
Cooperative Control and RTK Navigation
System for Multirotors

Jon-Håkon Bøe Røli

Master of Science in Cybernetics and Robotics

Supervisor: Thor Inge Fossen, ITK
Co-supervisor: Kristian Klausen, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name: Jon-Håkon Bøe Røli

Department: Engineering Cybernetics

Thesis title (Norwegian): Samarbeidende reguleringssystem og RTK navigasjonssystem for

multirotorer

Thesis title (English): Cooperative Control and RTK Navigation System for

Multirotors

Thesis Description: The purpose of the thesis is to develop a cooperative control system for multirotors,

using RTK GPS for accurate outdoor navigation.

The following items should be considered:

1. Define the scope of the thesis and clarify what your contributions are.

2. Literature overview on cooperative formation control.

3. Development and testing of RTK GPS for multirotors.

4. Develop a passivity-based method for cooperative formation control.

5. Develop a multirotor platform and demonstrate cooperative control with formation flying.

6. Conclude your findings in a report and discuss the weaknesses of the system, and how these

can be resolved.

Start date: 2015-01-05

Due date: 2015-06-18

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Professor Thor I. Fossen, Dept. of Eng. Cybernetics, NTNU

Co-Supervisor: Kristian Klausen, Dept. of Eng. Cybernetics, NTNU

ii

Abstract

This thesis considers the implementation of cooperative control on small, unmanned,
multirotor systems. More specifically, the problem of distributed formation control is
handled, as well as the necessary high precision navigation. The control of multiple Un-
manned Aerial Vehicles (UAV) has seen a lot of development in the last years, but most
advanced implementations use central processing and rely on motion capture systems
for precision navigation, or simply cope with the low accuracy of a Global Navigation
Satellite System (GNSS). This thesis uses an established passivity-based framework to
achieve decentralized formation control, and investigates the use of Real-Time Kine-
matics (RTK) to augment the accuracy of a GNSS to the centimetre level. The develop-
ment of a suitable multirotor platform is presented, and control is implemented with
the combination of the open-source APM:Copter platform on a commercial autopilot
and the DUNE: Uniform Navigational Environment on a payload computer. The result-
ing distributed system of UAVs is capable of fulfilling a flexible group objective while
sustaining a desired formation, which is demonstrated in both simulations and field
experiments.

Keywords: Unmanned Aerial Vehicle, Multirotor, Multicopter, Hexacopter, Global Nav-
igation Satellite System, Real-Time Kinematics, Cooperative Control, Passivity, DUNE,
Software-in-the-Loop, APM:Copter, Pixhawk, Piksi

iii

iv

Sammendrag

(Norwegian translation of the abstract)

Denne avhandlingen tar for seg implementeringen av et samarbeidene reguleringssys-
tem for små, ubemannede multirotorsystemer. Mer spesifikt er problemet med dis-
tribuert formasjonskontroll taklet, i tillegg til nødvendig høy-presisjons navigasjon. Reg-
ulering av flere fjernstyrte, ubemannde luftfartøy (UAV), også kjent som droner, har sett
stor utvikling de siste årene, men de fleste avanserte systemene bruker "motion cap-
ture" og prosessering på en sentral datamaskin. Eventuelt baserer de seg kun på den
lave nøyaktigheten satelittbaserte navigasjonssystmer (GNSS) kan tilby. Denne avhan-
dlingen bruker et etablert, passivitetsbasert rammeverk til å oppnå desentralisert for-
masjonskontroll, samt utforsker bruken av "Real-Time Kinematics" (RTK) til å utvide
nøyaktigheten fra et GNSS til centimeternivå. Utviklingen av en passende multirotor-
platform blir presentert, og regulering oppnås med kombinasjonen av en kommersiell
autopilot med åpen kildekode (APM:Copter) og et navigasjonsmiljø (DUNE: Uniform
Navigational Environment) kjørende på en datamaskin i nyttelasten. Det resulterende,
distribuerte systemet av fartøy kan løse et fleksibelt, samlet mål mens gruppen op-
prettholder en ønsket formasjon, og er demonstrert med både simuleringer og felt-
forsøk.

v

vi

Preface

This is a master’s thesis concerning work done in the spring of 2015 at the Department
of Engineering Cybernetics, submitted in partial fulfillment of the requirements for the
degree Master of Science (MSc) at the Norwegian University of Science and Technology
(NTNU), in the field of Engineering Cybernetics. The initiative for the thesis came from
the Centre for Autonomous Marine Operations and Systems (AMOS), more precisely as
part of AMOS’ Project 5: Autonomous aerial systems for marine monitoring and data
collection. It is assumed that the target audience has prior basic knowledge in the field
of systems and control.

The development of the multirotor platform presented in Chapter 2, as well as the exe-
cution of all field experiments presented in Chapter 7, was performed in collaboration
with fellow MSc. student Recep Cetin.

Trondheim, 2015-06-17

vii

viii

Acknowledgements

I would like to thank my supervisor, Professor Thor I. Fossen, for his valuable guidance
and feedback, and for introducing me to this exciting project. A special thanks to Lars
Semb from the Dept. of Engineering Cybernetics at NTNU, for his unmatched pilot-
ing skills. Furthermore, I am very grateful towards the technical staff at the electronic
and mechanical workshops of the department, for their aid and open-door policy. I
would also like to extend my gratitude to Nadezda Sokolova and Aiden Morrison from
the Dept. of Communication Systems at SINTEF, for their insight and recommenda-
tions. A huge thanks goes to my fellow MSc student, Recep Cetin, for an excellent joint
effort throughout this project. Moreover, this project would never have been possi-
ble without the extraordinary devotion from my co-supervisor, PhD candidate Kristian
Klausen. Your inspirational leadership and avid interest for the project has helped me
create something of which I am truly proud of.

Finally, I would like to thank my parents and siblings, for their never-ending support
and affection.

Sincerely,

Jon-Håkon Bøe Røli

ix

x

Contents

Thesis Description Sheet . i
Abstract . iii
Sammendrag . v
Preface . vii
Acknowledgements . ix
Contents . xi
List of Figures . xv
List of Tables . xvii
List of Abbreviations . xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Previous Work . 2
1.3 Contribution and Scope of This Thesis . 4
1.4 Organization of This Thesis . 5
1.5 Notation and Definitions . 6

2 The Multirotor Platform 9
2.1 Overview . 9
2.2 System Components . 11

2.2.1 Multirotor . 11
2.2.2 Autopilot . 12
2.2.3 Precision navigation . 13
2.2.4 Radio controller . 13
2.2.5 Payload computer . 14
2.2.6 Ground control station . 14
2.2.7 Communication . 15
2.2.8 Batteries . 16

2.3 Custom Payload . 17
2.3.1 Specifications . 18
2.3.2 Design . 19
2.3.3 Production and assembly . 24
2.3.4 Improvements to future designs . 24

2.4 Introduction to the LSTS Software Toolchain 24

xi

xii Contents

2.4.1 DUNE . 24
2.4.2 Neptus . 25
2.4.3 IMC . 25

2.5 Introduction to APM:Copter . 26
2.5.1 Mission Planner . 26
2.5.2 Micro Air Vehicle Link . 27

2.6 Piksi Software . 27
2.6.1 Swift Navigation Binary Protocol . 27
2.6.2 Piksi Console . 27

2.7 Multirotor Dynamics . 28
2.7.1 Kinematics . 28
2.7.2 Kinetics . 29
2.7.3 Translational control . 32

3 Real-Time Kinematics Navigation 35
3.1 Introduction to RTK . 35

3.1.1 The general concept . 36
3.1.2 Code and phase measurements . 37
3.1.3 Sources of error . 38
3.1.4 Differential GNSS and RTK . 39
3.1.5 Integer ambiguity resolution . 39

3.2 Navigation System for Multirotors . 40
3.3 Piksi . 41

3.3.1 Issues with stability . 42
3.3.2 External antenna . 43

3.4 RTK Experiments . 44
3.4.1 Static accuracy . 44
3.4.2 Antenna tilt . 46

3.5 Interference from Telemetry . 48
3.6 Summary . 50

4 Cooperative Control 51
4.1 Problem Statement . 52
4.2 The Passivity-based Design Procedure . 53

4.2.1 Step 1: Internal feedback . 53
4.2.2 Step 2: External feedback . 55
4.2.3 Internal feedback for the multirotor 56
4.2.4 External feedback for formation control 57

4.3 Stability and Equilibria . 58
4.4 Designing Feasible Target Sets . 59
4.5 Cooperative Simulation in MATLAB . 60

4.5.1 Setup . 60
4.5.2 Results . 61
4.5.3 Discussion . 62

4.6 Summary . 63

Contents xiii

5 Implementation 65
5.1 Interface with Piksi . 65
5.2 Controller in APM:Copter . 66
5.3 Cooperative Control in DUNE . 66

5.3.1 The main DUNE tasks . 67
5.3.2 Mission velocity . 68

5.4 Execution Frequencies . 69
5.5 Delays . 70

6 Multirotor Simulations 71
6.1 ArduPilot Software-in-the-Loop . 71
6.2 Setup . 72
6.3 Results . 74
6.4 Discussion . 76

7 Multirotor Experiments 77
7.1 Agdenes Airfield . 77
7.2 Overview . 78
7.3 Experiment Set 1 - Pixhawk Navigation . 80

7.3.1 Setup . 80
7.3.2 Results . 81

7.4 Experiment Set 2 - Piksi Navigation . 88
7.4.1 Setup . 88
7.4.2 Results . 89

7.5 Discussion . 94

8 Conclusion and Closing Discussions 95
8.1 Future Work . 96

A Supplementary Figures 97
A.1 Rover Velocities from Simulations and Experiments 98

A.1.1 AP-SIL simulation . 98
A.1.2 Experiment Set 1 - Pixhawk navigation 99
A.1.3 Experiment Set 2 - Piksi navigation 102

Bibliography 105

xiv

List of Figures

2.1 The multirotor with payload . 10
2.2 The base station . 10
2.3 Multirotor platform overview . 11
2.4 The ArduCopter Hexa B . 12
2.5 The Pixhawk autopilot and external GPS/compass module 12
2.6 The Piksi RTK receiver . 13
2.7 The Spektrum DX7s with its receiver . 13
2.8 The payload computer, BBB . 14
2.9 The PicoStation M2 HP . 15
2.10 The 433 MHz radio from 3D Robotics . 15
2.11 Batteries . 16
2.12 Original top carrier plate of the 3DR Hexa . 17
2.13 Different generations of the carrier plate . 19
2.14 Carrier plate layout . 20
2.15 Carrier plate dimentions . 21
2.16 The MCU plate . 21
2.17 The GPS mast and helix antenna mount . 22
2.18 The GPS plate . 22
2.19 The Atmel kit and mount . 23
2.20 Multirotor reference frames . 28
2.21 Multirotor notation . 30

3.1 Composition of the general navigation satellite signal 36
3.2 Piksi connections . 41
3.3 Piksi antennas . 44
3.4 Piksi static accuracy test setup . 45
3.5 Arduino controlled servo from tilt experiment 47
3.6 Results from Piksi antenna tilt experiment 48
3.7 GPS interference from telemetry - Original design 49
3.8 PicoStation Faraday cage . 50
3.9 GPS interference from telemetry - Improved design 50

4.1 The passivity-based design - Block diagram describing transformation . . 54

xv

xvi List of Figures

4.2 The passivity-based design - Closed loop structure 56
4.3 Example of communication graph and desired formation 59
4.4 MATLAB simulation 2D plot . 61
4.5 MATLAB simulation 3D plot . 62

5.1 Overview of DUNE implementation . 67

6.1 The AP-SIL architecture vs. hardware setup. 72
6.2 AP-SIL communication graph and desired formation 73
6.3 AP-SIL 2D plot . 74
6.4 AP-SIL 3D plot . 75
6.5 AP-SIL link errors . 75

7.1 Aerial photo of Agdenes Airfield . 77
7.2 The experimental setup at Agdenes Airfield 78
7.3 Experiment Set 1 communication graph and desired formation 80
7.4 Photo of Rover 1 and 2 during Experiment 1-3 81
7.5 Experiment 1-1 2D plot . 82
7.6 Experiment 1-1 3D plot . 83
7.7 Experiment 1-1 link error . 83
7.8 Experiment 1-2 2D plot . 84
7.9 Experiment 1-2 3D plot . 85
7.10 Experiment 1-2 link error . 85
7.11 Experiment 1-3 2D plot . 86
7.12 Experiment 1-3 3D plot . 87
7.13 Experiment 1-3 link error . 87
7.14 Experiment Set 2 communication graph and desired formation 88
7.15 Photo of Rover 1 and 2 during Experiment 2-2 89
7.16 Experiment 2-1 2D plot . 90
7.17 Experiment 2-1 3D plot . 91
7.18 Experiment 2-1 link error . 91
7.19 Experiment 2-2 2D plot . 92
7.20 Experiment 2-2 3D plot . 93
7.21 Experiment 2-2 link error . 93

A.1 Rover velocities from AP-SIL . 98
A.2 Rover velocities from Experiment 1-1 . 99
A.3 Rover velocities from Experiment 1-2 . 100
A.4 Rover velocities from Experiment 1-3 . 101
A.5 Rover velocities from Experiment 2-1 . 102
A.6 Rover velocities from Experiment 2-2 . 103

List of Tables

3.1 Theoretical GPS L1 measurement resolutions 37
3.2 Results from Piksi static accuracy experiment. 46
3.3 Results from Piksi antenna tilt experiment 47

5.1 Task execution frequencies and data rates 69
5.2 Results from Pixhawk delay tests . 70

6.1 Parameters used during the AP-SIL simulation 72

7.1 Parameters used during field experiments 79
7.2 Overview of the different field experiments 79

xvii

xviii

List of Abbreviations

AMOS Centre for Autonomous Marine Operations and Systems.

BBB BeagleBone Black.

CAD Computer-Aided Design.

CCW Counterclockwise.

CPU Central Processing Unit.

CW Clockwise.

DGNSS Differential GNSS.

DOF Degrees of Freedom.

DUNE DUNE: Uniform Navigational Environment.

ESC Electronic Speed Controller.

FPGA Field-Programmable Gate Array.

GCS Ground Control Station.

GDOP Geometric Dilution of Precision.

GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema (Global Navigation Satel-
lite System).

GNSS Global Navigation Satellite System.

GPIO General-Purpose Input/Output.

GPS Global Positioning System.

GUI Graphical User Interface.

xix

xx List of Abbreviations

IAR Integer Ambiguity Resolution.

IMC Inter-Module Communication.

IMU Inertial Measurement Unit.

IP Internet Protocol.

LSTS Laboratório de Sistemas e Tecnologias Subaquáticas (Underwater Systems and
Technology Laboratory).

MCU Micro Computer Unit.

NAVSTAR Navigation System using Timing And Ranging.

NED North-East-Down.

NTNU Norges teknisk-naturvitenskapelige universitet (Norwegian University of Sci-
ence and Technology).

OS Operating System.

PVT Position/Velocity/Time.

PWM Pulse-Width Modulation.

RC Radio Controller.

RF Radio Frequency.

RTK Real-Time Kinematics.

SBP Swift Navigation Binary Protocol.

SIL Software-in-the-Loop.

SINTEF Stiftelsen for industriell og teknisk forskning (The Foundation for Scientific
and Industrial Research).

TCP Transmission Control Protocol.

UAV Unmanned Aerial Vehicle.

UAV-Lab Unmanned Aerial Vehicle Laboratory of AMOS.

UDP User Datagram Protocol.

Chapter 1

Introduction

1.1 Background and Motivation

The term cooperative control applies to a group of control problems where multiple
autonomous agents work together to achieve some common goal. This area has seen
extensive research in the last decades, as many benefits can be obtained when a single
complicated agent is replaced by multiple, yet simpler agents. Multiple cheap agents
can be more cost-efficient than one expensive, give increased redundancy to agent fail-
ures and often simply perform tasks more efficiently, e.g. through increased area cover-
age in a search or reduced drag by formation flying.

A distinction between a centralized and a distributed approach to the control of mul-
tiple agents is often made. In the centralized approach, the control of all agents are
computed at a central station working with global information, essentially just an ex-
tension of the traditional single-agent control. By contrast, each agent in the distributed
approach only acts on local information from sensing or communication devices. Con-
sequently, information sharing plays a central role in the resulting behaviour in the dis-
tributed approach and the communication topology becomes essential to designing
the controller for each agent.

An example of distributed cooperative control is the agreement problem, where the goal
is for the agents to reach a certain common agreement over a variable of interest, e.g. a
heading, attitude, position, phase etc. This is also known as consensus or synchroniza-
tion. The main focus of this thesis is formation control, where the objective is to coor-
dinate a group of agents to achieve some desired relative distance or position.

High precision navigation is necessary for advanced cooperative control, and many im-
plementations use motion capture systems that limit applications outside the labora-
tory. Instead, this thesis has investigated the use of carrier phase differential measure-
ments, also known as Real-Time Kinematics (RTK) navigation, to augment the accuracy

1

2 Chapter 1. Introduction

of a Global Navigation Satellite System (GNSS) to the centimetre level.

1.2 Previous Work

The simplest implementation of formation control is a master-slave strategy, where the
master possibly follows some desired trajectory while the slaves only position them-
selves relative to the master. A semi-autonomous example of this is given in (Cheung,
Chung, and Coleman 2009) where a leader robot is selected and teleoperated by an op-
erator and follower robots are autonomously coordinated to make a formation, without
intercommunication. However, the more common implementation is using synchro-
nization by regarding formation control as a shifted agreement problem.

(Pettersen, Gravdahl, and Nijmeijer 2006) presents many interesting contributions from
a workshop with focus on control theoretic challenges related to group coordination
and cooperative control. An excellent overview of the past two decades of research in
control of multi-agent systems is given by (Olfati-Saber, Fax, and Murray 2007; Mur-
ray 2007; Cao et al. 2013). Common for most applications is the use of graph theory
to present the communication topology, and furthermore to analyze the resulting be-
haviour of the complete system (Wu and Chua 1995). In (Ren, Beard, et al. 2005; Moreau
2005), certain requirements to interaction graphs are shown to lead to asymptotic in-
formation consensus, even with unreliable and changing interaction topology. Further,
a tutorial overview of strategies in information consensus is given in (Ren, Beard, and
Atkins 2007).

A framework for coordinated control of multiple UAVs is presented in (Kaminer et al.
2007) and further extended in (Xargay et al. 2013), where the vehicles negotiate their
speeds along their respective paths in response to information exchange. This forms a
strategy for time-critical cooperative missions that yield robust behaviour against exter-
nal disturbances. A similar approach is used in (Ghabcheloo et al. 2009), where coordi-
nated path-following is achieved by adjusting speed profiles of virtual targets following
assigned paths.

One approach to formation control mentioned by (Murray 2007) is to formulate it as
an optimization problem by introducing cumulative formation errors between neigh-
bours as cost functions. (Dunbar and Murray 2006) solves this problem using receding
horizon optimal control. Another approach mentioned by (Murray 2007) is to shape
the dynamics of the formation using potential fields. In this case the control law for
individual vehicles is the gradient of a potential function based on the state of the ve-
hicle and its neighbours. The work of (Leonard and Fiorelli 2001) uses a concept of
artificial potentials inspired by biological systems. However, their resulting controller is
criticized for not guaranteeing convergence to a unique desired formation (Olfati-Saber
and Murray 2002). Instead, (Olfati-Saber and Murray 2002) proposes a framework using
potential functions obtained from the structural constraints of a desired formation. A
virtual structure approach is used in (Broek, Wouw, and Nijmeijer 2009), where mutual
coupling between unicycle mobile robots is used to achieve formation control.

1.2. Previous Work 3

A passivity-based design tool for cooperative control was proposed in (Arcak 2007),
where bidirectional communication topology and internal feedback is used to trans-
form the interconnected system into a cascaded set of passive systems. This leads
to a systematic construction of Lyapunov functions for stability analysis. The result-
ing framework was further developed, and a good summary of this research is pre-
sented in (Bai, Arcak, and Wen 2011), along with several examples of implementations.
The formation problem is solved by synchronizing relative positions or distances be-
tween communicating agents, while a common mission velocity in the internal feed-
back achieves the group objective. A second approach to formation control based on
(Ihle, Arcak, and Fossen 2007) is also given, where the desired formation is achieved
in a similar fashion to (Ghabcheloo et al. 2009), but passivity is used for proving sta-
bility. Moreover, the flexibility offered by the framework is proved useful in developing
adaptive feedback laws, for instance when the mission velocity is only known to the
leader.

Formation control and path following for underactuated marine surface vessels is an-
alyzed in (Børhaug et al. 2011; Belleter and Pettersen 2014) using nonlinear cascaded
systems theory.

As noted in (Cao et al. 2013), much of the research on consensus only consider simple
agent dynamics like single integrator kinematics or double integrator dynamics. In-
deed the latter is used in both (Leonard and Fiorelli 2001) and (Olfati-Saber and Murray
2002). An extension from the simple dynamics to general linear dynamics is given in
(Qu, Wang, and Hull 2008), using a framework based on matrix theory. Furthermore,
the proposed method in (Chung and Slotine 2009) permits highly nonlinear dynamics,
using contraction to prove exponential stability. The passivity approach in (Bai, Arcak,
and Wen 2011) also allows systems of high order and nonlinear dynamics. In fact, the
framework is applicable as long as a passive controller can be made. This is trivial for
Newtonian systems, but can also be accomplished for Lagrangian and Hamiltonian sys-
tems.

Research on the effects of time delays on synchronization is also well covered in (Cao et
al. 2013). An interesting result mentioned for systems with single integrator kinematics
is that only input delay, and not communication delay, affect the convergence and per-
formance of consensus, referred to as consensusability. The main research question is
to determine an upper bound of the time delay under which time delay does not affect
the consensusability. Generally speaking, consensus with time delays for nonlinear sys-
tems is more challenging, but still, consensus can be achieved under a relatively large
communication delay (Cao et al. 2013).

4 Chapter 1. Introduction

1.3 Contribution and Scope of This Thesis

The overall goal of this thesis is to design and implement a system of multirotors ca-
pable of performing tasks in a cooperative manner. One intended future application is
cooperative lifting of suspended loads as presented in (Klausen, Fossen, Johansen, et al.
2014).

This report covers the development of the multirotor platform aided by RTK navigation,
as well as the implementation of the necessary cooperative control. The passivity-based
framework presented in (Bai, Arcak, and Wen 2011) will be used to solve the latter, as
the strict implications from passivity, combined with the modularity and flexibility of
the framework, would allow adaptation of the resulting system to solve a large range
of cooperative tasks. Further, RTK navigation will be achieved using a new receiver
called Piksi, chosen because its low price and open-source software is promising for
the broadening of RTK applications. This project is also an important first step for the
Unmanned Aerial Vehicle Laboratory of AMOS (UAV-Lab), as no field experiments with
cooperative control of multiple UAVs have yet been attempted.

To summarize, the purpose of the project can be described by the following objec-
tives:

Multirotor Platform
Establish the necessary software and hardware to form a multirotor platform suit-
able for cooperative control.

RTK GPS
Explore the use of Piksi as a high precision navigation system for multirotors.

Formation Control
Implement distributed formation control where multirotors converge to a given
formation.

Common Objective
The group of multirotors should be able to solve a common objective, e.g. moving
to a target location.

The complete system will be verified through simulations, and further demonstrated in
field experiments, with the formation flight of multiple vehicles. Note that the multiro-
tor platform is developed in cooperation with another MSc student, Recep Cetin (Cetin
2015). In addition, suspended load control and an alternative indoor navigation system
is presented in (Cetin 2015).

To limit the scope of this thesis, the following assumptions are made:

• A low-level controller for the multirotor is already available, capable of achieving
desired attitudes and rates.

• All multirotors are able to communicate with each other, i.e. the communication
topology is known and constant.

1.4. Organization of This Thesis 5

• Collision avoidance is disregarded (although a short discussion is given in Sec-
tion 4.2.4). This should not be a problem if initial positions are taken into consid-
eration with the desired formation.

1.4 Organization of This Thesis

This introductory chapter ends with a list of notations and useful definitions used through-
out the thesis.

Chapter 2 presents the multirotor platform used in this project. This involves the dif-
ferent hardware components and the design of a custom payload module. An intro-
duction to the necessary software tools is also given, before the mathematical model is
derived.

An introduction to RTK navigation is given in Chapter 3, followed by a short discussion
about its application for UAVs. Furthermore, Piksi is presented, with a discussion of is-
sues, in addition to several experiments investigating accuracy and robustness.

Cooperative control is presented in Chapter 4, where the passivity-based approach from
(Bai, Arcak, and Wen 2011) is applied to the multirotor platform. Moreover, the resulting
feedback laws are verified by simulation.

Chapter 5 combines the three previous chapters into a realization of distributed for-
mation control for multirotors. Further, Software-in-the-Loop (SIL) simulations of the
complete system is conferred in Chapter 6, before finally presenting field experiments
with formation flights in Chapter 7.

Results from the preceding chapters are briefly summarized in Chapter 8, which gener-
ally concludes the thesis. Lastly, a short discussion of future work is given.

A collection of supplementary figures is presented in Appendix A.

The digital appendix provided with this thesis contains data from simulations and field
experiments, as well as the code used for extraction, processing and plotting. Anima-
tions of the data sets presented in Chapter 6 and 7 is also given. However, the code
developed as part of the implementation in Chapter 5 is not included, as this is avail-
able at the UAV-Lab Git repository, under the branch copter-dev (AMOS 2015).

6 Chapter 1. Introduction

1.5 Notation and Definitions

• The set of all real numbers is denoted R.

• All vectors in this thesis are column vectors. Rp denotes the set of p ×1 real vec-
tors, while the set of real matrices with p rows and q columns are denoted Rp×q .
In addition, all vectors and matrices are given in bold font (e.g. x ∈ R is a scalar
while x ∈Rp is a vector).

• Aᵀ ∈Rq×p denotes the transpose of the matrix A ∈Rp×q .

• The inverse of an invertible matrix A ∈Rn×n is denoted A−1 ∈Rn×n .

• The superscript † of a matrix A ∈Rp×q denotes its Moore–Penrose pseudoinverse:

A† := Aᵀ(A Aᵀ)−1 ∈Rp×q (1.1)

• For a vector x ∈Rp , |x | denotes its 2-norm, i.e. |x | =p
xᵀx .

• R(A) and N (A) denotes the range space and null space of a matrix A, respec-
tively, while the empty set is denoted by ;.

• Ip is the p ×p identity matrix and 1p is the p ×1 column vector of ones, while 0 is
always a scalar, vector or matrix of zeros with a compatible dimension.

• The notation diag{K1,K2, · · · ,Kn}, where Ki ∈Rp×q , i ∈ {1, . . . ,n}, is used to denote
the block diagonal matrix:

K1 0 · · · 0
0 K2 · · · 0
...

...
. . .

...
0 0 · · · Kn

 ∈Rnp×nq (1.2)

• The labeling of reference frames are done by a lower-case letter in curly brackets,
and vectors represented in said reference frame is displayed by the same letter in
superscript (e.g. xn is a vector represented in {n}).

• A star in superscript denotes a desired value, e.g. x? is a vector of desired values
for x . Likewise, a zero in superscript denotes an initial value.

• The superscript F denotes a formation specification, e.g. xF
i defines the desired

relative formation for agent i .

• The subscript sat indicates the saturation value for the absolute value (2-norm)
of the respective scalar (vector), e.g. the maximum speed of the velocity vector
v ∈R3 is denoted by vsat =: max(|v |) ∈R.

1.5. Notation and Definitions 7

• The Kronecker product of two matrices A ∈Rm×n ,B ∈Rp×q is defined as:

A ⊗B :=

a11B · · · a1n B
...

. . .
...

am1 · · · amn B

 ∈Rmp×nq (1.3)

and satisfies the properties:

(A ⊗B)ᵀ = Aᵀ⊗Bᵀ (1.4a)

(A ⊗ Ip)(C ⊗ Ip) = (AC)⊗ Ip (1.4b)

where A and C are assumed to be compatible for multiplication.

• A function is said to be C k if its partial derivatives exist and are continuous up to
order k or higher.

• Given a C 2 function P :Rp →R, ∇P and ∇2P denotes its gradient vector and Hes-
sian matrix, respectively.

• S(·) is the cross-product matrix operator defined such that the cross-product of
two vectorsλ ∈R3, x ∈R3 can be represented as:

λ×x := S(λ)x (1.5)

where S is skew-symmetric and defined as:

S(λ) =−Sᵀ(λ) =
 0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0

 (1.6)

8

Chapter 2

The Multirotor Platform

This chapter presents the multirotor platform used in the thesis, as well as in (Cetin
2015). Firstly, an overview is given, before presenting the individual system compo-
nents. Next, the design of a custom payload is discussed, followed by an introduction to
the different software tools used. Finally, the dynamics of the vehicle is derived.

2.1 Overview

The complete system can be divided into three segments:

• A base station

• The multirotors with payload

• Mission control with the Ground Control Station (GCS) and pilots

As will be discussed in Chapter 3, a base station is necessary for providing observations
for Piksi on each multirotor, solving the high-precision relative navigation of the vehi-
cles. Figure 2.3 gives an overview of the full system and the interaction of its hardware
and software components, while a picture of the complete multirotor platform and base
station can be seen in Figure 2.1 and Figure 2.2, respectively.

9

10 Chapter 2. The Multirotor Platform

Figure 2.1: The complete multirotor with the custom payload and all components.

Figure 2.2: The base station, together with a switch and access point.

2.2. System Components 11

Secondary/
Calibration

Multirotor

Mission Control
Base Station

Pixhawk

APM:
Copter

Engine
ESC

Piksi

Pico M2

BBB

GLUED

DUNE Pico M2

BBB

GLUED

DUNE

GCS

Neptus

Mission
Planner

Pico M2

TEL

TELRC

PWM

PWM

GPS

Piksi

Hardware

Software

Serial

Ethernet

2.4 GHz

Figure 2.3: Overview of the complete system. A solid line illustrates a wired connection,
while a dashed line illustrates a wireless connection. Arrowheads indicate the direction
of information flow.

2.2 System Components

2.2.1 Multirotor

A hexacopter, a multirotor with six arms and rotors, is considered to be a good com-
promise between size, cost and weight. The ArduCopter Hexa B (3D Robotics 2014a),
shown in Figure 2.4, has been used with great success in previous projects at NTNU
(Steen 2014; Andersen 2014), and was used as the base multirotor platform in this the-
sis.

12 Chapter 2. The Multirotor Platform

Figure 2.4: The ArduCopter Hexa B from 3D Robotics. The blue colored support arms
define the forward direction of the airframe. Image courtesy of 3drobotics. com .

2.2.2 Autopilot

The autopilot is responsible for controlling the speed of the 6 rotors of the multirotor
through Pulse-Width Modulation (PWM) signals to their individual Electronic Speed
Controller (ESC). Pixhawk, shown in Figure 2.5a, was chosen as autopilot and it runs
the APM:Copter software, described in Section 2.5, to achieve the necessary low-level
control.

(a) The Pixhawk autopilot. Image courtesy of
3drobotics. com .

(b) The GPS/compass module. Image courtesy
of 3drobotics. com .

Figure 2.5: The Pixhawk autopilot, designed by the PX4 open-hardware project and
manufactured by 3D Robotics, along with the external GPS/compass module.

3drobotics.com
3drobotics.com
3drobotics.com

2.2. System Components 13

Pixhawk also contains sensors required for basic navigation: An Inertial Measurement
Unit (IMU) to determine the rotation and acceleration, a barometer for relative altitude
measurements and the external GPS/compass module shown in Figure 2.5b (not illus-
trated in Figure 2.3) to determine the position and heading (3D Robotics 2014c).

2.2.3 Precision navigation

For high-precision positioning of the multirotor, this thesis has used a Real-Time Kine-
matics (RTK) receiver called Piksi. Piksi, shown in Figure 2.6, outputs high-precision
position and velocity relative to the base station on each multirotor. RTK and Piksi is
further presented in Chapter 3, where a discussion of its antennas is also given.

Figure 2.6: The Piksi RTK receiver from Swift Navigation. Image courtesy of swiftnav.
com .

2.2.4 Radio controller

A Radio Controller (RC) is the typical tool used by a pilot for manual control of a UAV.
The Spektrum DX7s shown in Figure 2.7 was used in this thesis. It sends a PWM signal
to a receiver on the hexacopter, giving commands to Pixhawk. The autopilot then does
the actual control of the hexacopter, as it is impossible for a human operator to stabilize
it by commanding the speed of the individual motors.

Figure 2.7: The Spektrum DX7s with its receiver. Image courtesy of hobbyfly. com .

swiftnav.com
swiftnav.com
hobbyfly.com

14 Chapter 2. The Multirotor Platform

2.2.5 Payload computer

A small, low-cost platform for developers called BeagleBone Black (BBB) (BeagleBoard
2014) was chosen as the payload computer. Its use in a multirotor payload was advised
by (Steen 2014), and (Klausen 2013) used it with great success on small autonomous
robots.

The BBB is the brain connecting all the important components together. It provides
guidance for the multirotor through Pixhawk and interfaces the on-board Piksi to re-
ceive precision navigation. BBB runs tasks in DUNE to achieve this, on a minimal Linux
distribution called GLUED (see Section 2.4.1). A BBB is also used to interface Piksi at the
base station.

(a) The BBB. Image courtesy of beagleboard.
org .

(b) The BBB with the custom made add-on
board attached.

Figure 2.8: The payload computer, BeagleBone Black, with and without the custom
made add-on board that provides power and simple connectivity to peripherals.

To supply the BBB with power and simplify connections to other components, a cus-
tom add-on board was made. The BBB, as well as the add-on board, can be seen in
Figure 2.8.

2.2.6 Ground control station

The Ground Control Station (GCS) runs a software called Neptus to interact with DUNE
on the payload computer and perform command and control. Neptus is also the tool re-
sponsible for data collection and analysis. A short introduction is given in Section 2.4.2.

The yellow shaded link in Figure 2.3 is an optional telemetry link from Pixhawk, used to
interface another control software called Mission Planner (3D Robotics 2014b) on the
GCS. A short description of Mission Planner is given in Section 2.5.1, but the only in-
tended use in the system is as a simple tool to calibrate Pixhawk and configure settings
in APM:Copter.

beagleboard.org
beagleboard.org

2.2. System Components 15

2.2.7 Communication

The PicoStation M2 HP displayed in Figure 2.9 is used to provide wireless network com-
munication between the the different units running DUNE or Neptus. It is a compact,
but powerful 2.4 GHz radio used as the main communication link in this project (Ubiq-
uiti Networks 2014). With the unit on the base station configured as an access point and
the other as clients, all the units can communicate seamlessly with each other through
TCP/IP.

Figure 2.9: The PicoStation M2 HP from Ubiquiti Networks, with and without its plastic
housing.

The secondary calibration link between Mission Planner and Pixhawk is a set of two
simple 433 Mhz radios from 3D Robotics (3D Robotics 2015), shown in Figure 2.10.

Figure 2.10: The 433 MHz radio from 3D Robotics. Image courtesy of 3drobotics. com .

3drobotics.com

16 Chapter 2. The Multirotor Platform

2.2.8 Batteries

Figure 2.11: The three different lithium polymer batteries used.

Three different lithium polymer (LiPo) batteries, shown in Figure 2.11, was used:

• An 800 mAh payload battery connected to the add-on board in Figure 2.8b, pro-
viding the BBB and the other payload components on the multirotor with power.

• A 4000 mAh rotor battery connected to the ESCs, providing the rotors with power.

• A 10000 mAh nest battery, providing the base station with power in the same man-
ner as the payload battery on the multirotor.

With the payload powered by a separate battery, the system avoids being reset each
time the rotor battery is depleted. This was a big advantage as the rotor battery only
provided a flight time of approximately 5 to 10 minutes. The Pixhawk is in fact powered
by both the payload and rotor battery, as it provides essential voltage monitoring for the
latter.

2.3. Custom Payload 17

2.3 Custom Payload

The ArduCopter Hexa B has a lot of room for payloads both beneath and above the hex-
acopter body. The hexacopter comes with a removable top carrier plate with the possi-
bility to add smaller extra levels using separators (see Figure 2.12). These provide sim-
ple mounting of payload for many uses. Together with a custom made bottom payload,
(Steen 2014) and (Andersen 2014) used the standard top payload plates. In this project
however, most of the payload had to fit on top of the hexacopter. This was because of
the intended future application in cooperative lifting, mentioned in Section 1.3, where
connection mechanisms and other relevant equipment will need the space below the
hexacopter body. The design also had to conform with the needs of the cooperative
project (Cetin 2015), where the mounting of an additional complicated part was neces-
sary: The Atmel kit shown in Figure 2.19a.

Consequently, with a lot of parts to fit and some being nontrivial to mount, the need to
design custom top payload plates emerged. Note that all dimensions in this chapter are
given in millimeters.

Figure 2.12: Original top carrier plate of the 3DR Hexa with one extra level attached
with separators. Model courtesy of Kristian Klausen.

18 Chapter 2. The Multirotor Platform

2.3.1 Specifications

The top payload plate had to provide space and proper mounting for the following com-
ponents:

• Pixhawk

• BeagleBone Black

• Piksi

• Atmel kit

• PicoStation M2 HP

• Helix antenna for Piksi

• GPS/Compass for Pixhawk

• Payload battery

Other small parts, like the receiver for the RC or the secondary calibration link was sim-
ply attached to the arms of the hexacopter with Velcro.

Further, the following properties were considered:

Lightweight
Less weight means better endurance and maneuverability.

Symmetry and balance
The hexacopter should be kept as symmetrical as possible for optimal balance
and hence, maneuverability. Some balancing correction can be achieved when
mounting the rotor battery.

GPS antennas and magnetic compass
These should be mounted above all other components for an unobstructed view
of the sky, and far from noise heavy components to minimize disturbance. They
should also be placed far from each other to prevent mutual coupling (more than
half the wavelength, i.e. > 9.5 cm).

Atmel and Picostation antennas
As these are fixed to the body of the components, the placement of the compo-
nents themselves had to be taken into consideration. The antennas should be
placed far from each other as to minimize interference, as well as far out on the
hexacopter body itself to get the best possible reception in all directions.

Pixhawk
This had to be placed as close as possible to the center of gravity of the hexacopter
and aligned with the axes of the axes of the {b} frame (see Section 2.7.1), as this is
where the IMU is located.

Accessibility
All components should be kept as accessible as possible for easy maintenance.

2.3. Custom Payload 19

2.3.2 Design

A CAD software (SolidWorks 2014) was used to design the necessary parts. Co-supervisor,
PhD candidate Kristian Klausen, had already made models of the original Hexa B, which
together with models and mock-ups of the payload components simplified the design
job.

A design with three separate levels was chosen. First a new carrier plate that was di-
rectly connected to the rest of the hexacopter body, replacing the original. Then, two
smaller plates were designed to be mounted on top of the carrier plate, using the origi-
nal separators.

Carrier plate

The Pixhawk was naturally aligned with the axes of the {b} frame and placed in the cen-
ter of the carrier plate, while the placement of the other components was less trivial.
Several different placements and designs were made (see Figure 2.13), before ending
up with the current version shown in Figure 2.15. This has a mount for the PicoSta-
tion, two antenna mast placements (numbered 1 and 2) and a special groove to fit an
Atmel kit mount, shown in Figure 2.19b. Figure 2.14 shows a top down view, with the
placement of the components indicated.

Figure 2.13: Different generations of the carrier plate, all in relative scale. From the
original v1.0 from 3D Robotics to the final v5.0 used in this thesis.

The Atmel kit and the PicoStation was placed in opposite ends of the carrier plate, such
that their antennas could point down and outside the hexacopter body. Cutouts were
made to reduce weight and provide holes for cables. Two ribbed surfaces (marked A
and B in Figure 2.14) provide possible placements for the payload battery. Because the
electronics of the stripped (to reduce weight and size) PicoStation became very exposed
on the carrier plate, a simple cover was added, which is fastened by connecting the an-
tenna and the RJ-45 Ethernet plug. Furthermore, this cover and the mount for PicoSta-
tion was covered by copper tape in an attempt to mitigate problems of interference with
Piksi. The shielded housing can be seen in Figure 3.8, and the interference problem is
further discussed in Section 3.5.

20 Chapter 2. The Multirotor Platform

Figure 2.14: Layout of the final version of the carrier plate. Antenna mast and battery
placements are marked by numbers and letters, respectively. The dashed red and yel-
low circles indicate the attachment points for the separators and the attachment to the
hexacopter body, respectively.

2.3. Custom Payload 21

Figure 2.15: Dimensions of the final version of the carrier plate.

MCU plate

The payload computer, BeagleBone Black (BBB) was placed on the second level plate,
which appropriately was named the Micro Computer Unit (MCU) plate. Piksi was also
placed at this level.

Figure 2.16: The MCU plate. A mount for a voltage display is visible on the top edge.
The dashed red circles indicate the attachment points for the separators.

22 Chapter 2. The Multirotor Platform

GPS plate and antenna masts

A GPS mast sold by 3D Robotics (Figure 2.17a) was used to mount both the helix GNSS
antenna for the Piksi and the combined GPS/compass for the Pixhawk. This mast is
designed to fit the latter, but replacing the top platform with the simple, custom de-
signed mount shown in Figure 2.17b, it also provided a simple way to attach the helix
antenna.

(a) The GPS mast. Image courtesy of
3drobotics. com .

(b) The helix antenna mount.

Figure 2.17: The GPS mast sold by 3D Robotics for the GPS/compass module for Pix-
hawk (a) and the helix antenna mount (b).

Figure 2.18: The GPS plate with antenna mast placements 3 and 4. The dashed red
circles indicate the attachment points for the separators.

3drobotics.com

2.3. Custom Payload 23

These antenna masts were initially placed in opposite "corners" of the carrier plate (i.e.
1 and 2 in Figure 2.14), as a good distance between them prevented both mutual cou-
pling and physically blocking GPS signals for each other. However, after encountering
the interference from PicoStation, discussed in Section 3.5, a third level with two more
placements for antenna masts was designed and mounted on top of the MCU plate.
This GPS plate is shown in Figure 2.18.

Atmel kit mount

Designing a proper way to attach the Atmel kit proved a challenge. Whereas the other
components had screw holes, providing a simple means of attachment, the Atmel kit
did not. A box-like container, exploiting its two-part connection to lock it in place, was
designed. Because this shape would make the carrier plate complex to print (see the
next section), it was designed as a separate, third part of the payload plate, to be glued
to the carrier plate instead. The finished design is shown in Figure 2.19b.

(a) The Atmel kit. Image courtesy of
atmel. com .

(b) The designed mount. The bottom view
clearly shows the track to fit in the carrier plate.

Figure 2.19: The Atmel kit used by (Cetin 2015) and its designed mount.

atmel.com

24 Chapter 2. The Multirotor Platform

2.3.3 Production and assembly

The plates were printed in plastic using a 3D printer. The optimal material would prob-
ably have been carbon fiber, providing extreme durability compared to its weight. How-
ever, plastic was lightweight and durable enough. Moreover, the ability of rapid proto-
typing with a 3D printer was a big advantage.

A 3D printer builds parts by adding successive layers of material. It is therefore conve-
nient if parts only have extruding features on one side, limiting the amount of support
structure needed and, hence, the time required for printing. This benefit was the reason
for designing the mount for the Atmel kit as a separate part, at the expense of structural
integrity.

The completed payload with custom printed plates and components mounted can be
seen mounted on the multirotor in Figure 2.1, where all parts fit nicely into their de-
signed placement.

2.3.4 Improvements to future designs

The designs were made with accessibility in mind for easy prototyping, neglecting pro-
tection and covering. This is beneficial as changes are often made along the way, and
the need for a new connection here and there can emerge. It would be pretty trivial in
future designs to build covers and lids around the exposed components on the carrier
plate and maybe turning the MCU plate into an MCU box.

2.4 Introduction to the LSTS Software Toolchain

The Laboratório de Sistemas e Tecnologias Subaquáticas (Underwater Systems and Tech-
nology Laboratory) (LSTS) is a an interdisciplinary research laboratory specializing on
the development of unmanned underwater, surface and air vehicles, as well as tools and
technologies for the deployment of networked systems of said vehicles (LSTS 2015f).
LSTS has developed a software toolchain consisting of the runtime environment DUNE,
the command and control software Neptus and the IMC protocol.

Powerful and open-source (LSTS 2015d), the LSTS toolchain was used as the software
backbone for the multirotor platform in this thesis and an introduction to each of its
components is given below.

2.4.1 DUNE

DUNE: Uniform Navigational Environment (DUNE) is the on-board software running
at the heart of each vehicle, interfacing all peripherals. The system is both CPU archi-
tecture and OS independent, making it highly portable (LSTS 2015a).

2.4. Introduction to the LSTS Software Toolchain 25

Written in C++, DUNE is based on the idea of defining libraries of tasks, each responsi-
ble for controlling one element on-board the vehicle, e.g. different sensors, actuators,
autopilots or communication devices. At runtime the desired set of tasks (and their pa-
rameters) are defined in a simple initialization file for each vehicle, causing them to be
run on separate threads or processes, while using the concept of message passing to
communicate with each other or tasks running on other vehicles.

GLUED

Targeted at embedded systems, GLUED is a minimal Linux distribution designed by the
LSTS for easily configurable cross compilation (LSTS 2015b). It is the OS running on the
BBB used in this project, where DUNE is executed.

2.4.2 Neptus

Neptus is the command and control infrastructure running on the GCS, solving the
problem of operator-vehicle interaction with a GUI (LSTS 2015e). The software has
three main features:

• Planning

• Execution

• Review and Analysis

By adding profiles for each vehicle, the software can be used in planning operations
by simulating and validating before execution. During the execution, the software can
visualize real-time data and send mission plans to multiple vehicles. Neptus is also used
for post-mission data extraction and analysis from vehicles.

Neptus is written in Java and supports the development of independent plug-ins, mak-
ing it a very flexible and customizable tool.

2.4.3 IMC

The Inter-Module Communication (IMC) protocol is used for all communication be-
tween the different tasks internally in DUNE, as well as between different vehicles and
Neptus at the GCS (LSTS 2015c). It provides a large set of shared message definitions
that can be serialized and transferred over different media. The protocol can easily be
extended by adding new message definitions.

26 Chapter 2. The Multirotor Platform

2.5 Introduction to APM:Copter

APM:Copter is an open-source platform for multirotors and helicopters developed by
the DIY Drones community (DIY Drones 2015b). Based on the Arduino platform (from
which its name originates; ArduPilotMega), it offers a wide range of autopilot solu-
tions that comprise both remote and autonomous flight control. The latter includes
waypoint navigation, mission planning and telemetry on a ground station for monitor-
ing. The modularity and the capabilities of the software is extensive, and the interested
reader is referred to (DIY Drones 2015a). There are several flight modes available in
APM:Copter, out of which four was used in this project:

Stabilize
Pilot input to the RC is interpreted as desired angles in roll and pitch, and the av-
erage speed of the rotors. Without input the copter will automatically level itself.
This is the mode allowing the most aggressive maneuvering from the pilot, while
still aiding with stability.

Loiter
The copter tries to maintain a consistent location and orientation. RC input from
the pilot is interpreted as the adjustment of said location and orientation, result-
ing in simpler and smoother control. Unlike Stabilize, this mode is dependant on
a GPS fix.

Guided
Also GPS dependant, Guided is an autonomous mode where the user can dynam-
ically guide the copter to travel to a target location or achieve a desired velocity.
This mode is used when DUNE provides said desired locations or velocities to
achieve higher-level control.

Land
Another autonomous mode that makes the copter perform a controlled descent.
This mode is set to activate upon detection of low battery voltage to avoid crash-
ing as a result of engine power failure.

2.5.1 Mission Planner

Mission Planner is the GCS of APM:Copter. It can be connected to the vehicle using
a telemetry radio and facilitate a command and control center for the vehicle. Mis-
sion Planner enables the use of point-and-click waypoint entries, using Google maps
or other local or global maps. Missions containing a set of commands can be saved and
executed easily. Real-time vehicle telemetry is also shown, including the output from
the Pixhawk’s serial terminal. Moreover, it offers an interface with a PC flight simula-
tor. However, the most interesting part for this thesis is the configuration of the APM
settings for our airframe. Mission Planner includes an easy and intuitive GUI to tune
parameters and optimize the autopilot’s behaviour.

2.6. Piksi Software 27

2.5.2 Micro Air Vehicle Link

Pixhawk uses a header-only message marshalling library called MAVLink (DIY Drones
2015e). This Micro Air Vehicle communication protocol serves as the backbone for
the internal communication, as well as communication with DUNE and the ground
link.

2.6 Piksi Software

2.6.1 Swift Navigation Binary Protocol

The Swift Navigation Binary Protocol (SBP) is the native protocol used by Piksi to trans-
mit solutions, observations, status and debugging information (SwiftNAV 2015e). A
portable C implementation was provided as a part of libswiftnav, a platform indepen-
dent library of GNSS related functions and algorithms for use by software-defined re-
ceivers and other software (SwiftNAV 2015b). This has since been moved to its own li-
brary, libsbp (SwiftNAV 2015c), although this was after the former version of libswiftnav
was used to interface Piksi in this project (see Section 5.1).

SBP is primarily used as a fast and simple protocol to send the binary representation of
C structs across serial links, without any error correction and without delivery guaran-
tees.

2.6.2 Piksi Console

The Piksi Console is a GUI written in Python to interface Piksi through SBP. It allows
Piksi to communicate with a computer through any serial port and display satellite
tracking, baseline, position solutions and status information, in addition to observa-
tions sent and received between modules. The console has the same features as a con-
figuration utility. It is the simplest way to download and install new firmware on Piksi
and various settings of Piksi can be accessed and altered on-the-fly.

During the RTK experiments presented in Section 3.4, the Piksi Console was used for
monitoring and saving data for analysis. However, for the rest the project, the console
was only used for configuration.

28 Chapter 2. The Multirotor Platform

2.7 Multirotor Dynamics

The dynamics of the multirotor platform is derived in this section, using similar no-
tation and nomenclature as (Fossen 2011). The geometrical aspects of motion, also
known as the kinematics, is first presented, before analyzing the forces causing the mo-
tion, i.e. the kinetics (Fossen 2011).

2.7.1 Kinematics

A multirotor has six degrees of freedom (6 DOF) as it can both move and rotate in 3D
space. This thesis uses two different geographic reference frames to represent these,
illustrated in Figure 2.20.

{n}

N

D

E

{b}
x

y
z

pn

Figure 2.20: Illustration of the inertial {n} and body-fixed {b} reference frames, used to
represent the vehicle kinematics. Note that for the hexacopter used in this thesis, the
x-axis in {b} is centered between the two blue front airframe support arms.

First, let {n} denote the (right-hand) north-east-down (NED) coordinate system defined
relative to the Earth’s reference ellipsoid (Smith 1987). Further, {n} is assumed to be
inertial such that Newton’s laws still apply (Fossen 2011). The position of the vehicle
can then be represented by the vector:

pn :=
x

y
z

 ∈R3 (2.1)

Next, let {b} denote the (right-hand) body-fixed reference frame that is a moving co-
ordinate frame fixed to the center of mass of the vehicle: The x- and y-axis point in the

2.7. Multirotor Dynamics 29

forward and starboard direction of the vehicle, while the z-axis points downwards along
the normal axis to complete the right-hand convention. The attitude of the vehicle can
then be described by the relative orientation of {b} with respect to {n}. Using the Euler
angles roll (φ), pitch (θ) and yaw (ψ) that describe a principal rotation about the x, y
and z axes, respectively, the attitude can be represented as:

Θ :=
φθ
ψ

 ∈R3 (2.2)

The linear and angular velocity of the vehicle can then also be represented in {b} relative
to {n} by the respective vectors:

v b :=
u

v
w

 ∈R3, ωb :=
p

q
r

 ∈R3 (2.3)

Linear velocity in {b} is often named surge (u), sway (v) and heave (w).

Furthermore, the conversion from {b} to {n} can be represented by the (zyx convention)
rotation matrix Rn

b (Θ) ∈ SO(3) (Fossen 2011):

Rn
b (Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 (2.4)

where c and s is shorthand forms for cosine and sine, respectively. As a result, the linear
velocity represented in the inertial {n} frame, v n := [ẋ, ẏ , ż]ᵀ ∈ R3 is then given by the
transformation:

v n = Rn
b (Θ)v b (2.5)

2.7.2 Kinetics

The multirotor is essentially a very simple machine, consisting of several individual ro-
tors attached to a rigid airframe in an evenly distributed circular pattern, all pointing
upwards. Control of the multirotor is thus achieved by differential control of the thrust
generated by each rotor: Pitch and roll is achieved by adjusting the relative speed of
opposing rotors, while heave is a function of the total thrust of all rotors. By alternat-
ing the rotation of every rotor, yaw control is obtained by adjusting the average speed
of those rotating Clockwise (CW) relative to that of the ones rotating Counterclockwise
(CCW). However, no thrust is achievable in surge or sway, making the system underac-
tuated.

30 Chapter 2. The Multirotor Platform

{b}

T4
Φi

di

z

x

y

T6
T5

T1

T3

T2

Figure 2.21: Notation for the multirotor equations of motion, here illustrated for the
hexacopter used in this thesis. CW and CCW rotating rotors are represented as green
and red arrows, respectively. Note that for this airframe, Φi = i π3 − π

6 .

Let the N rotors of the multirotor be labeled i ∈ {1, . . . , N } in a clockwise direction as
shown in Figure 2.21. Each rotor has associated an angle Φi between its airframe sup-
port arm and the x-axis in {b}, as well as a distance di from the central axis of the vehi-
cle.

To find the mapping from forces and moments to rotor inputs, the thrust Ti generated
by each individual rotor i can be modelled by the quadratic model:

Ti = cT$
2
i (2.6)

where $i is the angular speed. cT > 0 is a coefficient dependant on the geometry, pro-
file, radius and area of the rotor, as well as the air density. In practise it can be modeled
as a constant that can be easily determined from static thrust tests (Mahony, Kumar,
and Corke 2012). Likewise, the reaction torque generated from each rotor can be mod-
elled as:

Qi = cQ$
2
i (2.7)

where the coefficient cQ has similar dependencies as cT and can be determined in the
same manner.

2.7. Multirotor Dynamics 31

The total thrust force applied to the vehicle is the sum of the the thrusts from each
individual rotor:

TΣ :=
N∑

i=1
|Ti | = cT

N∑
i=1

$2 (2.8)

Further, the net moments produced about the axes in {b} can be expressed as:

K =− cT

N∑
i=1

di si n(Φi)$2 (2.9a)

M =cT

N∑
i=1

di cos(Φi)$2 (2.9b)

N =cQ

N∑
i=1

σi$
2 (2.9c)

where σi ∈ {−1,+1} denotes the direction of rotation of the i th rotor; −1 corresponding
to CW and +1 to CCW. This can be written in matrix form:

TΣ
K
M
N

=

cT · · · cT

−cT d1si n(Φ1) · · · −cT dN si n(ΦN)
cT d1cos(Φ1) · · · cT dN cos(ΦN)

σ1cQ · · · σN cQ

︸ ︷︷ ︸

Γ

$2

1
$2

2
...
$2

N

 (2.10)

whereΓ ∈R4xN is a constant matrix, dependant on the number and placement of rotors.
Thus, given the desired total thrust and moments, we can solve for the required rotor
speeds. For N = 4, i.e. a quadcopter, Γ is a 4x4 matrix and it is simply a matter of taking
the inverse Γ−1. However, in this thesis a hexacopter (N = 6) is used, and for this reason
the pseudoinverse Γ† would have to be used instead.

By defining f b ∈ R3 and mb ∈ R3 as the nonconservative forces and moments, respec-
tively, acting on the vehicle in {b} we have1:

f b :=
 0

0
−TΣ

+Λ, mb :=
K

M
N

 (2.11)

whereΛ ∈R3 comprises secondary aerodynamic forces whose main factors are induced
drag and rotor flapping (Mahony, Kumar, and Corke 2012). Λ = 0 in the neutral hover
position, and the terms are small for modest translational velocities. In addition they

1Note the negative sign in f b as the z-axis is defined positive downwards.

32 Chapter 2. The Multirotor Platform

act as nonlinear damping, often coined as "good" nonlinear terms (Khalil 2002, Sec-
tion 13.4), which in fact help improve the stability of the system. Hence,Λ is disregarded
when further developing the dynamics of the multirotor.

Finally, the 6 DOF equations of motion for the multirotor are (Mahony, Kumar, and
Corke 2012):

ṗn =v n (2.12a)

mv̇ n =mg n +Rn
b (Θ) f b (2.12b)

Ṙn
b (Θ) =Rn

b (Θ)S(ωb) (2.12c)

I ω̇b =−S(ωb)Iωb +mb (2.12d)

where m ∈ R and I ∈ R3 denotes the mass and constant inertia matrix of the vehicle,
while g n = [0,0, g] is the acceleration of gravity. Note that the equations of motion is
split into a translational2 (2.12a)-(2.12b) and a rotational (2.12c)-(2.12d) part. This sep-
aration will be useful in the further discussions.

2.7.3 Translational control

If only translational control of the multirotor is of interest, we can develop purely trans-
lational equations of motion. To do this, we first assume that there exists low-level con-
trol capable of keeping a desired attitudeΘ? and a desired thrust in heave T?

Σ . A simple
linearized PD control law is shown to guarantee stability for small deviations from the
hover position in (Mahony, Kumar, and Corke 2012). Moreover, they present an alter-
native nonlinear controller that is guaranteed to be exponentially stable for almost any
rotation (Lee, Leoky, and McClamroch 2010).

Secondly, for small roll and pitch angles ∆φ,∆θ, and an arbitrary yaw angle ψ0, we can
linearize (2.4) about the neutral hover position, i.e. Θ0 = [0,0,ψ0]ᵀ. The resulting linear
rotation matrix, R∆ is then (Mahony, Kumar, and Corke 2012):

R∆(∆Θ) =
 cψ −sψ ∆θcψ+∆φsψ

sψ cψ ∆θsψ−∆φcψ
−∆θ ∆φ 1

 (2.13)

where ψ=ψ0 +∆ψ. The nominal force from the rotors in the neutral hover position is
TΣ0 = mg to counter the force gravity. Using (2.13) and linearizing (2.12a)-(2.12b) about

2Even though translational and linear velocity is often used interchangeably, the former is used solely
for describing velocity represented in the inertial {n} frame in this thesis.

2.7. Multirotor Dynamics 33

Θ0,TΣ0 we get (Mahony, Kumar, and Corke 2012):

mẍ =−mg (∆φsψ0 +∆θcψ0) (2.14a)

mÿ =mg (∆φcψ0 −∆θsψ0) (2.14b)

mz̈ =−TΣ+mg (2.14c)

or in matrix form:

mp̈n =ΥF +mg n (2.15)

where:

Υ :=
 0 −mg sψ0 −mg cψ0

0 mg cψ0 −mg sψ0

−1 0 0

 (2.16)

is an invertible matrix defining the mapping between the vector of total rotor thrust and
roll/pitch, F = [TΣ,φ,θ], and the resulting translational acceleration.

Consequently, a desired translational force τn,? ∈R3 can be achieved by inverting (2.16)
and solving for the desired total rotor thrust and roll/pitch set points F? = [T?

Σ ,φ?,θ?]:

F? =Υ−1(τn,?−mg n) (2.17)

also compensating for the force of gravity. Finally, inserting (2.17) into (2.15), we are
left with the second order expression for the translational dynamics of the multiro-
tor:

mp̈n =τn,? (2.18)

Note that this expression implies that a certain translational force would give rise to
infinite acceleration. In reality, the damping from Λ that was neglected in (2.11) will
always ensure a terminal velocity.

34

Chapter 3

Real-Time Kinematics
Navigation

While an IMU provides the necessary measurements for stabilization, navigation for
UAVs is usually highly dependant on a Global Navigation Satellite System (GNSS). The
normal precision of such systems is however in the range of a few meters, which is in-
sufficient in a cooperative control setting if multiple UAVs are to work together in close
proximity.

Real-Time Kinematics (RTK) satellite navigation is a technique used to enhance the pre-
cision of a GNSS (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007). Instead of just
using the information content of the received signals, it also utilizes phase measure-
ments of the carrier waves, resulting in centimetre-level accuracy. However, this accu-
racy is only gained in the relative navigation of two receivers, as the comparison of said
phase measurements is necessary to remove errors.

This chapter starts with the theory behind RTK, before presenting Piksi, the RTK re-
ceiver used in this thesis. A set of experiments investigating the accuracy and robust-
ness of the receiver is also given, before ending the chapter with a short summary.

3.1 Introduction to RTK

In this section, the general concept of a GNSS and its extension to RTK navigation is
briefly explained. The theory is based on (Svendsen 2001) and (Hofmann-Wellenhof,
Lichtenegger, and Wasle 2007), and the Global Positioning System (GPS) is used as an
example, as this is currently the only GNSS for which Piksi supports RTK functionality
(see Section 3.3).

35

36 Chapter 3. Real-Time Kinematics Navigation

3.1.1 The general concept

There are several GNSSs today, out of which the American Navigation System using
Timing And Ranging (NAVSTAR), or just GPS, is the best known. Others are the Russian
GLONASS and the European Galileo. All these satellite-based systems gives the users
the opportunity to determine their own position, velocity and time in a common refer-
ence frame on a continuous basis (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007).
This task is accomplished based on the two following principles:

• The velocity of a signal is determined by the distance covered and the time used.

• An electromagnetic signal travels through the atmosphere close to the speed of
light (roughly 300,000 km per second).

All the three major GNSSs mentioned above emit signals that can be described by the
three-layer model illustrated in Figure 3.1, where the frequencies of the GPS L1 band
has been used.1 The first layer characterizes the physical properties of the transmit-
ted signals, while the second ranging code layer describes the method of measuring
the propagation time from satellite to receiver. Finally, the data-link layer contains the
navigation message, which among other information contains the time of transmission
and satellite ephemerides (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007).

Ranging code
generator

Carrier frequency
generator

Satellite signal
(phase modulated)

Data message
generator

1
0

Physical layer
1575.42 MHz

Ranging code layer
1.023 / 10.23 MHz

Data-link layer
50 Hz

Figure 3.1: Composition of the general navigation satellite signal, with frequencies
from GPS L1 given as an example. Each layer is successively multiplied onto the next,
forming the complete phase modulated satellite signal.

1GPS does in fact transmit in several bands. However, as discussed in Section 3.3 Piksi currently only
utilizes the L1 band, hence it is the only one mentioned here.

3.1. Introduction to RTK 37

3.1.2 Code and phase measurements

For GPS, the ranging code is a continuous but periodic signal, strictly synchronized
to the satellite clock. By generating and time shifting its own version of said signal,
a receiver uses correlation techniques to precisely determine the propagation time of
a measured signal from a given satellite. Further, by using satellite ephemerides in
the data message to calculate the position of each satellite, the propagation times are
effectively converted to the relative distance to each of these positions. These range
measurements are actually called pseudoranges, as the difference between receiver and
satellite clocks introduce potentially large biases. Each pseudorange R can hence be
modeled as (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007):

R = c4t + c4δ= %+4% (3.1)

where c is the speed of light, 4t is the propagation time and 4δ is the difference be-
tween the satellite and receiver clock. % is the actual distance between satellite and
receiver, while 4% is the range correction resulting from the clock errors. This range
correction is common for each satellite, assuming that their clocks are synchronized.
As a result, a minimum of four pseudoranges (hence four satellites) is required to solve
for the range correction 4%, in addition to the 3D position of the receiver. Based on the
ranging code, these measurements are appropriately called code measurements.

Because of the higher frequency, i.e. shorter wavelength, a more accurate alternative is
to use the phase measurementsΦ of the carrier signal (Hofmann-Wellenhof, Lichteneg-
ger, and Wasle 2007):

λΦ= %+4%+λN (3.2)

whereλ is the wavelength and N the number of integer carrier cycles between the satel-
lite and the receiver, known as the integer ambiguity. This unknown ambiguity is the
downside of pseudoranges obtained through phase measurements. The nontrivial task
of solving for N is known as Integer Ambiguity Resolution (IAR), and is further discussed
in Section 3.1.5.

Table 3.1: Frequencies, wavelengths and resulting theoretical measurement resolutions
for the GPS ranging codes and L1 carrier signal.

Signal Frequency [MHz] Wavelength [m] Resolution [mm]
C/A 1.023 293.26 2932.55
P 10.23 29.33 293.26
L1 1575.42 0.19 1.90

38 Chapter 3. Real-Time Kinematics Navigation

Using a measurement precision of 1 %, Table 3.1 compares the theoretical measure-
ment resolution of the ranging codes2 and carrier signal for GPS L1, where the latter
obviously gives potential for much higher precision in navigation.

Velocity determination is in both cases achieved by using the Doppler principle of ra-
dio signals (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007). Because of the rela-
tive motion of the satellites with respect to a moving receiver, the frequency of a signal
broadcast by the satellites is shifted when received at the vehicle. With the satellite
velocity available through the ephemerides in the navigation message, the receiver ve-
locity can be determined. This concept is not further explained here, but it can be men-
tioned that, like the pseudoranges, a minimum of four Doppler observables is required
to solve for the velocity.

3.1.3 Sources of error

The pseudoranges from both code (3.1) and phase measurements (3.2) are affected by
additional systematic errors or biases, as well as random noise. A short description of
some of the typical sources of such errors is given below.

Satellite clock error
Poor synchronization between the clocks of different satellites can induce errors.
However, each satellite has four atomic clocks, and a system that keeps the differ-
ent satellites synced make sure that this error is only in the range of 1 nanosecond.

Ephemeris data
The precision of the calculated position of satellites naturally affects the precision
of measurements.

Ionospheric delay
The ionosphere extends through various layers from about 50 km to 1000 km. Gas
in this region is ionized by ultraviolet rays from the sun, causing the release of free
electrons, which in turn affects the propagation of electromagnetic signals. The
error is usually in the order of 1-10 m, but can be as large as 50 m. An approxima-
tion of the entire vertical ionospheric refraction known as the Klobuchar model is
used to counter the induced delays. The coefficients of this model are broadcast
by the GPS navigation message and it is thus implemented in most GPS receivers.

Tropospheric delay
Stretching from sea level to an altitude of about 15 km, the troposphere induces
an error that can vary from about 2.4 m to about 25 m, depending on the angle be-
tween the satellite and the horizon. Temperature, pressure and humidity, which
affects the delay, can be modeled and used to mitigate the imposed error.

Multipath
Multipath errors are caused by signals reflecting from surfaces near the receiver,

2The L1 signal uses two different ranging signals: The coarse/acquisition (C/A) code and the precision
(P) code (Hofmann-Wellenhof, Lichtenegger, and Wasle 2007).

3.1. Introduction to RTK 39

causing an indirect (and hence longer) path from the satellite. Satellites at low
elevations are more susceptible to multipath than those at high elevations. The
use of a metal ground plane or choke rings can help remove multipath.

Dilution of precision
In addition to the accuracy of the individual pseudoranges, the geometry of the
given satellite constellation affects the accuracy of the solution. This Geomet-
ric Dilution of Precision (GDOP) cannot be corrected by modelling, and hence
makes it preferable to base a solution on widely separated satellites.

3.1.4 Differential GNSS and RTK

By combining measurements from two separate receivers, errors and noise common
to observations from the same satellite can be removed in a process called single dif-
ferencing. Likewise, receiver-specific errors can be eliminated by also comparing ob-
servations from several different satellites, similarly named double differencing. As a
consequence, double-differenced pseudoranges are, to a high degree, free of systematic
errors originating from the satellites and receivers (Hofmann-Wellenhof, Lichtenegger,
and Wasle 2007).

Differential positioning with GNSS, or DGNSS, thus requires a reference or base station
receiver that transmits corrections to a second receiver. This means that it is only the
relative navigation of the two receivers that benefit from the increased accuracy. How-
ever, if the correct global position of the base is known, the global accuracy of the other
can be extrapolated with the same accuracy. DGNSS with phase measurements is used
for the most precise kinematic applications, and this method is what is usually denoted
as the Real-Time Kinematics (RTK) technique (Hofmann-Wellenhof, Lichtenegger, and
Wasle 2007) when performed in real-time. As mentioned earlier, this also involves the
IAR, which is discussed next.

3.1.5 Integer ambiguity resolution

Integer Ambiguity Resolution (IAR) is a very active and advanced research area and only
a brief explanation of the concept is mentioned here.

Since the magnitude of the systematic errors mentioned in Section 3.1.3 are much larger
than the theoretical measurement resolution of the phase pseudoranges, removing them
through double differencing is necessary to be able to isolate and solve the integer am-
biguity in (3.2). Moreover, solving this ambiguity is not straightforward and has to uti-
lize changes in satellite geometry: With a constant constellation there are more un-
knowns than equations, due to the fact that each new satellite adds a new ambigu-
ity. However, as the constellation changes, new linearly independent equations can
be added, and thus the observability of the ambiguities increase over time (Svendsen
2001).

40 Chapter 3. Real-Time Kinematics Navigation

Many different search algorithms have been developed to speed up the estimation of
ambiguities and the interested reader is referred to (Svendsen 2001) and (Hofmann-
Wellenhof, Lichtenegger, and Wasle 2007), where the most commonly used are pre-
sented in detail. Generally, an increased number of common satellites between two re-
ceivers will increase the speed of IAR algorithms, and utilizing known constraints, e.g. a
known initial baseline between the two, can help solve the ambiguities in much shorter
time.

Float and fix

During the IAR it is common to distinguish between a float and a fixed solution, where
the former is a real valued estimate based on several hypotheses. When the algorithm
is left with a single hypothesis, the ambiguity is said to be resolved or fixed, and we get
the correspondingly named fixed solution.

3.2 Navigation System for Multirotors

With a price tag ranging from US$ 6,500 to US$ 25,000, RTK systems has traditionally
been expensive and hence limited to applications like geodetic surveying, construction
machine control or precision control of agriculture machinery. A growing Chinese mar-
ket has put pressure on the high cost, with products often priced as low as 25 % of the
equivalent brand-name products.3

The release of the open-source software package RTKLIB (Takasu and Yasuda 2009)
has brought many low-cost applications of RTK. With RTKLIB and consumer-grade re-
ceivers able to output raw GPS data, users can construct and operate their own low-cost
RTK GPS system. This has since been used in several applications for UAVs, e.g. (Skul-
stad and Syversen 2014; Bäumker, Przybilla, and Zurhorst 2013; Stempfhuber 2013).
The downside is that RTKLIB has to run on a separate computer.

A complete RTK solution called Piksi was crowdfounded in 2013, with a lightweight and
low-power design targeted at UAVs (Kickstarter 2014). Piksi is a GPS receiver with an
on-board open-source mircocontroller that solves the RTK navigation (SwiftNAV 2013),
directly outputting high-precision position and velocity solutions. Moreover, with the
low price of US$ 995 for a complete kit with two receivers and a radio link to connect
them (SwiftNAV 2015d), Piksi opens the door to lots of new applications. However, one
drawback is that the open-source firmware for the microcontroller is still under devel-
opment, with a prevalence of bugs that currently impedes robust and reliable applica-
tions. Still, with the continuous improvement of said problems, Piksi is a promising
platform that this project has chosen for further examination.

3Prices are based on common market knowledge, and was confirmed by a sales representative from Leica
Geosystems (http://www.leica-geosystems.no/)

http://www.leica-geosystems.no/
http://www.leica-geosystems.no/
http://www.leica-geosystems.no/

3.3. Piksi 41

3.3 Piksi

The Piksi RTK receiver measures the baseline, i.e. the relative distance, between itself
and a second receiver. As mentioned in Section 3.1.4, this involves comparing the phase
measurements from satellites, hereby referred to simply as observations, between the
two receivers. Piksi needs observations from a minimum of 5 common satellites to pro-
duce RTK positioning (SwiftNAV 2013). It also produces highly accurate velocity mea-
surements, which is not dependant on observations from another receiver.

Piksi’s architecture consists of three main components:

• An RF front-end that downconverts and digitizes the RF signal from the antenna.

• An FPGA which performs basic filtering and correlation operations on the digi-
tized signal stream.

• A microcontroller which controls the FPGA, programs the correlation operations,
collects the results, and processes them all the way to PVT solutions.

While the current FPGA and microcontroller firmware is only capable of utilizing the
L1 GPS code, the front-end is also able to receive Galileo and GLONASS signals, making
future improvement to accuracy and IAR possible (Svendsen 2001). According to (Swift-
NAV 2013), Piksi is theoretically capable of calculating PVT solutions at 50 Hz, but the
developers have stated at the community forum (SwiftNAV 2015a) that a more realistic
figure for the current firmware is around 20 Hz.

An overview of the peripherals of Piksi is shown in Figure 3.2.

Figure 3.2: Connections for the Piksi RTK receiver. Image courtesy of swiftnav. com .

This section will first consider some of the challenges with the fact that the firmware of
Piksi is still under development. Next, a discussion of the choice of antennas is given,
before a set of experiments investigating the accuracy and robustness of Piksi is pre-
sented.

swiftnav.com

42 Chapter 3. Real-Time Kinematics Navigation

Base and Rover

For the remainder of this chapter, the distinction between base and rover is made when
talking about multiple Piksi modules. A base or base station is in this context a station-
ary receiver, providing observations for other Piksi modules. A rover is then a mobile
receiver, e.g. the one on a multirotor, that uses said observations from a base station to
calculate the baseline between them.

3.3.1 Issues with stability

Piksi was crowdfunded on Kickstarter in September 2013 (Kickstarter 2014). While the
hardware started shipping in the spring of 2014, the firmware and software is still in a
beta stage, and under constant development. There has been a prevalence of stability
issues, errors and other bugs, which is to be expected when software is still in its beta
stage.

A long awaited version 1.0 firmware update, promising to fix most problems, has re-
peatedly been postponed since work towards this thesis started in August 2014 (at which
time the firmware was at version 0.9). Instead, smaller partial updates have been re-
leased along the way, addressing some of the issues, the current version now being
0.16.

The issues with Piksi have been under heavy discussion on their community forum
(SwiftNAV 2015a), and many were experienced during the work with this thesis. In the
interest of accounting for the reliability of Piksi, the most prevalent issues are listed be-
low, together with a small discussion of how they affected the experiments.

Temporary freeze

The stream of navigation data from the Piksi rover or base would sometimes freeze tem-
porarily for 1− 2 minutes, while satellite tracking would in fact not freeze. When un-
freezing, the navigational data from Piksi was often better than when the freeze started.

This problem was the most prevalent during early experiments, causing stagnation in
the recording of navigation data. However, being aware of the issue meant that such
a freeze didn’t necessarily ruin tests completely, as the Piksi module would always un-
freeze after a short while. The problem was fixed in the 0.13 firmware.

CPU overload

If the solution frequency was pushed above the stated 20 Hz by the developers, Piksi
would indeed max out on its CPU usage and not manage to deliver solutions faster.
Furthermore, the overload of its CPU would seem to prevent it from processing any

3.3. Piksi 43

incoming messages, as any subsequent command was ignored, forcing a reset to default
values to solve the issue.

The overload would sometimes even occur at frequencies at or right below 20 Hz. As a
consequence, the default value of 10 Hz was mostly used throughout this thesis.

System crash

Cyclic redundancy check errors, stack overflow and other issues would sometimes cause
Piksi to crash and only a reboot solved the problem.

Many of the experiments had to be repeated because of such errors, though their preva-
lence has changed considerably between firmware updates, as some were fixed and
others appeared. Users still report them occurring sporadically in the newest firmware.

Undetected cycle slips

A cycle slip happens when the tracking of the carrier phase in (3.2) slips an integer
number of cycles, often caused by a temporary signal loss. If undetected, it can give
an offset in the baseline proportional to the signal wavelength (e.g. 19 cm for Piksi and
GPS L1)(Takasu and Yasuda 2004). An incorrect IAR initialization can give similar off-
sets.

This problem would sometimes occur during tests, forcing a reset of the IAR and reac-
quiring a correct RTK fix. Version 0.14 and 0.15 introduced the capability to detect some
cycle slips and incorrect initializations, but Piksi is still vulnerable to slips, especially
when dropping and reacquiring satellites close to the limit of 5.

3.3.2 External antenna

The integrated antenna in Piksi is only a small patch antenna, prone to disturbances,
and the use of an external antenna is highly recommended by the producer. Both a
patch antenna from u-blox and an embedded antenna from Tallysman was used in an
RTK solution in (Skulstad and Syversen 2014). They had problems with loss of satellites
while maneuvering because of the antenna tilt during banking. Their solution was to
attach the antenna with a gimbal to the UAV, to compensate for the banking angle. A
gimbal adds complexity, not to mention extra weight and space, which makes it highly
preferable to circumvent the need for it on the multirotors in this project.

Thus, when choosing which antennas to use on the multirotors, attention was given to
the sensitivity to antenna tilting. Low weight and small size was also important factors.
The antenna for the base station was not limited by the same constraints. A base station
is on the other hand susceptible to multipath, as it is placed in fixed positions near the
ground, possibly close to buildings and vegetation.

44 Chapter 3. Real-Time Kinematics Navigation

After investigating other users experiences in the Piksi community and consulting with
experts in GNSSs at SINTEF, the following antennas were chosen:

GPS-701-GG from NovAtel
A high-performance pinwheel antenna, boasting excellent multipath rejection
(NovAtel 2014). This was the main base station antenna, depicted in Figure 3.3a.

M1227HCT-A-SMA from Maxtena
Shown in Figure 3.3b, this is a special helix shaped antenna, chosen because of
a low susceptibility to tilting. Its light weight of only 17 grams and not needing a
ground plane also made it optimal for the system, saving both weight and space
(Maxtena 2014). This antenna was the main rover (UAV) antenna.

(a) The GPS-701-GG pinwheel antenna from
NovAtel. Image courtesy of novatel. com .

(b) M1227HCT-A-SMA, the helix antenna from
Maxtena. Image courtesy of maxtena. com .

Figure 3.3: The base station (a) and rover (b) antennas for Piksi.

3.4 RTK Experiments

Several experiments were conduced to test the accuracy and robustness of the Piksi RTK
navigation system and the chosen antennas. Mainly the helix antenna was tested, as
this was the one chosen for the hexacopter and thus, will be exposed to high dynamics
and disturbances.

Tests that measured the static accuracy is presented first, before an experiment that
investigated the vulnerability of tilting the helix antenna given.

3.4.1 Static accuracy

Two Piksis with RTK fix (see Section 3.1.5) were kept a fixed distance from each other
(constant baseline length, |BL|). This way, the static accuracy was a simple calculation
of the standard deviation on the reported baseline. Given n samples the standard devi-
ation σ for each coordinate is then calculated as (Walpole et al. 1993):

novatel.com
maxtena.com

3.4. RTK Experiments 45

σ j =
√

1

n −1

n∑
i=1

(x ji − x̄ j)2 (3.3)

where x ji is the value of sample i ∈ {1, . . . ,n} for coordinate j ∈ {N ,E ,D} and x̄ j is the
mean value of coordinate j given by the equation:

x̄ j = 1

n

n∑
i=1

x ji (3.4)

The static test setup is depicted in Figure 3.4, and all test were performed with the helix
antenna, except for some early tests with the u-blox antenna used in (Skulstad and Sy-
versen 2014). However, most of these early tests were corrupted by the freeze or crash
errors mentioned in Section 3.3.1, and so only one was considered here. Two simple ra-
dios (identical to the ones used as the secondary telemetry link in the complete system)
were used to transmit observations between the Piksis. The experiment was performed
on the rooftop of the Electro-block B and D at NTNU, with an unobstructed view to the
sky, and little or no clouds present.

Figure 3.4: Piksi static accuracy test setup with helix antennas and radios from 3D
Robotics for the communication of common observations.

Results and discussion

The results are listed in Table 3.2 with the resulting standard deviations for each sepa-
rate coordinate and the total deviation of the NED position. Which firmware version in

46 Chapter 3. Real-Time Kinematics Navigation

use for each test is also listed, as Piksi has seen several improvements in performance
with each update.

Table 3.2: Results from Piksi static accuracy experiment.

FW Antenna Samples
Avg. #
of sats.

|BL|
[m]

Standard deviation [m]
N E D NED

1 0.11 Helix 3177 8.89 0.3 7.13 5.66 9.42 13.10
2 0.11 Helix 769 6.71 0.3 5.24 4.34 9.27 11.50
3 0.11 u-blox 799 8.48 0.3 12.56 3.95 11.20 17.29
4 0.12 Helix 1120 10.00 0.4 3.06 2.11 5.16 6.36
5 0.12 Helix 725 10.00 0.4 2.35 2.24 6.90 7.63
6 0.12 Helix 756 10.99 2.6 2.63 1.95 5.38 6.30

AVG - - 1224 9.18 - 5.49 3.38 7.89 10.36

We see the best performance in tests 4-6, which was probably a combination of the
firmware update itself and the fact that the firmware update brought improved acquisi-
tion of satellites. Like a normal GNSS (Svendsen 2001), we see that the horizontal accu-
racy (North and East) is noticeably better than the vertical accuracy (Down). However,
an unknown discrepancy is seen in the standard deviation of the North position with
the u-blox antenna, resulting in a distinctively worse total deviation than the other tests.
The average total standard deviation of 10.4 mm is impressive, and disregarding the test
with the u-blox antenna it would have been even better. Still, this is very close to the
theoretical measurement resolution of 1.9 mm (see Table 3.1 in Section 3.1.2) and well
within the centimetre-level accuracy promised by the producer (SwiftNAV 2013).

3.4.2 Antenna tilt

Since all maneuvering with a multirotor in the horizontal plane is produced by adjust-
ing the pitch and roll, it is inevitable that a body mounted antenna will experience
tilting. The main problem for an RTK system in this situation is that losing too many
satellites can give a poor baseline solution, if not losing the fix altogether. Indeed, Piksi
needs a minimum of 5 satellites in common with a base station to produce a baseline
solution. For this reason a simple setup at the same location as the static accuracy ex-
periment was used to test the system’s susceptibility to antenna tilting:

• One Piksi as a base station, using the pinwheel antenna.

• One Piksi as a rover, using the helix antenna mounted on a servo.

Both Piksis ran the 0.12 firmware and the two antennas was kept a fixed distance of
about 2.6 meters from each other. The radios from 3D Robotics was again used for the
communication of observations. After acquiring good satellite tracking on both and the
rover achieving RTK fix, the rover’s antenna was tilted, to a certain angle orthogonal to
the baseline, by the Arduino controlled servo depicted in Figure 3.5. The antenna was

3.4. RTK Experiments 47

kept at this angle for 30 seconds before resetting the tilt. It was then kept in an upright
position for 30 seconds to allow the reacquiring of any lost satellites during tilting, after
which the next tilt angle was applied. Note that Piksi had 11 satellites in the upright
position.

Figure 3.5: The Arduino controlled servo used in the tilt experiment.

Results and discussion

As seen in Table 3.3, the system only lost fix when the antenna was tilted -90 degrees,
falling down to 4 satellites, which is below the minimum of 5 common satellites that
Piksi needs. There was also a degradation of the baseline with the minimum of 5 satel-
lites at -65 degrees, where the number of IAR hypotheses temporarily went up to 3.

Table 3.3: Results from Piksi antenna tilt experiment, with the minimum number of
common satellites and the status of the RTK fix during each tilt cycle.

Tilt angle [deg] Satellites RTK fix
-90 4 lost
-75 6 ok
-65 5 poor
-55 8 ok
-45 9 ok
45 11 ok
55 8 ok
65 10 ok
75 8 ok
90 9 ok

48 Chapter 3. Real-Time Kinematics Navigation

45 55 65 75 90
0

2

4

6

8

10

12

#
 o

f
s
a

te
lli

te
s

Tilt angle [degrees]

W

E

No tilt

Figure 3.6: Bar graph of the Piksi antenna tilt experiment. The blue and red bars are
from tilting towards the west and east, respectively, as the base station was placed north
of the rover.

Interestingly, the results were much better when tilting towards the east, as is clear from
the bar plot in Figure 3.6. This was probably a result of the satellite constellation at the
time of the testing. The experiment shows an overall impressive resilience to tilting the
helix antenna. In the normal operation of a multirotor, the induced tilt during maneu-
vering should stay well below the problematic angles in this experiment.

The fact that the helix antenna accepts satellites even during extensive tilting is a result
of a low elevation mask. This would normally be undesirable, as the signals from satel-
lites at low elevations must travel much further through the atmosphere, and will thus
suffer more from the errors discussed in Section 3.1.1. By contrast, a "good" satellite at
zenith can appear to be at a low elevation when on a tilting multirotor. However, since
only the satellites a rover has in common with the base can be used in the RTK solu-
tion, the low horizon satellites are still filtered out by the base antenna with a higher
elevation mask.

3.5 Interference from Telemetry

During the first test of the complete system, i.e. after the experiments presented in
this chapter was performed, a new issue was encountered: The Piksi modules on the
multirotors experienced a significant drop in satellite signal strengths when the main
telemetry unit, PicoStation M2 (see Section 2.2.7), was turned on. Screenshots from
the Piksi Console in Figure 3.7 show the dramatic drop and rise in signal strength when
PicoStation was turned on and off.

3.5. Interference from Telemetry 49

(a) PicoStation turned on. (b) PicoStation turned off.

Figure 3.7: GPS interference from PicoStation with the original placement of the an-
tenna masts on the carrier plate. The plots are GPS signal strengths from the Piksi Con-
sole, where the green and red arrows indicate when PicoStation was powered on and
off, respectively.

After thorough experimentation it was found that the interference was originating from
PicoStation itself and not from RF signals from its antenna. Attempts were made to
shield the PicoStation in a Faraday cage made of copper (see Figure 3.8), unfortunately
without any noticeable reduction of the interference.

The most effective remedy turned out to be simply moving the antenna further away
from PicoStation. Since the mount for the PicoStation was already placed at the very
end of the carrier plate, this meant designing a new placement for the antenna mast.
Thus, the third payload level was designed and placed on top of the previous design (see
Figure 2.18). The effect of powering on PicoStation with the new antenna placement is
shown in Figure 3.9. As is clearly visible, the new antenna placement didn’t entirely
solve the problem, as the signal strength was still affected. However, it reduced the
interference to an acceptable level without complicating the design too much.

50 Chapter 3. Real-Time Kinematics Navigation

Figure 3.8: The shielded housing for the PicoStation, using copper tape.

Figure 3.9: GPS interference from PicoStation with the improved placement of the an-
tenna masts on the separate GPS plate. The green arrow indicates when PicoStation
was powered on.

3.6 Summary

Together with the small size and light weight, the experiments in this chapter show great
potential for Piksi and the chosen antennas as an RTK solution for UAVs. However, the
issues encountered with stability currently limits the feasibility of tight integration in
an autonomous system. As a consequence, Piksi was only partially integrated in the
cooperative implementation presented in Chapter 5.

Chapter 4

Cooperative Control

This thesis has chosen to investigate the distributed approach to cooperative control
mentioned in the introduction, where the agents ought to operate based on local in-
formation only, obtained through sensing or intercommunication. Consequently, the
communication topology becomes essential to the design of a decentralized controller.
Thus, a cooperative system can be divided into four basic elements:

• Global objective

• Agents

• Information topology

• Control algorithm for the motion of agents

Depending on the application, the global objective may differ. The main focus of this
thesis is the problem of formation control, where the global objective is to stabilize the
relative positions of agents to desired values. In (Bai, Arcak, and Wen 2011), the authors
present a unifying passivity-based framework for cooperative problems. The advan-
tages are:

• admissibility of complex and heterogeneous agent dynamics,

• design flexibility, robustness and adaptivity,

• modularity and scalability.

This chapter starts by defining the coordination problem, before a design procedure
from (Bai, Arcak, and Wen 2011) is presented and then applied to the platform from
Chapter 2 to achieve formation stabilization. The resulting distributed coordination
law is then verified by simulation, before a short summary ends the chapter. The fol-
lowing sections assume that the reader is familiar with basic graph theory.1

1Note also that the labeling of reference frames has been dropped in this chapter, as all spatial vectors
are represented in a common inertial frame.

51

52 Chapter 4. Cooperative Control

4.1 Problem Statement

Consider a group of N agents where the variables to be coordinated is represented by
the vector xi ∈ Rp and i ∈ {1, . . . , N } denotes each agent. This variable can for example
be the position of each agent (in which case p = 3). Assuming symmetric information
flow, let G be the undirected graph modelling the information topology between the
agents. Furthermore, assume that G is connected and has ` undirected links. Because
of symmetric information flow, the analysis can be simplified without changing the re-
sults by considering one of the agents at each link to be at the positive end. G and the
orientations of each link k can then represented by the incidence matrix:

D =

 d11 · · · d1`
...

. . .
...

dN 1 · · · dN`

 ∈RN×` (4.1)

where each element is defined as (Bai, Arcak, and Wen 2011):

di k :=

+1 if k ∈L +

i

−1 if k ∈L −
i

0 otherwise

(4.2)

where the set L +
i (L −

i) denotes the links for which agent i is at the positive (negative)
end.

The overall goal is to implement distributed coordination laws, using only local infor-
mation about neighboring agents, that guarantee the following two group behaviours:

A1) Each agent achieves a common velocity vector v (t) ∈ Rp prescribed for the group;
that is:

lim
t→∞ |ẋi −v (t)| = 0, ∀i ∈ {1, . . . , N } (4.3)

A2) If agents i and j are connected by link k, then the difference variable zk defined as:

zk :=
N∑

l=1
dlk xl =

{
xi −x j if k ∈L +

i

x j −xi if k ∈L −
i

(4.4)

converges to a prescribed compact set Ak ⊂Rp , ∀k ∈ {1, . . . ,`}.

Note that v (t) can be seen as the common mission velocity to be achieved by the group.
Furthermore, note that the target set Ak may change form depending on the applica-
tion. For the purpose of this thesis, it can be designed such that the vehicles maintain
a prescribed distance, hence keeping a formation. However, as discussed further in

4.2. The Passivity-based Design Procedure 53

Section 4.4, it is important that the target sets are feasible (Bai, Arcak, and Wen 2011).
Introducing the concatenated vectors:

x :=

 x1
...

xN

 ∈RpN , z :=

z1
...

z`

 ∈Rp` (4.5)

partitioning D in terms of column vectors:

D = [D1| · · · |D`] (4.6)

and using (4.4), z can be rewritten as:

z = (Dᵀ⊗ Ip)x (4.7)

Hence, z is restricted to R(Dᵀ⊗ Ip) and thus, the target sets Ak are only feasible if (Bai,
Arcak, and Wen 2011):

{A1 ×·· ·×A`}∩R(Dᵀ⊗ Ip) 6= ; (4.8)

4.2 The Passivity-based Design Procedure

(Bai, Arcak, and Wen 2011) suggests a two-step design procedure with the objective to
render the target sets Ak in (4.4) invariant and asymptotically stable, using passivity
properties. This section first presents each step, before applying them to the system
used in this thesis.

4.2.1 Step 1: Internal feedback

For each agent i ∈ {1, . . . , N }, design an internal feedback loop that renders its dynam-
ics passive from an external feedback signal ui (to be designed in Step 2) to the velocity
error:

yi := ẋi −v (t). (4.9)

Step 1 assumes that the input-output dynamics of each agent are given by:

xi =H 0
i {τi } (4.10)

where H 0
i {τi } denotes the input-output dynamics of the system in agent i . Thus, we

seek a feedback controller τi for each agent, such that the agent dynamics may be ex-
pressed in the form:

54 Chapter 4. Cooperative Control

ẋi =H i {ui }+v (t) (4.11)

where H i is a strictly passive system that is either dynamic or static. This transforma-
tion is shown in Figure 4.1

H o
i

τi xi +
Hi

ui yi

v (t) ∫
xi

Figure 4.1: Transformation of the dynamics of agent i in Step 1, from (4.10) to (4.11).

If H i is dynamic, it is assumed to have the form:

H i :

{
ξ̇i = fi (ξi ,ui)

yi = hi (ξi ,ui)
(4.12)

where yi and ξi ∈ Rni is the velocity error and state variable of subsystem H i , respec-
tively. Both fi (·, ·) and hi (·, ·) are assumed to be C 2 functions such that:

fi (0,ui) = 0 ⇒ ui = 0 (4.13)

and:

hi (0,0) = 0 (4.14)

As stated, H i is designed to be strictly passive. By (Khalil 2002, Definition 6.3) this
restricts (4.12) to have a C 1, positive definite, radially unbounded storage function, thus
making the origin globally asymptotically stable.

If H i is a static block, it is assumed to be of the form:

yi = hi (ui) (4.15)

where hi :Rp →Rp is a locally Lipschitz function satisfying:

uᵀ
i yi = uᵀ

i hi (ui) > 0, ∀ui 6= 0 (4.16)

thus making the system strictly passive by (Khalil 2002, Definition 6.1).

4.2. The Passivity-based Design Procedure 55

4.2.2 Step 2: External feedback

Design the external feedback signal ui in the form:

ui =− ∑̀
k=1

di kΨk (zk) (4.17)

where zk is the difference variables defined in (4.4) andΨk (zk) is a multivariable nonlin-
earity designed such that the target set Ak is invariant and asymptotically stable.

Step 2 is basically applying a feedback-term consisting of an input ui that is the sum of
some function Ψk of the difference variable zk for each link k. Note that since di k 6= 0
only if agent i is communicating on link k, this feedback is decentralized and imple-
mentable with local information.

By again introducing concatenated vectors:

y :=

 y1
...

yN

 ∈RpN , u :=

 u1
...

uN

 ∈RpN , Ψ :=

Ψi
...
Ψ`

 ∈Rp` (4.18)

and noting that ui can be expressed as:

ui =−[di l Ip | · · · |di`Ip]Ψ (4.19)

the external feedback ui for all agents can be written as:

u =−(D ⊗ Ip)Ψ(z) (4.20)

Hence, with the applied external feedback and some rearranging, the closed-loop struc-
ture for all agents can be represented as shown in Figure 4.2. As mentioned, H i is de-
signed to be strictly passive, and pre- and post-multiplying with Dᵀ and D preserves
this passivity. Therefore, the restrictions for the feedback in Step 2 boils down to de-
signing Ψk such that the passivity is preserved from ż to Ψ, rendering the whole inter-
connected system in Figure 4.2 passive.

56 Chapter 4. Cooperative Control

1N ⊗v (t)
+
ẋ

Dᵀ⊗ Ip

∫
∫ z

Ψ1

Ψ`

Ψ
D ⊗ Ip

−u

−
H1

HN

y

ż

Figure 4.2: The closed-loop structure of the cooperative control of all agents after ap-
plying Step 2.

4.2.3 Internal feedback for the multirotor

As discussed in Section 2.7, the mathematical model for each multirotor can be de-
scribed as double integrators:

mi ẍi =τi (4.21)

where mi ∈R and xi ∈R3 is the mass and position of agent i , respectively, while τi ∈R3

is its control input; the desired translational force.

Step 1 can then be accomplished by choosing the internal feedback as:

τi =−ki (ẋi −v (t)−ui)+mi v̇ (t), ki > 0 (4.22)

which, together with (4.9) and the change of variables:

ξi = ẋi −v (t) (4.23)

gives the resulting transformed system:

H i :

{
mi
ki
ξ̇i =−ξi +ui

yi = ξi
(4.24)

The system in (4.24) can be represented by its transfer function Hi (s):

Hi (s) = ki

mi s +ki
I3 (4.25)

4.2. The Passivity-based Design Procedure 57

This transfer function is strictly positive real by (Khalil 2002, Lemma 6.1) since Hi (s−ε)
is positive real for any ε = ki /mi > 0.2 Thus, (4.24) is strictly passive by (Khalil 2002,
Lemma 6.4).

4.2.4 External feedback for formation control

To make sure the restrictions on Ψk are met, (Bai, Arcak, and Wen 2011) propose de-
signing the nonlinearities to be of the form:

Ψk (zk) =: ∇Pk (zk) (4.26)

where Pk is a non-negative C 2 function. There are several additional restrictions listed
in (Bai, Arcak, and Wen 2011) when designing Pk for the general problem. However,
for the formation problem discussed in this thesis, Pk can be chosen to have the prop-
erty:

zᵀk ∇Pk (zk) = zᵀk Ψk (zk) > 0, ∀zk 6= 0 (4.27)

which ensures that the necessary requirements are met and, furthermore, making the
system from ż toΨ strictly passive by (Khalil 2002, Definition 6.1).

Formation control by shifted agreement

By defining the desired difference variables3 zd
k and usingΨk (zk−zd

k) instead ofΨk (zk),
the formation problem can be viewed as a shifted agreement problem (Bai, Arcak, and
Wen 2011, Corollary 2.2).

Moreover, by choosing a quadratic potential function:

Pk = δk 2|zk − zd
k |2, δk ∈R> 0 (4.28)

the resulting nonlinearity for each agent:

Ψk (zk) = δk (zk − zd
k) (4.29)

satisfies (4.27), thus making the complete interconnected system passive (Bai, Arcak,
and Wen 2011). The constant δk is then a feedback gain, regulating the relative empha-
sis of link k.

2Remember that ki > 0 and mass can only be positive.
3Note that this essentially means the value for link k, i.e. the relative position between the two agents

connected by said link.

58 Chapter 4. Cooperative Control

The resulting feedback controller

Finally, inserting (4.29) into (4.17) gives the resulting feedback term ui for each agent:

ui =− ∑̀
k=1

di kδk (zk − zd
k) (4.30)

Collision avoidance and other objectives

The above controller ensures convergence to a desired formation, however it is worth
mentioning that other objectives can be achieved by incorporating additional feedback
terms in (4.30). As an example, (Bai, Arcak, and Wen 2011) explains how the artificial
potential field approach in robotics can be used to avoid collisions. (Bai, Arcak, and
Wen 2011) goes on to show how a few simple requirements for the potential function
can be used to prove stability of the resulting augmented system, although no further
analysis is done as part of this thesis.

4.3 Stability and Equilibria

So far the strict passivity by design of the interconnected system of all agents in the
formation problem has been shown. The passivity and thus asymptotic stability is for-
mally proved in (Bai, Arcak, and Wen 2011). To assess whether the stability of the system
implies that the objectives (4.3), (4.4) are met, the equilibrium points of the intercon-
nected system of all agents in Figure 4.2 are investigated.

As stated in (Khalil 2002, Chapter 6.5), the closed loop state model will consist of the
dynamic states from both subsystems, i.e. (z ,ξ), where ξ is the concatenated vector
of all state variables in (4.12) for all agents. The property of strict passivity, combined
with (4.12) and (4.13), ensures that the equilibrium point ξ= 0 only occurs when u = 0,
which from (4.20) also means that Ψ(z) is in N (D ⊗ Ip). Further, from (4.14) we have
that ξ= 0 ⇒ y = 0, which from (4.9) implies that ẋi = v (t),∀i ∈ {1, . . . , N }.

Thus, the set of equilibria is given by:

E = {
(z ,ξ) | ξ= 0,(D ⊗ Ip)Ψ(z) = 0 and z ∈R(Dᵀ⊗ Ip)

}
(4.31)

Next, we must check that no equilibria arise outside the target sets Ak , i.e. ∀(z ,0) ∈ E , z
satisfies z ∈ {A1 ×·· ·×A`}. From (4.20) this means that:

u = 0 ⇐⇒ z = (Dᵀ⊗ Ip)x ∈ {A1 ×·· ·×A`} (4.32)

4.4. Designing Feasible Target Sets 59

For the agreement problem (Ak = 0), it turns out that this holds when Ψk is designed
according to (4.27). This is because z ∈ R(Dᵀ⊗ Ip) and Ψ(z) ∈ N (D ⊗ Ip) imply that
z andΨ are orthogonal to each other, which, in view of (4.27), is only possible if z = 0.
Consequently, since ξ = 0 ⇒ y = 0, we have shown that both (4.3) and (4.4) are met
using decentralized coordination laws.

4.4 Designing Feasible Target Sets

In the formation problem, the difference variables zk are the link vectors between the
agents, as defined by the incidence matrix D . Hence, the target sets Ak of desired dif-
ference variables z?k represent the desired formation structure. As mentioned in Sec-
tion 4.1, these target sets are only valid if (4.8) holds, i.e. if z?k ∈R(Dᵀ⊗ Ip).

Consequently, given a desired formation xF , the target sets Ak can be trivially calcu-
lated as:

z?k := (Dᵀ⊗ Ip)xF (4.33)

where the same concatenated structure as in (4.5) is used:

xF :=

xF
1
...

xF
N

 ∈RpN , z? :=

z?1
...

z?
`

 ∈Rp` (4.34)

and xF
i ∈Rp represents the desired position of agent i relative to that of the others.

1

2 3

Link 1

Link 2

Link 3

(a) Communication graph.

East [m]

2

0

-20
North [m]

2
4

-0.5
0

-1

D
o
w

n
 [
m

]

Agent 1

Agent 2

Agent 3

(b) Desired formation.

Figure 4.3: Example of communication graph and desired formation.

60 Chapter 4. Cooperative Control

As an example, the desired formation of three agents in Figure 4.3b is defined as:

xF
1 =

0
0
0

 , xF
2 =

 3
−2
−0.5

 , xF
3 =

 3
2
−1

 (4.35)

and the communication structure in Figure 4.3a would give the incidence matrix:

D =
−1 0 1

1 −1 0
0 1 −1

 (4.36)

Using (4.33), the resulting target sets are thus:

A1 =
{

z1 | z1 = z?1 = [3,−2,−0.5]ᵀ
}

A2 =
{

z2 | z2 = z?2 = [0,4,−0.5]ᵀ
}

(4.37)

A3 =
{

z3 | z3 = z?3 = [−3,−2,1]ᵀ
}

For the remainder of the thesis, the desired difference variables z? and the resulting
target sets Ak are always constructed from xF as in (4.33).

4.5 Cooperative Simulation in MATLAB

To investigate the viability of the passivity based method for formation control, the sim-
plified translational model discussed in Section 2.7.3, together with the the resulting
feedback laws from Section 4.2.3 and 4.2.4, was implemented and simulated in MAT-
LAB (MATLAB 2015).

4.5.1 Setup

Three agents with a mass of mi = m = 3 kilograms were simulated, using the same com-
munication structure and triangular desired formation as in the example shown in Fig-
ure 4.3, thus resulting in the same incidence matrix (4.36) and target sets (4.37).

Initially, the agents were positioned along the north axis, 1 meter apart form each other:

x0
1 =

0
0
0

 , x0
2 =

1
0
0

 , x0
3 =

2
0
0

 (4.38)

4.5. Cooperative Simulation in MATLAB 61

The mission velocity in (4.22) was simply chosen to be a constant 0.2 m/s southward
and westward, i.e. v (t) = v = [−0.2,−0.2,0]ᵀ, while the velocity error gain and link gain
was set to ki = 2m and δk = 1

2 m for all three agents and links. The simulation ran for 6.0
seconds.

4.5.2 Results

East [m]

-4 -3 -2 -1 0 1 2

N
o
rt

h
 [
m

]

-3

-2

-1

0

1

2

z
1
 = [3.0, -2.0, -0.5]T

z
2
 = [0.0, 4.0, -0.5]T

z
3
 = [-3.0, -2.0, 1.0]T

Agent 1

Agent 2

Agent 3

Formation

Time [s]

0 1 2 3 4 5 6

D
o

w
n

 [
s
]

-1

0

1

Figure 4.4: Results of the MATLAB simulation. Initial positions are marked with a cross,
while the dashed colored lines show the trajectory of each agent, turning solid after
reaching the desired formation drawn by the black lines. Note that the Down axis is
reversed, since a negative value equals positive altitude.

62 Chapter 4. Cooperative Control

The results of the simulation is shown in Figure 4.4, with the 2D position and altitude
of each agent. As can be seen, the trajectories of each agent converge to a formation
with the desired link lengths, i.e. the difference variables zk , which are drawn and de-
noted with their respective values upon reaching said formation. A 3D plot is given
in Figure 4.5, where is is easy to recognize that the agents converge to the desired for-
mation in Figure 4.3b. Further, both figures show how the agents continue to move in
formation in a south-western direction.

East [m]

1

0

-1

-2

-3
-2

-1

North [m]

0
1

2

-0.5

0.5

0

D
o

w
n

 [
m

]

Agent 1

Agent 2

Agent 3

Figure 4.5: 3D plot of the MATLAB simulation. Initial positions are marked with a cross,
while the colored lines show the trajectory of each agent, turning bold after reaching the
desired formation.

4.5.3 Discussion

The implementation of formation control via the passivity based method was success-
ful, as the three agents reached and kept their formation, while continuing to move in
the southwestern direction as specified by the mission velocity v . However, the sim-
ulation was greatly simplified as there were perfect and instant measurements for the
controller, as well as instant control input and no external disturbances. The proper
realization of the system, presented in the next chapter, should give noticeable delays
for both measurements and control input.

4.6. Summary 63

4.6 Summary

The simulation in Section 4.5 proved that the passivity based method for cooperative
control is a viable solution to the formation problem, as both objectives (4.3) and (4.4)
were achieved. Further, by replacing the constant mission velocity, a large group of
different objectives can be solved by the formation, making the method a powerful tool
for cooperative control.

In the next chapter, a realization of the control laws developed here is presented, before
Software-in-the-Loop (SIL) simulations and field experiments are performed in Chap-
ter 6 and Chapter 7, respectively.

64

Chapter 5

Implementation

In this chapter, a realization of distributed formation control for the multirotor platform
is presented, using the feedback laws developed in Chapter 4. The necessary interface
for Piksi is discussed, as well as the low-level controller used in APM:Copter, before
presenting the main implementation in DUNE. The chapter ends with the results from
testing the delay between the autopilot and the payload computer.

Rovers and agents

For the remainder of the thesis, the term rover from Section 3.3 is extended to denote
the different multirotors acting in the system, thereby separating them from the theo-
retical term agent used in Chapter 4.

5.1 Interface with Piksi

By adding the libswiftnav library to DUNE, the provided C bindings for SBP (see Sec-
tion 2.6.1) was used to implement a DUNE interface for Piksi, i.e. a DUNE task. The
interface had to accomplish three objectives:

• Forward observations between base and rovers through the network, eliminating
the need for a dedicated radio link for Piksi.

• Extract navigational data from rovers.

• Send configuration commands to Piksi, enabling resetting and initialization of
the IAR.

As mentioned in Section 3.6, a choice to avoid tight integration of Piksi with the au-
topilot was made based upon the issues with stability, as well as the fragility of the

65

66 Chapter 5. Implementation

signals caused by the interference from the telemetry. An interesting alternative (or
supplement) to send the navigation data from Piksi through DUNE is the direct inte-
gration with the APM:Copter autopilot (indicated by the pale red connection in Fig-
ure 2.3).

Direct integration of Piksi in APM:Copter was started in January of 2014, but no new
information on the progress was reported on the community forums along the main
timeline of this project. APM:Copter has been able to use Piksi as a normal GPS receiver,
but the support to handle the RTK data has been in a buggy beta stage. Just recently
however, users have reported successful use with full integration. Unfortunately, this
was too late to be pursued in this project. Consequently, the high-precision navigation
from Piksi was only integrated with control in DUNE, while the lower-level APM:Copter
autopilot only has data available from the Pixhawk itself.

5.2 Controller in APM:Copter

APM:Copter on the Pixhawk is a complete autopilot by it self, and supports many fea-
tures mentioned in Section 2.5. However, for this thesis it was used to realize the lower-
level control discussed in Section 2.7.3 to achieve translational control, and further the
internal feedback law from Section 4.2.3. The latter is (4.22) implemented as a velocity
setpoint controller, where v?i := v (t)+ui is the desired velocity and the feed-forward
acceleration term mv̇ (t) is estimated by an internal filter.

Henceforth, the cooperative control culminates in the continuous calculation of the
external feedback ui for each rover and the mission velocity v (t), which together com-
prise the desired velocity vector v?i to be sent to the autopilot. This higher-level control
is performed in DUNE and presented in Section 5.3.

5.3 Cooperative Control in DUNE

As mentioned in Section 2.4.2, Neptus is used to send and execute mission plans to
vehicles in the LSTS toolchain. Hence, a cooperative mission is started by issuing a
formation plan to any of the rovers in the group. Said rover then assumes the role as
leader, but only in the sense that it is responsible for generating and distributing the
mission velocity. Further, the remaining rovers are notified and a formation flight has
started.

5.3. Cooperative Control in DUNE 67

Rover 1

Navigation

Piksi

Ardupilot Control

Coordinator

Mission

RtkFix

Observations

EstimatedState

DesiredVelocity

FormPos1

MissionVelocity

FormCoord

Activate /
Deactivate

Base

Piksi

FormPos2..N

DUNE

Task

IMC

Rover 2..N

Figure 5.1: Overview of the implementation in DUNE for Rover 1 and its communi-
cation with other rovers and the base station. The individual tasks are explained in
Section 5.3.1. Arrowheads indicate the direction of information flow. The MissionVeloc-
ity and FormPos messages are both consumed locally and externally, and are therefore
given their own color of blue and red for clarity, respectively. Note that MissionVeloc-
ity comes from whichever rover is chosen as mission leader, be it the local rover (solid
blue) or another one (dashed blue).

An overview of the implementation in DUNE is presented in Figure 5.1. Each rounded
square is a separate task running in parallel with the others, communicating through
IMC as indicated by the arrows. The functionality of each task is explained in the next
section.

5.3.1 The main DUNE tasks

DUNE runs many basic tasks, e.g. tasks that handle logging, supervision, and commu-
nication with the GCS. However, only the implementation specific tasks are illustrated
in Figure 5.1, and described further here.

Piksi
This task is the interface discussed in Section 5.1. RtkFix is an IMC message with
the high precision position and velocity from the local Piksi on each rover.

68 Chapter 5. Implementation

Ardupilot
The Ardupilot task interfaces the on-board Pixhawk on each rover through MAVLink
(see Section 2.5.2). It extracts attitude, position and velocity data which is for-
warded through the EstimatedState IMC message. The task also sends commands
to Pixhawk, such as the velocity setpoint given by DesiredVelocity. Alternatively,
the Ardupilot task can be configured to interface the Ardupilot simulator, as is
done in Chapter 6.

Navigation
This task is responsible for generating the navigational IMC message FormPos,
containing the relative position and velocity of each rover in a common {n} frame.
The message is generated from the EstimatedState or RtkFix, depending on which
mode is chosen in the initialization file: ESTATE or RTK, respectively. FormPos is
further passed on locally, as well as to all other rovers in the system.

Mission
If the local rover is the leader, this task is responsible for generating the velocity
v (t) in (4.3), i.e. the common mission velocity for the formation of rovers. The
generation of this velocity is dependant on whichever objective is pursued by the
group, and is further discussed in Section 5.3.2.

Control
The external feedback (4.30) is implemented in this task. The incidence matrix
D and link gains are loaded from a common initialization file for all rovers. To-
gether with the mission velocity from the leader, the desired velocity for the rover
is calculated and sent to the autopilot via the Ardupilot task. The Control task is
also responsible for issuing an abort if it detects missing navigational data for any
rover in the formation.

Coordinator
On whichever rover a formation plan is issued by the GCS, the Control and Mis-
sion tasks are activated and the rover assumes the role as a leader. The Coordi-
nator task on said rover is then responsible for notifying the task on other partic-
ipating rovers that a plan has started, so that the Control task is activated on all
of them. The similar stopping of a plan, as a result of either completion, abortion
or a manual stop from the GCS, is likewise forwarded to all other rovers in the
formation. All this coordination is communicated through the FormCoord IMC
message.

5.3.2 Mission velocity

As discussed in Chapter 4, the mission velocity can be tailored to solve different group
objectives. For this thesis, the Mission task in Figure 5.1 responsible for generating said
velocity, was implemented as a simple waypoint tracker based on the current position
of the vehicle. Since this task is only activated on the rover leader, the whole system

5.4. Execution Frequencies 69

will in effect implement a formation waypoint tracking based on the position of the
leader.

To avoid jolts in the mission velocity when switching from one waypoint to the next,
a reference model was implemented as part of the tracker, using the desired position
x?, i.e. the waypoint, as input. The reference model is a 2nd order velocity refer-
ence model with relative damping ratios Z = diag{ζ,ζ,ζ} ∈R3×3 and natural frequencies
Ω = diag{ωn ,ωn ,ωn} ∈ R3×3, with the resulting continuous state space representation
(Fossen 2011):

A =
[

0 I3

−Ω2 −2ZΩ

]
, B =

[
0
Ω2

]
(5.1)

Ẋr e f = AXr e f +B x? (5.2)

where Xr e f := [xᵀ
r e f , vᵀ

r e f]ᵀ ∈R6 is the state vector.

The velocity generated by the tracker is the sum of the velocity of the reference model
and a proportional gain multiplied with the error between the current position of the
vehicle and the reference model:

v (t) := vr e f −Kp (x −xr e f) (5.3)

5.4 Execution Frequencies

Table 5.1 lists the execution frequencies used for the main DUNE tasks in the simulation
and experiments to follow. Note that the rate listed for Piksi and Ardupilot is not actually
their execution frequency, but the rate at which they receive their navigation data. The
tasks themselves, as well as the tasks in Figure 5.1 that are not listed on Table 5.1, are
awoken every time they receive messages that need processing, possibly inducing some
operation. Mission and Control are on the other hand periodic tasks, running their
main loops to produce the desired setpoints at the given frequencies.

Table 5.1: Task execution frequencies and data rates.

Task Rate
Piksi (data) 10 Hz
Ardupilot (data) 25 Hz
Mission 30 Hz
Control 30 Hz

A few comments should be made about the rates listed in Table 5.1. The low rate for
Piksi is only half of what it is able to deliver. However, as mentioned in Section 3.3.1,

70 Chapter 5. Implementation

pushing too close to the current limit around 20 Hz could cause instability, and thus
it was kept at the default setting of 10 Hz. The somewhat low telemetry rate of 25 Hz
from Pixhawk to the Ardupilot task is a result of the current limitation of outgoing mes-
sages from the Pixhawk. This is a currently hard coded limit of 50 Hz, but a bug in the
execution timer caused it to deliver a rate of about 25 Hz.1 Note however that the inter-
nal update rate in APM:Copter does in fact run at 400 Hz on the Pixhawk (DIY Drones
2015d).

5.5 Delays

To investigate the delay between APM:Copter on the Pixhawk and DUNE on the BBB,
two delay tests were performed:

• Command setpoint: The time from a DUNE-controller dispatching a setpoint
IMC message, to the MAVLink message being processed on Pixhawk.

• Attitude feedback: The time from a change in attitude on Pixhawk, to this change
was available for controllers in DUNE.

All tests were run with a baud-rate of 921600, 50 Hz telemetry update rate, and were
measured with an oscilloscope connected to GPIO-pins on both units. The results are
listed in Table 5.2.

Table 5.2: Results from the delay tests between Pixhawk and BBB.

Test
Delay [ms]
Min Max

Command setpoint 20 30
Attitude feedback 10 20

The total maximum delay of 50 milliseconds in the loop is small compared to the cur-
rent low rates used in the system (see Table 5.1. A similar delay of about 10−50 millisec-
onds was observed when sending IMC messages between rovers across the PicoStation
through UDP. However, as mentioned in Section 1.2, communication delays below a
certain threshold doesn’t affect the consensusability of the system (Cao et al. 2013). Still,
these and other delays, as well as the somewhat low telemetry and controller rates, im-
pose restrictions on the system dynamics. For this reason, saturation in the controller
input for the multirotors was set relatively low in the setup for the simulation and ex-
periments in Section 6.2 and 7.2.

1This bug was fixed towards the end of the project, but the rate of 25 Hz is what was present during the
simulation and experiments in Chapter 6 and Chapter 7, respectively

Chapter 6

Multirotor Simulations

A powerful verification tool during development, Software-in-the-Loop (SIL) simula-
tions were used extensively throughout the implementation of the various features in
DUNE. This chapter presents the simulator that was used, before the finished appli-
cation from the previous chapter is verified in a simulated mission with three multiro-
tors.

6.1 ArduPilot Software-in-the-Loop

The ArduPilot Software-in-the-Loop simulator, or AP-SIL, allows running APM:Copter
without the hardware. The multirotor and environment is replaced by a physics simu-
lator while the Pixhawk is virtualized, and APM:Copter is run as a native executable on
the computer (DIY Drones 2015c). Written in Python, the physics simulator uses similar
dynamics as those presented in Section 2.7.1 A lightweight, terminal based GCS called
MAVProxy (Tridgell 2015) is used to interface APM settings and perform the simulated
arming of the multirotor.

Hence, the implementation presented in the previous chapter could be tested by sim-
ply configuring the Ardupilot task to connect with APM:Copter running on the sim-
ulator, rather than on the actual Pixhawk. Unfortunately, there was no simulator for
Piksi, meaning that only navigational data from the virtual Pixhawk was available dur-
ing simulations, i.e. the Navigation task in Figure 5.1 had to be placed in ESTATE mode.
Figure 6.1 illustrates how DUNE communicates with APM:Copter when the latter runs
as part of AP-SIL versus running on hardware (Pixhawk).

1Likewise, the physics simulator also lacks the incorporation of environmental forces (wind), which will
be a challenge faced in the later experiments

71

72 Chapter 6. Multirotor Simulations

Desktop

APM:Copter
Desktop Executable

Physics Simulation
sim_multicopter.py

MAVProxy

DUNE

Ardupilot

Pixhawk

APM:
Copter

Hardware

AP-SIL

Hardware

Software

MAVLink

UDP

Task

Figure 6.1: The AP-SIL architecture vs. the normal hardware setup. Note that during
simulations, DUNE can either run on hardware (GLUED on BBB) or on the desktop
together with AP-SIL.

6.2 Setup

Like the MATLAB simulation in Section 4.5, three agents, in this case multirotors or
rovers, were simulated. Table 6.1 lists the different parameters used for the reference
model and controllers.2 Note the choice of relatively low velocity saturations because
of the delays and low controller rates discussed in Section 5.3.1 and 5.5.

Table 6.1: Parameters used during the AP-SIL simulation.

Parameter Value Unit
ζ 1 -
ωn 0.1 Hz
Kp 0.05 -
vr e f ,sat 1.5 m/s
vsat 2 m/s
v?sat 3 m/s
δ 0.05 -

2Note that δwithout a subscript here indicates an equal link gain for all links, i.e. δk = δ, ∀k ∈ {1, . . . ,L}.

6.2. Setup 73

1

2 3

Link 1

Link 3

Link 2

(a) Communication graph.

East [m]

5

0

-50
North [m]

5
10

-4

-2

0

D
o
w

n
 [
m

]

R 1

R 2

R 3

(b) Desired formation.

Figure 6.2: Communication graph and desired formation in the AP-SIL simulation.

The desired formation for the rovers was set to:

xF
1 =

0
0
0

 , xF
2 =

10
−5
−4

 , xF
3 =

10
5
−2

 (6.1)

which gives the tilted triangular shape illustrated in Figure 6.2b. Further, the com-
munication structure in Figure 6.2a was used, which gives the resulting incidence ma-
trix:

D =
−1 −1 0

1 0 1
0 1 −1

 (6.2)

Thus, from (4.33), the desired link lengths are:

z?1 =
10
−5
−4

 , z?2 =
10

5
−2

 , z?3 =
 0
−10
−2

 (6.3)

A formation plan with two waypoints was sent to Rover 1, thus making it the leader that
the group tracks said waypoints relative to. Coordinates for the waypoints are not given
explicitly, as they should be apparent in the plots below. Likewise, the initial positions
for the rovers are not listed, but a remark can be made that they were considered so as
to avoid any concern with collisions when converging towards their formation.

74 Chapter 6. Multirotor Simulations

6.3 Results

East [m]

-40 -30 -20 -10 0 10 20

N
o
rt

h
 [
m

]

-30

-20

-10

0

10

20

30

z
1
 = [10.0, -5.0, -4.0]T

z
2
 = [10.0, 5.0, -2.0]T

z
3
 = [0.0, -10.0, -2.0]T

R 1

R 2

R 3

Form

WP 1

WP 2

Time [s]

0 10 20 30 40 50 60 70

D
o

w
n

 [
s
]

-20

-15

-10

Figure 6.3: Results of the AP-SIL simulation. Initial positions are marked with a cross,
while the dashed colored lines show the trajectory of each rover (R 1−3), turning solid
after reaching the desired formation drawn by the black lines. Waypoints are marked by
colored stars and their height by the dotted lines of the same color. Note that the Down
axis is reversed, since a negative value equals positive altitude.

The results of the simulation are given in Figure 6.3. Clearly, the rovers reach the desired
link lengths in (6.3) as they fly towards the first waypoint. Further, upon arrival they
smoothly turn towards the next waypoint, still adhering to their formation. The 3D plot
in Figure 6.4 portray the same story, where again the desired formation from Figure 6.2b

6.3. Results 75

is palpable. Figure 6.5 shows how the absolute error for each link, i.e. |zk − z?k |, con-
verges to zero. In addition, the individual rover velocities can be found in Appendix A.

10

East [m]

0

-10

-20

-30

-20
-10

North [m]

0
10

20

-15

-10

-20

D
o
w

n
 [
m

]

R 1

R 2

R 3

WP 1

WP 2

Figure 6.4: 3D plot of the AP-SIL simulation. Initial positions are marked with a cross,
while the colored lines show the trajectory of each rover, turning bold after reaching the
desired formation. Waypoints are marked by colored stars, pinned by vertical bars for
visibility.

Time [s]

0 10 20 30 40 50 60 70

E
rr

o
r

[m
]

0

10

20

Link 1

Link 2

Link 3

Threshold

Figure 6.5: Link errors in the AP-SIL simulation. An arbitrary threshold, here set at 1
meter, decides when the rovers are in formation, and is only used during plotting.

76 Chapter 6. Multirotor Simulations

6.4 Discussion

The simulation demonstrates that the realization of formation control from Chapter 5
works, as the rovers successfully reached their desired formation, as well as tracking the
given waypoints with respect to the leader. However, like the simulation in Section 4.5,
there were still no environmental forces other than the force of gravity. By contrast, de-
lays and imperfect measurements were present, even though these are probably some-
what smaller and better than those faced in the actual experiments in the next chap-
ter.

Chapter 7

Multirotor Experiments

The importance of field experiments is one of the cornerstones in this thesis, proving
the viability of the cooperative multirotor control system. This chapter starts with a
short description of the locale, followed by an overview of the different experiments
categorized on two different sets. Thereafter, each different set of experiments is pre-
sented individually: The specific setup is outlined, followed by a presentation of the
results.1 Finally, a collective discussion of the results from both sets is given, where the
outcome is compared to the simulations in the previous chapter.

7.1 Agdenes Airfield

Figure 7.1: Aerial photo of Agdenes Airfield. Image courtesy of norskeflyplasser. no .

1Similar to the simulations in Chapter 6, the individual rover velocities can be found in Appendix A.

77

norskeflyplasser.no

78 Chapter 7. Multirotor Experiments

The UAV-Lab of AMOS operates their UAVs from Agdenes Airfield (openAIP 2015) shown
in Figure 7.1. The airstrip is located at Breivika, a 90 km drive northwest of Trondheim,
and is where all field experiments were conducted.2

7.2 Overview

A large number of field experiments were performed, out of which five are presented
below. In all experiments, two rovers were used, as only two experienced pilots were
available for the project.3 Take-off and landing was always performed manually by the
pilots, who also were responsible for reclaiming manual control if anything went wrong
during the execution of the autonomous missions. Further, one person was always op-
erating the GCS, in addition to a fourth member responsible for logging and visual ob-
servation of both rovers. A photo of the setup can be seen in Figure 7.2.

Figure 7.2: The experimental setup at Agdenes Airfield. Co-supervisor Kristian Klausen
can be seen performing a magnetometer calibration on one of the multirotors, while
the author inspects the base station antenna. Collaborative MSc student Recep Cetin is
seen manning the GCS next to the base station.

Table 7.1 lists the different parameters used for the reference model and controllers
in all the experiments. Note that compared to the simulation in the previous chapter,
the maximum desired speed was lowered by 1 m/s, and the maximum mission and
reference speed by 0.5 m/s, while the link gain was doubled. The velocities were lowered

2In fact five expeditions to Agdenes Airfield were carried out as part of this project and (Cetin 2015),
spanning a total of six days.

3A single pilot could be responsible for more than one rover, but that would pose a great risk if anything
went wrong with more than one multirotor at once.

7.2. Overview 79

to account for the probability of larger system delays in field experiments than in the SIL
simulations, while the link gain was increased because there is now only one link active,
as opposed to three in the simulation.4

Table 7.1: Parameters used during field experiments.

Parameter Value Unit
ζ 1 -
ωn 0.1 Hz
Kp 0.05 -
vr e f ,sat 1 m/s
vsat 1.5 m/s
v?sat 2 m/s
δ 0.1 -

Even with the extra GPS plate, the interference discussed in Section 3.5 made acquiring
an RTK fix on Piksi very fragile. For this reason, many of the experiments were run with
navigation from the Pixhawk instead, i.e. the Navigation task in Figure 5.1 was put in
ESTATE mode, like the simulation in the previous chapter. The experiments are thus
divided in two separate sets, with the differing details summarized in Table 7.2.

Table 7.2: Overview of the different field experiments.

Experiment Navigation Control Waypoints
1-1 ESTATE 3D 0
1-2 ESTATE 3D 1
1-3 ESTATE 3D 2
2-1 RTK 2D 0
2-2 RTK 2D 1

In each set, an experiment without waypoints is first presented to show convergence
of the desired formation. 2D control means that velocity setpoints are only given to
the autopilot in the horizontal plane, while the pilot remains in control of the vehicle
height. It is also worth mentioning that waypoint tracking was only performed in the
horizontal plane for all experiments, i.e. the z-component of the mission velocity was
always set to zero,5 hence it is only the formation control in Experiment 1-1 to 1-3 that
span 3D. Again, the formation tracks waypoints with respect to Rover 1’s position, as
the formation plan was always sent to said Rover, making it the leader.

4Remember that links errors are added cumulatively in the external feedback (4.30). Hence, more links
add up to more feedback, and their gains should be adjusted accordingly.

5This simplification of the mission velocity was a result of an ambiguity problem with the path controller
class inherited by the Mission task in Figure 5.1, where the reported altitude of waypoints would change or
grow.

80 Chapter 7. Multirotor Experiments

7.3 Experiment Set 1 - Pixhawk Navigation

Because of the fragile RTK fix on Piksi, most experiments were performed using only
navigation from the Pixhawk. Three of these are presented next. It should be mentioned
that there was considerable amounts of wind during this set of experiments.

7.3.1 Setup

1

2

Link 1

(a) Communication graph.

D
o
w

n
 [
m

]

-1
0
1

North [m] 0

5

10

East [m]-6

-4

-2

0

R 1

R 2

(b) Desired formation.

Figure 7.3: The communication graph and desired formation during Experiment Set 1.

Figure 7.3 shows the communication structure and desired formation used during the
first set of experiments, where the straight line formation in Figure 7.3b is defined as:

xF
1 =

0
0
0

 , xF
2 =

10.47
−4.87

0

 (7.1)

Moreover, the structure in Figure 6.2a results in the simple incidence matrix:

D =
[−1

1

]
(7.2)

which, according to (4.33), leads to the trivial desired link length:

z?1 =
10.47
−4.87

0

 (7.3)

7.3. Experiment Set 1 - Pixhawk Navigation 81

7.3.2 Results

The results in Figure 7.5, 7.8 and 7.11 show that the rovers reach their formation in all
the experiments in the set, both horizontally and in altitude. Indeed, the desired north-
west line formation in Figure 7.3b is evident from the 3D plots in Figure 7.6, 7.9 and
7.12. The link error in Experiment 1-2 and 1-3 (Figure 7.10 and 7.13) converge some-
what better towards zero than in Experiment 1-1 (Figure 7.7).

Figure 7.4: Photo of Rover 1 and 2 at the start of Experiment 1-3, marked by their re-
spective colors of blue and red. One of the pilots is also present, as well as the base
station and the GCS with operator.

With no waypoint in Experiment 1-1, we see in Figure 7.6 that the achieved formation
starts slightly drifting. There is noticeable oscillation in altitude in all three experi-
ments, most evident in Figure 7.8 of Experiment 1-2. Figure 7.4 shows a picture of the
rovers during the execution if this second experiment in the set.

82 Chapter 7. Multirotor Experiments

Experiment 1-1: Formation only

East [m]

-8 -6 -4 -2 0 2 4

N
o
rt

h
 [
m

]

0

5

10

15

20

25

30

z
1
 = [10.5, -4.9, 0.0]T

R 1

R 2

Form

Time [s]

0 2 4 6 8 10 12

D
o
w

n
 [
s
]

-5.5

-5

-4.5

-4

-3.5

Figure 7.5: Results from Experiment 1-1. Initial positions are marked with a cross, while
the dashed colored lines show the trajectory of each rover, turning solid after reaching
the desired formation drawn by the black lines. Note that the Down axis is reversed,
since a negative value equals positive altitude.

7.3. Experiment Set 1 - Pixhawk Navigation 83

East [m]

0

-4

-85

10

North [m]

15

20

25

-4

-6

D
o

w
n

 [
m

]

R 1

R 2

Figure 7.6: 3D plot of Experiment 1-1. Initial positions are marked with a cross, while
the colored lines show the trajectory of each rover, turning bold after reaching the de-
sired formation.

Time [s]

0 2 4 6 8 10 12

E
rr

o
r

[m
]

0

5

10

15

Link 1

Threshold

Figure 7.7: Link error during Experiment 1-1. An arbitrary threshold, here set at 2 me-
ters, decides when the rovers are in formation, and is only used during plotting.

84 Chapter 7. Multirotor Experiments

Experiment 1-2: 1 waypoint

East [m]

-10 -5 0 5 10 15

N
o
rt

h
 [
m

]

-10

-5

0

5

10

15

20

25

z
1
 = [10.5, -4.9, 0.0]T

R 1

R 2

Form

WP 1

Time [s]

0 5 10 15 20 25 30

D
o
w

n
 [
s
]

-5.6

-5.4

-5.2

-5

-4.8

Figure 7.8: Results from Experiment 1-2. Initial positions are marked with a cross, while
the dashed colored lines show the trajectory of each rover, turning solid after reaching
the desired formation drawn by the black line. Note that the Down axis is reversed,
since a negative value equals positive altitude.

7.3. Experiment Set 1 - Pixhawk Navigation 85

East [m]

10

5

0

-5

-5
0

North [m]

5
10

15
20

25

-2

0

-6

-4

D
o

w
n

 [
m

]

R 1

R 2

WP 1

Figure 7.9: 3D plot of Experiment 1-2. Initial positions are marked with a cross, while
the colored lines show the trajectory of each rover, turning bold after reaching the de-
sired formation. The waypoint is marked by a colored star, pinned by a vertical bar for
visibility.

Time [s]

0 5 10 15 20 25 30

E
rr

o
r

[m
]

0

5

10

15

Link 1

Threshold

Figure 7.10: Link error during Experiment 1-2. An arbitrary threshold, here set at 2
meters, decides when the rovers are in formation, and is only used during plotting.

86 Chapter 7. Multirotor Experiments

Experiment 1-3: 2 waypoints

East [m]

-10 -5 0 5 10

N
o
rt

h
 [
m

]

-20

-10

0

10

20

30

z
1
 = [10.5, -4.9, 0.0]T

R 1

R 2

Form

WP 1

WP 2

Time [s]

0 5 10 15 20 25 30 35 40 45

D
o
w

n
 [
s
] -4

-3.5

-3

Figure 7.11: Results from Experiment 1-3. Initial positions are marked with a cross,
while the dashed colored lines show the trajectory of each rover, turning solid after
reaching the desired formation drawn by the black line. Note that the Down axis is
reversed, since a negative value equals positive altitude.

7.3. Experiment Set 1 - Pixhawk Navigation 87

East [m]

10

5

0

-5

-15
-10

-5

North [m]

0
5

10
15

20

0
-2
-4

D
o
w

n
 [
m

]

R 1

R 2

WP 1

WP 2

Figure 7.12: 3D plot of Experiment 1-3. Initial positions are marked with a cross, while
the colored lines show the trajectory of each rover, turning bold after reaching the de-
sired formation. Waypoints are marked by colored stars, pinned by vertical bars for
visibility.

Time [s]

0 5 10 15 20 25 30 35 40 45

E
rr

o
r

[m
]

0

1

2

3 Link 1

Threshold

Figure 7.13: Link error during Experiment 1-3. An arbitrary threshold, here set at 2
meters, decides when the rovers are in formation, and is only used during plotting.

88 Chapter 7. Multirotor Experiments

7.4 Experiment Set 2 - Piksi Navigation

Only a few experiments with RTK navigation from Piksi was successful, as a temporary
degradation of the fix would cause a mission abort with the current implementation.
Nonetheless, after a few attempts, a consistent fix was kept throughout some missions,
out of which two are presented next.

7.4.1 Setup

1

2

Link 1

(a) Communication graph.

D
o
w

n
 [
m

]

-1
0
1

North [m] 0

5

10

East [m]-6

-4

-2

0

R 1

R 2

(b) Desired formation.

Figure 7.14: The communication graph and desired formation during Experiment Set
2.

As shown in Figure 7.14a, the second set of experiments used the same communi-
cation structure as in the first one, but the desired formation was changed, ever so
slightly:

xF
1 =

0
0
0

 , xF
2 =

10.5
−5
0

 (7.4)

resulting in the near identical illustration in Figure 7.14b. Consequently, the incidence
matrix is identical to (7.2):

D =
[−1

1

]
(7.5)

while the resulting desired link length is also changed slightly:

7.4. Experiment Set 2 - Piksi Navigation 89

z?1 =
10.5
−5
0

 (7.6)

7.4.2 Results

Again, the results in Figure 7.16 and 7.19 show that the rovers reach their objective.
However, the desired formation in Figure 7.14b is not that discernible in the 3D plots
of Figure 7.17 and 7.20, as autonomous control was only performed in the horizontal
plane (see Table 7.2). Indeed, the difference in altitude of the rovers does not converge
to zero as in the previous set of experiments, although the link error in Figure 7.18 and
7.21 does (since it was accordingly defined for the horizontal plane only in these exper-
iments).

Figure 7.15: Photo of Rover 1 and 2 during Experiment 2-2, marked by their respective
colors of blue and red. One of the pilots, as well as the GCS and operators, are visible in
the lower left corner.

The formation of rovers in Experiment 2-1 starts drifting together substantially in Fig-
ure 7.16, as only their relative formation is controlled in the absence of any waypoints.
Note also that the plan in Experiment 2-2 was aborted prematurely because of a low-
voltage alarm, which is why the final position of Rover 1 in Figure 7.19 is rather far away
from the waypoint. A photo of the two rovers during this experiment can be seen in
Figure 7.15.

For comparison, the positioning data from Pixhawk has also been plotted as an extra,
green trajectory for each rover in Figure 7.16 and 7.19, and a deviation of about a meter
can be seen along both the Down and North axis for Rover 1 in Figure 7.19. Likewise, the
velocities from Pixhawk has also been added to the velocity plots in Appendix A.

90 Chapter 7. Multirotor Experiments

Experiment 2-1: Formation only

East [m]

5 10 15

N
o
rt

h
 [
m

]

-10

-5

0

5

10

15

20

z
1
 = [10.5, -5.0, 0.0]T

R 1

R 2

Form

Time [s]

0 2 4 6 8 10 12 14 16

D
o
w

n
 [
s
]

-8

-6

-4

Figure 7.16: Results from Experiment 2-1. Initial positions are marked with a cross,
while the dashed colored lines show the trajectory of each rover, turning solid after
reaching the desired formation drawn by the black line. The green lines shadowing the
rover trajectories are their respective positions from the Pixhawk. Note that the Down
axis is reversed, since a negative value equals positive altitude.

7.4. Experiment Set 2 - Piksi Navigation 91

East [m]

15

10

5-5
0

North [m]

5
10

15
20

-6

-4

-8

D
o
w

n
 [
m

]
R 1

R 2

Figure 7.17: 3D plot of Experiment 2-1. Initial positions are marked with a cross, while
the colored lines show the trajectory of each rover, turning bold after reaching the de-
sired formation.

Time [s]

0 2 4 6 8 10 12 14 16

E
rr

o
r

[m
]

0

5

10

15
Link 1

Threshold

Figure 7.18: Link error during Experiment 2-1. An arbitrary threshold, here set at 2
meters, decides when the rovers are in formation, and is only used during plotting.

92 Chapter 7. Multirotor Experiments

Experiment 2-2: 1 waypoint

East [m]

8 10 12 14 16 18 20 22

N
o
rt

h
 [
m

]

-20

-15

-10

-5

0

5

10

15

20

z
1
 = [10.5, -5.0, 0.0]T

R 1

R 2

Form

WP 1

Time [s]

0 2 4 6 8 10 12 14 16

D
o
w

n
 [
s
]

-8

-7

-6

-5

Figure 7.19: Results from Experiment 2-2. Initial positions are marked with a cross,
while the dashed colored lines show the trajectory of each rover, turning solid after
reaching the desired formation drawn by the black line. The green lines shadowing the
rover trajectories are their respective positions from the Pixhawk. Note that the Down
axis is reversed, since a negative value equals positive altitude.

7.4. Experiment Set 2 - Piksi Navigation 93

East [m]

20

15

10

-15
-10

-5

North [m]

0
5

10
15

0

-4

-8

D
o
w

n
 [
m

]

R 1

R 2

WP 1

Figure 7.20: 3D plot of Experiment 2-2. Initial positions are marked with a cross, while
the colored lines show the trajectory of each rover, turning bold after reaching the de-
sired formation. The waypoint is marked by a colored star, pinned by a vertical bar for
visibility.

Time [s]

0 2 4 6 8 10 12 14 16

E
rr

o
r

[m
]

0

5

10

15

Link 1

Threshold

Figure 7.21: Link error during Experiment 2-2. An arbitrary threshold, here set at 2
meters, decides when the rovers are in formation, and is only used during plotting.

94 Chapter 7. Multirotor Experiments

7.5 Discussion

When comparing the rover velocities from the SIL simulation in Figure A.1 and the ex-
periments in Figure A.2 to A.6, we see a striking difference in the correlation between
desired and actual speeds. Except for some oscillations when the desired velocities
change rapidly, the rovers manage to track them reasonably well during the simulation.
By contrast, the rovers in the experiments tend to lag somewhat behind the desired
velocity, especially noticeable in the north- and eastward components in Figure A.2.6

Oscillations are also much more prominent in the experiments, especially in the down-
ward component of Figure A.2, A.3 and A.4.

The large oscillations in height from the first set of experiments was probably caused
by poor accuracy in the altitude measurements from Pixhawk, as these are based on
barometer pressure readings, which downwash from the rotors can interfere with. Adding
to that the undesirable wind conditions, the ability to deactivate autonomous control
of the altitude was implemented as a safety option and used in the second set of exper-
iments presented. It would have been interesting to see if the altitude control fared any
better with high-precision measurements from Piksi, but unfortunately the only suc-
cessful missions with RTK fix was performed with this 2D control. However, since RTK
from Piksi in the second set of experiments was only available for the DUNE controller
producing the setpoints, the slow response of the velocity controller in APM:Copter is
still apparent in Figure A.5 and A.6. Proper integration of RTK navigation with the au-
topilot would surely improve the results significantly. In addition, part of the velocity
controller’s poor performance can probably be attributed to suboptimal tuning.

Nonetheless, the experiments show that the implementation of cooperative formation
control was successful, even with a poorly tuned velocity controller, noticeable delays
and strong wind. Substituting the mission velocity with more complex 3D guidance
would be a trivial task, and make the formation of rovers able to solve more intricate
group objectives.

6Note that the delay might seem less in Figure A.3 and A.4 because of the larger timescale of those exper-
iments.

Chapter 8

Conclusion and Closing
Discussions

The goal of this thesis to develop a system of multirotors capable of performing tasks
cooperatively was achieved. The final system was verified through simulations and
demonstrated with experiments of successful formation flying and waypoint tracking.

Firstly, a complete multirotor platform with a custom payload module was presented,
along with an introduction to the necessary software tools. Further, a mathematical
model for the multirotor was developed, and it was shown, with certain assumptions to
existing low-level control, how the dynamics could be regarded by translational equa-
tions only.

Next, an RTK GPS receiver called Piksi was investigated to provide high-precision navi-
gation. Experiments showed an impressive accuracy in optimal, static conditions, with
an average standard deviation in the absolute position of only 1 centimetre. Moreover,
the combination of a special helix antenna for the multirotors together with a multipath
resistant pinwheel antenna for the base station, proved a good resilience to tilting while
still filtering out undesired satellites. However, several firmware stability issues were
encountered, which together with an interference issue with the multirotor telemetry,
limited the usefulness of Piksi in this thesis.

A passivity-based method to cooperative control was investigated, and used to solve
formation control by developing decentralized feedback laws, capable of making a group
of agents converge to desired relative positions. Further, the solution allows great flex-
ibility for the formation of agents to pursue common objectives, through the tailoring
of a shared mission velocity.

Moreover, a framework known as the LSTS Software Toolchain was used to realize coop-
erative control for the multirotors. It was shown how the developed feedback laws were
implemented as a combination of high-level guidance of setpoints in DUNE, using a

95

96 Chapter 8. Conclusion and Closing Discussions

velocity controller present in APM:Copter on the Pixhawk autopilot to achieve control.
Piksi was integrated with DUNE to provide accurate, relative guidance for the multiro-
tors, although full integration with the autopilot was not performed because of the is-
sues with stability. Further, the mission velocity was implemented as a simple waypoint
tracker, before the complete realization was verified through SIL simulation.

Finally, the validity of the whole system was demonstrated in numerous field experi-
ments with formation flight of two multirotors. Although successful, the experiments
uncovered several problems. Most noticeable was the slow response of the velocity
controller in APM:Copter, which severely limited the performance in challenging envi-
ronmental conditions. Furthermore, the instability and interference experienced with
Piksi impeded the full benefit of RTK navigation for the multirotors. In conclusion, this
leaves room for much improvement in future work. Although not exhaustive, some of
the main areas that should be considered are addressed in the next section.

8.1 Future Work

Improving the performance of the velocity controller in APM:Copter is fundamental to
achieving better performance of the overall system. As mentioned in Section 7.5, better
tuning as well as tight integration with RTK GPS should go a long way, although even
better performance would probably be gained by implementing the lower-level control
in DUNE. This would eliminate the delay in Table 5.2, and with an alternative IMU and
compass it could replace Pixhawk altogether. This would also circumvent the telemetry
rate limitation of 50 Hz from the Pixhawk.

If Piksi is still to be used for RTK navigation in the system, the interference discussed
in Section 3.5 must be properly mitigated. This could involve proper analysis of the
interference with a spectrometer, followed by applying the ensuing remedies. Another
alternative would be to substitute the telemetry with one that doesn’t cause the same
interference. The latter is advisable anyway, as one would surely see improvements to
communication delays and throughput by choosing a telemetry that operates in a less
busy band than the crowded 2.4 GHz of PicoStation.

Lastly, the fact that ArduCopter Hexa B has gone out of production, as well as the low
effective flight time of 5-10 minutes, assert the need to replace the multirotor base plat-
form. Indeed, the UAV-Lab is already in the process of acquiring new carbon fiber oc-
tocopter frames, replacing the old aluminum-based hexacopters. Adapting the system
to these new frames will give an increased flight time, and significantly improve lifting
capacity, which further will extend the possible applications.

Appendix A

Supplementary Figures

97

98 Appendix A. Supplementary Figures

A.1 Rover Velocities from Simulations and Experiments

A.1.1 AP-SIL simulation

0 50

N
o
rt

h
w

a
rd

 [
m

/s
]

-0.5

0

0.5

1

1.5

Rover 1

0 50

-3

-2

-1

0

Rover 2

0 50

-0.5

0

0.5

Rover 3

0 50

E
a
s
tw

a
rd

 [
m

/s
]

-1

0

1

0 50

-2

-1

0

1

0 50

-1

0

1

Time [s]

0 50

D
o
w

n
w

a
rd

 [
m

/s
]

-0.2

0

0.2

Time [s]

0 50

-0.4

-0.2

0

0.2

Time [s]

0 50

-0.4

-0.2

0

0.2

Figure A.1: Rover velocities from the AP-SIL simulation. The black dashed lines indicate
the desired velocity v?.

A.1. Rover Velocities from Simulations and Experiments 99

A.1.2 Experiment Set 1 - Pixhawk navigation

Experiment 1-1: Formation only

0 5 10

N
o
rt

h
w

a
rd

 [
m

/s
]

0.5

1

1.5

Rover 1

0 5 10

-1.5

-1

-0.5

0

Rover 2

0 5 10

E
a
s
tw

a
rd

 [
m

/s
]

-0.6

-0.4

-0.2

0

0 5 10

0

0.2

0.4

0.6

Time [s]

0 5 10

D
o
w

n
w

a
rd

 [
m

/s
]

-0.2

0

0.2

0.4

Time [s]

0 5 10

-0.2

-0.1

0

0.1

Figure A.2: Rover velocities from Experiment 1-1. The black dashed lines indicate the
desired velocity v?.

100 Appendix A. Supplementary Figures

Experiment 1-2: 1 waypoint

0 10 20 30

N
o

rt
h

w
a

rd
 [

m
/s

]

-0.5

0

0.5

1

1.5

Rover 1

0 10 20 30

-2.5

-2

-1.5

-1

-0.5

Rover 2

0 10 20 30

E
a

s
tw

a
rd

 [
m

/s
]

-0.5

0

0.5

0 10 20 30

0

0.5

1

Time [s]

0 10 20 30

D
o

w
n

w
a

rd
 [

m
/s

]

-0.1

0

0.1

0.2

0.3

Time [s]

0 10 20 30
-0.4

-0.2

0

0.2

Figure A.3: Rover velocities from Experiment 1-2. The black dashed lines indicate the
desired velocity v?.

A.1. Rover Velocities from Simulations and Experiments 101

Experiment 1-3: 2 waypoints

0 10 20 30 40

N
o
rt

h
w

a
rd

 [
m

/s
]

-0.6

-0.4

-0.2

0

Rover 1

0 10 20 30 40

-1

-0.5

0

Rover 2

0 10 20 30 40

E
a
s
tw

a
rd

 [
m

/s
]

-0.2

0

0.2

0.4

0.6

0 10 20 30 40

-0.4

0

0.4

Time [s]

0 10 20 30 40

D
o
w

n
w

a
rd

 [
m

/s
]

-0.2

0

0.2

Time [s]

0 10 20 30 40

-0.2

0

0.2

Figure A.4: Rover velocities from Experiment 1-3. The black dashed lines indicate the
desired velocity v?.

102 Appendix A. Supplementary Figures

A.1.3 Experiment Set 2 - Piksi navigation

Experiment 2-1: Formation only

0 5 10 15

N
o
rt

h
w

a
rd

 [
m

/s
]

-0.5

0

0.5

1

1.5

Rover 1

0 5 10 15

-1.5

-1

-0.5

0

0.5

Rover 2

0 5 10 15

E
a
s
tw

a
rd

 [
m

/s
]

-0.4

-0.2

0

0.2

0 5 10 15

-0.2

0

0.2

0.4

Time [s]

0 5 10 15

D
o
w

n
w

a
rd

 [
m

/s
]

-0.2

0

0.2

Time [s]

0 5 10 15

-0.4

-0.2

0

0.2

Figure A.5: Rover velocities from Experiment 2-1. The black dashed lines indicate the
desired velocity v?, while the green lines are are velocities from the Pixhawk. Note that
there is no desired downward speed as only 2D control was in effect.

A.1. Rover Velocities from Simulations and Experiments 103

Experiment 2-2: 1 waypoint

0 5 10 15

N
o
rt

h
w

a
rd

 [
m

/s
]

-0.5

0

0.5

1

1.5

Rover 1

0 5 10 15

-1.5

-1

-0.5

0
Rover 2

0 5 10 15

E
a
s
tw

a
rd

 [
m

/s
]

-0.5

0

0.5

0 5 10 15

0

0.2

0.4

0.6

Time [s]

0 5 10 15

D
o
w

n
w

a
rd

 [
m

/s
]

-0.4

-0.2

0

0.2

Time [s]

0 5 10 15

-0.2

0

0.2

0.4

Figure A.6: Rover velocities from Experiment 2-2. The black dashed lines indicate the
desired velocity v?, while the green lines are are velocities from the Pixhawk. Note that
there is no desired downward speed as only 2D control was in effect.

104

Bibliography

3D Robotics (2014a). Arducopter 3DR Hexa B. URL: http://store.3drobotics.com/
products/arducopter-3dr-hexa-b-1 (visited on 10/28/2014).

— (2014b). Mission Planner. URL: http://planner.ardupilot.com/ (visited on
12/15/2014).

— (2014c). Pixhawk Autopilot System. URL: http://3drobotics.com/pixhawk-
autopilot-system/ (visited on 10/28/2014).

— (2015). 3DR-radio. URL: https://store.3drobotics.com/products/3dr-
radio-433_mhz (visited on 05/21/2015).

AMOS (2015). The Unmanned Aerial Vehicle Laboratory. URL: http://uavlab.itk.
ntnu.no/ (visited on 06/10/2015).

Andersen, Håvard Lægreid (2014). “Path Planning for Search and Rescue Mission Using
Multicopters”. MA thesis. Norwegian University of Science and Technology.

Arcak, Murat (2007). “Passivity as a Design Tool for Group Coordination”. In: Automatic
Control, IEEE Transactions on 52.8, pp. 1380–1390.

Bai, He, Murat Arcak, and John Wen (2011). Cooperative Control Design - A systematic
Passivity-Based Approach. Vol. 89. Springer. ISBN: 9781461400134.

Bäumker, M, HJ Przybilla, and A Zurhorst (2013). “Enhancements in UAV Flight Control
and Sensor Orientation”. In: ISPRS-International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences 1.2, pp. 33–38.

BeagleBoard (2014). BeagleBone Black. URL: http://beagleboard.org/black (vis-
ited on 12/16/2014).

Belleter, Dennis Johannes Wouter and Kristin Ytterstad Pettersen (2014). “Path Follow-
ing for Formations of Underactuated Marine Vessels Under Influence of Constant
Ocean Currents”. In: Decision and Control (CDC), 2014 IEEE 53rd Annual Confer-
ence on. IEEE, pp. 4521–4528.

Børhaug, Even et al. (2011). “Straight Line Path Following for Formations of Underactu-
ated Marine Surface Vessels”. In: Control Systems Technology, IEEE Transactions on
19.3, pp. 493–506.

Broek, Thijs HA Van den, Nathan Van de Wouw, and Henk Nijmeijer (2009). “Formation
Control of Unicycle Mobile Robots: A Virtual Structure Approach”. In: Decision and
Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC
2009. Proceedings of the 48th IEEE Conference on. IEEE, pp. 8328–8333.

105

http://store.3drobotics.com/products/arducopter-3dr-hexa-b-1
http://store.3drobotics.com/products/arducopter-3dr-hexa-b-1
http://planner.ardupilot.com/
http://3drobotics.com/pixhawk-autopilot-system/
http://3drobotics.com/pixhawk-autopilot-system/
https://store.3drobotics.com/products/3dr-radio-433_mhz
https://store.3drobotics.com/products/3dr-radio-433_mhz
http://uavlab.itk.ntnu.no/
http://uavlab.itk.ntnu.no/
http://beagleboard.org/black

106 Bibliography

Cao, Yongcan et al. (2013). “An Overview of Recent Progress in the Study of Distributed
Multi-Agent Coordination”. In: Industrial Informatics, IEEE Transactions on 9.1, pp. 427–
438.

Cetin, Recep (2015). “Indoor Navigation System and Suspended Load Control for Mul-
tirotors”. MA thesis. Norwegian University of Science and Technology.

Cheung, Yushing, Jae H Chung, and Norman P Coleman (2009). “Semi-autonomous
Formation Control of a Single-master Multi-slave Teleoperation System”. In: Com-
putational Intelligence in Control and Automation, 2009. CICA 2009. IEEE Sympo-
sium on. IEEE, pp. 117–124.

Chung, Soon-Jo and J-JE Slotine (2009). “Cooperative Robot Control and Concurrent
Synchronization of Lagrangian Systems”. In: Robotics, IEEE Transactions on 25.3,
pp. 686–700.

DIY Drones (2015a). APM:Copter. URL: http://copter.ardupilot.com/ (visited on
05/21/2015).

— (2015b). APM:Copter, GitHub. URL: https://github.com/diydrones/ardupilot/
tree/master/ArduCopter (visited on 05/21/2015).

— (2015c). ArduPilot Software-in-the-Loop. URL: http : / / dev . ardupilot . com /
wiki/simulation-2/sitl-simulator-software-in-the-loop/ (visited on
05/25/2015).

— (2015d). Attitude Control (Copter Code Overview). URL: http://dev.ardupilot.
com/wiki/apmcopter-code-overview/apmcopter-programming-attitude-
control-2/ (visited on 06/12/2015).

— (2015e). MAVLink Micro Air Vehicle Communication Protocol. URL:http://qgroundcontrol.
org/mavlink/start (visited on 05/21/2015).

Dunbar, William B and Richard M Murray (2006). “Distributed Receding Horizon Con-
trol for Multi-Vehicle Formation Stabilization”. In: Automatica 42.4, pp. 549–558.

Fossen, Thor I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley & Sons, Ltd.

Ghabcheloo, Reza et al. (2009). “Coordinated Path-following in the Presence of Commu-
nication Losses and Time Delays”. In: SIAM Journal on Control and Optimization
48.1, pp. 234–265.

Hofmann-Wellenhof, Bernhard, Herbert Lichtenegger, and Elmar Wasle (2007). Global
Navigation Satellite Systems: GPS, GLONASS, Galileo & more. Springer Science &
Business Media.

Ihle, Ivar-André F, Murat Arcak, and Thor I Fossen (2007). “Passivity-based Designs for
Synchronized Path-Following”. In: Automatica 43.9, pp. 1508–1518.

Kaminer, Isaac et al. (2007). “Coordinated Path Following for Time-Critical Missions of
Multiple UAVs via L1 Adaptive Output Feedback Controllers”. In: AIAA Guidance,
Navigation and Control Conference and Exhibit, p. 6409.

Khalil, Hassan K. (2002). Nonlinear Systems. Vol. 3. Prentice-Hall. ISBN: 0131227408.
Kickstarter (2014). Piksi the RTK receiver. URL: https://www.kickstarter.com/

projects/swiftnav/piksi-the-rtk-gps-receiver (visited on 12/14/2014).
Klausen, Kristian (2013). “Cooperative Behavioural Control for Omni-Wheeled Robots”.

MA thesis. Norwegian University of Science and Technology.

http://copter.ardupilot.com/
https://github.com/diydrones/ardupilot/tree/master/ArduCopter
https://github.com/diydrones/ardupilot/tree/master/ArduCopter
http://dev.ardupilot.com/wiki/simulation-2/sitl-simulator-software-in-the-loop/
http://dev.ardupilot.com/wiki/simulation-2/sitl-simulator-software-in-the-loop/
http://dev.ardupilot.com/wiki/apmcopter-code-overview/apmcopter-programming-attitude-control-2/
http://dev.ardupilot.com/wiki/apmcopter-code-overview/apmcopter-programming-attitude-control-2/
http://dev.ardupilot.com/wiki/apmcopter-code-overview/apmcopter-programming-attitude-control-2/
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-receiver
https://www.kickstarter.com/projects/swiftnav/piksi-the-rtk-gps-receiver

Bibliography 107

Klausen, Kristian, Thor Fossen, Tor Arne Johansen, et al. (2014). “Suspended Load Mo-
tion Control Using Multicopters”. In: Control and Automation (MED), 2014 22nd
Mediterranean Conference of. IEEE, pp. 1371–1376.

Lee, Taeyoung, Melvin Leoky, and N Harris McClamroch (2010). “Geometric Tracking
Control of a Quadrotor UAV on SE (3)”. In: Decision and Control (CDC), 2010 49th
IEEE Conference on. IEEE, pp. 5420–5425.

Leonard, Naomi Ehrich and Edward Fiorelli (2001). “Virtual Leaders, Artificial Potentials
and Coordinated Control of Groups”. In: Decision and Control, 2001. Proceedings of
the 40th IEEE Conference on. Vol. 3. IEEE, pp. 2968–2973.

LSTS (2015a). DUNE: Unified Navigation Environment. URL: http://lsts.fe.up.pt/
toolchain/dune (visited on 05/09/2015).

— (2015b). GLUED/Linux Uniform Environment Distribution. URL: http://lsts.fe.
up.pt/toolchain/glued (visited on 05/09/2015).

— (2015c). Inter-Module Communication protocol. URL: http://lsts.fe.up.pt/
toolchain/imc (visited on 05/09/2015).

— (2015d). LSTS, GitHub. URL: https://github.com/LSTS (visited on 05/10/2015).
— (2015e). Neptus Command and Control Software. URL: http://lsts.fe.up.pt/

toolchain/neptus (visited on 05/09/2015).
— (2015f). Underwater Systems and Technology Laboratory. URL: http://lsts.fe.

up.pt/ (visited on 05/09/2015).
Mahony, Robert, Vijay Kumar, and Peter Corke (2012). “Multirotor Aerial Vehicles: Mod-

eling, Estimation, and Control of Quadrotor”. In: IEEE Robotics & amp amp Automa-
tion Magazine 19, pp. 20–32.

MATLAB (2015). version 8.5.0.197613 (R2015a). Natick, Massachusetts, USA: The Math-
Works Inc.

Maxtena (2014). M1227HCT-A-SMA Datasheet. URL: http : / / www . maxtena . com /
uploads/6/6/6/5/6665461/m1227hct-a-sma.pdf (visited on 10/31/2014).

Moreau, Luc (2005). “Stability of Multiagent Systems with Time-Dependent Communi-
cation Links”. In: Automatic Control, IEEE Transactions on 50.2, pp. 169–182.

Murray, Richard M (2007). “Recent Research in Cooperative Control of Multivehicle Sys-
tems”. In: Journal of Dynamic Systems, Measurement, and Control 129.5, pp. 571–
583.

NovAtel (2014). GPS-701-GG Datasheet. URL: http://www.novatel.com/assets/
Documents/Papers/GPS701_702GG.pdf (visited on 10/31/2014).

Olfati-Saber, Reza, J Alex Fax, and Richard M Murray (2007). “Consensus and Coopera-
tion in Networked Multi-Agent Systems”. In: Proceedings of the IEEE 95.1, pp. 215–
233.

Olfati-Saber, Reza and Richard M Murray (2002). “Distributed Cooperative Control of
Multiple Vehicle Formations Using Structural Potential Functions”. In: IFAC World
Congress, pp. 346–352.

openAIP (2015). Agdenes Airfield, Breivika. URL: http://www.openaip.net/node/
157338 (visited on 06/02/2015).

Pettersen, Kristin Y, Jan Tommy Gravdahl, and Henk Nijmeijer (2006). “Group Coordi-
nation and Cooperative Control”. In:

http://lsts.fe.up.pt/toolchain/dune
http://lsts.fe.up.pt/toolchain/dune
http://lsts.fe.up.pt/toolchain/glued
http://lsts.fe.up.pt/toolchain/glued
http://lsts.fe.up.pt/toolchain/imc
http://lsts.fe.up.pt/toolchain/imc
https://github.com/LSTS
http://lsts.fe.up.pt/toolchain/neptus
http://lsts.fe.up.pt/toolchain/neptus
http://lsts.fe.up.pt/
http://lsts.fe.up.pt/
http://www.maxtena.com/uploads/6/6/6/5/6665461/m1227hct-a-sma.pdf
http://www.maxtena.com/uploads/6/6/6/5/6665461/m1227hct-a-sma.pdf
http://www.novatel.com/assets/Documents/Papers/GPS701_702GG.pdf
http://www.novatel.com/assets/Documents/Papers/GPS701_702GG.pdf
http://www.openaip.net/node/157338
http://www.openaip.net/node/157338

108 Bibliography

Qu, Zhihua, Jing Wang, and Richard A Hull (2008). “Cooperative Control of Dynami-
cal Systems with Application to Autonomous Vehicles”. In: Automatic Control, IEEE
Transactions on 53.4, pp. 894–911.

Ren, Wei, Randal W Beard, and Ella M Atkins (2007). “Information Consensus in Multi-
vehicle Cooperative Control”. In: IEEE Control systems magazine 2.27, pp. 71–82.

Ren, Wei, Randal W Beard, et al. (2005). “Consensus Seeking in Multiagent Systems Un-
der Dynamically Changing Interaction Topologies”. In: IEEE Transactions on auto-
matic control 50.5, pp. 655–661.

Skulstad, Robert and Christoffer Lie Syversen (2014). “Low-cost Instrumentation Sys-
tem for Recovery of Fixed-Wing UAV in a Net”. MA thesis. Norwegian University of
Science and Technology.

Smith, Randall W (1987). Department of Defense World Geodetic System 1984: Its Defini-
tion and Relationships with Local Geodetic Systems. Defense Mapping Agency.

SolidWorks (2014). version 22.3.0.56 (2014 SP03). Waltham, Massachusetts, USA: Das-
sault Systèmes SolidWorks Corp.

Steen, Thor Audun (2014). “Search and Rescue Mission Using Multicopters”. MA thesis.
Norwegian University of Science and Technology.

Stempfhuber, W (2013). “3D-RTK Capability of Single GNSS Receivers”. In: ISPRS-International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
1.2, pp. 379–384.

Svendsen, Jon Glenn Gjevestad (2001). “Real-Time Phase Ambiguity Resolution in Global
Navigation Satellite Systems”. PhD thesis.

SwiftNAV (2013). Piksi Datasheet v2.3.1. URL: http://docs.swift-nav.com/pdfs/
piksi_datasheet_v2.3.1.pdf (visited on 05/20/2015).

— (2015a). General discussion community. URL: https://groups.google.com/
forum/#!forum/swiftnav-discuss (visited on 05/20/2015).

— (2015b). libswiftnav documentation. URL: http://docs.swift-nav.com/libswiftnav/
(visited on 05/20/2015).

— (2015c). SBP client libraries. URL: https://github.com/swift- nav/libsbp
(visited on 05/20/2015).

— (2015d). Swift Navigation store. URL: http://store.swiftnav.com/ (visited on
05/19/2015).

— (2015e). The Swift Navigation Binary Protocol. URL: http://docs.swiftnav.com/
wiki/SwiftNav_Binary_Protocol (visited on 05/20/2015).

Takasu, Tomoji and Akio Yasuda (2004). “Cycle Slip Detection and Fixing by MEMS -
IMU / GPS Integration for Mobile Environment RTK-GPS”. In:

— (2009). “Development of the Low-cost RTK-GPS Receiver with an Open Source Pro-
gram Package RTKLIB”. In: International Symposium on GPS/GNSS, pp. 4–6.

Tridgell, Andrew (2015). MAVProxy: A UAV ground station software package for MAVLink
based systems. URL:http://tridge.github.io/MAVProxy/ (visited on 05/25/2015).

Ubiquiti Networks (2014). PICOM2HP Datasheet. URL: http://www.ubnt.com/downloads/
datasheets/picostationm/picom2hp_DS.pdf (visited on 12/12/2014).

Walpole, Ronald E et al. (1993). Probability and Statistics for Engineers and Scientists.
Vol. 5. Macmillan New York.

http://docs.swift-nav.com/pdfs/piksi_datasheet_v2.3.1.pdf
http://docs.swift-nav.com/pdfs/piksi_datasheet_v2.3.1.pdf
https://groups.google.com/forum/#!forum/swiftnav-discuss
https://groups.google.com/forum/#!forum/swiftnav-discuss
http://docs.swift-nav.com/libswiftnav/
https://github.com/swift-nav/libsbp
http://store.swiftnav.com/
http://docs.swiftnav.com/wiki/SwiftNav_Binary_Protocol
http://docs.swiftnav.com/wiki/SwiftNav_Binary_Protocol
http://tridge.github.io/MAVProxy/
http://www.ubnt.com/downloads/datasheets/picostationm/picom2hp_DS.pdf
http://www.ubnt.com/downloads/datasheets/picostationm/picom2hp_DS.pdf

Bibliography 109

Wu, Chai Wah and Leon O Chua (1995). “Application of Graph Theory to the Synchro-
nization in an Array of Coupled Nonlinear Oscillators”. In: Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on 42.8, pp. 494–497.

Xargay, E et al. (2013). “Time-Critical Cooperative Path Following of Multiple Unmanned
Aerial Vehicles over Time-Varying Networks”. In: Journal of Guidance, Control, and
Dynamics 36.2, pp. 499–516.

	Thesis Description Sheet
	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background and Motivation
	Previous Work
	Contribution and Scope of This Thesis
	Organization of This Thesis
	Notation and Definitions

	The Multirotor Platform
	Overview
	System Components
	Multirotor
	Autopilot
	Precision navigation
	Radio controller
	Payload computer
	Ground control station
	Communication
	Batteries

	Custom Payload
	Specifications
	Design
	Production and assembly
	Improvements to future designs

	Introduction to the LSTS Software Toolchain
	DUNE
	Neptus
	IMC

	Introduction to APM:Copter
	Mission Planner
	Micro Air Vehicle Link

	Piksi Software
	Swift Navigation Binary Protocol
	Piksi Console

	Multirotor Dynamics
	Kinematics
	Kinetics
	Translational control

	Real-Time Kinematics Navigation
	Introduction to RTK
	The general concept
	Code and phase measurements
	Sources of error
	Differential GNSS and RTK
	Integer ambiguity resolution

	Navigation System for Multirotors
	Piksi
	Issues with stability
	External antenna

	RTK Experiments
	Static accuracy
	Antenna tilt

	Interference from Telemetry
	Summary

	Cooperative Control
	Problem Statement
	The Passivity-based Design Procedure
	Step 1: Internal feedback
	Step 2: External feedback
	Internal feedback for the multirotor
	External feedback for formation control

	Stability and Equilibria
	Designing Feasible Target Sets
	Cooperative Simulation in MATLAB
	Setup
	Results
	Discussion

	Summary

	Implementation
	Interface with Piksi
	Controller in APM:Copter
	Cooperative Control in DUNE
	The main DUNE tasks
	Mission velocity

	Execution Frequencies
	Delays

	Multirotor Simulations
	ArduPilot Software-in-the-Loop
	Setup
	Results
	Discussion

	Multirotor Experiments
	Agdenes Airfield
	Overview
	Experiment Set 1 - Pixhawk Navigation
	Setup
	Results

	Experiment Set 2 - Piksi Navigation
	Setup
	Results

	Discussion

	Conclusion and Closing Discussions
	Future Work

	Supplementary Figures
	Rover Velocities from Simulations and Experiments
	AP-SIL simulation
	Experiment Set 1 - Pixhawk navigation
	Experiment Set 2 - Piksi navigation

	Bibliography

