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Abstract

This thesis presents mathematical models for two-phase pipeline flow, with
an emphasis on applications to CO2 pipeline flow, as well as numerical
methods suitable for solving these models. The considered models form a
hierarchy of homogeneous (single-velocity) two-phase flow models with
relaxation terms that account for transfer processes between the two phases.
The relaxation terms model heat, mass and volume transfer caused by
differences in temperature, chemical potential and pressure, respectively.

The basis of the model hierarchy is a six-equation model with all three
relaxation processes present. The rest of the hierarchy is then derived by
assuming that one or more of the relaxation processes are infinitely rapid,
which results in equilibrium in pressure, temperature and/or chemical
potential, which makes a total of eight models. The models are formu-
lated using conservation laws for mass, momentum and energy as well
as an advection equation for the gas volume fraction. It is shown that
the subcharacteristic condition, which is related to the stability of such
models, translates to the requirement that the speed of sound is reduced
when a new equilibrium condition is introduced. Expressions for the
speeds of sound in the eight models are derived and proven to satisfy the
subcharacteristic condition.

A mass-transfer model for pipeline flow based on statistical rate theory
is derived and formulated as a chemical-potential relaxation term in the
pressure-temperature equilibrium model of the hierarchy. The model
is used to simulate depressurization of a CO2 pipeline, and the results
are found to be quite close to those of the full-equilibrium model. An
exponential time-differencing scheme tailor-made for relaxation terms is
applied to the model and compared to the Backward Euler method. The
exponential time-differencing scheme is an explicit method, but it relies on
knowledge of the equilibrium of the relaxation process. The mass-transfer
equilibrium value has to be calculated using a Newton-Raphson iteration,
which essentially makes both methods implicit, and comparable in both
computational cost and accuracy.

Finally, the Rankine-Hugoniot-Riemann (RHR) solver is presented, which
aims to solve multidimensional conservation laws with source terms. The
solver introduces the novel idea of treating flux gradients in other dimen-
sions as additional source terms. The source term and cross-flux term is
placed as a singular source in the centre of each cell, which causes a jump
in the solution according to a Rankine-Hugoniot condition. The states on
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either side of a cell interface then define a Riemann problem that is solved
by an approximate Riemann solver. The RHR solver is shown to be of
second order in space for a 2D scalar advection equation, the 2D isothermal
Euler equations and the 2D shallow water equations.
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and I have shared many of the sorrows and joys of the life as PhD students,
and thanks to him, my work has felt far less lonely than it could have felt.
Last, but not least, I would like to thank all my other colleagues at the
department.

Trondheim, May 2013
Halvor Lund

iii





Contents

Contents vi

1. Introduction 1
1.1. Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2. Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Two-phase flow modelling 5
2.1. Fluid dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Hierarchy of drift-flux models . . . . . . . . . . . . . . . . . 7

2.2.1. The basic model . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. The subcharacteristic condition . . . . . . . . . . . . . 11
2.2.3. The pT-model with phase transfer . . . . . . . . . . . 12
2.2.4. The homogeneous equilibrium (pTµ) model . . . . . 13

2.3. Equation of state . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Numerical methods 17
3.1. Solving the Riemann problem . . . . . . . . . . . . . . . . . . 19

3.1.1. Centred schemes . . . . . . . . . . . . . . . . . . . . . 20
3.1.2. Characteristic Riemann solvers . . . . . . . . . . . . . 21
3.1.3. Higher order reconstruction . . . . . . . . . . . . . . 23

3.2. The Rankine-Hugoniot-Riemann solver . . . . . . . . . . . . 24
3.3. Exponential time-differencing method . . . . . . . . . . . . . 27

4. Results 33
4.1. A hierarchy of relaxation two-phase flow models and the

subcharacteristic condition . . . . . . . . . . . . . . . . . . . . 33
4.2. Two-phase flow of CO2 with phase transfer . . . . . . . . . . 35
4.3. Splitting methods for relaxation two-phase flow models . . 37
4.4. The Rankine-Hugoniot-Riemann solver . . . . . . . . . . . . 38

5. Conclusions and outlook 41

v



A. Research articles 57

vi



Il n’existe pas de sciences appliquées,
mais seulement des applications de la
science.

Louis Pasteur (1822–1895)

1
Introduction

Flow of gas and liquid, known as two-phase flow, has a large range of
industrial applications. Such applications include heat exchangers [42],
water-steam flow in the cooling system of nuclear reactors [12], flow of oil,
gas and water in petroleum production [79], and CO2 pipeline transport in
a carbon capture and storage (CCS) infrastructure [3, 10, 22, 37]. The latter
has been the motivation for the present thesis.

Carbon dioxide capture and storage will potentially be an important
contribution to reducing the emissions of carbon dioxide from stationary
sources. In the two-degree scenario (2DS) [36] of the International Energy
Agency (IEA), CCS will account for a reduction of carbon dioxide emissions
of seven gigatonnes per year in 2050. CCS aims to capture CO2 from, for
example, the flue gas from a power plant or chemical processing plant, and
then store it in geological formations. Since the point of capture and point
of storage may be far apart, some form of transport is necessary, and due
to the large volumes to be transported, pipelines are often the most viable
option [37].

For four decades, pipelines have been used to transport CO2 from various
natural and anthropogenic (man-made) sources and used for enhanced
oil recovery (EOR), most notably in the United States. However, CO2
transported in a CCS infrastructure may be subject to other standards than
those that apply to EOR, such as requirements on the chemical composition
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of the mixture transported, and on pipeline safety [37]. Transport of CO2
will typically take place at high pressure, at conditions where CO2 is
in its dense (supercritical) phase. However, incidents like a controlled
or uncontrolled depressurization may cause CO2 to enter the two-phase
region, with gas and liquid coexisting. When the pressure drops, liquid
will evaporate to gas, causing a temperature drop, which in turn may cause
the pipe steel to turn brittle and break more easily [10].

To predict the behaviour of two-phase flow in pipes, one needs good
mathematical models. This has been the subject of research for decades
[24, 38, 76], and has to a large extent been focused on the nuclear industry
and petroleum production. Chapter 2 provides an overview of the research
on such models. Since these models typically are too complex to solve
analytically, numerical methods are necessary. The first methods for fluid
dynamics were developed in the 1960s [32], and since then numerical meth-
ods have become more and more important as the available computational
capacity has increased dramatically. A wide range of methods has emerged,
which is discussed in Chapter 3.

There are already a number of simulation tools for multiphase flow
available, especially in the nuclear and oil and gas industries. For safety
analysis for nuclear reactors, the CATHARE [11] and RELAP5 [13] codes
are of the most common, while the oil and gas industry has developed tools
such as OLGA [8] and LedaFlow [21]. These codes are typically tailor-made
for certain situations, with a number of empirically based correlations and
considerations, thus they may not be suitable for applications for which
they were not specifically designed, such as CO2 pipeline transport.

This thesis follows a more fundamental path, by developing models
based on the basic principles of physics as much as possible, which in
turn may lead to more rigorous engineering models in the future. For
incidents such as depressurization of a CO2 pipeline and similar two-phase
flow situations, it is important to be able to predict how heat and mass
is transferred between the two phases, for example, how fast the liquid
evaporates, and how each phase expands due to pressure differences.
Other relevant physical processes are friction that the fluid experiences
from the pipe walls, and heat transferred through the pipe walls to the
surroundings. This may often be modelled using relaxation terms, which
is a recurring theme in the work presented in this thesis. The relaxation
processes considered are heat, mass and volume transfer, which are caused
by differences in temperature, chemical potential and pressure, respectively,
bringing the two phases back to equilibrium. This is explained more closely
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in Section 2.2.

1.1. Goals

The main goal of this work has been to investigate how interactions between
the gas and liquid phases in a two-phase flow model affect the wave
velocities of that model. More specifically, the thesis considers how transfer
of mass, heat and volume between the two phases affects the speed of
sound, and how the speeds of sound in different models relate to each
other. The transfer processes were expressed as relaxation terms. In addition,
we aimed to develop a two-phase flow model with a mass transfer term
based on basic physical principles rather than empirical correlations.

Another important goal was to develop robust finite-volume methods
that were able to deal with source terms due to relaxation processes. These
new numerical methods were necessary to solve the developed models
accurately and reliably.

1.2. Thesis outline

The thesis is organized as follows: Chapter 2 gives an introduction to the
modelling of two-phase flow, and introduces a hierarchy of two-phase flow
models with different combinations of relaxation processes included. Two
of the models are described in more detail, and the need for thermodynamic
relations in the form of equations of state is also addressed. Next, Chapter
3 gives an overview of numerical methods for solving two-phase flow
equations, and gives a short introduction to finite-volume methods. It then
introduces the Rankine-Hugoniot-Riemann solver, which is constructed
to solve general multidimensional conservation laws with source terms,
and an exponential time-differencing scheme (similar to an exponential
integrator) used to solve a relaxation model in time. Chapter 4 summarizes
the results from each of the papers included in the thesis, and gives a
brief description of my contribution to each paper. Finally, Chapter 5
summarizes and concludes the work, and outlines possibilities for further
work. The full-text research papers are included in Appendix A at the end
of the thesis.
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The purpose of models is not to fit the data
but to sharpen the questions.

Samuel Karlin (1924–2007)

2
Two-phase flow modelling

To provide a formal description of physical phenomena such as two-
phase flow, we construct mathematical models that incorporate the most
important properties of the phenomenon we wish to study. For single-
phase flow, well-proven mathematical models exist, such as the Navier-
Stokes equations (for viscous flow) or the Euler equations (for inviscid flow).
For two-phase flow, however, constructing a model which incorporates all
the relevant physics is a far more complex task. On the one hand, we seek
a model which describes the physical reality as accurate as possible. On
the other hand, a simpler model is often easier to treat mathematically and
to implement, and computationally less expensive.

Two-phase (and multiphase) flow modelling has been subject to an
increasing amount of research for half a century [24, 38, 76]. Such modelling
is particularly challenging much due to the need to resolve the possibly
complex movement and shape of the interface between the two phases, and
the heat and mass transfer across it. In situations where the exact shape of
the interface is of little importance, one can use the process of averaging (cf.
Drew and Passman [25]), which averages the full model over an ensemble
or a certain volume or time span. This leads to new systems of equations
that allow gas and liquid to coexist at each location, without any notion of
an interface.

Ishii [38, 39] introduced one of the first and most well-known averaged
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two-phase flow models, which was time-averaged. Later, Baer and Nun-
ziato [4] presented a comprehensive two-fluid model for the detonation-
to-deflagration transition (DDT), where the two phases are solid and gas,
while Stewart and Wendroff [77] derived a range of two-phase flow models
for liquid-gas flow. In the last decades, a wide range of averaged two-phase
flow models have been developed, and the following sections will provide
an overview of the fluid-mechanical and thermodynamical aspects of such
models.

2.1. Fluid dynamics

Fluid-mechanical models for two-phase flow are, as mentioned in the
previous section, often averaged over a certain area or volume, or averaged
over an ensemble (see Drew and Passman [25]) of realizations of a system.
This removes the need to explicitly track or otherwise resolve the interface
between the two phases. However, it introduces the need to model such
phenomena as interfacial friction, the relation between the velocity of the
gas and liquid, and heat and mass transfer using more empirical relations
rather than first principles.

In the following, we will mostly consider one-dimensional flow models.
This is justified by the fact that pipeline flow, which is our main interest, can
be considered to be one-dimensional, because the flow varies much more
in the axial direction of the order of kilometres than in the cross-section for
diametres of the order of 1 meter.

There exist two main classes of averaged two-phase flow models: two-
fluid models and drift-flux models. The two-fluid models allow the two
phases to have independent velocities, and model the interaction through
a relation for interfacial friction (see e.g. Refs. [4, 54, 70, 91]). Classical
two-fluid models (see e.g. Refs. [8, 11, 77, 87]) are often ill-posed or non-
hyperbolic, that is, they possess complex eigenvalues, thus their solutions
do not depend continuously on initial values [44, 77, 82]. Two-fluid models
are outside the scope of this thesis, and will not be discussed in more
detail.

Drift-flux models, on the other hand, let the phase velocities depend
explicitly on each other using a slip relation. They are most often hyperbolic,
that is, possess real eigenvalues, which makes them more mathematically
tractable. The hyperbolicity may be lost if the velocity difference is too
large, see e.g. Flåtten and Munkejord [29]. The research of drift-flux models
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can be said to have been initiated by Zuber and Findlay [92]. The Baer and
Nunziato [4] model has been influential also for drift-flux models. Kapila
et al. [43] developed two no-slip (single-velocity) drift-flux models for DDT,
based on the Baer and Nunziato [4] model, which were also considered by
Saurel et al. [73] and Pelanti and Shyue [66]. The numerical code TACITE
[65] uses a drift-flux model for pipeline simulation, with a range of slip
relations for different flow regimes. Numerical methods specifically made
for drift-flux models include those of Romate [69], Baudin et al. [6, 7], and
Flåtten and Munkejord [29].

Drift-flux models take advantage of the fact that the velocities of the gas
and the liquid in a two-phase flow are often closely related. This relation
may be expressed using a slip relation,

vg − v` = Φ(αg, p, T, vg),

where vg and v` are the velocities of the gas and liquid, respectively, p is
the pressure and T is the temperature. The gas volume fraction is defined
as

αg =
Vg

V
, (2.1)

where Vg is the volume occupied by gas and V is the total volume.
The empirical relation Φ then gives an expression for the velocity differ-

ence as a function of the flow variables. One commonly used slip relation is
the Zuber-Findlay [92] relation, which is based on empirical measurements
of bubbly flow. Evje and Flåtten [27] give an interesting derivation of how a
drift-flux model with a slip relation can be transformed into an equivalent
two-fluid model with an interfacial friction term.

Choosing the right slip relation for a given flow situation is not straight-
forward, and doing rigorous analysis of models including a slip relation is
generally harder. So in the following we will consider only models with no
slip, that is, vg = v` = v. Such models are also known as homogeneous flow
models. Section 2.2 gives a more thorough description of the drift-flux
models used in this work.

2.2. Hierarchy of drift-flux models

In an averaged two-phase flow model which is as general as possible,
one may expect the two phases to have their own velocities, pressures,
temperatures and chemical potentials. The interaction between the two
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phases can then be modelled using relaxation terms, which serve to bring
the two phases back to equilibrium. Velocity differences will cause transfer
of momentum, temperature differences will cause heat transfer, differences
in chemical potential will cause mass transfer (that is, condensation and
evaporation), and pressure differences cause the phase with the highest
pressure to expand, that is, volume transfer.

In papers L1 and L2, we consider a drift-flux model with the same
velocity in each phase, also known as a homogeneous drift-flux model. We
are then left with three relaxation processes, for heat, mass and volume
transfer. To simplify the model further, each of these relaxation processes
may be assumed to always be in equilibrium, so that the two phases have
equal pressure, temperature and/or chemical potential. Each combination
of such equilibrium assumptions will give rise to a model with other
properties than the model with all the relaxation processes present. This
can be interpreted as a hierarchy of relaxation models, which is illustrated
in Figure 2.1.

In Figure 2.1, each circle symbolizes a model, identified by the variables
that are in equilibrium, that is, equal in the two phases, in that particular
model. An arrow denotes how one model is derived from another by
assuming equilibrium in a variable. The left-most model (0) is the basic
model in which all three relaxation processes are present. As we move
rightward through the hierarchy, more and more equilibrium assumptions
are added, which finally leads to the homogeneous equilibrium model
(pTµ). The work done in paper L1 is marked by dashed lines, while the
work in paper L2 is shown with solid lines.

The models in this hierarchy were formulated as hyperbolic relaxation
systems with source terms accounting for heat, mass and volume transfer
between the phases, written generally in the form

∂u
∂t

+ A(u)
∂u
∂x

+
1
ε

R(u) = 0, (2.2)

where u ∈ Rn is the vector of unknowns, and ε is a characteristic time for
the relaxation processes described by R(u). For the model to be hyperbolic,
we require the n×n matrix A(u) to be diagonalizable with real eigenvalues.
Such relaxation systems have been analysed by Liu [52], Chen et al. [14]
and Yong [90].

The following sections will first present the basic model, on which the
hierarchy is based. Next, the notion of the subcharacteristic condition is
explained, which is relevant for the stability of relaxation systems and
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Figure 2.1.: Model hierarchy (adapted from Lund [L2]). Each circle symbolizes a
two-phase flow model with equilibrium in zero or more of the variables
p (pressure), T (temperature) and µ (chemical potential). An arrow
represents a relaxation process of one variable, pointing in the direction
of equilibrium in that variable. Dashed lines denote results from Flåtten
and Lund [L1], while solid lines indicate results from Lund [L2].

which relates the wave velocities of different models to each other. Finally,
two other models in the hierarchy are discussed, namely the pT- and
pTµ-models, since they have been used for simulations in papers L3 and
L4.

2.2.1. The basic model

The basic model of the hierarchy was introduced by Flåtten and Lund [L1],
and can be formulated using six equations that express conservation of
momentum, balance of mass and energy, and advection of the gas volume
fraction. The mass-balance equations are written as

∂(αgρg)

∂t
+

∂(αgρgv)
∂x

= K(µ` − µg), (2.3)

∂(α`ρ`)

∂t
+

∂(α`ρ`v)
∂x

= K(µg − µ`), (2.4)

where αk is the volume fraction of phase k, ρk is the density of phase k
and v is the velocity of the two phases. The right-hand-side relaxation
term involves the chemical potential relaxation parameter K ≥ 0, and
the chemical potential (or Gibbs free energy) µk of phase k. The chemical
potential is a function of the pressure and temperature in the phase, given
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by µ = e + p/ρ− Ts where s is the entropy. The relaxation term describes
how mass is transferred between the two phases due to differences in
chemical potential.

The advection equation for the gas volume fraction can be written as

∂αg

∂t
+ v

∂αg

∂x
= J (pg − p`). (2.5)

This follows from averaging and the assumption that in Lagrangian coor-
dinates, only pressure differences will cause volume transfer between the
phases. Such models have been used by a number of other authors, see e.g.
Refs. [4, 70]. Here J ≥ 0 is the pressure-relaxation parameter, and pk the
pressure in phase k. In Lagrangian coordinates, we see that the relaxation
term causes the phase with the highest pressure to expand at the cost of
the other, as pg > p` would cause the gas volume fraction to increase over
time.

Next, the basic model can be expressed using a single momentum
conservation equation, since the two phases have the same velocity. It is
written as

∂(ρv)
∂t

+
∂(ρv2 + αg pg + α`p`)

∂x
= 0, (2.6)

where ρ ≡ αgρg + α`ρ` is the total density. The effective pressure is peff ≡
αg pg + α`p`, which follows from the fact that the total force on a cross-
section of the pipe is the sum of the forces exerted by the gas and the
liquid.

Finally, the energy balance equations are written as

∂Eg

∂t
+

∂(vEg)

∂x
+ αg pg

∂v
∂x

+
v
ρ

αgρg
∂(αg pg + α`p`)

∂x

= H(T` − Tg) + p∗J (p` − pg) +

(
µ∗ +

1
2

v2
)
K(µ` − µg), (2.7)

∂E`

∂t
+

∂(vE`)

∂x
+ α`p`

∂v
∂x

+
v
ρ

α`ρ`
∂(αg pg + α`p`)

∂x

= H(Tg − T`) + p∗J (pg − p`) +
(

µ∗ +
1
2

v2
)
K(µg − µ`), (2.8)

where Ek ≡ αkρk(ek +
1
2 v2) is the total energy per volume, and ek the

internal energy, of phase k. These were derived based on the assump-
tions that each relaxation process should conserve energy, and that in
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Lagrangian coordinates, entropy is produced only by the relaxation terms.
The first right-hand-side term is the heat-transfer term, governed by the
temperature-relaxation parameter H ≥ 0, as well as the difference between
the temperatures Tk of phase k. The pressure and chemical potential at
the gas-liquid interface are denoted p∗ and µ∗, respectively. These were
expressed as convex combinations of the gas and liquid pressures and
chemical potentials, respectively [L1].

The basic model was shown to satisfy the first and second laws of
thermodynamics. It is very similar to models introduced by Kapila et
al. [43] and discussed by Saurel et al. [73] and Pelanti and Shyue [66].

The relaxation parameters K, J and H may depend on flow parameters.
When it comes to the time scale of each relaxation process, which is directly
related to the magnitude of the parameters K, J and H, Kapila et al. [43]
and Zein et al. [91] give some interesting considerations, not for gas-liquid
pipeline flow, but for the detonation-to-deflagration transition. They note
that the velocity-relaxation length of the Baer and Nunziato [4] model is of
the order of the grain size, which justifies the single-velocity assumption.
Chinnayya et al. [15] and Petitpas et al. [67] discuss the velocity and
pressure relaxation parameters in their models, and justify that these can
be considered to be infinite for DDT cases. Petitpas et al. [67] also argue
that the temperature relaxation parameter is much smaller than the ones
for velocity and pressure.

By letting the relaxation parameters K, J and/or H go to infinity, one
can derive new models where the chemical potentials µk, pressures pk
and/or temperatures Tk, respectively, are in equilibrium. Significant parts
of the papers L1 and L2 are devoted to relating the wave velocities of the
different models. In this process, the subcharacteristic condition has been a
central aspect, which will be explained more closely in the next section.

2.2.2. The subcharacteristic condition

The subcharacteristic condition is a concept that is closely related to the
stability of relaxation systems in the form (2.2). In particular, Yong [90]
introduced a certain stability requirement on the relaxation system (2.2)
and showed that this requirement leads to a) convergence of the solution
in the limit ε→ 0, and b) the subcharacteristic condition being fulfilled.

The formal definition of this condition can be found in papers L1 and L2,
but it may be summarized as the requirement that the wave velocities λ̃i of
an equilibrium system should be interlaced with the wave velocities λi of

11



the relaxation system. If the equilibrium and relaxation systems have k and
n wave velocities, respectively, this means that λi ≤ λ̃i ≤ λi+n−k. In the
context of our hierarchy, this translates to the requirement that the speed
of sound of an equilibrium system should be smaller than (or equal to) the
speed of sound of the corresponding relaxation system. In other words,
for each equilibrium assumption we make on the chemical potentials µk,
pressures pk or temperature Tk in the basic model in Section 2.2.1, the
speed of sound cannot increase.

More specifically, we show in papers L1 and L2 how the speed of
sound ã of an equilibrium model X and the corresponding relaxation
(non-equilibrium) model Y can be written as

ã−2
X = ã−2

Y + ZYX , (2.9)

where ZYX is a non-negative term expressed using sums of squares. The
speed of sound in two-phase models is of particular interest to us, since
it determines how fast pressure waves propagate in industrially relevant
cases such as a pipeline depressurization.

Conditions similar to the subcharacteristic condition have been discussed
by Leray [47] and Whitham [88], but we follow the more recent work of
Liu [52]. Many physical models satisfy this condition, and it is mentioned
by a number of authors, e.g. Baudin et al. [6, 7] and Flåtten et al. [28].

2.2.3. The pT-model with phase transfer

This section will go into detail of the pT model with phase transfer, a
model in which the two phases have the same pressure p and temperature
T, but still with two mass balance equations to allow the effects of phase
transfer to be included. In general, we can write this model as

∂(αgρg)

∂t
+

∂(αgρgv)
∂x

= Γg, (2.10)

∂(α`ρ`)

∂t
+

∂(α`ρ`v)
∂x

= Γ̀ , (2.11)

∂(ρv)
∂t

+
∂(ρv2 + p)

∂x
= 0, (2.12)

∂E
∂t

+
∂[(E + p)v]

∂x
= 0, (2.13)

where E = Eg + E` is the total energy per volume. This model may be
argued to be one of the simplest possible two-phase flow models that
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includes the effect of phase transfer, since such models would require at
least two mass equations and a momentum equation. It has been discussed
by Lund and Aursand [L3, L4], and also by Flåtten et al. [28].

There does not seem to be any common agreement in the literature upon
how mass transfer should be modelled. A number of authors use models
in a relaxation form, but by relaxing different variables. Chung et al. [16]
model mass transfer with

Γg = −Γ̀ =
αgα`

hg,s − h`,s

[
η`ρ`cp,`(T` − Ts) + ηgρgcp,g(Tg − Ts)

]
, (2.14)

where hk,s = ek +
p
ρk

is the specific saturation enthalpy for phase k, Ts is
the saturation temperature, cp,k is the specific heat capacity at constant
pressure for phase k, and ηk are empirical constants.

A variant of this model is the one used by Cortes [18],

Γg = −Γ̀ =
αgα`

hg,s − h`,s

[
η`ρ`(h` − h`,s) + ηgρg(hg − hg,s)

]
,

which is equivalent to (2.14) if we assume cp to be constant. Toumi [82] also
uses a similar model, but points out that it is not chosen for its physical
validity, but rather for its simplicity.

Saurel et al. [72] model the mass transfer with relaxation of the chemical
potential with the relaxation parameter K,

Γg = −Γ̀ = K(µ` − µg). (2.15)

A similar formulation of mass transfer is discussed by Stewart and Wen-
droff [77].

Common for all these models is that they heavily depend on empirical
constants whose correct value may be difficult to determine. With this in
mind, we hoped to derive a mass transfer model which to a larger degree
was based on first principles. In paper L3, we developed a new phase
transfer model based on statistical rate theory, giving a model in the form
(2.15), but with an explicit expression for K depending on the volume
fractions, the gas density and the temperature. We applied the model to a
CO2 pipeline depressurization case, and compared it to a simpler model
with a constant coefficient K.

2.2.4. The homogeneous equilibrium (pTµ) model

The homogeneous equilibrium model, denoted pTµ in Figure 2.1, has
been used for a number of different two-phase flow applications, see e.g.
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Refs. [17, 53, 72, 78]. Mathematically, it can be formulated just as the single-
phase Euler equations, but with a more complex mixture equation of state
for the pressure p. It may be derived by adding the two mass equations
(2.10)–(2.11) in the pT-model, which together with the momentum equation
(2.12) and the energy equation (2.13) read

∂ρ

∂t
+

∂ρv
∂x

= 0, (2.16)

∂(ρv)
∂t

+
∂(ρv2 + p)

∂x
= 0, (2.17)

∂E
∂t

+
∂[(E + p)v]

∂x
= 0. (2.18)

By also letting the chemical potential relaxation parameter K go to infinity,
we know that the two chemical potentials are equal, µg = µ`. Such an
instant equilibrium in the mass transfer process is also known as flash
evaporation or flash condensation.

To solve for the pressure p as a function of the known conserved variables,
that is, density ρ, momentum density ρv and total energy E, one needs
an equation of state. For the stiffened gas equation of state (which will
be described in the next section) for each phase, this involves solving a
transcendental equation, and is therefore done numerically, as described
by Lund and Aursand [L4, Sec. 3].

Saurel et al. [72] showed that the speed of sound cpTµ of the homogeneous
equilibrium model can be written as

c2
pTµ =

1
ρ

(
αg

ρgc2
g
+

α`

ρ`c2
`

+ T

[
αgρg

cp,g

(
dsg

dp

)2

+
α`ρ`
cp,`

(
ds`
dp

)2
])−1

, (2.19)

where ck is the speed of sound and sk the entropy per mass of phase k. The
entropy derivatives are evaluated at the boiling point. A peculiar property
of this speed of sound is that it is discontinuous at the transition between
a pure phase (gas or liquid) and a two-phase mixture. In other words,
cpTµ(α` = 1) 6= c` and cpTµ(αg = 1) 6= cg. This discontinuous behaviour
has not been observed experimentally, see e.g. Kieffer [45] or Coste et
al. [19], hence it is most probably not a real physical effect, but rather an
indication that the modelling assumptions are somewhat crude. This may
mean that the homogeneous equilibrium model is not ideal in cases where
a correct value of the speed of sound is important. However, an advantage
with this model is that no explicit modelling of phase transfer is needed.
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The homogeneous equilibrium model has been used as a reference
model by Lund and Aursand [L3], and was also used for simulation of
depressurization of a CO2 pipeline by Lund et al. [53].

2.3. Equation of state

To be able to relate state variables such as pressure (p), density (ρ), internal
energy (e) and temperature (T) to each other, we need an equation of state
(EOS). One of the simplest and most well-known equations of state is the
ideal gas law, first stated by Clapeyron in 1834, which may be expressed as

p = ρRT, (2.20)

where R is the specific gas constant of the gas. The ideal gas law works
well for gases at low pressure, but for liquids and higher pressures, it fails
to give accurate predictions.

Later, more accurate and complex equations of state were suggested,
such as the class of cubic equations of state. The first of this class was
proposed by van der Waals in 1873, and may be written as [46]

(
p +

a
V2

m

)
(Vm − b) = RT, (2.21)

where Vm is the molar volume and a and b are constants specific for each
material. This equation has a more realistic description of the behaviour of a
substance, since it includes interactions between molecules and the volume
of each molecule. More recently, the cubic equations of states have been
developed further to give more accurate results, such as the Redlich-Kwong
equation [68] and the Soave-Redlich-Kwong (SRK) equation. A thorough
review of cubic EOS’es can be found e.g. in the work of Valderrama [85].
There exist a number of more advanced equations of state, such as those
based on the (extended) corresponding state principle [41].

A slight disadvantage of cubic and more advanced equations of state,
however, is that analytical, closed-form relations between the different
thermodynamical variables are hard or impossible to obtain. Therefore,
whenever an equation of state was needed in the works presented in this
thesis, we have used the stiffened gas EOS (advocated by e.g. Menikoff
[55, 56]), which may be seen as a linearization of a more complex EOS. It is
mathematically similar to the ideal gas law, but has a stiffening term that
allows a finite density at zero pressure, which is crucial to model liquids.
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The stiffened gas pressure can be written as [55]

p(ρ, T) = ρ(γ− 1)cvT − p∞. (2.22)

With the stiffening pressure set to zero, p∞ = 0, this pressure law is
identical to the ideal gas law (2.20). In a more general (and complete) sense,
the stiffened gas can be defined using its expression for the Helmholtz free
energy, which is given by [55]

A(ρ, T) = cvT
(

1− ln
(

T
T0

)
+ (γ− 1) ln

(
ρ

ρ0

))
− s0T +

p∞

ρ
+ e∗, (2.23)

where cv is the heat capacity at constant volume, γ = cp/cv is the ratio
of specific heats, p∞ is a stiffening pressure, and e∗ is a reference internal
energy. T0, ρ0 and s0 are the reference temperature, density and entropy,
respectively. These constants can be determined using a more complex
equation of state, or empirical measurements, such that the EOS is reason-
ably accurate in the range of pressures and temperatures that one wants to
study.

All the relations between different thermodynamical properties can
be derived rather trivially from the Helmholtz free energy, such as the
pressure equation (2.22). Thus the stiffened gas EOS is a suitable choice
if one wants to avoid the computational complexity associated with more
advanced equations of state, but still requires reasonable accuracy for a
certain temperature and pressure range. Comparisons of the stiffened gas
EOS to experimental values can be found in e.g. the works of Saurel and
Abgrall [71], and Menikoff and Plohr [55].
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I hear and I forget.
I see and I remember.
I do and I understand.

Confucius (551–479 BC)

3
Numerical methods

Equations for two-phase flow are typically far too complex to be solved
analytically, at least for most relevant industrial applications. Thus we
rather solve them numerically. The first step is to discretize the continuous
problem at hand to make a discrete one. Next, one needs a numerical method
to solve this discrete problem.

The choice of numerical method is closely coupled to which model or
equations one wants to solve. One of the first methods was the Marker-
And-Cell method [32], which was developed by Harlow and collaborators
at Los Alamos National Laboratory in the 1960s. This was designed to solve
a one-fluid-model, which uses one set of equations for the whole domain,
with density and viscosity fields that are discontinuous at the interface
between the two phases. More recent methods to solve two-phase flow
with an interface include the volume of fluid (VOF) method [33, 74], the
level-set method [64] and the front-tracking method [83, 84]. Phase-field
or diffuse-interface models (see e.g. Anderson et al. [1], Gonzalez-Cinca et
al. [30]) have a smooth transition, rather than an abrupt one, between the
two phases.

One of the basic principles of physics is that certain quantities, like
mass, momentum and energy, are conserved. This conservation property is
reflected in many fluid-mechanical equations, such as the two-phase flow
equations presented in Chapter 2. In general, we may write a multidimen-
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sional conservation law as

∂u
∂t

+∇ · F (u) = 0, (3.1)

where u is the vector of the conserved variables and F is the flux tensor,
which describes the flux in multiple dimensions. With this in mind, we seek
a numerical method that is able to numerically conserve those quantities
that are conserved in the mathematical model (3.1).

Finite-volume methods are often used to solve fluid-mechanical prob-
lems, as they are conservative in the sense that changes in the integral of u
over the domain are only caused by fluxes in and out of the domain. Such
methods also allow for discontinuities in the solution. As explained by
LeVeque [49], using a method based on the integral form of the equations,
rather than the differential form, is essential to compute solutions with
discontinuities correctly.

Finite-volume methods are based on dividing the physical domain into
small volumes of finite size, and then keeping track of the average of the
conserved quantities inside this volume. In one dimension, we can write
Eq. (3.1) as

∂u(t)
∂t

+
∂f(u)

∂x
= 0, (3.2)

where f(u) is the flux vector. We then divide our domain into finite
volumes (or grid cells) with size ∆x, and we denote the i-th grid cell
Ci = (xi−1/2, xi+1/2) where xi+1/2 = xi−1/2 + ∆x. By integrating (3.2) over
a grid cell Ci, and over a time step from tn to tn+1 ≡ tn + ∆t, we get

Un+1
i = Un

i −
∆t
∆x

(Fn
i+1/2 − Fn

i−1/2) = 0. (3.3)

Here, Un
i is some approximation of the average of u over cell Ci at time tn,

Un
i ≈

1
∆x

∫ xi+1/2

xi−1/2

u(x, tn)dx. (3.4)

The numerical fluxes are denoted Fn
i+1/2 and approximate the flux at the

interface between two grid cells from time tn to tn+1,

Fn
i+1/2 ≈

1
∆t

∫ tn+1

tn
f(u(xi+1/2, t))dt. (3.5)

The formulation (3.3) reveals the conservative nature of the finite-volume
scheme, since changes in each cell are caused only by fluxes in and out
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Figure 3.1.: Example of a finite-volume discretization in x-t space

of the cell. An illustration of the finite-volume discretization is shown in
Figure 3.1.

When advancing the solution in time, we only know the values at the
previous time step tn, hence we cannot evaluate the integral (3.5) exactly.
The challenge now lies in calculating the fluxes Fn

i±1/2 knowing only the
average of u in each cell at time tn, Un

i . At the interface between two
cells Ci and Ci+1, where the flux Fn

i+1/2 is to be calculated, there will be a
discontinuity in U (if Un

i and Un
i+1 differ). Calculating how the solution

u evolves in time given a conservation law and a certain discontinuity is
known as solving a Riemann problem. With the solution to the Riemann
problem, we know the state ui+1/2 at the interface between the cells Ci and
Ci+1, which allows us to calculate the flux Fn

i+1/2 = f(ui+1/2).

3.1. Solving the Riemann problem

One of the main characteristics of a finite-volume method, is that it allows
for discontinuities in the solution, in the sense that the values of the solution
in neighbouring cells (most often) are unequal, thus giving discontinuities
at the cell interfaces. This implies one of the main challenges in constructing
a finite-volume scheme, namely to find the numerical flux between two
cells given a certain discontinuity. This problem is known as the Riemann
problem. If it is solved exactly to determine Fi±1/2 in Eq. (3.3), Godunov’s
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method is obtained (cf. Toro [81]). The Riemann problem can be solved
approximately using centred schemes or upwind Riemann solvers.

An upwind scheme takes advantage of the fact that solutions to hy-
perbolic equations consist of waves propagating at finite speeds. It uses
information about which direction the wave is travelling in and what in-
formation is transported with each wave to determine the solution to the
Riemann problem. A centred scheme, on the other hand, does not take
wave propagation into account, and treats all directions equally. There is a
wide range of schemes available, cf. LeVeque [49] and Toro [81]. Here, only
those are addressed which were used in the papers included in this thesis.

3.1.1. Centred schemes

The Lax-Friedrichs flux is a centred scheme, and can be written as [49]

FLF
i+1/2 =

1
2
(f(Ui) + f(Ui+1))−

∆x
2∆t

(Ui+1 −Ui). (3.6)

The first term is simply a centred approximation to the flux at the interface,
while the second term introduces numerical diffusion, which is necessary
to make the method stable. However, this diffusion also causes the method
to smear out the solution, so it has trouble preserving discontinuities
sharply.

The first-order centred (FORCE) flux proposed by Toro [81] is a combina-
tion of the first-order Lax-Friedrichs flux and the second-order Richtmyer
two-step Lax-Wendroff flux. The latter is given by defining an intermediate
state

URi
i+1/2 =

1
2
(Ui + Ui+1)−

∆t
2∆x

(f(Ui+1)− f(Ui)), (3.7)

and then computing the flux vector at the intermediate state

FRi
i+1/2 = f(URi

i+1/2). (3.8)

The FORCE flux can then be expressed as

FFORCE
i+1/2 =

1
2
(FLF

i+1/2 + FRi
i+1/2). (3.9)

This flux has the advantage of being reasonably accurate, while still being
simple enough to be computationally cheap and easy to implement.

The multi-stage (MUSTA) scheme of Toro [80] aims to be as simple as a
centred scheme, while coming close to the accuracy of an upwind Riemann
solver. It can be briefly described as follows:
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1. Divide the domain around the cell interface at xi+1/2 into a local grid
with 2N cells, using the values Ui for the first N cells and Ui+1 for
the last N cells

2. Do M local time steps in each local grid, using the first-order centred
FORCE flux (3.9)

3. Use the flux between cell N and N + 1 in the local grid as the flux
Fi+1/2 in the original grid

In most cases, the MUSTA scheme is more accurate than the FORCE flux
on which it is based, although computationally more expensive due to the
need to do local time steps at each cell interface. The scheme was used in
papers L3 and L4, where it is described more thoroughly.

3.1.2. Characteristic Riemann solvers

In paper L5, we use characteristic Riemann solvers (cf. Moretti [57] and
Sesterhenn [75]) for a scalar linear advection equation, the 2D isothermal
Euler equations and the 2D shallow water equations. The characteristic
Riemann solver is an upwind Riemann solver, although the ones used in
paper L5 are only approximate in the case of the Euler and shallow water
equations. The main concept is to determine the properties propagated by
waves to the cell interface, and from this determine the value Ui+1/2 at the
interface. The numerical flux is then simply given by Fi+1/2 = f(Ui+1/2).

In systems of hyperbolic PDEs, information is transported along rays
called characteristics, along which the corresponding characteristic variables
are constant. In the case of the scalar linear advection equation

∂u
∂t

+ a
∂u
∂x

= 0, (3.10)

we may easily show that along the characteristic line X(t) = x0 + at, the
solution u is constant:

du(X(t), t)
dt

=
∂u(X(t), t)

∂t
+

∂u(X(t), t)
∂X

∂X(t)
∂t

=
∂u
∂t

+ a
∂u
∂x

= 0. (3.11)

When solving the Riemann problem, this means that the solution Ui+1/2 at
xi+1/2 is equal to Ui (for a > 0), so the numerical flux is Fi+1/2 = aUi.

For a system of hyperbolic PDEs in the general form ut + f(u)x = 0, the
process of calculating the characteristics is not as trivial. Here (·)t and
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(·)x denote the partial derivatives with respect to t and x, respectively. To
simplify matters, we write the system in a quasi-linear form,

∂u
∂t

+ J(u)
∂u
∂x

= 0, (3.12)

where J(u) is the Jacobian matrix of the flux function f(u). The system
(3.12) is in a similar form as the linear advection equation (3.10), but for
this system, the characteristic speeds are given by the eigenvalues of J.
The changes in the characteristic variables are the changes in conservative
variables projected on the left eigenvectors of J.

Figure 3.2 shows the characteristics for a two-equation system with
eigenvalues λ1 < 0 and λ2 > 0, with the corresponding eigenvectors
w1 and w2. Using the characteristics, one can determine that the state
Ui+1/2 at the interface xi+1/2 is given by w1,R and w2,L. Since the Jacobian
matrix J(u) depends on u, one has to choose where the Jacobian should
be evaluated. One possible and reasonable option is to evaluate J at the
point where the characteristic is coming from, which for the case in Figure
3.2 means to evaluate at uR to calculate λ1 and w1, and at uL to calculate
λ2 and w2.

xxi+1/2

λ2

w2 = w2,L

λ1

w1 = w1,R

t

RL

Figure 3.2.: A Riemann problem at xi+1/2 for a two-equation system. The characteris-
tics are shown by dashed lines.

In general, characteristic solvers may work well when we are dealing
with smooth solutions or (close to) linear flux functions, but problems
might occur when the eigenvalues change sign from one cell to the next.
In paper L5, we show explicitly how to derive a characteristic solver for
the isothermal Euler equations and the shallow water equations.
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3.1.3. Higher order reconstruction

A common approach to achieve higher spatial order, is to use the monotone
upstream-centred scheme for conservation laws (MUSCL), which is of
second order for smooth solutions. It was proposed by van Leer [86], and
is based on constructing a piecewise linear function Ũ(x) using the discrete
data {Ui}. We introduce a linear slope σi,k for the k-th variable in each cell,
so that Ũ(x) is given by

(Ũi(x))k = (Ui)k + σi,k(x− xi) for xi−1/2 ≤ x < xi+1/2, (3.13)

where (·)k denotes the k-th component of a vector, and xi is the centre
of the i-th grid cell. To calculate the slope σi,k, one uses a slope-limiter
function, of which many variants exist. Here, we only mention the minmod
limiter, which is one of the more diffusive limiters, but which is also robust,
and whose slope is given by

σi,k = minmod
(
(Ui)k − (Ui−1)k

∆x
,
(Ui+1)k − (Ui)k

∆x

)
, (3.14)

where the minmod function can be written as

minmod(a, b) =
1
2
(sign(a) + sign(b))min(|a|, |b|) (3.15)

For discussion of other limiters, see e.g. LeVeque [49].
Given a certain slope, we can then construct the piecewise linear function

Ũ as illustrated in Figure 3.3. As seen in the figure, the Riemann problem
at the interface between the cells Ci and Ci+1 is now given by

(ŨL
i+1/2)k ≡ (Ũi(xi+1/2))k = (Ui)k +

∆x
2

σi,k

and

(ŨR
i+1/2)k ≡ (Ũi+1(xi+1/2))k = (Ui+1)k −

∆x
2

σi+1,k.

(3.16)

These states define a new Riemann problem, which can be solved by one
of the methods described earlier in this section. It is worth noting that in
many cases, it is common to apply the limiter to other variables than the
conservative ones. For the 1D isothermal Euler equations, for example, the
limited variables are most often the density ρ and the velocity u.

The MUSCL scheme was used as a reference scheme in paper L5 to
assess the performance of the Rankine-Hugoniot-Riemann (RHR) scheme,
which will be presented in the next section.
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ŨL
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ŨR
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Figure 3.3.: Example of a piecewise linear reconstruction in a MUSCL scheme, for
a scalar equation. The dashed lines show the constant reconstruction
by the cell averages in each cell before the linear reconstruction (solid
lines).

3.2. The Rankine-Hugoniot-Riemann solver

We consider a general multidimensional conservation law with source
terms, in the form

∂u
∂t

+∇ · F (u) = q(u), (3.17)

where F is a flux tensor and q(u) is a source term. Such systems of
equations can describe a number of different flow applications, such as
cavitation [72], fluid flow in a gravity field [51], combustion [40], multi-
phase flow with mass or heat transfer between the phases [77][L3], and
water/vapour flow in nuclear reactors [31], to mention a few.

Systems in the form (3.17) present a number of challenges to a numerical
method. One such challenge is to resolve steady or quasi-steady states
accurately, that is, cases where the magnitude of ut is much smaller than
that of the flux gradient or the source term. To see this more clearly, we
look at Eq. (3.17) in two dimensions,

∂u
∂t

+
∂f(u)

∂x
+

∂g(u)
∂y

= q(u). (3.18)

In steady state, ut = 0, the source term q may balance the flux terms on
the left-hand side, or (if q = 0) the two flux terms may balance each other.

One rather simple and often useful approach for solving equations in the
form (3.18), are fractional-step methods. A typical fractional-step method,
also known as Godunov splitting, divides the problem into two parts: one
homogeneous conservation law, ut + f(u)x + g(u)y = 0, and one ODE
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with the source term, ut = q(u). The two parts are then solved alternately.
However, as LeVeque [49] points out, fractional-step methods often have
trouble resolving steady or quasi-steady states.

Such steady or quasi-steady states typically require numerical schemes
able to preserve these balances, which are known as well-balanced schemes.
A number of authors have developed different variants of such schemes,
including Bale et al. [5], Bermudez and Vazquez [9], Donat and Martinez-
Gavara [23], Gosse [31], Hubbard and Garcı́a-Navarro [35], and LeVeque [50,
48], Murillo and Garcı́a-Navarro [59], Noelle et al. [61, 62, 63] and Xing et
al. [89].

In 1997, Jenny and Müller [40] introduced a new approach to balancing
flux gradients and source terms, named the Rankine-Hugoniot-Riemann
solver. Their motivation was to solve a combustion case with a 2D premixed
laminar flame, for which a traditional Riemann solver did not prove to be
adequate. The novel ideas with the solver were first to include the source
term q(u) in the flux computation in 1D, and second to treat the y-flux
gradient g(u)y as a source term when calculating the x-fluxes, and vice
versa. In this way, the solver was especially suited to solve problems where
the flux gradients balance each other.

We easily see that the y-flux may be seen as a source term by reformulat-
ing (3.18) as

∂u
∂t

+
∂f(u)

∂x
= −∂g(u)

∂y
+ q(u). (3.19)

By integrating this equation over a grid cell Ci,j, we get

∂Ui,j

∂t
+

Fi+1/2,j − Fi−1/2,j

∆x
= −Gi,j+1/2 −Gi,j−1/2

∆y
+ Qi,j ≡ Qi,j,x, (3.20)

where Qi,j is an approximation of the average of q over the grid cell, and F
and G are the x- and y-flux approximations at the interfaces, respectively.
In paper L5, we propose that the whole right-hand side Qi,j,x can be treated
as a singular source term located in the middle of the cell. In the original
work by Jenny and Müller [40], the source term was placed at the cell
interface rather than in the cell centre, which made it necessary to alter the
Riemann solver. Here, we instead use the idea of LeVeque [48], who also
places the source term in the cell centre, however without including the
effect of cross-fluxes. If we go back to the PDE (3.19), we may express this
as

∂u
∂t

+
∂f(u)

∂x
= ∆xQi,j,xδ(x− xi,j), (3.21)
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inside grid cell Ci,j, where δ is the Dirac delta function. This now allows us
to make a useful prediction of the solution u inside this grid cell, which is
obtained by integrating the steady (ut = 0) version of (3.21) over x from
x < xi,j to x > xi,j. We obtain the Rankine-Hugoniot condition

f(Ui,j,E)− f(Ui,j,W) = ∆xQi,j,x, (3.22)

where Ui,j,E and Ui,j,W denote the solution in the eastern (x > xi,j) and
western (x < xi,j) part, respectively, of grid cell Ci,j. To keep the method
conservative, we ensure that the average over the grid cell is conserved,

Ui,j,E + Ui,j,W

2
= Ui,j. (3.23)
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(a) Condition (3.22)

Ui,j

xi−1/2 xi xi+1/2 x

yj

yj+1/2

y

U

Ui,j,W

Ui,j,E

(b) Condition (3.23)

Figure 3.4.: Sketch of the conditions (3.22) and (3.23) to define Ui,j,W and Ui,j,E, for a
scalar case (adapted from Lund et al. [L5]).

The two equations (3.22) and (3.23) are illustrated in Figure 3.4 for a
scalar case. They can be solved for Ui,j,E and Ui,j,W, and two equivalent
equations give the northern and southern states, Ui,j,N and Ui,j,S. The
Riemann problem at the interface between cells Ci,j and Ci+1,j is then given
by the two states Ui,j,E and Ui+1,j,W, and similarly the Riemann problem at
the interface between cells Ci,j and Ci,j+1 is given by Ui,j,N and Ui,j+1,S.

As presented by Jenny and Müller [40], the RHR solver had some stability
issues in two dimensions, resulting in spurious oscillations. This was
handled by adding numerical diffusion to the source term, so that the
source term used in the computations was

Q∗i,j,x = (1− θ)Qi,j,x +
θ

4
(Qi−1,j,x + Qi+1,j,x + Qi,j−1,x + Qi,j+1,x), (3.24)
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(and similarly for Qi,j,y) where θ is some empirical value, which was chosen
to be θ = 0.04 by Jenny and Müller [40]. This way of eliminating instabilities
is rather arbitrary, and the chosen value of θ may not be suitable for other
cases. This was addressed by Florian Müller in his Master’s thesis [60],
where he introduced a limiter instead of numerical diffusion.

In our paper [L5], we suggested a slightly different limiter than the one
used by Müller [60]. The limiter ensures that the half-states calculated
from Eqs. (3.22)–(3.23) lie between the values in the neighbour cells, so
that no new maxima or minima are created, satisfying a total-variation
diminishing (TVD) criterion. The limited value of Ui,j,E may be written as
[L5]

(UL
i,j,E)k = min

[
max

[
(Ui,j,E)k − (Ui,j)k,−|δk|

]
, |δk|

]
+ (Ui,j)k, (3.25)

where δk = minmod((Ui+1,j)k − (Ui,j)k, (Ui,j)k − (Ui−1,j)k). Here (·)k de-
notes the k-th variable, and Ui,j,E is the unlimited eastern state, and the
minmod function is given by Eq. (3.15). The limiting procedure is illus-
trated in Fig. 3.5.

The limiter allows jumps UL
i,E − UL

i,W which have the opposite sign of
Ui+1 − Ui−1, as seen in Figs. 3.5c–d, in contrast to limiters in a MUSCL
scheme, for example. Such opposite jumps were not admitted by the limiter
of Müller [60], but allowing such jumps seemed to give better results. For
more details on the limiter, see paper L5, where we also show that the RHR
solver is of second spatial order, and demonstrate this by applying it to a
2D scalar advection equation, the 2D isothermal Euler equations and the
2D shallow water equations.

3.3. Exponential time-differencing method

As was mentioned in Section 2.2, relaxation terms can be used to describe
a number of physical processes, such as heat and mass transfer in a two-
phase flow model. These terms drive the system towards some equilibrium
state, in which the relaxation term tends to zero. As an example, heat
transfer is caused by a temperature relaxation term, and the equilibrium
point is where the two phases have the same temperature, so that heat no
longer flows. As an isolated process, a relaxation term will typically cause
an exponential decay over time towards an equilibrium state, as illustrated
in Figure 3.6.
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Figure 3.5.: Illustration of the RHR limiting procedure for a scalar equation, for two
different cases (adapted from Lund et al. [L5]).

28



u(t)

t

un

tn

ueq

tn+1

Explicit method

Exact

Figure 3.6.: Illustration of a relaxation process (3.26) over time towards an equilibrium
state ueq.

Figure 3.6 illustrates a simple relaxation ODE,

du
dt

=
1
ε
(ueq − u), (3.26)

where ε is the time scale of the relaxation process. The time scales of the
fluid-mechanical conservation law, on the other hand, are of the order of
the grid cell size divided by the wave speeds. If the time scales associated
with the relaxation process are significantly smaller than those associated
with the conservation law, we require careful numerical treatment to avoid
instabilities. For reasons of efficiency and simplicity, we wish to resolve
the solution of the relaxation ODE on the same time scale as that of the
conservation law. However, if these time steps ∆t are too large, we realize
from Figure 3.6 that an explicit method like Forward Euler will possibly
overshoot the equilibrium value.

In general, we wish to solve a relaxation ODE formulated as

du
dt

= s(u), (3.27)

which has an equilibrium point ueq defined by

s(ueq) = 0. (3.28)
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For first-order accuracy, a natural and common choice for solving (3.27)
is to use the Backward Euler scheme, which is given by

un+1 = un + s(un+1)∆t, (3.29)

where ∆t is the time step size. However, a crucial disadvantage of the
Backward Euler scheme is its implicitness, which means that Eq. (3.29)
often has to be solved using an iterative scheme such as the Newton–
Raphson method.

A popular approach to solving ODEs in the form (3.27) has been the
use of exponential integrators [20, 34]. This method utilizes the fact that
such systems typically move exponentially towards some equilibrium
point where s(u) = 0, so that the solution can be approximated using an
exponential. Although exponential integrators often are a better approach
than explicit methods, most exponential integrators linearize the source
term s(u), which may cause errors and overshooting of the equilibrium
point. Recently, however, Aursand et al. [2] proposed a related exponential
time-differencing method, tailor-made for relaxation systems, that never
overshoots the equilibrium. In this way, the stability restriction on the time
step is lifted. The first-order scheme, referred to as ASY1 (monotonically
asymptotic exponential integration), is given by

un+1 = un + (ueq − un)

[
1− exp

(
−∆t

τ

)]
, (3.30)

where ueq is the equilibrium state and

τ =
ueq − un

s(un)
(3.31)

is the time scale. The ASY1 scheme (3.30) is now unconditionally stable
by construction, and the solution decays exponentially towards the equi-
librium state ueq. It is (in itself) an explicit scheme, removing the need
to solve an implicit equation like the one in the Backward Euler scheme
(3.29). However, it requires a priori knowledge of the equilibrium state
ueq given by Eq. (3.28), which may be trivial or cumbersome to calculate,
depending on the nature of the relaxation source term. In the case of the
simple relaxation ODE in Eq. (3.26), the first-order ASY1 scheme would
solve the ODE exactly, regardless of the size of the time step ∆t.

In paper L4, we demonstrate how the ASY1 scheme can be applied to
a mass transfer term in the form of a chemical potential relaxation term.
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The scheme can also be useful for a number of other relaxation processes
in two-phase flow, such as heat transfer, interfacial friction or wall friction,
to name a few.
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The most exciting phrase to hear in science,
the one that heralds new discoveries, is not
”Eureka!”, but ”That’s funny ...”

Isaac Asimov (1920–1992)

4
Results

This chapter briefly reviews the most important results in my papers L1–L5
given in the appendix.

4.1. A hierarchy of relaxation two-phase flow mod-
els and the subcharacteristic condition

Paper L1: Tore Flåtten and Halvor Lund. Relaxation two-phase flow models
and the subcharacteristic condition, Mathematical Models and Methods in
Applied Sciences, 21(12), pp. 2379–2407, 2011.
Paper L2: Halvor Lund. A hierarchy of relaxation models for two-phase
flow, SIAM Journal of Applied Mathematics, 72(6), pp. 1713–1741, 2012.

In paper L1, we introduce a hierarchy of relaxation two-phase flow
models with relaxation transfer terms, as described in Section 2.2. These
terms account for mass, heat and volume transfer from one phase to
the other, driven by differences in chemical potential, temperature and
pressure, respectively, between the two phases. We start by introducing a
six-equation basic model with homogeneous flow, that is, the two phases
have the same velocity. In the basic model, all three transfer terms are
present, and it forms the base of the hierarchy. By assuming equilibrium in
one or more of the transfer processes, one can derive a total of seven other
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models. We express each of these eight models explicitly using equations
for conservation of mass, momentum, and energy, as well as an advection
equation for the gas volume fraction.

The concept of the subcharacteristic condition is important when it comes
to relating the wave velocities of a relaxation model to an equilibrium
model. In the context of our hierarchy, this translates to the condition that
adding an equilibrium assumption cannot increase the two-phase speed of
sound. This is expressed by

ã−2
X = ã−2

Y + ZYX , (4.1)

where ãX and ãY are the two-phase speeds of sound for the equilibrium
model and the corresponding relaxation (non-equilibrium) model, respec-
tively. ZYX is a non-negative term that we expressed using sums of squares,
which means that ãY > ãX . Figure 4.1 shows the two-phase speed of sound
for CO2 at 50 bar for each of the eight models in the hierarchy. We note
that the two-phase speed of sound is greatly affected by which equilibrium
assumptions we make. In particular, the homogeneous equilibrium model
(the pTµ-model) is seen to be discontinuous at the transition between
single-phase and two-phase flow. In other words, the two-phase speed
of sound ãpTµ is not equal to the liquid speed of sound c` where the gas
volume fraction is zero (αg = 0).
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Figure 4.1.: Two-phase speed of sound for CO2 at 50 bar as a function of gas volume
fraction [L2]. The single-phase speeds of sound are c` = 398.9 m/s and
cg = 201.5 m/s.

In paper L1, we derive the basic model and the four models with pressure
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equilibrium in an explicit form, that is, the p-, pT-, pµ- and pTµ-models.
We also explicitly calculate the term ZYX to show that the subcharacteristic
condition is fulfilled for these models. Paper L2 completes the hierarchy by
deriving the three last models and the subcharacteristic conditions related
to these models.

Personal contribution: My contribution to the first paper [L1] was to
derive the pressure-material relaxation model (the pµ-model) and the
subcharacteristic condition with respect to this model, as well as verifying
and correcting some errors in the analysis of the other models. I also
implemented the expression for the speed of sound and produced the plots
and figures used in the paper. The second paper [L2] extends the hierarchy
introduced in the first one, and was done solely by me, but with useful
comments from Tore Flåtten.

4.2. Two-phase flow of CO2 with phase transfer

Paper L3: Halvor Lund and Peder Aursand. Two-phase flow of CO2 with
phase transfer. Energy Procedia, 23, pp. 246–255, 2012.

In this paper, we aim to develop a two-phase flow model with a phase
transfer term to account for evaporation and condensation between the
liquid and gas phases of a CO2 pipeline flow. We use the pT-model (2.10)–
(2.13) as the fluid-mechanical model, since it includes a phase transfer term
while still being relatively simple. The phase transfer term is expressed
using two different models: One having a simple linear dependence on
the difference in chemical potential between the two phases, and the other
using statistical rate theory (SRT), based on transition probabilities from
quantum mechanics and the Boltzmann definition of entropy. We develop
the SRT theory to derive a phase transfer term Γg = −Γ̀ (cf. Eqs. (2.10)–
(2.11)) for stratified pipeline flow, which is expressed as

Γg = −Γ̀ =





32ρg(αg+δ)α`
πD

√
m

2πkBT (µ` − µg) if µg < µ`,
32ρgαg(α`+δ)

πD

√
m

2πkBT (µ` − µg) if µ` ≤ µg,
(4.2)

where D is the pipe diameter, kB is the Boltzmann constant, and m is
the molecular weight. The only empirical, undetermined factor in this
model is the initial volume fraction, δ, which governed the speed of the
nucleation process in the presence of only one phase. Thermodynamics
are modelled using the stiffened gas equation of state. The system of
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partial differential equations (PDEs) (2.10)–(2.13) is solved using a Godunov
splitting approach, where we solve the homogeneous PDE system using a
multi-stage (MUSTA) finite volume scheme, and the ordinary differential
equation (ODE) describing the phase transfer relaxation term using the
Backward Euler method to ensure stability.
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Figure 4.2.: Pressure during a CO2 pipeline depressurization for the pTµ-model, and
the pT-model with and without the SRT phase transfer model (adapted
from Lund and Aursand [L3]).

We compare the pT-model with the linear mass transfer model, with the
SRT mass transfer model, and without mass transfer, and the homogeneous
equilibrium model (HEM or pTµ-model) with instantaneous phase transfer,
for a CO2 pipeline depressurization case. The results for the three latter
models are shown in Figure 4.2. We note that the SRT model gives results
that are quite similar to those of the HEM model. Adjusting the initial
volume fraction gave qualitatively rather similar results, although a lower
initial volume fraction led to a more significant pressure dip at the onset
of liquid evaporation. The simple linear model, on the other hand, is
very sensitive to the magnitude of its coefficient. However, it should be
noted that the SRT model for pipeline flow has not yet been compared to
experiments.

Personal contribution: My contribution to this work was to derive and
implement the phase-transfer model based on SRT, run simulations and
write most of the paper. I presented the work at the Trondheim CCS
conference in June 2011.
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4.3. Splitting methods for relaxation two-phase flow
models

Paper L4: Halvor Lund and Peder Aursand. Splitting methods for relax-
ation two-phase flow models. International Journal of Materials Engineering
Innovation, 4(2), pp. 117–131, 2013.

In this paper, we go into more detail on how to solve the relaxation
ODE that describes the phase transfer term introduced in paper L3. We
use a Godunov splitting scheme to solve the hyperbolic fluid-mechanical
equation system and the relaxation term separately.

The relaxation phase transfer term acts to transfer mass between the two
phases to reach some equilibrium point. It is crucial to solve this term
accurately, since there is a risk of overshooting the equilibrium. This may
happen if one uses an explicit method with too large time step, which
may lead to physically nonsensical values, for example, negative mass in
one of the phases. The relaxation ODE is solved using two approaches:
one using the Backward Euler method, and one using an exponential
time-differencing scheme.

Aursand et al. [2] have developed an exponential time-differencing
scheme (similar to an exponential integrator, see Section 3.3) for use with
relaxation systems, and verified that this method will not overshoot an
equilibrium. The method has the advantage that it is an explicit method (if
the equilibrium point is known), hence it does not need to find the solution
iteratively to ensure stability, like the Backward Euler method must. We
compare the solution and performance using the Backward Euler method
and the exponential time-differencing ASY1 scheme, given by Eq. (3.30),
for the CO2 pipeline depressurization case introduced in paper L3. The
time step was chosen according to the CFL condition, with a CFL number
of 0.5. Figure 4.3 shows the temperature for this case, for the two different
methods and different grid sizes. We see that the ASY1 scheme is slightly
more diffusive for the very coarse 32 cell grid, but otherwise the two
methods give comparable results.

In our case, the equilibrium point of the phase transfer process has to be
calculated iteratively using a Newton-Raphson method for each time step,
which leads to the two methods having a comparable computational cost.
For a relaxation process with an easy-to-compute equilibrium value, one
can expect the ASY1 scheme to be more efficient than the Backward Euler
method.
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Figure 4.3.: Temperature during a CO2 pipeline depressurization at time t = 0.08 s, for
the test case described in papers L3 and L4 (adapted from Lund and
Aursand [L4]).

Personal contribution: My contribution to this work was to implement the
SRT model and do the calculations for finding the equilibrium state for
the mass transfer process, run simulations and write most of the paper. I
presented the work at the ECCOMAS Young Investigators Conference in
Aveiro, Portugal in 2012.

4.4. The Rankine-Hugoniot-Riemann solver

Paper L5: Halvor Lund, Florian Müller, Bernhard Müller, and Patrick
Jenny. Rankine-Hugoniot-Riemann solver for steady multidimensional
conservation laws with source terms. Submitted for publication in Journal
of Computational Physics, 2013.

The Rankine-Hugoniot-Riemann (RHR) solver was originally developed by
P. Jenny and B. Müller [40] in 1997 to solve multidimensional conservation
laws with source terms, more specifically to solve combustion cases with
1D and 2D premixed laminar flames. The solver uses a new approach to
take the source into account for the flux evaluation in 1D, and to interpret
cross fluxes as source terms. In the present work, these new source terms
are imposed as delta functions in the middle of each cell, which leads to
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Figure 4.4.: Results for advection of a scalar using the RHR solver [L5].

jumps in the solution, according to a Rankine-Hugoniot condition. The new
Riemann problems on the cell interfaces are then solved by a conventional
(one-dimensional) Riemann solver.

Jenny and Müller [40] experienced some stability issues with the RHR
solver in two dimensions, which were handled by adding numerical diffu-
sion. In 2010, Florian Müller [60] introduced a limiter to eliminate these
instabilities. The limiter ensures that the new states calculated by the
Rankine-Hugoniot condition never exceed the states in the neighbour cells.
Figure 4.4 illustrates the effect of the limiter on a scalar advection equa-
tion ut + aux + buy = 0, where the spurious oscillations in Fig. 4.4a are
eliminated in Fig. 4.4b by using a limiter.

We are able to prove analytically that the solver is of second order
for rectangular grids and the 2D scalar advection equation, and confirm
this with numerical results for the 2D scalar advection equation, the 2D
isothermal Euler equations and the 2D shallow water equations. Figure
4.5 shows the L2 norm of the density error for a 2D isothermal Euler case
(described in paper L5), and confirms that the RHR solver is of second
order spatially, and more accurate than a MUSCL scheme with MC limiter
by a factor of about two. The RHR solver is also found to be more accurate
than the MUSCL scheme for the scalar advection equation and the 2D
shallow water equations. However, the RHR solver has a slightly higher
cost per time step, since it has to solve the RHR relations (3.22)–(3.23).

Personal contribution: My contribution to this work was to implement
the numerical code, extend Florian Müller’s work on the limiter and the
analytical derivations, run simulations and write most of the paper.
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If I have not seen as far as others,
it is because giants were standing
on my shoulders.

Hal Abelson

5
Conclusions and outlook

The present thesis has contributed to new models for two-phase flow
with relaxation terms accounting for mass, heat and volume transfer. A
mass transfer model for pipeline flow based on statistical rate theory was
suggested. Moreover, accurate and robust numerical methods suitable to
solve such models with source terms have been considered.

A hierarchy of relaxation two-phase flow models was introduced, with
relaxation in pressure, temperature and chemical potential. The basic
model of the hierarchy was shown to satisfy the first and second laws of
thermodynamics in paper L1, which can be said to be a crucial requirement
for any physically valid model. The pµ-model (described in paper L1) and
the three models without pressure equilibrium, namely the T-, µ- and
Tµ-models (described in paper L2), represented original contributions,
and their possible applications are still open to investigation. Although
pressure relaxation is more rapid than relaxation of temperature and
chemical potential in most two-phase flow applications, one could possibly
imagine situations where this is not the case, making the three latter models
relevant.

All the models where shown to satisfy the subcharacteristic condition
with respect to each other in papers L1 and L2, which is closely related to
stability in the stiff limit where the relaxation process is infinitely rapid.
This condition has proven to be an important trait of models describing
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physical phenomena. For the model hierarchy, the subcharacteristic condi-
tion translated to the speed of sound being reduced for each equilibrium
assumption, which was shown explicitly using sums of squares. Of all
the equilibrium assumptions, pressure equilibrium was found to have
the most significant effect on the speed of sound, compared to the basic
model. Moreover, with equilibrium in all three relaxation processes, the
two-phase speed of sound was discontinuous in the single-phase limit,
which may result in numerical difficulties. It would be interesting to com-
pare the expressions for the two-phase speeds of sound to measurements
for various flow regimes, to determine which model is most realistic. The
hierarchy could also possibly be extended to inhomogeneous flow, that is,
with different velocities for the two phases.

The model with equilibrium in pressure and temperature (the pT-model)
was investigated in more detail in paper L3, with mass transfer due to
differences in chemical potential. The mass transfer term was modelled
using statistical rate theory (SRT), which is based on transition probabilities
from quantum mechanics and the Boltzmann definition of entropy. An SRT
mass transfer term for pipeline simulations was derived, which was less
dependent on empirical constants than other mass transfer models. As far
as the authors are aware of, SRT has not been used for such simulations
before. However, it should be noted that the SRT model has not yet been
experimentally validated for pipeline flow.

Numerical simulation of a CO2 pipeline depressurization case showed
that the results of the SRT model are quite close to those of the homoge-
neous equilibrium model (HEM or pTµ-model). This may indicate that the
pTµ-model, which includes mass transfer implicitly as an instantaneous
process, is a good first approximation to a model with an explicit expres-
sion for mass transfer. It is also worth noting that the SRT model produced
a characteristic pressure dip where the liquid evaporation started, which
was not present when using a simple linear relaxation model for chemical
potential. The magnitude of the dip was dependent on the initial volume
fraction, a constant which governed the speed of mass transfer in the
transition from single-phase to two-phase flow. Similar pressure profiles
have been observed in other pipe depressurization cases (see for example
Städtke [78, Chap. 9]), however, no explicit comparison has been made so
far.

For the pT-model with mass transfer, a Godunov splitting (fractional
step) approach was applied, which solved the homogeneous conservation
law and the SRT mass transfer term separately. The mass transfer term
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was solved using a first-order exponential time-differencing scheme (ASY1)
made especially for relaxation models, and using the Backward Euler
method. The ASY1 scheme had the advantage of being explicit in itself as
long as the equilibrium value of the relaxation process is known. In the
presented case, this equilibrium value had to be calculated using a Newton-
Raphson iteration, described in paper L4. For coarse grids, the ASY1
scheme was slightly less accurate than the Backward Euler scheme, but
they were otherwise comparable both in computational cost and accuracy.
However, since the ASY1 scheme is explicit if the equilibrium value is
known, it is expected that this scheme will be efficient and robust for
relaxation processes where the equilibrium can be calculated cheaply.

Finally, the Rankine-Hugoniot-Riemann (RHR) solver was presented,
which is designed to solve multidimensional conservation laws with source
terms. A new limiter was introduced to eliminate stability problems that
were reported with the original RHR solver by Jenny and Müller [40]. In
paper L5, it was proven analytically that the solver is of second order for a
2D linear scalar advection equation. Second order was also demonstrated
numerically for the 2D isothermal Euler equations and the 2D shallow
water equations. The presented cases focused on solving the steady state
accurately, but the RHR solver has previously [40] been used also for
transient cases.

The cases presented in paper L5 had rather small source terms. However,
the RHR solver should have the potential to handle more dominant source
terms as well, such as the combustion cases considered by Jenny and Müller
[40]. Another interesting case may be a shallow water “lake at rest”-case,
where the source terms due to topography are especially important.

For the future, one could imagine a number of possible continuations of
the work presented in this thesis:

• Compare the speeds of sound of the models in the hierarchy to
measurements to determine which model is more realistic.

• Extend the hierarchy to nonhomogeneous flow, that is, with different
phase velocities. The works of Martı́nez Ferrer et al. [54] and Morin
and Flåtten [58] are relevant.

• Consider possible applications of the newly introduced models (the
pµ-, T-, µ- and Tµ-models) in the hierarchy.

• Compare the SRT model to experimental results, for example for a
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depressurization case such as the Edwards case [26, 78], and estimate
a proper value for the initial volume fraction.

• Apply the first-order exponential time-differencing scheme ASY1 to
a relaxation model with an easy-to-compute equilibrium value. This
should give a significant advantage compared to the Backward Euler
scheme.

• Apply the RHR solver to a case where source terms are more domi-
nant, such as the shallow water equations with a topography source
term.

• Apply the RHR solver to relaxation models for two-phase flow.

• Use a more realistic equation of state than the stiffened gas EOS.
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A HIERARCHY OF RELAXATION MODELS FOR TWO-PHASE
FLOW∗

HALVOR LUND†

Abstract. A hierarchy of relaxation two-phase flow models is considered, formulated as hy-
perbolic relaxation systems with source terms. The relaxation terms cause volume, heat, and mass
transfer due to differences in pressure, temperature, and chemical potential, respectively, between
the two phases. The subcharacteristic condition is a concept closely related to the stability of such
relaxation systems. It states that the wave speeds of an equilibrium system never can exceed the
speeds of the corresponding relaxation system. The work of Fl̊atten and Lund [Math. Models Methods
Appl. Sci., 21 (2011), pp. 2379–2407] is extended, with analytical expressions for the wave velocities
in each model in the mentioned hierarchy. The subcharacteristic condition is explicitly shown to be
satisfied using sums of squares, subject only to physically fundamental assumptions.

Key words. subcharacteristic condition, relaxation, two-phase flow
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DOI. 10.1137/12086368X

1. Introduction. Two-phase flow is found in many industrial applications, such
as nuclear reactors [6], heat exchangers, petroleum production [4], and carbon dioxide
capture, transport, and storage (CCS) [5]. Modeling such flow for use in simulations
is a challenging task due to the complex nature of the interactions between the two
phases, such as the movement and shape of the interface, and heat and mass transfer
across it. In cases where the precise shape of the interface is of less importance or
too computationally expensive to calculate, one may apply averaging (see, e.g., Ishii
and Hibiki [13]) of the quantities of the two-phase fluid over a certain area or volume.
These averaged models can often be formulated as hyperbolic relaxation systems with
source terms accounting for the phase interactions, in the form

(1.1)
∂U

∂t
+ A(U )

∂U

∂x
+

1

ε
R(U) = 0,

where U ∈ Rn is the vector of unknowns, and ε is a characteristic time for the
relaxation process described by R(U). The hyperbolicity requires that the n × n
matrix A(U ) be diagonalizable with real eigenvalues. Such relaxation systems have
been analyzed by Chen, Levermore, and Liu [7], Liu [18], and Yong [30]. For a further
review of the literature on such systems, see, e.g., Natalini [21].

We now assume that there exists a constant k × n matrix P associated with R
which has the property that

(1.2) PR(U) = 0.
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published electronically November 13, 2012. This work was financed through the CO2 Dynamics
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†Department of Energy and Process Engineering, Norwegian University of Science and Technology
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By multiplying (1.1) with P on the left, we get an equation system for the reduced
variables u = PU ,

(1.3)
∂u

∂t
+ PA(U )

∂U

∂x
= 0.

We now make the assumption that u determines an equilibrium value U = E(u) such
that R(E(u)) = 0 and

(1.4) PE(u) = u.

We finally assume that u is sufficiently smooth, so that we may formulate a quasi-
linear equilibrium system as

∂u

∂t
+ B(u)

∂u

∂x
= 0,(1.5)

U = E(u),(1.6)

where B(u) = PA(E(u))∂uE(u). As the relaxation time ε of the relaxation system
(1.1) goes to zero, we expect the solutions to approach the solutions of the equilibrium
system (1.5). This was rigorously justified by Yong [29] for quasi-linear relaxation
systems satisfying a structural stability condition.

1.1. The subcharacteristic condition. The subcharacteristic condition is a
concept which has proven to be closely related to the stability of relaxation systems.
This was first mentioned by Whitham [28] for the linear case, and later developed
for 2 × 2 nonlinear systems by Liu [18]. A similar condition was also discussed by
Leray [17]. For more general systems, Yong [30] introduced a relaxation criterion,
which imposes a certain stability requirement on the (linearized) relaxation system
and requires that the relaxation term R(U) be nonoscillatory, and showed that for
k = n − 1 this criterion leads to (a) convergence of the solution in the limit ε → 0,
and (b) the subcharacteristic condition being fulfilled.

The subcharacteristic condition has also proven to be an important trait of many
physically revelant models. For this reason, the literature on relaxation systems puts
a strong emphasis on this condition; see, e.g., Baudin et al. [2], Baudin, Coquel, and
Tran [3], and Fl̊atten [11].

In the context of our relaxation system (1.1) and the corresponding equilibrium
system (1.5), the subcharacteristic condition can be defined as follows.

Definition 1. Let the eigenvalues of the matrix A(U) of the relaxation system
(1.1) be given by

(1.7) Λ1 ≤ · · · ≤ Λi ≤ Λi+1 ≤ · · · ≤ Λn.

Similarly, let the eigenvalues of the matrix B(u) of the equilibrium system (1.5) be
given by

(1.8) λ1 ≤ · · · ≤ λi ≤ λi+1 ≤ · · · ≤ λk.

Also let the equilibrium system’s eigenvalues λi be interlaced with the relaxation sys-
tem’s eigenvalues, in the sense that λi ∈ [Λi, Λi+n−k]. Here, the relaxation eigenvalues
Λi are evaluated in an equilibrium state such that

(1.9) Λi = Λi(E(u)), λi = λi(u).
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Then the equilibrium system (1.5) is said to satisfy the subcharacteristic condition
with respect to the relaxation system (1.1).

Chen, Levermore, and Liu [7] proved that the subcharacteristic condition is satis-
fied if there exists a convex entropy function for the relaxation system (1.1), and that
this entropy is locally dissipated by the relaxation term R.

1.2. The model hierarchy. In a completely general (averaged) two-phase flow
model, one may imagine that the two phases have separate pressures pk, tempera-
tures Tk, chemical potentials μk,1 and velocities vk, where k is the phase index. The
system can then be moved towards equilibrium by employing relaxation source terms,
causing volume transfer due to pressure differences, heat transfer due to tempera-
ture differences, mass transfer due to chemical potential differences, and momentum
transfer due to velocity differences between the two phases.

In our paper, we consider only homogeneous flow models, i.e., models where the
phase velocities are equal. Discussion of models with different velocities, typically
called two-fluid models, may be found in [1, 9, 22, 31]. We are then left with three
relaxation processes, namely relaxation of pressure, temperature, and chemical poten-
tial. By considering either the equilibrium (stiff) limit or the nonequilibrium (nonstiff)
limit of these three processes, we get a hierarchy of models with different equilibrium
assumptions.

Figure 1.1 illustrates this hierarchy, where circles symbolize models and arrows
denote how the models are related through equilibrium assumptions on individual
variables. Each arrow corresponds to a subcharacteristic condition for the wave speeds
of the two models which the arrow connects. To the far left in this figure, we find the
basic model, denoted by 0, and to the far right, we find the homogeneous equilibrium
model (pTμ), in which the two phases are in full equilibrium. The full hierarchy
is based on the work by Fl̊atten and Lund [10], who developed the basis (the basic
model) for the hierarchy, along with the p, pT , pμ, and pTμ-models, shown with
dashed lines in Figure 1.1. In the present work, we complete the hierarchy with the
T , μ, and Tμ-models, and the seven related subcharacteristic conditions, shown with
solid lines in Figure 1.1.

In this paper, we will present each of the models in this hierarchy. In particular,
the formulation of the hyperbolic relaxation systems and the wave velocities (and
hence the speed of sound) of the models will be presented, and we will explicitly show
how the subcharacteristic condition is satisfied for each equilibrium assumption. More
specifically, we will show how to relate the mixture speed of sound ã of an equilibrium
model X and the corresponding relaxation (nonequilibrium) model Y by writing

(1.10) ã−2
X = ã−2

Y + ZY
X ,

where ZY
X is a positive term expressed using sums of squares. This is shown to be

sufficient to satisfy the subcharacteristic condition of Definition 1.
Stiff relaxation terms will cause dispersion of sound waves, with a speed of sound

dependent on the wave number and the relaxation parameter ε. For more discussion
regarding sound wave dispersion in certain models, see, e.g., Städtke [26, Chap. 6] or
Jinliang and Tingkuan [14]. We will focus our analysis on the nonstiff limit and the
equilibrium limit, which are without dispersion.

1Not to be confused with dynamic viscosity.
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Fig. 1.1. Model hierarchy. Each circle symbolizes a two-phase flow model assuming equilibrium
in zero or more of the variables p (pressure), T (temperature), and μ (chemical potential). Arrows
represent a relaxation process of one variable, pointing in the direction of equilibrium in that variable.
Solid lines indicate original contributions in the present paper, dashed lines indicate results presented
in [10].

1.3. Paper outline. In the following, we will, in turn, present each of the eight
different models shown in Figure 1.1 in sections 2–9. Three of the models have, to the
best of the author’s knowledge, not been described elsewhere, and thus represent orig-
inal contributions. The models in question are the thermal equilibrium, the chemical
equilibrium, and the thermal-chemical equilibrium models, described in sections 4,
5, and 8, respectively. The remaining models are those developed by Fl̊atten and
Lund [10], which are all briefly included here for completeness. For each model, we
aim towards an explicit expression of the mixture speed of sound, and prove that the
subcharacteristic condition of Definition 1 is satisfied by relating speeds of sound in
the different models using sums of squares.

In section 10, we show plots of the mixture speeds of sound in the models of the
hierarchy as functions of gas volume fraction, for relevant cases for water and carbon
dioxide. Finally, section 11 draws some conclusions and outlines possible further work.

2. Basic model. In this section, we present the basic one-dimensional two-phase
flow model, in which we let the two phases have separate pressures, temperatures, and
chemical potentials, while the velocity v is equal in the two phases. Heat, mass, and
volume transfer between the phases are modeled using relaxation source terms. The
model was proposed in this form by Fl̊atten and Lund [10], and forms the basis from
which we can derive the other models in the hierarchy.

2.1. Mass balance. In general, we have one mass balance equation for each
phase, which may be written as [10]

(2.1)
∂(αgρg)

∂t
+

∂(αgρgv)

∂x
= K(μ� − μg),

(2.2)
∂(α�ρ�)

∂t
+

∂(α�ρ�v)

∂x
= K(μg − μ�),

where we use the following notation:
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αk volume fraction of phase k,
ρk density of phase k,
v fluid velocity,
μk chemical potential of phase k,

K ≥ 0 chemical potential relaxation parameter.

Here the chemical potential relaxation source term ensures that mass flows from
high to low chemical potential, if we only assume that K ≥ 0. Mass transfer modeled
using such a relaxation term can be found in the works of, e.g., Saurel, Petitpas, and
Abgrall [23] and Stewart and Wendroff [25]. Adding (2.1)–(2.2) yields the conservation
equation for total mass,

(2.3)
∂ρ

∂t
+

∂(ρv)

∂x
= 0.

Here, the mixture density ρ is given by

(2.4) ρ = αgρg + α�ρ�.

2.2. Volume advection. We assume that volume transfer, in Lagrangian coor-
dinates, can only be caused by differences in pressure, which is a common assumption
also found, e.g., in models by Baer and Nunziato [1] and Saurel and Abgrall [22],

(2.5) Dtαg = J (pg − p�),

where we have introduced the material derivative, defined by

(2.6) Dt ≡ ∂

∂t
+ v

∂

∂x
,

and the notation

pk pressure of phase k,
J ≥ 0 pressure relaxation parameter.

Here, we note that the pressure relaxation causes volume to be transferred to the
phase with highest pressure; i.e., the expanding phase has the highest pressure. The
only assumption made is that the relaxation parameter is nonnegative, J ≥ 0.

2.3. Momentum conservation. Since the basic model is defined as a homo-
geneous flow model, with equal velocity v for the two phases, the momentum conser-
vation may be formulated as a conservation equation for the total momentum,

(2.7)
∂(ρv)

∂t
+

∂(ρv2 + αgpg + α�p�)

∂x
= 0.

2.4. Energy equations. We assume that each relaxation process should con-
serve energy and that in Lagrangian coordinates, only the relaxation terms contribute
to entropy changes. This allows us to derive energy equations for each phase, which
may be written as [10]

(2.8)
∂Eg

∂t
+

∂(vEg)

∂x
+ αgpg

∂v

∂x
+

v

ρ
mg

∂(αgpg + α�p�)

∂x

= H(T� − Tg) + p∗J (p� − pg) +

(
μ∗ +

1

2
v2

)
K(μ� − μg),
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(2.9)
∂E�

∂t
+

∂(vE�)

∂x
+ α�p�

∂v

∂x
+

v

ρ
m�

∂(αgpg + α�p�)

∂x

= H(Tg − T�) + p∗J (pg − p�) +

(
μ∗ +

1

2
v2

)
K(μg − μ�),

where p∗ and μ∗ are the pressure and chemical potential, respectively, at the gas-
liquid interface. The detailed derivation can be found in [10]. For brevity, we have
also introduced mk = αkρk, the mass per volume of phase k. The total energy in each
phase, Ek, is given by

(2.10) Ek = αkρk

(
ek +

1

2
v2

)
.

The temperature relaxation parameter is denoted by H ≥ 0, and the corresponding
heat source term H(T� − Tg) causes heat to flow from the hot to the cold phase.

2.5. Entropy evolution. When deriving the wave velocities of the present
model and other models in the hierarchy, it is often useful to formulate the model
using entropy evolution equations instead of the energy equations (2.8)–(2.9). These
can be formulated as [10]

(2.11) Dtsg =

(
μ∗ − μg

Tg
− sg

) K
mg

(μ� − μg) +
H
mg

T� − Tg

Tg
+

p∗ − pg

mgTg
J (p� − pg),

(2.12) Dts� =

(
μ∗ − μ�

T�
− s�

) K
m�

(μg − μ�) +
H
m�

Tg − T�

T�
+

p∗ − p�

m�T�
J (pg − p�),

where sk is the entropy density of phase k. These equations may also be formulated
in a balance form,

Tg

(
∂(mgsg)

∂t
+

∂(mgsgv)

∂x

)
(2.13)

= H(T� − Tg) + (p∗ − pg)J (p� − pg) + (μ∗ − μg)K(μ� − μg),

T�

(
∂(m�s�)

∂t
+

∂(m�s�v)

∂x

)
(2.14)

= H(Tg − T�) + (p∗ − p�)J (pg − p�) + (μ∗ − μ�)K(μg − μ�).

The latter equations may be derived by using the entropy equations (2.11)–(2.12), the
mass balance equations (2.1)–(2.2), and the volume fraction equation (2.5).

2.6. The laws of thermodynamics. An important point made by Fl̊atten and
Lund [10] is that this basic model satisfies the first and second laws of thermodynam-
ics, which is a sensible requirement to have on any two-phase flow model. By adding
the two energy equations (2.8)–(2.9), we get

(2.15)
∂(Eg + E�)

∂t
+

∂ [(Eg + E� + αgpg + α�p�)v]

∂x
= 0,



TWO-PHASE FLOW RELAXATION MODELS 1719

and thus the total energy is conserved, and the model fulfills the first law. The second
law, expressing that entropy should be nondecreasing, is also satisfied, only requiring
that

H ≥ 0,(2.16)

J ≥ 0,(2.17)

K ≥ 0,(2.18)

min(pg, p�) ≤ p∗ ≤ max(pg, p�),(2.19)

min(μg, μ�) ≤ μ∗ ≤ max(μg, μ�).(2.20)

The full proof can be found in [10].

2.7. Wave velocities. In the nonstiff limit K, J , H → 0, the wave velocities of
the basic model (2.1)–(2.2), (2.5)–(2.7), (2.11)–(2.12) can be found to be [10]

(2.21) λ0 = {v − ã0, v, v, v, v, v + ã0},

where ã0 is the mixture speed of sound of the basic model, given by

(2.22) ã0 =
mgc

2
g + m�c

2
�

ρ
,

i.e., a mass weighted average of the single-phase speeds of sound, which, in turn (for
phase k), are defined as

(2.23) c2
k =

(
∂pk

∂ρk

)

sk

.

3. Pressure relaxation. In this section, we consider the model that results
when we impose volume transfer equilibrium in the basic model of section 2. In other
words, we let the pressure relaxation parameter J go to infinity, which we expect to
correspond to the assumption

(3.1) pg = p� = p∗ = p,

i.e., mechanical equilibrium between the two phases. The mechanical equilibrium
model equations may be obtained by replacing the pressure relaxation term J (pg−p�)
using the volume fraction equation (2.5), as described in detail by Fl̊atten, Morin, and
Munkejord [11]. The full model equations are not stated here, but the derivation may
be found in [10]. This five-equation model has been studied by a number of authors
[11, 15, 20, 23, 24, 26], with slightly varying formulations.

3.1. Wave velocities. The wave velocities of the mechanical equilibrium model,
in the nonstiff limit where H, K → 0, are given by [11]

(3.2) λp = {v − ãp, v, v, v, v + ãp},

where ãp is the mixture speed of sound, given by

(3.3) ã−2
p = ρ

(
αg

ρgc2
g

+
α�

ρ�c2
�

)
.

This is a classic, well-known expression, also referred to as the Wood speed of sound
[24] or Wallis speed of sound [27].
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As shown by Fl̊atten and Lund [10], the mechanical equilibrium model satisfies
the subcharacteristic condition with respect to the basic model, only requiring ρk > 0.
This can be shown by writing the mixture speed of sound as

(3.4) ã−2
p = ã−2

0 + Z0
p ,

where

(3.5) Z0
p = ã−2

0

αgα�

ρgc2
gρ�c2

�

(ρgc
2
g − ρ�c

2
�)

2.

4. Temperature relaxation. In this section, we consider the model that results
when we impose heat transfer equilibrium in the basic model of section 2. In other
words, we let the temperature relaxation parameter H go to infinity, which we expect
to correspond to the assumption

(4.1) Tg = T� = T,

i.e., thermal equilibrium between the two phases. The model equations and wave
velocities for this model have not been found elsewhere, and will thus be derived here.

When we let the temperature relaxation parameter go to infinity, H → ∞, the
value of the temperature relaxation term H(T� − Tg) is no longer defined. Thus, to
derive the equations describing the current model, we find it necessary to determine
an explicit expression for the temperature relaxation (or heat transfer) term.

To this end, we consider the two following thermodynamic differentials:

dT =
ΓgT

ρgc2
g

dpg +
T

cp,g
dsg =

Γ�T

ρ�c2
�

dp� +
T

cp,�
ds�,(4.2)

dpk = c2
kdρk + ρkΓkTdsk,(4.3)

where Γk is the Grüneisen coefficient and cp,k is the specific heat capacity at constant
pressure, defined by

Γk =
1

ρk

(
∂pk

∂ek

)

ρk

,(4.4)

cp,k = Tk

(
∂sk

∂Tk

)

pk

.(4.5)

By using (2.1)–(2.2), (2.5), (2.11)–(2.12), together with (4.2)–(4.3) expressed with
the material derivative, we may solve for the heat transfer term, which yields

(4.6) H(T� − Tg) =
Γg − Γ�

Γ2
g

mgc2
g

+ 1
Cp,gT +

Γ2
�

m�c2
�

+ 1
Cp,�T

∂v

∂x

−
Γg

mg
+ Γ�

m�
+
(

Γ2
g

mgc2
g

+ 1
Cp,gT

)
(μ∗ − hg) +

(
Γ2

�

m�c2
�

+ 1
Cp,�T

)
(μ∗ − h�)

Γ2
g

mgc2
g

+ 1
Cp,gT +

Γ2
�

m�c2
�

+ 1
Cp,�T

K(μ� − μg)

−
Γg

αg
+ Γ�

α�
+
(

Γ2
g

mgc2
g

+ 1
Cp,gT

)
(p∗ − pg) +

(
Γ2

�

m�c2
�

+ 1
Cp,�T

)
(p∗ − p�)

Γ2
g

mgc2
g

+ 1
Cp,gT +

Γ2
�

m�c2
�

+ 1
Cp,�T

J (p� − pg),
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where

(4.7) Cp,k = αkρkcp,k

is the extensive heat capacity at constant pressure. We may now formulate the equa-
tions describing the thermal equilibrium model.

4.1. The thermal equilibrium model. The thermal equilibrium model can
now be summarized using the following equations.

• Mass balance:

∂(αgρg)

∂t
+

∂(αgρgv)

∂x
= K(μ� − μg),(4.8)

∂(α�ρ�)

∂t
+

∂(α�ρ�v)

∂x
= K(μg − μ�).(4.9)

• Momentum conservation:

(4.10)
∂(ρv)

∂t
+

∂(ρv2 + αgpg + α�p�)

∂x
= 0.

• Volume fraction evolution:

(4.11) Dtαg = J (pg − p�).

• Energy conservation:

(4.12)
∂E

∂t
+

∂ [(E + p)v]

∂x
= 0.

These model equations are (2.1)–(2.2), (2.5), (2.7), and (2.15) from the basic model.
Herein, E is the total energy per volume, defined by

(4.13) E = Eg + E� ≡ αgρg

(
eg +

1

2
v2

)
+ α�ρ�

(
e� +

1

2
v2

)
.

4.2. Wave velocities. We now wish to derive the wave velocities in the non-
stiff limit where the pressure and chemical potential relaxation parameters vanish,
J , K → 0. To this end, we find it useful to derive the material derivative of the
effective pressure peff ≡ αgpg + α�p�,

(4.14) Dtpeff = αgDtpg + α�Dtp� + (pg − p�)Dtαg.

We insert for the pressure differentials Dtpk from (4.3), and then rewrite the density
differentials Dtρk using the product rule on Dtmk, yielding

(4.15) Dtpeff = c2
gDtmg + mgΓgTDtsg + c2

�Dtm� + m�Γ�TDts�,

where have used that Dtαg → 0 since J → 0. The terms Dtmk may be found by
rewriting the mass balance equations (4.8)–(4.9). We also replace Dtsk from (2.11)–
(2.12) and (4.6), keeping in mind that K, J → 0, and finally get

(4.16) Dtpeff = −ρã2
T

∂v

∂x
,
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where

(4.17) ã2
T =

1

ρ

m�c
2
�mgc

2
g

(
Γg

mgc2
g

+ Γ�

m�c2
�

)2

+ 1
T

(
1

Cp,g
+ 1

Cp,�

)
(mgc

2
g + m�c

2
�)

1
mgc2

g
Γ2

g + 1
m�c2

�
Γ2

� + 1
T

(
1

Cp,g
+ 1

Cp,�

) .

Using the gas mass balance equation (4.8) and total continuity equation (2.3), we
find that the gas mass fraction Yg ≡ mg

ρ satisfies

(4.18) DtYg =
K
ρ

(μ� − μg).

Thus, in the nonstiff limit J , K → 0, we know from (2.5) and (4.18) that Yg and αg

are characteristic variables with a corresponding eigenvalue v. The remaining model
equations, namely the total continuity equation (2.3), momentum conservation (4.10),
and pressure evolution equation (4.16), may be formulated as a quasi-linear system,

(4.19) ut +

⎡
⎣

0 1 0
−v2 2v 1

−vã2
T ã2

T v

⎤
⎦ux ≡ ut + A(u)ux = 0,

where u = [ρ, ρv, peff ]. The eigenvalues of the matrix A(u) are given by {v− ãT , v, v+
ãT }, so the eigenstructure of the full model is given by

(4.20) λT = {v − ãT , v, v, v, v + ãT },

where the mixture speed of sound is ãT , given by (4.17).

4.2.1. The subcharacteristic condition with respect to the basic model.
From (2.22) and (4.17), we find that the mixture speed of sound of the thermal
equilibrium model can be written as

(4.21) ã−2
T = ã−2

0 + Z0
T ,

where

(4.22) Z0
T =

1

ã2
0

(Γg − Γ�)
2

m�c2
�mgc2

g

(
Γg

mgc2
g

+ Γ�

m�c2
�

)2

+
(

1
Cp,�T + 1

Cp,gT

)
ρã2

0

.

Proposition 1. The thermal equilibrium model given by (4.8)–(4.12) satisfies
the subcharacteristic condition with respect to the basic model of section 2, subject
only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

T > 0.

Proof. By (2.21) and (4.20), we see that the interlacing condition in Definition 1
reduces to the requirement that

(4.23) ã0 ≥ ãT ,

which follows from (4.21)–(4.22) and the given conditions for ρk, cp,k, and T .
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5. Chemical potential relaxation. In this section, we investigate the model
that arises when we impose mass transfer equilibrium in the basic model of section 2.
In other words, the phase transition between liquid and gas will be infinitely fast. This
is equivalent to letting the chemical potential relaxation parameter K go to infinity,
which we expect to correspond to the assumption

(5.1) μg = μ� = μ = μ∗,

i.e., equal chemical potentials and chemical equilibrium. The model equations and
wave velocities for this model have not been found elsewhere, and will thus be derived
here.

5.1. Mass fraction evolution equations. In the limit K → ∞, the chemical
potentials in the two phases are equal, μg = μ�, and hence the value of the mass
relaxation term K(μg − μ�) is undefined. To find an expression for this quantity, we
find it necessary to derive some differentials. Since the chemical potentials are equal,
μg = μ�, so are their differentials, dμg = dμ�, which yields

(5.2)
1

ρ�
dp� − s�dT� =

1

ρg
dpg − sgdTg.

The temperature and pressure differentials can be written as

(5.3) dTk =
ΓkTk

ρkc2
k

dpk +
Tk

cp,k
dsk,

(5.4) dpk = c2
kdρk + ρkΓkTkdsk.

We then insert for the temperature differential (5.3) and then the pressure differ-
ential (5.4) in (5.2), which yields

(5.5)
ξ2
�

ρ�
dρ� +

(
ρ�

s�
(c2

� − ξ2
� ) − s�T�

cp,�

)
ds� =

ξ2
g

ρg
dρg +

(
ρg

sg
(c2

g − ξ2
g) − sgTg

cp,g

)
dsg,

where we have introduced the abbreviation ξ2
k ≡ c2

k − ΓkskTk. Next, we have use for
the differential of the total density,

(5.6) dρ = αgdρg + α�dρ� + (ρg − ρ�)dαg,

and gas mass fraction differential

(5.7) dYg = −mg

ρ2
dρ +

1

ρ
(αgdρg + ρgdαg).

By writing (5.5)–(5.7) using the material derivative, together with the equations for
entropy (2.11)–(2.12), volume fraction (2.5), total continuity (2.3), and gas mass
fraction (4.18), we arrive at the mass fraction evolution equation,

(5.8) DtYg =
1(

ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2

�T�

Cp,�
+

s2
gTg

Cp,g

)
ρ

·
[
(ξ2

g − ξ2
� )

∂v

∂x
+

(
−ξ2

� (c2
� − ξ2

� )

m�c2
�s�T�

− ξ2
g(c2

g − ξ2
g)

mgc2
gsgTg

+
s�

Cp,�
+

sg

Cp,g

)
H(T� − Tg)

+

(
p∗
g

(
sg

Cp,g
+

ξ2
g(ξ2

g − c2
g)

mgc2
gsgTg

)
+ p∗

�

(
s�

Cp,�
+

ξ2
� (ξ2

� − c2
�)

m�c2
�s�T�

)
− ξ2

g

αg
− ξ2

�

α�

)
J (p� − pg)

]
,

where we have introduced an interface-bulk pressure difference p∗
k = p∗ − pk.
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5.2. The chemical equilibrium model. The chemical equilibrium model may
now be formulated using the following equations.

• Mass conservation:

(5.9)
∂ρ

∂t
+

∂(ρv)

∂x
= 0.

• Momentum conservation:

(5.10)
∂(ρv)

∂t
+

∂(ρv2 + αgpg + α�p�)

∂x
= 0.

• Volume fraction evolution:

(5.11) Dtαg = J (pg − p�).

• Energy equations:

(5.12)

∂Eg

∂t
+

∂(vEg)

∂x
+

v

ρ
mg

∂peff

∂x
−

⎛
⎝ (ξ2

g − ξ2
� )
(
μ + 1

2v2
)

ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2

�T�

Cp,�
+

s2
gTg

Cp,g

− αgpg

⎞
⎠ ∂v

∂x

=

⎡
⎢⎣

(
− Γ�ξ2

�

m�c2
�

− Γgξ2
g

mgc2
g

+ s�

Cp,�
+

sg

Cp,g

) (
μ + 1

2v2
)

ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2

�
T�

Cp,�
+

s2
gTg

Cp,g

+ 1

⎤
⎥⎦H(T� − Tg)

+

⎡
⎢⎣

((
− Γgξ2

g

mgc2
g

+
sg

Cp,g

)
p∗
g +

(
− Γ�ξ2

�

m�c2
�

+ s�

Cp,�

)
p∗

� − ξ2
g

αg
− ξ2

�

α�

) (
μ + 1

2v2
)

ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2

�T�

Cp,�
+

s2
gTg

Cp,g

+ p∗

⎤
⎥⎦

· J (p� − pg),

(5.13)

∂E�

∂t
+

∂(vE�)

∂x
+

v

ρ
m�

∂peff

∂x
−

⎛
⎝ (ξ2

� − ξ2
g)
(
μ + 1

2v2
)

ξ4
�

m�c2
�

+
ξ4
g

mgc2
g

+
s2
gTg

Cp,g
+

s2
�T�

Cp,�

− α�p�

⎞
⎠ ∂v

∂x

=

⎡
⎢⎣

(
− Γgξ2

g

mgc2
g

− Γ�ξ2
�

m�c2
�

+
sg

Cp,g
+ s�

Cp,�

) (
μ + 1

2v2
)

ξ4
�

m�c2
�

+
ξ4
g

mgc2
g

+
s2
gTg

Cp,g
+

s2
�T�

Cp,�

+ 1

⎤
⎥⎦H(Tg − T�)

+

⎡
⎢⎣

((
− Γ�ξ2

�

m�c2
�

+ s�

Cp,�

)
p∗

� +
(
− Γgξ2

g

mgc2
g

+
sg

Cp,g

)
p∗
g − ξ2

�

α�
− ξ2

g

αg

) (
μ + 1

2v2
)

ξ4
�

m�c2
�

+
ξ4
g

mgc2
g

+
s2
gTg

Cp,g
+

s2
�T�

Cp,�

+ p∗

⎤
⎥⎦

· J (pg − p�).

Herein, the continuity, momentum conservation, and volume fraction equations are
those known from the basic model, (2.3), (2.5), and (2.7), while the energy equations
(5.12)–(5.13) are derived by inserting for the chemical potential relaxation term K(μ�−
μg) in (2.8)–(2.9) using (5.8) and (4.18).
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5.3. Wave velocities. We wish to calculate the wave velocities, and hence the
mixture speed of sound, of the chemical equilibrium model (5.9)–(5.13) in the nonstiff
limit where H, J → 0. To this end, we find it useful to derive an evolution equation
for the effective pressure peff .

The material derivative of the effective pressure peff is given by (4.14). In this
equation, we replace Dtpg and Dtp� using (5.2)–(5.4) and (5.6). We then insert
for Dtsg and Dts� by replacing the chemical potential relaxation term in the basic
model entropy equations (2.11) and (2.12) using (5.8) and (4.18). Finally, using that
Dtαg = 0 due to (2.5) and the fact that J , H → 0, gives

(5.14) Dtpeff = ã2
μDtρ,

where

(5.15) ã2
μ =

(
ξ2

�

m�c2
�

+
ξ2
g

mgc2
g

)2

mgc
2
gm�c

2
� + (mgc

2
g + m�c

2
�)
(

s2
�T�

Cp,�
+

s2
gTg

Cp,g

)

ρ
(

ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2

�T�

Cp,�
+

s2
gTg

Cp,g

) .

We may now write the full equation system in a quasi-linear form,

(5.16) ut +

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
−v2 2v 0 0 1
vG −G v 0 0
vL −L 0 v 0

−vã2
μ ã2

μ 0 0 v

⎤
⎥⎥⎥⎥⎦

ux ≡ ut + A(u)ux = 0,

where u = [ρ, ρv, sg, s�, peff ]T and

(5.17) G =
sg(ξ

2
� − ξ2

g)

ρc2
gmg

(
ξ4

�

m�c2
�

+
ξ4
g

mgc2
g

+
s2

�T�

Cp,�
+

s2
gTg

Cp,g

) ,

(5.18) L =
s�(ξ

2
g − ξ2

� )

ρc2
�m�

(
ξ4
g

mgc2
g

+
ξ4

�

m�c2
�

+
s2
gTg

Cp,g
+

s2
�T�

Cp,�

) .

The equation system has been formed by the equations for mass (5.9), momentum
(5.10), and pressure (5.14), along with the entropy equations, which are obtained
by replacing the mass transfer term in (2.11)–(2.12) using (4.18) and (5.8). The
eigenvalues of the matrix A are

(5.19) λμ ∈ {v − ãμ, v, v, v, v + ãμ},

and hence the mixture speed of sound of the chemical equilibrium model is ãμ, given
by (5.15).

5.3.1. The subcharacteristic condition with respect to the basic model.
Using the expressions for the mixture speed of sound in the basic model (2.22) and
the chemical equilibrium model (5.15), we can show that

(5.20) ã−2
μ = ã−2

0 + Z0
μ,
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where

(5.21) Z0
μ =

(ξ2
� − ξ2

g)2

[(
ξ2
g

mgc2
g

+
ξ2

�

m�c2
�

)2

c2
�c

2
gmgm� +

(
s2

�T�

Cp,�
+

s2
gTg

Cp,g

)
ρã2

0

]
ã2
0

.

Proposition 2. The chemical equilibrium model given by (5.9)–(5.13) satisfies
the subcharacteristic condition with respect to the basic model of section 2, subject
only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

Tk > 0.

Proof. From the eigenstructure of the basic model (2.21) and the chemical equi-
librium model (5.19), we see that the interlacing condition in Definition 1 reduces to
the requirement that

(5.22) ã0 ≥ ãμ,

which follows from (5.20)–(5.21) and the given conditions for ρk, cp,k, and Tk.

6. Pressure-temperature relaxation. In this section, we investigate the model
that arises when we impose volume and heat transfer equilibrium. In other words,
we let the pressure and temperature relaxation parameters J , H go to infinity. This
corresponds to taking the limit

(6.1) H → ∞

in the mechanical equilibrium model of section 3, or equivalently taking the limit

(6.2) J → ∞

in the thermal equilibrium model (4.8)–(4.12), which we expect to correspond to the
assumptions

Tg = T� = T,(6.3)

pg = p� = p∗ = p,(6.4)

i.e., equal temperatures and pressures. The model equations may be found in [10].

6.1. Wave velocities. The wave structure of the mechanical-thermal equilib-
rium model was investigated by Fl̊atten, Morin, and Munkejord [11] in the general
case of n different components with n mass balance equations, in the nonstiff limit
where K → 0. In the case of two components, n = 2, the wave velocities were found
to be

(6.5) λpT = {v − ãpT , v, v, v + ãpT },

where

(6.6) ã−2
pT = ρ

(
αg

ρgc2
g

+
α�

ρ�c2
�

)
+ ρT

Cp,gCp,�

Cp,g + Cp,�

(
Γ�

ρ�c2
�

− Γg

ρgc2
g

)2

.

This model and its wave velocities are also described by Städtke [26, Chap. 4].
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6.1.1. The subcharacteristic condition with respect to the p-model. As
shown by Fl̊atten and Lund [10], the mechanical-thermal equilibrium model satisfies
the subcharacteristic condition with respect to the mechanical equilibrium model of
section 3, given only the physically fundamental requirements ρk > 0, cp,k > 0, T > 0.
This is easily seen from (6.6),

(6.7) ã−2
pT = ã−2

p + Zp
pT ,

where

(6.8) Zp
pT = ρT

Cp,gCp,�

Cp,g + Cp,�

(
Γ�

ρ�c2
�

− Γg

ρgc2
g

)2

.

6.1.2. The subcharacteristic condition with respect to the T -model.
From (4.17) and (6.6) we see that the mixture speed of sound in the mechanical-
thermal equilibrium model may be expressed as

(6.9) ã−2
pT = ã−2

T + ZT
pT ,

where

(6.10)

ZT
pT

=

((
Γg

mgc2
g

+ Γ�

m�c2
�

)(
Γg

ρgc2
g

− Γ�

ρ�c2
�

)
mgc

2
gm�c

2
� − α�αg

(
1

Cp,gT + 1
Cp,�T

)
(ρgc

2
g − ρ�c

2
�)
)2

ρ

m�c2
�mgc2

g

(
1

Cp,gT + 1
Cp,�T

)((
Γg

mgc2
g

+ Γ�

m�c2
�

)2

m�c2
�mgc2

g +
(

1
Cp,gT + 1

Cp,�T

)
ρã2

0

) .

Proposition 3. The mechanical-thermal equilibrium model satisfies the subchar-
acteristic condition with respect to the thermal equilibrium model of section 4, subject
only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

T > 0.

Proof. By (4.20) and (6.5), we see that the interlacing condition of Definition 1
reduces to the requirement that

(6.11) ãT ≥ ãpT ,

which follows from (6.9)–(6.10) and the given conditions for ρk, cp,k, and T .

7. Pressure-chemical relaxation. In this section, we investigate the model
that arises when we impose volume and mass transfer equilibrium. In other words,
we let the pressure and chemical potential relaxation parameters J , K go to infinity.
This corresponds to taking the limit

(7.1) J → ∞
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in the chemical equilibrium model (5.9)–(5.13), or equivalently the limit

(7.2) K → ∞

in the mechanical equilibrium model of section 3, which we expect to correspond to
the assumptions

pg = p� = p∗ = p,(7.3)

μg = μ� = μ∗ = μ,(7.4)

i.e., equal pressures and chemical potentials. This model was first introduced in this
form by Fl̊atten and Lund [10].

7.1. The mechanical-chemical equilibrium model. The mechanical-chem-
ical equilibrium model can be formulated as follows:

• Mass conservation:

(7.5)
∂ρ

∂t
+

∂(ρv)

∂x
= 0.

• Momentum conservation:

(7.6)
∂(ρv)

∂t
+

∂(ρv2 + αgpg + α�p�)

∂x
= 0.

• Energy equations:

(7.7)
∂Eg

∂t
+

∂

∂x
(vEg) +

mg

ρ
v

∂p

∂x
+ pαg

ρã2
p

ρgc2
g

∂v

∂x

− ρã2
pμ

Pg

mgsgTgCp,�

s2
gTgCp,� + s2

�T�Cp,g

·
(

μ +
1

2
v2 + p

αg(Γ�s�T� − c2
�) + α�(ΓgsgTg − c2

g)

ρgα�c2
g + ρ�αgc2

�

)
∂v

∂x

=

(
1 − p

αgΓ� + α�Γg

ρgα�c2
g + ρ�αgc2

�

)
H(T� − Tg)

+ H(T� − Tg)

(
μ +

1

2
v2 + p

αg(Γ�s�T� − c2
�) + α�(ΓgsgTg − c2

g)

ρgα�c2
g + ρ�αgc2

�

)

·
(

sgCp,� + s�Cp,g

s2
gTgCp,� + s2

�T�Cp,g

(
ãpμ

ãp

)2

−
(

Γg

ρgc2
g

− Γ�

ρ�c2
�

)
· ρã2

pμ

Pg

ρgαgsgTgCp,�

s2
gTgCp,� + s2

�T�Cp,g

)
,
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(7.8)
∂E�

∂t
+

∂

∂x
(vE�) +

m�

ρ
v

∂p

∂x
+ pα�

ρã2
p

ρ�c2
�

∂v

∂x

− ρã2
pμ

P�

m�s�T�Cp,g

s2
gTgCp,� + s2

�T�Cp,g

·
(

μ +
1

2
v2 + p

αg(Γ�s�T� − c2
�) + α�(ΓgsgTg − c2

g)

ρgα�c2
g + ρ�αgc2

�

)
∂v

∂x

=

(
1 − p

αgΓ� + α�Γg

ρgα�c2
g + ρ�αgc2

�

)
H(Tg − T�)

+ H(Tg − T�)

(
μ +

1

2
v2 + p

αg(Γ�s�T� − c2
�) + α�(ΓgsgTg − c2

g)

ρgα�c2
g + ρ�αgc2

�

)

·
(

sgCp,� + s�Cp,g

s2
gTgCp,� + s2

�T�Cp,g

(
ãpμ

ãp

)2

+

(
Γg

ρgc2
g

− Γ�

ρ�c2
�

)
· ρã2

pμ

P�

ρ�α�s�T�Cp,g

s2
gTgCp,� + s2

�T�Cp,g

)
.

As presented in [10], the energy equations (7.7)–(7.8) unfortunately contained a sign
error, which has been corrected here. We have also introduced

Pg ≡
(

∂p

∂sg

)

s�

=
sgTg

cp,g

(
ξ2
g

ρgc2
g

− ξ2
�

ρ�c2
�

)−1

,(7.9)

P� ≡
(

∂p

∂s�

)

sg

=
s�T�

cp,�

(
ξ2
�

ρ�c2
�

− ξ2
g

ρgc2
g

)−1

,(7.10)

and

(7.11)

ã−2
pμ = ã−2

p +
ρCp,gCp,�

ρ2
gρ

2
�(Cp,�s2

gTg + Cp,gs2
�T�)

(
ρg − ρ� + ρgρ�

(
sg

TgΓg

ρgc2
g

− s�
T�Γ�

ρ�c2
�

))2

.

7.2. Wave velocities. The wave velocities of the mechanical-chemical equilib-
rium model (7.5)–(7.8) were analyzed by Fl̊atten and Lund [10] in the nonstiff limit
H → 0. The eigenvalues were found to be

(7.12) λpμ = {v − ãpμ, v, v, v + ãpμ},

where ãpμ is the mixture speed of sound, given by (7.11).

7.2.1. The subcharacteristic condition with respect to the p-model.
From (7.11), we immediately see that the mixture speed of sound can be written as a
sum of squares,

(7.13) ã−2
pμ = ã−2

p + Zp
pμ,

where

(7.14) Zp
pμ =

ρCp,gCp,�

ρ2
gρ

2
�(Cp,�s2

gTg + Cp,gs2
�T�)

(
ρg − ρ� + ρgρ�

(
sg

TgΓg

ρgc2
g

− s�
T�Γ�

ρ�c2
�

))2

.
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From this and (3.2) and (7.12), we see that the subcharacteristic condition is satisfied,
given only the physically fundamental conditions ρk > 0, cp,k > 0, Tk > 0 [10].

7.2.2. The subcharacteristic condition with respect to the μ-model.
Using the expressions for the mixture speed of sound in the chemical equilibrium
model (5.15) and the present mechanical-chemical equilibrium model (7.11), it may
be shown that the latter can be written as

(7.15) ã−2
pμ = ã−2

μ + Zμ
pμ,

where

(7.16)

Zμ
pμ = ρ

mgc
2
gm�c

2
�

((
1

ρgc2
g

− 1
ρ�c2

�

)(
s2
gTg

Cp,g
+

s2
�T�

Cp,�

)
+
(

ξ2
g

mgc2
g

+
ξ2

�

m�c2
�

)(
ξ2
g

ρgc2
g

− ξ2
�

ρ�c2
�

))2

(
s2
gTg

Cp,g
+

s2
�T�

Cp,�

)((
ξ2
g

mgc2
g

+
ξ2

�

m�c2
�

)2

c2
�c

2
gmgm� +

(
s2

�T�

Cp,�
+

s2
gTg

Cp,g

)
ρã2

0

) .

Proposition 4. The mechanical-chemical equilibrium model given by (7.5)–(7.8)
satisfies the subcharacteristic condition with respect to the chemical equilibrium model
of section 5, subject only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

Tk > 0.

Proof. By (5.19) and (7.12), we see that the interlacing condition of Definition 1
reduces to the requirement that

(7.17) ãμ ≥ ãpμ,

which follows from (7.15)–(7.16) and the given conditions for ρk, cp,k, and Tk.

8. Temperature-chemical relaxation. In this section, we investigate the
model that results when we assume heat and mass transfer equilibrium, in other
words that the relaxation parameters H, K go to infinity. This is equivalent to taking
the limit

(8.1) H → ∞

in the thermal equilibrium model of section 4, or equivalently the limit

(8.2) K → ∞

in the chemical equilibrium model of section 5. We expect this to be equivalent to
the assumptions

Tg = T� = T,(8.3)

μg = μ� = μ∗ = μ,(8.4)

i.e., thermal and chemical equilibrium. The model equations and wave velocities for
this model have not been found elsewhere, and will thus be derived here.
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8.1. Entropy equations. To derive the entropy equations of the thermal-chem-
ical equilibrium model, we start by adding the balance formulations of the entropy
equations (2.13)–(2.14) to eliminate the heat transfer term, which, after expanding
and rewriting derivatives, yields

(8.5) T

(
mgDtsg + m�Dts� + sgαgDtρg + s�α�Dtρ� + (m�s� + mgsg)

∂v

∂x

)

= (pg − p� − T (sgρg − s�ρ�))J (pg − p�),

where we also have let K go to infinity, hence eliminating the mass transfer term.
To eliminate the material derivative Dtρk, we need to establish certain differen-

tials. Since the chemical potentials and temperatures are equal, so are their differen-
tials, which gives us

dμ =
1

ρ�
dp� − s�dT =

1

ρg
dpg − sgdT,(8.6)

dT =
ΓgT

ρgc2
g

dpg +
T

cp,g
dsg =

Γ�T

ρ�c2
�

dp� +
T

cp,�
ds�,(8.7)

dpk = c2
kdρk + ρkΓkTkdsk.(8.8)

Solving these three equations for dρk as functions of dsg and ds� yields

dρg = ρg

(
1

cp,g

(
−Γ�

c2
�
Δh − 1

)
− ΓgT

(
Γg

c2
g

− Γ�

c2
�

+
Γ�Γg

c2
gc2

�
Δh
))

dsg + 1
cp,�

ds�

c2
g

(
Γg

c2
g

− Γ�

c2
�

+
Γ�Γg

c2
gc2

�
Δh
) ,(8.9)

dρ� = ρ�

(
1

cp,�

(
Γg

c2
g
Δh − 1

)
− Γ�T

(
Γ�

c2
�

− Γg

c2
g

− ΓgΓ�

c2
�c2

g
Δh
))

ds� + 1
cp,g

dsg

c2
�

(
Γ�

c2
�

− Γg

c2
g

− ΓgΓ�

c2
�c2

g
Δh
) ,(8.10)

where Δh ≡ hg − h�. We will also have use for the differential of the mixture density,

(8.11) dρ = αgdρg + α�dρ� + (ρg − ρ�)dαg.

We may now express (8.9)–(8.11) using the material derivative, which together
with (8.5) allows us to solve for the entropy equations, which turn out to be slightly
complex,
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(8.12) Dtsg = Cp,g

[((
Δh

Γg

c2
g

Γ�

c2
�

+
Γg

c2
g

− Γ�

c2
�

)(
ρ + mgΔh

Γ�

c2
�

)
Cp,�Tc2

gc
2
�

+ Δhm�mg(c
2
� − c2

g + ΔhΓg)
∂v

∂x

+

((
Δh

Γg

c2
g

Γ�

c2
�

+
Γg

c2
g

− Γ�

c2
�

)(
(Δhρg − Δp)

Γ�

c2
�

+ ρg − ρ�

)
Cp,�Tc2

�c
2
g

+

(
Δh

Γg

c2
g

− 1

)
(Δhρg − Δp)m�c

2
g − (Δhρ� − Δp)c2

�mg

)
J (pg − p�)

]

·
[((

Δh
Γg

c2
g

Γ�

c2
�

+
Γg

c2
g

− Γ�

c2
�

)2

c2
�c

2
gCp,gCp,�T

2 + c2
gm�Cp,�T + c2

�mgCp,gT + Δh2mgm�

+

(
Δh

Γ�

c2
�

+ 1

)2

c2
�mgCp,�T +

(
Δh

Γg

c2
g

− 1

)2

m�Cp,gTc2
g

)
mg

]−1

,

(8.13) Dts� = Cp,�

[((
−Δh

Γ�

c2
�

Γg

c2
g

+
Γ�

c2
�

− Γg

c2
g

)(
ρ − m�Δh

Γg

c2
g

)
Cp,gTc2

�c
2
g

− Δhmgm�

(
c2
g − c2

� − ΔhΓ�

) ∂v

∂x

+

((
Δh

Γ�

c2
�

Γg

c2
g

− Γ�

c2
�

+
Γg

c2
g

)(
(Δhρ� − Δp)

Γg

c2
g

− ρ� + ρg

)
Cp,gTc2

gc
2
�

+

(
Δh

Γ�

c2
�

+ 1

)
(Δhρ� − Δp)mgc

2
� + (Δhρg − Δp) c2

gm�

)
J (p� − pg)

]

·
[((

Δh
Γ�

c2
�

Γg

c2
g

− Γ�

c2
�

+
Γg

c2
g

)2

c2
gc

2
�Cp,�Cp,gT

2 + c2
�mgCp,gT + c2

gm�Cp,�T + Δh2m�mg

+

(
Δh

Γg

c2
g

− 1

)2

c2
gm�Cp,gT +

(
Δh

Γ�

c2
�

+ 1

)2

mgCp,�Tc2
�

)
m�

]−1

,

where we have used (2.3) and (2.5) to replace Dtρ and Dtαg, and introduced Δp ≡
pg − p�.

8.2. The thermal-chemical equilibrium model. The thermal-chemical equi-
librium model can be formulated as follows:

• Mass conservation:

(8.14)
∂ρ

∂t
+

∂(ρv)

∂x
= 0.

• Momentum conservation:

(8.15)
∂(ρv)

∂t
+

∂(ρv2 + αgpg + α�p�)

∂x
= 0.
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• Volume advection:

(8.16) Dtαg = J (pg − p�).

• Energy conservation:

(8.17)
∂E

∂t
+

∂(v(E + p))

∂x
= 0.

An alternative formulation may be obtained by using the more obscure entropy equa-
tions (8.12)–(8.13) instead of the volume fraction (8.16) and energy equations (8.17).

8.3. Wave velocities. We now wish to calculate the wave velocities, and hence
the mixture speed of sound, of the thermal-chemical equilibrium model (8.14)–(8.17)
in the nonstiff limit where J → 0. To this end, we find it useful to derive an evolution
equation for the effective pressure peff .

We express (8.8)–(8.10) using the material derivative, which together with (8.12)–
(8.13), (8.16), and (4.14) yields

(8.18) Dtpeff = −ρã2
Tμ

∂v

∂x
,

where

(8.19)

ã2
Tμ =

(
ρ

Cp,gT

(
1 + Δh

Γ�

c2
�

mg

ρ

)2

+
ρ

Cp,�T

(
1 − Δh

Γg

c2
g

m�

ρ

)2

+
Δh2mgm�ã

2
0

Cp,gCp,�T 2c2
gc

2
�

)

·
[

m�

c2
�Cp,gT

+
mg

c2
gCp,�T

+

(
Δh

Γg

c2
g

− 1

)2
m�

c2
�Cp,�T

+

(
Δh

Γ�

c2
�

+ 1

)2
mg

c2
gCp,gT

+
Δh2m�mg

Cp,gCp,�T 2c2
gc

2
�

+

(
Δh

Γg

c2
g

Γ�

c2
�

+
Γg

c2
g

− Γ�

c2
�

)2
]−1

.

From (8.16), we know that αg is a characteristic variable with the correspond-
ing eigenvalue v. The remaining equations (8.14), (8.15), and (8.18) may then be
expressed as a quasi-linear equation system in the variables u = [ρ, ρv, peff ],

(8.20) ut +

⎡
⎣

0 1 0
−v2 2v 1

−vã2
Tμ ã2

Tμ v

⎤
⎦ux = 0.

The eigenvalues of this system are {ãTμ, v, v + ãTμ}, and thus the eigenvalues of the
full model may be summarized as

(8.21) λTμ = {v − ãTμ, v, v, v + ãTμ}.

8.3.1. The subcharacteristic condition with respect to T -model. Us-
ing (4.17) and (8.19), it may be shown that the mixture speed of sound of the present
model may be written as

(8.22) ã−2
Tμ = ã−2

T + ZT
Tμ,
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where

(8.23) ZT
Tμ =

(
Δh

(
Γg

Cp,�T
+

Γ�

Cp,gT

)
+ (c2

� − c2
g)

(
1

Cp,�T
+

1

Cp,gT

)

+

(
Γ�

m�c2
�

+
Γg

mgc2
g

)(
Δh

ΓgΓ�

c2
gc

2
�

+
Γg

c2
g

− Γ�

c2
�

)
c2
�c

2
g

)2

mgm�

·
[((

ρ

Cp,�T

(
1 − Δh

m�

ρ

Γg

c2
g

)2

+
ρ

Cp,gT

(
1 + Δh

mg

ρ

Γ�

c2
�

)2)
c2
�c

2
g+Δh2 mg

Cp,gT

m�

Cp,�T
ã2
0

)

((
1

Cp,gT
+

1

Cp,�T

)
ρã2

0 +

(
Γ�

m�c2
�

+
Γg

mgc2
g

)2

mgm�c
2
�c

2
g

)]−1

.

Proposition 5. The thermal-chemical equilibrium model given by (8.14)–(8.17)
satisfies the subcharacteristic condition with respect to the thermal equilibrium model
of section 4, subject only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

T > 0.

Proof. By (4.20) and (8.21), we see that the interlacing condition from Definition 1
reduces to the requirement that

(8.24) ãT ≥ ãTμ,

which follows from (8.22)–(8.23) and the given conditions for ρk, cp,k, and T .

8.3.2. The subcharacteristic condition with respect to the μ-model.
From (5.15) and (8.19), we find that the mixture speed of sound in the present model
may be written as

(8.25) ã−2
Tμ = ã−2

μ + Zμ
Tμ,

where

(8.26) Zμ
Tμ =

(
−(ΔhΓg − c2

g + c2
� )

s�

Cp,�
− (ΔhΓ� + c2

� − c2
g)

sg

Cp,g

+

(
ρ

mgm�
− Γ�s�T

m�c2
�

− ΓgsgT

mgc2
g

)(
Δh

Γg

c2
g

Γ�

c2
�

+
Γg

c2
g

− Γ�

c2
�

)
c2
�c

2
g

)2

·
[(

Δh2ã2
0

Cp,gCp,�T 2
+

(
1

Cp,gT

(
ρ

mgm�
+

Γ�Δh

m�c2
�

)2

+
1

Cp,�T

(
ρ

mgm�
− ΓgΔh

mgc2
g

)2
)

m�c
2
�mgc

2
g

ρ

)

·
((

s2
gT

Cp,g
+

s2
�T

Cp,�

)
ρã2

0 + mgm�

(
ρ

mgm�
− Γ�s�T

m�c2
�

− ΓgsgT

mgc2
g

)2

c2
�c

2
g

)]−1

.
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Proposition 6. The thermal-chemical equilibrium model given by (8.14)–(8.17)
satisfies the subcharacteristic condition with respect to the chemical equilibrium model
of section 5, subject only to the physically fundamental conditions

ρk > 0,

cp,k > 0,

T > 0.

Proof. By (5.19) and (8.21), we see that the interlacing condition of Definition 1
reduces to the requirement that

(8.27) ãμ ≥ ãTμ,

which follows from (8.25)–(8.26) and the given conditions for ρk, cp,k, and T .

9. Full relaxation. In this section, we investigate the model that results when
we let all the relaxation parameters J , H, K in the basic model of section 2 go to
infinity. We expect this to correspond to the assumptions

pg = p� = p∗ = p,(9.1)

Tg = T� = T,(9.2)

μg = μ� = μ∗ = μ.(9.3)

In other words, the two phases are in full equilibrium. This model is also referred
to as the homogeneous equilibrium model [26], and has been used for two-phase flow
simulations by a number of authors [8, 19].

9.1. The full equilibrium model. The full equilibrium model can be formu-
lated through conservation equations for total mass, momentum, and energy:

• Total mass conservation:

(9.4)
∂ρ

∂t
+

∂(ρv)

∂x
= 0.

• Momentum conservation:

(9.5)
∂(ρv)

∂t
+

∂(ρv2 + p)

∂x
= 0.

• Total energy conservation:

(9.6)
∂E

∂t
+

∂(v(E + p))

∂x
= 0.

Here, the energy equation (9.6) is obtained simply by adding the energy equations
(2.8)–(2.9) of the basic model.

9.2. Wave velocities. The wave velocities of the full equilibrium model have
been analyzed by, e.g., Städtke [26], Saurel, Petitpas, and Abgrall [23], and Fl̊atten
and Lund [10]. The eigenvalues are given by

(9.7) λpTμ = {v − ãpTμ, v, v + ãpTμ},
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where the mixture speed of sound is given by [23]

(9.8) ã−2
pTμ = ã−2

p + ρT

[
αgρg

cp,g

(
∂sg

∂p

)2

sat

+
α�ρ�

cp,�

(
∂s�

∂p

)2

sat

]
,

where the notation ( · )sat is used for differentiation along the boiling curve. The
mixture speed of sound may also be expressed through the thermodynamic derivatives
used earlier (Γk, ck, and cp,k), by replacing the saturation derivative using

(9.9)

(
∂sk

∂p

)

sat

= −Γkcp,k

ρkc2
k

− cp,k(ρg − ρ�)

ρgρ�(hg − h�)
.

9.2.1. The subcharacteristic condition with respect to the pT -model.
As shown by Fl̊atten and Lund [10], the subcharacteristic condition with respect to
the mechanical-thermal equilibrium model of section 6 is satisfied, given only ρk > 0,
cp,k > 0, and T > 0, which was shown by writing

(9.10) ã−2
pTμ = ã−2

pT + ZpT
pTμ,

where

(9.11) ZpT
pTμ =

ρT

Cp,g + Cp,�

(
ρg − ρ�

ρgρ�(hg − h�)
(Cp,g + Cp,�) +

ΓgCp,g

ρgc2
g

+
Γ�Cp,�

ρ�c2
�

)2

.

9.2.2. The subcharacteristic condition with respect to the pμ-model.
Also shown by Fl̊atten and Lund [10], the full equilibrium model fulfills the sub-
characteristic condition with respect to the mechanical-chemical equilibrium model of
section 7, given only ρk > 0, cp,k > 0, and T > 0, which may be shown by writing

(9.12) ã−2
pTμ = ã−2

pμ + Zpμ
pTμ,

where

(9.13) Zpμ
pTμ =

ρ

T (Cp,�s2
g + Cp,gs2

�)

(
(ρ� − ρg)(Cp,gs� + Cp,�sg)

ρgρ�(s� − sg)

+ T
Cp,gCp,�sgs�

(
Γ�

ρ�c2
�

+
Γg

ρgc2
g

)
+

Γg

ρgc2
g
C2

p,gs
2
� + Γ�

ρ�c2
�
C2

p,�s
2
g

Cp,gs� + Cp,�sg

)2

.

9.2.3. The subcharacteristic condition with respect to the Tμ-model.
By algebraic manipulations, one may show that the mixture speed of sound of the full
equilibrium model is related to the one of the thermal-chemical equilibrium model as
given by

(9.14) ã−2
pTμ = ã−2

Tμ + ZTμ
pTμ,
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where

(9.15) ZTμ
pTμ =

((
Cp,�T

(
ρg − ρ� + Δh

Γ�

c2
�

ρg

)(
ρ + Δh

Γ�

c2
�

mg

)

− Cp,gT

(
ρ� − ρg − Δh

Γg

c2
g

ρ�

)(
ρ − Δh

Γg

c2
g

m�

)
+ Δh2 mgm�

c2
gc

2
�

(c2
gρg − c2

�ρ�)

)2

ρ

)

·
[(

Cp,gT

(
ρ − m�Δh

Γg

c2
g

)2

+ Cp,�T

(
ρ + mgΔh

Γ�

c2
�

)2

+
mgm�

c2
gc

2
�

Δh2ρã2
0

)
Δh2ρ2

gρ
2
�

]−1

.

Proposition 7. The full equilibrium model given by (9.4)–(9.6) satisfies the
subcharacteristic condition with respect to the thermal-chemical equilibrium model of
section 8, given only the physically fundamental requirements

ρk > 0,

cp,k > 0,

T > 0.

Proof. From (8.21) and (9.7), we find that the interlacing condition in Definition 1
translates to the requirement that

(9.16) ãpμ ≥ ãpTμ,

which follows from (9.14)–(9.15) and the given conditions for ρk, cp,k, and T .

9.2.4. The discontinuity of the speed of sound. We have now considered
eight different models with varying equilibrium assumptions, each with its own speed
of sound. One would expect that the two-phase speed of sound reduces to the single-
phase speed of sound in the limit where one phase disappears, which is indeed the
case with seven of the models,

(9.17)

lim
αk→1

ã0 = lim
αk→1

ãp = lim
αk→1

ãT = lim
αk→1

ãμ = lim
αk→1

ãpT = lim
αk→1

ãpμ = lim
αk→1

ãTμ = ck.

However, for the final and present full equilibrium model, the single phase limit of the
two-phase speed of sound turns out to be discontinuous,

(9.18) lim
αg→1

ãpTμ =

(
1

c2
g

+ cp,gT

(
ρg − ρ�

ρ�(hg − h�)
+

Γg

c2
g

)2
)− 1

2

�= cg,

(9.19) lim
α�→1

ãpTμ =

(
1

c2
�

+ cp,�T

(
ρ� − ρg

ρg(h� − hg)
+

Γ�

c2
�

)2
)− 1

2

�= c�.

This implies that when an infinitesimal amount of gas is added to a pure liquid, the
mixture speed of sound will change drastically, and vice versa. The discontinuity in
the single-phase limit may cause significant numerical challenges, and is not phys-
ically plausible, as pointed out by, e.g., Städtke [26, Chap. 4]. It is interesting to
note that only the combination of all three relaxation processes together causes this
discontinuity, while any other combination does not exhibit such a behavior.
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10. Speed of sound comparison. In this section, we will present plots il-
lustrating the mixture speed of sound for water and carbon dioxide at industrially
relevant conditions, illustrating the impact of the different equilibrium assumptions
on the speed of sound. Plots with the same parameters were presented in [10] for five
of the models, but in this section we complete the picture by considering all eight
models in the hierarchy.

Figure 10.1(a) shows the mixture speed of sound in a two-phase water-steam
mixture at atmospheric pressure, p = 105 Pa. The other parameters are shown in
Table 10.1. We recognize that mechanical equilibrium has the most significant impact
on the speed of sound, while thermal and chemical equilibrium assumptions have a
much smaller effect. In Figure 10.1(b), we take a closer look at the range 0–100 m/s.
The full equilibrium model is, as expected, not continuous in the single-phase limit,
clearly visible at αg = 0, where the two-phase speed of sound is ãpTμ ≈ 1 m/s, whereas
the liquid speed of sound is c� = 1543.4 m/s.
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Fig. 10.1. Mixture speed of sound in a water-steam mixture at atmospheric pressure.

Table 10.1
Parameters for a water-steam mixture at atmospheric pressure.

Quantity Symbol Unit Gas Liquid
Pressure p MPa 0.1 0.1
Temperature T K 372.76 372.76
Density ρ kg/m3 0.59031 958.64
Speed of sound c m/s 472.05 1543.4
Heat capacity cp J/kg K 2075.9 4216.1
Entropy s m2/s2 K 7358.8 1302.6
Grüneisen coefficient Γ (dimensionless) 0.33699 0.4

The differences between the different models are perhaps even clearer in Fig-
ure 10.2, showing the speed of sound for a two-phase CO2 mixture at p = 50 bar.
The other parameters are listed in Table 10.2. In this figure, the subcharacteristic
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Fig. 10.2. Mixture speed of sound in a two-phase CO2 mixture at 50 bar.

Table 10.2
Parameters for a two-phase CO2 mixture at 50 bar.

Quantity Symbol Unit Gas Liquid
Pressure p MPa 5.0 5.0
Temperature T K 287.43 287.43
Density ρ kg/m3 156.71 827.21
Speed of sound c m/s 201.54 398.89
Heat capacity cp J/kg K 3138.0 3356.9
Entropy s m2/s2 K 1753.9 1128.8
Grüneisen coefficient Γ (dimensionless) 0.30949 0.63175

condition, predicting that the speed of sound is lowered for each imposed equilib-
rium assumption, is clearly illustrated. Once again, thermal and chemical equilibria
alone have little effect on the mixture speed of sound, and only combining the three
equilibrium conditions leads to a discontinuous speed of sound in the single-phase
limit.

For more discussions on models and experimental values for the speed of sound in
two-phase systems, a number of works exist. Henry, Grolmes, and Fauske [12] present
experimental values for the speed of sound in different flow regimes in a water-steam
system, while Kieffer [16] compares experimental values with certain models. Städtke
[26] also discusses a variety of different models and their speeds of sound. Furthermore,
Zein, Hantke, and Warnecke [31] have interesting discussions on how the speeds of
the different relaxation processes typically are related.

11. Conclusion and further work. We have studied the complete hierarchy
of averaged two-phase homogeneous flow models that arises by assuming equilibrium
in different combinations of pressure, temperature, and chemical potential, of which
the T -, μ-, and Tμ-equilibrium models represented original contributions. The mod-
els were formulated as hyperbolic relaxation systems with source terms accounting
for heat, mass, and volume transfer between the phases. Wave velocities for each
model were derived, and we showed how the subcharacteristic condition leads to the
requirement that the mixture speed of sound decreases when equilibrium assumptions
are imposed. This requirement was explicitly and analytically shown using sums of
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squares. Furthermore, it was illustrated how the different equilibrium assumptions
affect the speed of sound in relevant cases for a water-steam mixture and two-phase
carbon dioxide. We have also shown how the assumption of full equilibrium leads to a
discontinuous speed of sound in the single-phase limit, a phenomenon which is quite
unique for this model.

In further work, the hierarchy could possibly be extended to inhomogeneous flow
models, i.e., different velocities for the two phases, formulated using two momentum
equations, and velocity relaxation.
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Munkejord and Bernhard Müller.
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Abstract

A model for two-phase pipeline flow of CO2 with phase transfer is presented. Two different relaxation models for phase
transfer are developed. The system of equations is solved by splitting it into a hyperbolic conservation law and a relax-
ation ODE, solved by a multi-stage (MUSTA) finite volume scheme and the backward Euler method, respectively. The
stiffened-gas equation of state is used for calculating thermodynamic properties. Simulation results from a depressuri-
sation case of a CO2 pipe, causing phase change and cooling, are presented, showing that statistical rate theory predicts
solutions close to those of an equilibrium model with instant phase transfer.

c© 2011 Published by Elsevier Ltd.
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1. Introduction

Carbon dioxide capture and storage (CCS) will potentially be an important contributor to mitigating
emission of CO2 from stationary sources. In the BLUE map of the International Energy Agency (IEA)
[1], CCS accounts for 19% of CO2 emission reductions in 2050. Transport from the point of capture to a
storage site is a necessary part of a CCS system and may take place using e.g. ships or pipelines. Experience
with multi-phase flow in pipelines is abundant in the oil and gas industry as well as in the nuclear industry.
However, knowledge on two-phase flow of CO2 is available to a lesser extent.

Transport of CO2 will typically take place at high pressure, at conditions at which the CO2 is in its super-
critical phase. However, during a pressurisation from atmospheric pressure or during a planned or possibly
uncontrolled depressurisation, the fluid may enter the two-phase region with gas and liquid coexisting. Due
to phase change in such a situation, the fluid will cool significantly, potentially leading to temperatures low
enough to make the pipe steel brittle. This, in turn, makes the pipe vulnerable to rupture and possible severe
damage. The prediction of the temperature drop during such depressurisations requires modeling of phase
transfer (i.e. evaporation and condensation) between the two phases.
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Our paper is organized as follows: In Section 2, we present our two-phase drift-flux flow model, which
needs a phase transfer model to be fully defined. Two such models are developed in Section 3. Section 4
briefly describes the thermodynamic model (equation of state) we have used. The numerical methods used
to solve the fluid-mechanical and phase transfer equations are presented in Section 5. Results from a de-
pressurisation of a CO2 pipeline are presented in Section 6. Finally, Section 7 concludes our work.

2. Two-phase flow model

The goal of our work is to demonstrate modeling of a phase transfer process in a pipe with two-phase
flow. We therefore aim for a model which incorporates phase transfer, but otherwise is as simple as possible.
Hence, we make the assumptions that the two phases

1. have equal velocities, i.e. a homogeneous flow model,
2. are in thermal equilibrium, i.e. have equal temperatures,
3. are in mechanical equilibrium, i.e. have equal pressures.

This allows us to formulate a four-equation drift-flux model consisting of two mass balance equations, and
conservation equations for the total momentum and energy.

∂(αgρg)
∂t

+
∂(αgρgv)
∂x

= Γ, (1)

∂(αℓρℓ)
∂t

+
∂(αℓρℓv)
∂x

= −Γ, (2)

∂(ρv)
∂t
+
∂(ρv2 + p)
∂x

= 0, (3)

∂E
∂t
+
∂[(E + p)v]
∂x

= 0, (4)

where αk is the volume fraction of phase k, ρk is the density of phase k, and ρ = αgρg + αℓρℓ is the mixture
density. The fluid velocity is denoted by v and the pressure by p. The total energy per unit volume, E, is
given by

E = Eg + Eℓ, (5)

Ek = αkρk(ek +
1
2

v2), k ∈ {g, ℓ}, (6)

where ek is the internal energy per mass of phase k. The phase transfer source term appears in the mass
balance equations as Γ. This model has been analyzed by e.g. Flåtten and Lund [2] and Flåtten, Morin, and
Munkejord [3] in the non-stiff limit where Γ→ 0.

The two-phase flow model presented above has the advantage of being quite simple, while still allowing
for phase transfer modeling; the only simpler alternative possibly being an isentropic model. Although terms
accounting for e.g. wall friction, heat transfer between the pipe and the fluid, and fluid heat conduction are
omitted here, such terms may be added later if desired.

3. Phase transfer model

The phase transfer can be written (disregarding the transport terms) as

d(αgρg)
dt

= −d(αℓρℓ)
dt

= Γ. (7)

Physically, differences in the chemical potentials of the two phases will cause a mass flux from one
phase to the other, in the direction of decreasing chemical potential. We therefore seek a phase transfer term
in the form

Γ = K(µℓ − µg), (8)
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where K > 0 is some function of flow and thermodynamic variables. The function K should fulfill some
important requirements:

1. K = 0 if mg = 0 and µg > µℓ
2. K = 0 if mℓ = 0 and µg < µℓ

These requirements avoids phase transfer from a non-existing phase.
In the limit where K → ∞, we arrive at an equilibrium model in which phase transfer is instantaneous,

i.e. the phases always have equal chemical potential. In this limit, the model (1)–(4) may be written as the
classical Euler equations of gas dynamics [2],

∂ρ

∂t
+
∂(ρv)
∂x

= 0,
∂(ρv)
∂t
+
∂(ρv2 + p)
∂x

= 0,
∂E
∂t
+
∂[(E + p)v]
∂x

= 0. (9)

This model is also known as the homogeneous equilibrium model, which was investigated for use in carbon
dioxide pipeline depressurisation simulations in Ref. [4].

3.1. Simple model
As an initial approach, we suggest the simplest model possible which fulfills the two requirements stated

earlier,

K =



K0mg if µg > µℓ,

K0mℓ if µg < µℓ,

0 otherwise,
(10)

where K0 > 0 is an adjustable parameter whose magnitude determines the rate of the phase transfer. The
value of K0 in this model is unknown, which makes it more of a qualitative model. We would like to
compare it with a quantitative model, in which the magnitude ofK is more precise. To this end, we develop
an expression based on statistical rate theory in the following section.

3.2. Statistical rate theory
In the literature, modeling of mass fluxes across interfaces is described using a variety of different

approaches. Of the most common are kinetic theory and irreversible (non-equilibrium) thermodynamics.
Recently, statistical rate theory (SRT) has been proposed by Ward and Fang [5] as an alternative approach
to model liquid evaporation. One of the reasons of the introduction of SRT was that kinetic theory predicted
unreasonable temperature profiles near the interface [6], so-called anomalous temperature profiles. Further
discussion on this matter can be found in the works of Koffman, Plesset, and Lees [7] and Rahimi and Ward
[8]. The SRT model predicts more reasonable temperature profiles, in better accordance with experimental
results. Another significant advantage of SRT when modeling evaporation and condensation, compared to
kinetic theory or irreversible thermodynamics, is that it is free of any fitting parameters.

Statistical rate theory is a rather new approach to modeling of evaporation and condensation, based on
transition probabilities from quantum mechanics and the Boltzmann definition of entropy. It assumes that
the interfacial transport processes are the result of single molecular events and calculates the probabilities
using first-order perturbation analysis of the Schrödinger equation. The theory was first introduced by Ward
[9] in 1977, and was later laid out more fundamentally in the early 1980s by Ward, Findlay, and Rizk [10].
It has since been applied to as diverse transport processes as crystal growth [11], solution/solid adsorption
[12, 13], gas/solid adsorption [14, 15], temperature programmed desorption [16], ion permeation across
lipid membranes [17], chemical reactions [18], and evaporation and condensation [5, 19, 20].

We will now derive an expression for the evaporation and condensation mass flux, based on the SRT
model, closely following the derivations in Refs. [5, 10]. As noted previously, the SRT approach is based
on the probability of single molecular events. Let λ j denote a ”current” molecular distribution, and λk

denote a distribution in which one molecule has been transferred from the liquid phase to the vapor. From
perturbation analysis, the probability of a transition from distribution λ j to λk is [10]

τ(λ j → λk) = K(λ j → λk)
Ω(λk)
Ω(λ j)

, (11)
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where Ω(λ) is the number of microscopic states with molecular distribution λ. The constant K will be
determined later in the derivation. Using the Boltzmann definition of entropy, the probability (11) reads

τ(λ j → λk) = K(λ j → λk) exp
[
S (λk) − S (λ j)

kB

]
, (12)

where S (λ) is the total entropy of the molecular distribution λ. Similarly, let λi denote a distribution in which
one molecule has been transferred from the vapor phase to the liquid. The probability for this transition,
τ(λ j → λi), is then given by Eq. (12) with k replaced by i. The change in entropy from one state to the other
is given by the sum over all phases. The change of entropy can then be expressed as

S (λk) − S (λ j) =
∑

i=g,ℓ

(S i(λk) − S i(λ j)) =
∑

i=g,ℓ

∆S i, (13)

where ∆S i ≡ S i(λk) − S i(λ j) is the change in entropy of phase i. From the Gibbs-Duhem relation and the
fundamental relation U = TS − pV + gN, we have [10]

Ti∆S i = ∆Ui + pi∆Vi − gi∆Ni, (14)

where gi is the chemical potential per molecule, Ui is the total internal energy, Ti is the temperature and Ni

the number of molecules in phase i. Solving for ∆S i and inserting into the sum in Eq. (13) yields

S (λk) − S (λ j) =
∆Ug + pg∆Vg − gg∆Ng

Tg
+
∆Uℓ + pℓ∆Vℓ − gℓ∆Nℓ

Tℓ
. (15)

We recall that the transition from distribution λ j to λk corresponds to one molecule making the transition
from the liquid to the gas phase, which means that ∆Nℓ = −1 and ∆Ng = 1. We can also utilize that the
phases have equal pressures and temperatures (by definition in our model), which yields

S (λk) − S (λ j) =
1
T

(∆Ug + ∆Uℓ + p(∆Vg + ∆Vℓ) + gℓ − gg). (16)

Since we are considering an isolated system, the total energy and total volume are conserved, thus we have

S (λk) − S (λ j) =
1
T

(gℓ − gg). (17)

The chemical potential per mass, µk, can easily be calculated by dividing gk by the molecule mass. We may
now insert the entropy expressions in the expression for the transition probability (12), yielding

τ(λ j → λk) = Kℓ→g exp
[

1
kBT

(gℓ − gg)
]

(18)

for the transport from liquid to gas, where we write Kℓ→g ≡ K(λ j → λk) to make the direction liquid-to-gas
clearer. Similarly, for transport from gas to liquid we get

τ(λ j → λi) = Kg→ℓ exp
[

1
kBT

(gg − gℓ)
]
. (19)

The number of molecules transferred from liquid to gas in a time ∆t is

∆Nℓ→g = τ(λ j → λk)∆t, (20)

provided that ∆t is small enough not to change τ. The flux (number of transitions per time per area) is then

jℓ→g =
∆Nℓ→g

∆t
= Kℓ→g exp

[
1

kBT
(gℓ − gg)

]
. (21)
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An equivalent expression applies to the transition from gas to liquid. This is equivalent to the expression
which Ward and Fang [5] arrive at, if one assumes equal temperatures.

The net flux from liquid to gas can then be written as the difference between the fluxes in each direction,
yielding the net flux

j = jℓ→g − jg→ℓ = Kℓ→g exp
[

1
kBT

(gℓ − gg)
]
− Kg→ℓ exp

[
1

kBT
(gg − gℓ)

]
(22)

In an equilibrium condition, with gg = gℓ, the two fluxes have to cancel each other, giving a net flux
of zero. This means that Kℓ→g = Kg→ℓ = Ke. To calculate the value of this constant, we turn to classical
kinetic theory and assume that in equilibrium all molecules that collide with the liquid-vapor interface are
transferred to the other phase. The collision rate of gas molecules can be predicted using the Maxwell-
Boltzmann velocity distribution, and may be expressed as

Ke = ρg

√
kBT

2πm3 , (23)

where m is the molecular mass. This is a well-known result for ideal gases, but as Kapoor and Elliott
[19] point out, it is equally valid for a non-ideal gas. Furthermore, we assume that we always are close to
equilibrium, so that we always have Ke = Kℓ→g = Kg→ℓ. We may now write the mass flux, obtained by
multiplying the net flux (22) by the molecular mass m, as

J = ρg

√
kT

2πm

(
exp
[
gℓ − gg

kBT

]
− exp

[
gg − gℓ

kBT

])
. (24)

This expression is, as we can see, free of any fitting parameters.
Having a flux, we only need an expression for the interfacial area to arrive at an expression for the

transferred mass Γ. First, we express the total gas mass Mg in a pipe section of length ∆L as

Mg = ρgAg∆L = αgρgA∆L, (25)

where Ag is the area of the pipe cross section occupied by gas. The time derivative of this quantity is caused
by the flux across the interface,

dMg

dt
= JAint = JWint∆L (26)

where Aint is the interfacial area in the pipe section, and Wint is the width of the interface across the pipe
cross-section. By differentiating Eq. (25) with respect to time and using Eq. (7), we get

dMg

dt
=

d(αgρg)
dt

A∆L = ΓA∆L. (27)

The two last equations yield

Γ =
4JWint

πD2 , (28)

where we have used that the cross-sectional area of a circular pipe with diameter D is A = πD2/4.
When it comes to approximating the interface width Wint, a number of considerations have to be made.

We wish it to be zero when no mass is left in the source phase, but greater than zero when there is no mass
in the receiving phase. The latter is necessary to allow a start-up of the condensation or evaporation process,
even without presence of the phase which receives mass . We may then suggest

Wint =



4D(αg + δ)αℓ if gg < gℓ,
4Dαg(αℓ + δ) if gℓ < gg,

0 otherwise,
(29)
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where δ ≪ 1 is a tunable initial volume fraction, to avoid zero interfacial area when one phase disappears.
This factor will only govern the start-up phase of evaporation or condensation, when the volume fraction αk

of the receiving phase is on the order of δ. Wint may be looked upon as an approximation of the interfacial
width in stratified flow, with Wint(αg = 0.5) = D + O(δ). Almost all other flow regimes will have a larger
interface width.

Inserting the expressions for J and Wint from Eqs. (24) and (29) into Eq. (28) yields

Γ =



16ρg(αg+δ)αℓ
πD

√
kBT
2πm

(
exp
[m(µℓ−µg)

kBT

]
− exp

[m(µg−µℓ)
kBT

])
if µg < µℓ,

16ρgαg(αℓ+δ)
πD

√
kBT
2πm

(
exp
[m(µℓ−µg)

kBT

]
− exp

[m(µg−µℓ)
kBT

])
if µℓ ≤ µg,

(30)

where we have used that gk = mµk and µk is the chemical potential per mass for phase k. Bond [21] notes
that the exponents in (30) are small enough to allow a linearizing of the exponential terms. Expanding (30)
in powers of ∆µ = µℓ − µg then yields

Γ =



32ρg(αg+δ)αℓ
πD

√
m

2πkBT (µℓ − µg) if µg < µℓ,

32ρgαg(αℓ+δ)
πD

√
m

2πkBT (µℓ − µg) if µℓ ≤ µg.
(31)

In this form, the phase transfer process may be viewed as a relaxation of the difference in chemical
potential, ∆µ ≡ µℓ − µg. Other authors, e.g. Saurel et al. [22] and Stewart and Wendroff [23], have discussed
phase transfer models in this form, however without giving an explicit expression for the rate constant,
which we have managed to obtain here. The two-phase flow models presented by Bestion [24], Chung et al.
[25], Cortes [26], and Toumi [27] also include mass transfer models in different forms, but Toumi [27] points
out that his model is not chosen for its physical validity, but rather for its simplicity. We would like to point
out the advantage of our model having both a physical basis and an explicit mathematical expression.

4. Equation of state

We choose to use the stiffened gas equation of state (EOS), advocated by e.g. Menikoff [28, 29], as our
thermodynamic model. The stiffened-gas EOS can be seen as a local linearisation of a more general EOS,
and is mathematically similar to the ideal gas EOS, but with stiffening terms to allow for finite density at
zero pressure. It has the important advantage of being significantly simpler than most other EOSes, while
still being relatively accurate in the vicinity of a chosen reference point.

The pressure, internal energy and chemical potential (for a single phase) are given by

p(ρ,T ) = ρ(γ − 1)cvT − p∞, (32)

e(ρ,T ) = cvT +
p∞
ρ
+ e∗, (33)

µ(ρ,T ) = γcvT + e∗ − cvT ln
( T
T0

(ρ0

ρ

)γ−1) − s0T, (34)

where the ratio of specific heats is denoted by γ, the specific heat capacity at constant volume by cv, and
the zero point of energy by e∗. The reference temperature, density and entropy are denoted by T0, ρ0 and
s0, respectively. Finally, the parameter p∞ has the effect of ”stiffening” the phase, increasing the sound
velocity. All these parameters are specific for each phase, which can be fitted using experimental data
for a given fluid. Although the stiffened gas equation of state is one of the simplest EOSes available, it
is nevertheless complex enough to allow modeling and simulation of a phase transfer process and even
analytical expressions for most thermodynamic relations. As the main goal of this work is to demonstrate
modeling of phase transfer, the limited range of validity of the stiffened gas EOS is not an important issue.
If increased accuracy was required, one could replace the stiffened gas with a more complex EOS.

To write the flux function of the fluid mechanical equations (1)–(4) in terms of the conserved variables,
i.e. the mass of each phase, the momentum and the total energy, all per unit volume, we need to express the
pressure and temperature as functions of these variables. This may be accomplished using the procedure
described by Flåtten, Morin, and Munkejord [30].
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5. Numerical method

In order to numerically solve the two-phase flow model (1)–(4), we use a fractional-step method [31,
Ch. 17]. In vector notation, the model can be written as

∂q
∂t
+
∂ f (q)
∂x

= s(q), (35)

where q = [αgρg, αℓρℓ, ρv, E]T is the vector of conserved variables, f is the flux function and s is the phase
transfer source term.

We let ∆t be the time step length and denote the numerical solution at tn = t0 + n∆t by qn. In a
simple first-order fractional-step method, often referred to as Godunov splitting, the numerical solution qn

is advanced in time using two steps:

1. Solve the hyperbolic conservation law

∂q
∂t
+
∂ f (q)
∂x

= 0 (36)

in one time step yielding an intermediate solution q∗.
2. Then solve the initial value problem

∂q
∂t
= s(q), t ∈ [0,∆t], q(t = 0) = q∗, (37)

yielding the solution qn+1.

The above scheme is first-order accurate in time as long as the numerical schemes used in each sub-step are
at least first-order accurate.

One benefit of using a fractional-step method is that the composite problem is divided into sub-problems
that are more easily solved by standard methods. The methods used in the sub-problems (36) and (37) are
discussed below.

5.1. Hyperbolic part
The hyperbolic part of the fractional-step method (36) can be solved using a finite volume scheme, in

which one divides the computational domain into control volumes. These numerical schemes ensures that
the physically conserved variables are also conserved numerically. A finite volume scheme for Eq. (36) is
obtained by integrating over a control volume, which yields

dQi

dt
= − 1
∆x

(Fi+1/2 − Fi−1/2), (38)

where Qi is the average of q in control volume i, and Fi+1/2 is the numerical flux between control volume i
and i+ 1. Eq. (38) is an ODE which can be solved using e.g. the forward Euler or higher-order Runge-Kutta
time-stepping methods. At each cell interface, there is a discontinuity in Q at each time step tn, and finding
the solution for later times (t > tn) is commonly referred to as a Riemann problem.

The multi-stage (MUSTA) approach was first suggested by Toro [32], Titarev and Toro [33], and is based
on solving the Riemann problem using a first-order centred scheme on a local grid at each cell interface. The
solution from the local grid is then used to find the flux in the global grid. An advantage with the MUSTA
scheme, compared to other Riemann solvers, is that it is relatively simple. We will use the MUSTA 2–2
scheme investigated by Munkejord, Evje, and Flåtten [34] for solving the phase transfer model (1)–(4) and
the equilibrium model (9).

To achieve a higher-order method, one can employ the monotone upwind-centred scheme for conser-
vation laws (MUSCL) (see e.g. van Leer [35], Osher [36]), which is based on making a piecewise linear
reconstruction using the data {Qi}. The allowable slope in each cell is determined by a slope-limiter func-
tion, of which there are many possible choices. We choose the minmod limiter, which was demonstrated as
a good choice by Munkejord, Evje, and Flåtten [34].
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5.2. Relaxation ODE
The initial value problem (37) can in principle be solved by a large number of schemes for solving

ODEs. In this work we use the first-order backward Euler scheme, given by

qn+1 = q∗ + s(qn+1)∆t. (39)

The implicit scheme ensures a stable and robust numerical solution, even for stiff problems. The nonlinear
equation system (39) was solved using the Newton-Raphson method.

6. Simulation results

In this section, we will present results from simulation of a depressurisation of a pipe of length L = 80 m
with pure CO2. As the initial condition at time t = 0 s, we have liquid at p0,L = 60 bar in the left (x < 50 m)
part of the pipe, and gas at p0,L = 10 bar in the right (x > 50 m) part. The temperature is T0 = 273 K ≈ 0 ◦C,
and the fluid is stationary (v0 = 0 m/s). The temperature and pressure at each end is kept constant throughout
the simulation. The stiffened gas parameters used are presented in Table 1.

Table 1: Stiffened gas parameters

Phase γ (dimensionless) p∞ (Pa) cv (J/kg K) e∗ (J/kg) s0 (J/kg K) ρ0 (kg/m3) T0 (K)

Gas 1.06 8.86 · 105 2.41 · 103 −3.01 · 105 1.78 · 103 135 283.13
Liquid 1.23 1.32 · 108 2.44 · 103 −6.23 · 105 1.09 · 103 861 283.13

(a) Pressure (b) Temperature

Fig. 1: Simple model, time t = 0.08 s. 4000 (solid lines) or 2000 (dotted/dashed lines) cells. CFL number = 0.5.

As time progresses, a rarefaction (decompression) wave will propagate leftward from x = 50 m, and
a shock wave will propagate to the right. Figure 1 shows the results at time t = 0.08 s using the simple
model (10), together with those of the equilibrium model (9). As expected, the value of the rate constant
K0 is crucial to the behaviour of the system. Compared to the equilibrium model, the phase transfer model
smoothens the solution, approaching the model without phase transfer as K0 → 0. Having no information
about the physically correct value of K0, this model offers little in predicting the behaviour of the actual
physical system.

In Figure 2, the results at time t = 0.08 s for the SRT model are shown. The results are quite similar
when changing the initial volume fraction δ, and are quite close to those of the equilibrium model. We note a
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(a) Pressure (b) Temperature

Fig. 2: SRT model, time t = 0.08 s. 4000 (solid lines) or 2000 (dotted/dashed lines) cells. CFL number = 0.5.

small dip in the solution for δ = 0.001 at x ≈ 18 m, which is where the border between the one-phase liquid
region and the two-phase region is located. This can explain the dip, since a small initial volume fraction δ
will cause a slower start-up of the evaporation. Further to the right (x > 25 m) into the two-phase region,
we see that the dependence on δ is less pronounced, since we are past the start-up phase in this region.

As with the simple model (10), the discontinuities are smoothened quite a bit compared to the equi-
librium model. We remind the reader that the interfacial area used is a lower approximation of what the
actual area is. With a larger area, the phase transfer would be more rapid, and the results even closer to
the equilibrium model. Hence, our results indicate that pressure and temperature during a depressurisation
would be quite close to those of an equilibrium model. However, our model with phase transfer modeled
using SRT avoids potential problems caused by discontinuous speed of sound in the equilibrium model, and
is also able to capture the dynamics of the phase transfer process in situations where this is crucial.

7. Conclusion

We have presented two phase transfer models: a simple model and a model developed based on statistical
rate theory (SRT) capable of describing evaporation and condensation of CO2. These were combined with
a two-phase drift-flux flow model to yield a framework for simulating flow in a pipeline with a two-phase
CO2 mixture. We have presented simulation results for a depressurisation of a pipeline, where the SRT
model was used to predict phase transfer in a two-phase mixture flow, and which showed qualitatively very
similar behaviour to the equilibrium model. Future comparison with experiments with either water or carbon
dioxide will be interesting to validate the model.
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1 Introduction 

Two-phase flow is present in many industrial situations, such as heat exchangers, oil and 
gas production, CO2 transport and storage, and in the nuclear industry. Modelling of such 
flows is known to be a challenging task, much due to the possibly complex behaviour of 
the interface in different flow regimes, and interaction between the phases occurring at 
this interface, for example heat or mass transfer or interface friction. 

If the precise shape of the interface is of little interest or too computationally 
expensive to calculate, one can apply averaging of the physical quantities over a certain 
area or volume. This typically leads to systems of hyperbolic balance laws for mass, 
momentum and energy. Transfer of heat, mass and momentum between the two phases 
can then be modelled in the form of source terms in these balance equations. This paper 
will focus on the modelling and numerical solution of a mass transfer term which models 
evaporation and condensation between the liquid and gas phase. Evaporation of liquid in 
a pipeline will cause potentially large temperature drops, rendering the pipe steel brittle 
and vulnerable to rupture, and is therefore crucial to predict. Relaxation source terms for 
mass may be stiff, i.e., the time scales associated with the relaxation process might be 
significantly shorter than those of the hyperbolic flux term in the fluid-dynamical model. 
A stiff source term requires careful numerical treatment to avoid instabilities. One 
method to accomplish this, is to use a fractional-step (or splitting) method, which divides 
the problem into two parts: The hyperbolic (homogeneous) conservation equations and 
the source term. These two parts can then be solved separately using methods well suited 
for each part. 

The paper is organised as follows: The first section presents the models  
needed to describe the fluid-mechanical behaviour as well as the mass transfer. Then the 
numerical methods for solving these models are described, where the splitting procedure 
is outlined, followed by methods for solving the hyperbolic fluid-mechanical 
conservation laws and the mass transfer source term separately. Numerical results for a 
CO2 pipeline depressurisation case are presented, and the results for two different 
numerical methods are compared. Finally, the work is summarised and possible further 
work is outlined. 

2 Models 

To construct a model for two-phase flow with phase transfer, one needs a  
fluid-mechanical model, a model to describe the phase transfer, and a thermo-dynamic 
model or equation of state (EOS). In the following, each of these models will be 
presented. 
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2.1 Fluid-mechanical model

Fluid-mechanical models for two-phase flow are often averaged over a certain area or
volume to reduce the computational cost and remove the need to explicitly model the
location of the gas-liquid interface. Such averaged models are typically formulated as
hyperbolic equation systems for mass, momentum and energy. In order to focus on the
effect of the numerical solution of the phase transfer model, it is desirable to use a
fluid-mechanical model which is as simple as possible. In this paper, a four-equation
homogeneous flow model is chosen, with one mass balance (continuity) equation for
each phase, together with equations for conservation of total momentum and energy,

∂(αgρg)

∂t
+

∂(αgρgv)

∂x
= Γ, (1)

∂(αℓρℓ)

∂t
+

∂(αℓρℓv)

∂x
= −Γ, (2)

∂(ρv)

∂t
+

∂(ρv2 + p)

∂x
= 0, (3)

∂E

∂t
+

∂ [(E + p)v]

∂x
= 0, (4)

where αk is the volume fraction and ρk is the density of phase k, where k is g
(gas) or ℓ (liquid). The mixture density is ρ = αgρg + αℓρℓ, and the mixture energy is
E = αgρgeg + αℓρℓeℓ + 1

2ρv2, where ek is the internal energy of phase k. This model
could be argued to be the simplest possible pipe flow model which still incorporates a
phase-transfer term. Flåtten et al. (2010) (among others) have analysed this model in
the frozen-phase limit Γ = 0. To close the model, it is assumed that the two phases
have equal pressures p, temperatures T and velocities v. The phase transfer appears as
a source term, Γ, in the mass balance equations (1) and (2).

2.2 Phase transfer model

Modelling phase transfer between gas and liquid can be done using a variety of different
approaches, and there does not seem to exist a universally correct one. Among the
most common are kinetic theory, non-equilibrium (irreversible) thermodynamics and
statistical rate theory (SRT). The latter is a rather newly suggested approach based on
statistical mechanics, and was first introduced by Ward et al. (1982) and later applied
to modelling of liquid evaporation (Ward and Fang, 1999). One of the main reasons
for the development of SRT was to be able to explain the anomalous temperature
profiles found close to an evaporation interface (Pao, 1971). SRT assumes that interfacial
transport processes, on a microscopical level, are caused by single molecular events.
The probability of each event is calculated using a first-order perturbation analysis of
the Schrödinger equation, together with the Boltzmann definition of entropy. Since its
introduction by by Ward et al. (1982), SRT has been used to model a number of different
transport processes, including crystal growth (Dejmek and Ward, 1998), solution/solid
adsorption (Azizian et al., 2008; Rudzinski and Plazinski, 2006), gas/solid adsorption
(Elliott and Ward, 1997a; Findlay and Ward, 1982), temperature programmed desorption
(Elliott and Ward, 1997b), ion permeation across lipid membranes (Bordi et al., 2000),
chemical reactions (Harding et al., 2000), and evaporation and condensation (Ward and
Fang, 1999; Kapoor and Elliott, 2008; Ward and Stanga, 2001).
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Lund and Aursand (2012) developed an explicit expression for the phase transfer
source term Γ in equations (1) and (2) based on SRT, following an approach similar to
that of Ward et al. (1982) and Ward and Fang (1999). They found an interfacial flux
per area expressed as

J = ρg

√
kBT

2πm

(
exp

[
m(µℓ − µg)

kBT

]
− exp

[
m(µg − µℓ)

kBT

])
, (5)

where m is the molecular mass and kB the Boltzmann constant. The chemical potential
per mass of phase k is denoted µk. This flux has the important property that it reduces
to zero when the chemical potentials are equal, as expected. An advantage with the SRT
approach, is that it is able to yield an explicit expression without any parameters that
need tuning, as seen in equation (5). Other methods are often dependent on parameters
which need to be empirically determined.

One also needs to approximate the interfacial area across which the flux J flows.
Since the fluid-mechanical model is an averaged model, one has little information about
the precise shape of the interface. Hence it is assumed that the flow is stratified-like,
and that the interfacial area can be approximated by (Lund and Aursand, 2012)

Aint =

{
4DL(αg + δ)αℓ if µg < µℓ,

4DLαg(αℓ + δ) if µg ≥ µℓ,
(6)

where D is the diameter of the pipe and L is the length of the interface in x-direction.
The term δ is a tunable initial volume fraction which ensures that the evaporation or
condensation can start even when the mass-receiving phase has zero volume fraction.
To ensure that this term only has a small effect, it should be kept smaller than typical
volume fraction values, so δ ≪ 1.

With the given flux (5) and interfacial area (6), one finds the following expression
for the phase transfer source term in equations (1) and (2) (Lund and Aursand, 2012):

Γ =





32ρg(αg+δ)αℓ

πD

√
m

2πkBT (µℓ − µg) if µg < µℓ,

32ρgαg(αℓ+δ)
πD

√
m

2πkBT (µℓ − µg) if µℓ ≤ µg,
(7)

where the exponentials have been expanded to first order in µg − µℓ. This model has
the advantage of having an explicit mathematical expression, as well as being based
on well-established physics principles such as statistical mechanics. Models in a similar
form, with the phase transfer rate proportional to the difference in chemical potential,
have also been used by a number of other authors, including Saurel et al. (2008) and
Stewart and Wendroff (1984).

2.3 Equation of state

In this paper, the stiffened gas EOS (see, e.g., Menikoff and Plohr, 1989) is used,
which has the advantage of allowing analytical expressions for most thermodynamic
relations, while still being sophisticated enough to give reasonable results for a certain
range of pressures and temperatures. It can essentially be seen as an ideal gas with a
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stiffening term, p∞, which allows a non-zero density at zero pressure, making it suitable
to model liquids as well as gases. The pressure, internal energy and chemical potential
in a stiffened gas are given by

p(ρ, T ) = ρ(γ − 1)cvT − p∞, (8)

e(ρ, T ) = cvT +
p∞
ρ

+ e∗, (9)

µ(ρ, T ) = γcvT + e∗ − cvT ln
( T

T0

(ρ0

ρ

)γ−1)
− s0T, (10)

where γ is the ratio of specific heats, cv is the heat capacity at constant volume and e∗
is the zero point of energy. The reference temperature, density and entropy are denoted
T0, ρ0 and s0, respectively. Each phase has its own set of parameters, which can be
fitted to experimental values.

3 Numerics

The fluid-mechanical equation system (1) to (4) can be compactly formulated as

∂q

∂t
+

∂f(q)

∂x
= s(q), (11)

where q = [αgρg, αℓρℓ, ρv, E], f(q) is the flux function and s(q) is the source
term. There typically exist well-developed methods for solving homogeneous equation
systems, i.e., with s = 0. However, if the source term is stiff, problems relating
to stability may arise. Therefore, equation (11) will be solved using a first-order
fractional-step method known as Godunov splitting [LeVeque, (2002), Ch. 17]. This
advances the solution qn from time tn to time tn+1 = tn + ∆t using two steps:

1 Solve the hyperbolic homogeneous conservation law given by

∂q

∂t
+

∂f(q)

∂x
= 0, t ∈ [tn, tn+1], q(tn) = qn, (12)

yielding an intermediate solution q∗.

2 Solve the ordinary differential equation given by

dq

dt
= s(q), t ∈ [tn, tn+1], q(tn) = q∗, (13)

giving the solution at time tn+1.

This method will be first-order accurate in time as long as each of the two steps are
at least first-order accurate in time. With such a fractional-step (splitting) scheme, one
can employ efficient, accurate and stable numerical methods in each step, constructed
specifically for each part of the problem.

Higher-order accurate fractional-step methods can be derived, an example being the
second order Strang (1968) splitting. Schemes of even higher order exist, but are often
subject to stability issues. Moreover, as shown by Jin (1995), higher order splitting
schemes can reduce to first-order accuracy in the stiff limit.

In this work first-order splitting will be considered, and in the following methods
for solving equations (12) and (13) will be described.
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3.1 Hyperbolic conservation law

As fluid-mechanical models typically are formulated as conservation laws, as is the case
with equation (12), they are often solved using finite volume methods, which ensure
that the physically conserved variables are also conserved numerically. By integrating
equation (12) over a control volume i, one gets

dQi

dt
= − 1

∆x
(Fi+1/2 − Fi−1/2), (14)

where ∆x is the control volume size, Qi is the average of the conserved variable q
over control volume i, while Fi+1/2 is the numerical flux between control volumes i
and i + 1, which should approximate the exact flux at the interface,

Fi+1/2 ≈ f(q(xi+1/2, t)). (15)

As expected from a conserving scheme, the quantity Qi is only changed due to fluxes
in and out of the control volume. The challenge now lies in approximating the fluxes
{Fi+1/2} at the control volume interfaces, knowing only the control volume averages
{Qi}. This can be visualised as a discontinuity in Q at each interface at time tn, and
solving for later times is known as solving a Riemann problem.

There exists a number of different finite volume schemes to calculate the numerical
fluxes in equation (14), and one can, in general, divide these into two groups: upwind
schemes and centred schemes. Upwind schemes have the advantage that they take into
account how waves propagate in the original equation system, so that each cell is only
affected by information in the cells from where the waves are coming, hence the term
upwind. One of the most well-known schemes of this type is Roe’s (1981) approximate
Riemann solver. The centred schemes, on the other hand, have no concept of waves and
treat information in both directions equally, hence the term centred.

Although the upwind schemes typically perform better for, e.g., discontinuities, a
centred scheme will be used in this paper, which has the advantage of being robust and
easy to derive. The multi-stage (MUSTA) centred scheme was first proposed by Toro
(2003), and is based on solving the Riemann problem at each interface by introducing a
local grid and local time stepping. This method can be divided into the following three
steps, which are also illustrated in Figure 1.

1 at each cell interface, define a local grid with 2N cells

2 do M time steps in each local grid, using a first-order centred FORCE flux

3 use the fluxes from the local grids as fluxes in the original grid.

To calculate the fluxes in the local grid, a first-order centred scheme known as FORCE
will be used. This flux is given by (Toro, 1999)

F FORCE
j+1/2 =

1

2
(F LF

j+1/2 + F Ri
j+1/2), (16)

where F LF
j+1/2 is the Lax-Friedrichs flux

F LF
j+1/2 =

1

2
(f(Qj) + f(Qj+1)) − ∆x

2∆tloc
(Qj+1 − Qj), (17)
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and F Ri
j+1/2 is the Richtmyer flux. It is computed by first defining an intermediate state

QRi
j+1/2 =

1

2
(Qj + Qj+1) − ∆tloc

2∆x
(f(Qj+1) − f(Qj)), (18)

and then setting the flux to

F Ri
j+1/2 = f(QRi

j+1/2). (19)

With the FORCE flux (16), one can then perform time steps on the local grid using a
finite volume scheme in a form equivalent to equation (14). The time step used in the
local grid is calculated using a local CFL criterion, given by

∆tloc =
Cloc∆x

max1≤j≤2N

(
max1≤p≤d |λp

j |
) ,

where Cloc ∈ (0, 1) is the local CFL number. λp
j is the pth eigenvalue of the Jacobian

∂qf(q) at grid point j. The denominator is simply the largest absolute eigenvalue in
the local grid.

Figure 1 Illustration of the steps in the MUSTA method for one interface, between control
volumes i and i + 1

q

xxi+1/2

Fi+1/2 =?

q

xxi+1/2

N

N M time
steps

q

xxi+1/2

Fi+1/2

Before each time step, extrapolation boundary conditions are applied, Qm
0 = Qm

1 and
Qm

2N+1 = Qm
2N , where the superscript m denotes the mth time step. After the M th time

step, one has found the flux to use in the global grid, namely F M
N+1/2. Summarised, the

local time steps at each control volume interface are performed as follows (Titarev and
Toro, 2005):

1 compute fluxes using equation (16)

2 if m = M , then return flux F M
N+1/2 to be used in global grid

3 apply extrapolation boundary conditions: Qm
0 = Qm

1 and Qm
2N+1 = Qm

2N

4 update solution forward in time using a local finite volume scheme similar to
equation (14), with the FORCE flux (16), for j ∈ {1, 2, ..., 2N}

5 increase m by one and repeat from step 1.
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In the numerical simulations presented in the numerical results section, a MUSTA 2-2
method (M = N = 2) will be used, with four local grid cells and two local time steps,
similar to the one described by Munkejord et al. (2006).

3.2 Relaxation ODE

The second part of the splitting scheme concerns the relaxation term, formulated as
the ODE

dq

dt
= s(q), t ∈ [0, ∆t], q(t = 0) = q∗. (20)

When the time scales of the relaxation process (20) become significantly smaller than
the time scales of the hyperbolic conservation law (12), one is dealing with a stiff
relaxation system. For efficiency and simplicity, it is often of interest to resolve the
solution at time scales comparable with those of the conservation law. However, doing
so in a robust manner requires an ODE solver for equation (20) with good stability
properties. In particular, there is a risk of overshooting the equilibrium point qeq

defined by

s(qeq) = 0, (21)

in the ODE step of the fractional-step method, due to large time steps ∆t.

3.2.1 Backward Euler

For first-order accuracy, an obvious choice for solving the system (20) is the implicit
Backward Euler scheme, given by

qn+1 = q∗ + s(qn+1). (22)

An ODE is referred to as component-wise monotonic if it fulfils

si(qi)
(
qeqi − qi

)
> 0 ∀qi ̸= qeqi . (23)

The relaxation ODE under consideration in this work is of this type, and it is easy
to verify that for such ODEs the backward Euler scheme will be stable in the sense
that the solution to (22) will not overshoot an equilibrium point (Aursand et al.,
2010). However, it should be emphasised that obtaining this solution requires solving a
non-linear system of equation (22) by an iterative scheme such as the Newton-Raphson
method. Instabilities can still occur if the non-linear solver fails to correctly solve
this system.
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3.2.2 Asymptotic integration

A popular approach towards solving stiff systems in the form (20) has been the use of
exponential integrators (Hochbruck et al., 1998; Cox and Matthews, 2002). The basic
idea is that one gets rid of stability restrictions on the time step by approximating
the stiff component of the solution as an exponential function. Recently, exponential
methods tailored for relaxation systems have been proposed (Aursand et al., 2010). The
first order method, referred to as ASY1, is given by

qn+1
i = q∗

i + (qeqi − q∗
i )

[
1 − exp

(
−∆t

τi

)]
, (24)

where qeq is the equilibrium state and

τi =
qeqi − q∗

i

si(q∗)
. (25)

The scheme (24) and (25) is unconditionally stable by construction – the numerical
solution will decay exponentially to the equilibrium solution. However, the scheme
requires a priori knowledge of the equilibrium state. The trade-off when using the ASY1
scheme as opposed to the Backward Euler scheme, is solving an equilibrium problem
instead of an implicit numerical discretisation. Depending on the system, calculating the
equilibrium state qeq corresponding to an initial state q can be either trivial or very
cumbersome. In the following, it will be discussed how to calculate the equilibrium state
for the system (1) to (4).

When mass is moved from one phase to the other, total mass and energy are always
conserved, as seen from equation (4), and by adding equations (1) and (2). Thus, to
calculate the equilibrium state for the mass transfer process, one needs to find the
pressure p and temperature T as functions of the mixture density ρ and internal energy
Eint = αgρgeg + αℓρℓeℓ, such that µg = µℓ. This corresponds to finding the boiling point
for the given mixture density and internal energy.

In order to accomplish this, two nested Newton-Raphson algorithms were used. The
algorithm may be briefly summarised as follows:

1 Guess a pressure p.

2 Find boiling point Tboil by solving f1(Tboil) = µg(p, Tboil) − µℓ(p, Tboil) = 0 using
the Newton-Raphson method,

Tn+1
boil = Tn

boil −
f1(Tboil)

f ′
1(Tboil)

. (26)

For stiffened gas, the relevant expressions are then found from Eqs. (8) and (10),

µk(p, T ) = γkcv,kT + e∗,k − cv,kT ln
( T

T0,k

(ρ0,k(γk − 1)cv,kT

p + p∞,k

)γk−1)
(27)

− s0,kT,

(
∂µk

∂T

)

p

=
µk − e∗,k

T
− γkcv,k, (28)

where the subscript k denotes a quantity of phase k.
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3 Solve

f2(p) = ρg(ρ − ρℓ)eg + ρℓ(ρg − ρ)eℓ − (ρg − ρℓ)Eint = 0

for pressure p using a Newton-Raphson method, evaluated at T = Tboil. The
method requires the derivative of f2, which for stiffened gas is given by

∂f2

∂p = ((ρ − ρℓ)eg + ρℓeℓ + p
ρg

(ρ − ρℓ) − E)
(
−ρg

T
ρℓ−ρg

ρgρℓ(sg−sℓ)
+ 1

cv,gT (γg−1)

)

− ((ρ − ρg)eℓ + ρgeg + p
ρℓ

(ρ − ρg) − E)(
−ρℓ

T
ρℓ−ρg

ρgρℓ(sg−sℓ)
+ 1

cv,ℓT (γℓ−1)

)

+ ρg(ρ − ρℓ)
(
γcv,g

ρℓ−ρg
ρgρℓ(sg−sℓ)

)

− ρℓ(ρ − ρg)
(
γcv,ℓ

ρℓ−ρg
ρgρℓ(sg−sℓ)

)
+ (ρg − ρℓ),

(29)

where sk = 1
T (e + p

ρ − µ) is the entropy of phase k.

4 Go to step 2 until µg − µℓ is less than some chosen error limit.

For the present model, both the Backward Euler and ASY1 schemes require solving
an iterative problem in each computational step. The relative stability and efficiency
of these two schemes thus hinge on the stability and efficiency obtainable in their
respective iterative schemes.

4 Numerical results

This section will present results for depressurisation of a pipe with pure CO2. The pipe
has a length of L = 100 m, but for the sake of clearer plots, only the part x ∈ [0, 80]
will be shown. It is initially filled with liquid CO2 at a pressure of p = 60 bar in the
left part (x ≤ 50 m) and gas at 10 bar in the right part (x > 50 m). The parameters used
for the stiffened gas EOS are shown in Table 1. The CFL number used was C = 0.5,
while the initial volume fraction was δ = 0.01. This case was also used by Lund and
Aursand (2012), but in the present paper more focus is put on the results of different
numerical methods.

Table 1 Stiffened gas parameters used in the simulation

Phase γ (–) p∞ (Pa) cv (J/kg K) e∗ (J/kg) s0 (J/kg K) ρ0 (kg/m3) T0 (K)
Gas 1.06 8.86 · 105 2.41 · 103 −3.01 · 105 1.78 · 103 135 283.13
Liquid 1.23 1.32 · 108 2.44 · 103 −6.23 · 105 1.09 · 103 861 283.13

As time progresses, pressure waves will propagate to the left and right through the liquid
and gas, respectively. Between these two pressure fronts, phase transfer in the form of
evaporation and condensation will take place. Figure 2 shows the pressure after time
t = 0.08 s, comparing the solutions using the ASY1 method and the Backward Euler
method to a reference solution. The reference solution was obtained using a second
order method and a very fine grid. In this reference solution, to the left of the front at
x ≈ 16 m, there is pure liquid, while there is pure gas to the right of x ≈ 55 m.
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Figure 2 Pressure at time t = 0.08 s
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From Figure 2, one can see that the two methods have very similar results with equal
grid size. In the right part of the plot, we see that ASY1 is slightly more diffusive than
the Backward Euler method with 32 grid cells. This difference between the two methods
is perhaps even clearer in Figure 3, which shows the temperature for the same case. The
temperature dip around x ≈ 55 m is seen to be much clearer with the Backward Euler
method than the ASY1 method, especially with the coarsest grids.

Figure 3 Temperature at time t = 0.08 s
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Finally, Figure 4 shows the volume fraction at the same time. One can notice that the
dip in temperature seen in Figure 3 coincides with the abrupt change in volume fraction.
To the left of this point, temperature drops due to evaporation of the liquid. Since
the central MUSTA scheme was used, one can not expect such discontinuities to be
properly resolved on coarse grids. A Roe solver is often more suitable for cases where
discontinuities are dominant. Morin et al. (2009) has developed a Roe scheme for an
equation system in the form presented in equations (1) to (4), in the homogeneous case
where Γ = 0.

Figure 4 Gas volume fraction at time t = 0.08 s
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Note: The graph only shows a part of the domain, x ∈ [30, 70].

Table 2 shows the computational time spent for a range of different grid sizes, to
give an impression of how the computational cost for the two methods are related.
As seen in this table, the time spent is rather similar for the same grid size, although
the ASY1 scheme seems to have slightly better performance. It can be noted that the
computational cost for the ASY1 method comes from calculating the equilibrium state,
while the cost in the Backward Euler method is due to a Newton-Raphson iteration
in the numeric scheme (22) itself. The cost for these two approaches may vary with
different formulations of the source term than the one we have presented here, as it in
some cases is possible to calculate the equilibrium state relatively cheap, in which case
the ASY1 scheme would be expected to outperform the Backward Euler scheme.

In the present case, the equation µg = µℓ must be solved to find the equilibrium
state, which has to be done numerically due to logarithms in the expression for
µ, see equation (27). Say, for example, that the relaxation process in question was
instead a heat transfer process, where the equilibrium state is given by Tg = Tℓ. This
equation could, at least for the stiffened gas EOS, be solved exactly without the use
of a numerical scheme, thus decreasing the computational cost of the ASY1 scheme.
Therefore one can expect the ASY1 scheme to have advantages over the Backward
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Euler method for other cases than the one presented here. However, for the present case,
there does not seem to be any reasons to prefer one in front of the other, since the
methods produce similar results at similar computational cost.

Table 2 Computational time (in seconds) on a single Intel Core2 at 2.8 GHz for a range of
different grid sizes

Grid size ASY1 Euler
512 6.23 7.15
1,024 24.45 27.78
2,048 99.26 110.71
4,096 389.56 442.50

A final point worth making, is that the presented method is able to handle regions with
volume fractions αk of exactly zero. For other numerical methods found in the literature,
it is often necessary to have non-zero volume fractions to avoid numerical instabilities
(Munkejord et al., 2009; Chang and Liou, 2007). Chang and Liou (2007) report that
numerical errors may be amplified when one phase disappears, leading to instabilities.
The present approach has not shown to exhibit any issues related to a vanishing volume
fraction.

5 Conclusions

A two-phase flow model has been presented, with phase transfer modelled using a
relaxation term based on SRT. This model was solved using a first-order Godunov
splitting scheme, making it possible to solve the hyperbolic equation system and the
phase transfer model separately. The homogeneous hyperbolic equation system was
solved using a central MUSTA scheme. Results for two different approaches to solving
the phase transfer numerically were presented, one based on the Backward Euler method
and one on the time-asymptotic ASY1 scheme. The ASY1 scheme has the advantage
of being explicit if only the equilibrium state is known. However, with the particular
model considered here, calculating the equilibrium state is done iteratively, which gives
the ASY1 method similar performance to the Backward Euler method when it comes
to accuracy and computational cost. In future work, one could apply the scheme to
cases with an easier to compute equilibrium value, as well as investigate whether a
second-order splitting scheme is beneficial when solving models similar to the one
presented here.
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Abstract

The Rankine-Hugoniot-Riemann (RHR) solver has been designed to solve steady multidi-
mensional conservation laws with source terms. The solver uses a novel way of incorpo-
rating cross �uxes as source terms. The combined source term from the cross �uxes and
normal source terms is imposed in the middle of a cell, causing a jump in the solution
according to the Rankine-Hugoniot condition. The resulting Riemann problems at the cell
faces are then solved by a conventional Riemann solver.

We prove that the solver is of second order for rectangular grids and con�rm this by
its application to the 2D scalar advection equation, the 2D isothermal Euler equations and
the 2D shallow water equations. For these cases, the error of the RHR solver is comparable
to or smaller than that of a standard Riemann solver with a MUSCL scheme.

Keywords: �nite volume methods, partial di�erential equations, conservation laws,
Rankine-Hugoniot condition, source terms
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1. Introduction

Our goal has been to develop a numerical method to solve systems of multidimensional
hyperbolic partial di�erential equations (PDEs) with source terms, with an emphasis on
calculating steady states accurately. Such systems of equations can describe a number of
physical phenomena, e.g. combustion [1], multiphase �ow with phase interaction in the
form of mass or heat transfer [2, 3], water/vapor �ow in nuclear reactors [4], cavitation [5],
shallow water �ow over variable topography [6, 7], and �uid �ow in a gravity �eld [8], to
mention a few. In many cases, one can express the equations as balance laws consisting of
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a conservation law together with a source term, i.e. as

∂u

∂t
+ ∇ · F(u) = q(u,x), (1)

where u denotes the vector of conserved variables, F(u) the �ux tensor and q(u,x) the
source term. The procedure of solving such equations numerically in multiple dimensions
involves a number of challenges compared to solving a one-dimensional homogeneous (q =
0) conservation law. First, the multidimensionality introduces new e�ects, which may be
di�cult to capture accurately by just using standard one-dimensional methods based on
approximate Riemann solvers. Second, a sti� source term with a magnitude similar to the
�ux gradients may require a whole new approach, since approximate Riemann solvers for
the numerical �ux assume small or vanishing source terms.

One common approach to solving equations of the form (1) is to use a fractional-
step or operator-splitting method, which is based on solving the conservation law ut +
∇ · F(u) = 0 and the ODE ut = q(u,x) alternately to approximate the solution of
the full problem (1). The advantage of such a splitting approach is that the operators
can be approximated using well-proven methods developed for homogeneous conservation
laws and for ODEs, respectively. However, as e.g. LeVeque [9, Chap. 17] points out, such
splitting encounters di�culties, especially when the �ux gradients and the source terms
nearly or completely balance each other. This drawback of operator splitting has given
rise to the development of well-balanced schemes, whose main aim is to well approximate
the balance of the �ux surface integral and the source volume integral in steady state.
Well-balanced schemes have been discussed by a number of authors, including Bale et
al. [7], Bermudez and Vazquez [10], Donat and Martinez-Gavara [11], Gosse [4], Hubbard
and García-Navarro [12], and LeVeque [6, 13]. Murillo and García-Navarro [14] solve the
shallow water equations with source terms by adding an extra wave associated with the
source term in their approximate Riemann solver. Noelle and co-workers [15�18] have
written a number of papers on well-balanced methods, with an emphasis on the application
to the shallow water equations and steady states with moving �ow.

LeVeque [6] proposed a method which incorporates the source term as a singular source
in the centre of each grid cell, so that the �ux di�erence exactly equals the source term inte-
gral approximation. This in turn leads to altered Riemann problems at the cell boundaries,
which can be solved using a standard approximate Riemann solver with �rst or higher order
reconstruction. Jenny and Müller [1] used a similar idea, but rather placed the source term
at the cell boundary. Their work also introduced the concept for 2D problems of treating
the �ux gradients in the y direction as source terms when solving the Riemann problems
in the x direction, and vice versa. This solver was coined the Rankine-Hugoniot-Riemann
(RHR) solver, since a Rankine-Hugoniot condition is combined with a Riemann solver to
calculate the new Riemann problem with source term at the cell boundary.

In this paper we build on the idea by Jenny and Müller [1] of treating cross �uxes
as source terms, combined with placing the source term in the cell centre, as proposed
by LeVeque [6]. This allows us to develop a numerical scheme with accurate treatment
of multidimensional e�ects as well as source terms. Some stability problems reported by
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Jenny and Müller [1] for two-dimensional cases are eliminated here by introducing a novel
limiter.

Our paper is organized as follows. In Section 2, we explain the Rankine-Hugoniot-
Riemann solver for one and two dimensions. The method can easily be extended to
three-dimensional problems. We then introduce a limiting procedure to preserve TVD-
like properties and to eliminate instabilities. In Section 3 we present an analysis of the
solver properties and show that it is of second spatial order for rectangular grids. Numerical
investigations are presented in Section 4, where we apply the RHR solver to steady states
for a 2D scalar advection equation, the 2D isothermal Euler equations and the 2D shal-
low water equations. The numerical error is compared to that of a second-order MUSCL
scheme. Finally, in Section 5 we draw some conclusions and outline further work.

2. Rankine-Hugoniot-Riemann solver

We are interested in solving a system of two-dimensional conservation laws with source
terms, formulated in the steady case as

∂f(u)

∂x
+
∂g(u)

∂y
= q(u,x), (2)

where u denotes the vector of conserved variables, f and g the �ux vectors in x- and
y-direction, respectively, and q the source term vector. In [1], the RHR solver was applied
to a 1D premixed laminar �ame and a 2D laminar Bunsen �ame, where the source term
not only depends on the conserved variables u, but also on ∇u. The homogeneous system
is assumed to be hyperbolic, i.e. the matrix nxf

′(q) + nyg
′(q) is diagonalizable with real

eigenvalues for all (nx, ny) ∈ R. We will build on LeVeque's idea of implementing the
source term as a singular source in the cell centre [6]. For simplicity and clarity, we shall
�rst explain the RHR solver in one dimension. Then we continue with two dimensions,
where the concept of cross �uxes as source terms is employed as suggested by Jenny and
Müller [1].

2.1. One-dimensional solver

The Rankine-Hugoniot-Riemann (RHR) solver was �rst proposed by Jenny and Müller [1],
while a similar method was presented by LeVeque [6]. They can both be applied to solve
a one-dimensional conservation law with a source term, in the steady case written as

∂f(u)

∂x
= q(u, x). (3)

The two methods have the similarity that they incorporate the source term by placing it
as a singular term at either the cell face or the cell centre, and then using the Rankine-
Hugoniot condition to calculate the jump in the solution due to this singular source.

In this work we use the source term treatment by LeVeque [6], who distributed the
source term as a singular term to the cell centre. The strength of the source term in cell i
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integrated over the whole cell is approximated by ∆xqi. Therefore the Rankine-Hugoniot
condition reads

f(ui,E)− f(ui,W) = ∆xqi, (4)

where ui,W and ui,E are the values in the western and eastern cell parts, respectively,
cf. Fig. 1. To keep the method conservative, we also require that the average of the
conservative variable in the cell is kept constant, i.e. that

1

2
(ui,E + ui,W) = ui. (5)

The reconstruction of u is illustrated in Figure 1. The new half-states are then used to
solve the Riemann problems at each cell interface, e.g. the Riemann problem at the face
Ii+1/2 is given by ui,E and ui+1,W as the left and right states, respectively.

xxi−1/2 xi+1/2 xi+3/2

ui,W

ui,E

ui

ui+1,W

ui+1,E

ui+1

∆xqi ∆xqi+1

Figure 1: RHR solver in one dimension. The locations of the singular source terms are
illustrated, as well as the cell averaged states (dotted lines) and the reconstruction (solid
lines) of u.

LeVeque [6] demonstrated that this approach is well-balanced, with an emphasis on
the shallow water equations. Bale et al. [7] and LeVeque [19] argue that source term
singularities placed at the cell faces instead of in the cell centres are more robust and
simpler to implement. However, according to our experience, the method with cell centred
singularities introduced in the present section has proven both fruitful and relatively easy
to implement, since one can use a standard Riemann solver at the cell interfaces.

2.2. Multidimensional solver

We will now extend the ideas presented in Section 2.1 to multidimensional problems,
formulated for steady states. For simplicity, we will derive a solver for two dimensions,
but it is straightforward to extend the method to three dimensions. In two dimensions,
a system of conservation laws with source terms can be formulated as written in Eq. (2).
Moving the last left-hand-side term to the right-hand-side yields

∂f(u)

∂x
= −∂g(u)

∂y
+ q(u,x). (6)
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From this equation one can readily see that the y-directed �ux term may be seen as
a source term when solving the system in the x-direction, and vice versa. This idea of
treating the cross �ux as a source term was �rst introduced by Jenny and Müller [1], who
placed the source terms at the cell faces. We will, however, continue to develop the idea
of the cell centred source term described in Section 2.1, but incorporating both the source
term q and the cross-�ux term −∂g(u)/∂y.

yj−1/2

yj+1/2

y

xi−1/2 xi+1/2 x

∆x

∆y
(xi, yj)

Figure 2: Sketch of cell Ci,j

To �nd a �nite volume formulation, we integrate Eq. (6) over a rectangular control
volume Ci,j de�ned by the opposite corners (xi−1/2, yj−1/2) and (xi+1/2, yj+1/2) = (xi−1/2 +
∆x, yj−1/2 + ∆y), cf. Fig. 2, which yields

1

∆x
(f i+1/2,j − f i−1/2,j) = − 1

∆y
(gi,j+1/2 − gi,j−1/2) + qi,j, (7)

where ui,j and qi,j are the averages of u and q, respectively, over control volume Ci,j. The
approximate averaged �uxes at the western and southern faces are given by

f i−1/2,j ≈
1

∆y

∫ yj+1/2

yj−1/2

f(u(xi−1/2, y)) dy, (8)

gi,j−1/2 ≈
1

∆x

∫ xi+1/2

xi−1/2

g(u(x, yj−1/2)) dx. (9)

The approximation of −∂g(u)/∂y on the right hand side of Eq. (7) quickly reveals that
this term may be treated as a source term, similar to qi,j, when calculating the f -�uxes
in the x-direction, and vice versa. We place this source term as a singular source in the
centre of the cell, in a similar fashion as explained in Section 2.1. Conservativity in control
volume Ci,j and the Rankine-Hugoniot conditions can then be expressed as

1

2
(ui,j,W + ui,j,E) = ui,j, (10)

1

2
(ui,j,S + ui,j,N) = ui,j, (11)

1

∆x
(f(ui,j,E)− f(ui,j,W)) = qx,i,j ≡

∆gi,j
∆y

+ qi,j, (12)

1

∆y
(g(ui,j,N)− g(ui,j,S)) = qy,i,j ≡

∆f i,j
∆x

+ qi,j. (13)
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where the subscripts N/S/E/W denote the northern/southern/eastern/western parts of
the cell. The �ux di�erences are ∆f i,j = f i−1/2,j − f i+1/2,j and ∆gi,j = gi,j−1/2 − gi,j+1/2.
We have also introduced qx,i,j and qy,i,j to denote the total source term in the x and y
directions, respectively. The relations (10) and (12) de�ning ui,j,W and ui,j,E are sketched
in Fig. 3. The states ui,j,E and ui+1,j,W then de�ne the Riemann problem at the face
Ii+1/2,j, which in turn can be used to calculate the �ux f i+1/2,j using a Riemann solver.

Since the �uxes depend on the adjacent states to be determined, the �ux di�erences
∆gi,j in Eq. (12) and ∆f i,j in Eq. (13) are approximated by their known values at the
previous time step when doing timestepping to reach the steady state, cf. Section 4.1.
Thus, qx,i,j in Eq. (12) and qy,i,j in Eq. (13) are assumed to be known. In general, the
conditions (10)�(13) may need to be solved numerically for ui,j,W, ui,j,E, ui,j,S and ui,j,N,
using e.g. Newton's method. However, for the 2D scalar linear advection equation, the
2D isothermal Euler equations and the 2D shallow water equations presented later in this
work, we are able to solve the conditions (10)�(13) analytically.

ui,j

xi−1/2 xi xi+1/2 x

yj

yj+1/2

y

u

ui,j,W

ui,j,E

(a) Condition (10)

xi−1/2 xi xi+1/2 x

yj

yj+1/2

y

f(u) ∆xqx,i,j

f(ui,j,W)

f(ui,j,E)

(b) Condition (12)

Figure 3: Sketch of the conditions (10) and (12) to de�ne ui,j,W and ui,j,E.

2.3. Limiting

The RHR solver presented by Jenny and Müller [1] was reported to have some stabil-
ity problems when applied to two-dimensional balance laws. They handled these insta-
bilities by introducing arti�cial numerical di�usion, which is rather arbitrary. In this
paper we rather follow the ideas of Müller [20] and introduce a limiting of the west-
ern/eastern/southern/northern half-states.

The variables we limit may either be the conserved variables or the primitive variables.
For the isothermal Euler equations and the shallow water equations, we limit the prim-
itive variables, i.e. the velocity components as well as the density and the water height,
respectively. The limited state uL

i,j,E is calculated as follows:

(uL
i,j,E)k = min [max [(ui,j,E)k − (ui,j)k,−|δk|] , |δk|] + (ui,j)k (14)

where δk = minmod((ui+1,j)k−(ui,j)k, (ui,j)k−(ui−1,j)k). Here (·)k denotes the k-th limited
variable (i.e. the k-th component of the vector of the conserved or primitive variables), and
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ui,j,E is the unlimited eastern state. The limited western state uL
i,j,W is then given by

Eq. (10), so that the cell average is conserved. The limiter ensures that both (uL
i,j,E)k and

(uL
i,j,W)k lie between (ui−1,j)k and (ui+1,j)k, as long as (ui,j)k also does so. The result

would be completely equivalent if we limited the western state �rst, and then calculated
the eastern state from this. An analogous requirement applies to the north state ui,j,N.

Figure 4 illustrates this limiting procedure. Fig. 4a shows an example of a possible
result of solving the RHR relations (10)�(13). In this case, the state ui,W is out of bounds,
since it is larger than both ui−1 and ui+1. The limiter is then applied, which results in the
limited states uL

i,W = ui−1, and u
L
i,E = 2ui−uL

i,W (which follows from Eq. (10)), illustrated
in Fig. 4b. A similar case is shown in Figs. 4c�4d, where ui,E is out of bounds, and hence
the limiter reduces this to uL

i,E = ui−1.

x

ui−1

ui,W

ui,E

ui

ui+1

(a) Before limiting. ui,W lies outside the in-

terval [ui+1,ui−1] and needs to be limited.

x

ui−1

uL
i,W

uL
i,E

ui

ui+1

(b) After limiting. ui,W is reduced, and

ui,E is increased accordingly to conserve ui,
as stated in Eq. (10).

x

ui−1

ui,W

ui,E

ui

ui+1

(c) Before limiting. ui,E lies outside the in-

terval [ui+1,ui−1] and needs to be limited.

x

ui−1

uL
i,W

uL
i,E

ui

ui+1

(d) After limiting. ui,E is reduced, and

ui,W is increased accordingly to conserve

ui, as stated in Eq. (10).

Figure 4: Illustration of the limiting procedure for the RHR solver for two di�erent cases.

In Figure 5a the instabilities without limiting are illustrated for the 2D steady scalar
linear advection equation, i.e.

a
∂u

∂x
+ b

∂u

∂y
= 0, (15)

with constant velocity v = (a, b)> = (1, 0.5)> on a 20 × 20 grid with ∆x = ∆y = 1.8. At
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(a) Without limiting. Spurious oscillations

emerge as the scalar u is advected through the

domain.

0
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20
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0
20

0

0.5

1

x
y

u

(b) With limiting.

0 10 20 30

0

0.5

1

y

u

no lim.

with lim.

exact

(c) Cross-section at x = 20.7.

0 10 20 30

0

0.5

1

y

u

no lim.

with lim.

exact

(d) Cross-section at x = 35.1.

Figure 5: Advection of a scalar Gauss pro�le (16) with velocity (a, b)> = (1, 0.5)>, with
(with lim.) and without limiting (no lim.), on a 20× 20 grid with ∆x = ∆y = 1.8.
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the boundaries x = 0 and y = 0 the scalar u is set according to a Gauss pro�le given by

u(x, y) = exp

(
−(y − b

a
· x)2

32

)
. (16)

The steady state solution exhibits spurious oscillations propagating downstream on the left
side of the advected crest.

After applying the limiting to the 2D steady scalar linear advection equation, the
spurious oscillations are eliminated, cf. Fig. 5b. Figures 5c and 5d show two cross-sections
of the numerical solutions depicted in Figures 5a and 5b, as well as the exact solution. We
recognize that the limiter causes the oscillations to vanish, but also leads to slightly more
di�usive solutions, e.g. the peak values are smaller than without limiting.

In the setting of the 2D unsteady linear advection equation, i.e.

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, (17)

the RHR solver combined with the proposed limiter complies with the minimum/maximum
principle. Here, the minimum/maximum principle states that for a pure initial value
problem with initial conditions u0(x, y) speci�ed for −∞ < x, y < ∞ we have min(u0) ≤
u ≤ max(u0) for all times t. We �rst observe that for a locally maximal state ui,j, the limiter
does not allow the corresponding half-states ui,j,N, ui,j,S, ui,j,E and ui,j,W to be di�erent from
ui,j. Moreover, the limiter ensures that the adjacent half-states of the neighboring cells do
not outreach ui,j. Since Riemann problems between the half-states at the cell interfaces
reduce to simple upwinding, we see that the locally maximal state ui,j cannot increase as
time evolves. Certainly, new local maxima can emerge but due to the previous argument,
these new maxima can no longer increase after their creation. Therefore, the upper bound
provided by the initial global maximum is not violated. Along similar lines, the minimum
principle is met. It is emphasized that time integration must be su�ciently accurate for
this reasoning to hold.

3. Analysis of the RHR solver for the 2D steady scalar linear advection equa-

tion

In this section, in order to highlight some important properties of the RHR solver
without limiter, we present an analysis of the solver for the 2D steady scalar linear advection
equation with a linear source term, i.e.

a
∂u

∂x
+ b

∂u

∂y
= cu+ d, (18)

where v = (a, b)> is the (constant) velocity vector and c and d are additional constants.
For this equation, the �ux functions are simply given by f(u) = au and g(u) = bu. We
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assume without loss of generality that the two velocities are positive, i.e. a, b > 0. In this
case, the numerical �uxes at the faces are simply chosen as the upwind �uxes, i.e.

fi+1/2,j = aui,j,E, and (19)

gi,j+1/2 = bui,j,N . (20)

With the given �ux functions and numerical �uxes, the conservativity and Rankine-Hugoniot
conditions from Eqs. (10)�(13) read

1

2
(ui,j,W + ui,j,E) = ui,j, (21)

1

2
(ui,j,S + ui,j,N) = ui,j, (22)

a

∆x
(ui,j,E − ui,j,W) =

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d, (23)

b

∆y
(ui,j,N − ui,j,S) =

a

∆x
(ui−1,j,E − ui,j,E) + cui,j + d, (24)

whereas the �nite volume scheme (7) in the steady case reads

a

∆x
(ui−1,j,E − ui,j,E) +

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d = 0. (25)

We now wish to show how the stencil for the solution in cell (i, j), ui,j, depends on the
solution in the neighbouring cells. To this end, we solve Eq. (21) for ui,j,W and Eq. (22)
for ui,j,S and substitute the results into Eqs. (23) and (24), respectively, which yields

2a

∆x
(ui,j,E − ui,j) =

b

∆y
(ui,j−1,N − ui,j,N) + cui,j + d, (26)

2b

∆y
(ui,j,N − ui,j) =

a

∆x
(ui−1,j,E − ui,j,E) + cui,j + d. (27)

Using Eq. (25), we replace the right-hand side of Eqs. (26)�(27), which leads to

a

∆x
(ui,j,E + ui−1,j,E − 2ui,j) = 0, (28)

b

∆y
(ui,j,N + ui,j−1,N − 2ui,j) = 0. (29)

Finally, we solve Eq. (28) for ui−1,j,E and Eq. (29) for ui,j−1,N and substitute the results
into Eq. (25), which yields

a

∆x
(ui,j − ui,j,E) +

b

∆y
(ui,j − ui,j,N) +

c

2
ui,j +

d

2
= 0. (30)

We now add the following equations to retrieve a stencil for ui,j: Eqs. (28), (29) and (30),
Eq. (28) with shifted indices (i, j)→ (i, j−1), Eq. (29) with shifted indices (i, j)→ (i−1, j),
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Eq. (30) with shifted indices (i, j)→ (i−1, j), Eq. (30) with shifted indices (i, j)→ (i, j−1),
Eq. (30) with shifted indices (i, j) → (i− 1, j − 1). After solving the resulting expression
for ui,j, we get

ui,j =
c∆x∆y + 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui−1,j +

c∆x∆y − 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui,j−1

+
c∆x∆y + 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ui−1,j−1 +

4d∆x∆y

2a∆y + 2b∆x− c∆x∆y
. (31)

The stencil may be viewed as an operator which maps the solution to the south, west and
south-west to the location (i, j); note for example that for ∆x

∆y
= a

b
and c = d = 0, the

stencil reduces to
ui,j = ui−1,j−1, (32)

i.e. the RHR solver propagates the solution exactly diagonal to the grid. Figure 6 shows
the numerical results for a case with advection of a Gauss pro�le given by Eq. (16) on a
10× 10 grid with ∆x = 1.8 and ∆y = 3.6 and 2a = b; as expected the numerical solution
is exact. Although this example of advection with constant velocity is rather trivial, the
result illustrates the capability of the RHR solver to capture �uxes in oblique direction
with respect to the grid orientation.

0
100

20

0

0.5

1

x
y

u

Figure 6: Advection of a scalar Gauss pro�le (16) with 2a = b and ∆x = 1.8 and ∆y = 3.6
on a 10× 10 grid, which is solved exactly by the RHR solver (without limiter).

3.1. Error analysis

In this section, we wish to analyse the spatial order of accuracy of the RHR solver
(without limiter) for the 2D steady advection equation with source term (18). We estimate
the local error by the di�erence between the numerical solution ui,j and the exact solution
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ũi,j, i.e.

Elocal =
c∆x∆y − 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi,j +

c∆x∆y + 2a∆y − 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi−1,j

+
c∆x∆y − 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi,j−1 +

c∆x∆y + 2a∆y + 2b∆x

2a∆y + 2b∆x− c∆x∆y
ũi−1,j−1

+
4d∆x∆y

2a∆y + 2b∆x− c∆x∆y
, (33)

where we have used the stencil (31) to express ui,j as a function of the exact solution in
the neighbouring cells. We now assume that the solution ũ is su�ciently smooth such that
ũi−1,j, ũi,j−1 and ũi−1,j−1 in Eq. (33) can be expressed as a Taylor series around (i, j). Since
ũ is an exact solution of Eq. (18), we �nd that the y derivative is given by

∂ũ

∂y
= −a

b

∂ũ

∂x
+
c

b
ũ+

d

b
. (34)

We utilize this to replace all y derivatives stemming from the Taylor series insertion into
Eq. (33). This causes the zeroth, �rst and second order terms to cancel, leaving

Elocal =
∆x∆y

3b2 (2a∆y + 2b∆x− c∆x∆y)

(
− a3∆y2∂

3ũ

∂x3

∣∣∣
i,j

+ ab2∆x2∂
3ũ

∂x3

∣∣∣
i,j

+ 3a2c∆y2∂
2ũ

∂x2

∣∣∣
i,j

− 3ac2∆y2∂ũ

∂x

∣∣∣
i,j

+ c3∆y2ũi,j + c2d∆y2
)

+ higher order terms.

(35)

If we assume that the ratio ∆x/∆y is �xed, we �nd

Elocal = O(∆x3), (36)

i.e. the local spatial error of the RHR solver is of third order. To �nd the global error, we
realize that in order to advect the solution from the boundary to a certain cell, the stencil
(31) is applied a certain number of times proportional to 1/∆x. Therefore the global error
is of second order,

Eglobal = O(∆x2). (37)

We would like to point out the fact that the scheme achieves second order with a
compact stencil that is only dependent on the solution value and the �uxes in the nearest
neighbouring cells. This is in contrast to e.g. a MUSCL scheme, which requires two cells
in all directions to achieve second order.

In this paper we mainly focus on showing the spatial properties of the RHR solver for
the steady case, thus we do not investigate the temporal properties in detail. The time
integration procedure is outlined in the following section.
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4. Numerical investigation

In this section, we numerically investigate how the RHR solver behaves for steady states
for a two-dimensional advection equation, the two-dimensional isothermal Euler equations
and the two-dimensional shallow water equations. We start by describing in a general way
how the time-stepping is performed, which we need to arrive at the steady states.

4.1. Time integration/solution algorithm

In general, we wish to solve a multidimensional system of conservation laws with source
terms. For simplicity, we consider the two-dimensional case, i.e.

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= q(u,x). (38)

For this system of balance laws, the �nite volume scheme (7) can (in the unsteady case)
be rearranged as

∂ui,j
∂t

=
1

∆x
(f i−1/2,j − f i+1/2,j) +

1

∆y
(gi,j−1/2 − gi,j+1/2) + qi,j. (39)

From the RHR relations in Eqs. (10)�(13), we see that the system of ordinary di�erential
equations (ODEs) for ui,j,E and ui,j,W is highly coupled between cells, since the interface
�uxes f i±1/2,j and gi,j±1/2 (in general) depend on the states in neighbouring cells on both
sides. This presents a challenge when implementing a time integration scheme. Hence we
choose to calculate the total source terms qx,i,j and qy,i,j based on the previous time step
when solving the RHR relations for the next time step.

We then propose to move the solution forward in time using the following algorithm.

1. Calculate the total source terms based on the �uxes from the previous time step:

qnx,i,j =
g
n−1/2
i,j−1/2 − g

n−1/2
i,j+1/2

∆y
+ qni,j, qny,i,j =

f
n−1/2
i−1/2,j − f

n−1/2
i+1/2,j

∆x
+ qni,j (40)

For the �rst time step, the �uxes at time step n−1/2 are unknown, but are assumed
to be zero.

2. Compute the half-states uni,j,S, u
n
i,j,N, u

n
i,j,W and uni,j,E using Eqs. (10)�(13) based on

uni,j and the total source terms qnx,i,j and q
n
y,i,j given by (40).

3. Calculate the limited states (uL
i,j,N)n and (uL

i,j,E)n according to Eq. (14). The limited
states (uL

i,j,S)n and (uL
i,j,W)n are then given by Eqs. (10) and (11), respectively.

4. Solve the Riemann problems de�ned by the limited values (uL
i−1,j,E)n and (uL

i,j,W)n,
(uL

i,j,E)n and (uL
i+1,j,W)n, (uL

i,j−1,N)n and (uL
i,j,S)n, (uL

i,j,N)n and (uL
i,j+1,S)n, to obtain

the Riemann �uxes fni−1/2,j, f
n
i+1/2,j, g

n
i,j−1/2 and gni,j+1/2, respectively.

5. Calculate an intermediate state un+1/2 given by

u
n+1/2
i,j = uni,j +

∆t

∆x
(fni−1/2,j − fni+1/2,j) +

∆t

∆y
(gni,j−1/2 − gni,j+1/2) + ∆tqni,j, (41)
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6. Compute the half-states u
n+1/2
i,j,S , u

n+1/2
i,j,N , u

n+1/2
i,j,W and u

n+1/2
i,j,E using Eqs. (10)�(13) based

on u
n+1/2
i,j and the total source terms qnx,i,j and q

n
y,i,j given by (40).

7. Calculate the limited states (uL
i,j,N)n+1/2 and (uL

i,j,E)n+1/2 according to Eq. (14). The

limited states (uL
i,j,S)n+1/2 and (uL

i,j,W)n+1/2 are then given by Eqs. (10) and (11),
respectively.

8. Solve the Riemann problems de�ned by the limited values (uL
i−1,j,E)n+1/2 and (uL

i,j,W)n+1/2,

(uL
i,j,E)n+1/2 and (uL

i+1,j,W)n+1/2, (uL
i,j−1,N)n+1/2 and (uL

i,j,S)n+1/2, (uL
i,j,N)n+1/2 and

(uL
i,j+1,S)n+1/2, to obtain the Riemann �uxes f

n+1/2
i−1/2,j, f

n+1/2
i+1/2,j, g

n+1/2
i,j−1/2 and g

n+1/2
i,j+1/2,

respectively.

9. Advance time by ∆t to reach un+1
i,j , i.e.

un+1
i,j = uni,j +

∆t

2

(
f
n+1/2
i−1/2,j − f

n+1/2
i+1/2,j

∆x
+
g
n+1/2
i,j−1/2 − g

n+1/2
i,j+1/2

∆y
+ q

n+1/2
i,j

+
fni−1/2,j − fni+1/2,j

∆x
+
gni,j−1/2 − gni,j+1/2

∆y
+ qni,j

)
,

(42)

This scheme is quite similar to Heun's method, a two-stage Runge-Kutta method. In our
scheme, however, the source terms qn, qnx and q

n
y are used in both stages, and are calculated

based on the �uxes in the previous half time step, given by Eq. (40). An alternative to
this scheme would have been a simple �rst-order forward Euler scheme, i.e. steps 1 to 5
above with half steps n− 1/2 in (40) and n+ 1/2 in (41) replaced by the old and new time
levels n− 1 and n+ 1, respectively. However, the scheme presented above exhibits better
stability properties and can handle larger time steps. Whenever a MUSCL scheme was
used for comparison, the time integration was performed with a standard Heun's method.
A CFL number of C = 0.3 was used for all the numerical computations, which was chosen
as a safe value to avoid any possible instabilities in time, and since our focus was not on
the time integration itself. The CFL number is de�ned as

C = ∆tmax
p,k

|λp,k|
∆xk

, (43)

where λp,k is the pth eigenvalue in the kth dimension of the hyperbolic system, and ∆xk
is the grid spacing in the kth dimension.

The time stepping scheme presented above is not formally of second order for the RHR
scheme, since the total source terms qnx,i,j and q

n
y,i,j depend on the �uxes in the previous

time step. With this in mind, we may expect that the RHR scheme converges slower in
time than e.g. a MUSCL scheme with a two-step second-order scheme like Heun's method.
In addition, for the RHR solver each time step involves solving the RHR relations (10)�(13)
which are not solved in the MUSCL scheme, hence we may expect that each time step may
be more costly for the RHR scheme. We will discuss the computational expense of the
RHR scheme for each system of equations in the following sections.
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4.2. Method of manufactured solutions

To compute the exact error of a numerical solution, one needs to know the exact solution
to the problem, given the boundary (and possibly initial) conditions. For more complex
systems of PDEs, domains and boundary conditions, an exact solution may be out of reach.
In these cases, the method of manufactured solutions can often be useful [21]. Instead of
searching for the exact solution to the original problem (38), one rather makes the ansatz
that the solution is u∗, which can be an arbitrary su�ciently smooth function, preferably
close to an exact solution. We then assume that the ansatz solves the modi�ed equation

∂f(u∗)

∂x
+
∂g(u∗)

∂y
= q(u∗,x) +R(u∗,x), (44)

where R is the residual, caused by the fact that u∗ is not an exact solution to the original
problem. This residual is simply calculated by inserting u∗ into Eq. (44) and solving for R.
If R were zero, u∗ would be an exact solution to Eq. (2) or the steady version of Eq. (38).
This problem has essentially the same structure as the steady version of the original problem
(38), and can thus be used to investigate the accuracy properties of the numerical method.
We solve Eq. (44) numerically using the modi�ed source term q∗ = q +R, and since we
now know that the manufactured solution u∗ is the exact solution to the modi�ed problem,
we can compute the numerical error exactly. The method of manufactured solutions will
be used to calculate the numerical error for an isothermal Euler case in Section 4.4 and a
shallow water case in Section 4.5.

In the following sections we will present a number of numerical cases, each of which
has either a known exact solution or a manufactured solution. Knowing the solution, we
can set the boundary conditions to the exact solution, avoiding any possible issues of em-
ploying characteristic or non-re�ecting boundary conditions. The characteristic Riemann
solvers will automatically take the characteristic variables from the exterior, i.e. the given
boundary conditions, or from the interior, i.e. from the solution in the adjacent cell at the
previous time level or previous stage, depending on whether the characteristic is entering
or leaving the domain.

4.3. Advection of a scalar

In this section we present some �ndings with the RHR solver applied to a two-dimensional
scalar linear advection case with constant velocity, which in the steady case is given by

a
∂u

∂x
+ b

∂u

∂y
= 0. (45)

The simplicity of this equation makes it suitable to illustrate some important properties
of the RHR solver.

4.3.1. Numerical order of convergence

As shown in Section 3.1, the RHR solver is expected to be of second order for a smooth
solution. To con�rm this numerically, we consider a cosine shaped solution,

u(x, y) = cos(ω0(−bx+ ay)) (46)
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where ω0 = π/9, a = 1.0, b = 0.5, and the grid has dimensions [0, 36]× [0, 36]. The solution
(46) is used to set the boundary conditions at x = 0 and y = 0. We solve the equation
using the time integration scheme in Section 4.1 and wait for the solution to reach steady
state. The numerical solution is then compared to the exact solution to determine the
error. For illustration, Figure 7 shows the solution for the RHR solver with and without
limiter and a MUSCL upwind solver with van Albada limiter for a grid of 20×20 cells. We
recognize that the RHR solver with limiter does a signi�cantly better job than MUSCL
in resolving the problem on this grid, while the RHR solver without limiter is even more
accurate. The plot in Figure 8 shows the L2 errors for the RHR solver with and without
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(a) Cross-section at x = 35.1, with 20 × 20
cells. RHR with limiter (◦), RHR without

limiter (×), MUSCL with van Albada lim-

iter (+) and exact solution (solid line).
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(b) Exact solution.

Figure 7: Advection of a scalar cosine-shaped boundary condition (46) with velocity
(a, b)> = (1, 0.5)>, on a 20× 20 grid with ∆x = ∆y = 1.8.

limiter, and the MUSCL upwind solver with minmod and van Albada limiters, as functions
of grid size nx = ny, where nx and ny are the number of grid cells in x- and y-direction,
respectively. As seen in the �gure, the RHR solver has an error signi�cantly smaller than
that of a MUSCL solver with van Albada limiter, while the RHR solver without limiter is
even more accurate.

Figure 9 shows the L1 norm of the residual as a function of the number of time steps,
given by

Rn =
∑

i,j,k

|(uni,j)k − (un−1
i,j )k|, (47)

where (uni,j)k is the kth component of un at the grid point i, j. We see that all methods
converge to machine precision, although the RHR solver with limiter converges slightly
slower. This may be due to the non-standard time integration method used for the RHR
solver, where the �uxes depend not only on the solution u, but also on the �uxes in the
previous time step, giving a method which is not formally second order in time.
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Figure 8: L2 error E as a function of grid size nx = ny for a case with advection of a cosine
shaped scalar pro�le.
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Figure 9: L1 norm of the residual as a function of the number of time steps for a case with
advection of a cosine shaped scalar pro�le, for a 10× 10 grid, C = 0.3.
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4.3.2. RHR compared to upwind and MUSCL

In this section we present results for scalar linear advection of a Gaussian curve, given
by Eq. (16), in order to illustrate the good properties of the RHR solver when it comes to
transport in directions oblique to the grid lines. Figure 10 shows results calculated with
a �rst-order upwind method, a MUSCL upwind scheme with van Albada limiter, and the
RHR solver with limiter. The RHR solver is seen to be less di�usive than the other two
methods, which is also illustrated by the scalar cross-section pro�les shown in Fig. 10d.
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Figure 10: Advection of a scalar Gaussian pro�le (16) with velocity (a, b)> = (1, 0.5)>, on
a 20× 20 grid with ∆x = ∆y = 1.8.

When it comes to the computational cost of each time step for the RHR scheme, it is
not expected to be signi�cantly bigger than for the MUSCL scheme, as solving the RHR
relations (10)�(13) only involves solving two simple linear equations.
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4.4. Isothermal Euler

As a slightly more complex numerical example, we now present results for the two-
dimensional isothermal Euler equations,

∂

∂t



ρ
ρu
ρv


+

∂

∂x




ρu
ρu2 + p
ρuv


+

∂

∂y




ρv
ρuv

ρv2 + p


 = 0, (48)

where ρ is the density, and u and v are velocity components in the x- and y-directions,
respectively. We close the system with a simple equation of state, p = ρc2, where c is the
constant speed of sound. In the following we �rst show how the RHR relations are solved
for the isothermal Euler equations, followed by a derivation of the characteristic solver
used to solve the resulting Riemann problems. Finally, we present numerical results for a
manufactured steady solution demonstrating second order.

4.4.1. Solving the RHR relations

To calculate the half-states ui,j,E, ui,j,W, ui,j,S and ui,j,N based on qx,i,j and qy,i,j, we
need to solve the RHR relations given by Eqs. (10)�(13). This is a straightforward process
for the advection equation we have considered so far, but slightly more complex for the
isothermal Euler equations.

In the following, we only consider the solution procedure for ui,j,E, as the procedure for
ui,j,N is completely analogous. The states ui,j,W and ui,j,S are then given by Eqs. (10)�(11).
Using Eq. (10), we replace ui,j,W in Eq. (12), which then reads

1

∆x
(f(uE)− f(2u− uE)) = qx, (49)

where we have omitted the spatial indices i and j. The �ux function f is given by

f(u) =




ρu
ρ(u2 + c2)

ρuv


 =




u2

u2
2/u1 + u1c

2

u2u3/u1


 , (50)

where u1 = ρ, u2 = ρu and u3 = ρv. Substitution into Eq. (49) leads to



u2,E

u2
2,E/u1,E + u1,Ec

2

u2,Eu3,E/u1,E


−




2u2 − u2,E

(2u2 − u2,E)2/(2u1 − u1,E) + (2u1 − u1,E)c2

(2u2 − u2,E)(2u3 − u3,E)/(2u1 − u1,E)


 = ∆xqx. (51)

The �rst component of Eq. (51) is easily solved for u2,E, i.e.

u2,E =
∆x

2
qx,1 + u2. (52)

Next, we solve the second component of Eq. (51) for u1,E. After substituting ξ = u1− u1,E

one obtains the cubic equation

ξ3+
∆xqx,2

2c2
ξ2+

2u2
2,E − 2u2

1c
2 + 4u2(u2 − u2,E)

2c2
ξ+
−4u2u1(u2 − u2,E)−∆xqx,2u

2
1

2c2
= 0 (53)
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for ξ. This equation may be solved either exactly using an analytical approach, or numer-
ically using Newton's method. Having found ξ and thus u1,E, one can calculate u3,E using
the third component of Eq. (51) and obtains

u3,E =

(2u2−u2,E)2u3
2u1−u1,E + ∆xqx,3
u2,E
u1,E

+
(2u2−u2,E)

2u1−u1,E

. (54)

In summary, Eqs. (52)�(54) yield ui,j,E, and similarly ui,j,N can be calculated.

4.4.2. Characteristic solver

Here a characteristic-based Riemann solver, similar to the one by Sesterhenn et al. [22,
23], is employed, which is explained next. To derive the characteristic quantities, we
consider the isothermal Euler equations in one dimension, written in the quasi-linear form

[
ρ
ρu

]

t

+

[
0 1

c2 − u2 2u

]

︸ ︷︷ ︸
J

[
ρ
ρu

]

x

= 0. (55)

We now rewrite this system to formulate it using the primitive variables v = [ρ, u]>,

[
ρ
u

]

t

+

[
u ρ
c2

ρ
u

]

︸ ︷︷ ︸
J ′

[
ρ
u

]

x

= 0. (56)

The eigenvalues of the Jacobian matrix J ′ are λ1 = u− c and λ2 = u+ c. Solving for the
eigenvectors of J ′ yields the right eigenvector matrix

R(u) =

[
ρ ρ
−c c

]
. (57)

We then determine the inverse (left eigenvector) matrix R−1 and multiply R−1
0 = R−1(v0)

by the primitive variables v = [ρ, u]>, which yields the characteristic variables

w = R−1
0 u =

1

2ρ0c

[
c −ρ0

c ρ0

] [
ρ
u

]
=

1

2ρ0c

[
ρc− ρ0u
ρc+ ρ0u

]
, (58)

where we have evaluated the matrix R−1
0 = R−1(v0) at some point of linearization v = v0.

In the context of Fig. 11, we calculate the state in the region C by assuming that the
characteristic variables are constant along the solid lines from the regions L and R to region
C. The dashed lines are the waves resulting from the Riemann problem. From Eq. (58) we
then derive the approximate relations

ρRc− ρCuR = ρCc− ρCuC, (59)

ρLc+ ρCuL = ρCc+ ρCuC, (60)
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Figure 11: A Riemann problem at xi−1/2 giving rise to two waves, shown by dashed lines.
The characteristics are shown by solid lines.

which follows from the fact that the characteristic variables (58) are constant along the
characteristics, shown by solid lines in Figure 11. Here we have chosen to linearize w1 and
w2 around u0 = uC. Solving these two relations for uC and ρC yields

ρC =
c(ρR + ρL)

2c+ uR − uL

, (61)

uC =
c(ρL − ρR) + ρCuR + ρCuL

2ρC

. (62)

In two dimensions, the velocity component parallel to the face is simply advected from the
upwind side, i.e. vC = vL if uC > 0, and vC = vR if uC < 0. The Riemann �ux is then given
by f(uC).

We have now derived a characteristic Riemann solver for the isothermal Euler equations.
This works well for small Mach numbers, but can be replaced with an exact Riemann solver
or e.g. Roe's approximate Riemann solver for higher Mach numbers.

4.4.3. Order of convergence

To check the order of convergence of the RHR solver for the isothermal Euler equations,
we apply the solver to a problem with a manufactured solution. For the solution we make
the ansatz

ρ = ρ0 exp[
−1

2
(x2 + y2)B2

c2
], (63)

u = Bx, (64)

v = −By, (65)

where B and ρ0 are some constants; here we chose B = 0.1 and ρ0 = 1.0. For the speed of
sound, we chose c = 1.0. We then insert this into the (steady) isothermal Euler equations
to �nd the source terms that result from the presented ansatz.

∂

∂x




ρu
ρ(u2 + c2)

ρuv


+

∂

∂y




ρv
ρuv

ρ(v2 + c2)


 =



ρ
ρu
ρv


 B
c2

(v2 − u2) ≡ q. (66)
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We have now derived a manufactured solution with a corresponding source term, which we
use to analyze the order of convergence. The potential �ow �eld speci�ed by Eqs. (64)�(65)
is illustrated in Figure 12. When we solve this case numerically, the solution in Eqs. (63)�
(65) is used to set the boundary conditions exactly on all boundaries, while the source
term q is computed from Eq. (66) in all cells. The numerical solution is then compared
with the exact solution to calculate the error.

0.0 0.5 1.0 1.5 2.0
x

−1.0

−0.5

0.0

0.5

1.0

y

Figure 12: Velocity �eld for the 2D isothermal Euler case.

Figure 13 shows the L2 error for density, ‖ρ − ρexact‖2, as function of grid size n for
a n× n grid, which demonstrates second order convergence for both the MUSCL upwind
scheme with minmod and MC limiters, and the RHR solver with limiter. The error of the
RHR solver is clearly smaller that the error of the MUSCL MC scheme, and almost one
order of magnitude smaller than that of the MUSCL minmod scheme.

Figure 14 shows the L1 norm of the residual as a function of the number of time steps
for the same case, which shows that all the schemes converge to machine accuracy. The
RHR scheme converges slower than the MUSCL scheme, which can (at least in part) be
explained by the fact that the time-stepping scheme for the RHR solver is not formally of
second order.

When it comes to the computational cost of each time step, the RHR scheme is expected
to be slightly more costly than a MUSCL scheme, since solving the RHR relations (10)�
(13) involves (among other operations) solving a cubic equation (53), which may be costly.
One might be able to linearize this cubic equation in some way, thereby reducing the cost
for solving it.

4.5. Shallow water

The shallow water equations may include source terms due to bottom topography and
bottom friction. Those source terms have been an important motivation to develop well-
balanced methods. In this section, however, we will focus on solving the homogeneous
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Figure 13: Grid convergence of the L2 error of density for the 2D isothermal Euler equa-
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Figure 14: L1 norm of the residual as the function of the number of time steps for the 2D
isothermal Euler equations, 10× 10 grid, C = 0.3.
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shallow water equations to demonstrate how the RHR solver performs to maintain a �ux
balance in the steady state. The homogeneous shallow water equations read

∂

∂t



h
hu
hv


+

∂

∂x




hu
hu2 + 1

2
gh2

huv


+

∂

∂y




hv
huv

hv2 + 1
2
gh2


 = 0. (67)

where h is the water height above the bottom surface, and u and v are velocity components
in the x- and y-directions, respectively. In the following we �rst show how the RHR
relations are solved, derive a characteristic solver, and then present numerical results for a
steady case demonstrating the order of convergence.

4.5.1. Solving the RHR relations

To calculate the half-states ui,j,E, ui,j,W, ui,j,S, ui,j,N, we need to solve the RHR relations
(10)�(13). For the shallow water equations we choose to linearize these relations. By
writing uE = u+ ε and replacing uW using Eq. (10), we can write Eq. (12) as

f(u+ ε)− f(u− ε) = ∆xqx. (68)

We then linearize this equation, which yields

f ′(u)ε =
∆x

2
qx (69)

where f ′(u) is the Jacobian of f(u),

f ′(u) =




0 1 0

−u22
u21

+ gu1 2u2
u1

0

−u2u3
u21

u3
u1

u2
u1


 =




0 1 0
−u2 + gh 2u 0
−uv v u


 (70)

The �rst component of the equation system (69) can easily be solved for ε2,

ε2 = ∆x
qx,1
2
. (71)

We then solve for ε1 from the second component of (69),

ε1 =
1

−u2 + gh
(∆x

qx,2
2
− 2uε2) (72)

Finally, the third component of (69) can be solved for ε3,

ε3 =
1

u
∆x

qx,3
2

+ vε1 −
v

u
ε2. (73)

Should u be zero, the Jacobian matrix f ′(u) is singular, and this �nal equation cannot be
solved, in which case we assume ε3 to be zero. The same applies to u = ±√gh, in which
case we must assume ε1 = 0. Having solved for ε, we can then calculate uE and uW, and
a similar procedure is used to calculate uN and uS.
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4.5.2. Characteristic solver

For the shallow water equations, we employ a characteristic based Riemann solver,
similar to the one presented in Section 4.4.2. To derive the characteristic quantities, we
consider the shallow water equations in one dimension, written in the quasi-linear form

[
h
hu

]

t

+

[
0 1

gh− u2 2u

]

︸ ︷︷ ︸
J

[
h
hu

]

x

= 0. (74)

We then rewrite this system to a one formulated using the primitive variables v =
[h, u]>, [

h
u

]

t

+

[
u h
g u

]

︸ ︷︷ ︸
J ′

[
h
u

]

x

= 0. (75)

The eigenvalues of the Jacobian matrix J ′ are λ1 = u − √gh and λ2 = u +
√
gh. We

recognize that the quasi-linear formulation of the shallow water equations is identical to
that of the isothermal Euler equations if we only replace c by

√
gh. As in Section 4.4.2,

we derive the characteristic variables

w = R−1
0 v =

1

2h0

√
gh0

[√
gh0 −h0√
gh0 h0

] [
h
u

]
=

1

2h0

√
gh0

[
h
√
gh0 − h0u

h
√
gh0 + h0u

]
, (76)

where we have evaluated the matrix R−1
0 = R−1(v0) at some point of linearization v = v0.

From Eq. (76) we then derive the approximate relations

hC

√
ghR − hRuC = hR

√
ghR − hRuR, (77)

hC

√
ghL + hLuC = hL

√
ghL + hLuL, (78)

where we have linearized w1 and w2 at the right and left state, vR and vL, respectively.
We solve Eqs. (77) and (78) for hC and uC,

hC =

√
hLhR(uL − uR +

√
ghR +

√
ghL)√

ghR +
√
ghL

, (79)

uC =
ghL − ghR +

√
ghRuR +

√
ghLuL√

ghR +
√
ghL

. (80)

In two dimensions, the velocity component parallel to the face is simply advected from the
upwind side, i.e. vC = vL if uC > 0, and vC = vR if uC < 0. The Riemann �ux is then given
by f(uC).
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4.5.3. Order of convergence

To demonstrate the order of convergence of the RHR solver for the shallow water
equations, we apply the solver to a manufactured solution. We make the ansatz

h = h0 −
B2x2

2g
− B2y2

2g
, (81)

u = Bx, (82)

v = −By, (83)

where B and h0 are some constants; here we chose B = 0.1 and ρ0 = 1.0. By inserting this
ansatz into the steady shallow water equations, we �nd the source terms associated with
this manufactured solution.

∂

∂x




hu
hu2 + 1

2
gh2

huv


+

∂

∂y




hv
huv

hv2 + 1
2
gh2


 =




1
Bx
−By


 B

3

g
(y2 − x2) ≡ q. (84)

We will now use the given manufactured solution with the corresponding source term
to investigate the order of convergence. We use the exact solution (81)�(83) to set the
boundary conditions on all boundaries, while the source term q is computed from Eq. (84)
in all cells. The numerical solution is then compared with the exact solution to calculate
the error.

Figure 15 shows the L2 error for height, ‖h− hexact‖2, as a function of grid size n for a
n × n grid, which demonstrates a second order convergence for both the MUSCL scheme
with MC and minmod limiter, and the RHR solver with limiter. The picture is very similar
to that in Fig. 13: The error of the RHR solver is systematically smaller than that of the
MUSCL MC scheme, and almost one order of magnitude smaller than that of the MUSCL
minmod scheme.

Figure 16 shows the L1 norm of the residual as a function of the number of time steps
for the same case. The RHR converges slower than the MUSCL scheme, similar to what
was seen in Fig. 14. We assume this to be due to the fact that the time stepping scheme
is not formally of second order for the RHR solver, since the �uxes depend on the �uxes
in the previous time step.

When it comes to the computational cost of each time step, the RHR scheme is expected
to be only slightly more expensive than the MUSCL scheme, since the RHR solver has
the extra cost of solving the RHR relations (10)�(13), which involves solving the three
linear equations (71)�(73) for the eastern/western states, and three equivalent ones for the
northern/southern states.

5. Conclusion and further work

We have developed a Rankine-Hugoniot-Riemann (RHR) solver for steady multidimen-
sional conservation laws with source terms. The cross �uxes are treated as source terms,
which are distributed as singular sources in the middle of each cell, leading to a jump in
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Figure 15: Grid convergence of the L2 error of height for the 2D shallow water equations.
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the solution given by a Rankine-Hugoniot condition. The resulting Riemann problems at
the cell faces are then solved using a standard Riemann solver. In contrast to many other
schemes treating multidimensionality and source terms, there is no need for special Rie-
mann solvers. We introduced a limiting procedure similar to a total variation diminishing
(TVD) enforcement, to avoid instabilities.

We were able to prove that on rectangular grids, the RHR solver yields a second order
accurate numerical solution for the 2D linear advection equation with a linear source term,
and that the solution can be advected exactly if the advection velocity is diagonal on
the grid. We have also investigated the properties of the RHR solver numerically, which
con�rmed that the scheme is of second order both for the 2D linear advection equation,
the 2D isothermal Euler equations and the 2D shallow water equations. Furthermore, the
RHR solver has an error which is smaller than that of a second-order MUSCL scheme for
these cases.

The stencil of the RHR scheme has the advantage of being compact, as the numerical
�uxes of a cell only depend on the numerical solutions of the cell and its neighbours
which have a face or a corner in common with the cell. The basic ideas outlined here
for the isothermal Euler equations and shallow water equations should carry over to other
conservation laws with source terms, such as the full Euler equations or two-phase �ow
equations.
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