
A Committee of One
Using Dropout for Active Learning in Deep

Networks

Martin Gammelsæter

Master of Science in Computer Science

Supervisor: Keith Downing, IDI
Co-supervisor: Joshua Auerbach, EPFL - LIS

Department of Computer and Information Science

Submission date: August 2015

Norwegian University of Science and Technology

Abstract
In many of the problem domains typically tackled by deep learning, data
is plentiful and cheap – but labeling of the data is tedious and expensive.
Letting a model actively select the data instances it is uncertain about to train
on – and ignore others – can reduce the percentage of instances that must
be labeled to achieve satisfactory results. To this end, this project presents a
novel semi-supervised active learning algorithm called Active Deep Dropout
networks (ADD-networks). It is based on evaluating a deep neural network’s
uncertainty on unlabeled instances, through measuring disagreement within
a committee of networks derived from the original network. The committee
members are Monte-Carlo-sampled from the full network using the concept
of dropout. Experiments on classifying handwritten digits show that ADD-
networks are comparable to a state-of-the-art method, and vastly outperforms
random selection of instances.

Sammendrag
I mange av problemdomenene hvor dyp læring typisk blir brukt er innhenting
av data enkelt og billig, men merking av den samme dataen med fasit er
både dyrt og tidkrevende. Om man lar modellen aktivt velge datapunkter
som den er usikker på – og ignorerer andre – kan mengden datapunkter som
må merkes for å oppnå ønskede resultater reduseres kraftig. Dette prosjektet
presenterer en ny aktiv læringsalgoritme kalt Aktive Dype Dropout-nettverk.
Algoritmen er basert på å evaluere et dypt nevralt nettverks usikkerhet
om den korrekte merkingen av umerkede datapunkter, gjennom å måle
uenighet i en komité bestående av nettverk avledet fra det orginale nettverket.
Komitémedlemmene er tilfeldig generert fra det originale nettverket gjennom
bruk av konseptet “dropout”. Forsøk med klassifisering av håndskrevne siffer
viser at ADD-nettverk gir sammenlignbare resultater med andre moderne
tilnærminger, og gir betraktelig bedre resultater enn tilfeldig utvelging av
datapunkter.

i

Preface
This thesis concludes my Master of Science in Computer Science at the
Norwegian University of Science and Technology (NTNU). The final year
of my degree was spent as an exchange student at the École Polytechnique
Fédérale de Lausanne (EPFL), in Lausanne, Switzerland – where the project
described in this thesis was carried out in the period between February
and August, 2015. The work was performed in Professor Dario Floreano’s
Laboratory of Intelligent Systems (LIS), under the supervision of Joshua
Auerbach and Giovanni Iacca.

Ever since I was first introduced to the concept, artificial neural networks in
all forms have fascinated me tremendously. This fascination led me through
courses from logic to neuroscience to robotics, it led me to a specialization
in artificial intelligence at NTNU, to Switzerland, EPFL, and the LIS, and
ultimately – for now – it led me to this project, and this day. Throughout
this adventure I have had lots of support – from colleagues and teachers
alike. In the context of this project, I would most of all like to thank the main
supervisor, Joshua Auerbach. Not only did you come up with the core idea,
and generously handed it to me to explore – you have provided invaluable
support and guidance to a novice in the realm of science. Thanks also to
Giovanni Iacca, the co-supervisor, for prized discussions and advice.

But it is not an adventure without obstacles. For keeping me sane through
times of frustration and feelings of insurmountable obstacles ahead, a big
thank you to my friends and family, in both Norway and Switzerland. But,
most of all I wish to thank my parents for their unending support, in all my
endeavours. Without you, this day would never have come.

Trondheim, August 24, 2015

Martin Gammelsæter

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Thesis Structure . 4

2 Theoretical Background 5
2.1 Overview . 5
2.2 Active Learning . 5

2.2.1 Different Scenarios . 7
2.2.2 Evaluating Examples 10
2.2.3 Summary . 19

2.3 Deep Learning . 19
2.3.1 Multilayer Perceptrons 22
2.3.2 Dropout . 25
2.3.3 Unsupervised Pre-Training 27
2.3.4 Summary . 31

2.4 Related Work . 32

3 Methods 35
3.1 Overview . 35
3.2 Active Deep Dropout Networks 35

3.2.1 Generating Networks 36
3.2.2 Scoring . 36
3.2.3 The Full Architecture 37
3.2.4 Hyperparameters and Options 39
3.2.5 The Unbalanced Batch Problem 40
3.2.6 Variations . 43
3.2.7 Summary . 43

3.3 The MNIST Dataset . 44
3.4 Experiment Design . 46

3.4.1 Hyperparameters . 47
3.5 Implementation Details . 49

v

4 Results and Analysis 51
4.1 Overview . 51
4.2 Core Results . 51
4.3 Effect of Committee Size . 54
4.4 Selected Examples . 56
4.5 Committee Prediction Variance 56

5 Discussion 59
5.1 Overview . 59
5.2 Results . 59
5.3 Contributions . 60
5.4 Further Work . 61

5.4.1 Optimizations . 61
5.4.2 Validation of Concept 62
5.4.3 Dealing With Noise . 63

5.5 Conclusion . 64

Bibliography 65

vi

1Introduction

1.1 Motivation

During the last decade, machine learning has become an increasingly im-
portant part of many companies’ business processes, products, and services.
Examples of this range from predicting sales figures and customer demands,
to automatic speech recognition of customer queries, designing new drugs,
image recognition, and robotics. In many of the mentioned problem domains,
data for training is often abundant – for example are millions of images up-
loaded for public consumption on the internet every day. The bigger problem
is accurate labeling of this data, that is, providing the true classification or
observed value. Depending on the level of annotation, transcription of speech
recordings can take up to 400 times longer than the source recording [89],
for example. In other domains, such as building forward models in robotics,
the number of possible actions may well be infinite, and learning the results
of these actions means actually performing them on the robot – an expensive
process. Finding ways to cut down on the amount of labeling that has to be
performed to achieve satisfactory results in training then, can be an obvious
benefit. Achieving this goal by letting an algorithm actively choose the data
it finds ambiguous, is the domain of active learning.

A great deal of this recent surge in interest into machine learning comes on
the back of the emergence of so-called deep learning [44], with its deep
hierarchical neural networks. These networks typically require training
on huge amounts of labeled data to work well. For researchers, many
benchmark datasets are available, but for many real-world needs, there is a
significant cost to amassing and labeling data. Methods from active learning
can serve well here, reducing the number of labeled data points required to
achieve good performance, but few active strategies exist that work well in
conjunction with deep neural networks.

Active learning traces its roots back to the statistical field of optimal experi-
mental design [69], and contains many general approaches to the problem
of choosing data to label. The problem with many of them in the context of
deep learning is that they are mostly designed with other models in mind,

1

typically Support Vector Machines or simple models such as decision trees or
Gaussian Mixture Models, and are often either restrictively computationally
expensive, or ineffective in many of the problem domains in which deep
learning is typically applied.

We believe that a computationally feasible and effective active learning
algorithm for deep networks, which can fill this gap, could help bring the
benefits of deep learning to an even more diverse set of applications than
previously feasible.

1.2 Research Questions

This project seeks to explore an algorithm that could possibly help fill the
void discussed in the previous section, based on a core idea proposed by
Joshua Auerbach – the main advisor to this project. It revolves around a
novel combination of a staple active learning algorithm, Query by Committee,
and ideas originating from a recent neural network regularization technique,
dropout.

The Query by Committee (QBC) algorithm [71] will be described in detail
in Chapter 2, but in brief, it keeps a committee of models, and for each
data instance to be evaluated for potential labeling, each member of the
committee provides a prediction. The algorithm then quantifies disagreement
amongst the committee members, and uses this “disagreement score” to
decide whether or not to label the instance.

Dropout regularization [75] – also detailed further in Chapter 2 – is based
on randomly “dropping out” neurons from a neural network during training,
to mitigate co-adaptation of features. To drop out a neuron means that that
neuron is not allowed to contribute to the network. Different neurons are
dropped out for each iteration of training, having the effect that neurons
cannot depend on other specific neurons being present to be able to perform
their functions. The key consequence of dropout in the context of this project
is the realization that stochastically dropping neurons in effect generates a
completely different network, one with a different topology – both from the
full network, and from all other networks with a different subset of dropped
neurons. The idea then, is to Monte-Carlo-sample multiple such networks,

2 Chapter 1 Introduction

and treat them as completely distinct models making up a committee, to be
used by the QBC algorithm whenever an active selection is to be made.

To explore this idea, the following research questions have been formu-
lated:

1. Does the variance of predictions made by dropout networks – all gener-
ated from the same full network – provide a heuristic for the confusion
of the full network on the data example being predicted?

2. Can the Query by Committee algorithm, using such a group of networks
as the committee, outperform random selection of examples?

3. Can this algorithm perform comparably to other active learning algo-
rithms that are applicable to deep neural networks?

The first question is the crux, as a negative answer to this would invalidate
the entire idea. It is certainly conceivable that the variance is too small to
provide any information at all, or that all of the variance stems from other
factors than confusion.

The second question is more practical. Assuming the variance does contain
information about the confusion, are we able to formulate an algorithm that
can take advantage of it?

While positive answers to both questions is preferable, a positive answer
to the first question, and a negative to the second would still be valuable.
Having a good way to estimate the uncertainty of a network on a prediction
can be useful in many scenarios, ones where we only want to act if the
network is sufficiently certain in its prediction for example.

As for the third question, this project will be unable to definitively answer
how the proposed algorithm compares to others in all scenarios. However,
even ballpark figures on a single problem can help shed light on the general
feasibility of the algorithm.

An attempt to answer these three questions form the basis of the project.

1.2 Research Questions 3

1.3 Thesis Structure
Chapter 2: Presents the background theory on active learning and deep
learning that is needed to understand the project.

Chapter 3: Describes the proposed architecture, and describes the dataset
and experiments used to examine the posed research questions.

Chapter 4: Presents and analyzes the results from these experiments.

Chapter 5: Discusses whether the research questions were answered, the
novel contributions of the project, the proposed architecture’s possible uses,
and interesting directions for further work, before concluding the thesis.

4 Chapter 1 Introduction

2Theoretical Background

2.1 Overview

In this chapter, an overview of the fields and ideas that underpin the proposed
architecture of Chapter 3 will be given. The most important background
concepts come from two different subfields of machine learning, namely
active learning, described in Section 2.2, and deep learning, described in
Section 2.3. None of these sections will cover their respective field in full,
but will describe the ideas that are necessary to fully grasp the concepts
introduced later. At the end of the chapter, earlier attempts to combine these
two fields, and other research with similar goals as that described in this
thesis is discussed in the Related Work section (Section 2.4).

2.2 Active Learning

The concept of Active Learning rests on the idea that some machine learning
models are able to learn more effectively if they can actively select what data
to learn from, instead of being passively fed data as is the norm with machine
learning approaches. In domains tackled by supervised machine learning,
the act of labeling the training data is often a complex operation, potentially
requiring domain experts or other costly and time-consuming processes. By
only selecting a subset of the available data to train from, the total cost of
labeling is reduced. These are the main motivations behind research into
active learning.

The main hypothesis of active learning is that by being able to analyze and
ask questions about the data available, the model can form an opinion about
which data points will provide the most useful information, and through
that achieve better results with less training. In some problem domains this
approach can be very effective, greatly reducing the number of data points
that have to be labeled in order to learn a concept sufficiently well [69]. Any
domain where data is readily available but labeling is costly might be a good
fit for employing active learning. Some examples:

5

• Medical imaging. Making diagnoses from medical images – such as
those stemming from X-ray- or MR-imaging – is an important part of
modern medical treatment. It is however an inherently error-prone
process. For example, in studies on mammography, it has been observed
that among those with suspicious lesions sent to biopsy, only 15% – 34%
are found to actually have malignancies [85, 39, 40]. Using machine
learning systems to aid medical professionals in analysis of the images
is therefore an important and interesting field of current study [85,
87, 53, 49]. Labeling the data reasonably accurately in this case often
requires performing biopsy or other invasive methods of diagnosis on
the patient, usually both risky and time-consuming, while acquiring the
images themselves is cheap in comparison. Here, lowering the number
of labels needed for a machine learning model to generalize is obviously
beneficial.

• Document classification. Classifying documents such as e-mails or news-
paper articles into classes such as spam, not-spam; interesting, not-
interesting; or determining the topic of the document are tasks in which
machine learning is already very popular [61, 1, 68]. Some of these
tasks, like spam-filtering, are all but solved by most e-mail providers.
Since most users agree on what is spam and what is not, the task of
labeling it can be distributed among millions of users (through function-
ality such as “Mark as Spam”), reducing the cost. But not all document
classification problems can be distributed in this manner. For example,
if one is trying to create a system which recommends articles to a user
based on what that user has found to be interesting in the past, the
distributed approach is less effective. In such a system, being able to
provide good suggestions with as little explicit labeling as possible is
vital for the user experience. Active learning for document classification
has shown promising results in multiple studies [78, 62, 50].

• Speech recognition. Modern machine learning systems for speech recog-
nition are trained using manual transcriptions as the labels for recorded
utterances [58]. While getting hours and hours of speech recordings is
rather simple, transcription on the other hand is a very time consuming
task – taking on the order of ten times longer than the source recording
to annotate at word level, and up to 400 times longer if annotating at
phoneme level [89]. Research on applying active learning to speech
recognition tasks has been going on for decades [58, 28, 13], and has

6 Chapter 2 Theoretical Background

been one of the driving forces between active learning advances in
general.

• Modeling complex systems. In many fields, from systems biology to
robotics, complex nonlinear systems are abundant, and creating good
mathematical models is often hard and tedious. Many different ap-
proaches to automatic modeling have been proposed, but active ones
have been shown to be very effective. For example, Bongard and Lip-
son [8] present an active approach to automatically generate symbolical
models from time series data, and shows its efficiency on problems
from a wide range of fields. Cohn et al. [15] uses active learning to
allow a robotic hand to predict its position given the joint angles in the
hand. Similarly, Bongard et al. [9] uses an active self-modelling process
that allows a robot to be resilient to unexpected damage.

2.2.1 Different Scenarios

Depending on the specifics of the problem at hand, active learning can be ap-
proached in different ways. At its core, the active learning process boils down
to repeatedly choosing an unlabeled data instance that the model evaluates to
be especially likely to be informative, then querying some labeling oracle for
the actual label of that instance, so that the model can use it for supervised
learning. The oracle can take many forms – it can be a human domain expert,
another program that performs some expensive computation, or a machine
that performs an experiment, for example. How the model acquires the
instances it evaluates is an important distinction between systems, and the
literature defines roughly three different approaches to this question [69]:

De Novo Synthesis

In some scenarios it makes sense for the model to be able to ask queries
about any and all points in the input space. That is, the model only has to
know the number of dimensions and their ranges, and can within that space
query its oracle for the real target value(s) (in regression problems) or label
(in classification problems) of any specific point that it thinks is likely to
increase its knowledge. These kind of queries were some of the first to be
researched – for example by Dana Angluin in 1988 [2]. They are typically
useful in domains where all points in the input space can be labeled, and the

2.2 Active Learning 7

input space is finite. One example is the problem of predicting a robot hand’s
coordinates in some space given its joint angles, as explored by Cohn et al.
in 1996 [15]. In this context, there is no point in restricting the learner to
some predefined and pre-sampled set of points in the space to learn from. In
domains such as the one mostly explored in this thesis – handwritten digit
recognition – de novo synthesis of queries is all but useless however, as most
points in the input space are not possible for a human oracle to label as a
certain digit [5]. The core problem of this method is that the model does
not necessarily have any idea of the distribution of real world data, and may
generate points that are devoid of meaning, or focus on areas of the input
space which are extremely unlikely. A flowchart depicting the active learning
loop in de novo synthesis can be seen in Fig. 2.1.

Generate
new

instance

Evaluate
instance

Informative
enough?

Discard
instance

Query
oracle

Add
instance

to L

Train on L

No

Yes

Fig. 2.1: Flowchart for the de novo synthesis loop. How to evaluate instances and
determine whether or not they are informative (enough) will be covered
in the next section. L is the set of labeled training examples.

Stream-sampling

One response to the shortcomings of de novo synthesis is stream-sampling,
pioneered by Atlas et al. [3]. Here, instead of the learner generating data
points by itself, it is fed data, usually one point at a time, sampled from the
actual distribution. The learner must then – for every data point it receives –
decide whether to query the oracle for the label of this data point and add

8 Chapter 2 Theoretical Background

it to its training set, or discard it. This method avoids the problem of de
novo synthesis where the data points it considers might not be representative
of the actual distribution in real world data. Obviously, if the real data
is uniformly distributed across the input space, this might not bring any
advantages over the de novo approach. Stream-sampling might be especially
useful in online learning scenarios where new data is continuously provided
– but labeling is expensive – so one ideally wants to only label data that will
improve generalization a lot. The flowchart for stream-sampling is practically
identical to that for de novo synthesis (Fig. 2.1), only instead of generating a
new instance in the top node, one is sampled.

Pool-sampling

A natural extension from stream-sampling is pool-based sampling, first pro-
posed by Lewis and Gale in 1994 [48]. In many cases, a large amount of
data is collected long before any learning is started, which an active learning
algorithm can later take advantage of. By evaluating every single data point
in the unlabeled pool, it can choose one or more examples that are maximally
likely to improve performance, query the labels, add them to the training set,
and then repeat the process with the now improved model. This approach
is much more computationally expensive than sequentially evaluating and
querying or discarding examples, but can yield better results because every
example is compared before making a decision. The core assumption for
pool-based sampling to make sense is that the cost of labeling dominates the
computational cost of evaluating every example in the unlabeled data pool
every time it is sampled. This assumption appears to often hold in real-world
scenarios, and pool-based sampling is often seen in applied research on
active learning [48, 70, 30]. Fig. 2.2 shows an illustration of the pool-based
sampling loop.

While these three scenarios are the main foci of the literature, some combi-
nations of the above are also possible. Examples include batching stream-
sampling, i.e. waiting for some set number of examples to be presented
before deciding on which of those examples, if any, are to be added to the
training pool; or batching de novo synthesis, i.e. generating multiple ex-
amples at once, before evaluating, etcetera. These combinations might be
worth considering if finding a good threshold for querying is difficult, since
they allow for setting in advance an explicit percentage of examples to be

2.2 Active Learning 9

Evaluate
instances

in U

Select
most in-

formative
instance(s)

Remove
from U

Query
oracle

Add to L

Train on L

Fig. 2.2: Flowchart for the pool-based sampling scenario. How to evaluate instances
will be covered in the next section. L is the set of labeled training examples,
and U is the unlabeled set.

queried, controlled by the batch size and the number of examples to query
per batch.

Throughout the literature and this short review, the set of labeled training
examples used for training is referred to as L. In the case of pool-based
sampling, the set of unlabeled training examples in the “pool” is referred to
as U .

2.2.2 Evaluating Examples

When it comes to actually evaluating the examples, the literature provides
many possible options. The choice of which method to use is often guided
by the combination of the choice of model and the specifics of the problem
at hand. While there are many ways to approach this issue, the following
sections will focus on the methods most relevant to the project described in
this thesis. Specifically, some particular methods for evaluating examples in
classification and regression problems will be highlighted, although meth-
ods for other problem classes exist [17, 70]. For the same reason, mostly
methods applicable to neural networks models are considered. For a more
comprehensive review, refer to Settles, 2002 [69].

10 Chapter 2 Theoretical Background

Uncertainty Sampling

The most straightforward and yet perhaps one of the most popular gen-
eral approaches is uncertainty sampling, as described by Lewis and Catlett,
1994 [47]. It is a very intuitive concept – the main idea is to choose those
examples that the model is the most uncertain about, as those examples are
presumably the ones which would yield the most information. Conversely, ex-
amples for which the model has high confidence in its prediction do probably
not provide much new information. For classification problems, this reduces
to selecting those data points which are closest to the decision boundary of
the model. To illustrate the concept, an example of a simple algorithm using
the concept of uncertainty sampling in a pool-based scenario can be seen in
Alg. 1. Tweaking this algorithm for the other scenarios is simple: Instead
of looping through U , one simply receives a single instance (generated or
presented), evaluates it, then decides whether or not to query based on some
threshold. Pool-based sampling will be used in examples, as it is the most
complex of the three.

Algorithm 1 A basic algorithm for pool-based active learning using uncer-
tainty sampling

1: M← the model to be trained
2: L ⊂ U . L is initialized as some nonempty subset of U
3: train(M,L)
4: while not finished training do
5: highestUncertainty ← −∞
6: for all x ∈ U do
7: uncertainty ← evaluate(x) . evaluate estimates the uncertainty

ofM on x
8: if uncertainty > highestUncertainty then
9: mostUncertain← x

10: highestUncertainty ← uncertainty
11: end if
12: end for
13: y ← query(mostUncertain)
14: L = L ∪ 〈mostUncertain, y〉
15: train(M,L) . Either training from scratch or incrementally
16: end while

Assuming the model can present a probability distribution over the possible
classifications, there are multiple methods available to approximate the
distance from the decision boundary. When dealing with binary classification
it is very simple – the decision boundary is simply where the posterior

2.2 Active Learning 11

probability is 0.5. If using pool-based sampling, one simply chooses the
example(s) with a posterior prediction closest to 0.5 to query. In a stream or
de novo synthesis scenario, one can choose a threshold, so if some example
has a prediction that is closer to the margin than the threshold, it is queried.
When the problem at hand requires three or more classes however, we
need some different methods to approximate the distance from the margin.
Three popular examples of such methods are the least confident, margin, and
Shannon-entropy measures of uncertainty:

• Least Confident. The simplest measure is obtained by only looking at the
class with the highest probability of being correct, that is, the model’s
prediction for this example. Since we assume a probabilistic classifier,
which provides a probability distribution over the possible classes, the
probability assigned to the predicted class can be interpreted as a proxy
of the uncertainty of the model on that particular example. One then
chooses the example(s) in which the model is the least confident in its
prediction to query. In mathematical terms:

x∗ = argmin
x

P (ŷ | x) (2.1)

where x∗ is the example to query, ŷ is the predicted class, and P (ŷ | x)
is the probability assigned to that class by the model.

• Margin. Going one step further, the margin measure includes the top
two classes as ranked by the assigned probability by the model. Instead
of only looking at the probability of the predicted class, one looks at
the difference between these top two classes, essentially determining
how “close a call” the prediction was. One then assumes that the closer
the call, the more information is gained by querying that example:

x∗ = argmin
x

P (ŷ1 | x)− P (ŷ2 | x) (2.2)

where ŷ1 is the most likely class as deemed by the model, and ŷ2 is the
second most likely class.

• Shannon Entropy. Using Shannon’s concept of information theoretic
entropy [72], this uncertainty measure considers the probabilities as-
signed to all of the classes. It takes the entropy (denoted by H) over
these probabilities, which is a measure of uncertainty – a quantification

12 Chapter 2 Theoretical Background

of how unpredictable a random variable is. H can be defined as follows:

H(Y | x) = −
Y∑
y

P (y | x) logP (y | x) (2.3)

which means that e.g.

H([0.5, 0.5]) > H([1.0, 0.0]) (2.4)

That is, the information content of a probability distribution of [0.5, 0.5]
is higher than that of [1.0, 0.0], which is exactly what we want. The
example selection is then defined as:

x∗ = argmax
x

H(Y | x) (2.5)

where Y is the full prediction distribution provided by the model on
example x.

All of the uncertainty measures above assume a classification problem, be-
cause they all require either a specific label prediction, or a probability
distribution over the possible labels. While the listed measures are useless for
regression problems, the general idea of uncertainty sampling is still useful
in the context of regression. But, there are some immediate problems. How
do you estimate uncertainty when you do not have a probability distribution
to go from? Some models, like a Bayesian model, outputs a distribution over
possible values, but most others – including neural networks – do not. Since
the outputs of a regression model is usually simply real values then, and
not labels, we need a different way. One obvious candidate is estimating
the output variance of the model for different regions of the input space.
As shown by e.g. Cohn [14], this is possible using techniques from optimal
experiment design. These calculations are very computationally expensive
however, and therefore unsuitable when dealing with deep neural networks
with an immense number of weights.

In addition to the problems with uncertainty sampling and regression, studies
have observed that for some practical domains, active learning by uncertainty
sampling performs worse than random selection [67, 77, 82]. For many
problem domains and classes then, we need a different approach.

2.2 Active Learning 13

Hypothesis-search

A related, but different way of working with evaluating examples than uncer-
tainty sampling is methods based on searching the hypothesis space. These
methods rise from looking at the problem from a different angle: Instead of
just looking at the uncertainty of a single (partly) trained model, consider
the full hypothesis space, H, and the version space subset, V. V is the set of
hypotheses which correctly classifies the data in the training set.

Query by Disagreement Some classic machine learning algorithms work
by gradually reducing the size of V through training [52, Chapter 2], and
Cohn et al. presented in 1994 [13] an active learning algorithm based on this
concept, Query by Disagreement (QBD). It assumes a stream-based scenario
(as described in section 2.2.1), and works roughly as described in Alg. 2.
Basically, for every instance x it receives, it loops through all of the hypotheses
h ∈ V, and if any two predictions h(x) differ, that is we have disagreement,
it queries the label of that instance. That instance, with its label, is then
added to the training set L, and V is rebuilt to only contain hypotheses that
correctly classify all of (the new) L.

Algorithm 2 Query by Disagreement [13]

1: L ← ∅
2: V ← H
3: while not finished training do
4: x← receiveInstance(D)
5: for all h ∈ V do
6: if h(x) 6= previous then
7: y ← query(x)
8: L ← L ∪ 〈x, y〉
9: V ← {h | h(x∗) = y∗ for all 〈x∗, y∗〉 ∈ L}

10: break for
11: end if
12: previous← h(x)
13: end for
14: end while

Depending on the size of V after training, classifying unseen instances can be
done in different ways. If it is 0, the training data is inconsistent, and QBD
does not work. If it is 1, one simply uses this hypothesis for prediction. If it is
> 1, one can either choose some hypothesis h ∈ V by some heuristic, or use
some voting mechanism.

14 Chapter 2 Theoretical Background

Unfortunately, there are some game-breaking issues with this algorithm –
especially in real-world scenarios, many of which stem from its inspiration,
concept learning [52, Chapter 2]. Most of its drawbacks are well detailed in
Mitchell, 1997 [52] and Settles, 2002 [69], but some of the most problematic
issues are worth discussing here. For most problems, maintaining the entire
version set in memory is problematic or even impossible. V may very well be
infinite. Many ways have been proposed to mitigate this issue, such as so-
called SG-based QBD [13]. This works by instead of keeping track of the full
V , we merely keep two specific hypotheses: One from the set of most specific
or conservative hypotheses (S ⊆ V), and one from the set of most general
hypotheses (G ⊆ V). If the two hypotheses disagree, the instance is queried
for its label. The wrong hypothesis must then be replaced: If the most specific
hypothesis was wrong, it was too specific, and must be replaced by the new
most specific hypothesis that correctly classifies L, and vice versa. The core
idea is that these two hypotheses represent V by defining its “borders”, or
extremities. Unfortunately, it has been shown that maintaining S and G is
still prohibitively expensive in most cases [31].

Query by Committee There are fortunately some additional assumptions
in QBD that can be relaxed. First, and most critically is the assumption
that every h ∈ V must be considered when measuring disagreement, either
directly or indirectly (through simplifications such as SG-based QBD). In
many popular types of models, such as neural networks and other non-
discrete models, the concept of a well-defined, non-infinite version space
all but breaks down. Maintaining S and G becomes likewise impossible or
practically so. It seems reasonable, however, to assume that simply randomly
sampling V for n hypotheses between which disagreement is measured, can
provide a useful heuristic for the disagreement between hypotheses in V.
This idea was first formulated by Seung et al. in 1992 [71] as the Query by
Committee-algorithm (QBC), where the committee (denoted C) refers to the
set of sampled hypotheses.

The original version of this algorithm is merely a tweak of QBD, and assumes
that randomly sampling from V is computationally much cheaper than main-
taining it. While this alleviates the need to maintain the full V (or variants
like SG), there are still some issues. If we are dealing with a noisy problem,
with possibly noisy labeling, the idea of using the version space as a base
breaks down. Several approaches to avoiding this issue have been proposed.
One example is taking a likelihood-based approach as proposed by among

2.2 Active Learning 15

others Dagan and Engelson, 1995 [18]: Instead of sampling from some ex-
plicit V, one samples from a posterior probability distribution, P (h ∈ H | L),
biasing samples from H towards hypotheses that are more likely given the
training data, L. Unfortunately, this process is not always so simple either,
motivating an even more generalized approach; namely thinking of the com-
mittees in QBC as simply ensembles like in ensemble learning [22]. This
allows for using any type of ensemble learning method, like bagging [10]
or boosting [64] for example, to construct committees for QBC. As models
trained on L or some subset of L will have a higher likelihood given the
data than a randomly sampled hypothesis, this method acts similarly as the
likelihood-biased sampling. Just as in ensemble learning, it is important to
make sure that there is some diversity among the models in C.

While this approach requires some number of labeled examples in L ahead
of time to bootstrap the process, it generalizes QBC to all model classes, and
even allows multiple different types of model classes to “sit on” the same
committee. An additional effect of this approach is that instead of seeing
disagreement as some binary measure, we are able to differentiate between
examples, so that unlabeled examples can be ranked, allowing for usage of
QBC in a pool-based scenario. All it requires is a heuristic for disagreement
in the committee. Furthermore, it generalizes QBD beyond classification,
allowing its use on regression problems as long as the disagreement heuristic
can handle real-numbered predictions.

QBC now refers to all algorithms that are based on measuring disagreement
between committee-members as the heuristic for choosing which examples
to query, and a general illustration of the algorithm, in this case for the
pool-based scenario, is seen in Alg. 3.

Using the trained committee to predict unseen examples can be done in many
different ways, for example through voting mechanisms for classification or
averaged outputs for regression. The best way to achieve this usually depends
highly on the type of models used, and a discussion of these alternatives
is outside the scope for this thesis. The reader is referred to the ensemble
learning literature for details [22].

Analogous to the uncertainty measures of the previous section, many different
ways to quantify disagreement exists, their effectiveness and applicability de-
pend on the problem specifics. Some popular examples of such disagreement
measures:

16 Chapter 2 Theoretical Background

Algorithm 3 Generalized Query by Committee for pool-based scenarios

1: C = the committee of models
2: L ⊂ U . L is initialized as some nonempty labeled subset of U
3: train(C,L)
4: while not finished training do
5: highestDisagreement← −∞
6: for all x ∈ U do
7: predictions← ∅
8: for all h ∈ C do
9: predictions← predictions ∪ h(x)

10: end for
11: disagreement← evaluateDisagreement(predictions)
12: if disagreement > highestDisagreement then
13: highestDisagreementExample← x
14: highestDisagreement← disagreement
15: end if
16: end for
17: y ← query(highestDisagreementExample)
18: L = L ∪ 〈highestDisagreementExample, y〉
19: train(C,L)
20: end while

• Vote Entropy. With an obvious connection to the uncertainty measures
discussed earlier, vote entropy works by considering the entropy in the
votes cast by committee members. Since we are dealing with label votes,
it is obviously only applicable in this form on classification problems.
There are two versions of the measure, hard and soft. The hard vote
entropy is defined as follows:

vh(x, y) =

1 if hypothesis h voted for label y

0 otherwise
(2.6)

v(x, y) =
C∑
h

vh(x, y) (2.7)

x∗ = argmax
x
−

∑
y

v(x, y)
|C|

log v(x, y)
|C|

(2.8)

If the models in C can provide a probability distribution over all the
possible labels, we can use the soft version:

PC(y | x) =
∑C

h Ph(y | x)
|C|

(2.9)

2.2 Active Learning 17

x∗ = argmax
x
−

∑
y

PC(y | x) logPC(y | x) (2.10)

As we can see, the vote entropy disagreement measure is basically the
same as the Shannon’s entropy uncertainty measure, except this version
smoothes the estimation over multiple samples, which should prove
more robust.

Although we will not go through the trouble of properly defining them
here, committee-based versions could easily be imagined from the other
uncertainty measures defined earlier as well.

• Kullbach-Leibler Divergence. Proposed and formalized by Kullbach and
Leibler in 1951 [43], KLD is a measure of the difference between two
different probability distributions. The most obvious way of using it
as a disagreement measure is when the committee is of size 2. In that
case, we can simply use the divergence between the two predictions,
where KLD is defined as follows:

KLD(P1(Y | x), P2(Y | x)) =
Y∑
y

P1(Y | x) log P1(Y | x)
P2(Y | x) (2.11)

And the selection mechanism simply:

x∗ = argmax
x

KLD(Ph1(Y | x), Ph2(Y | x)) (2.12)

where h1 and h2 are the two models/hypotheses in the committee. Gen-
eralizing this to more than two models can be done by taking the mean
of each committee-member’s divergence from the mean distribution:

PC(Y | x) =
∑C

h Ph(Y | x)
|C|

(2.13)

x∗ = argmax
x

∑C
h KLD(Ph(Y | x), PC(Y | x))

|C|
(2.14)

• Prediction Variance. The two preceding disagreement measures can
both be effective in classification scenarios, but we need something dif-
ferent for regression where we usually do not have votes or probability
distributions available. Intuitively, the variance among the committee’s
predictions is a good candidate. There are multiple ways to calculate

18 Chapter 2 Theoretical Background

this, and the results are usually similar. Here, one way is presented –
calculating the mean Euclidean distance from the mean. First take the
mean prediction:

hC(x) =
∑C

h h(x)
|C|

(2.15)

Then the mean Euclidean distance from that point as the score, selecting
the highest scoring example:

x∗ = argmax
x

∑C
h

√∑
i (h(x)i − hC(x)i)2

|C|
(2.16)

Note that there is nothing preventing the use of a variance-based mea-
sure like this for classification as well.

2.2.3 Summary

While this section far from covers the field of active learning, it attempts to
explain the core ideas and algorithms that make up part of the foundation of
the project this thesis describes.

We looked at different scenarios in which active learning can be performed,
like query synthesis, stream-sampling, and pool-based sampling. Throughout
the rest of this thesis, unless explicitly stated otherwise, pool-based active
learning is assumed. Furthermore, some different ways of determining which
examples to query, the core problem of active learning, have been discussed:
The general ideas of uncertainty sampling and searching the hypothesis-space,
and the specific algorithms motivated by them. The query by committee
algorithm, one of several discussed in this section, is especially important to
understand, as it lays the groundwork for the novel ideas this project is built
on.

2.3 Deep Learning

The perceptron, proposed by Rosenblatt in 1958 [59] and inspired by the
biological neuron, laid the foundation for artificial neural networks (ANNs)
as we know them today. In the time since Rosenblatt’s landmark paper,
countless improvements have been proposed, and theoretical properties
investigated. The proof that multilayer feedforward neural networks are

2.3 Deep Learning 19

universal function approximators [36] is one such theoretical advance. On
the more practical side; the invention of the backpropagation algorithm [63]
provided an efficient and fairly straightforward way to train neural networks
(while there is some controversy around its invention, specifically by who
and when it was invented [66], there is no neglecting its monumental impact
on the popularity of artificial neural networks). Perhaps the most important
development in the practical use of ANNs in recent years cannot be cred-
ited to the neural network research community however: the exponential
increases in computing power available, even further boosted by the advent
of the use of graphical processing units (GPUs) for massively parallel general
purpose processing, has “suddenly” made ANNs applicable to problems that
were earlier out of reach. This has led to a renaissance in neural network
research, especially in nets with more than one hidden layer of nonlinear
transformations, popularly dubbed deep neural networks (DNNs). The branch
of machine learning based on these networks and their descendants is often
referred to as deep learning. Deep networks are, for complex problems, able
to outperform their single-layered cousins, even though, as we have seen,
they are proven to be universal function approximators. The reason for this
is that the problem is not in a neural networks representational power, but in
the problem of training them. The idea is that deep networks can represent
hierarchical relationships such as those observed in the human brain, for
example in the visual cortex. That is, lower level concepts such as simple edge
detection can be represented by features in the early layers, with features of
increasing complexity made up by inputs by the simpler features as you get
closer to the output. Much research remains before the theory catches up
with what is achieved in practice, however.

Because of the practicality of deep learning in many real world problems,
and perhaps because of their abundant computational resources, the deep
learning renaissance has to some extent been fueled by large technology
companies such as Google, Baidu, Facebook, and others. Many real-world
problems have been tackled by deep learning, and it is in many cases the
most effective approach known [65]. Some examples of domains in which
deep learning has been shown effective:

• Image recognition. Perhaps the most researched and discussed problem
tackled by deep learning is that of image recognition. Many deep learn-
ing architectures are inspired by how the vision system in the human
brain works, and the problem is interesting both from a theoretical and

20 Chapter 2 Theoretical Background

practical viewpoint. Benchmark problems like the MNIST handwritten
digit dataset [46], the street view house number (SVHN) dataset [54],
and the ImageNet natural image database [20] are examples of impor-
tant benchmarks which have allowed researchers to directly compare
results and compete on standardized ground, facilitating progress. In
2012, Krizhevsky et al. [41] used a deep neural architecture to win
a competition on the ImageNet dataset with a large margin over the
state-of-the-art algorithms previously dominating the field of computer
vision, showing the usefulness of neural networks on even such ex-
tremely large scale problems as ImageNet, which consists of millions of
natural images and thousands of different classes. Ever since, progress
with deep networks on large scale image recognition tasks has been
steady, in no small part to the ever-increasing computational resources
available to researchers.

• Automatic speech recognition. Also one of the domains in which deep
learning has been most successful, the problem of automatic speech
recognition is of great interest and use to many different fields – from
interview transcription to speech-based user interfaces. As a problem
with many obvious applications within industry, speech recognition
with deep models is widely researched and applied by the likes of
Microsoft [21], Baidu [29], IBM [32], and Google [32].

The TIMIT dataset [24] is an important benchmark, providing record-
ings of many spoken English sentences for transcription.

• Natural language processing. There are many subfields of natural
language processing (NLP), many of which deep learning has been
successfully applied, such as sentiment analysis [26], information re-
trieval [37], scene description [81] (a very interesting combination of
image recognition and NLP), and others [16].

• Drug discovery. Recently, some researchers have turned to deep learning
for applications within the field of drug design, in an attempt to better
predict the effectiveness and possible toxicity of a new drug, among
other aspects of drug discovery [19, 56, 79].

These are just some examples of applications of deep learning, and new ones
appear regularly. It has in other words been shown to be effective in a wide
array of complex and many-dimensional pattern recognition tasks.

2.3 Deep Learning 21

There are more variations and variations of variations of deep neural net-
works than this thesis can possibly cover, so this section will focus only
on those variations and advances most relevant for the rest of the thesis.
Specifically, we will only consider feed-forward neural nets trained by back-
propagation, along with some techniques for improving performance. For
some recent, rigorous reviews of the deep learning literature, refer to LeCun,
Bengio, and Hinton, 2015 [44]; and Schmidhuber, 2015 [65], both of which
cover interesting subjects missing from this section.

2.3.1 Multilayer Perceptrons

The simplest incarnation of DNNs are multilayer perceptrons, or MLPs. MLPs
have a long history, and is what we usually refer to when speaking about feed-
forward neural networks. It is an extension of the simple linear two-layer
perceptron, providing non-linearity in one or more hidden layers between
the input and output layers. Normally only MLPs with more than one hidden
layer are considered deep, but for simplicity we consider a network of a
single hidden layer here, as illustrated in Fig. 2.3.

Hidden
layer

Input
layer

Output
layer

Fig. 2.3: A simple multilayer perceptron with one hidden layer.

The Forward Pass

The network computes the output values, a so-called forward pass, by (at
each layer but the input layer) summing the inputs (which are weighted
by the weight of the connection), then putting that sum through a non-
linear transfer function. There are many different such functions used in the
literature. Some of the most used such functions are:

22 Chapter 2 Theoretical Background

• The logistic function:

y = 1
1 + e−x

(2.17)

0

0.5

1

-10 -5 0 5 10
y

x

• The hyperbolic tangent function:

y = tanh(x) (2.18)

-1

0

1

-10 -5 0 5 10

y

x

• The rectified linear function (ReLU):

y = max(0, x) (2.19)

0

5

10

-10 -5 0 5 10

y

x

2.3 Deep Learning 23

• The softmax function:

y = ex∑l
i e

xi
(2.20)

where l is the layer the neuron is a part of, so the sum is over all the
neurons in the layer. A bit impractical to plot, the softmax function has
the effect of providing a probability distribution over a set of inputs,
and is therefore often used in the output layer.

All of these functions have different characteristics, and the best choice is
dependent on the training scheme and the problem domain.

The output from each node’s transfer function is used as input for the next
layer (or read off as output in the case of the output layer), and so on.
Mathematically, we can describe this process for any hidden unit i in layer l
as follows:

yl+1
i = f(wl+1

i yl + bl+1
i) (2.21)

where f(·) is the transfer function, and w is the weight vector. b is a bias
term, which can be learned along with the weights. It is usually seen as a
input neuron for each layer that is always active, making certain activity
possible even if the network’s input vector is ~0.

The Backward Pass

To learn to model some target concept, we need to gradually update the
weights and biases – the parameters of the network – to correctly compute
the target values from the input values. This is done by alternating between
forward passes and backward passes, in which the parameters are adjusted
to reduce the error between the values obtained from the forward pass and
the target. These adjustments are done with the backpropagation algorithm.
While describing the algorithm in detail is outside the scope of this thesis, it
basically boils down to computing for each weight wij the following:

∆wij = −α ∂E

∂wij

(2.22)

where ∆wij is the change in the weight of the connection between neurons
i and j, α is the learning rate, and E is the output error. In other words,
we want to find that weight’s contribution to the error, then counteract it.
The error can be computed in different ways depending on the problem at

24 Chapter 2 Theoretical Background

hand (negative log likelihood is popular for classification for example), but
for illustrative purposes we can think of the simple error function 1

2(y − ŷ)2

where y is the target value and ŷ is the network’s prediction, assuming a
single output neuron. The computation of ∂E

∂wij
is performed layer-wise from

the output layer and backwards towards the input with the help of the chain
rule, hence the name of the algorithm.

Backpropagation is a form of gradient descent optimization. In normal, non-
stochastic gradient descent, update vectors are based on the full training
set, while stochastic gradient descent updates based on randomly chosen
samples from the training set (typically the whole set is used, but updates
are computed for every example individually). In deep learning, small mini-
batches – typically 5 to 20 examples to a batch – are used as a compromise
between efficient training and reasonably averaged update vectors that do
not oscillate too much on the error surface. This is called batch learning, and
the size of these batches is a hyperparameter that needs to be set.

2.3.2 Dropout

One of the core ideas underlying the work described in this thesis is the
concept of dropout, a regularization technique invented by Srivastava, Hinton
et al. in 2012 [35, 75, 76]. Put simply, dropout means randomly “dropping”
neurons when training. For each data instance that is put through the forward-
backward passes of the previous section, some of the neurons in each layer
are randomly nullified, so that they do not produce any output. The idea is
that this prevents too much co-adaptation by neurons – they must be able
to perform their function in the network without relying on the existence
of others. When one wants to actually use the network for predictions,
no neurons are dropped, and instead all the weights in the network are
scaled inversely proportional to the dropout rate, to avoid over-saturation.
Srivastava et al. were able to show that dropout greatly reduces overfitting,
and offers major improvements over other methods of regularization. An
illustration of a dropout network can be seen in Fig. 2.4, which clearly shows
the concept.

Mathematically, each neuron has some probability p of being dropped, using
a Bernoulli distribution. That is, a neuron is either dropped or not dropped,
never partly dropped (introducing other types of noise than Bernoulli-noise
has been done, such as in the context of denoising autoencoders [80], but

2.3 Deep Learning 25

(a)Standard network. (b)Two nodes have been dropped, and no
longer contribute to the network.

Fig. 2.4: A dropout network, before and after randomly dropping neurons.

this is not considered dropout). p is often set differently for the input layer
and the hidden layers – Srivatstava et al. finds that, respectively, p = 0.2 and
p = 0.5 works well for a wide range of problems. Neurons in the output layer
are never dropped, for obvious reasons. Revisiting Eq. 2.21 then, the formula
for neuron output during training becomes:

yl+1
i = f(wl+1

i (rpl ∗ yl) + bl+1
i) (2.23)

where rpl is a binary vector sampled from a Bernoulli-distribution with the
probability p set for layer l. During prediction, the full network is used and
the weights are scaled according to the probability of dropout in that layer,
leading to the following output calculation:

yl+1
i = f((wl+1

i ∗ (1− pl+1))yl + bl+1
i) (2.24)

This makes intuitive sense: If the dropout probability is high, fewer con-
nections are involved in each computation and they are therefore stronger.
The full weight vector must then be scaled down significantly to avoid over-
saturation, and vice versa.

An important realization, especially for understanding the novel ideas in
this thesis, is that what really happens when dropout is applied to a net-
work is that a different, thinned network is sampled each time, from an
exponential number of possible networks. In fact, Srivastava et al. claim
that their proposed method for prediction – using the whole network with
scaled weights – is simply an approximation of the geometric mean of the
predictions of an exponential number of different networks, and they are able
to show that taking more than a certain number of prediction samples from
dropped out networks and computing their geometric mean outperforms the
approximation (although at a cost of increased computational complexity).

26 Chapter 2 Theoretical Background

Max-norm Regularization

While virtually any regularization technique (like L1 and L2 for example) can
be combined with dropout, Srivastava et al. found that max-norm regulariza-
tion, previously used in collaborative filtering [74], was especially effective in
conjunction with dropout. It works by constraining the norm of the incoming
weights for every neuron i by some upper bound c:

∀i ‖wi‖2 ≤ c (2.25)

If this constraint is violated, the weights are scaled to have a norm of exactly
c. This technique allows a initially high decaying learning rate without the
weight mangitudes “blowing up”, but brings significant improvement even
when the learning rate is static.

2.3.3 Unsupervised Pre-Training

Unsupervised learning is an umbrella term for mechanisms where the net-
work’s weights are trained on the available training data, X – without con-
sidering target values, Y . The idea is that after this unsupervised step, the
weights will somehow represent the structure of X better than random ini-
tialization can. Unsupervised learning has many uses, but in the context of
unsupervised pre-training, normal supervised learning with backpropagation
on the 〈X, Y 〉 pairs is performed after the unsupervised training. This last
step is referred to as fine-tuning.

It is conjectured that one of the central problems that makes training deep
neural networks difficult is the strong dependencies between the weights
of different layers [23]. Recall that the backpropagation algorithm works
by taking the partial derivative of the error with respect to the connection
weight being updated. The gradient of the objective function is then a strictly
local measure, and single weights are always just adjusted to reduce the error
given that the rest of the weights are not changed. With such a local approach,
the network may be prone to get stuck in local minima close to the point in
weight space where the random initialization of weights place it [6]. This is
one of the areas in which unsupervised pre-training is believed to help, by
providing an initialization point for the network that restricts the search to
a region of weight space that corresponds to the structure of the available
data. Additionally, pre-training increases the weights’ magnitude and thus

2.3 Deep Learning 27

also the non-linearity of the network. This makes the local error surface more
complex, which has a regularization effect [23].

Restricted Boltzmann Machines

Initially named “Harmonium” by their inventor (Smolensky, 1986 [73]),
Restricted Boltzmann Machines (RBMs) are able to learn a probability dis-
tribution over its inputs. They are a special type of neural networks that
contains only two layers of neurons. These layers make up a symmetric
bipartite graph, that is, there are no intralayer connections (which is the re-
striction referenced in the name), and all visible neurons are connected to all
hidden neurons, as illustrated in Fig. 2.5. The connections are bidirectional,

Hidden layer

Visible layer

Fig. 2.5: The basic architecture of an RBM.

so the weight of the connection from some visible neuron i to some hidden
neuron j is the same as that from j to i. Neuron activations are calculated in
a similar manner as for the regular neural networks discussed earlier (see
Eq. 2.21), but with an important distinction: RBMs usually uses stochastic
binary neurons, that is, the output of a single neuron is either 0 or 1. To
calculate the output of some neuron i, first calculate its activation energy:

ai =
∑

j

wijyj + bi (2.26)

where wij is the weight of the connection between neurons i and j, yj is the
output of neuron j, and bi is a bias term. Then put ai through the logistic
function:

pi = σ(ai) (2.27)

28 Chapter 2 Theoretical Background

The activation of neuron i is then decided stochastically:

yi =

1, with probability pi

0, otherwise
(2.28)

The connection weights are trained with contrastive divergence [33], an ap-
proximation of gradient descent. Training works roughly as follows assuming
binary inputs and randomly initialized weights:

1. Set the states of the visible neurons to mirror the example to train on.
One visible unit per dimension in the data.

2. Update hidden neuron states according to Eqs. 2.26, 2.27, and 2.28.

3. For each connection eij, compute Positive(eij) = yiyj, which is 1 if both
neurons i and j are activated, else it is 0.

4. “Reconstruct” the visual layer by computing the activations of all the
visual neurons like in step 2, only this time the opposite way.

5. For each connection eij, compute Negative(eij) = yiyj.

6. Then, the weight change becomes:

∆wij = α(Positive(eij)−Negative(eij)) (2.29)

with learning rate α. This update rule increases the weight if the hidden
unit is activated and “helped” in a correct reconstruction, and decreases
the weight if it helped in an erroneous reconstruction.

7. Repeat steps 1 - 6 for every training example until convergence or some
other stopping criteria.

One such cycle from visual neurons to hidden neurons to reconstruction of
the visual neurons is called a Gibbs step, a single iteration of a process called
Gibbs sampling [25] from the field of statistics. Contrastive divergence can
be done with multiple such steps, although a single step turns out to work
well in practice. See Fig. 2.6 for an illustration.

2.3 Deep Learning 29

v0

h0

v1

h1

v2

h2

Gibbs step

Fig. 2.6: The contrastive divergence Markov chain. The state of the hidden layer
at t = 2 (h2) depends on the state of the visual layer at t = 2 (v2), which
depends on h1, and so on. A Gibbs step corresponds to one cycle from
visual layer to hidden layer to reconstruction of the visual layer.

Having only two layers, RBMs by themselves are not directly useful as a deep
learning pre-training technique, but it is an interesting energy-based model
with a wide range of uses.

Deep Belief Networks

In 2006, Hinton et al. [34] proposed a way to use and efficiently train RBMs
for deep learning purposes, the Deep Belief Network (DBN). A breakthrough
in efficient pre-training of deep networks, DBNs are trained in a greedy,
layer-wise manner. The core component is a stack of RBMs. The weights
learned during this greedy process are used as the initial weights for a normal
feed-forward network, ready to be fine-tuned. Training a DBN is roughly
done as follows:

1. Train the initial RBM, consisting of visual layer v0 and hidden layer h0,
on the training data as previously described. One visual-layer neuron
per dimension in the data, and as many hidden neurons as wanted.

2. Generate a second-level representation of the data, by taking either
samples from h0 activations, or the mean activations of h0, after one or
more Gibbs steps.

3. Train the second RBM, using the chosen representation as training data.

4. Repeat steps 2 - 3 until the desired number of layers are obtained.

5. When using the DBN for semi-supervised learning, add a final output
layer of neurons (with weights randomly initialized), and use normal

30 Chapter 2 Theoretical Background

back-propagation with a training signal to fine-tune the weights until
desired performance or some other stopping criteria.

The general idea of this training procedure is illustrated in Fig. 2.7.

h0

v0

RBM #0

h1

v1

RBM #1

h2

v2

RBM #2

Mean activations

Mean activations

Training data

Fig. 2.7: Training a DBN with three hidden layers. First RBM #0 is trained on
the training data. Mean activations from h0 in that RBM are propagated
to RBM #1, which trains on those activations, and so on. The weight
matrices learned are then used for the hidden layers of a normal MLP for
fine-tuning.

2.3.4 Summary

Deep learning is a field with an enormous amount of research activity. This
is probably due to a number of factors, such as the very impressive results
seen in the last decade, and the heavy involvement from industry giants.
Thus, this section does not in any way cover the entirety of the field, but
provides an introduction to the core concepts, along with a slightly more

2.3 Deep Learning 31

detailed overview of the specific advances and ideas that acts as part of
the foundation of the innovations presented in this thesis. Assuming the
core concepts of backpropagation learning and deep networks in general are
understood, the deceptively simple idea of dropout is the most important
to grasp in this context: The idea that a single network can be seen as a
collection of exponentially many different networks is extremely powerful
and is a crucial component of the ideas presented later in this thesis.

Unsupervised pre-training is also a powerful idea, but for the rest of this thesis
it suffices to understand what it does, but not necessarily understanding how
it works. The reason for this is that it is a perfect fit for combining with active
learning as it can make use of unlabeled examples, but it is in this case only
a tool that can increase performance. Only DBNs (and their building blocks,
RBMs) were covered here, since it is the only pre-training technique used
in this project. Several other options, such as autoencoders [55] do exist
however.

2.4 Related Work

While active learning has a long history, especially when you consider its roots
in optimal experiment design, not much work has been done on combining
it with deep learning. Deep learning also has a long history, but its current
popularity is a rather recent development, which may partly explain the
lack of research on combining the two. However, most research on active
learning with neural networks in general, that is if we include shallow nets,
is still applicable to deep networks. Some approaches, like the variance
estimation of Cohn, 1994 [14] or the SG-based QBD with neural nets of
Cohn et al., 1994 [13] may unfortunately be too computationally complex for
large scale application. For classification, however, neural networks are able
to present a probability distribution over all the possible labellings through
use of a soft-max output layer, and hence the uncertainty sampling methods
presented in Sec. 2.2.2 are all applicable. These methods have been shown
to outperform random selection when used with deep networks (Wang and
Shang, 2014 [84], experimenting on the MNIST dataset; and Zhou et al.,
2010 [88] in the context of sentiment classification).

As to regression, Krogh and Vedelsby, 1995 [42] considered committees of
neural networks for active learning in regression problems. Using a mea-

32 Chapter 2 Theoretical Background

sure of ambiguity for each data point, a(x), based on the variance between
committee predictions similar to that mentioned under QBC in Sec. 2.2.2:

a(x) =
C∑
h

(h(x)− hC(x))2 (2.30)

where the mean prediction hC(x) is computed like in Eq. 2.15. They were
able to show that this QBC-heuristic outperformed random selection when
trying to approximate the univariate square wave function. The disagreement
among the committee in this study came simply from the random initializa-
tions of the networks. RayChaudhuri and Hamey, 1995 [57] extended this
work by training each network on a random sample of the available data to
promote more diversity in the committee. For a short review of the literature
on using QBC for active learning in regression problems, see Burbidge et al.,
2007 [11]. Using ensembles of neural networks in non-active scenarios has
also shown to be effective, e.g. for handwritten digit recognition [51].

To summarize, while not much work has been done on combining active
learning and deep learning specifically, much more has been done on active
learning and neural networks in general, from many different perspectives.
Importantly, the approaches considered in this project, uncertainty sam-
pling and committee-based methods, have both been used with success in
combination with neural models.

2.4 Related Work 33

3Methods

3.1 Overview
This chapter will describe the proposed architecture and its implementation,
and the experiments conducted to attempt to answer the research questions
of Section 1.2. First, Section 3.2 describes in detail the main novel idea
of the project – the Active Deep Dropout networks, as well as its various
hyperparameters and options, and possible variations. The dataset used is
introduced in Section 3.3, and the design of the experiments performed on
this dataset in Section 3.4. Finally, Section 3.5 describes the specifics of the
implementation.

3.2 Active Deep Dropout Networks
Unsupervised pre-training methods facilitates use of unlabeled instances
along with the labeled set – the unlabeled dataset used in the pre-training
step can very well be a superset of the set of labeled data points used
in the fine-tuning. By combining active and deep learning, the goal is to
allow successful training on even fewer labels than what the semi-supervised
learning of unsupervised pre-training allows. Here, we propose a new method
for combining these two fields, potentially making active learning applicable
in a wider range of deep learning problems than previously feasible.

The core idea presented and explored in this thesis is a novel approach to
using the QBC algorithm (described in Alg. 3) with deep neural networks,
where the committee is composed of n samples from the exponential number
of networks that arise from applying dropout to a single network. We call
these committees of sampled networks used to guide active learning Active
Deep Dropout networks, or ADD-nets.

Since the number of different networks that can be generated by applying
dropout is enormously large – many orders of magnitude larger than any
plausible dataset – the chance of any one such network being trained on more
than one instance is minuscule, and the vast majority will not be explicitly

35

trained at all. Hopefully then, these networks will provide diverse enough
predictions, despite the massive weight sharing, that the QBC algorithm can
perform well and select informative examples to label.

3.2.1 Generating Networks

When using ADD-nets for active selection, the first step is to generate the
networks. The source from which they are all generated is a MLP which has
been trained on the examples that exist in L so far. In this step, dropout
(as described in Section 2.3.2), is used. Applying dropout to the full MLP
yields a network with the same number of output neurons (which is crucial,
as disagreement in the committee will be deceptively high if output neurons
are dropped) as the MLP, but with some percentage of the hidden and input
neurons removed from the equation. This network is then one member of
the committee.

Since dropout is stochastic, the same process can just be repeated for every
number of desired networks in the committee. As already noted, dropout
exposes an exponential number of possible networks from a single MLP,
so this process is basically just Monte-Carlo-sampling the space of possible
networks.

This process of generating networks is illustrated in Fig. 3.1.

3.2.2 Scoring

After the committee has been constructed, the unlabeled instances in U
can be scored. This happens by sequentially feeding each instance to be
scored to each network in the committee, then using some QBC heuristic to
evaluate disagreement between the predictions of the committee members.
The predictions of member in the committee will be different to some degree
from its “parent” MLP, and its “sister” networks derived from the same process
since they have different topologies. When using pool-based sampling as
is the case here, it is important that each example in U is evaluated by the
same committee – disagreement values stemming from different committees
cannot necessarily be directly compared.

36 Chapter 3 Methods

Apply dropout
n times

Fig. 3.1: Generating ADD-networks. Dropout is applied to a full MLP n times,
generating n distinct networks that together make up a committee.

An illustration of using ADD-nets to score a single instance can be seen in
Fig. 3.2.

3.2.3 The Full Architecture

Putting the pieces together into the full active learning algorithm is now
trivial: Periodically during normal supervised training of the MLP, generate a
dropout committee, evaluate all examples in U , and move the most promising
to L. The full algorithm, derived from Alg. 3, is specified in Alg. 4. As we can
see, aside from the committee creation, QBC for ADD-nets works just like
normal QBC, and puts no restrictions on the types of evaluation measures
used, which has to be selected based on the nature of the problem at hand.

3.2 Active Deep Dropout Networks 37

Feed instance to
all networks in
the committee

QBC
evaluation
measure

Score

Record the
committee’s
predictions

Fig. 3.2: Evaluating instances with ADD-networks. First, the instance is fed to all
dropout-networks in the committee, then the committee’s predictions are
evaluated for disagreement by some QBC heuristic.

To get a better understanding of how the ADD-networks fit in with the larger
picture, it can be useful to see its place in the full architecture, illustrated in
Fig. 3.3. Here, we can clearly see how ADD-networks augments the normal
semi-supervised training process.

Importantly, note that while it is conceptually simpler to view the committee
creation and scoring processes as separate, there is a more computationally
efficient way to perform these calculations: Since the MLP is trained with
dropout during the supervised phase, the machinery to compute a forward
pass through the network with dropped out neurons is already in place.
Simply running one such forward pass for each member of the committee
(the dropped out neurons will obviously be different each time) and recording

38 Chapter 3 Methods

Algorithm 4 Query by Committee with Active Deep Dropout networks.

1: M← the full network
2: L ⊂ U . L is initialized as some nonempty labeled subset of U
3: train(M,L)
4: while not finished training do
5: highestDisagreement← −∞
6: for all x ∈ U do
7: C ← ∅
8: for n iterations do . Sample n dropout networks fromM
9: C ← C ∪ dropout(M)

10: end for
11: predictions← ∅
12: for all h ∈ C do
13: predictions← predictions ∪ h(x)
14: end for
15: disagreement← evaluateDisagreement(predictions)
16: if disagreement > highestDisagreement then
17: highestDisagreementExample← x
18: highestDisagreement← disagreement
19: end if
20: end for
21: y ← query(highestDisagreementExample)
22: L = L ∪ 〈highestDisagreementExample, y〉
23: train(M,L)
24: end while

the results. This way the need to keep n+ 1 large networks in memory while
doing the evaluations is avoided. Without this optimization, ADD-networks
would require the same amount of memory as keeping an ensemble of n
different networks as a committee (but would still be computationally simpler,
as only one network would need to be trained).

3.2.4 Hyperparameters and Options

When training deep neural networks with dropout, there is already a large
amount of hyperparameters and options to set, the most important of which
are detailed in Table 3.1. There are additional parameters when taking dif-
ferent regularization methods into account, but these will not be considered
here as only max-norm regularization is used in the experiments.

When doing active learning with ADD-nets, an additional set of choices must
be made, shown in Table 3.2.

3.2 Active Deep Dropout Networks 39

DBN: Unsupervised pre-
training on U

MLP: Supervised fine-
tuning on L with
dropout

ADDn: Active selection
of examples from U to L

L U

DBN sets initial
weights for MLP

ADD-nets
generated
from MLP

Fig. 3.3: An overview of the implemented architecture and how the components
depend on each other. Initially, a DBN is trained on U that contains all the
examples. L is bootstrapped by labeling some small, fixed percentage of
the examples in U , before the fine-tuning process begins. This is performed
with a normal MLP training on L with dropout. Periodically, ADD-networks
are generated from the MLP, which evaluates the examples in U . The
examples deemed most informative are queried, and moved from U to L,
before fine-tuning the MLP is resumed on (the now greater) L.

3.2.5 The Unbalanced Batch Problem

When combining batch learning of DNNs with active learning, a problem
arises: When active selection is performed, and one or more instances from
the unlabeled set is queried and added to the labeled set, we can potentially
get uneven batches. That is, the last batch in the training set may be of a
different size than the rest. This problem is illustrated in Fig. 3.4.

〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉

n− 3

〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉

n− 2

〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉
〈X, Y 〉

n− 1

〈X, Y 〉

〈X, Y 〉

n

Fig. 3.4: The unbalanced batch problem. This figure shows the last four batches of
training examples in some training set, with a batch size of 5. Because of
active selection, the last batch only has a single example in it, which will
get disproportionally weighted in training.

40 Chapter 3 Methods

Table 3.1: General hyperparameters and options when training deep neural net-
works with dropout.

PARAMETER DESCRIPTION

Layers How many hidden layers and the number of neurons
in each one.

Transfer functions The transfer functions used in each layer.

p The probability of a single neuron dropping out, one
value per layer. Typically set to 0.5 for hidden layers
and 0.2 for the input layer.

Cost function The cost function to minimize when training. Often
negative log likelihood (NLL) or root mean square
error (RMSE).

α The learning rate. Must usually be set through em-
pirical testing, but less than 1.

b The batch size. Usually set in the 5 to 20 range.
Optimal values for a certain context must be found
empirically.

of epochs The number of epochs to train for (an often used
regularization technique in normal deep learning is
early stopping, where training is terminated before
the max number of epochs is reached if performance
is not improving to avoid overfitting, but this is not
done here).

c The max norm of the incident weights on any neu-
ron, used in max-norm regularization as described
in Sec. 2.3.

k The number of Gibbs steps to take when doing con-
trastive divergence for training RBMs. A value of 1
usually works well in practice.

Depending on how the copying is implemented, this might theoretically
create an issue where the newly added example(s) are given disproportionate
weight in training, compared to the rest of L, since the error gradient of that
batch will only be based on a single example. In practice this will probably
not mean much, and in some instances might even be beneficial. However,

3.2 Active Deep Dropout Networks 41

Table 3.2: Set of additional hyperparameters and options when doing active learn-
ing with ADD-nets.

PARAMETER DESCRIPTION

QBC evaluation measure What heuristic to use with QBC to go from n
output vectors to a scalar that signifies level of
disagreement in the committee.

n Number of models in the committee. In the
case of ADD-nets, this refers to the number of
dropout samples taken.

Initial size of L The number of labeled examples with which
L is bootstrapped, by randomly sampling this
many examples from U which are then labeled.

s The number of unlabeled examples selected for
querying and addition to L at a time. This is a
computational trade-off, and the optimal value
depends greatly on the cost of labeling.

Selection interval The number of epochs to train for between each
active selection. This can also be determined
dynamically, if one for example uses early stop-
ping.

for our purposes we want to avoid another variable in testing, and hence
avoid this problem. There are multiple ways to achieve this:

• Variable Batch Sizing. One obvious idea is to vary the batch size af-
ter each round of active selection such that all actual batches are of
equal size. This might bring other unforeseen problems however, and
depending on s is not even always possible to do perfectly.

• Learning Rate Scaling. Instead of varying batch sizes, simply scale the
learning rate according to the actual number of examples in the last
training batch. For example if the batch size is 10 and s = 1, after the
first selection the last batch will only contain one instance (assuming
L was bootstrapped with a number of instances divisible by the batch
size). To avoid this instance being disproportionally weighted then, we
can simply scale the learning rate for this specific batch by the ratio of
instances in it to the normal batch size.

42 Chapter 3 Methods

• s = b. The simplest, and therefore the solution chosen here is simply
setting s to be equal to the batch size. As long as L was bootstrapped
to a size divisible by b, there will never be variable sized batches.

While the simple s = b option was chosen for its simplicity here, it might
not be the best choice in all contexts. If the cost of labeling is extremely
high for example, one could prefer to have a very small s and (re)train to
convergence after every active selection, in which case this approach might
not be optimal.

3.2.6 Variations

There are many possible variations to the use of ADD-networks that are not
mentioned here. The core idea is simply the use of dropout networks for
evaluation, which is applicable in many scenarios. For one, ADD-networks
can be applied in all the main different active learning scenarios, both the
de novo generation and stream-based sampling approaches described in
Section 2.2.1 for example. While the pool-based approach was chosen for
simplicity in testing here, there is nothing tying ADD-nets to this scenario
specifically. Furthermore, using a DBN for pre-training was a rather arbitrary
choice in this case, chosen simply for being relatively well understood, being
relatively simple to implement, and most importantly because of its proven
effectiveness on the dataset used. But, the pre-training step is not connected
to the use of ADD-networks in any way, and is simply used for increasing
final performance. Any other pre-training technique can be used – or even
dropping pre-training altogether, for example in online scenarios where pools
of unlabeled data are not available. To summarize, ADD-nets can be used in
any active learning scenario where neural networks are used as a model.

3.2.7 Summary

To summarize, ADD-networks are based on a rather simple concept, but
have some interesting and desirable features. ADD-nets alleviate some of
the problems with using QBC with deep networks, namely the need to
keep and train multiple networks, which is expensive in both memory and
computational resources. Additionally, no two sampled networks have the
same topography, nor are any of them explicitly trained on the same examples,
providing variety in the models in the committee without having to resort

3.2 Active Deep Dropout Networks 43

to techniques like e.g. bagging or boosting. Avoiding this is beneficial when
working with few labeled instances, because many ensemble techniques
require splitting the labeled set (which in the case of active learning is
already small) among models to get enough diversity in the ensemble. With
ADD-nets however, all networks benefit indirectly from training on every
labeled instance, through weight sharing. As described in the preceding
section, they are applicable in most active learning scenarios, as long as
neural networks are used as models.

The ADD-networks approach does however have some drawbacks. Compared
to uncertainty sampling methods it is more computationally taxing, especially
if a large committee size is required. Additionally, it introduces quite a few
more hyperparameters that must be set and optimized, although this is a
problem that most active learning methods have.

3.3 The MNIST Dataset

For testing the proposed architecture, the MNIST handwritten digit dataset [46]
was used. It consists of a training set of 60,000 images of digits, with an-
other 10,000 in a testing set, that are accompanied by correct labels – in the
range 0 - 9 – for each example. All the digits are normalized on size, and
are centered in an image with 28 × 28 pixels. Each of the 784 dimensions
have a scalar value between 0 and 1, signifying the intensity at that pixel.
Some examples of random samples from MNIST can be seen in Fig. 3.5. The
dataset is designed for classification, where the task is to correctly identify a
handwritten digit with its symbolic counterpart.

MNIST was chosen for multiple reasons. Most importantly, it has enough
dimensions and complexity and little enough noise to be a good fit for deep
learning. Earlier research on modeling MNIST with neural networks has
shown (see LeCun’s MNIST resources for a comprehensive list [46]) that
efficiency is significantly increased with multiple layers of hidden layers, as
in many other image recognition tasks. This makes intuitive sense, and is
biologically plausible, considering the human visual system’s hierarchical
nature. Another motivating factor for choosing MNIST is its widespread
use as a benchmark in the deep learning literature, making comparisons
to and reproductions of other research simple. Finally, while the dataset is
complex enough for deep learning to make sense, it is still small and simple

44 Chapter 3 Methods

Fig. 3.5: Examples of instances in the MNIST handwritten digit dataset. There are
clear differences in style, thickness, skewing, etcetera, making prediction a
non-trivial problem. A successful model must be able to isolate the spatial
features that make up certain digits, and cannot rely on certain pixels
having certain values.

enough to be relatively computationally cheap to work with, compared to
other staple deep learning benchmarks like ImageNet [20] and others. Since
the computational resources available to this project was rather limited, this
was a crucial aspect that allowed lots of experimenting.

MNIST is not an active learning dataset in the sense that labels are unavail-
able, on the contrary, MNIST supplies labels for each example. For active
learning then, these labels are held back during training, until the learner
queries for them, in which case the labels are supplied instantaneously. That
labeling is instantaneous is obviously unrealistic, as one of the core assump-
tions of active learning is that labeling is expensive. This is not needed for
showing that an active learning strategy works however, and having labels
already available makes experimenting much easier. Furthermore, classifying
handwritten digits is a problem domain where it could be realistic to use
active learning, as labeling needs a human oracle (overlooking the fact that
the exact task of classifying handwritten digits is mostly a solved problem,
and large datasets with labeled examples are available).

3.3 The MNIST Dataset 45

3.4 Experiment Design

To test the proposed architecture’s performance, a series of experiments are
performed. Before testing different active strategies, three baselines are
established:

• Supervised, non-active learning. That is, with all the examples and all
the labels. This baseline should be impossible to beat with an active
strategy that only uses a small percentage of the labels, but it provides
a floor-value for which to strive, and is a valuable comparison.

• Random selection. The classic baseline in active learning, included as a
“ceiling”, an upper limit. Obviously, if an active learning strategy cannot
beat random selection, it is useless. It is important to note that it is
possible that an active strategy that is very efficient on one dataset is
unable to beat random selection in another, due to the specifics of how
the dataset is distributed.

• Supervised, non-active learning with reduced, randomized L. During
an experiment, an active strategy will select a total of n examples. L
is bootstrapped with m examples before training starts, so the total
number of examples in L after training has ended is m+n. This baseline
is the same as the first listed (i.e. non-active), but instead of training
on the full dataset, it is only given m+ n randomly sampled examples.
In other words, it trains on the same number of examples as the active
strategies do, but does so from the first epoch and never adds new
examples to L. If an active strategy can beat random selection, but not
this baseline, it shows that the cost in efficiency of gradually adding
examples instead of starting with them is higher than what the active
strategy is adding. Note that this can be remedied by retraining the
network from scratch either between each selection, or after the active
training is finished.

For each different strategy, most hyperparameters are kept constant – only
active selectors and selector hyperparameters are varied – to keep the compar-
isons fair and accurate, and have as few variables as possible. The constant
hyperparameters were set to values based on what has been proven to work
in the supervised non-active scenarios in earlier work. To simplify experi-
ments and try to further eliminate the number of variables, only dropout

46 Chapter 3 Methods

and max-norm regularization is used, as dropout is crucial to ADD-networks,
and max-norm is crucial to dropout. Removing these two regularization
methods from the baselines – and other active selectors used as comparison –
would unfairly skew results towards being more favorable for ADD-networks,
because of the extreme effectiveness of dropout.

To mitigate statistical anomalies leading to incorrect results, all experiments
were performed five times with identical settings, and the data averaged
across all runs, unless explicitly stated otherwise.

It is important to note that the main goal with the experiments performed
at this stage is to prove the feasibility of ADD-networks as an active strategy,
and not a lot of time was spent maximizing performance and optimizing
parameters. The reason for this is that most of the alloted time for the
project was spent implementing and tuning the core ideas themselves. Ideas
for possible improvements and additions that may improve performance or
applicability are discussed in Section 5.4.

3.4.1 Hyperparameters

For testing ADD-nets on classification, the normal MNIST digit prediction task
described in Section 3.3 was used. 10,000 of the examples in the training set
are removed and used as a validation set, meaning the maximum number of
training examples is 50,000. For all tested methods – active and non-active
– the core hyperparameters were set to the same, and DBN was used for
pre-training in all cases. The hyperparameter values are listed in Table 3.3.
For an explanation of the parameters, refer to Table 3.1 in Section 3.2.4.
All of these settings are fairly standard, apart from the number of epochs
used – in a normal supervised learning scenario, the network can usually
converge to a good performing solution in less than 100 epochs. With active
learning however, we start with very few examples, and periodically add new
examples throughout the learning process. The network must get time to
readjust between each active selection. Normally, the network would badly
overfit the training data if allowed to train for so long, but dropout alleviates
this problem so that the error on the validation set simply tapers off instead
of starting to increase after some number of epochs have passed.

For all the active strategies compared, all the common active learning-specific
parameters were kept equal as well, as shown in Table 3.4.

3.4 Experiment Design 47

Table 3.3: Core hyperparameters used for MNIST classification task.

PARAMETER VALUE / SETTING

Layers 784 - 1000 - 1000 - 1000 - 10

Transfer functions tanh for hidden layers, softmax for the output layer.

p 0.2 for the input layer, and 0.5 for the hidden layers.

Cost function Negative log likelihood

α 0.1

b 10

of epochs 30,000

c 15

k 1

Table 3.4: Active learning-specific hyperparameters shared between all active strate-
gies tested.

PARAMETER VALUE

Initial size of L 240

s 10

Selection interval 100 epochs

With these numbers, since training is done for 30,000 epochs, the total
number of examples in L by the end of (active) training is:

240 + (30000/100)× 10 = 3240 (3.1)

or in other words,
(3240/50000)× 100 ≈ 6.48% (3.2)

of the full training set is labeled.

48 Chapter 3 Methods

Apart from the random selection baseline already mentioned, the active
strategies tested here are the uncertainty sampling based Shannon entropy
strategy described in Section 2.2.2, and, most importantly, the ADD-networks.
Two different QBC disagreement measures are used for scoring instances
with the ADD-networks:

• the Kullbach-Leibler divergence measure,

• and the Euclidean mean distance variance-based measure.

These are also both described in Section 2.2.2. Output Shannon entropy takes
no additional hyperparameters than those mentioned in Tables 3.3 and 3.4
(recall that it simply scores examples by the entropy of the network’s pre-
dictions on that example). ADD-networks take an additional parameter
however, the committee size. The values used in the experiments are shown
in Table 3.5.

Table 3.5: Committee-sizes used for experiments with ADD-networks.

PARAMETER VALUES USED

n 2 / 10 / 30 / 50

3.5 Implementation Details
The implementation of the ADD-nets, other active strategies for comparison,
and their common normal supervised learning infrastructure, was done in the
Python programming language [60]. The numerical computation libraries
Theano [7, 4] and NumPy [83] were heavily relied upon. Theano makes
it possible to compile computational graphs down to code that can be run
in parallel on the many cores of GPUs, which is critical for making the
implemented architecture computationally feasible. The experiments were
performed on machines with Nvidia GTX 480 GPUs at the Department of
Computer and Information Science at the Norwegian University of Science
and Technology.

The code is publicly available at http://github.com/martingms/dan, and
licensed under the MIT license, a copy of which is supplied with the source
code. Some of the code, most notably the RBM implementation, is di-

3.5 Implementation Details 49

http://github.com/martingms/dan

rectly borrowed from the Theano tutorials at http://deeplearning.net/
tutorial/ as allowed by the license, and much of the model implementation
is inspired by the same. The license for the Theano code used is included
where appropriate and required.

50 Chapter 3 Methods

http://deeplearning.net/tutorial/
http://deeplearning.net/tutorial/

4Results and Analysis

4.1 Overview
In the following sections, the results of the experiments outlined in Section 3.4
will be presented and analyzed. First, Section 4.2 will present the core results,
with analysis. Then, Section 4.3 will discuss how performance relates to the
committee size used, before Section 4.5 will discuss how prediction variance
changes through training.

4.2 Core Results
The final results of the MNIST classification experiments can be seen in
Table 4.1, and plots of the change in validation error across epochs can be
seen in Figs. 4.1 and 4.2. The first plot (Fig. 4.1) contains all the experiments
with ADD-nets. The second (Fig. 4.2) contains the baselines, the output
Shannon entropy, and the best and worst experiments with ADD-nets. The
results were split across the two plots to reduce clutter.

We can clearly see that the baselines we described in Section 3.4 provide
the bounds we predicted, namely that the supervised approach, with all
examples and labels available, has the lowest errors, while the supervised
approach with only 3240 examples available and the active random strategy
has the highest error. That the 3240 example supervised approach and the
random selection has approximately equal final errors show that the selection
interval (see Table 3.4) has been set high enough: The network is allowed to
fully adjust to the newly selected examples added to L before a new batch is
selected – in other words, the supervised training process is allowed to “catch
up”.

Of the active strategies tested, the output Shannon entropy strategy does best
in this case, with an average error on the test set of about 0.25 percentage
points lower than ADD-nets with a committee size of 50. Relatively however,
ADD-nets are not far behind, beating the random selection with a large
margin. This clearly shows that the concept of ADD-networks – while not

51

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 5000 10000 15000 20000 25000 30000

Va
lid

at
io

n
Er

ro
r

%

Epochs

Active, ADD-nets/KLD, |C| = 2
Active, ADD-nets/KLD, |C| = 10
Active, ADD-nets/KLD, |C| = 30
Active, ADD-nets/KLD, |C| = 50
Active, ADD-nets/EMD, |C| = 2

Active, ADD-nets/EMD, |C| = 10
Active, ADD-nets/EMD, |C| = 20
Active, ADD-nets/EMD, |C| = 50

Fig. 4.1: Prediction error on the validation set as training progresses. This plot
shows the results for all the experiments with ADD-networks. Validation
error is tested after each epoch trained.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0 5000 10000 15000 20000 25000 30000

Va
lid

at
io

n
Er

ro
r

%

Epochs

Supervised, |L| = 50000
Supervised, |L| = 3240

Active, random selection
Active, output Shannon entropy
Active, ADD-nets/EMD, |C| = 2

Active, ADD-nets/EMD, |C| = 50

Fig. 4.2: Same as above, but with the baselines discussed in Section 3.4 and the
alternative active strategy of uncertainty sampling with output Shannon
entropy included. All ADD-results from the above plot has been removed
except for the best and worst performing, to reduce clutter.

52 Chapter 4 Results and Analysis

Table 4.1: Results of classification experiments. The three first rows are the base-
lines described in Section 3.4. KLD stands for Kullbach-Leibler Diver-
gence, EMD for Euclidean Mean Distance.

EXPERIMENT VALIDATION ERROR TEST ERROR

Supervised, |L| = 50000 1.21± 0.01% 1.27± 0.02%

Supervised, |L| = 3240 3.70± 0.03% 4.26± 0.02%

Active, random selection 3.75± 0.06% 4.06± 0.03%

Active, output Shannon entropy 1.44± 0.05% 1.46± 0.01%

Active, ADD-nets/KLD, |C| = 2 2.17± 0.01% 2.27± 0.07%

Active, ADD-nets/KLD, |C| = 10 1.85± 0.07% 1.85± 0.02%

Active, ADD-nets/KLD, |C| = 30 1.80± 0.06% 1.89± 0.12%

Active, ADD-nets/KLD, |C| = 50 1.69± 0.05% 1.76± 0.05%

Active, ADD-nets/EMD, |C| = 2 2.38± 0.03% 2.34± 0.08%

Active, ADD-nets/EMD, |C| = 10 1.76± 0.03% 1.75± 0.04%

Active, ADD-nets/EMD, |C| = 30 1.68± 0.07% 1.75± 0.02%

Active, ADD-nets/EMD, |C| = 50 1.64± 0.03% 1.72± 0.02%

currently able to outperform the state of the art on this exact task – is a viable
active strategy.

When it comes to disagreement measures used for the ADD-networks, the
two tested alternatives – Kullbach-Leibler divergence and Euclidean mean
distance – perform approximately equally well, with a slight edge for the
Euclidean mean distance when the committee size is larger than 2. While
the Euclidean measure has slightly better results here, it is hard to conclude
definitively which is better for this exact task. In general, what disagreement
measure performs best depends greatly on the problem. An important point
however, is that the Euclidean measure is not dependent on the problem
being a classification problem. Since Kullbach-Leibler, like other alternatives
such as vote entropy, is dependent on either probability distributions or

4.2 Core Results 53

explicit votes, it is useless on most regression tasks. Euclidean mean distance
(and other variance-based measures) on the other hand, can work on all
kinds of real-valued outputs.

4.3 Effect of Committee Size

The results further show that the performance of ADD-networks improve
with larger committee sizes, as expected. But as the plot in Fig. 4.3 suggests,
there are diminishing returns when increasing the number of members in the
committee, which is consistent with the results seen in Srivastava et al. [76,
Fig. 11]. That the benefits of increasing committee sizes become gradually
smaller is fairly intuitive. With more samples, the chance that taking another
sample will meaningfully skew the variance becomes smaller and smaller.

The computational overhead of a larger committee is significant, so in real-
world scenarios a trade-off has to be made between what is more important –
faster execution or more accurate committees.

1.6

1.8

2

2.2

2.4

0 10 20 30 40 50

Te
st

Er
ro

r
%

Committee size

KLD
EMD

Fig. 4.3: Final test error compared to committee size, for both the Kullbach-Leibler
divergence (KLD) and Euclidean mean distance (EMD) disagreement mea-
sures. The plot shows that there are diminishing returns when increasing
committee sizes.

54 Chapter 4 Results and Analysis

(a)Epoch: 100
Label: 0

(b)Epoch: 2400
Label: 0

(c)Epoch: 4700
Label: 3

(d)Epoch: 7000
Label: 5

(e)Epoch: 9300
Label: 1

(f)Epoch: 11600
Label: 3

(g)Epoch: 13900
Label: 7

(h)Epoch: 16200
Label: 8

(i)Epoch: 18500
Label: 9

(j)Epoch: 20800
Label: 3

(k)Epoch: 23100
Label: 2

(l)Epoch: 25400
Label: 4

(m)Epoch: 27700
Label: 8

(n)Epoch: 30000
Label: 7

Fig. 4.4: Examples of instances selected for labeling by ADD-nets at different stages
in learning. Each instance is captioned with the epoch at which it was
selected, and the label.

4.3 Effect of Committee Size 55

4.4 Selected Examples

Fig. 4.4 shows examples of digits selected for labeling by one of the runs of
the ADD-nets. Some of the digits (like Subfig. 4.4d, 4.4h, and 4.4l) look close
to normal, which suggests that the network was struggling on discerning
between some different digits at the time, for example 5’s and 8’s, or 4’s
and 9’s. Most of the others looks much harder to discern, some of them
would be hard even for humans. Figuring out the difference between the 9
in Subfig. 4.4i and the 8 in Subfig. 4.4m is obviously tricky for example, let
alone even recognizing that Subfig. 4.4m is an 8 at all. Coincidentally, this
tricky 8 is an example that is often misclassified even with state of the art fully
supervised approaches. One might intuitively assume that the active selector
will select progressively more difficult examples as training progresses, but
this is not necessarily the case. After training for 100 epochs (the time at
which the first active selection is made) on the examples in the boostrapped
L, the network will already have a rough idea about how the different digits
look. Very ambiguous examples will then already have a higher variance
in predictions on average than more clear-cut ones. Most importantly, the
figure (Fig. 4.4) clearly shows that the ADD-net-based approach is able to
select especially ambiguous examples, a key characteristic of a working active
learning strategy.

4.5 Committee Prediction Variance

The plot in Fig. 4.5 shows how the mean variance of predictions within
a committee change as training takes place. During each selection phase,
all of the unlabeled examples in U are evaluated according to the active
strategy, in this case ADD-networks with Euclidean mean distance as the
disagreement measure. The red line shows the mean evaluation score of U ,
for each selection phase through the entire training process. As can clearly
be seen, the variance quickly increases until around 25 selections (or 2500
epochs), after which it climbs linearly till the end of training. This rise is
despite the fact that the 10 examples with the highest variance is removed
from U (and moved to L) each selection. The increase can possibly be
explained as follows: As training progresses, the neurons will get increasingly
specialized. As an illustration, the difference between predicting a 4 and a 9
might be dependent on a small set of features that can detect specific angles,

56 Chapter 4 Results and Analysis

or whether or not the “loop” on top is closed. If some crucial subset of these
features are dropped out in one of the dropout networks, that might tip the
scales all the way towards predicting a 4 with high confidence, for example.
Another network, that has these neurons intact, might make the opposite
prediction, and these two predictions will then be far away from each other
geometrically. This effect, in combination with the fact that as the network
becomes increasingly adept it becomes increasingly certain in its predictions
(and thus having output vectors that are further away from the geometrical
center), might explain how the variance grows.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300

Va
ri

an
ce

Active Selections

Mean committee prediction variance on U

Fig. 4.5: Change in mean variance of predictions on U over the 300 selections of
one experiment. Variance is calculated as the Euclidean mean distance
between 10 dropout networks. In other words, this plot shows the mean
disagreement score of all the unlabeled examples in U when using ADD-
networks with EMD and |C| = 10, recorded each selection.

It is important to note that the plot in Fig. 4.5 only shows the aggregate
variance of the committee predictions, with no information about its con-
stituent parts. Specifically, we cannot tell how the part of the variance that
is useful in active selection – the uncertainty – is changing. We can assume
that it decreases with training, however – as training reduces uncertainty by
definition.

4.5 Committee Prediction Variance 57

5Discussion

5.1 Overview

This chapter will wrap up the thesis. First, by broadly discussing whether or
not the research questions were answered, in Section 5.2. Then, by discussing
the academic contributions of the project in Section 5.3, discussing promising
directions for further research in Section 5.4, before concluding the thesis in
Section 5.5.

5.2 Results

For convenience, the project’s research questions are repeated here:

1. Does the variance of predictions made by dropout networks – all gener-
ated from the same full network – provide a heuristic for the confusion
of the full network on the data example being predicted?

2. Can the Query by Committee algorithm, using such a group of networks
as the committee, outperform random selection of examples?

It turned out that the simplest way to answer the former question was through
answering the latter – if the algorithm, which used the variance of predictions
made by dropout networks, is able to outperform random selection, it follows
that the variance provides a useful heuristic. As the results in the previous
chapter clearly shows, the algorithm was in fact able to outperform random
selection, justifying positive answers to both of these research questions. Had
this not been the case, some different experiment would have to be designed,
that could test the first question in a different way. Fortunately, this was not
necessary.

3. Can this algorithm perform comparably to other active learning algo-
rithms that are applicable to deep neural networks?

59

The other active strategy tested in the experiments was uncertainty sampling
through taking the output Shannon entropy, which performed slightly bet-
ter than the best ADD-network configuration (which used Euclidean mean
distance as the disagreement measure, with 50 networks in the committee),
in addition to being computationally cheaper. On the other hand, the ADD-
networks can in theory function in a regression scenario, which the output
Shannon entropy approach cannot. To definitively answer this research ques-
tion, however, more experiments have to be performed. While ADD-networks
must be said to be comparable to the entropy strategy on the MNIST dataset,
a wider range of both datasets and alternative active strategies must be tested,
before anything but a tentative positive answer can be given.

5.3 Contributions

As discussed in the related work section (Section 2.4), active learning and
neural networks have been combined in many different contexts – both
using singular networks with uncertainty measures [88, 84], and ensembles
of networks with disagreement measures [13, 42, 57]. But all of these
approaches have some problems. Uncertainty sampling has been shown to
work poorly in many scenarios [69], and is mostly useless for regression tasks.
Ensemble based methods can work better, but in a deep learning scenario
with large networks, the computational and memory overhead of training
multiple networks can be insurmountable. The main contribution of this
project then, is a novel way to get the benefits of committee-based methods
while removing most of the overhead involved. The Active Deep Dropout
networks proposed allow generation of an arbitrarily sized committee from
one singular network, and as we have shown, this committee is diverse
enough that the disagreement of its members provide enough information to
be viable for use in active learning.

Many of the domains typically tackled and dominated by deep learning –
such as image recognition or automatic speech recognition – are domains
in which data is cheap and plentiful, but labeling often laborious and ex-
pensive. Effective active learning techniques can then be powerful tools.
ADD-networks have shown that they can be a useful addition to the deep
learning toolbelt.

60 Chapter 5 Discussion

A more abstract contribution of this project is further developing the general
idea of using dropout networks as ensembles. The original dropout papers
hint to this possibility – showing that taking the geometric mean prediction of
a (sufficiently large) number of samples of networks provides more accurate
predictions than the network as a whole, although they provide a heuristic
using only the full network that works well. In other words, dropout can be
seen as a type of efficient ensemble training system, and this ensemble can
be used for various purposes. This is a powerful idea, as this thesis shows,
and might be useful in other situations apart from active learning as well.

5.4 Further Work
Since this project merely investigates whether the general idea of ADD-
networks works for active learning, there is a myriad of directions ripe for
further research, both in ADD-nets specifically, and deep active learning
generally.

5.4.1 Optimizations

The implementation here assumes a lot of simplifications, in an effort to
isolate answers to the core question of the feasability of ADD-nets. Ergo,
there are many possible optimizations that may further improve the results
seen in Chapter 4:

• Weighting newly selected instances. Depending on how much training
is done between each selection, the network may already be trained
to convergence on the “old” instances when a new selection occurs.
Weighting new instances, with a higher learning rate, for example,
might reduce the training needed to reach convergence again.

• Transforming instances to increase dataset size. As Cireşan et al.,
2010 [12] shows, state-of-the-art results on MNIST are achievable with
a fairly simple feed-forward neural network and no pre-training when
the instances of the dataset are transformed with both affine (rotation,
scaling, shearing) and elastic deformations to provide more examples
to learn from. Since the deformed instances have the same label as
their origin, this seems like a good fit for active learning, as each
query provides multiple new instances to train on, as well as a larger

5.4 Further Work 61

unlabeled pool on which unsupervised pre-training can be performed.
However, this technique is highly domain specific, as most datasets
cannot be transformed in this way and still retain correct instance to
label mappings.

• Dynamic active selection intervals. For the experiments performed
in this project, the selection interval (the number of epochs between
active selections) was fixed to a value that was big enough for random
selection to perform as well as simple supervised training with the
same number of randomly selected instances, just chosen ahead of
time. There may be better ways to do this, such as letting the interval
be dynamic. For example, if convergence (or something close to it) is
detected, a new selection can occur etcetera. Depending on the scenario,
experimenting with full retraining (from the weights initialized by pre-
training) between each selection can possibly improve results, although
with a large penalty in training time.

While these are active learning-specific possible improvements, there are ob-
viously many improvements that can be made to the core MLP network and
the supervised training phases, such as using more advanced regularization
techniques in addition to dropout and max-norm regularization, experiment-
ing with convolutional networks such as the LeNet of LeCun et al., 1998 [45],
different pre-training techniques, etcetera.

5.4.2 Validation of Concept

Due to the rather limited computational resources available to this project,
there are numerous things left to do to further validate the general ideas
behind ADD-networks:

• Testing on more complex datasets, such as the ImageNet database [20].
It would be especially interesting to apply the concept to a largescale
regression dataset.

• More comparisons to other active learning algorithms and architectures.

• Relaxing the assumption that we are only dealing with pool-based
active scenarios. For example, testing ADD-nets on an application
like the self-modelling robots of Bongard et al., 2006 [9], a de novo

62 Chapter 5 Discussion

synthesis type scenario. Robotics in general could be an interesting
field for ADD-networks, as many robots use neural networks to predict
and model events in their environment, but are typically not aware of
their uncertainty, and using ensembles is often not realistic because of
strict resource constraints. Being able to consult ADD-nets about the
uncertainty of particular predictions on demand – without having to
train multiple networks – could be very useful.

• Using ADD-nets to quantify uncertainty in non-active settings. In some
scenarios, knowing the confidence a neural network has in its prediction
is very valuable. Consider a network that predicts the pricing of some
financial instrument [86, 38, 27]. Due to the extremely noisy nature
of financial markets, such a network will have high error rates, and
the cost of acting on wrong predictions can be very high (of course, if
the network is correct more than half the time, the owner can profit
in the long run). If the system has access to an approximation of
the uncertainty of the network, it can choose to act only on those
predictions the network is most certain about, which may possibly
increase the ratio of profitable trades to unprofitable ones.

5.4.3 Dealing With Noise

Since QBC disagreement measures (and other typical active learning strate-
gies) directly or indirectly represent the variance of the different predictions,
performance will degrade in datasets where the dataset is more noisy in
different regions of the input space: In regions where the dataset is more
noisy, supervised training will be less effective, and predictions within this
region will vary more than they will in less noisy areas. Active selection will
then prefer to choose examples from these areas, as they will always have
high variance / uncertainty. The core problem is that the active selectors are
unable to differentiate between variance stemming from noise in the dataset
and variance from actual uncertainty in the model.

There are multiple ways to attack this problem, but one interesting direction
to explore is to include a measure of distance (in the input space) from data
points already in the training set in the evaluation of unlabeled instances.
This way, when clustering of selected instances in certain regions appear,
new instances in that area will be increasingly discouraged until examples in
other areas will be selected instead.

5.4 Further Work 63

5.5 Conclusion
This project sought to test and validate the idea of ADD-networks – using
multiple samples of dropout networks (from a single network) to estimate
uncertainty for use in active learning. As the results clearly show, this goal
was reached. But, so far it has only been shown to work on a relatively
simple problem, and as the previous section details, there is more work to be
done.

Applying active learning to deep learning is so far fairly uncharted territory,
but with the types of datasets on which deep learning is typically employed,
it is a possibly potent combination, especially when one considers the pos-
sibilities of crowdsourced active labeling. Hopefully then – with the help
of tools like ADD-networks – active learning can become a tool available to
deep neural network-users and researchers alike, facilitating the application
of deep learning on even larger datasets than what is typical today.

64 Chapter 5 Discussion

Bibliography

[1] Ion Androutsopoulos, John Koutsias, Konstantinos V Chandrinos, George
Paliouras, and Constantine D Spyropoulos. „An evaluation of naive bayesian
anti-spam filtering“. In: arXiv preprint cs/0006013 (2000) (cit. on p. 6).

[2] Dana Angluin. „Queries and concept learning“. In: Machine learning 2.4
(1988), pp. 319–342 (cit. on p. 7).

[3] Les E Atlas, David A Cohn, and Richard E Ladner. „Training connectionist net-
works with queries and selective sampling“. In: Advances in neural information
processing systems. 1990, pp. 566–573 (cit. on p. 8).

[4] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, et al. Theano: new features
and speed improvements. Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop. 2012 (cit. on p. 49).

[5] Eric B Baum and Kenneth Lang. „Query learning can work poorly when a
human oracle is used“. In: International Joint Conference on Neural Networks.
Vol. 8. 1992 (cit. on p. 8).

[6] Yoshua Bengio, Yann LeCun, et al. „Scaling learning algorithms towards AI“.
In: Large-scale kernel machines 34.5 (2007) (cit. on p. 27).

[7] James Bergstra, Olivier Breuleux, Frédéric Bastien, et al. „Theano: a CPU and
GPU Math Expression Compiler“. In: Proceedings of the Python for Scientific
Computing Conference (SciPy). Oral Presentation. Austin, TX, June 2010 (cit.
on p. 49).

[8] Josh Bongard and Hod Lipson. „Automated reverse engineering of nonlinear
dynamical systems“. In: Proceedings of the National Academy of Sciences 104.24
(2007), pp. 9943–9948 (cit. on p. 7).

[9] Josh Bongard, Victor Zykov, and Hod Lipson. „Resilient machines through
continuous self-modeling“. In: Science 314.5802 (2006), pp. 1118–1121 (cit.
on pp. 7, 62).

[10] Leo Breiman. „Bagging predictors“. In: Machine learning 24.2 (1996), pp. 123–
140 (cit. on p. 16).

65

[11] Robert Burbidge, Jem J Rowland, and Ross D King. „Active learning for
regression based on query by committee“. In: Intelligent Data Engineering and
Automated Learning-IDEAL 2007. Springer, 2007, pp. 209–218 (cit. on p. 33).

[12] Dan Claudiu Ciresan, Ueli Meier, Luca Maria Gambardella, and Jürgen
Schmidhuber. „Deep, big, simple neural nets for handwritten digit recog-
nition“. In: Neural computation 22.12 (2010), pp. 3207–3220 (cit. on p. 61).

[13] David Cohn, Les Atlas, and Richard Ladner. „Improving generalization with
active learning“. In: Machine learning 15.2 (1994), pp. 201–221 (cit. on pp. 6,
14, 15, 32, 60).

[14] David A Cohn. „Neural network exploration using optimal experiment design“.
In: (1994) (cit. on pp. 13, 32).

[15] David A Cohn, Zoubin Ghahramani, and Michael I Jordan. „Active learning
with statistical models“. In: Journal of artificial intelligence research (1996)
(cit. on pp. 7, 8).

[16] Ronan Collobert and Jason Weston. „A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning“. In: Pro-
ceedings of the 25th international conference on Machine learning. ACM. 2008,
pp. 160–167 (cit. on p. 21).

[17] Aron Culotta and Andrew McCallum. „Reducing labeling effort for structured
prediction tasks“. In: AAAI. 2005, pp. 746–751 (cit. on p. 10).

[18] Ido Dagan and Sean P Engelson. „Committee-based sampling for training
probabilistic classifiers“. In: Proceedings of the Twelfth International Conference
on Machine Learning. 1995, pp. 150–157 (cit. on p. 16).

[19] George E Dahl, Navdeep Jaitly, and Ruslan Salakhutdinov. „Multi-task neural
networks for QSAR predictions“. In: arXiv preprint arXiv:1406.1231 (2014)
(cit. on p. 21).

[20] Jia Deng, Wei Dong, Richard Socher, et al. „Imagenet: A large-scale hierarchi-
cal image database“. In: Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on. IEEE. 2009, pp. 248–255 (cit. on pp. 21, 45, 62).

[21] Li Deng, Jinyu Li, Jui-Ting Huang, et al. „Recent advances in deep learning
for speech research at Microsoft“. In: Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on. IEEE. 2013, pp. 8604–8608
(cit. on p. 21).

[22] Thomas G Dietterich. „Ensemble learning“. In: The handbook of brain theory
and neural networks 2 (2002), pp. 110–125 (cit. on p. 16).

[23] Dumitru Erhan, Yoshua Bengio, Aaron Courville, et al. „Why does unsuper-
vised pre-training help deep learning?“ In: The Journal of Machine Learning
Research 11 (2010), pp. 625–660 (cit. on pp. 27, 28).

66 Bibliography

[24] John S Garofolo, Lori F Lamel, William M Fisher, Jonathon G Fiscus, and
David S Pallett. „DARPA TIMIT acoustic-phonetic continous speech corpus
CD-ROM. NIST speech disc 1-1.1“. In: NASA STI/Recon Technical Report N 93
(1993), p. 27403 (cit. on p. 21).

[25] Stuart Geman and Donald Geman. „Stochastic relaxation, Gibbs distributions,
and the Bayesian restoration of images“. In: Pattern Analysis and Machine
Intelligence, IEEE Transactions on 6 (1984), pp. 721–741 (cit. on p. 29).

[26] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. „Domain adaptation for
large-scale sentiment classification: A deep learning approach“. In: Proceedings
of the 28th International Conference on Machine Learning (ICML-11). 2011,
pp. 513–520 (cit. on p. 21).

[27] Erkam Guresen, Gulgun Kayakutlu, and Tugrul U Daim. „Using artificial
neural network models in stock market index prediction“. In: Expert Systems
with Applications 38.8 (2011), pp. 10389–10397 (cit. on p. 63).

[28] Dilek Hakkani-Tur, Giuseppe Riccardi, and Allen Gorin. „Active learning for
automatic speech recognition“. In: Acoustics, Speech, and Signal Processing
(ICASSP), 2002 IEEE International Conference on. Vol. 4. IEEE. 2002, pp. IV–
3904 (cit. on p. 6).

[29] Awni Hannun, Carl Case, Jared Casper, et al. „DeepSpeech: Scaling up end-to-
end speech recognition“. In: arXiv preprint arXiv:1412.5567 (2014) (cit. on
p. 21).

[30] Alexander G Hauptmann, Wei-Hao Lin, Rong Yan, Jun Yang, and Ming-Yu
Chen. „Extreme video retrieval: joint maximization of human and computer
performance“. In: Proceedings of the 14th annual ACM international conference
on Multimedia. ACM. 2006, pp. 385–394 (cit. on p. 9).

[31] David Haussler. „Learning conjunctive concepts in structural domains“. In:
Machine learning 4.1 (1989), pp. 7–40 (cit. on p. 15).

[32] Geoffrey Hinton, Li Deng, Dong Yu, et al. „Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups“.
In: Signal Processing Magazine, IEEE 29.6 (2012), pp. 82–97 (cit. on p. 21).

[33] Geoffrey E Hinton. „Training products of experts by minimizing contrastive
divergence“. In: Neural computation 14.8 (2002), pp. 1771–1800 (cit. on
p. 29).

[34] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. „A fast learning
algorithm for deep belief nets“. In: Neural computation 18.7 (2006), pp. 1527–
1554 (cit. on p. 30).

[35] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. „Improving neural networks by preventing co-adaptation
of feature detectors“. In: arXiv preprint arXiv:1207.0580 (2012) (cit. on p. 25).

Bibliography 67

[36] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. „Multilayer feedfor-
ward networks are universal approximators“. In: Neural networks 2.5 (1989),
pp. 359–366 (cit. on p. 20).

[37] Po-Sen Huang, Xiaodong He, Jianfeng Gao, et al. „Learning deep structured
semantic models for web search using clickthrough data“. In: Proceedings
of the 22nd ACM international conference on Conference on information &
knowledge management. ACM. 2013, pp. 2333–2338 (cit. on p. 21).

[38] James M Hutchinson, Andrew W Lo, and Tomaso Poggio. „A nonparametric
approach to pricing and hedging derivative securities via learning networks“.
In: The Journal of Finance 49.3 (1994), pp. 851–889 (cit. on p. 63).

[39] Anders M Knutzen and John J Gisvold. „Likelihood of malignant disease
for various categories of mammographically detected, nonpalpable breast
lesions“. In: Mayo Clinic Proceedings. Vol. 68. 5. Elsevier. 1993, pp. 454–460
(cit. on p. 6).

[40] Daniel B Kopans. „The positive predictive value of mammography.“ In: AJR.
American journal of roentgenology 158.3 (1992), pp. 521–526 (cit. on p. 6).

[41] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. „Imagenet classi-
fication with deep convolutional neural networks“. In: Advances in neural
information processing systems. 2012, pp. 1097–1105 (cit. on p. 21).

[42] Anders Krogh, Jesper Vedelsby, et al. „Neural network ensembles, cross
validation, and active learning“. In: Advances in neural information processing
systems 7 (1995), pp. 231–238 (cit. on pp. 32, 60).

[43] Solomon Kullback and Richard A Leibler. „On information and sufficiency“.
In: The annals of mathematical statistics (1951), pp. 79–86 (cit. on p. 18).

[44] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. „Deep learning“. In: Nature
521.7553 (2015), pp. 436–444 (cit. on pp. 1, 22).

[45] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. „Gradient-
based learning applied to document recognition“. In: Proceedings of the IEEE
86.11 (1998), pp. 2278–2324 (cit. on p. 62).

[46] Yann LeCun, Corinna Cortes, and C Burges. „The MNIST database of handwrit-
ten digits“. In: Available electronically at http://yann.lecun.com/exdb/mnist
(1998) (cit. on pp. 21, 44).

[47] David D Lewis and Jason Catlett. „Heterogeneous uncertainty sampling for
supervised learning“. In: Proceedings of the eleventh international conference
on machine learning. 1994, pp. 148–156 (cit. on p. 11).

[48] David D Lewis and William A Gale. „A sequential algorithm for training
text classifiers“. In: Proceedings of the 17th annual international ACM SIGIR
conference on Research and development in information retrieval. Springer-
Verlag New York, Inc. 1994, pp. 3–12 (cit. on p. 9).

68 Bibliography

[49] Ulrike Lueken, Kevin Hilbert, Hans-Ulrich Wittchen, Andreas Reif, and Tim
Hahn. „Diagnostic classification of specific phobia subtypes using structural
MRI data: a machine-learning approach“. In: Journal of Neural Transmission
122.1 (2015), pp. 123–134 (cit. on p. 6).

[50] Andrew Kachites McCallumzy and Kamal Nigamy. „Employing EM and pool-
based active learning for text classification“. In: Proc. International Conference
on Machine Learning (ICML). Citeseer. 1998, pp. 359–367 (cit. on p. 6).

[51] Ueli Meier, Dan Claudiu Ciresan, Luca Maria Gambardella, and Jürgen
Schmidhuber. „Better digit recognition with a committee of simple neural
nets“. In: Document Analysis and Recognition (ICDAR), 2011 International
Conference on. IEEE. 2011, pp. 1250–1254 (cit. on p. 33).

[52] Thomas M. Mitchell. Machine Learning. 1st ed. New York, NY, USA: McGraw-
Hill, Inc., 1997 (cit. on pp. 14, 15).

[53] Elaheh Moradi, Antonietta Pepe, Christian Gaser, et al. „Machine learning
framework for early MRI-based Alzheimer’s conversion prediction in MCI
subjects“. In: NeuroImage 104 (2015), pp. 398–412 (cit. on p. 6).

[54] Yuval Netzer, Tao Wang, Adam Coates, et al. „Reading digits in natural images
with unsupervised feature learning“. In: NIPS workshop on deep learning and
unsupervised feature learning. Vol. 2011. 2. Granada, Spain. 2011, p. 5 (cit. on
p. 21).

[55] Jiquan Ngiam, Adam Coates, Ahbik Lahiri, et al. „On optimization methods
for deep learning“. In: Proceedings of the 28th International Conference on
Machine Learning (ICML-11). 2011, pp. 265–272 (cit. on p. 32).

[56] Bharath Ramsundar, Steven Kearnes, Patrick Riley, et al. „Massively Multitask
Networks for Drug Discovery“. In: arXiv preprint arXiv:1502.02072 (2015)
(cit. on p. 21).

[57] Tirthankar RayChaudhuri and Leonard GC Hamey. „Minimisation of data
collection by active learning“. In: Neural Networks, 1995. Proceedings., IEEE
International Conference on. Vol. 3. IEEE. 1995, pp. 1338–1341 (cit. on pp. 33,
60).

[58] Giuseppe Riccardi and Dilek Z Hakkani-Tür. „Active and unsupervised learn-
ing for automatic speech recognition.“ In: INTERSPEECH. Citeseer. 2003 (cit.
on p. 6).

[59] Frank Rosenblatt. „The perceptron: a probabilistic model for information
storage and organization in the brain.“ In: Psychological review 65.6 (1958),
p. 386 (cit. on p. 19).

[60] Guido Rossum. Python Reference Manual. Tech. rep. Amsterdam, The Nether-
lands, The Netherlands, 1995 (cit. on p. 49).

Bibliography 69

[61] Anton C Rothwell, Luke D Jagger, William R Dennis, and David R Clarke.
Intelligent SPAM detection system using an updateable neural analysis engine.
US Patent 6,769,016. 2004 (cit. on p. 6).

[62] Nicholas Roy and Andrew McCallum. „Toward optimal active learning through
monte carlo estimation of error reduction“. In: ICML, Williamstown (2001),
pp. 441–448 (cit. on p. 6).

[63] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. „Learning
representations by back-propagating errors“. In: Cognitive modeling 5 (1988),
p. 3 (cit. on p. 20).

[64] Robert E Schapire. „The boosting approach to machine learning: An overview“.
In: Nonlinear estimation and classification. Springer, 2003, pp. 149–171 (cit.
on p. 16).

[65] Jürgen Schmidhuber. „Deep Learning in Neural Networks: An Overview“. In:
Neural Networks 61 (2015). Published online 2014; based on TR arXiv:1404.7828
[cs.NE], pp. 85–117 (cit. on pp. 20, 22).

[66] Jürgen Schmidhuber. Who Invented Backpropagation? 2014. URL: http://
people.idsia.ch/~juergen/who-invented-backpropagation.html (vis-
ited on July 27, 2015) (cit. on p. 20).

[67] Hinrich Schütze, Emre Velipasaoglu, and Jan O Pedersen. „Performance
thresholding in practical text classification“. In: Proceedings of the 15th ACM
international conference on Information and knowledge management. ACM.
2006, pp. 662–671 (cit. on p. 13).

[68] Fabrizio Sebastiani. „Machine learning in automated text categorization“. In:
ACM computing surveys (CSUR) 34.1 (2002), pp. 1–47 (cit. on p. 6).

[69] Burr Settles. „Active Learning“. In: Synthesis Lectures on Artificial Intelligence
and Machine Learning 6.1 (2012), pp. 1–114 (cit. on pp. 1, 5, 7, 10, 15, 60).

[70] Burr Settles and Mark Craven. „An analysis of active learning strategies for
sequence labeling tasks“. In: Proceedings of the conference on empirical methods
in natural language processing. Association for Computational Linguistics.
2008, pp. 1070–1079 (cit. on pp. 9, 10).

[71] H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. „Query by
committee“. In: Proceedings of the fifth annual workshop on Computational
learning theory. ACM. 1992, pp. 287–294 (cit. on pp. 2, 15).

[72] Claude E Shannon. „A note on the concept of entropy“. In: Bell System Tech. J
27 (1948), pp. 379–423 (cit. on p. 12).

[73] Paul Smolensky. „Information processing in dynamical systems: Foundations
of harmony theory“. In: (1986) (cit. on p. 28).

70 Bibliography

http://people.idsia.ch/~juergen/who-invented-backpropagation.html
http://people.idsia.ch/~juergen/who-invented-backpropagation.html

[74] Nathan Srebro and Adi Shraibman. „Rank, trace-norm and max-norm“. In:
Learning Theory. Springer, 2005, pp. 545–560 (cit. on p. 27).

[75] Nitish Srivastava. „Improving neural networks with dropout“. PhD thesis.
University of Toronto, 2013 (cit. on pp. 2, 25).

[76] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. „Dropout: A simple way to prevent neural networks
from overfitting“. In: The Journal of Machine Learning Research 15.1 (2014),
pp. 1929–1958 (cit. on pp. 25, 54).

[77] Katrin Tomanek, Florian Laws, Udo Hahn, and Hinrich Schütze. „On proper
unit selection in active learning: co-selection effects for named entity recog-
nition“. In: Proceedings of the NAACL HLT 2009 Workshop on Active Learning
for Natural Language Processing. Association for Computational Linguistics.
2009, pp. 9–17 (cit. on p. 13).

[78] Simon Tong and Daphne Koller. „Support vector machine active learning
with applications to text classification“. In: The Journal of Machine Learning
Research 2 (2002), pp. 45–66 (cit. on p. 6).

[79] Thomas Unterthiner, Andreas Mayr, Günter Klambauer, and Sepp Hochreiter.
„Toxicity Prediction using Deep Learning“. In: arXiv preprint arXiv:1503.01445
(2015) (cit. on p. 21).

[80] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Man-
zagol. „Extracting and composing robust features with denoising autoen-
coders“. In: Proceedings of the 25th international conference on Machine learn-
ing. ACM. 2008, pp. 1096–1103 (cit. on p. 25).

[81] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. „Show and
tell: A neural image caption generator“. In: arXiv preprint arXiv:1411.4555
(2014) (cit. on p. 21).

[82] Byron C Wallace, Kevin Small, Carla E Brodley, and Thomas A Trikalinos.
„Active learning for biomedical citation screening“. In: Proceedings of the 16th
ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM. 2010, pp. 173–182 (cit. on p. 13).

[83] Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. „The NumPy
Array: A Structure for Efficient Numerical Computation“. In: Computing in
Science and Engg. 13.2 (Mar. 2011), pp. 22–30 (cit. on p. 49).

[84] Dan Wang and Yi Shang. „A new active labeling method for deep learning“.
In: Neural Networks (IJCNN), 2014 International Joint Conference on. IEEE.
2014, pp. 112–119 (cit. on pp. 32, 60).

Bibliography 71

[85] Liyang Wei, Yongyi Yang, Robert M Nishikawa, and Yulei Jiang. „A study on
several machine-learning methods for classification of malignant and benign
clustered microcalcifications“. In: Medical Imaging, IEEE Transactions on 24.3
(2005), pp. 371–380 (cit. on p. 6).

[86] Jingtao Yao, Yili Li, and Chew Lim Tan. „Option price forecasting using neural
networks“. In: Omega 28.4 (2000), pp. 455–466 (cit. on p. 63).

[87] Evangelia I Zacharaki, Sumei Wang, Sanjeev Chawla, et al. „Classification
of brain tumor type and grade using MRI texture and shape in a machine
learning scheme“. In: Magnetic Resonance in Medicine 62.6 (2009), pp. 1609–
1618 (cit. on p. 6).

[88] Shusen Zhou, Qingcai Chen, and Xiaolong Wang. „Active deep networks
for semi-supervised sentiment classification“. In: Proceedings of the 23rd
International Conference on Computational Linguistics: Posters. Association for
Computational Linguistics. 2010, pp. 1515–1523 (cit. on pp. 32, 60).

[89] Xiaojin Zhu and Andrew B Goldberg. „Introduction to semi-supervised learn-
ing“. In: Synthesis lectures on artificial intelligence and machine learning 3.1
(2009), pp. 1–130 (cit. on pp. 1, 6).

72 Bibliography

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Thesis Structure

	2 Theoretical Background
	2.1 Overview
	2.2 Active Learning
	2.2.1 Different Scenarios
	2.2.2 Evaluating Examples
	2.2.3 Summary

	2.3 Deep Learning
	2.3.1 Multilayer Perceptrons
	2.3.2 Dropout
	2.3.3 Unsupervised Pre-Training
	2.3.4 Summary

	2.4 Related Work

	3 Methods
	3.1 Overview
	3.2 Active Deep Dropout Networks
	3.2.1 Generating Networks
	3.2.2 Scoring
	3.2.3 The Full Architecture
	3.2.4 Hyperparameters and Options
	3.2.5 The Unbalanced Batch Problem
	3.2.6 Variations
	3.2.7 Summary

	3.3 The MNIST Dataset
	3.4 Experiment Design
	3.4.1 Hyperparameters

	3.5 Implementation Details

	4 Results and Analysis
	4.1 Overview
	4.2 Core Results
	4.3 Effect of Committee Size
	4.4 Selected Examples
	4.5 Committee Prediction Variance

	5 Discussion
	5.1 Overview
	5.2 Results
	5.3 Contributions
	5.4 Further Work
	5.4.1 Optimizations
	5.4.2 Validation of Concept
	5.4.3 Dealing With Noise

	5.5 Conclusion

	Bibliography

