyapunov function is needed:

V̇ = (ωb
ob)T Iω̇b

ob +3ω2
ocT

3 I ċ3 −ω2
ocT

2 I ċ2 (4.41)

The satellite dynamics from Equation 3.1 can be rewritten by also considering the gravity

gradient torque from Equation 3.7:

τb = Iω̇b
i b +ωb

i b × (Iωb
i b)−3ω2

oc3 × (Ic3) (4.42)

Using Equation 4.28, Equation 4.42 can be written as:

τb = Iω̇b
ob−ωoIċ2+ωb

ob×(Iωb
ob)−ωoω

b
ob×(Ic2)−ωoc2×(Iωb

ob)+ω2
oc2×Ic2−3ω2

oc3×Ic3 (4.43)

4.4. TUMBLING CONTROLLER 27

Inserting this into Equation 4.41 the Lyapunov derivative can be rewritten to:

V̇ = (ωb
ob)T

(
ωoIċ2 −ωb

ob × (Iωb
ob)+ωoω

b
ob × (Ic2)+ωoc2 × (Iωb

ob)−ω2
oc2 × Ic2 +3ω2

oc3 × Ic3 +τb
)

+3ω2
ocT

3 I ċ3 −ω2
ocT

2 I ċ2 (4.44)

A cross product of a vector with itself is the zero vector: (ωb
ob)T S(ωb

ob) = 0. The time deriva-

tive of a direction cosine is: ċi = S(ci)ωb
ob . Using these relationships Equation 4.44 can be

rewritten to:

V̇ = (ωb
ob)T

(
ωoI×c2ω

b
ob +ωoc2 × (Iωb

ob)−ω2
oc2 × Ic2 +3ω2

oc3 × Ic3 +τb
)

+3ω2
ocT

3 I ċ3 −ω2
ocT

2 I ċ2 (4.45)

Since V̇ is a scalar the terms in V̇ can be transposed, leading to all terms canceling each other

out except the torque. The Lyapunov derivative can be written as:

V̇ = (ωb
ob)Tτb (4.46)

Chetaev’s theorem, [23] and [24], can then be used to prove instability by showing that:

V (0) = 0 and V (x) > 0, ∀x 6= 0

V̇ (x, t) > 0 ∀x 6= 0

To prove instability the torque expression for the tumbling controller is inserted in Equation

4.46, this expression is:

τb = h
1

|Bb |2 (Bb ×ωb
ob)×Bb , h > 0 (4.47)

Inserting Equation 4.47 into Equation 4.46 the Lyapunov derivative can be written as:

V̇ = h
1

|Bb |2 (ωb
ob)

(
(Bb ×ωb

ob)×Bb
)

= h
1

|Bb |2 (Bb ×ωb
ob)T (Bb ×ωb

ob) (4.48)

Bb will vary with time as well as the orientation of the satellite, thus V̇ has to be considered

as a function of both the state vector x, and time, that is to say that the Lyapunov derivative

28 CHAPTER 4. CONTROL

is non-autonomous, V̇ (x, t). The magnetic field vector will never be zero, Bb 6= 0, so Equation

4.48 will only equal zero for ωb
ob = 0 or when ωb

ob is parallel to Bb . Otherwise V̇ (x, t) > 0 is

true.

Intuitively this will never be a problem for the tumbling controller. Irregularities in the mag-

netic field will ensure that even if ωb
ob is parallel to Bb they will diverge. The solution where

ωb
ob is parallel to Bb is unstable, a small perturbation will causeωb

ob to diverge from Bb . Thus

this will not be a stationary solution to the system and we can conclude that the controller is

unstable.

The tumbling controller in Equation 4.25 is unstable by Chetaev’s theorem [23], [24]. En-

ergy will be added to the system and the angular velocity will increase.

4.5 Pulse Width Modulation and Controller Timing

PWM is a technique used to modulate a signal so that a square control output can be used to

emulate a signal of any form, an example can be seen in Figure 4.1.

V B

B
(T

),
V

(V
)

1.5

1.0

0.5

0

-0.5

-1.0

-1.5

0 5 10 15 20(ms)

Figure 4.1: Figure showing an example of PWM in an idealized inductor, taken from [25]

4.5. PULSE WIDTH MODULATION AND CONTROLLER TIMING 29

The actuator design on the ADCS uses a one cycle PWM approach, Figure 4.2 shows how

the control output is controlled and what it look likes.

x-coil

y-coil

z-coil

0V

3.3V

0V

-3.3V

0V

tim
er

 st
ar

t

CCB in
ter

ru
pt

y-c
oil

 O
FF

CCA in
ter

ru
pt

x-c
oil

 O
FF

tim
er

 st
op

avg. output

avg. output

time

Figure 4.2: Figure showing coil output on NUTS, taken from [10]

For the rest of this thesis the period between timer start and timer stop will be defined as

Tcontr ol . For code simplicity and to make the system more intuitive the control period is set

to be equal to the period that is needed to perform the necessary operations to find the con-

trol output, like reading sensor data and estimating the satellites attitude. Simulations will

be done in Chapter 5 to see whether or not the controllers will work with this approach.

Unfortunately due to the lack of hardware and some subsystems no accurate estimate ex-

ists on how long it will take to calculate the control output. In [9] the estimator algorithm

used about 200 milliseconds, this will most likely be the slowest part of the code, especially

when the estimation algorithm is updated to include a estimate of the angular velocity.

The timing of everything else is unknown, but to test the system, and as an assumption

30 CHAPTER 4. CONTROL

for the simulations, Tcontr ol is being set to 500 milliseconds. The total period will then be

1 second. The control output can also be calculated while the coils are running (the magne-

tometers can not be used while the coils are running though), but the ADCS will also need to

have time to perform other house keeping operations like message handling.

Another factor to consider for the simulations is the time lag that exists in an inductor, like

the magnetorquers, after a current has started to run trough it until the magnetic field have

reached its maximum value. Table 3.1 shows that the time constants for the magnetorquers

are τx,y = 313µs and τz = 494µs. The time constant is the time it takes for the current in an

inductor to reach 63.2% of its maximal value, five time constants is considered as the time

it takes for the magnetic field produced by an inductor to reach its maximum value. For the

magnetorqers five time constants are:

5τx,y = 1.565ms (4.49)

5τz = 2.4ms (4.50)

Calculations

PWM

T = 500 ms

T = 500 ms

Figure 4.3: Figure showing the system flow

This is considerably shorter than Tcontr ol ,

and the time it takes to charge and discharge

the magnetorquers are therefore ignored in

the simulations.

To summarize, the system will first run for

a period of Tcontr ol . At the start of this pe-

riod the data needed to calculate the con-

trol output will be stored and calculations

can begin. When this period is over the con-

trol output should be finished calculating

and the magnetorquers can be turned on,

the magnetorquers then stay on for a max-

imum period of Tcontr ol . While they are on

they will constantly produce the maximal

magnetic dipole moment. The magnetor-

4.5. PULSE WIDTH MODULATION AND CONTROLLER TIMING 31

quers might be turned off earlier by an in-

terrupt. How long they stay on is found by

comparing the value found by the control

algorithms to the maximal value that can be

set up by the magnetorquers. This will then be repeated as long as the controller is active,

as can be seen in Figure 4.3 in which Tcontr ol = T . The process is further mimicked in the

simulations in Chapter 5. This assumption have also be used when designing the software.

32 CHAPTER 4. CONTROL

Chapter 5

Simulations

Parts of the introduction to this chapter have been taken from [5], all of the simulation results

are new. In this chapter numerical simulations done in Matlab will be presented for the dif-

ferent controllers. The code used is based on that of [5], but edited so that the sensor data is

stored periodically and the control output is used according to the one cycle PWM method.

For the calculations from quaternions to Euler angles and back the Marine Systems Simula-

tor (MSS) toolbox is being used. The toolbox has been developed for control and simulation

of marine craft, but the functions for dealing with quaternions, Euler angles and rotation

matrices are very useful for any application that are operating with these parameters. For

more on the MSS toolbox see [26]. Matlabs built in ode45 function is being used to simulate

the system, which is given by the state vector:

x =
[

(ωb
i b)T η εT λ W

]T
(5.1)

This is the state vector first used in [6] and the one that has been used throughout the entire

NUTS project. Note that it is not the same state vector that was used for the instability evi-

dence in Chapter 4

ωb
i b is the angular velocity of the satellite in the body frame with respect to the ECI frame,

given in the body frame. η is the first element of the unit quaternion vector, ε consists of the

three last elements of the unit quaternion, λ is the latitude and W is the satellites power con-

sumption. W does not have any effect on the satellites orientation or control, but is included

to monitor the power usage. It is not being used in this thesis.

33

34 CHAPTER 5. SIMULATIONS

The initial conditions are set inωb
ob (in radians per second), and Euler angles

[
φθ ψ

]
(in de-

grees), which are the attitude variables of the satellite in the body frame with respect to the

orbit frame, and then transformed to the variables in the state matrix using the MSS toolbox.

The initial latitude, λ, and power consumption, W , is set to zero in all the simulations. The

latitude, λ, is included since it is needed for the International Geomagnetic Reference Field

(IGRF) model that is being used to calculate the magnetic field [3].

The satellite parameters can be found in Table 5.1. Since the satellite has not been built

yet all these variables are based on assumptions and approximations. The inertia are cal-

culated assuming uniform mass distribution, then changed slightly to satisfy the stability

requirement: Iy > Ix > Iz .

Table 5.1: Satellite Parameters
Parameter Value
m [kg] 2.6
Ix [kg m2] 0.0098
Iy [kg m2] 0.0108
Iz [kg m2] 0.0043
Voltage [V] 3.3
Rs[km] (orbit height) 600
Orbit Period [min] 96.54

5.1 Detumbling

Here the simulation results for the detumbling controller are presented. The simulations

have been done for two different controller periods to see how much the period will affect

the effectiveness of the controller.

Tcontr ol1 = 0.25 seconds (5.2)

Tcontr ol2 = 0.5 seconds (5.3)

Tcontr ol1 is used for detumbling simulation 1, the initial values are defined in Table 5.2 and a

plot of the angular velocity can be found in Figure 5.1. Tcontr ol2 is used for detumbling sim-

ulation 2 and 3. The initial values used for detumbling simulation 2 can be found in Table

5.1. DETUMBLING 35

5.3, and the resulting simulation results is presented in Figure 5.2. The initial values used for

detumbling simulation 3 can be found in Table 5.4, and the resulting simulation results are

presented in Figure 5.3.

Tuning lead to the following control gain being selected:

d = 1×10−4; (5.4)

Only plots of the angular velocity is included here, since this is the most interesting result to

look at for the detumbling controller.

Table 5.2: Initial Values for Detumbling Simulation 1
ωb

ob = [1.2 1.2 1.2]T

Θ= [90 −50 20]T

q = [0.5792 0.6830 −0.1830 0.4056]T

0 0.5 1 1.5 2
−2

0

2

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−2

0

2

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−2

0

2

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.1: Detumbling Simulation 1, Angular Velocities

36 CHAPTER 5. SIMULATIONS

Table 5.3: Initial Values for Detumbling Simulation 2
ωb

ob = [0.9 0.9 0.9]T

Θ= [90 −50 20]T

q = [0.5792 0.6830 −0.1830 0.4056]T

0 0.5 1 1.5 2
−2

0

2

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−2

0

2

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−2

0

2

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.2: Detumbling Simulation 2, Angular Velocities

Table 5.4: Initial Values for Detumbling Simulation 3
ωb

ob = [0.1 0.1 0.1]T

Θ= [90 −50 20]T

q = [0.5792 0.6830 −0.1830 0.4056]T

5.1. DETUMBLING 37

0 0.5 1 1.5 2
−0.2

0

0.2

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−0.2

0

0.2

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2
−0.2

0

0.2

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.3: Detumbling Simulation 3, Angular Velocities

38 CHAPTER 5. SIMULATIONS

One of the main concerns when it comes to the detumbling controller is the initial angular

velocity. The spin when launching from the Poly-Picosatellite Orbital Deployer (P-POD) is

unknown, and no defined maximum limit has been found. In [19] there were several sources

claiming that the worst initial tip-off rate was known to be 5.7 degrees per second (0.1 radi-

ans per second), without finding any information confirming this. SwissCube experienced

an initial spin of about 360 degrees per second (6.28 radians per second) [27], which is the

highest angular velocity reported (that the author has been able to find).

Simulations done here have found that the detumbling controller will work for speeds up

to approximately 51 degrees per second, assuming that Tcontr ol = 0.5 seconds. By reducing

Tcontr ol to 0.25 seconds the controller could handle speeds up to 69 degrees per second. This

is not a significant improvement, and it might be favorable to run the detumbling controller

with the same period as the rest of the system.

Experimentation with tuning of the filter parameters presented in Chapter 4.2 have also been

tried. The filter coefficients in Equation 4.10 seems to affect the operating range of the de-

tumbling controller much more than the control gain, d . The filter has been tuned in such

a way that the detumbling controller could work with initial speeds around 180 degrees per

second if it was run with a shorter time period. Unfortunately the filter parameters are not

actually tuning variables, unlike the control gain. As can be seen in Chapter 4.2 they have

fixed expressions that are dependent on the cutoff frequency, the passband gain and the

sampling time. The only tunable parameter is the passband gain, and varying it did not have

much effect. The simulations shown here have been performed with a passband gain of K =

1.

5.2 Pointing

Here the simulation results for the pointing controller are presented. Simulations have been

performed both with and without measurement noise on the gyroscope measurements. Af-

ter seeing how large an effect measurement noise had on the controller during hardware

testing in [5] it has been desirable to find a limit on how much noise that is acceptable. For

the pointing controller all the presented results have been performed with the following pe-

5.2. POINTING 39

riod:

Tcontr ol = 0.5 second s (5.5)

Tuning of the controller lead to the following gains being used:

p = 1.8×10−6 (5.6)

d = 1.4×10−3 (5.7)

5.2.1 Without Measurement Noise

Two simulations are being presented here with no noise on any of the measurements. The

simulations are included to illustrate how much the initial conditions affects how long it

takes for the controller to steer the satellite to the desired attitude.

Pointing simulation 1 illustrates the maximum convergence rate, its initial values are given

in Table 5.5 and the result is presented in Figure 5.4 and Figure 5.5. Figure 5.6 and Figure 5.7

shows an example of how long it can take for the controller to stabilize the satellite (pointing

simulation 2), the initial conditions are given in table 5.6.

Table 5.5: Initial Values for Pointing Simulation 1
ωb

ob = [0.002 −0.03 0.013]T

Θ= [−180 −50 −180]T

q = [−0.4226 0.0000 0.9063 0.0000]T

Table 5.6: Initial Values for Pointing Simulation 2
ωb

ob = [0 0 0]T

Θ= [−180 50 70]T

q = [0.2424 0.7424 0.5198 −0.3462]T

40 CHAPTER 5. SIMULATIONS

0 2 4 6 8 10 12 14 16
−200

0

200
Euler Angeles

R
ol

l (
x)

 [d
eg

re
es

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−100

0

100

P
itc

h
(y

)
[d

eg
re

es
]

Time [orbits]

0 2 4 6 8 10 12 14 16
−200

0

200

Y
aw

 (
z)

 [d
eg

re
es

]

Time [orbits]

Figure 5.4: Pointing Simulation 1, Euler Angles

0 2 4 6 8 10 12 14 16
−0.5

0

0.5
Magnetic Moment, mb

x+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

y+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.4

−0.2

0

z+
−

fa
ce

 [A
m

2]

Time [orbits]

Figure 5.5: Pointing Simulation 1, Magnetic Moment

5.2. POINTING 41

0 2 4 6 8 10 12 14 16
−200

0

200
Euler Angeles

R
ol

l (
x)

 [d
eg

re
es

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−100

0

100

P
itc

h
(y

)
[d

eg
re

es
]

Time [orbits]

0 2 4 6 8 10 12 14 16
−200

0

200

Y
aw

 (
z)

 [d
eg

re
es

]

Time [orbits]

Figure 5.6: Pointing Simulation 2, Euler Angles

0 2 4 6 8 10 12 14 16
−0.5

0

0.5
Magnetic Moment, mb

x+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

y+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

z+
−

fa
ce

 [A
m

2]

Time [orbits]

Figure 5.7: Pointing Simulation 2, Magnetic Moment

42 CHAPTER 5. SIMULATIONS

It is clear when comparing Figure 5.4 to Figure 5.6 that with the initial conditions in Table

5.5 the controller can reach the desired attitude much faster than with the initial conditions

in Table 5.6. These two figures shows the two extremes that have been found, a more typical

result is that it takes 4 - 8 orbits for the satellite to reach the desired attitude, instead of 1 or

12 orbits. This can be seen in Figure 5.8.

The slight wobbling that can be seen in Figure 5.4 after 2 orbits is well within the ±25 de-

gree accuracy, as is the wobbling seen in Figure 5.6 after approximately 12 orbits. Looking at

Figure 5.5 one can also see that the controller is no longer generating any magnetic moment

after approximately 1 orbit, this is expected as the satellite is stable for the nadir pointing

attitude without the controller. The same can be seen in Figure 5.7 after approximately 12

orbits. Different initial values for Θ have been found to be the main factor for how long it

takes for the satellite to stabilize in the correct attitude.

The pointing controller is only being used to push the satellite into the stable attitude where

the body frame is aligned with the orbit frame, once the satellite has reached that attitude it

should not require any more running of the magnetorquers. It is important to note that these

simulations have been run with the gravity gradient as the only external torque, in reality

there will also be other forces generating torque on the satellite that will affect the stability

of the nadir pointing. These forces will be smaller than the gravity torque and the torque set

up by the magnetorquers. That is to say that in reality the magnetorquers will be used also

after the satellite have reached the desired attitude. The simulation results presented for the

pointing controller with noise on the angular velocity measurements in the next section is

thus more realistic.

5.2.2 With Measurement Noise

Three simulations are presented here to show how the pointing controller behaves with dif-

ferent kinds of noise on the angular velocity measurements. The same initial conditions are

being used for all simulations, given in Table 5.7, the type of added noise can be found in

Table 5.8. Pointing simulation 4 is without any noise to illustrate how the pointing controller

should behave under ideal circumstances and can be seen in Figure 5.8, this is how the point-

ing controller behaves on average in the simulations. Figure 5.9 shows the Euler Angles for

5.2. POINTING 43

the satellite when white noise is added to the angular velocity measurements (pointing sim-

ulation 5). Figure 5.12 shows the Euler Angles for the satellite when sinusoidal noise is added

to the angular velocity measurements (pointing simulation 6).

Table 5.7: Initial Values for Pointing Simulation 4-6
ωb

ob = [0.002 −0.03 0.013]T

Θ= [130 50 −90]T

q = [0.0000 0.7071 −0.4545 −0.5417]T

Table 5.8: Noise Types for Simulations
Simulation Noise Type Amplitude/Variance

Pointing Simulation 4 No Noise N/A
Pointing Simulation 5 Normally distributed random numbers Variance = 4×10−8

Pointing Simulation 6 Sinusoidal Amplitude = 2×10−5

0 2 4 6 8 10 12 14 16
−200

0

200
Euler Angeles

R
ol

l (
x)

 [d
eg

re
es

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−100

0

100

P
itc

h
(y

)
[d

eg
re

es
]

Time [orbits]

0 2 4 6 8 10 12 14 16
−200

0

200

Y
aw

 (
z)

 [d
eg

re
es

]

Time [orbits]

Figure 5.8: Pointing Simulation 4, Euler Angles

44 CHAPTER 5. SIMULATIONS

0 2 4 6 8 10 12 14 16
−200

0

200
Euler Angeles

R
ol

l (
x)

 [d
eg

re
es

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−100

0

100

P
itc

h
(y

)
[d

eg
re

es
]

Time [orbits]

0 2 4 6 8 10 12 14 16
−200

0

200

Y
aw

 (
z)

 [d
eg

re
es

]

Time [orbits]

Figure 5.9: Pointing Simulation 5, Euler Angles, with white noise

0 2 4 6 8 10 12 14 16
−0.5

0

0.5
Magnetic Moment, mb

x+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

y+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

z+
−

fa
ce

 [A
m

2]

Time [orbits]

Figure 5.10: Pointing Simulation 5, Magnetic Moment, with white noise

5.2. POINTING 45

0 2 4 6 8 10 12 14 16
−0.02

0

0.02

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.05

0

0.05

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.02

0

0.02

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.11: Pointing Simulation 5, Angular Velocities, with white noise

0 2 4 6 8 10 12 14 16
−200

0

200
Euler Angeles

R
ol

l (
x)

 [d
eg

re
es

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−100

0

100

P
itc

h
(y

)
[d

eg
re

es
]

Time [orbits]

0 2 4 6 8 10 12 14 16
−200

0

200

Y
aw

 (
z)

 [d
eg

re
es

]

Time [orbits]

Figure 5.12: Pointing Simulation 6, Euler Angles, with sinusoidal noise

46 CHAPTER 5. SIMULATIONS

0 2 4 6 8 10 12 14 16
−0.5

0

0.5
Magnetic Moment, mb

x+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

y+
−

fa
ce

 [A
m

2]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

z+
−

fa
ce

 [A
m

2]

Time [orbits]

Figure 5.13: Pointing Simulation 6, Magnetic Moment, with sinusoidal noise

0 2 4 6 8 10 12 14 16
−0.02

0

0.02

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.05

0

0.05

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 2 4 6 8 10 12 14 16
−0.02

0

0.02

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.14: Pointing Simulation 6, Angular Velocities, with sinusoidal noise

5.2. POINTING 47

Figure 5.10 shows the magnetic moment for pointing simulation 5, while Figure 5.9 shows

the Euler angles. The angular velocity for pointing simulation 5 can be seen in Figure 5.11.

Note that the controller never stops setting up a magnetic moment, unlike how it behaved

in the simulations where there was no noise. This is as expected, the controller constantly

sets up a magnetic moment to counteract the velocity it thinks the satellite has because of

the noise. White noise with a variance of less than or equal to 4×10−8 on the angular velocity

measurements are thus tolerable.

Figure 5.13 shows the magnetic moment for pointing simulation 5, while Figure 5.12 shows

the Euler angles. The angular velocity for pointing simulation 5 can be seen in Figure 5.14.

Notice here that the controller stops setting up a magnetic moment once the satellite has

reached the desired attitude. This is because the noise level is so low that the controller is

not activated, with higher noise levels the satellite does not reach the desired attitude. Any

sinusoidal noise on the angular velocity measurements have to have an amplitude of less

than 2×10−5 for the controller to work as expected. Any more noise and the controller be-

comes unstable.

This results is as expected, slowly varying sinusoidal noise is impossible for the controller

to remove without having any more knowledge of it. While hardware testing the first ADCS

prototype in [5] sinusoidal noise was spotted on the angular velocity measurements, thus

this effect have to be removed for the pointing controller to work. White noise is what is usu-

ally used to check robustness for a controller, as can be seen the pointing controller will still

work when there are white noise on the angular velocity measurements.

Simulations have only been performed for noise on the angular velocity measurements. The

magnetometer chosen for NUTS have proven to be extremely stable [5], and a low pass filter

for these measurements was developed in [2]. The quaternion used is a unit quaternion, that

means that it will always be a unit vector, this naturally limits any noise that might occur on

the estimate and has therefore not been considered.

48 CHAPTER 5. SIMULATIONS

5.3 Tumbling

Here the simulation results for the tumbling controller is presented. The control period is:

Tcontr ol = 0.5 seconds (5.8)

Tuning of the controller lead to the following gain being selected:

h = 1 (5.9)

With this gain the controller goes to a maximum output immediately, which simulations

show is the most efficient way to spin up the satellite. The gain could also be set lower, but

by setting it to 1 it can be ignored in the software implementation. Only a plot of the angular

velocity is included here since it is the most interesting result.

Figure 5.15 shows the angular velocity for the satellite without any control input for one

orbit, then the tumbling controller is turned on and the satellite starts spinning. A small

disturbance is used to push the satellite out of the equilibrium point. The initial values are

given in Table 5.9.

Table 5.9: Initial Values for Tumbling Simulation
ωb

ob = [0 0 0]T

Θ= [0 0 0]T

q = [1 0 0 0]T

5.3. TUMBLING 49

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

Angular Velocities, ωB
OB

x co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.5

0

0.5

y co
m

p [r
ad

/s
ec

]

Time [orbits]

0 0.5 1 1.5 2 2.5 3 3.5 4
−10

0

10

z co
m

p [r
ad

/s
ec

]

Time [orbits]

Figure 5.15: Tumbling Simulation, Angular Velocity

Simulations have also been performed with two other tumbling controllers. One where the

detumbling controller was used as a tumbling controller by changing the controller sign, an-

other one where the angular velocity used in the control expression was taken directly from

the gyroscope, ωb
i b . The simulation presented here has been performed with the tumbling

controller given in Chapter 4. This controller was the most effective in the simulations, and

had the most rigid instability proof, and was therefore chosen. Figure 5.15 shows that the

controller will in fact be able to increase the angular velocity of the satellite. It is impor-

tant that the tumbling controller is not run so long that the angular velocity of the satellite

exceeds what the detumbling controller can stop.

50 CHAPTER 5. SIMULATIONS

Chapter 6

Hardware

The design of the second ADCS prototype is based on the first prototype developed in [10].

Many of the designs and components have stayed the same, the main difference is that more

sensors have been added for redundancy, and the microcontroller has been changed. This

chapter will cover the hardware being used on the second prototype. First the changes that

have been made to the hardware will be presented, then the new design. The hardware has

been designed together with Henrik Ruudi Haave, and the implementation in Altium De-

signer has been done in cooperation with Amund Gjersvik and Henrik Ruudi Haave.

6.1 Sensors

It was early on decided that the ADCS should have more sensors [9]. Having two or more

sensors adds a layer of redundancy to the system, meaning that if one sensor should mal-

function another one can provide the necessary data and normal operation can continue.

Several algorithms exists to handle the sensor redundancy in software, this is further inves-

tigated in Chapter 8.

6.1.1 Magnetometers

The magnetometers are going to be the same as on the first ADCS prototype [10], the HMC5983

from Honeywell [28]. This looks to be one of the better sensors out there and have worked

excellently during testing [5, 9, 19]. It also has the advantage of having built in temperature

compensation, which will make it more stable for the wast range of temperatures in space.

51

52 CHAPTER 6. HARDWARE

Three magnetometers have been placed on the ADCS prototype board, with the possibil-

ity of adding three more in the center of the coils (or anywhere else on the satellite) at a later

stage through pins mounted on the board. External magnetometers might be useful if it

turns out that the magnetic disturbance from the rest of the satellite will be a problem when

the magnetometers are mounted on the ADCS board. They can also be used to measure the

coil output if they are placed in the middle of the magnetorquers. The exact mounting lo-

cation for any external magnetometers will need to be decided after the satellite itself have

been designed and built.

The addition of more magnetometers is possible trough a demultiplexer placed on the board,

it is set to operate in a 2:3 way, meaning that two input signals controls three output signals.

The input signals are two Serial Peripheral Interface (SPI) chip select signals that thus can be

used to generate three SPI chip select signals.

6.1.2 Gyroscopes

The gyroscopes selected are the MAX21000 from Maxim Integrated [29], this model has been

chosen because of its low operating range. MAX21000 can measure speeds as low as ±0.001

degrees per second, while the gyroscope on the original prototype [10] could measure speeds

as low as ±0.006 degrees per second [30]. For perfect pointing at a orbit altitude of 600 km

the satellite will rotate with approximately 0.66 degrees per second. Even tough both gyro-

scopes can measure speeds of that magnitude, a better accuracy was desired.

MAX21000 also has a embedded First In First Out (FIFO) that can store 256 16-bit values

for each output channel. This means that the gyroscope can record and store data, that can

be accessed later. This can be used to greatly reduce gyroscope measurement noise when

the satellite is rotating slowly, like it should during pointing. One can then pull a chunk of

data from the gyroscopes FIFO buffer and take the average of that data to find a better value.

It is important when using the FIFO buffer in an asynchronous mode, which is how it will be

used, that the gyroscope records data at least 10 times faster then the microcontroller pulls

data from it.

6.2. MICROCONTROLLER 53

6.1.3 Sun Sensors

For the sun sensors, the operational amplifiers and the hardware design from the first pro-

totype [10] will be used, but the photo diodes will be changed. Henrik Rudi Haave has been

responsible for the sun sensors, and a full breakdown of the new photo diodes and the sun

sensors will be provided in his master thesis.

6.2 Microcontroller

The ADCS has to be able to run an operating system to implement a version of Cubesat Space

Protocol (CSP), this is the communications protocol that has been selected for NUTS. The

satellites OBC and radio will use the AVR32 UC3A3256 from Atmel. To be able to reuse code

and have the whole software system be more maintainable and uniform a microcontroller

from the AVR32 UC3 family is desirable for the ADCS as well.

The AVR32 UC3C1512C from Atmel has been chosen [31], this is one of the few microcon-

trollers that has enough Analog-to-Digital-Converter (ADC) inputs to support the amount of

sun sensors needed. It also contains a floating point unit, which will speed up the calcula-

tion of many of the algorithms used on the ADCS. All 16 ADC channels, as well as the two

available SPI channels are being used to connect sensors to the microcontroller. There are

also several other devices connected to other input and output pins.

6.3 Clock

In addition to the already mentioned hardware changes the second prototype also has a ex-

ternal Real-Time Clock (RTC). The advantage of having a external RTC is that a soft reset of

the microcontroller can be performed without the satellite losing its time and date informa-

tion since it can be stored in the RTC. A RTC from AVX [32] has been chosen.

This oscillator is high frequency stable for temperatures between −40oC and 85oC with a

drift of ±5ppm. The RTC needs to be very accurate for the predictor algorithms developed

for the ADCS by Antoine François Xavier Pignède [11]. It has been found that errors in time

over 1 minute will lead to large errors for the prediction of the position of the satellite, and

54 CHAPTER 6. HARDWARE

a error below 30 seconds is preferable. With a drift of ±5ppm it will take the satellite 69.45

days until the clock error have reached 30 seconds from the initial time. It is important to

note that there will probably also be a error in the initial time used by the satellite caused by

a non-constant delay time when uploading a initial time to the satellite. The drift rate can

also be affected by the hard radiation operating environment.

6.4 ADCS Prototype

Figure 6.1 shows the different hardware modules mounted on the ADCS board, and how they

communicate with each other. The design is similar to the one from [10], but it have been

expanded upon in the ways mentioned above. The ADCS will be placed in a slave slot on the

backplane. The different components are:

• Microcontroller, AVR32 UC3C1512C

• 3 X Gyroscope, MAX21000

• 3 X Magnetometer, HMC5983

• 16 X Sun Sensors (analog amplification circuits on the board)

• 3 X Coil Drivers (H-bridges on the board)

• Real Time Clock

• Demultiplexer

The connectors available are:

• Inter-Integrated Circuit (I 2C) (backplane slave connector)

• Joint Test Action Group (JTAG) (backplane and external)

• Universal Synchronous/Asynchronous Receiver/Transmitter (USART) (for bluetooth)

• Coil Connectors

• Sun Sensor Connectors

• External Magnetometer Connectors

6.4. ADCS PROTOTYPE 55

Figure 6.1: Figure showing the different hardware modules on the ADCS

The magnetometers have been placed as far away from the backplane as possible, since the

electromagnetic noise will probably be smallest there. The gyroscopes have been placed as

close to the center of the satellite (not the center of the board) as possible, this will provide

the most accurate measurements of the angular velocity. The connectors on the board are

of a type that are lockable and resistant to shaking, shock and thermal cycling, this should

prevent any of the connectors falling out at any point [33].

The board will run on 3.3 Volts, which is provided from the EPS trough the backplane. The

OBC can turn the ADCS board on and off, and reprogram it. The board itself measures 90mm

x 92mm and is a four layer board with a earth plane everywhere where there are no signal

paths on the top or bottom levels. Figure 6.2 shows a picture of the new board taken from

Altium Designer. A coordinate frame is given on the board, and has been defined so that it

coincides with the body frame. All of the sensors are mounted so that the data they provide

is given in the body frame.

56 CHAPTER 6. HARDWARE

Figure 6.2: Figure showing the second prototype board for the ADCS

Chapter 7

Software

This chapter details the software architecture designed for the ADCS. First some key aspects

of the software will be presented, then the design.

7.1 Operating System

The first choice that has to be made when designing software like this is whether or not the

microcontroller should run an operating system. The original ADCS prototype had no op-

erating system and only worked by using a simple state machine [10]. A goal of this second

prototype has been to make a system as close to flight ready as possible, and it is thus more

complex. The system can be simplified by using an operating system to mask some of the

complexity and perform much of the required overhead.

A operating system called Free Real Time Operating System (FreeRTOS) has been used for

software development for the radio and OBC for NUTS. It have also been used for systems

on the AAUSAT3 [34] and other CubeSats. A version of CSP has been chosen for communi-

cation internally on the satellite that requires an operating system like FreeRTOS or Posix to

run. FreeRTOS has therefore been chosen as the operating system for the ADCS.

FreeRTOS is a free to use real time operating system (as the name implies) [35]. The FreeR-

TOS home page claims that it is the market leading real time operating system. FreeRTOS

is also open source and smaller than the most commonly used Linux embedded systems,

making it ideal for a project like NUTS.

57

58 CHAPTER 7. SOFTWARE

7.2 FreeRTOS Scheduling

FreeRTOS allows for multitasking on the microcontroller. The algorithm used is a priority

based preemptive scheduling algorithm. This means that each task created needs to be as-

signed a priority number, the task can then either be set to run periodically, or run when a

certain interrupt happens. With this algorithm the task with the highest priority will always

be allowed to run. If a task with a lower priority is running when a high priority task is set to

start, the high priority task will run instead of the low priority task. The low priority task will

then keep running from where it was aborted after the high priority task has finished.

7.3 FreeRTOS Tasks and Task Communication

FreeRTOS works by running functions as tasks. Tasks need to be defined with a priority for

the scheduler and a set amount of stack size. They can also be defined with a name and a

pointer to pass other data to the task. Tasks can either be in a state of running, ready, blocked

or suspended and only one task can run at a time, this is controlled by the scheduler, as al-

ready discussed.

Tasks can communicate with each other using queues. A queue in FreeRTOS can hold a

fixed number of fixed sized data items and behaves like a FIFO buffer. Several tasks can be

readers and writers for each queue, but there is no point in having the same task be both.

The other way tasks can communicate is by using global variables. Global variables are usu-

ally considered to be less safe than message sending (queues in the FreeRTOS case), but they

provide less overhead and are simpler to implement.

When using global variables it is important to make sure that only one task reads or writes

to the variable at a given time, and that the read or write is completed before another task

requires the variable. Deadlocks are more likely to arise with the use of global variables, as

is the likelihood of the program stalling and race conditions. There does exists ways to get

around these problems, the most noteworthy are semaphores and mutexes, which FreeR-

TOS have built in functionality for. Both are data types that are being used to control access

to resources that are needed by multiple tasks so that only one task can access the resource

at a given time. The main difference in FreeRTOS between the two is that mutexes inherits

7.4. COMMUNICATION 59

the priority of any task that obtains them, while semaphores does not.

7.4 Communication

As mentioned the internal communication protocol chosen for NUTS is a version of the CSP.

CSP is a network-layer delivery protocol that has been developed for CubeSats at Aalborg

university [36]. A version has been made especially for NUTS this semester in a parallel

project called NUTS Reliable Protocol (NRP) [37]. The NRP packages are being sent over

the I 2C bus on the satellite. A suggestion for which messages the ADCS should be able to re-

ceive and send is attached in Appendix B. This list will probably be expanded upon as NUTS

nears completion.

7.5 Persistent Variables

Several things can happen that causes the ADCS to perform a reset. When this happens the

ADCS will relaunch with its original settings, and some data will be lost. To ensure that no

critical data is lost, some data should be stored in a special way. Data like the two line ele-

ment set for the predictor and the gain matrices for the estimator should be kept. To achieve

this the data can be stored in the built in flash memory on the microcontroller. The flash

memory consists of four parts, a factory page, a user page, a reserved part and a flash data

array. The easiest way to store the variables is to use the user page, this page is 512 bytes

large, and the read and write operations to this page are completely controlled by the user

written software. A list of which variables should be persistent is included in Appendix A.

The problem with this approach is that flash arrays are especially susceptible to failures

caused by radiation [15]. Methods should therefore be in place to ensure that the data stored

in the flash user page is valid before usage.

7.6 Logging

The ADCS has no external memory to log the data it uses, the main satellite log is going

to be located on the OBC. All of the sensor data and other calculated data are thus going to

be sent to the OBC for storage, where it can be retrieved by the ground station at a later stage.

60 CHAPTER 7. SOFTWARE

To avoid sending all the data every time a new control output is calculated the data is first

going to be stored in a buffer on the ADCS. This is implemented as a simple ring buffer that

can hold a finite and predefined number of elements. For all of the data to be kept, the OBC

needs to request the buffered data from the ADCS periodically with a period that guarantees

that the buffer has not been filled up in between calls. The exact timing for this needs to be

found when the ADCS is completed and properly tested. The way the data will be stored in

the log is defined in Appendix A.

7.7 Software Architecture

There are several ways the software for the ADCS could be designed, and during the develop-

ment process several approaches have been investigated. The ADCS itself is actually a small

piece of software, and it has been important not to make things more complicated than nec-

essary. Greater complexity leads to a larger chance of introducing errors in the system. One

of the main focuses of this thesis has been on the design of the software.

The code itself consists of several sub systems of different complexity and size. The over-

all system architecture should mask as much as this complexity as possible, making it easy

to see the program flow and control how the system behaves. The code should follow the

NUTS coding standard, unfortunately this has not been done for all of the projects related

to the ADCS. It is therefore important that every piece of code that is written in the future

adheres to the code standard.

There are two major design decisions that have to be made, firstly how many tasks is the

program going to be split into, and secondly how are the tasks going to communicate with

each other. The ADCS’ operating modes, or states, will be presented below, then the differ-

ent subsystems will be listed before looking at how they can be split into tasks. Lastly task

communication will be discussed.

7.7. SOFTWARE ARCHITECTURE 61

7.7.1 States

The states, or operating modes of the ADCS, were decided early on by the requirements of

the mission and the wishes of the project leaders. The ADCS will have five different states, it

is possible to transition from each state to every other, as shown in Figure 7.1. The different

states are also shown in Figure 7.1. The current state will be stored as a persistent variable,

so that if the system restarts it will enter whichever state it was in before the restart. The

first time the system start ups the initial state will be detumbling. To move from one state to

another a command from the ground station segment is required.

Figure 7.1: ADCS State Diagram

The sequence diagrams for each state is at-

tached in Appendix C. To be able to log as

much data as possible all of the sensors will

be used no matter which state the ADCS is

in. This means that even though the state

is set to detumbling, and only data from

the magnetometers are being used, the gy-

roscopes and the sun sensors will be pulled

as well. The only state that does not pull any

data is the Idle state, since this functions like

a power saving mode for the ADCS.

7.7.2 Subsystems

The ADCS consists of the following subsys-

tems on the software level:

Magnetometer Driver

Interfaces the magnetometers to the microcontroller. Provides magnetic field mea-

surements, 3 sets of measurements for the x, y and z axis. Software not finished since

hardware was not delivered.

Gyroscope Driver

Interfaces the gyroscopes to the microcontroller. Provides angular velocity measure-

62 CHAPTER 7. SOFTWARE

ments, 3 sets of measurements for the x, y and z axis. Software not finished since hard-

ware was not delivered.

Sun Sensor Driver

Interfaces the sun sensors to the microcontroller. Provides intensity measurements, 16

measurements are available. Software not finished since hardware was not delivered.

Coil Driver

Interfaces the magnetorquers to the microcontroller and uses the output from the con-

trollers to set up a current trough the magnetorquers. Software not finished since hard-

ware was not delivered.

Magnetometer Data Processing

Calculates a magnetic field vector from the magnetic field measurements.

Gyroscope Data Processing

Calculates an angular velocity vector from the angular velocity measurements.

Sun Sensor Data Processing

Calculates a sun vector from the intensity measurements. Software not finished.

Predictor

Calculates the satellites position and velocity vectors, and provides estimates of the

magnetic field vector and sun vector.

Estimator

Estimates the satellites attitude and angular velocity based on processed sensor data

and predictor data. Software not finished.

Detumbling Controller

Calculates the control output for detumbling of the satellite.

Tumbling Controller

Calculates the control output for tumbling of the satellite.

Pointing Controller

Calculates the control output for pointing of the satellite.

7.7. SOFTWARE ARCHITECTURE 63

Log

Logs the data used by the ADCS.

NUTS Reliable Protocol

Handles incoming and outgoing messages for the ADCS. Should write updated vari-

ables to the flash memory when they arrive from the ground segment.

In addition there are several overhead and standard libraries imported from the Atmel soft-

ware framework that are being used in the system. This is a highly modular system, were

each subsystem is a separate code part. Any one of the subsystems can be changed, as long

as they adhere to the definitions of what the subsystem is supposed to do. This allows for

black-box testing of each of the subsystems and makes further development and testing eas-

ier. The data structures that each subsystems uses, reads from and writes its output data to,

is defined in Appendix A. A more detailed description of the software subsystems and the

data storage variables can be found in the digital appendices. Functions have been made for

logging and writing and reading the persistent variables to the flash memory.

7.7.3 Tasks

As mentioned earlier the system can be split into several tasks. The NRP subsystem should

have its own task, but except from that the amount of tasks the rest of the system is split into

is only a design decision. Two approaches have been considered.

Approach 1

In approach one there will only be two tasks, one task running the NRP subsystem and a

second running a state machine. The state machine task will then use functions from all of

the other subsystems to perform the required actions. The tasks would then be:

• ADCS State Machine

• NRP

With this approach the state machine itself would ensure that everything happens in the

correct order according to the sequence diagrams in Appendix C. The ADCS State Machine

task will run periodically every second, how often the NRP task should run have to be tested

on the finished hardware.

64 CHAPTER 7. SOFTWARE

Approach 2

The second approach is to split the system into five tasks.

• Sensors

• Predictor

• Estimator

• Controllers

• NRP

With this approach a synchronization mechanism needs to be implemented between the

tasks so that every task gets to run, and is run in the proper order. That is the tasks are run in

accordance with the sequence diagrams in Appendix C. FreeRTOS provides several ways to

synchronize tasks like semaphores, task notification routines and event group synchroniza-

tion flags. With this approach there will not be an explicit state machine, but every task will

always have to know which state the system is in, and operate accordingly. The Sensor, Es-

timator and Controller task should be run every second, while the Predictor task can be run

less frequently. Again testing have to be performed to see how often the NRP task should run.

For both approaches adding a separate task to act like an error detection and handling task

could be useful, but this is not investigated further here. Figure 7.2 and Figure 7.3 shows

which subsystems should belong to which tasks for the different approaches. Both of these

approaches have also been implemented and tested in software, even tough the testing has

been limited due to the lack of hardware.

Semaphores have been used to synchronize the tasks for Approach 2 since the FreeRTOS

manual states that semaphores are the recommended way to achieve synchronization. The

author recommends Approach 2 for the finished software, since this allows for more flexi-

bility. Tasks can be run at different frequencies, but having more tasks adds a layer of com-

plexity. Approach 1 is simpler since everything will happen sequentially in the same task.

This leads to less switching between tasks and makes it easier to follow the program flow.

Both approaches have been tested and works, but since none of these have been tested on

7.7. SOFTWARE ARCHITECTURE 65

the completed system both approaches are presented here. Further testing may lead to Ap-

proach 1 being the better alternative. For both approaches it is easily possible to adjust the

code so that some of the calculations are performed while the coils are being used. This

could be used to run the tasks with a smaller period than one second, but it have not been

tested.

Figure 7.2: Visual representation of
approach 1 of the software design

Figure 7.3: Visual representation of
approach 2 of the software design

Figure 7.4: Startup Sequence

66 CHAPTER 7. SOFTWARE

Figure 7.4 shows the ADCS startup sequence, as already mentioned the FreeRTOS tasks should

be run to conform to the sequencing in Appendix C. The NRP task will run periodically, with

a period that has to be defined after more testing.

7.7.4 Data Sharing

As previously mentioned, tasks can share data in two ways, either by using messages or by

using global variables. Both of these approaches have been considered and tested.

Messaging has the advantage of being safer than global variables. But it does require several

queues to send the messages between the tasks, introducing a large overhead to the system.

It could also happen that a task will not get the time to read from a queue often enough, so

that the queue will fill with by messages from the sender task, effectively blocking that queue.

The danger with global variables is the same as their advantage, they are accessible from

everywhere. This means that if something goes wrong a function might change a global vari-

able it was not supposed to. Or a situation might arise where one tasks tries to read from a

variable as another task tries to write to it. Everyone who uses a global variable will be de-

pendent on it, creating mutual dependencies and increasing complexity.

Despite all of this, global variables have been chosen for data sharing in this project. It pro-

vides less overhead and complexity for a small project such as this when compared to using

messages. By using the semaphore function in FreeRTOS many of the mentioned problems

is mitigated, semaphores thus have the advantage of providing task synchronization and

mutual exclusion for the global variables. Global variables are thus considered to be as safe

as messaging, but provides less overhead. A list of which data variables exists and which

subsystems needs to access what is provided in Appendix A.

Chapter 8

Sensor Redundancy Algorithm

When a system has sensor redundancy in hardware like on the ADCS a software algorithm

is required to handle the data from the sensors, and find a value to be used in the rest of

the system. The ADCS will have three gyroscopes and three magnetometers, giving us re-

dundancy on the measurements of angular velocity and magnetic field strength. This has

been included since these measurements are critical for the ADCS, without them the system

would not function. For the sun sensors this problem has been addressed by Henrik Rudi

Haave.

The goal of the algorithm is to find the best possible value from the different values given,

but finding it is not straight forward. Several algorithms exist with varying degrees of com-

plexity and effectiveness. A study has been performed to find a suitable algorithm for the

ADCS, the goal has been to find an algorithm that can function automatically and work well

for three sensor while at the same time adding little complexity. The algorithm should pro-

duce a value that is as close as possible to the real value for the measurements.

Algorithms based on filter approaches and voting techniques are the most prominent in lit-

erature. Filter approaches are often more complex than voting algorithms, they require less

hardware redundancy and are often used when data from different sensors are incorporated

to find a measurement. For systems with hardware redundancy where the same sensors

are used to find a measurement voting techniques are often used. Voting algorithms is de-

scribed as the most reliable approach for a multi sensor system like the ADCS [38]. The study

led to voting algorithms being chosen, and the focus of this chapter will thus be on voting

67

68 CHAPTER 8. SENSOR REDUNDANCY ALGORITHM

algorithms. Some background theory will now be presented, before going into specific algo-

rithms.

Figure 8.1: Classification of voting algorithms,

figure taken from [39].

Voting algorithms are split into several

classes depending on input/output data

and input/output votes [39], as illustrated

in Figure 8.1. Exact/Inexact input data

has to do with whether or not the values

have to be exactly equal (exact), or just in

some neighborhood of each other (inex-

act) to be considered the same. Consen-

sus/Mediation output data has to do with

whether or not a total agreement has to be

met (consensus) for the output data, or if

it can be based on a compromise (media-

tion).

In addition to the data itself, a vote can be

given to the data. This can be used if for example one believes that a given sensor is

more reliable than another, the more reliable sensor can then receive a higher vote. Oblivi-

ous/Adaptive input vote has to do with whether or not the votes are allowed to change at run-

time(adaptive) or not (oblivious). Threshold/Plurality output vote has to do with whether or

not the output vote has to be greater than some defined limit (threshold), or just an output

with the highest support from the inputs(plurality).

It is clear that with the kind of sensor data provided by the ADCS the inexact input data class

should be considered. For simplicity, the input votes will be oblivious and since we assume

that every sensor is equally reliable this means that the vote for each sensor should be equal.

The votes can then be ignored all together, this is a special case of the oblivious voting class

[39].

8.1. VOTING ALGORITHMS 69

Median, mean and plurality voting are some of the most common voting algorithms for the

inexact and mediation class of voters [40].

8.1 Voting Algorithms

Mean Voter The arithmetic mean voter, or average voter, adds all the measurements and

divides them with the number of measurements. The output data will be an average of

all the input data.

Median Voter The median voter orders the input data and uses the median as the output

data.

Plurality Voter The plurality voter compares the values for all of the input data and chooses

the most common value as the output data. A certain limit on how similar the data

have to be is required for the data to be defined equal. A plurality voter for inexact

voting has been presented in [41].

Unfortunately we can not predict how a failing sensor will behave, the output might go to

zero or some large or small value. The mean voter will give an error as soon as one of the

sensors fails, especially if a failure means that the data goes to a really high or low value

compared to the accurate data. The plurality voter should be able to handle one of the sen-

sors failing, but if two sensors fails no clear majority will exists and the algorithm will likely

fail. The median voter will also provide the correct output if one of the sensors fails, but it is

harder to predict how it will behave if two sensors fails.

The median voter is simpler to implement than the plurality voter and more reliable than

the mean voter in the case of the ADCS. Based on the short analysis of voting techniques

presented here a median voter has been chosen and implemented in software. The exact

same function can then be used for the gyroscope measurements and the magnetometer

measurements. A simple insertion sort algorithm is being used to sort the arrays, this algo-

rithm is efficient for small data sets and quite simple to implement. The algorithm is shown

in Figure 8.2. Tests should be performed on hardware to see how large the difference be-

tween the three sensors are to better analyze how good the median voting technique will

work. Performing tests in Matlab are less interesting, since the outcome is easily seen by

70 CHAPTER 8. SENSOR REDUNDANCY ALGORITHM

1 int median_voter(int16_t sensor_data [12]) {

2
3 int16_t temp_array [3] = {0, 0, 0};

4 int16_t temp = 0;

5
6 int j = 0;

7 int i = 0;

8 int k = 0;

9
10 for(k=0; k<3; k++) {

11 for(i=0; i<3; i++) {

12 temp_array[i] = sensor_data [(i+1)*3 + k];

13 }

14
15 for(i=0; i<3; i++) {

16 temp = temp_array[i];

17 j = i;

18 while (j > 0 && temp_array[j-1] > temp) {

19 temp_array[j] = temp_array[j-1];

20 j = j-1;

21 }

22 temp_array[j] = temp;

23 }

24 sensor_data[k] = temp_array [1];

25 }

26
27 return 42;

28 }

Figure 8.2: Median Voter Algorithm

looking at the input data.

Chapter 9

Failure Analysis

In this chapter a short failure analysis for the ADCS will be performed to show how the ADCS

might fail. Handling of failures have not been implemented in software, this chapter is meant

as a foundation for any future work that might be performed on error handling. The analysis

will show where errors might occur that can lead to the ADCS not operating as expected and

a some methods to reduce the risk of errors are introduced. The various sources for failures

can be seen in Figure 9.1.

Figure 9.1: Error sources and their connections to service failures, figure taken from [17]

A service failure in the case of the ADCS means that it would no longer be able to perform

71

72 CHAPTER 9. FAILURE ANALYSIS

one, or several, of the operations it has been designed to perform: pointing, detumbling, es-

timation and tumbling (tumbling driven by the tumbling controller).

Operator mistakes are not a large issue for the ADCS since little to no operator input is re-

quired, the operator mistakes that can be made stems from uploading erroneous data to the

ADCS. The environment will be unstable due to SEP and the highly varying temperatures,

which could introduce a lot of errors. The hardware itself should not be unstable, but can

become unstable du to SEP, total radiation effects and the highly varying temperatures. In-

correct design should be avoided by following the system definitions and coding standards

vigorously and doing exhaustive testing on the system before launch. Physical defects might

occur due to SEP, the total radiation dosage and temperature effects. Fault trees will now be

used to show how the different operating modes might fail.

9.1 Fault Tree Analysis

A color coding scheme has been used for the fault tree analysis to simplify it. Green fields

are software dependent, blue fields are hardware dependent, yellow fields can be caused by

faults in both hardware and software, while red fields are the top level failures according to

which services the ADCS should be able to provide. An estimation failure can be a top level

failure, in the estimation mode, or it could be part of the chain causing a pointing failure in

the pointing mode.

Figure 9.2 shows how the sensors and their respective processing algorithms can end up

providing incorrect data to the different sensor data storage vectors. This fault tree is the

same for all of the sensors because of the way the software and hardware is designed. The

hardware components and software parts that can fail are off course different.

Figure 9.3 shows how the estimator can fail. The estimator is dependent on a lot of hard-

ware, including all the sensors and the real time clock. This makes it very sensitive to errors

in the hardware. A fault with the prediction algorithm also includes an error in the two line

elements set, while a fault in the estimation algorithm also includes bad values for the Q and

R matrices.

9.1. FAULT TREE ANALYSIS 73

Figure 9.2: Fault tree for the sen-
sors

Figure 9.3: Fault tree for the estimation mode

Figure 9.4: Fault tree for the detumbling
mode

Figure 9.5: Fault tree for the tumbling mode

74 CHAPTER 9. FAILURE ANALYSIS

Figure 9.6: Fault tree for the pointing mode

Figure 9.4 shows how the detumbling mode

can fail. All of the modes that includes us-

ing any of the controllers will fail if there

is a fault in the coil driver or coil hard-

ware.

Figure 9.6 and Figure 9.5 shows how the

pointing mode and the tumbling mode can

fail. These are the longest chains, and

thus have the highest probability of failing.

They are dependent on the estimator, which

means that they are also dependent on most

of the hardware.

It is important to note that in all of these fault trees a microcontroller fault (like a bit flip

or any SEP) can occur at any point and cause a failure. This is not explicitly stated in the

diagrams for simplicity. The failures can all be both transient, intermittent or permanent.

9.2 Failure Prevention

Transient faults leading to a wrong control output is not necessarily critical. If the control

output is wrong during one cycle the controllers will still be able to perform their intended

tasks, even tough it may take more time. Intermittent and permanent faults are of a larger

concern, since using the wrong control output over a longer period of time might spin the

satellite up to velocities larger than what the detumbling controller can tolerate. As can be

seen from Figure 9.1 these errors comes from physical defects, incorrect design and unsta-

ble or marginal hardware. Any error handling implemented in software should therefore be

focused on catching faults stemming from these sources.

Hardware

Hardware faults for the gyroscope and magnetometer measurements have been largely mit-

igated by having three sensors of each kind. The coils on the other hand have no redundancy

9.2. FAILURE PREVENTION 75

increasing the likelyhood of the coils failing completely. The hardware for each coil is inde-

pendent of the other coils, but a failure in one coil is enough to make the control algorithms

unstable. A failure of the RTC will lead to a timing error, that will most likely lead to a failure

in the prediction algorithm. There exists an internal RTC on the microcontroller that can be

used if the external RTC fails, an algorithm to detect an error on the external RTC and switch

to the internal one could be developed. The sun sensors have some built in redundancy in

the fact that the satellite will be equipped with more sensors than needed. Thus the algo-

rithm to calculate the sun vector should be able to handle the loss of some of these sensors.

No more changes is intended to be made to the hardware, so errors coming from the hard-

ware needs to be handled in software. This is of course not possible for malfunctioning

components, like a H-bridge for one of the coils malfunctioning. This means that perma-

nent faults in the coil driver components will lead to many of the ADCS modes not working.

Permanent faults in more than one of the gyroscopes or magnetometers could also lead to

a full failure of the operating modes, but this needs to be investigated more properly on the

hardware. Permanent faults in two or more gyroscopes or magnetometers will lead to all of

the operating modes failing, but it can be recovered by reprogramming the ADCS to only use

any working sensors. All three of the sensors failing will off course lead to a failure of the

ADCS and it will not be able to perform any of the tasks it was designed for.

Software

To avoid software faults there are several steps that can be taken for each part of the code.

Having a highly modular system is in itself a good place to start to minimize software errors,

as is having as little and as simple code as possible. All of the code should be exhaustively

tested before launch. Watchdog timers should be implemented so that the system will be au-

tomatically reset if any parts of the code takes to long to finish, since this usually means that

an error has occurred. Checksums and/or performing the algorithms twice to compare the

results can be used to detect errors in the calculations and to see if any data have changed at

any point it is not supposed to.

A program integrity check and a check of the flash memory could also be performed. More

specifically a task can check the integrity of the variables it is using at startup. An error de-

76 CHAPTER 9. FAILURE ANALYSIS

tection and correction algorithm could then be developed to make sure that the code runs

correctly. As already mentioned a specific task to deal with error correction and detection

could be useful.

Chapter 10

Discussion and Results

10.1 Controllers and Simulations

Three controllers have been presented here, one for detumbling, one for pointing and one

for tumbling. While the pointing and detumbling controllers had been chosen previously the

tumbling controller were first presented with this purpose in this thesis. Several other con-

troller alternatives exists for all modes, but the controllers presented here have been proven

to work in several simulations. Stability evidence for the detumbling controller have been

presented earlier in the NUTS project, and instability evidence for the tumbling controller

have been presented here. Unfortunately no complete stability evidence for the pointing

controller have been found, but a long range of simulations exists that indicates that it is sta-

ble.

The simulations presented here have shown that all of the controllers will work with the

hardware and software design of the ADCS as it is now. That being said there have been

found certain initial conditions from which the pointing controller have not been able to

stabilize the satellite in the nadir pointing direction. If this is the case when the satellite is

in space, the tumbling and detumbling controllers can be used to push the satellite into an-

other attitude before retrying pointing.

The simulations of the pointing controller with noise is important because it sets a limit

on how much noise it can be on the angular velocity estimate. The simulations shows that

a certain amount of white noise is fine, but any slowly varying sinusoidal noise makes the

77

78 CHAPTER 10. DISCUSSION AND RESULTS

controller unstable. This is as expected, and the controller can be said to be robust. The esti-

mator needs to produce estimates of the angular velocity that are as smooth as or smoother

than what was found in this thesis. The combination of averaging the angular velocity data

from the gyroscopes and running them trough the estimator should be enough to reduce the

noise to tolerable levels.

To improve the performance of the pointing controller a more adaptive control scheme where

the gains varied with the angular velocity was tried. Unfortunately this did not yield a bet-

ter controller. That being said, there probably exists ways to tune the controller in this way

to improve its performance, even though none have been found here. The controllers have

simply been tuned to work as fast as possible with the actuator design. No more time should

be used on looking into controllers for the NUTS project.

The tumbling controller has been implemented and tested in software. Testing has been per-

formed in a black-box manner by comparing the output to the output of the corresponding

Matlab code. For the previously chosen controllers the gains have been changed to the most

recent findings, and the code has been updated to comply with the NUTS code standard.

10.2 Hardware

The hardware designed during this project has been designed in such a way that it should not

be necessary with any more changes to the ADCS board. The only change that one might

want to do is to add extra magnetometers somewhere else on the satellite, but the ADCS

board itself has been designed to make this easy. The board should be flight ready with the

current design. Unfortunately the hardware has not been tested, this means that there could

be some errors.

The main difference between this version and the first one built is that there have been added

more sensors for redundancy. There will not be any need to add more sensors, since having

three of each is more then enough redundancy for a system such as this. A RTC has also been

added to provide a more precise time solution, and preventing loss of time and date if a soft

reset is needed for the ADCS. The new sensors have not been tested, but they should be good

10.3. SOFTWARE 79

enough for the ADCS.

The regular pins used on the first prototype to attach the sun sensors and coils have been

replaced with lockable pins that should be able to resist vibrations during launch. The com-

ponents have been placed on the ADCS board in a way that should minimize any electro-

magnetic noise and provide the most accurate data, but this has not been tested since the

satellite is not yet built.

10.3 Software

As previously mentioned the ADCS is a collaborative project with several people involved

both directly and indirectly. This has led to some software and the hardware not being fin-

ished, or finished late. Since one of the main goals of this thesis has been to design the

software architecture for the ADCS this has had an effect on implementation and testing.

Instead of the actual hardware a evaluation kit for the microcontroller has been used for

development, and everything that can has been implemented and tested there. That being

said the architecture design itself is completed and the framework has been implemented

in software. Porting this implementation to the actual hardware should be a straightforward

process.

The software has been designed according to the KISS (Keep it simple, stupid) principle.

A description of the different subsystems used and how they should interact have been pro-

vided. Unfortunately, the ADCS group has not been following the NUTS code standard from

the beginning, meaning that there are some large deviations in how code has been written.

Any further work done on the software system should adhere strictly to the conventions in

the NUTS code standard. The code as it is now is highly modular, and every subsystem can

easily be replaced without having to change the overall system architecture. Having a highly

modular system allows for easy black-box testing and makes error handling and correction

easier.

All of the aspects discussed in Chapter 7 have been implemented and tested in software

as best as possible without the hardware. Functions to read from and write the persistent

80 CHAPTER 10. DISCUSSION AND RESULTS

variables to the flash memory user page have been implemented and tested. These will have

to be updated as the subsystems are finished. The logging system has been implemented

and tested, but how often data should be logged and sent to the OBC have yet to be decided.

The NRP subsystems have not been implemented or tested, but the code is finished, testing

needs to be performed on the completed hardware.

Some of the subsystems, like the drivers for the hardware, have not been written. Also since

the code is written by several different people and has arrived at different times, or not ar-

rived at all, important tests like timing of the different subsystems have not been performed.

A worst case assumption of 500 milliseconds to calculate a control output has been used in

the system testing. The coil output has also been allowed to run for a maximum of 500 mil-

liseconds. This means that the code will run periodically every second.

Two approaches for the software architecture have been presented since the system is not

finished and proper testing have been impossible. Both approaches have worked on the

evaluation kit of the microcontroller. Splitting the system into only two tasks is the simpler

solution, and the program flow will then be controlled explicitly in a state machine in one of

the tasks. Splitting the system into five tasks allows for a more flexible system, semaphores

have been used to control the program flow. Semaphores will in both cases need to be used

to control access to the global variables.

10.4 Sensor Redundancy Algorithm

A study has been performed on different algorithms to handle the sensor redundancy in

software. Since we do not know how a failing sensor will behave predicting exactly what will

happen with the different algorithms is impossible. Voting algorithms are the recommended

algorithms for systems with hardware redundancy such as the ADCS. The gain in reliability

one might get by using more advanced algorithms is offset by the increasing demands on

runtime and the increased complexity.

A median voter has been chosen as the algorithm to process the sensor data for the gyro-

scopes and magnetometers to find a value close to the real value for the magnetic field vec-

10.5. FAILURE ANALYSIS 81

tor and the angular velocity vector from the available measurements. This algorithm is fairly

simple, but should be more than good enough for the ADCS. It has been implemented and

tested in software and found to work as intended. Henrik Rudi Haave has been responsible

for finding an algorithm to generate the sun vector from the available sun sensor data.

10.5 Failure Analysis

The failure analysis presented in this thesis is meant to show how the ADCS might fail to

achieve the tasks it have been designed for. The pointing and tumbling modes have the

highest probabilities of failure, since they are dependent on most code and hardware. The

detumbling mode have a much smaller chance of failing. This is desirable since the detum-

bling mode is the most important mode, especially now that the satellite will not be equipped

with a camera.

A more in depth Failure Mode and Effects Analysis (FMEA) could have been performed, but

at this late stage that would not have been of much value since the amount of future changes

in hardware and software should be limited to the minimum necessary to complete the sys-

tem. It is still interesting to see how the system might fail, which has been shown here. The

analysis presented here has not considered errors that can occur in other parts of the satellite

that can cause an error in the ADCS, but it is important to note that this may happen. Failure

handling has not been implemented in software.

82 CHAPTER 10. DISCUSSION AND RESULTS

Chapter 11

Conclusion

The project goals have been met. A tumbling controller has been found and shown to be

unstable, while all of the controllers have been tuned to work well with the current actuator

and software design of the ADCS. Simulations done in Matlab have been used for this pur-

pose. Simulations have also been performed for the pointing controller to check robustness,

and the controller have been found to be robust. The estimator has to be able to provide

estimates of the angular velocity that are as smooth or smoother than what was found here.

A second version of the ADCS board has been designed. The hardware includes several

sensors of each kind for redundancy as well as some other upgrades to make it more reli-

able. A study on some algorithms to handle the hardware redundancy in software has been

performed, and a median voter algorithm has been implemented for the gyroscopes and

magnetometers. No more changes should be necessary for the hardware or the control algo-

rithms before launch.

The software architecture for the ADCS has been designed. Data storage variables and the

different subsystems have been defined. The system is running on FreeRTOS and has been

split into tasks, data sharing between the tasks are done by global variables. A set of com-

mands that can be sent to the ADCS have also been defined. The system is highly modular,

and an effort has been made to keep the code as simple as possible. Most of the subsystems

have been implemented, and the task framework is in place. Unfortunately the hardware

have not been tested, and the software has not been tested on the designed hardware, only a

evaluation kit for the chosen microcontroller.

83

84 CHAPTER 11. CONCLUSION

Simple code often leads to less errors, but the ADCS may still fail. To investigate how a short

failure analysis was performed, fault trees have been used to show where errors for the dif-

ferent operating modes can originate. A short discussion on how the minimize the risk of

errors have been done, software such as watchdog timers and some integrity checks should

be implemented when the system is completed.

Chapter 12

Future Work

The future work needs to focus on finishing the software.

• Implement the driver subsystems.

• Update the estimator algorithm to include an estimate of the angular velocity.

• Implement an algorithm to create a sun vector from the available sun sensor measure-

ments.

• Test the hardware.

• Implement and test NRP with the rest of the ADCS software.

• Finish the software system.

• Test the software system.

Some error handling could, and probably should, be implemented in software to make the

system more reliable. After all of the items above have been performed the ADCS should be

ready for launch.

85

86 CHAPTER 12. FUTURE WORK

Appendix A

Data Structures

This appendix states witch data structures exists in the system, the persistent variables we

will keep and which subsystems who should be able to access what data. A more complete

list can be found in the digital attachments.

Table A.1: Global variables used in ADCS to store data
Name Size Data Type
mode 1 int
gyroscope_data 12 int16_t
magnetometer_data 12 int16_t
sun_sensor_data 19 uint16_t
predictor_data 12 double
estimator_data 16 float
coil_output_data 3 int16_t
temperature_data 6 int16_t

The angular velocity vector found by the median voter algorithm should be stored first in the

gyroscope data, then the gyroscope measurements. The same goes for the magnetometer

data and sun sensor data. Data should be stored in the order: [x, y, z], for all of the different

components.

87

88 APPENDIX A. DATA STRUCTURES

Table A.2: Persistent variables to be stored in the user page
Variable Name Data Belongs to Subsystem
mode int Global
TLE char[136] Predictor
R float[9] Estimator
Q float[25] Estimator

Table A.3: Global data structures used in the ADCS to store data
Structure Name Data Data Type
Time

year int16_t
mon int16_t
day int16_t
hr int16_t
min int16_t
sec double

Data
mode int
time Time
gyroscope_data[12] int16_t
magnetometer_data[12] int16_t
sun_sensor_data[19] uint16_t
predictor_data[12] double
estimator_data[16] float
coil_output_data[3] int16_t
temperature_data[6] int16_t

The data structure Data is used for logging and to have a defined structure to send all current

data in. The mode variable needs to be readable from all tasks, it is not used in the subsys-

tems directly.

89

Table A.4: Table showing which subsystem needs access to what global data
Subsystem Read Write
Gyroscope Driver NONE gyroscope_data tempera-

ture_data
Magnetometer Driver NONE magnetometer_data tem-

perature_data
Sun Sensor Driver NONE sun_sensor_data
Coil Driver coil_output_data NONE
Gyroscope Data Processing gyroscope_data gyroscope_data
Magnetometer Data Pro-
cessing

magnetometer_data magnetometer_data

Sun Sensor Data Processing sun_sensor_data sun_sensor_data
Predictor Time predictor_data
Estimator gyroscope_data, mag-

netometer_data,
sun_sensor_data, pre-
dictor_data

estimator_data

Detumbling Controller magnetometer_data coil_output_data
Pointing Controller magnetometer_data, esti-

mator_data
coil_output_data

Tumbling Controller magnetometer_data, esti-
mator_data

Logg ALL NONE
NRP ALL mode, Time

90 APPENDIX A. DATA STRUCTURES

Appendix B

Messages

This appendix details a set of messages that have been identified as necesseary or good to

have for the ADCS. More messages will probably be added before launch as the different

subsystems is finished and new demands and ideas come up.

ADCS In

Table B.1: Messages that can be sent to the ADCS
Description Command Data
Change mode SET_MODE int mode
Get ADCS mode GET_MODE NONE
Get ADCS time GET_TIME NONE
Get ADCS log GET_LOG NONE
Get ADCS data GET_DATA NONE
Get ADCS temperatures GET_TEMP NONE
Update ADCS time UPDATE_TIME Time time
Update predictor TLE UPDATE_PREDICTOR_TLE char predictorTLE[139]
Update estimator Q matrix UPDATE_ESTIMATOR_Q int16_t Q[25]
Update estimator R matrix UPDATE_ESTIMATOR_R int16_t R[9]

ADCS Out

91

92 APPENDIX B. MESSAGES

Table B.2: Messages that can be sent from the ADCS
Description Reply To Data
Send mode GET_MODE int mode
Send time GET_TIME Time time
Send log GET_LOG Data data[LOG_SIZE]
Send data GET_DATA Data data
Send temperatures GET_TEMP int16_t temperature_data[6]

Appendix C

Sequence Diagrams

Here the sequence diagrams for all the states are presented. To make the diagrams smaller

the magnetometer driver, gyroscope driver and sun sensor driver have been moved into one

block called "Sensors". For the same purpose the functions to process the sensor data for

the magnetometer, gyroscope and sun sensor data have been moved into one block called

"Sensor Processing". Writing data to the log should be performed at the end of each diagram,

this is not shown explicitly.

Figure C.1: Idle state sequence diagram

93

94 APPENDIX C. SEQUENCE DIAGRAMS

Figure C.2: Detumbling state sequence diagram

95

Figure C.3: Estimate state sequence diagram

96 APPENDIX C. SEQUENCE DIAGRAMS

Figure C.4: Pointing state sequence diagram

97

Figure C.5: Tumbling state sequence diagram

98 APPENDIX C. SEQUENCE DIAGRAMS

Bibliography

[1] The CubeSat Program, Cal Poly SLO. Cubesat Design Specification. http://www.

cubesat.org/images/developers/cds_rev13_final2.pdf. Accessed: 2015-06-16.

[2] Gaute Bråthen. Design of Attitude Control System of a Double CubeSat. Master thesis,

NTNU, 2013.

[3] Zdenko Tudor. Design and Implementation of Attitude Control for 3-axes Magnetic Coil

Stabilization of a Spacecraft. Master thesis, NTNU, 2011.

[4] Fredrik Alvenes. Attitude Controller-Observer Design for the NTNU Test Satellite. Master

thesis, NTNU, 2013.

[5] Marius Fløttum Westgaard. Hardware Testing of Attitude Control for the NTNU Test

Satellite. Project thesis, NTNU, 2014.

[6] Per Kolbjørn Soglo. 3-Aksestyring av Gravitasjonsstabilisert Satelitt ved bruk av Magnet-

spoler. Master thesis, NTH, 1994.

[7] Kristian Lindgård Jenssen, Kaan Huseby Yabar, and Jan Tommy Gravdahl. A comparison

of attitude determination methods: theory and experiments. In Proceedings of the 62nd

International Astronautical Congress, October 2011.

[8] Toril Bye Rinnan. Development and Comparison of Estimation Methods for Attitude

Determination. Master thesis, NTNU, 2012.

[9] Henrik Rudi Haave. Implementation of Attitude Estimation and a Look at the UWE

CubeSat. Project thesis, NTNU, 2014.

[10] Øyvind Rein. Developing an ADCS Prototype for NTNU Test Satellite. Master thesis,

NTNU, 2014.

99

http://www.cubesat.org/images/developers/cds_rev13_final2.pdf
http://www.cubesat.org/images/developers/cds_rev13_final2.pdf

100 BIBLIOGRAPHY

[11] Antoine François Xavier Pignède. Prediction Algorithms for the NUTS Attitude Estima-

tor and Robust Spacecraft Attitude Stabilization using Magnetorquers. Master thesis,

NTNU, 2015.

[12] Jan Tommy Gravdahl and Olav Egeland. Modeling and Simulation for Automatic Con-

trol. Marine Cybernetics, 2002.

[13] Thor I. Fossen. Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley,

2011.

[14] Peter C. Hughes. Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[15] Kjell Arne Ødegaard. Error Detection and Correction for Low-Cost Nano Satellites. Mas-

ter thesis, NTNU, 2013.

[16] NASA. Space Radiation Effects On Electronic Components In Low-Earth Orbit. http:

//engineer.jpl.nasa.gov/practices/1258.pdf. Accessed: 2015-05-20.

[17] Daniel P. Siewiorek and Robert S. Swarz. Reliable Computer Systems: Design and Evalu-

ation. Digital Press, 2nd edition, 1992.

[18] Tor Onshus. Instrumenteringssystemer. Department of Engineering Cybernetics,

NTNU, 5th edition, 2011.

[19] Antoine François Xavier Pignède. Detumbling of the NTNU Test Satellite. Project thesis,

NTNU, 2014.

[20] Torben Graversen, Michael Kvist Frederiksen, and Søren Vejlgaard Vedstesen. Attitude

Control system for AAU CubeSat. Masther thesis, Aalborg University, 2002.

[21] A. Craig Stickler and K. T. Alfriend. Elementary Magnetic Attitude Control System. Jour-

nal of Spacecraft and Rockets, Vol. 13(No. 5), 1976.

[22] Rafal Wisniewski. Satellite Attitude Control Using Only Electromagnetic Actuation. Ph.d

thesis, Aalborg University, 1996.

[23] Hassan K. Khalil. Nonlinear Systems, Third Edition. Prentice Hall, 2002.

[24] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall International, 2 edition, 1993.

http://engineer.jpl.nasa.gov/practices/1258.pdf
http://engineer.jpl.nasa.gov/practices/1258.pdf

BIBLIOGRAPHY 101

[25] Wikipedia. Pulse Width Modulation. https://en.wikipedia.org/?title=

Pulse-width_modulation. Accessed: 2015-06-16.

[26] MSS. Marine Systems Simulator. http://www.marinecontrol.org. Accessed: 2015-

02-10.

[27] SwissCube. http://swisscube.epfl.ch. Accessed: 2015-03-04.

[28] Honeywell. HMC5983 Datasheet. http://www.farnell.com/datasheets/1802211.

pdf. Accessed: 2015-04-16.

[29] Maxim Integrated. MAX21000 Datasheet. http://datasheets.maximintegrated.

com/en/ds/MAX21000.pdf. Accessed: 2015-04-16.

[30] STMicroelectronics. L3G4200D Datasheet. http://www.st.com/web/en/resource/

technical/document/datasheet/CD00265057.pdf. Accessed: 2015-04-16.

[31] Atmel. AT32 UC3C Series Datasheet. http://www.atmel.com/Images/doc32117.pdf.

Accessed: 2015-02-25.

[32] AVX. KT3225T32768EAW30TAA Datasheet. http://www.mouser.com/ds/2/40/

kr3225y_e-514863.pdf. Accessed: 2015-04-16.

[33] Molex. Pico-EZmate 078171-5006 Datasheet. http://www.molex.com/pdm_docs/ps/

PS-78172-001.pdf. Accessed: 2015-04-16.

[34] AAUSAT3 CubeSat. https://stemn.com/projects/aausat3-cubesat. Accessed:

2015-03-14.

[35] FreeRTOS. Free Real Time Operating System. http://www.freertos.org. Accessed:

2015-03-04.

[36] CSP. Cubesat Space Protocol. https://github.com/GomSpace/libcsp. Accessed:

2015-03-04.

[37] Erlend Riis Jahren. Design and Implementation of a Reliable Transport Layer Protocol

for NUTS. Master thesis, NTNU, 2015.

[38] Alan S. Willsky. A survey of Design Methods for Failure Detection in Dynamics Systems.

Automatica, Vol. 12:pp. 601–611, 1976.

https://en.wikipedia.org/?title=Pulse-width_modulation
https://en.wikipedia.org/?title=Pulse-width_modulation
http://www.marinecontrol.org
http://swisscube.epfl.ch
http://www.farnell.com/datasheets/1802211.pdf
http://www.farnell.com/datasheets/1802211.pdf
http://datasheets.maximintegrated.com/en/ds/MAX21000.pdf
http://datasheets.maximintegrated.com/en/ds/MAX21000.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00265057.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/CD00265057.pdf
http://www.atmel.com/Images/doc32117.pdf
http://www.mouser.com/ds/2/40/kr3225y_e-514863.pdf
http://www.mouser.com/ds/2/40/kr3225y_e-514863.pdf
http://www.molex.com/pdm_docs/ps/PS-78172-001.pdf
http://www.molex.com/pdm_docs/ps/PS-78172-001.pdf
https://stemn.com/projects/aausat3-cubesat
http://www.freertos.org
https://github.com/GomSpace/libcsp

102 BIBLIOGRAPHY

[39] Behrooz Parhami. A taxonomy of voting schemes for data fusion and dependable com-

putation. Reliability Engineering and System Safety, Vol .52:pp. 139 –151, 1996.

[40] Behrooz Parhami. Voting algorithms. IEEE Transactions on Reliability, Vol. 43(No. 4),

1994.

[41] D.M. Blough and G.F. Sullivan. A comparison of voting strategies for fault-tolerant dis-

tributed systems. Proceedings Ninth Symposium on Reliable Distributed Systems, 1990.

	Problem Description
	Abstract
	Sammendrag
	Acknowledgement
	Introduction
	NUTS
	Previous Work
	Contributions of this Thesis
	Thesis Outline

	Background Theory
	Reference Frames
	Earth-Centered Inertial Frame
	Earth-Centered Earth-Fixed Frame
	Orbit Frame
	Body-Fixed Frame

	Attitude Representation
	The Rotation Matrix
	Euler Angles and Quaternions

	Satellite Theory
	Satellite Dynamics and Kinematics
	Magnetorquers
	Environmental Disturbances
	Error Sources

	Control
	B-Dot Estimator
	Detumbling Controller
	Pointing Controller
	Tumbling Controller
	Instability

	Pulse Width Modulation and Controller Timing

	Simulations
	Detumbling
	Pointing
	Without Measurement Noise
	With Measurement Noise

	Tumbling

	Hardware
	Sensors
	Magnetometers
	Gyroscopes
	Sun Sensors

	Microcontroller
	Clock
	ADCS Prototype

	Software
	Operating System
	FreeRTOS Scheduling
	FreeRTOS Tasks and Task Communication
	Communication
	Persistent Variables
	Logging
	Software Architecture
	States
	Subsystems
	Tasks
	Data Sharing

	Sensor Redundancy Algorithm
	Voting Algorithms

	Failure Analysis
	Fault Tree Analysis
	Failure Prevention

	Discussion and Results
	Controllers and Simulations
	Hardware
	Software
	Sensor Redundancy Algorithm
	Failure Analysis

	Conclusion
	Future Work
	Data Structures
	Messages
	Sequence Diagrams

