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Problem Description

The aim of the diploma project is to study the implementation challenges of numer-
ical optimization algorithms that appear in embedded model predictive control.

A detailed review of some of the most important numerical optimization al-
gorithms for solving embedded model predictive control problems will be given. A
selection of these algorithms should be implemented in the C programming language,
and performance comparisons should be made. Furthermore, a toolbox containing
these algorithms should be created. The toolbox should have a Matlab interface for
easy and efficient analysing and testing.

The work will be carried out at the University Politehnica of Bucharest, in the
group of Associate Prof. Ion Necoara.
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Abstract

In this Thesis, numerical implementation of optimization algorithms for convex
quadratic problems that appear in model predictive control for embedded linear
systems, are examined. Different versions of dual first order methods are introduced
and their complexity estimates are presented. The methods are implemented in
the efficient programming language C, and optimized for low iteration complexity
and low memory footprint. Extensive numerical simulations are conducted to test
their performance and robustness, both against each other and against a commercial
solver. Furthermore, a toolbox called DuQuad [1], that contains the implemented
algorithms, is developed. The toolbox has a dynamic MATLAB interface which
make the process of testing, comparing, and analysing the algorithms simple. The
algorithms are implemented using only basic arithmetic and logical operations and
are suitable to run on low cost hardware. It is shown that if an approximate solution
is sufficient for a given application, there exists problems where some of the imple-
mented algorithms obtain the solution faster than the state-of-the-art commercial
solver.
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Sammendrag

Denne rapporten omhandler implementering av optimeringsalgoritmer for konvekse
kvadratiske problemer man finner i MPC for innebygde linære systemer. Forskjellige
versjoner av dual første ordens metoder er introdusert, og estimater av deres kom-
pleksitet er presentert. Disse metodene er implementert i det effektive programmer-
ingsspr̊aket C, og optimert i forhold til kompleksitet og lavt minnebruk. Omfattende
numeriske simuleringer er utført for å teste deres ytelse og robusthet, b̊ade i forhold
til hverandre og i forhold til et kommersielt optimeringsverktøy. En toolbox kalt
DuQuad [1], som inneholder alle de implementerte algoritmene, er utviklet. Dette
verktøyet har et dynamisk MATLAB brukergrensesnitt som gjør testing, sammen-
likning og analysering av algoritmene enklere. Alle algoritmene er implementert ved
å bruke enkle aritmetiske og logiske operasjoner, og er egnet til å kjøre p̊a lavytelses
hardware. Det er vist at om en tilnærmet løsning er tilstrekkelig for en gitt app-
likasjon, eksisterer det problemer hvor noen av de implementerte metodene finner
en løsning raskere enn et ledende kommersielt optimeringsverktøy.
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1. Introduction

1.1. Background and Motivation for the project

Model predictive control (MPC) is a highly relevant subject within the field of engi-
neering automation. Because MPC can be a computationally demanding algorithm,
it has commonly been utilized in slow processes with large time constant. However,
as the computational capabilities of processors have improved drastically over the
last decades, MPC schemes have also been introduced in faster real-time systems.
As the solvers for the optimization problem in MPC now are being tailored for dif-
ferent applications, MPC on resource constrained platforms, e.g. microcontrollers,
can perform on faster and faster real-time systems.

The optimization problems for linear systems that arises from condensed and
sparse MPC formulations are often convex quadratic programs (QPs). Today, many
solvers that are tailored for such optimization problems exists. However, most of
these solvers are based on second order methods, which can offer fast rates of con-
vergence in practice, but where the worst case complexity bounds are high. Further-
more, these methods have complex iterations, involving inversion of matrices, which
are usually difficult to implement on embedded systems, where the unit demand
simple computations. First order methods, on the other hand, can be implemented
using less complex operations, and are often better suited in situations where low
memory footprint and predictable behaviour are required.

Commercial dual first order QP solvers exist on the marked today. However,
these are tailored to solve only specific cases of QP problems. The main motivation
for this Master’s Thesis is therefore to implement a toolbox containing different
versions of dual first order optimization algorithms that can solve more general
formulations of QPs.

1.2. Main Objectives

In addition to gain a deeper understanding within the field of MPC and convex
optimization, the main objectives of this Master’s Thesis can be summarised as
follows:

� Study numerical first order optimization algorithms that solves convex quadratic
problems that appear in MPC for embedded linear systems.

� Implement some of these algorithms in the efficient low-level programming
language C, while optimizing for low iteration complexity and low memory
footprint.

� Compare and analyse the robustness and convergence of these algorithms in
practice.

1



2 Chapter 1. Introduction

� Finalize a complete SW program in the form of a toolbox that contains the
implemented algorithms and has a simple user interface.

1.3. Project Overview

The project consists of two parts; one theoretical and one practical.
The theoretical part of the report starts in Chapter 2. First, a general intro-

duction to MPC is provided, and an input constrained MPC problem is recast as a
QP. Second, some concepts and properties of embedded MPC are reviewed. General
optimization theory is studied in the third part, and the chapter ends with a section
about convex quadratic programming.

The theoretical part continues in Chapter 3 where four different quadratic dual
first order optimization algorithms are presented in detail.

The practical part of the project consists of implementing, testing and analysing
the algorithms discussed in Chapter 3. These algorithms are all bundled into a tool-
box, called DuQuad, which is discussed in Chapter 4. A presentation and discussion
of the numerical simulations carried out in the project are found in Chapter 5.

A conclusion is given in Chapter 6, and a discussion of possible future work are
given in Chapter 7. Theoretical bounds on convergence are stated in Appendix A,
an alternative matrix multiplication method is presented in Appendix B, and a user
manual for the DuQuad toolbox is given in Appendix C.

1.4. Notation

The notation throughout this report will be as follows:

� [z]Z means that z is projected onto the set Z.

� [ · ]+ means projection on a non-negative orthant Rn
+.

� [ · ]+ and [.]Z are used for spaces of different dimensions.

� ‖z‖ denote the Euclidean norm, ‖z‖ :=
√
z21 + · · ·+ z2n.

� H � 0 means that the matrix H is positive semidefinite.

� H � 0 means that the matrix H is positive definite.

� := means defined as.

� bαc denotes the largest integer which is less than or equal to α.

� 〈x, y〉 := xTy :=
∑n

i=1 xiyi, i.e. vector multiplication.

� n is the size of the hessian matrix H, which is an n× n matrix.

� m is the row size of the linear constraint matrix A, which is an m× n matrix.

� k is used to denote the iteration index in algorithms.



2. Literature Survey

This chapter contains control and optimization theory that the reader should be
familiar with in order to better understand the following chapters in this Master’s
Thesis. The chapter is divided into four sections. In the first section, model predic-
tive control is introduced, and a QP problem is derived from a general condensed
MPC formulation. Second, different requirements and properties of embedded MPC
are reviewed. In the third section, some concepts within optimization theory is pre-
sented. Finally, quadratic programming is discussed.

2.1. Model Predictive Control

This section will first give a brief introduction to model predictive control (MPC),
and then show how a standard condensed MPC problem can be recast into a
quadratic program. Some parts of this section is modified from the Project the-
sis of Kvamme [2].

2.1.1. Introduction

Model Predictive Control was first introduced in the 1970s and has been in use in
chemical plants and oil refineries since the 1980s. In general, MPC is an optimal
control strategy, based on numerical optimization, that can control more complex
processes. The strategy is described by dynamical models, and has the advantage
of controlling large multi-variable systems with constraints on inputs and states
variables, while simultaneously optimizing the predicted future. Today MPC is
still a very popular advanced control technology in chemical process industry, but
the method is also emerging into several other application areas. Furthermore, as
computers constantly are getting faster and more resourceful, MPC has lately been
utilized in faster real-time systems, or real-time computing (RTC).

Most processes do not have a linear characteristic, i.e. they are nonlinear. How-
ever, these processes can be linearized around their equilibrium point to make a
linear model. This model will not be exact, but in most cases good enough to con-
trol and keep the system stable. The linear model can also be obtained by system
identification methods based on measured data. Therefore, the most widespread
type of MPC is usually termed linear MPC. This type of MPC uses a linear state-
space model for the prediction and a convex QP for the optimization.

In the beginning, MPC applications were optimized for a finite horizon. Nonethe-
less, during the 90s, theory was developed for linear process models to have an
infinite horizon. It can be proven that an infinite horizon gives better theoretical
properties, and is therefore often the preferred choice. For an infinite horizon, the
linear quadratic controller (LQR) delivers an optimal performance and stabilizes the

3



4 Chapter 2. Literature Survey

system. On the other hand, the LQR does not handle constraints. This disadvan-
tage of LQR is the main reason for the increased popularity of MPC. MPC gives the
opportunity, in contrast to LQR, to handle constraints on both inputs and outputs
of the system.

The MPC problem consists of an objective function and constraints. This is
typically categorized as a convex or a non-convex optimization problem. In this
Thesis, only convex optimization problems, where the optimization problem is a
quadratic program (QP), is considered. A QP has a quadratic objective function
and linear constraints.

2.1.2. Principle

The basic principle of MPC can be summarized as follows

� At a given point in time, based on the current state of the system, the objective
function (from the state-space model of the plant), and the given constraints,
find a sequence of optimal and feasible future inputs to the process.

� Apply only the first optimal input of the sequence to the process.

� Go to next timestep and repeat the process.

The length of the calculated optimal sequence of inputs is given by the length of the
horizon N . The prediction horizon remains the same length despite the repetition
of the optimization at future time instants, as shown in Figure 2.1. The strategy is
called receding horizon strategy.

Figure 2.1: The receding horizon strategy. The length of the horizon, N , is constant. x
is the state of the system while u is the input. Adapted from [3]
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2.1.3. Defining the MPC Problem

A simple state space model of a plant is considered as an example for further dis-
cussion. It is assumed that the plant is time-invariant, linear, and in discrete time.
Furthermore, the optimization problem is subjected to (s.t.) constraints on states
and inputs, and have a quadratic cost criterium. A model of a plant that fulfill these
conditions, and ignore disturbances on measurements and states, can be described
as follows:

xk+1 = Axk +Buk (2.1)

yk = Cxk,

where xk ∈ Rnx is the state vector, uk ∈ Rnu is the input vector, and yk ∈ Rny

is the output/measurements vector. Furthermore, A ∈ Rnx×nx is the state matrix,
B ∈ Rnx×nu is the input matrix, and C ∈ Rny×nx is the output matrix. The subscript
k + 1 refers ro the sample instant one sample interval after sample k. The state xk
and input uk should be considered as deviation variables, i.e. they represent a error
from some constant set of variables {x̃, ũ}. For a continuous process, {x̃, ũ} will
typically represent a stationary point where the process is in normal working-mode.
There are no restrictions on the eigenvalues of A, i.e. the system could be stable or
unstable.

Constraints

The system in equation 2.1 can be subjected to certain constraints on the states and
inputs. The constraints on the states can be described as

Ylb ≤ Cxk ≤ Yub, (2.2)

where Ylb, Yub ∈ Rnx . Note that Cxk also describes the measurements y. The
constraints on the inputs u are given as

Ulb ≤ uk ≤ Uub, (2.3)

where Ulb, Uub ∈ Rnu . These constraints are also called box-constraints. Finally,
constraints on the last state in an MPC problem can be included

Tlb ≤ TxN ≤ Tub, (2.4)

where Tlb, Tub ∈ Rnx . This final, or terminal, state is explained in the following
sections.

LQR and Dual Mode

The goal is to control the system in equation (2.1), i.e. (xk → 0), while optimize
the performance by minimizing the infinite horizon cost

J(x0, uk) =
∞∑
k=0

(xTkQxk + uTkRuk), (2.5)
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where future xk are given by x0 and uk. Q and R are called tuning matrices. R has
to be positive definite while Q only can be positive semidefinite1. Both matrices has
to be symmetric.

In the case where there are no constraints for the system, the optimal solution
that minimizes the function in equation (2.5) will be given by the the state feedback

uk = −Kxk, (2.6)

where K is the state feedback matrix. This controller is called infinite horizon LQ
controller, or the Linear Quadratic Regulation (LQR), and K is found from the
Riccati equation [5]. Substituting for uk, equation (2.5) can be rewritten in the
following way:

∞∑
k=0

xTkQxk + uTkRuk =
∞∑
k=0

xTk (Q+KTRK)xk = xT0 Px0. (2.7)

The LQR is optimal on the infinite horizon, multivariabel, robust, and easy to com-
pute. However, as mentioned earlier, it has the drawback of not handling constraints.

In [2], it is shown how to use a method called dual mode predictions to divide
the infinite horizon in two. Using this method the objective function is rewritten as

∞∑
k=0

xTkQxk + uTkRuk =
N−1∑
k=0

{
xTkQxk + uTkRuk

}
+ xTNPxN . (2.8)

The first part of equation (2.8) is solved as a MPC problem with finite horizon N ,
while and the second part, with infinite horizon, is solved using LQR (or another
feedback law that can guarantee stability). This scheme is illustrated in Figure 2.2.

Figure 2.2: Dual mode input predictions

The logic behind this strategy is that the constraints are resolved before k = N ,

1If a matrix is positive definite, all the eigenvalues are positive. If all eigenvalues are positive
or zero the matrix is positive semidefinite [4].
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and therefore the optimal solution of the LQR can be used for k ≥ N when no
constraints are active. When combining the finite horizon MPC and the LQR, an
MPC scheme with infinite horizon is obtained. By optimizing for on the infinite
horizon, and only apply the first part of the optimal input to the system, feedback
is achieved and the system can be kept stable.

Condensed MPC Problem

The column vectors x and u are defined as

x :=
[
x1 x2 · · · xN−1 xN

]T
, u :=

[
u0 u1 · · · uN−2 uN−1

]T
. (2.9)

Given the result in equation (2.8), a general condensed MPC problem, which opti-
mizes the input u and includes constraints on states and inputs, can be stated as
follows:

min
u

∑N−1
k=0

1
2

{
xTkQxk + uTkRuk

}
+ 1

2
xTNPxN

s.t. Ylb ≤ Cxk ≤ Yub
Ulb ≤ uk ≤ Uub
Tlb ≤ TxN ≤ Tub
x0 = given,

(2.10)

where xk is given by the state space in equation (2.1). In this problem formulation,
P is referred to as the terminal state weight matrix and xN is the terminal state.
Constraints on the terminal state are also included in the problem. This condensed
MPC formulation is also called input-only constrained MPC [6].

2.1.4. Condensed MPC Problem Recast as a Standard QP

In the following, the optimization problem in equation (2.10) will be recast as a QP
on standard form. When the initial state x0 is given as input to the problem, the
next xk can be calculated as follows:

x1 = Ax0 +Bu0,

x2 = Ax1 +Bu1
= A(Ax0 +Bu0) +Bu1
= A2x0 + ABu0 +Bu1,

x3 = Ax2 +Bu2
= A(A2x0 + ABu0 +Bu1) +Bu2
= A3x0 + A2Bu0 + ABu1 +Bu2,

...

xk = Akx0 + Ak−1Bu0 + Ak−2Bu1 + · · ·+ Fuk−2B +Buk−1.

(2.11)
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This means that future states xk can be calculated from the initial state x0 and the
inputs u. By defining

Ã :=


A
A2

...
AN−1

AN

 , B̃ :=


B 0 0 . . . 0

AB B 0
. . . 0

A2B
. . . . . . . . .

...
...

. . . AB
. . .

...
AN−1B . . . A2B AB B

 , (2.12)

x is defined by the function

x = Ãx0 + B̃u. (2.13)

Further, the weighting matrices Q, R, and P are placed as elements in the sparse
matrices Q̃ and R̃, and C is placed in C̃ as follows:

Q̃ :=


Q 0 · · · 0 0

0 Q
. . .

...
...

0 0
. . . 0 0

...
...

. . . Q 0
0 0 · · · 0 P

 , R̃ :=


R 0 · · · 0 0

0 R
. . .

...
...

0 0
. . . 0 0

...
...

. . . R 0
0 0 · · · 0 R

 , C̃ :=


C 0 · · · 0 0

0 C
. . .

...
...

0 0
. . . 0 0

...
...

. . . C 0
0 0 · · · 0 T

 .
(2.14)

In addition, the constraints from equation (2.10) are placed as elements in the new
vectors

l̂b :=


Ylb
...
Ylb
Tlb

 , ûb :=


Yub
...
Yub
Tub

 , lb :=

Ulb...
Ulb

 , ub :=

Uub...
Uub

 . (2.15)

By substituting x using equation (2.13), the objective function in (2.10) can be
rewritten

1
2
xT Q̃x+ 1

2
uT R̃u = 1

2
(Ãx0 + B̃u)T Q̃(Ãx0 + B̃u) + 1

2
uT R̃u

= 1
2
uT (B̃T Q̃B̃ + R̃)u+ xT0 Ã

T Q̃B̃u+ 1
2
xT0 Ã

T Q̃Ãx0,
(2.16)

and the term Cx from the linear constraints

C̃x = C̃Ãx0 + C̃B̃u. (2.17)

Finally, by defining

H := B̃T Q̃B̃ + R̃, c := xT0 Ã
T Q̃B̃, G := C̃B̃, g := C̃Ãx0, (2.18)

the QP which solves the condensed MPC problem in equation (2.10) is stated as
follows:
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min
u

1
2
uTHu+ cTu

s.t. l̂b ≤ Gu− g ≤ ûb
lb ≤ u ≤ ub.

(2.19)

In Chapter 3, different algorithms for solving QPs on this form are discussed.

Sparse MPC

In the condensed MPC formulation, only the inputs u are optimized. However, when
optimizing for both the the states x and the inputs u, the resulting optimization
problem is called a sparse MPC problem. If defining z = [xT , uT ] it can be shown
that a corresponding QP can be formulated as follows [7]:

min
z

1
2
zT H̄z + c̄T z

s.t. Ḡz = ḡ
l̄b ≤ z ≤ ūb.

(2.20)

For a more detailed deviation of the equations presented in this chapter, see
Hovd [4] and Imsland [5]. Furthermore, different concepts such as MPC tracking,
hard and soft constraints, preconditioning, tuning, and stability are discussed in
Kvamme [2].
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2.2. Embedded MPC

An embedded system is normally a computer system that is dedicated to perform
one specific function, and is embedded as part of a larger mechanical or electrical
system. Embedded systems usually operates with real-time computing constraints,
e.g. operational deadlines from an event will occur to the system makes a response.
In most cases, it will be overkill to utilize a powerful and expensive general-purpose
computer to perform the function of an embedded system. As a consequence, mod-
ern embedded systems are often based on microcontrollers, which have constraints
in computational efficiency and memory capacity.

Usually, MPC relies on complex optimization algorithms that require high com-
putational efficiency, when dealing with a large number of constraints and a long
horizon. Consequently, the MPC community has a large focus on developing fast
optimization solvers, particularly QP solvers, for enabling the use of linear MPC in
real applications.

This section is modified from the Project Thesis of Kvamme [2].

2.2.1. Requirements

Bemporad and Patrinos [8] describes the different requirements for a QP solver to
be embedded in the control hardware, when implementing a MPC law. The QP
solver must

� be so fast that it can provide a solution within short samling intervals, typically
1-50 ms

� run on simple hardware, e.g. a microcontroller

� be on a structure where the data defining the optimization problem and the
code for implementing the algorithm itself, requires a small amount of memory
space.

� have a good worst-case estimation of the computation time to meet hard real-
time requirements

� have a simple code that is software-certifiable (especially if safety is critical).

2.2.2. Implicit and Explicit Solutions

When solving the QP problems appearing in MPC, there are two main approaches:
Implicit and explicit, respectively also called online and offline.

In explicit MPC, the solution for all possible states are computed offline and
stored in for example a table. This approach makes the computation for every time-
step significantly smaller. Hence, the sampling time can be reduced. However, the
demand for memory capacity will in general grow exponentially with the number of
states, inputs, and horizon. As a consequence, if there are limitations in the memory
capacity, an explicit MPC is restricted to small scale systems.
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In explicit MPC the solution of the optimization is computed online, i.e. for
every time-step a new QP problem is solved by the controller. However, online
optimization is usually limited by the computation speed. In this Thesis the main
focus is on online optimization.

2.2.3. Rate of Convergence and Upper Bound on Number
of Iterations

The sampling time for fast embedded systems is often very short. As a consequence,
embedded systems require an optimization algorithm that offers a tight bound on
the total number of iterations that needs to be performed in order to compute the
desired optimal solution. Nedelcu et al. [9] argue that second order methods, e.g.
interior-point methods, offers a fast convergence rate in practice, i.e. they usually
converge to a solution with a significantly lower number of iterations than those
predicted by the theoretical worst case analysis. However, the worst cast complex-
ity bounds for interior-point methods are high. Furthermore, these algorithms do
involve complex iterations, e.g. inversion of matrices. Such operations are typically
hard to implement on a microcontroller that requires simple computational instruc-
tions. Therefore, first order methods are often preferred, as they often use a number
of iterations that is close to the worst case complexity analysis.

2.2.4. Literature Survey

A number of different approaches for MPC formulation exist today. The formulation
and solving of the optimization problem have a large impact on computation and
memory demands. However, many of the proposed formulations and algorithms
utilize the same general ideas and tactics.

Among the papers investigated for this thesis are Bemporad and Patrinos [8],
Nedelcu et al. [9], Kögel and Findeisen [10], Kögel et al. [11], Necoara and Nedelcu
[12], Necoara and Patrascu [13], Richter et al. [14], and Zometa et al. [15]. These
papers were all published during the last three years, and deal with solving QP
problems for MPC schemes. Some commonalities are listed:

� They consider MPC on linear, time-invariant, discrete-time systems, subject
to constraints on the states and input and a quadratic cost criterion.

� They formulate the QP on condensed form, and benefit from a well conditioned
Hessian.

� Nesterov’s fast gradient method and the augmented Lagrangian method are
applied

� The solvers only provides approximate solutions, and strive towards providing
tight estimate on the number of iterations in order to reach a given accuracy
in terms of optimality and feasibility of the optimal solution.

� Warm-start are applied in the solvers to obtain fewer iterations in the con-
verging to a feasible solution.
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2.3. Optimization Theory

This section will give an introduction to some concepts within numerical optimiza-
tion.

2.3.1. Optimization Algorithms

As a motivation, an overview of different optimization algorithms is given in the
following. Optimization algorithms are iterative, i.e. they start with an initial guess
of the optimization variable z and take steps (iterate) towards an optimal or close
to optimal solution of z. Every new step is an improved estimates of the solution
compared to the previous step. The scheme for generating the next iterate is what
varies between the algorithms, but most strategies makes use of the values of the
objective function f and the constraints, and possibly the first and second derivatives
of these functions. Some algorithms utilize the information from previous iterates,
while other only use information from the current point. Stopping criteria (also
called termination criteria) vary between different algorithms. Regardless of how
an algorithm is implemented, every good algorithm should possess the following
properties [16]:

� Efficiency. It should be efficient in both computation time and memory usage.

� Robustness. Within a given class, the algorithm should be able to solve a
variety of different problems, for all reasonable values of the starting point.

� Accuracy. It should be able to present a solution with precision.

However, these features may conflict with each other. For example, a faster com-
putation time will often be gained by obtaining a solution with lower accuracy.
Tradeoffs between the properties are central issues in numerical optimization, and
will be a returning subject through this Thesis.

Line Search and Trust Region

Basically, the strategy for finding the next iterate can be divided into two main
groups: line search and trust region.

The line search strategy is to find a descent direction pk and search along this
direction from the current iterate zk for a new iterate with a lower function value.
In other words, the algorithm first chooses the search direction and then computes
how far to go in that direction. The search direction is usually the steepest descent
direction −∇fk.

Trust region methods, also known as restricted step methods, use the opposite
strategy of line search. It first chose a maximum distance (the trust region radius)
and then seek the direction and step that gives the best improvement subject to this
distance constraint. If the new step is not satisfactory, the radius is reduced and
the algorithm seek a new step.

All algorithms considered in this Thesis fall under the first category, i.e. line
search.
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First and Second Order Algorithms

Another way to distinguish different optimization algorithms is to categorize them
as first- or second-order algorithms. Basically, second order method is used to
compute the step length in first order method. Obviously there are advantages
and disadvantages, as discussed in Section 2.2.3.

2.3.2. Unconstrained Optimization

In the simplest form, an optimization problem consists of minimizing or maximizing
a real function. Such a problem can be expressed as

min
z∈Rn

f(z). (2.21)

This is an unconstrained problem where f is a function dependent on the optimiza-
tion variable z, where z is only constrained by the set off all real numbers Rn. The
goal is to find a z that makes the function value of f as small as possible. The
optimal z and f are defined as

� z∗ is the optimal solution.

� f ∗ = f(z∗) is the optimal value.

The optimal solution z∗ may also be referred to as the optimal point. The ideal
scenario is to find a global optimal solution, which satisfy f(z∗) ≤ f(z) for all z.
The solution will be a strict global optimal solution if it also satisfied f(z∗) < f(z)
for all z.

2.3.3. Convexity

The concept of convexity is fundamental in optimization. Many problems used in
practical applications possess this property which generally makes them easier to
solve. The term ”convex” is described in [16] and can be applied to sets and to
functions. A set S ∈ R is convex if every line segment between any two points in S
lies inside the set. A function f is convex if its domain S is a convex set and if for
any two points x and y in S, the following property holds:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1]. (2.22)

Another important property is given by the fact that if −f(z) is convex, then f(z)
is called concave. In this Thesis, only convex objective functions are considered.
Theorem 2.5 in [16] states that when f is convex, any local minimizer z∗ is also a
global minimizer of f .

Lipschitz Continuity

A function f is said to be Lipschitz continous on som set S ⊂ D if there exists a
constant L > 0 such that

|f(z)− f(y)| ≤ L ‖ z − y ‖, ∀z, y ∈ S. (2.23)
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where the constant L is called the Lipschitz constant, see [17]. In other words, a
Lipschitz continuous function is limited in how fast it can change. The absolute
value of the slope connecting any two points on the graph can not be grater than L.

The function f has a Lipschitz gradient on the set S if

‖ f(z)− f(y) ‖≤ L ‖ z − y ‖, ∀z, y ∈ S, (2.24)

and is then bounded from above by the function

f(y) ≤ f(z) + 〈∇f(z), y − z〉+
L

2
‖y − z‖2 , ∀z, y ∈ S. (2.25)

Strongly Convex Function

Nesterov [17] defines strongly convex functions in Definition 2.1.2. A continuously
differentiable function f(z) is called strongly convex on Rn if there exists a constant
µ ≥ 0 such that for any z, y ∈ Rn the following relation holds

f(y) ≥ f(z) + 〈∇f(z), y − z〉+
µ

2
‖y − z‖2 . (2.26)

The constant µ is called the convexity parameter of function f .

2.3.4. Recognizing a Local Minimum

One approach to find the local minimum is to compare all the different points, z, in
the immediate neighbourhood and choose the point which gives the lowest function
value of f(z). Nevertheless, as this approach is quite computational expensive, there
are other ways to tell if a point is the local minimum or not. If the function is smooth,
Theorem 2.3.1 can be useed to identify the local minima. If f is twice differentiable
it may also be possible to decide whether the local minimum is also a strict local
minima, by using Theorem 2.3.2 and Theorem 2.3.3.

Theorem 2.3.1 (Theorem 1.2.1 in [18]: First order optimality condition). Let z∗

be a local minimum of differentiable function f(z∗). Then

∇f(z∗) = 0. (2.27)

Theorem 2.3.2 (Theorem 1.2.2 in [18]: Second-order Necessary optimality condi-
tion). Let z∗ be a local minimum of twice differentiable function f(z∗). Then

∇f(z∗) = 0, ∇2f(z∗) � 0. (2.28)

Theorem 2.3.3 (Theorem 1.2.3 in [18]: Second-order sufficient optimality condi-
tion). Let function f(z) be twice differentiable on Rn and let z∗ satisfy the following
conditions:

∇f(z∗) = 0, ∇2f(z∗) � 0. (2.29)

Then z∗ is a strict local minimum of f(z)
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2.3.5. Constrained Optimization

Constrained problems are problems where a feasible solution must lie within a given
set S ⊂ R. Linear constrained problems are problems where all functional con-
straints are linear. A general constrained optimization problem, which includes lin-
ear equalities and inequalities constraints as well as constraints on the optimization
variable, can be expressed as follows:

min
z∈Z

f(z)

s.t. ai(z) = 0, i ∈ E
ai(z) ≤ 0, i ∈ I,

(2.30)

where E and I are finite sets of indices. The linear equality and inequality con-
straints ai(z) ∈ E ∪L are called complicated constraints. Projection on complicated
constraints in the primal problem can be a complex and difficult operation. In the
next sections it is shown how to use Lagrangian relaxation to move the complicated
constraints into the objective function, which create a problem that is easier to solve.

Furthermore, the optimization variable z is constrained by by the set Z. This is
typically a simple set that includes a lower and upper bound for the variable. Given
the vector z ∈ Rn, the bounds can be described as the vectors lb, ub ∈ Rn, and the
set as Z = [lb, ub]. Projection on simple set are done easily, and projection on Z
has the complexity O(2n). The constraints made of lb and ub are also called boxed
constraints.

2.3.6. Lagrange Multipliers

The concept of Lagrange multipliers are of great importance in optimality theory,
and the method of Lagrange multipliers is a strategy for finding the local minima
(or maxima) of a function subjected to constraints. The lagrangian function for the
constrained problem in equation (2.30) is defined as

L(z, λ) := f(z) +
∑
i∈E∪L

λiai(z), (2.31)

where λi is called the Lagrangian multiplier. The first order conditions for the
Lagrangian function, also known as the Karush-Kuhn-Tucker conditions (KKT con-
ditions), are described in Theorem 2.3.4. The conditions in (2.32e) are complemen-
tarity conditions meaning that either λ∗i = 0 or ai(z

∗) = 0, or both equals to zero.
This property is useful for checking which inequality constraints are active at the
solution. If the Lagrange multiplier λ∗i = 0, the constraint ai is not significant.
However, it may still be active. If λ∗i > 0, the constraint ai is strongly active or
binding, see Definition 12.8 [16].

Theorem 2.3.4 (Theorem 12.1 in [16]: First Order Necessary Conditions). Sup-
pose that z∗ is a local solution of (2.30), that the function f and ai in (2.30) are
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continuously differentiable, and that the LICQ 2 hold at z∗. Then there is a La-
grange multiplier vector λ∗, with components λ∗i , i ∈ E ∪ I, such that the following
conditions are satisfied at (z∗, λ∗)

∇zL(z∗, λ∗) = 0, (2.32a)

ai(z
∗) = 0, ∀ i ∈ E , (2.32b)

ai(z
∗) ≤ 0, ∀ i ∈ I, (2.32c)

λ∗i ≤ 0, ∀ i ∈ I, (2.32d)

λ∗i ai(z
∗) = 0, ∀ i ∈ E ∪ I. (2.32e)

2.3.7. Duality

In optimization, duality means that optimization problems might be viewed from
either of two perspectives, namely the primal problem or the dual problem. An
optimization problem stated on the form as equation (2.30) is called the primal
problem. The solution to the dual problem gives a lower bound to the solution
of the primal problem. The difference, or gap, between the solution of the primal
and dual is called the duality gap. For convex optimization problems under certain
constraint qualifications conditions, the duality gap is zero. This means that value
of the solution to the dual problem is equal to the primal problem. This is also
called strong duality. The main advantage of constructing the dual problem is that
it is usually easier to solve computationally.

Dependent on the optimization problem at hand, there are different approaches
to construct the dual problem. Common approaches are e.g. the Wolfe dual problem
and the Fenchel dual problem. However, when referring to the dual problem, this
means the Lagrangian dual problem in most cases, and is also the dual approach
used in this Thesis.

The Dual Problem

The Lagrangian dual problem is constructed using the Lagrangian function explained
in Section 2.3.6. Given the primal problem in equation (2.30), the Lagrangian
function is given be equation (2.31). The dual function d is then defined as follows:

d(λ) := min
z∈Z
L(z, λ). (2.33)

Furthermore, the dual problem is to maximize the dual function, where the opti-
mization variable is given by the Lagrange multiplier λ,

max
λ

d(λ) s.t. λi ≥ 0, ∀i ∈ I. (2.34)

Note that calculation of the minimum in equation (2.33) requires finding the global
minimizer of a function L( · , λ) for the given λ, which may be a very difficult in prac-
tice. However, when the primal objective function f is convex and the constraints c

2Linear independence constraint qualification (LICQ) holds if the set of active constraint gra-
dients is linearly independent, see Definition 12.4 [16].
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are linear, the function L( · , λ) is also convex, and the computation of d becomes is
easier to solve in practice. Also, note that the Lagrangian multiplier must be equal
or greater than zero for all inequality constraints.

Slater’s Condition

Slater’s condition is a specific example of a constraint qualification, and is a sufficient
condition for strong duality to hold for a convex optimization problem. In other
words, if Slater’s condition holds for the primal problem, then the duality gap is 0,
[19].

2.3.8. Augmented Lagrangian Method

The augmented Lagrangian method, also known as the method of multipliers is a
certain class of algorithms for solving constrained optimization problems. They are
similar to penalty methods in that they replace a constrained optimization problem
by a series of unconstrained problems. The difference is that the augmented La-
grangian adds an additional term to the unconstrained objective. This term is used
to mimic a Lagrange multiplier. In other words, the new unconstrained objective
is in fact the Lagrangian function of the constrained problem with an additional
quadratic penalty term. In this Thesis, the augmented Lagrangian method will only
be considered for problems with equality constraints.

General Method: Equality Constraints

Consider the optimization problem:

min
z∈Z

f(z) s.t. ai(z) = 0, ∀i ∈ E . (2.35)

By moving the constraints into the objective function, and adding the quadratic
penalty term, the so-called augmented Lagrangian function is defined as:

Lρ(z, λ, ρ) := f(z) +
∑
i∈E

λiai(z) +
ρ

2

∑
i∈E

a2i (z). (2.36)

where ρ > 0 is referred to as the penalty parameter. The augmented dual problem
is defined as:

max
λ

dρ(λ), (2.37)

where dρ(λ) := min
z
Lρ(z, λ, ρ) is the dual function. The augmented Lagrangian

method is based on the following: For each iteration:

� for a given ρk and λk, solve min
z∈Z
Lρ(z, λk; ρk).

� Then, update ρk and λk.

Nocedal and Wright [16] suggest that λk should be updated the following way:

λk+1
i = λki − ρkai(zk). (2.38)
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2.3.9. Stopping Criteria

In general, optimization problems are unsolvable. Hence, it is not guarantied that
an iterative optimization algorithm will find the exact solution. In practice, it is
”good enough” to find a solution that is close to the exact optimal solution, i.e
an approximation within a given accuracy ε > 0. This is also called a suboptimal
solution. Nesterov and Nesterov [18] defines approximation:

To approximate means to replace an initial complex object by a simplified one,
which is close by its properties to the original.

However, it is not an easy task for the algorithm to know when it has found a good
approximate solution. Therefore, it is crucial to have a good stopping criterion.
Deciding stopping criteria can be considered it’s own topic within optimization, and
usually, more than one stopping criterion is used in combination to get the best
behaviour of an algorithm. In the algorithms discussed in this Thesis, four different
stopping criteria are utilized.

1. Primal Suboptimality
This is one of the most basic stopping criteria and is based on Theorem 2.3.1
(∇f(z∗) = 0), by comparing the function value of f from the current and
previous iterate. The difference must be within some predefined tolerance
εps > 0. ∣∣f(zk)− f(zk−1)

∣∣ ≤ εps. (2.39)

Smaller εps gives a better approximation, but as a consequence the algorithm
require more iterations.

2. Maximum Iterations
To prevent the algorithm from running ”forever”, it is common to put an
upper bound on the number of iterations. This criterion is also used when a
predictable behaviour of the algorithm is desirable, i.e if it is known that a
satisfying solution will be reached within the finite number of iterations.

3. Primal Feasibility
This stopping criterion considers if the iterate is feasible or not. For example,
in a problem with equality constraints a(z) = 0, all the constraints must be
equal to zero for the solution to be feasible. However, since this may be difficult
to achieve, the tolerance εpf is introduced. The stopping criterion is as follows:

‖a(zk)‖ ≤ εpf. (2.40)

When the problem also contains inequalities, an extra operation in form of
projection is needed ∥∥ [a(zk)]+

∥∥ ≤ εpf. (2.41)
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4. Dual Suboptimality
This stopping criterion is similar to the first criterion, i.e. primal subopti-
mality. However, it compares the function value of the dual function d, from
equation (2.33).

|d(λk)− d(λk−1)| ≤ εds. (2.42)
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2.4. Quadratic Programming

Quadratic Programming (QP) is a special type of optimization problems where the
function to be optimized f is quadratic and the constraints are linear. These kind
of problems have a widespread use within practical applications. A general QP,
subjected to equalities and inequalities, can be states as follows:

min
z∈Z

f(z)
(
= 1

2
zTHz + cT z

)
s.t. aTi z = bi, i ∈ E ,

aTi z ≤ bi, i ∈ I,

(2.43)

where H is a symmetric n × n matrix, E and I are finite sets of indices, and c,
z, {ai}, i ∈ E ∪ I, are vectors in Rn. Moreover, the set Z = [lb, ub] is the simple
box-constraint where lb, ub ∈ Rn. If the Hessian matrix H is positive semidefinite,
the QP is called a convex QP, and if H is positive definite it is a called strictly
convex QP. Non-convex QPs are usually more challenging to solve, and will not be
considered in this Thesis. QPs can always be solved or shown to be infeasible in a
finite number of computations [16]. However, the number of computations needed is
strongly dependent on the characteristics of the objective function and the number
of constraints.

There are a rich variety of algorithms tailored for solving QPs. Deciding which
one is the better choice depends of the problem formulation, size, properties, etc.
Active set and interior point (barrier) methods are among the most popular methods
for solving QPs. These are second order algorithms which solves the primal problem
directly. In contrast, in this Thesis, first order algorithms which solves the dual
problem that arises from relaxation of the complicated constraints, are considered.
These algorithms are presented in the next chapter. However, primal subproblems
on the form

min
z∈Z

f(z)

(
=

1

2
zTHz + cT z

)
, (2.44)

without complicated constraints, needs to be solved for every outer iteration of the
dual problem. To solve problem on this form, two methods are discussed: Gradient
Descent and Nesterovs Fast Gradient. Gradient descent will only be explained as a
step to understand fast gradient, which has a better convergence rate.

2.4.1. Gradient Descent Method

Gradient descent is one of the most basic and simple algorithms in convex opti-
mization theory, and can solve a QP on the form of equation (2.44). The algorithm
takes advantage of the well known fact that the antigradient, i.e. −∇f(z), is the
direction of the locally steepest descent of a differentiable function. Nesterov and
Nesterov [18] Algorithm 1.2.9 states the unconstrained case of the gradient descent
method. Algorithm GDM describes the case where the optimization variable z is
constrained by the set Z. The only difference is the projection onto the Z every
iteration.
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Algorithm GDM Gradient Descent Method

Require: z0 ∈ Z and k = 0
while (stopping criteria not met) do

1. zk+1 = [zk − hk∇f(zk)]Z

end while

In DGM the scalar factor hk represents the step-size. hk must be positive
(hk > 0), and the sequence {hk}∞k=0 is chosen in advance. This sequence is calculated
using one out of a number of different schemes, with the simplest scheme being the
constant step:

hk = h > 0. (2.45)

Nesterov [17] proves that if the function f is convex, then the gradient ∇f(zk) is
Lipschitz continous with a Lipschitz constant L. Furthermore, if L is given by the
the largest eigenvalue of the Hessian H, the optimal constant step-size in given by

h =
1

L
. (2.46)

As mentioned, Algorithm 1.2.9 [18] describes the unconstrained case, which is equiv-
alent to setting lb = −∞ and ub =∞, in the set Z. In the constrained case, where lb
and/or ub exists, zk is projected onto Z in every iteration. The projection in GDM
is very simple to compute , i.e. it consists of two simple min/max statements. The
resulting algorithm is as follows:

1. ztemp = zk − hk∇f(zk):

2. ztemp = min(ub, ztemp).

3. zk+1 = max(lb, ztemp).

This projection has a computational complexity of O(2n).

Convergence and Stopping Criteria

If the function f is convex and the gradient ∇f is Lipschitz, and it is not assumed
that f is strongly convex, then the error in the objective value generated at each step
k will be bounded by O(1/k). Furthermore, the stopping criterion in GDM will
typically be primal feasibility (stopping criteria 1 from Section 2.3.9), in addition to
a bound on maximum number of iterations.

2.4.2. Fast Gradient Method

The fast gradient method was first proposed by Yurii Nesterov in 1983 [17], and is
an extension of the gradient descent method. Consequently, the algorithm is also
called Nesterov’s gradient method. The method is described in Algorithm FGM
and can be found in Nesterov and Nesterov [18] (Algorithm 2.2.9).



22 Chapter 2. Literature Survey

Algorithm FGM Fast Gradient Method

Require: y0 = z0 ∈ Z and k ≥ 0
while (stopping criteria not met) do

1. zk+1 = [yk − h∇f(yk)]Z

2. yk+1 = zk+1 + βk(zk+1 − zk)
end while

As in GDM, the step-size is chosen constant as h = 1/L, where L is the Lipschitz
constant given by the largest eigenvalue of H. However, βk may vary every iteration.
The β described in [18] (Algorithm 2.2.9) is chosen as follows:

βk =
γk(1− γk)
γ2k + γk+1

(2.47)

where γ0, γk ∈ (0, 1) and

γ2k+1 = (1− γk+1)γ
2
k + qγk+1, (2.48)

where q = µ/L. The convexity parameter µ is the smallest eigenvalue of the Hessian
H. Solving the quadratic equation for γk+1 gives:

γk+1 =
q − γ2k ±

√
(q − γ2k)2 − 4γ2k)

2
. (2.49)

Because γk+1 ∈ (0, 1) we always use the solution:

γk+1 =
q − γ2k +

√
(q − γ2k)2 − 4γ2k)

2
. (2.50)

Hence, no projection is necessary. The variable βk in equation (2.47) is regarded as
a safe choice because f do not have to be strongly convex. However, this expression
involves the calculation of a square in every iteration, which is a regarded as an
complex operation. Algorithm 2.2.11 in [18] chooses γk =

√
µ/L. The resulting βk

is

βk =

√
L−√µ
√
L+
√
µ
, ∀k ≥ 0. (2.51)

This means that the β is kept constant and can be calculated offline. Note that, in
theory, this does not work for µ = 0, i.e. problems that are not strongly convex and
have one or more eigenvalues equal to zero. When solving the dual problem, the
subproblems will not always be strongly convex. It was observed, during real simu-
lations during the project, that convergence was obtained with the constant β, even
when the problem was not strongly convex. Nevertheless, βk form equation (2.47)
was chosen in the final implementation of FGM.
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Convergence and Stopping Criteria

FGM uses the same stopping criteria as GDM. Furthermore, if the problem is
Lipschitz, it can be proved that the error in the objective value generated at each
step k is decreasing with O(1/k2). This is a big improvement compared to GDM
where the error generated is bounded by O(1/k).
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3. Quadratic Dual First Order Optimiza-
tion Algorithms

In this chapter, four different algorithms for solving convex quadratic programs
(QPs) with complicated constraints will be presented. The algorithms are first
order and solve the dual problem that arises from Lagrangian relaxation of the com-
plicated constraints. After an introduction, including a problem formulation and
some common properties, the different algorithms will be described in dedicated
sections. The description should be detailed to the extent where implementation
becomes trivial.

The four algorithms reviewed and implemented are called:

� Dual Gradient Method (DGM) - Section 3.4

� Dual Fast Gradient Method (DFGM) - Section 3.5

� Dual Augmented Lagrangian Method (ALM) - Section 3.6

� Dual Fast Augmented Lagrangian Method (FALM) - Section 3.7

These algorithms are all described in papers by professor Ion Necoara, see [9], [12],
and [13], which also include full theoretical analysis of complexity and convergence.

3.1. Problem Formulation

In the previous chapter, in Section 2.4, the properties of QPs are discussed and a
general form, containing equality and inequality constraints, is presented in equa-
tion (2.43). Furthermore, in Section 2.1, model predictive control is introduced and
a condensed MPC problem is recast as a QP, see equation (2.19). This QP puts
constraints on both the states x and inputs u (from equation (2.1)), but uses only
the input u as optimization variable. Nevertheless, this problem formulation is very
general and practical for MPC applications. By substituting u in (2.19) with z the
QP is reformulated as

min
z

f(z)
(
= 1

2
zTHz + cT z

)
s.t. l̂b ≤ Gz − g ≤ ûb

lb ≤ z ≤ ub,

(3.1)

where H ∈ Rn×n is the Hessian, G ∈ Rm×n is a matrix for the linear constraints, and
c, lb, ub ∈ Rn and g, l̂b, ûb ∈ Rm are column vectors. Equation (3.1) will be referred
to as the primal problem and f as the primal objective function. Furthermore, this
formulation gives different possibilities when deciding the bound value for the linear

25
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constraints l̂b and ûb. Four different scenarios are created with respect to how l̂b
and ûb are chosen:

� Case 1: l̂b 6= ûb.
Resulting constraint: l̂b ≤ Gz − g ≤ ûb.

� Case 2: l̂b = ûb.
Resulting constraint: Gz = [g + ûb]. (equality case)

� Case 3: l̂b = −∞ and ûb ∈ Rn.
Resulting constraint: Gz ≤ [g + ûb].

� Case 4: l̂b ∈ Rn and ûb =∞.
Resulting constraint: [g + l̂b] ≤ Gz.

DGM and DFGM will be able to solve all four cases, while ALM and FALM are
restricted to the case with equalities (case 2).

The optimization variable constraints lb and ub can be bounded or unbounded,
regardless of the four cases. The totally unconstrained case is when l̂b = lb = −∞
and ûb = ub =∞. For this case FGM can be applied directly.

3.2. Outer and Inner Problem

All the algorithms will utilize Lagrangian relaxation to move the linear constraints
into the objective function and create a dual problem. To make the discussion
clearer, it is distinguished between an outer and an inner problem. The Lagrangian
multipliers in λ are updated in the outer problem, while the optimization variables in
z are updated in the inner problem. The inner problem will have the same structure
as the QP in equation (2.44). However, the matrix H and vector c may vary from
every iteration in the outer loop, and is therefore denoted Ĥ, and ĉ. Consequently,
the inner problem which changes every outer iteration is defined as

min
z∈Z

1

2
zT Ĥz + ĉT z. (3.2)

All the four algorithms use FGM from Section 2.4.2 to solve the inner problem,
see Figure 3.1 . To summarize, for every iteration in the outer problem, the inner
problem is called to minimize a problem on the from of equation (3.2). In Chapter 5
it is shown that the number of iterations for solving the inner problem is linked
directly to the runtime of each algorithm.
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DGM

DFGM

ALM

FALM

FGM

Inner Problem

Outer Problem

Figure 3.1: Overview of the algorithms and dependence of FGM.

3.3. Last Primal Iterate and Average Primal

Necoara and Patrascu [13] makes an iteration complexity analysis for DGM and
DFGM which is based on two types of approximate primal solutions: the last
primal iterate sequence (vk)k≥0 defined as

vk = arg min
v∈Z
L(v, λk), (3.3)

and an average primal sequence (ẑk)k≥0 of the form

ẑk =

∑k
j=0 σjzj

Sk
, with Sk =

k∑
j=0

σj. (3.4)

Note that the value of σj is chosen differently between the algorithms. The general
assumption is that the average primal sequence has a better performance. However,
simulations done in this Thesis shows that the average might not always be the
better choice. The algorithms ALM and FALM are also analysed for both the last
iterate and in the average, see [9]. Theoretical upper bounds of convergence, and
accuracy estimates for all the algorithms are given with respect to the average and
is summarized in Appendix A.

All the algorithms are implemented in the toolbox DuQuad, explained in Chap-
ter 4, and the last and average are considered for all four algorithms. The result is
8 different scenarios. In addition, when including the four constraints cases (from
how the linear constraints are chosen) the total amount of different scenarios grows
to 20. This is illustrated in Figure 3.2.
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DGM

DFGM

ALM

FALM

case 1
case 2
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average
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average

last

average

last

average

:

case 1
:

case 1
:

case 2

case 2

case 2

case 2

20  different 
scenarios

Figure 3.2: Overview of the algorithms cases.
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3.4. Dual Gradient Method (DGM)

The first algorithm that is reviewed is called Dual Gradient Method (DGM) and
is described in Necoara and Nedelcu [12] and Necoara and Patrascu [13]. The two
main steps are shown in Algorithm DGM.

Algorithm DGM Dual Gradient Method

Require: z0 ∈ Z, λ0 ∈ [0, 1], and k ≥ 0
while (stopping criteria not met) do

1. zk = arg min
z∈Z
L(z, λk) . Inner Problem

2. λk+1 =
[
λk + α∇d(λk)

]
+

end while

Figure 3.3 gives an overview of how the algorithm iterates. In short, the primal prob-
lem in equation (3.1) is given as input to DGM, which construct the dual problem
from Lagrangian relaxation of the complicated constraints. Then DGM start a
while-loop which update the Lagrangian multiplier λ every iteration. Furthermore,
for every outer iteration, the optimization variable z is updated with respect to λ.
This update is the result of the minimization of the Lagrangian function, and is
called the inner problem. The inner problem is solved by FGM from Section 2.4.2.
After each z update, the stopping criteria are checked. If these are fulfilled, the
algorithm terminates and z and λ from the last iteration are given as outputs.

, 

DGM FGM

Inner ProblemOuter Problem

primal optimization 
problem

Check 
Stopping Criteria

OK outputs: 

not OK

Figure 3.3: DGM.

A more detailed derivation of DGM is given in the following. It is assumed that
l̂b and ûb from the primal problem (3.1) meets the criteria of case 1, from Section 3.1.
The resulting linear constraints is then given by

l̂b ≤ Gz − g ≤ ûb, (3.5)

which can be rearranged as

Gz − g − ûb ≤ 0, | λ1 ≥ 0

−Gz + g + l̂b ≤ 0, | λ2 ≥ 0,
(3.6)
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where λ1, λ2 ∈ Rm are the corresponding Lagrangian multiplier vectors. By moving
these constraints into the objective function, the Lagrangian function is constructed
as follows:

L(z, λ1, λ2) :=
1

2
zTHz + cT z +

〈
λ1, Gz − g − ûb

〉
+
〈
λ2,−Gz + g + l̂b

〉
. (3.7)

The corresponding dual function is defined as

d(λ1, λ2) := min
z∈Z
L(z, λ1, λ2). (3.8)

Constant terms are redundant when minimizing the Lagrangian function. Conse-
quently, the minimization problem can be rewritten as

min
z∈Z

1

2
zTHz +

(
c+GTλ1 −GTλ2

)T
z + constant, (3.9)

and by defining
ĉ := c+GTλ1 −GTλ2, (3.10)

where ĉ ∈ Rn, the resulting dual function is rewritten as

d̂(λ1, λ2) = min
z∈Z

1

2
zTHz + ĉT z. (3.11)

d̂ has the same form as equation (3.2) and is the inner problem. The solution to the
inner problem is defined as the argument z∗(λ1, λ2).

The Dual Problem

By defining λ = [λ1, λ2]T , the task of maximizing the dual function with respect to
λ is called the dual problem and defined by

max
λ∈R2m

+

d(λ). (3.12)

For every outer iteration in DGM, λ1 and λ2 are updated in the following way:(
λ1k+1

λ2k+1

)
=

[(
λ1k

λ2k

)
+ α∇d(λ1k, λ

2
k)

]
+

(3.13)

where the scalar α is the constant step size and the gradient is given by

∇d(λ1k, λ
2
k) =

[
Gz∗(λ1k, λ

2
k)− g − ûb

−Gz∗(λ1k, λ2k) + g + l̂b

]
. (3.14)

Note that the gradient in equation (3.14) is calculated from the dual function in
equation (3.8) which includes the constant term. Because λ ≥ 0, the update of λ is
projected on the non-negative orthant R2m

+ .
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Necoara and Nedelcu [12] proves that the gradient ∇d(λ1k, λ
2
k) is Lipschitz con-

tinuous with a Lipschitz constant given by

Ld :=
‖ [G,−G]T ‖2

µ
, (3.15)

where µ is the convexity parameter given by the smallest eigenvalue of H. The
constant step-size α is then defined as

α :=
1

2Ld

. (3.16)

Stopping Criteria

In addition to stopping criterion 2 (maximum number of iterations) from Sec-
tion 2.3.9, criteria 3 and 4 are also utilised in DGM. Criterion 3, dual suboptimality,
is defined as ∣∣d(λ1k, λ

2
k)− d(λ1k−1, λ

2
k−1)

∣∣ ≤ εds, (3.17)

and criterion 4, primal feasibility, becomes∥∥∥∥∥
[
Gzk − g − ûb
−Gzk + g + l̂b

]
+

∥∥∥∥∥ ≤ εpf. (3.18)

Both of these stopping criteria must be satisfied for the algorithm to finish.

Last Primal Iterate and Average Primal

The only difference between the last primal iterate and the average primal in DGM
is how to calculate the primal feasibility and the output. The last primal iterate
vk from equation (3.3) is always equal to zk, i.e. zk = vk,∀ k ≥ 0. However, in the
average case, zk is substituted with ẑk in equation (3.18). The average primal ẑk is
calculated from equation (3.4) with σj = 1, ∀j ≥ 0, resulting in

ẑk =
1

k + 1

k∑
j=0

zj. (3.19)

Output

When the algorithm terminates an approximate solution is found. The approximate
optimal solution/point is given by

z∗ = vk, (3.20)

for the last primal iterate, and
z∗ = ẑk, (3.21)

in the average primal sequence. The primal approximate optimal value then becomes

f ∗ = f(z∗). (3.22)
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The Different Cases

If l̂b or ûb are unconstrained, it will result in the corresponding λ = 0. For example

ûb =∞ ⇒ ∇d(λ1k) = −∞ ⇒ λ1k+1 = [−∞]+ = 0 (3.23)

This entails that some of the computations in the algorithm can be omitted, which
results in less complex iterations. The four different cases of the linear constraints
are described in Section 3.1, and there is not much that needs to be changed from
one case to the next. Nevertheless, the important changes are pointed out in the
following.

First of all, the constant Ld from equation (3.15) can only be applied in case 1.
In all the other cases

Ld :=
‖ G ‖2

µ
. (3.24)

Case 1
This is the case where the linear constraints are bounded by both l̂b and ûb,
and is described in detail above.

Case 2
In the equality case, the term with λ2 is dropped, since λ1 = λ2. The La-
grangian function is then defined as

L(z, λ1) :=
1

2
zTHz + cT z +

〈
λ1, Gz − g − ûb

〉
(3.25)

Furthermore, projection is not necessary when there are no inequalities, and
the resulting λ update is

λ1k+1 = λ1k + α∇d(λ1k). (3.26)

Moreover, when calculating the stopping criterion for primal feasibility, the
expression with l̂b is omitted and projection is not necessary. This gives∥∥Gz − g − ûb∥∥ ≤ εpf. (3.27)

Case 3
The Lagrangian function will be equal to the function in case 2. However,
λ1k+1 in (3.26) and the vector in (3.27) must be projected on the positive set
Rm

+ in every outer iteration.

Case 4
In the fourth case λ1 will always be equal to zero. Therefore, the Lagrangian
function is defined for λ2 as

L(z, λ2) :=
1

2
zTHz + cT z +

〈
λ2,−Gz + g + l̂b

〉
. (3.28)

The λ update becomes

λ2k+1 =
[
λ2k + α∇d(λ2k)

]
+
, (3.29)

and the primal feasibility is stated as follows:∥∥∥[−Gz + g + l̂b
]
+

∥∥∥ ≤ εpf. (3.30)
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3.5. Dual Fast Gradient Method (DFGM)

The Dual Fast Gradient Method DFGM, presented by Necoara and Nedelcu [12]
and Necoara and Patrascu [13], is the second algorithm that is discussed in this
chapter. The algorithm is an an extension of Nesterov’s optimal gradient method
[18], and is also considered an extended variant of the algorithm DGM that was
discussed in the previous section.

Algorithm DFGM Dual Fast Gradient Method

Require: z0 ∈ Z, λ0 = y1 ∈ [0, 1], and k ≥ 1
while (stopping criteria not met) do

1. zk = arg min
z∈Z
L(z, yk) . Inner Problem

2. λk =
[
yk + α∇d(yk)

]
+

3. yk+1 = λk + θk−1
θk+1

(λk − λk−1)

end while

DFGM updates two dual sequences (λk and yk) and one primal sequence zk. The
algorithm also includes the parameters α and θ. Normally, the step-size α would
change every iteration, but in this analysis α is kept constant and is chosen the same
way as in DGM, see equation (3.16). The parameter θ is defined as:

θk+1 :=
1 +

√
1 + 4θ2k
2

, with θ1 = 1. (3.31)

Note that if θk = 1, ∀ k ≥ 1, the resulting algorithm reduces to DGM.
The stopping criteria used in DFGM are the same as in DGM, see Section 3.4.

However, when calculating dual suboptimality, vk from equation (3.3) is used as
input to the dual function instead of zk. In practice this means that the inner
problem is calculated twice for every outer iteration: one time with yk as input and
one time with λk as input.

DFGM is also implemented to handle all the four cases for the linear constraints.
However, the changes in the algorithm are the same as described for DGM in
Section 3.4.

Last Primal Iterate and Average Primal

Primal feasibility is calculated as in equation (3.18). However, for the last primal
iterate, zk is substituted with vk from equation (3.3), and in the average case, zk is
substituted with ẑ, which is given by equation (3.4) with σj = θj, giving

ẑk =

∑k
j=0 θjzj

Sθk
, with Sθk =

k∑
j=0

θj. (3.32)
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3.6. Dual Augmented Lagrangian Method (ALM)

The theory of augmented Lagrangian is discussed previously in Section 2.3.8. In this
section a dual augmented Lagrangian method (ALM), presented in Nedelcu et al.
[9], is discussed. Although there are possible to utilize augmented Lagrangian on
problems with inequalities, only the case with equalities, i.e case 2 from Section 3.1
is considered in this Thesis.

Algorithm ALM Dual Augmented Lagrangian Method

Require: z0 ∈ Z, λ0 ∈ [0, 1], ρ > 0, and k ≥ 0
while (stopping criteria not met) do

1. zk = arg min
z∈Z
Lρ(z, λk, ρ) . Inner Problem

2. λk+1 = λk + α∇dρ(λk)
end while

By setting g = g+ ûb in the general QP from equation (3.1), the resulting QP (case
2) is redefined as

min
z∈Z

f(z)

(
=

1

2
zTHz + cT z

)
s.t. Gz = g. (3.33)

The augmented Lagrangian function is constructed by moving the complicated con-
straints into the objective function

Lρ(z, λ, ρ) :=
1

2
zTHz + cT z + λT (Gz − g) +

ρ

2
‖Gz − g‖2 . (3.34)

Furthermore, the dual function is defined as

dρ(λ) := min
z∈Z
Lρ(z, λ, ρ), (3.35)

where the optimal z∗(λ, ρ) is obtained. The quadratic term in equation (3.34) can
be expressed as:

ρ

2
‖Gz − g‖2 =

ρ

2
zT (GTA)z − ρGT bz + constant. (3.36)

It follows that the Lagrangian function can be rewritten as

Lρ(z, λ, ρ) =
1

2
zT (H + ρGTA)z +

(
c+GTλ− ρGTg

)T
z, (3.37)

where the constant term is omitted. By defining

Ĥ := H + ρGTG, (3.38)

and
ĉ := c+GTλ− ρGTg, (3.39)

it is clear that the simplified dual function can be expressed on the standard form

d̂p(λ) := min
z∈Z

1

2
zT Ĥz + ĉT z, (3.40)

which can be solved by FGM from Section 2.4.2.
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The Dual Problem

As in DGM and DFGM the goal is to maximize the dual function with respect to
λ. The dual augmented Lagrangian problem is stated as follows:

max
λ∈Rm

+

dρ(λ). (3.41)

For every outer iteration the λ update is done the following way:

λk+1 = λk + α∇dρ(λk), (3.42)

where the gradient is defined as

∇dρ(λk) := Gz∗(λk)− g. (3.43)

Note that the gradient in equation (3.43) is calculated from the dual function in
equation (3.35) that includes the constant term. Also, note that no projection is done
when updating λ since the primal problem does not have inequalities constraints.

The gradient ∇d(λk) is Lipschitz continuous with a Lipschitz constant [9], given
by

Ld := ρ−1, ρ > 0. (3.44)

The scalar α in equation (3.42) is the constant step size and is defined as

α :=
1

Ld

. (3.45)

Even though the penalty parameter ρ should be able to change every outer
iteration, this Thesis restrict its analysis to the case where ρ is kept constant.

FGM is utilized to solve the inner problem given by equation (3.40), and uses
the smallest eigenvalue of the Hessian Ĥ to decide the step size h in equation (2.46).
If ρ is changing every outer iteration, new eigenvalues must be calculated every time
the inner problem is solved. This is a very expensive computation. It is therefore
preferred to keep ρ constant, which allow for the Hessian Ĥ to be computed offline.
Furthermore, the last term in ĉ (ρGTg) is also constant and can be computed offline.
In other words, Ĥ is kept constant every time the inner problem is solved, while ĉ
is changing every outer iteration when a new update of λ is available.

The last primal iterate and the average primal sequence are calculated equally
as in algorithm DGM, see Section 3.4.

Stopping Criteria

The stopping criteria are the same as in DGM and DFGM, i.e. criteria 2, 3, and
4 from Section 2.3.9. Dual suboptimality is defined as∣∣dρ(λk)− dρ(λk−1)∣∣ ≤ εds. (3.46)

and primal feasibility is defined as∥∥Gz − g∥∥ ≤ εpf (3.47)
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3.7. Dual Fast Augmented Lagrangian Method (FALM)

The Dual Fast Augmented Lagrangian method (FALM) is presented and analysed
in Nedelcu et al. [9]. In short, FALM is an extension of ALM identically to how
DFGM is an extension of DGM. By following the derivations in Section 3.4, 3.5
and 3.6, it becomes redundant to derive this algorithm in detail.

Algorithm FALM Dual Fast Augmented Lagrangian Method

Require: z0 ∈ Z, λ0 = y0 ∈ [0, 1], ρ > 0, and k ≥ 1
while (stopping criteria not met) do

1. zk = arg min
z∈Z
Lρ(z, yk, ρ) . Inner Problem

2. λk = yk + α∇dρ(yk)
3. yk+1 = λk + θk−1

θk+1
(λk − λk−1)

end while

FALM solves the primal problem in equation (3.33). The other functions and
variables are found from the following equations:

� ∇dρ( · ): equation (3.43)

� Lρ( · ): equation (3.34)

� α: equation (3.45)

� θ: equation (3.31)
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3.8. Theoretical Properties and Algorithm Com-

monalities

3.8.1. Warm-Start

All the algorithms benefits from warm-start when solving the inner problem. This
means that when finding z∗k(λk), z

∗
k−1(λk) is given as input to FGM. This input

serves as an initial point from where FGM start the search for a new optimal point.
The assumption is that the previous optimal point will be close to the new optimal
point, and consequently the number of iterations for finding this new point will be
less than if the algorithm operates with a random initial point.

3.8.2. Iteration Complexity and Convergence

Since all the algorithms utilize FGM to solve the inner problem, the difference in
the complexity is how the they solve the outer problem. From derivation of the
algorithms, it is clear that implementation can be done using only simple arithmetic
operations, i.e. addition, multiplication, etc. However, DFGM and FALM includes
a square root operation which needs to be solved every outer iteration in order to
compute the θ update, see equation (3.31). This is a comlex operation which can
be problematic when running the program on low-cost HW. Furthermore, these two
algorithms need to solve the inner problem twice every outer iteration, which makes
the outer iteration at least twise as complex as for DGM and ALM. On the other
hand, DFGM and FALM have a faster converges rate in theory.

In Chapter 5 it is shown that runtime of obtaining a solution has a direct link
to the total number of iterations used to solve the inner problem. In Appendix A,
theoretical upper bounds of convergence, and accuracy estimates are stated for all
four algorithms.
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4. Optimization Toolbox: DuQuad

In this chapter an optimization toolbox, that is referred to as DuQuad, is discussed.
DuQuad embeds all the algorithms presented in Chapter 3 and was created to test
and compare the performance of the algorithms. DuQuad has also proven to be
a versatile tool for solving convex quadratic programs. A general overview of the
toolbox, i.e. structure and workflow, is given in the first part of the chapter. In the
second part, implementation challenges and optimization strategies are discussed.

A user manual for DuQuad is included in Appendix C, and a public project website
[1] is created at http://sverrkva.github.io/duquad/.

4.1. Overview

Figure 4.1 shows how all the four algorithms from Chapter 3, i.e. DGM, DFGM,
ALM, and FALM, are bundled into a toolbox to make the program called DuQuad.

DuQuad
DGM last

DGM avg

DFGM last

DFGM avg

ALM last

ALM avg

FALM last

FALM avg

Figure 4.1: DuQuad Algorithms

Note that all four algorithms are able to utilize either of two approaches, with
respect to the optimization variable. The two different approaches are the last primal
iterate sequence and an average primal sequence. These are referred to as last and
avg. The difference between these two methods was presented in Section 3.3. All
the algorithms solve the primal problem in equation (3.1). However, the augmented
methods ALM and FALM can only solve the case with linear equalities constraints
(case 2, see Section 3.1). The user can specify which algorithm to utilise when
running DuQuad.

All the algorithms are written in the programming language C and are optimized
with respect to speed and memory properties. The C-code is implemented using only
basic arithmetic and logical operations, e.g. +,−, ∗, >. The only complex operation
is the computation of the square root, which is used in computing θ in equation (3.31)
and β in equation (2.47). Furthermore, to be able to test and analyse the different
algorithms properly and efficiently, DuQuad has a MATLAB interface to the C-code.

39
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4.1.1. Implementation

The class diagram in Figure 4.2 gives an overview of the C-code structure of the
toolbox. Basically, there are eight different modules that are placed in separate
source files. Each module has a set of functions that can be either public or private.
Public functions can be accessed by other modules, while private functions are only
available in the module where they are declared.

The four different algorithms each have their own source file. From the class
diagram it is shown that they all have one public function in addition to private
functions. The public function takes one input in the form of a struct containing
all necessary information, variables, and vectors that the algorithm needs to exe-
cute. The input-struct is tailored for each algorithm, i.e. it does not contain any
unnecessary information.

The program starts in the main-module ’main.c’, which take the optimization
problem in equation (3.1) as input. The main function have private functions for
initializing and allocating the data that is sent as input when it calls one of the four
algorithm modules.

After the initialization, ’main.c’ calls one of the four functions, i.e. DGM, DFGM,
ALM, or FALM. One of the input parameters to these functions is whether the
solution should be found from the last primal iterate of the average primal sequence.

All the algorithm modules have functions for allocating the memory needed to
solve the inner problem (FGM). Both the main module and the four algorithm
modules utilize the functions in the module ’general functions.c’ for allocating and
freeing memory.

Furthermore, all the algorithm modules, including ’fgm.c’, take advantage of
the math library module ’math functions.c’. This library contains optimized math
functions, e.g. general matrix and vector operations.

Throughout the project, the C-code was commented on a format such that a
program called Doxygen could be utilised to generate detailed code documentation
from the comments. The documentation is on a html format, and can be used to get
an overview of the code without reading the source files directly. This documentation
is found at the website [20]: http://sverrkva.github.io/duquad_doc_ccode/ .

http://sverrkva.github.io/duquad_doc_ccode/
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Figure 4.2: Class diagram of DuQuad. ’+’ means public function, ’−’ means private
function, and the lines symbolize module dependencies.
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4.1.2. MEX Framework

To create a MATLAB interface to the C-code, the MEX framework is utilized.
MEXs stands for MATLAB Executable. The MEX framework includes a library
with functions for converting data between MATLAB and C. A C-file, which includes
the MEX-function mexFunction and the required link to MEX libraries, serves as
an entry point to the code. Figure 4.2 shows that the MEX-function is included as
the public function in main.c.

When using the MEX framework to compile the C-program, a binary executable
file is created. This file will have the same name as the C-file that contains the MEX-
function, including some file extension that is dependent on the operating system.
For example, when compiling the code on a Linux 64-bit operating system, the
resulting binary file will be called main.mexa64. This binary file is called a MEX-
file and can be run as any other MATLAB function from within the MATLAB
environment, i.e. by calling the name of the file without the file extension. A binary
MEX-file compiled on one operating system will not work on another, i.e. if compiled
in Linux it can not be used in Windows.

To summarize, after using the MEX framework to compile the C-code from
Figure 4.2, the resulting binary file can be called as any other MATLAB function
with associated inputs and outputs.

4.1.3. Program Workflow

An overview of the workflow in DuQuad is illustrated by an example in Figure 4.3.
A QP problem is constructed using a simple MATLAB script called test.m.

Then the function duquad is called with the problem as input. The MATLAB file
’duquad.m’ which implements the function duquad is regarded as a pre-prepossessing
stage for the online optimization. In this function some complex computations are
made. These are regarded as offline computations, i.e. computations that would
have been done before the algorithm attempts to solve the optimization problem in
a real application. The most important tasks of ’duquad.m’ are:

� To check that the input is correct.

� To decide the problem case. (see Section 3.1).

� To set all default values that are not provided by the user.

� To compute the eigenvalues of the Hessian matrix.

� To compute the Lipschitz constant Ld.

When all necessary computations are made, the binary MEX-file is called, with
the original problem and the extra info as input. The ’main.c’ file of the C-code
includes the MEX framework and is able to convert the MATLAB data into C
format. Furthermore, the converted data gets bundled into a C struct and passed
as input to the algorithm that will solve the problem. In Figure 4.3, the algorithm
DGM is used as an example.
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DGM attempts to solve the problem. It uses the module ’general functions.c’ to
allocate all necessary variables for the inner problem, it uses the math library for
calculations, and it uses the module ’fgm.c’ to solve the inner problem. The result of
the optimization is sent back to the MEX-function in ’main.c’, where it is converted
back to MATLAB formate.

Matlab

C - code

● Do offline computations, e.g.:
○ Eigenvalues of Hessian
○ Lipschitz constant
○ Set default values

● Call the MEX-function: 
○ result = main( problem, new 

computations )

● Return result

duquad.m

● Construct a QP problem

● Call the function: 
○ duquad( problem )

test.m

● Use MEX framework to convert 
MATLAB problem into C variables and 
vectors

● Call the function:
○ result = DGM( problem )

● Use MEX framework to convert result 
back to MATLAB. 

● Return result

main.c

● Solve the problem utilizing the function  
DGM

● Return the result

dgm.c

main.mexa64

Figure 4.3: DuQuad workflow
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4.2. Implementation Challenges and Optimization

During the implementation of the algorithms and the DuQuad toolbox, one of the
main objectives was to make the code as optimized as possible with regards to
fast execution runtime and low memory usage. However, the code should also be
kept readable and maintainable. As a consequence, tradoffs between these different
properties were constantly considered throughout the project.

4.2.1. Speed and Runtime

The main priority is to make the program run as fast as possible. This is mainly
accomplished by making the complexity of each iteration in the algorithm as small
as possible. Different measures were taken in the development process to accomplish
this, and the most important are summarized.

� All the data or parameters that can be kept constant during the solving process
are computed offline.

� All the matrices and vectors are stored as single pointers. The advantage of
using single pointers instead of double pointers is that they yield faster reading
and writing to memory when doing large computations. The reason for this is
that all the elements in the matrix are stored one after another in one place
in memory.

� All the functions in the program take a pointer to an vector instead of the vec-
tor itself, as input. Furthermore, if the vector is not altered during execution
of the function, the input is declared as const.

� Wherever possible, multiplication is used instead of division. Division is a
much more complex computation in terms of number of clock-cycles used to
perform the operation. Division is typically twice as slow as addition and
multiplication.

� No computations are done more than once every iteration. Throughout the
implementation it is carefully made sure that no computation is done un-
necessary. Especially the result of a matrix multiplication, which is a very
time-consuming operations, is stored and reused if used more than once per
iteration.

� The code is compiled with the highest level of optimization for fast execution
time, i.e. with the -O3 flag in the GCC compiler, and with no debugging
activated, i.e. the -DNDEBUG flag.

Profiling

Profiling tools such as gprof and valgrind were used during the development to detect
bottlenecks and parts of the program that were extra time-consuming. Figure 4.4
is a screen-shot from the result of profiling the code with gprof. In this simulation,
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a standard QP with inequality constraints and dimensions n = 150 and m = 225
was solved by DFGM for the last primal iterate, i.e. ’DFGM last’. The profiling
summary is listed in order of the time spent in each file. Note that the time for dfgm.c
is 0.0%, but it is listed as the most time-consuming file. This is because functions
in dfgm.c are not using much time to execute the code in there own function, but
are calling time-consuming subfunctions. The Time column in the figure register
the ”actual” time spent in the file or function.

Figure 4.4 shows that almost all the time for executing the program is spent in
the mat library module ’math functions.c’. Furthermore, ’mtx vec mul’ is by far
the dominating function in this file. This function is multiplying a matrix with a
vector, which is define as a special type of matrix multiplication.

Figure 4.5 shows a callgraph of the profiling for the function ’mtx vec mul’. A
callgraph shows the parent and the children of the function. ’mtx vec mul’ do not
have any children because it does not call any other functions. The parents are the
functions who called ’mtx vec mul’, e.g. the figure shows that the function ’obj’
called ’mtx vec mul’ 12859 times during the execution of the program.

By increasing the dimension of the optimization problem, simulations show that
the percentage of the time spent in the function ’mtx vec mul’ grows even larger.
Consequently, the total execution time of the program is strongly dependent on the
optimization of this function. In Appendix B, the source code for the matrix-vector
multiplication is shown and an alternative method is proposed.
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Figure 4.4: gprof n150 dfgm case1

Figure 4.5: gprof n150 callgraph dfgm case1.



4.2. Implementation Challenges and Optimization 47

4.2.2. Memory

The tradeoff between memory usage and speed is always an important aspect to
consider when implementing programs for low cost HW. In DuQuad, the speed has
been given higher priority than the memory usage in most cases. However, after
optimizing for speed, memory usage is kept to an absolute minimum. Among the
different measures taken, the most important are summarized.

� Only simple variables are allocated after the initialization of the algorithm,
i.e. all the vectors used in the execution of the program are allocated at
initialization.

� Only the pointers to the vectors are used as inputs to the different functions.

� The outer problem module and the inner problem module use pointers to the
same problem vectors. For example when the Hessian matrix is the same for
DGM and FGM, then they both point to the same location in memory where
this matrix is stored.

� The Hessian matrix H and the linear constraint matrix G take up the most
space in memory. H has the requirement that it has to be symmetric. This
means that all information can be retrieved even if only the lower or upper
triangular part of the matrix is stored. However, because of speed and read-
ability, the whole matrix is stored in the DuQuad algorithms. G is an m× n
matrix. The transposed of G is used in certain calculations in the program.
Because matrix multiplication is a very expensive and time-consuming opera-
tion, it is beneficial to have the transposed of G also stored in memory. Then
the elements multiplied will be after one another in the memory space, and
the process of reading will go much faster.

� In addition to the space that is allocated to store the optimization problem,
vectors used in the optimization such as lambda and y must be allocated.
Furthermore, every algorithm also allocate a minimum number of vectors for
storing temporary results, typically two vectors with dimension n× 1 and two
with dimension m× 1.

� To make the actual total program size as small as possible, all functions that
can be used by more than one module are shared between the modules. How-
ever, when the program is implemented on low cost HW, only the algorithm
best suited for that particular job will be implemented. Consequently, sharing
of code can not be taken advantage of.

4.2.3. Readability and Maintenance

In case of future development of DuQuad, it is very important that the code of the
program is kept readable, and that changes and modifications easily can be made.
Especially when the program is growing in size it is important that the code has a
good modular structure. In DuQuad, certain measures are taken to keep control of
the code. The most important are summarized.
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� The program has a good modular structure, e.g all math functions are collected
in a math library module.

� Most functions are restricted to doing only one dedicated task, which make
them easy to test, modify, and optimize.

� All data is bundled into different structs. For example, all the vectors storing
the original optimization problem, are contained in the struct Problem. This
struct then has dedicated functions, e.g. allocating and freeing the memory
for the struct members. The Problem struct is common for all the algorithms
in the toolbox. Hence, they all use the same function for interaction with the
struct.

� When passing a struct to a function, only the pointer to the struct is given
as input to the function. Furthermore, in Duquad, all the structs that are
needed by one algorithm are bundled into a new struct. In practise, a hierarchy
of connected structs are constructed and only the pointer to the top of this
hierarchy is passed as an argument to a function, who then can access the
whole three. The greatest benefit using this approach is that it is easy to add
or remove data without changing the function declaration.

� The C-code has header files (.h files) and source files (.c files). The header files
are used as interfaces to the source files. For example, by studying the header
file dgm.h, it is shown dependencies to other modules, the variable used by
this module, and the public functions of the module. All the private functions,
i.e. the function that is only utilized within the source file, are declared as
static in the beginning of each source file.

� The code has comments wherever it is not self explaining.

� In most scenarios, an error output will be given if the if something goes wrong
during the execution of the program.

4.2.4. Debugging

During the development and implementation of DuQuad, the output of the op-
timization was always tested against other solvers, e.g. Quadprog and Gurobi, to
make sure that the algorithm worked properly. In every new stage of the project, the
algorithms were tested by comparing the output of numerous randomly generated
problems.

Furthermore, every algorithm was first implemented using the high level lan-
guage MATLAB. The output of the C code should be identical to the output of
the MATLAB code at all times. This approach prevented mistakes that otherwise
would pass undetected, and it made the programming more effective because it was
easier to plan in advance how the structure of the C-code would look like. As a
result, a complete and finished version of DuQuad written exclusively in MATLAB
is also available for download at the website [1].
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Memory Leaks

It is easy to obtain segmentation fault in a C program, i.e. trying to access mem-
ory which are not properly allocated. However, sometimes an error will not occur
even if the program is accessing memory that not belong to the program. This is
called a runtime error and can cause strange behaviour when running the program.
Nevertheless, it can be very difficult to discover runtime errors. Furthermore, when
compiling the C subroutines into a binary MEX-file, and running this file from MAT-
LAB, the program will shut down without warning or any error message if there is
any case of illegal memory accessing. In other words, it is extremely important to
correct all errors before the code is compiled with the MEX framework. Under the
developing of DuQuad a certain procedure was followed to minimize time-consuming
debugging.

1. Implement the algorithm in MATLAB and test the behaviour and output
against public available solvers to be sure the algorithm is working properly.

2. Make a version of the algorithm in C-code

3. Profile the C-code with Valgrind to detect any illegal memory accessing.

4. Test the output of the C-code against the MATLAB code.

5. Connect the algorithm to the MEX framework.

By following this procedure, about 95% of the bugs in the code were discovered
efficiently. Furthermore, when profiling the final version of DuQuad with Valgrind,
no memory warnings or errors are detected.
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5. Numerical Experiments

In this chapter, a presentation and discussion of the numerical simulations carried
out during the project are given.

5.1. Introduction and Simulations Setup

Testing and comparison of the different algorithms that have been implemented, is
an extensive task if all possible variants of the optimization problem, the different
parameters, and the different settings, are considered. As a consequence, certain
assumptions (described below) have been taken, and the presented results are the
typical trends that were observed during the project. The commercial optimization
solver Gurobi is used as a reference to the implemented algorithm outputs. In the
following, the assumptions about the optimization problem formulation, the different
algorithm settings, and the simulation approach, are given.

5.1.1. Problem Formulation

The two QPs in equation (2.19) and (2.20), introduced in Chapter 2, are mainly
considered during the simulations. The QP from the condensed MPC formulation,
i.e. (2.19)

min
z

1
2
zTHz + cT z

s.t. l̂b ≤ Gz − g ≤ ûb
lb ≤ z ≤ ub,

(5.1)

represents case 1 from Section 3.1 where both ûb and l̂b exists. The QP from the
sparse MPC, i.e. (2.20)

min
z

1
2
zTHz + cT z

s.t. Gz = g
lb ≤ z ≤ ub,

(5.2)

represents case 2. DGM and DFGM are tested against case 1 and case 2, while
ALM and FALM only solves problems on the form of case 2. Furthermore, the
variant of the algorithms evaluated in the last primal iterate is referred to as last,
and the variant evaluated in the average primal sequence is referred to as avg, e.g.
DGM avg.

51



52 Chapter 5. Numerical Experiments

5.1.2. Assumptions

Certain assumptions are kept constant throughout the simulations if not specifically
stated otherwise.

The Problem

� The Hessian H is symmetric and positive definite.

� A has the dimensions m× n, where m = n/2.

� The problem has a feasible solution.

� The initial point is feasible.

� The problem has active constraints in the solution.

The Options

� The tolerance for dual suboptimality εds and primal feasibility εpf are the same
for all algorithms and all problem dimensions during one simulation.

� The tolerance for the primal suboptimality in the inner problem εin can vary
between algorithms in the same experiment.

� Higher accuracy means lower tolerance and visa versa.

� The maximum number of iterations for solving the inner problem is set to 100.

The Simulations

� The output of Gurobi is regarded as the optimal solution and denoted z∗, and
the optimal value is denoted f ∗. The approximate solution generated by out
algorithms is denoted zk.

� The input to the algorithms, i.e. the optimization problems, are generated
randomly, given a certain dimension.

� All results are the average of at least 10 simulations.

� The timing of the algorithms includes all the offline computations done in
’duquad.m’, e.g. finding the eigenvalues and calculating the Lipschitz constant.

� Simulations for all solvers are restricted to utilize only one thread, i.e. paral-
lelism is prevented.

� When timing the algorithms, no other programs are running and wireless is
turned off.

� Simulations are done on a Lenovo Yoga laptop with an Intel Core i7-3517U
CPU, running at 1.90GHz with 8 GB of RAM.
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5.1.3. Gurobi

Gurobi is a commercial solver for different types of optimization problems, i.e. also
QPs. It has highly optimized algorithms and is regarded as one of the fastest solvers
on the marked. When comparing the solution to the different problems generated in
this project, Gurobi had the exact same output as the well known solver Quadprog,
but Gurobi was significantly faster. Although Gurobi uses second order methods,
it is used as a reference to the implemented algorithm in this Thesis during the
simulations. To be able to make a fear comparison of the runtime, Gurobi was
restricted to only using one thread.

5.2. GDM vs. FGM

In the end of Chapter 2, the gradient descent method (GDM) and fast gradient
method (FGM) were discussed, see section 2.4.2. In theory, FGM should have a
significant faster convergence rate. This corresponds well with the results presented
in Figure 5.1. With growing problem dimensions, GDM do not stand a chance when
compared to FGM. Needless to say, FGM was used to solve the inner problem for
all the dual algorithms in this project.
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Figure 5.1: Gradient Descent Method vs. Fast Gradient Method.
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5.3. Tightness of Theoretical Complexity Bound

for DGM

In this section, it is shown that the theoretical complexity bound of DGM also make
an upper bound in practice. This simulation is done for case 3 of equation 5.1, where
the optimization variable z is unbounded. This optimization problem is formulated
as:

min
z∈Rn

1

2
zTHz + cT z s.t. Gz ≤ g. (5.3)

From the theoretical convergence for DGM stated in Appendix A, the following
relation should hold:

|f(ẑk)− f ∗| ≤
2LdR

2
d

k
≤ εout, (5.4)

where k is the number of outer iterations. In theory, this means that by first
calculating f ∗ with Gurobi, and then run DGM until the primal feasibility condition
|f(ẑk)− f ∗| ≤ εout is satisfied, the theoretical upper bound for number of iterations
should be:

ubk ≤
2LdR

2
d

εout
. (5.5)

By setting the inner accuracy equal to the outer accuracy, i.e. εin = εout = 10−2,
the result in Figure 5.2 is obtained. Even though the tightness of the bound can be
discussed, it is observed that ubk follows the trend of DGM avg.
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Figure 5.2: Number of iterations with increasing problem dimension n. ubk is the theo-
retical upper bound for number of iterations for DGM avg.
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5.4. Convergence Comparison for Case 1

In this section, simulations comparing DGM and DFGM, when solving problems
on the form of case 1 with increasing problem dimension n, are plotted. DGM
avg is omitted because the result is not comparable to the other three algorithms,
i.e. the convergence is much slower.

In the first experiment, shown in Figure 5.3, the inner tolerance is kept the same
for both DFGM last and DFGM avg (εin = 10−7) , while DGM last is given a
much higher tolerance (εin = 10−4). Other testing has proven that DFGM last is
not converging if the inner tolerance is high compared to outer tolerance.

Figure 5.4(a) shows the number of outer iterations used to obtain a solution that
satisfy the stopping criteria, with the given tolerances. The result correspond well
to the theory, given that DFGM last uses least iterations and DGM last uses
most.

Figure 5.4(b) shows the total number of inner iterations, i.e. the sum of iterations
used to solve the inner problem from all the outer iterations. Note that DGM last
uses far less inner iterations. This is a consequence of the low accuracy for the
inner problem. Furthermore, the DFGM must solve the inner problem twice for
every outer iteration. One time to obtain the zk update and one time to check the
stopping criteria.

Figure 5.4(c) displays the runtime used by the algorithms to obtain a solution
to the optimization problem. An interesting observation is that runtime of each
algorithm reflects the total number of inner iterations in Figure 5.4(b). The runtime
of Gurobi is also included in the plot, and it is observed that it is beaten by DGM
last, which obtain the approximate solution faster.

Figure 5.4(d) and 5.4(e) compare the approximate solution zk to the optimal so-
lution z∗, provided by Gurobi. These two plots do not say much about how good the
solution is compared to Gurobi, because the order of the solutions are not stated.
However, it is a good test to compare the implemented algorithms against each
other. From the plots it is observed that DFGM last is more unstable that the
other two methods. Furthermore, DGM last has better primal suboptimality, than
DFGM avg, but with primal feasibility it is the other way around.

By performing simulations where the inner accuracy of DFGM avg is changed
to be equal to the DGM last, but keeping all the other parameters constant, the
results displayed in Figure 5.4 are obtained. It is observed that DFGM avg now
has less inner iterations and faster runtime. In addition, the algorithm still gives
good results with respect to suboptimality and feasibility.

It should be mentioned that the inner accuracy requirement for the different algo-
rithms, will be different with growing problem sizes, i.e. the experiments shown in
Figure 5.3 and Figure 5.4 do not give the full picture of the reality. During other
simulations it was observed that the algorithms did beat each other using different
problem formulations and different problem dimensions.



56 Chapter 5. Numerical Experiments

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

450

n

it
er
a
ti
o
n
s

DGM last
DFGM last
DFGM avg

(a) Outer iterations

50 100 150 200 250 300 350 400

2000

4000

6000

8000

10000

12000

14000

n

it
er
a
ti
o
n
s

DGM last
DFGM last
DFGM avg

(b) Sum inner iterations

50 100 150 200 250 300 350 400

0.5

1

1.5

2

2.5

3

3.5

4

n

[s
]

Gurobi
DGM last
DFGM last
DFGM avg

(c) Runtime

50 100 150 200 250 300 350 400

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

n

DGM last
DFGM last
DFGM avg

(d) Primal suboptimality | f∗ − f(zk) |

50 100 150 200 250 300 350 400

2

3

4

5

6

7

8

9

10

x 10
−3

n

DGM last
DFGM last
DFGM avg

(e) Primal feasibility ‖ z∗ − zk ‖

Figure 5.3: Case 1 simulated for DGM and DFGM with increasing n. DFGM last
and DFGM avg have the same εin.
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Figure 5.4: Case 1 simulated for DGM and DFGM with increasing n. DGM last
and DFGM avg have the same εin.
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5.5. Convergence Comparison for Case 2

In this section, the convergence of primal feasibility for all the algorithms are com-
pared, using case 2 from equation (5.2). Then the algorithms with best convergence
properties are benchmarked against each other, and Gurobi, on big data problems,
i.e. problems with large dimensions.

5.5.1. Convergence of Primal Feasibility

In this experiment, only one problem is considered. The figures show plots from
one simulation where all the algorithms solve the same problem and all algorithms
use the same tolerance εin when solving the inner problem. The outer tolerances
for dual suboptimality and primal feasibility are set to zero. This means that the
algorithms will continue until they reach the maximum number of outer iterations.
The problem that is used in this simulation has has dimension n = 200.

In the experiment showed in Figure 5.5 the inner accuracy is set to εin = 10−3.
Figures 5.5(a), 5.5(b) and 5.5(c) show three different zoomed perspectives of the
same simulation.

Figures 5.5(a) has the perspective where all the 8 different algorithms of DuQuad
are included. Clearly, the four Augmented algorithms have mush faster convergence
then the other algorithms. This plot reflects the typical behaviour for other problems
as well.

Figure 5.5(b) show a closer perspective of the four augmented algorithms. From
this illustration it seems that ALM avg has a stable convergence, but it is still not
comparable to the three best performing algorithms.

Figure 5.5(c) displays an even closer perspective on the value of the primal feasi-
bility, while zooming out on the axis with number of iterations. From the illustration
it is observed that FALM avg has a stable converging curve, but is much slower
than the two algorithms that are evaluated in the last primal iterate. Furthermore,
it is shown that even though the FALM last has the fastest rate of convergence in
the beginning, it will stop the convergence at a certain value of primal feasibility and
start oscillating. ALM last, on the other hand, does not converge as fast in the be-
ginning as FALM last, but has a more stable behaviour and converges down to zero.

The plots illustrated in Figure 5.6 shows how some of the algorithms will converge
with three different values of the inner tolerance.

Figure 5.6(d) illustrate the convergence of the best method evaluated in the av-
erage, i.e. FALM avg. The plot shows that the algorithm is more or less unaffected
by the inner tolerance. This is also the case for all other algorithms that evaluate
in the average. Furtermore, a similar robust behaviour is observed for ALM last
in Figure 5.6(b).

On the other hand, from Figure 5.6(a) and Figure 5.6(c), it is shown that DFGM
last and FALM last are strongly dependent on the inner tolerance. When solving
the inner problem with a higher accuracy, the algorithms converge closer to zero
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before they start to oscillate.
To summarize, if it is possible to set the stopping criterion tolerance for the

primal feasibility at a level the algorithm is able to reach, then FALM last seem
to have the best and fastest convergence properties. However, if the problem is
unknown, ALM last is more robust and seems to be the better choice. By com-
bining the fast convergence of one method and the robustness of the other, a hybrid
algorithm of the two could be an interesting and promising option. DGM last and
DFGM last seem to have the same type of relationship as the augmented algo-
rithms, and a hybrid method of these two are presented in Necoara and Patrascu
[13].
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Figure 5.5: Value of primal feasibility vs. number of iterations. All algorithms are
solving the same problem.
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Figure 5.6: Value of primal feasibility vs. number of iterations, simulated for three
different values of εin.
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5.5.2. Benchmark on Big Data Problems

In this experiment, the algorithms that showed promising results in the previous
subsection, when solving problems on case 2, are compared to each other and
Gurobi. The algorithms solve problems with growing dimensions n. The inner
tolerance is set differently: ALM last: εin = 10−4, FALM last: εin = 10−6, and
FALM avg: εin = 10−3. These settings give the best results when testing the
algorithms individually. Furthermore, the outer tolerances are kept constant and
the same for all algorithms, with εds = 10−4 and εpf = 0.03. The optimal value f ∗ is
of the order 103.

Figure 5.7 and Figure 5.8 have the same settings, but simulate over different
problem dimensions n. In both cases it is observed that FALM last uses the least
amount of outer iterations, but the highest amount of total inner iterations. On the
other hand, ALM last uses the least amount of inner iterations and consequently
has the fastest runtime.

Furthermore, Figure 5.8(d) and Figure 5.8(e) show that FALM avg has a sub-
stantially less accurate solution than the other algorithms, when comparing the
approximate solution to the optimal solution provided by Gurobi.

Figure 5.7(c) and Figure 5.8(c) illustrate the runtime for all the algorithms,
including Gurobi. When the problem dimension increases, it is observed that all
the tree implemented algorithms are able to beat the runtime of Gurobi. This is
a very promising result and shows that the implemented first order algorithms are
comparable to even one of the better solvers out there. It should be noted that
this result only counts for certain types of optimization problems, and when an
approximate solution is sufficient in the application.
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Figure 5.7: Solving Case 2 problems with increasing n.



64 Chapter 5. Numerical Experiments

200 400 600 800

20

30

40

50

60

70

80

90

n

it
er
a
ti
o
n
s

ALM last
FALM last
FALM avg

(a) Outer iterations

100 200 300 400 500 600 700 800 900

400

600

800

1000

1200

1400

1600

1800

2000

2200

n

it
er
a
ti
o
n
s

ALM last
FALM last
FALM avg

(b) Sum inner iterations

100 200 300 400 500 600 700 800 900

1

2

3

4

5

n

[s
]

Gurobi
ALM last
FALM last
FALM avg

(c) Runtime

100 200 300 400 500 600 700 800 900

0.5

1

1.5

2

2.5

3

n

ALM last
FALM last
FALM avg

(d) Primal suboptimality | f∗ − f(zk) |

100 200 300 400 500 600 700 800 900

1

2

3

4

5

6

x 10
−3

n

ALM last
FALM last
FALM avg

(e) Primal feasibility ‖ z∗ − zk ‖

Figure 5.8: Solving Case 2 problems with increasing n.



5.6. Matrix Multiplication 65

5.6. Matrix Multiplication

In section 4.2.1 the code was profiled when solving a larger problem using DFGM
last. It was shown that the function that do the matrix-vector multiplication is
using most of the total execution time of the program. In appendix B, two different
implementations of this multiplication are presented. These two are referred to as
the standard and the alternative approach. The alternative approach is used in all
other simulations in this Thesis.

In Figure 5.9, these to approaches are compared by solving random generated
problems using FALM last. Clearly the alternative approach achieves lower run-
times with growing problem dimension. Figure 5.9(b) shows the total number of
inner iterations for the same experiment.
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Figure 5.9: FALM last solves random problems with dimension n, using two different
methods for the matrix-vector multiplication.
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5.7. Runtime Comparison: C vs. MATLAB

To check the correctness of the C-code implementation and to plan the program
structure, a version of DuQuad, written exclusively in MATLAB code, was created
in parallel to the C-code implementation. The result is a complete MATLAB version
of DuQuad, that has the same inputs and outputs as the C-version. The general
assumption is that the C-version should be much more efficient in computational
runtime. Figure 5.10 shows the runtime of the two implementations when solving
the same problems with increasing dimension n. It is observed that the MATLAB
version has better performance for larger problems. Note, this result is only obtained
for certain problems and certain algorithms, and is mainly because MATLAB is
known to use highly optimized libraries for matrix and vector operations. Because
the implemented algorithm uses most of the time doing matrix-vector multiplication,
this operation is done faster in MATLAB for larger dimensions.
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Figure 5.10: Runtime FALM last comparing C and MATLAB implementation on the
same problems.



6. Conclusion

The main goal of this Thesis was to implement and analyse first order algorithms
that solves convex quadratic problems that appear in MPC for embedded linear
systems. Given the complete and optimized toolbox DuQuad, which contains eight
different versions of such algorithms that can solve a wide range of different quadratic
programs with promising results in efficiency, accuracy and robustness, the goal has
been fulfilled.

Motivated by an introduction to MPC, topics of optimization theory and quadratic
programming were presented, and some methods were reviewed for solving quadratic
programs subjected to constraint that can be easily projected. Moreover, four dual
methods for solving QPs with complicated constraints were presented in Chapter 3.
These algorithms were evaluated in both the last primal iterate and the average pri-
mal sequence. The algorithms evaluated in the average showed a robust behaviour,
but the algorithms evaluated in the last had a faster rate of convergence.

Furthermore, the augmented methods had better performance on the equality
constrained problems. In addition, it was also shown that the algorithms that used
the least amount of iterations when solving the inner problem, also had the fastest
runtime.

By enforcing certain assumptions on the optimization problem and simulation
process, some of the algorithms were able to obtain an approximate solution with a
speed that was comparable to one of the most efficient solvers on the market.
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7. Further work

The algorithms implemented and analysed in this Thesis were shown to be promising
in efficiency, accuracy and robustness. However, further optimization and develop-
ment can be made. Some suggestions for further work is given in the following.

A first approach may be to expand the augmented methods ALM and FALM
to also solve the three other cases of the QP, i.e. to include inequalities in the linear
constraints. Furthermore, by combining the fast convergence of some algorithms
and the robustness of others, a hybrid version could be implemented. A hybrid
solution for the DGM and DFGM is suggested by [13].

If DuQuad should be used as a toolbox on fast computing HW, the code should
be connected to optimized libraries for matrix and vector operations, and parts of
the code should be rewritten to take advantage of parallel computing.

If one of the implemented algorithms should be used on low-cost HW, it could be
implemented with fixed point representation instead of floating point representation.
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Appendix A

Theoretical Convergence and Accuracy Estimates

The theoretical bounds are stated for all four algorithms explained in Chapter 3.
The bounds are proven when the algorithms solves for the average primal sequence.
See [12] for proofs regarding DGM and DFGM, and [9] for proofs regarding ALM
and FALM.

kout is the number of outer iterations, εout is the outer tolerance in the stopping
criteria, and εin is the inner tolerance (primal suboptimality in FGM). Furthermore,
the constraints are denoted by a( · ), the ”real” optimal solution is denoted by f ∗,
and Rd =‖ λ∗ ‖ (λ∗ is the ”real” optimal Lagrangian).

Algorithm DGM

� Outer iterations and inner accuracy:

kout :=

⌊
4LdR

2
d

εout

⌋
, and εin := εout. (A.1)

� Dual Suboptimality:

f ∗ − d(λkout)) ≤
5

4
εout. (A.2)

� Primal Feasibility: ∥∥[a(ẑkout)
]
+

∥∥ ≤ 2

Rd

εout. (A.3)

� Primal Suboptimality:

− 2εout ≤ f(ẑkout)− f ∗ ≤ εout. (A.4)

Algorithm DFGM

� Outer iterations and inner accuracy:

kout :=

⌊
2Rd

√
Ld

εout

⌋
, and εin :=

εout
√
εout

2Rd

√
Ld

. (A.5)

� Dual Suboptimality:
f ∗ − d(λkout)) ≤ 3εout. (A.6)

� Primal Feasibility: ∥∥[a(ẑkout)
]
+

∥∥ ≤ 6

Rd

εout. (A.7)
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� Primal Suboptimality:

− 6εout ≤ f(ẑkout)− f ∗ ≤ 2εout. (A.8)

Algorithm ALM
Given ρ > 0 and 0 ≤ Ld ≤ L̄:

� Outer iterations and inner accuracy:

kout :=

⌊
L̄R2

d

εout

⌋
, and εin :=

1

2(1 +
√
LdRd)

εout. (A.9)

� Dual Suboptimality:
f ∗ − dρ(λkout)) ≤ εout. (A.10)

� Primal Feasibility: ∥∥[Aẑkout − b]+∥∥ ≤ 3

Rd

εout. (A.11)

� Primal Suboptimality:

−
(

3 ‖λ∗‖
Rd

+
9ρ

2R2
d

εout

)
εout ≤ f(ẑkout)−f ∗ ≤

(
1

2
+
‖λ0‖2

2R2
d

)
εout. (A.12)

Algorithm FALM

� Outer iterations and inner accuracy:

kout :=

⌊
2Rd

√
Ld

εout

⌋
, and εin :=

3

8(1 +
√
LdRd)(kout + 3)

εout.

(A.13)

� Dual Suboptimality:
f ∗ − dρ(λkout)) ≤ εout. (A.14)

� Primal Infeasibility: ∥∥[Aẑkout − b]+∥∥ ≤ 3

Rd

εout. (A.15)

� Primal Feasibility:

−
(

3 ‖λ∗‖
Rd

+
9ρ

2R2
d

εout

)
εout ≤ f(ẑkout)− f ∗ ≤

(
‖λ0‖2 +R2

d

2R2
d

)
εout.

(A.16)



Appendix B

Matrix Multiplication

From the profiling done in section 4.2.1 it is shown that the matrix-vector multipli-
cation is the most time-consuming function in the DuQual implementation. There
exists many optimized math libraries for doing matrix multiplication. However, for
DuQuad, one of the main objective is to restrict the use of external libraries as much
as possible.

The free code generation tool for embedded real-time linear model predictive
control presented in [15], utilizes a dual augmented gradient method to solving
QPs, and has an implementation in C-code without external libraries for matrix
multiplication. The matrix-vector multiplication for this tool is done using the most
standard approach. Hence, the implementation of the function below is referred to
as the standard approach.

1 /* matrix -vector multiplication: res = mtx * v

2 * mtx has size (rews x cols) */

3
4 void mtx_vec_mul(const real_t *mtx , const real_t *v,

5 real_t *res , const uint32_t rows ,

6 const uint32_t cols)

7 {

8 uint32_t i; // row number

9 uint32_t j; // column number

10 uint32_t k = 0; // matrix index (row * col)

11 for (i=0;i<rows;i++) {

12 res[i] = 0.0;

13 for (j=0;j<cols;j++) {

14 res[i] += mtx[k++] * v[j];

15 }

16 }

17 }

Using the standard approach, only one element in the vectors mtx and v is
accessed every iteration in the inner for-loop. On the other hand, the code below
represent the alternative implementation of matrix-vector multiplication that is used
in DuQuad. This function access four elements during every iteration in the inner
for-loop. This is referred to as the alternative method and yields better results for
large dimensions, see simulations in Section 5.6. The alternative method is not found
in any official paper, but is discussed in various threads on programming websites.
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1 /* matrix -vector multiplication: res = mtx * v

2 * mtx has size (rews x cols) */

3
4 void mtx_vec_mul(const real_t *mtx , const real_t *v,

5 real_t *res , const uint32_t rows ,

6 const uint32_t cols)

7 {

8 uint32_t i; // row number

9 uint32_t j; // column number

10 uint32_t k; // matrix index (row * col)

11 real_t temp;

12 k = 0;

13 for (i=0;i<rows;i++) {

14 temp = 0.0;

15 for (j=0;j<=cols -4;j+=4) {

16 temp += (mtx[k] * v[j] +

17 mtx[k+1] * v[j+1] +

18 mtx[k+2] * v[j+2] +

19 mtx[k+3] * v[j+3] );

20 k+=4;

21 }

22 for (; j<cols; j++){

23 temp += mtx[k++] * v[j];

24 }

25 res[i] = temp;

26 }

27 }



Appendix C

DuQuad: User Manual

C.1. Introduction

The DuQuad optimization toolbox solves convex quadratic programs using dual first
order optimization algorithms. The algorithms have predictable and fast conver-
gence, low memory footprint, and use only basic arithmetic and logical operations.
DuQuad is therefore suited to be utilized by real-time applications running on low-
cost HW such as simple microcontrollers. Furthermore, DuQuad has an user friendly
Matlab interface for maximum productivity, and the algorithms are implemented in
efficient C-code.

The algorithms attempts to solve the QP problem:

min
z

1
2
zTHz + cT z

s.t. l̂b ≤ Gz − g ≤ ûb
lb ≤ z ≤ ub,

(C.1)

where H ∈ Rn×n is the Hessian, G ∈ Rm×n is a matrix for the linear constraints,
and c, lb, ub ∈ Rn and g, l̂b, ûb ∈ Rm are column vectors.

Algorithms

DuQuad embeds the four different algorithms:

� Dual Gradient Method (DGM)

� Dual Fast Gradient Method (DFGM)

� Dual Augmented Lagrangian Method (ALM)

� Dual Fast Augmented Lagrangian Method (FALM)

Note that ALM and FALM can only solve problems with equality constraints, i.e.
the case where l̂b = ûb.
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Download and Installation

Information, documentation, and code downloads can be found by following the link
below.

� DuQuad website: http://sverrkva.github.io/duquad/

� Direct download: https://github.com/sverrkva/duquad/

� Documentation of C-code: http://sverrkva.github.io/duquad_doc_ccode/

The c-code needs to be compiled into a mex-file. A makefile (make.m) is included
in the code download. If running a linux distribution it should be adequate to run
the make.m to compile the program. Furthermore, an example-file is included to
get a quick start.

The download also includes a Matlab version of DuQuad where all the algorithms
are implemented in Matlab. The Matlab version has the same behaviour and almost
identically inputs and outputs as the main version.

C.2. Short Tutorial

Formulate the Problem

Formulate an optimization problem on the form of equation (C.1). For example:

H = [11 4 ; 4 22]; % Hessian matrix
c = [3 ; 4]; % gradient vector
G = [1 1;2 1]; % linear constraints matrix
g = [2 ; 3]; % linear constraints vector
lb hat = [-2 ; -2]; % lower bound for the linear constraints
ub hat = [2 ; 2]; % upper bound for the linear constraints
lb = [-1 ; -2]; % lower bound for optimization variable z
ub = [0.5 ; 2]; % upper bound for optimization variable z
z0 = [0.5 ; -0.5]; % initial point

Run the Program

To solve the problem, call the duquad function with the problem as input:

[zopt,fopt] = duquad(H,c,G,g,lb hat,ub hat,lb,ub,z0);

If the linear constraints is have lower bound, and the optimization variable has
no upper upper bound then the the function will be called as follows:

[zopt,fopt] = duquad(H,c,G,g,[],ub hat,lb,[],z0);

If the optimization variable is unbounded, the linear constraints are G ≤ g, and
there is no initial point, the function can be called as:

[zopt,fopt] = duquad(H,c,G,g);

http://sverrkva.github.io/duquad/
https://github.com/sverrkva/duquad/
http://sverrkva.github.io/duquad_doc_ccode/
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In conclusion, DuQuad is flexible towards the inputs. Furthermore, grab all
possible outputs by calling the function as:

[zopt,fopt,exitflag,output,lambda1,lambda2] = duquad(H,c,G,g);

An overview of all inputs and outputs is viewed in Matlab console if the user is
running the Matlab command:

help duquad

Include Options

DuQuad can also take different options as input, e.g. maximum number of itera-
tions, tolerance for stopping criteria etc. All these options are collected in a struct
(Table C.2) as follows:

% Maximum number of iterations in the outer loop
options.maxiter outer = 1000;
% Maximum number of iterations in the inner loop
options.maxiter inner = 100;
% Tolerance for dual suboptimality
options.eps ds = 0.0001;
% Tolerance for primal feasibility
options.eps pf = 0.001;
% Tolerance for primal feasibility in the inner problem
options.eps inner = 0.0001;
% Penalty parameter used in ALM and FALM
options.rho = 1;
% Specifies the algorithm used to solve the problem.
options.algorithm = 1;

The option struct is included as input number 10 in the function:

[zopt,fopt] = duquad(H,c,G,g,[],[],[],[],[],options);

Note that the user must either specify all options or no options (when default
values are utilized). This should be improved in a newer version of DuQuad.
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C.3. Specifications

In this section, the different inputs and outputs are listed. DuQuad’s full potential,
regarding inputs and outputs, is utilized by running the following example Matlab
command:

[zopt,fopt,exitflag,output,lambda1,lambda2]...
= duquad(H,c,G,g,lb hat,ub hat,lb,ub,z0,options);

C.3.1. Inputs

Table C.1 gives an overview of the different inputs to the function. In addition the
dimensions for each input is listed. The last input to the function is a struct called
options, which set some criteria for the solving process. The different options are
summarized in Table C.2. One of the options is to choose which algorithm that is
solving the problem. This is specified by a number ranging from 1-8, and is listed
in Table C.3.

Table C.1: The inputs for the duquad function

Input Name Desciption Dimension
1 H Hessian matrix n× n
2 c Gradient vector n
3 G Linear constraints matrix m× n
4 g Linear constraints vector m

5 l̂b Lower bound for the linear constraints m

6 ûb Upper bound for the linear constraints m
7 lb Lower bound for optimization variable z n
8 ub Upper bound for optimization variable z n
9 z0 Initial point n
10 options Struct containing options for solver, see Table C.2

Table C.2: Overview of the parameters in the options struct

Name Description Default
maxiter outer Maximum number of iterations in the outer loop 1000
maxiter inner Maximum number of iterations in the inner loop 100
eps ds Tolerance for dual suboptimality 0.0001
eps pf Tolerance for primal feasibility 0.001
eps inner Tolerance for primal feasibility in the inner problem 0.00001
rho Penalty parameter used in ALM and FALM 1
algorithm Specifies the algorithm used to solve the problem. 3
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Table C.3: Values of the algorithm parameter from the option struct in Table C.2

Algorithm Value
DGM last 1
DGM average 2
FDGM last 3
FDGM average 4
ALM last 5
ALM average 6
FALM last 7
FALM average 8

C.3.2. Outputs

The outputs of DuQuad is summarized in Table C.4. Among the outputs is a struct
called output. This struct contains some results from the solving process.

Table C.4: The outputs of the duquad function

Output Name Description
1 z∗ Optimal point
2 f ∗ Optimal value
3 exitflag 1 = solution found, 2 = max num of iteration reached, −1 = error
4 output Struct containing various result, see Table C.5
5 λ1 Set of Lagrangian multipliers
6 λ2 Set of Lagrangian multipliers
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Table C.5: Content of the output struct output

Name Description
iterations Number of outer iterations
iterations inner tot Total number of iterations for the inner problem
time Runtime of the algorithm after all initialization is

done
time tot inner Total time spent on solving the inner problem
flag last satisfied Flag specifies which stopping criteria was resolved

last. Value: 0 = dual suboptimality, 1 = primal
feasibility

niter feasible ds Number of iterations the criterion for dual subop-
timality was satisfied

niter feasible pf Number of iterations that the criterion for primal
feasibility was satisfied

exitflag inner Exitflag for the inner problem. Values: 1 = feasible
point found, 2 = Maximum number of iterations
exceeded

num exceeded max niter inner Total number of times the inner problem exceeded
the number of iterations

ds vector Vector storing all the value of the dual subopti-
mality every iteration

pf vector Vector storing all the value of the primal feasibility
every iteration

algorithm Name of the algorithm used to solve the problem
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