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Abstract

Cellular automata (CAs) are lattices of simple cells, whose states change ac-
cording to a set of local rules. Applications range from simulating real world
systems to a general platform for computation. Within the field of computer
science, current research is mainly concerned with developing methods for pro-
gramming CAs to solve particular tasks, as well as the pursuit of CAs with signs
of complex behaviour. When it comes to I/O little has been done.

In this project the togglecount transform is introduced and investigated. It
is a method for obtaining multiple outputs from a simple transformation over
the temporal evolution of a CA, based on the number of state changes for
individual cells during the time window of the transform. Investigation is done
on elementary CAs (ECAs), and is mainly concerned with the diversity of the
output, with respect to CA rule, CA size and the length of the time frame for
the transform. The output variation is quantified by counting the number of
unique achievable togglecount spectra, coined the “spectral diversity” of the
CA.

Research is done both in a qualitative and quantitative manner. A combination
of spacetime plots and spectrograms is introduced as a tool for inspecting the
togglecount specter over the temporal evolution of the ECA. The specter density
plot is introduced as a way of representing the full range of togglecount spec-
tra achievable for a given ECA. Simulations are employed to find the spectral
diversity for various sizes of the ECAs, for various transform window sizes.

Bounds for the achievable spectra are found to be intrinsic to the rule, but
many ECAs show a relatively wide range of spectra over the set of initial con-
figurations. Spectral diversity generally increases with increasing CA size s,
and with transformation window size w when w < s. The ECAs are divided
in three classes based on the behaviour of the spectral diversity with respect to
window size, some of which has an oscillating behaviour, and a connection is
found to an existing classification scheme based on the fourier transform. The
results show that the togglecount transform leads to output consisting of mul-
tiple variables, and that those variables take a range of values depending on
initial configuration.
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Sammendrag

Cellulære automater (CA-er) er gittere av enkle celler, med et lokalt regelsett
som avgjør hvilken tilstand de til en hver tid skal holde og skifte til. De brukes
til alt fra simuleringer til generelle beregninger. N̊aværende datateknologisk
forskning p̊a CA-er forsøker først og fremst å utvikle metoder for å programmere
CAer til å løse gitte oppgaver. Det er ogs̊a et innslag av generell søken etter CA-
er som viser tegn til kompleks oppførsel. N̊ar det gjelder metoder for innputt
og utputt er lite blitt gjort.

Dette prosjektet lanserer og undersøker “togglecount”-transformasjonen, som
er en metode beregnet p̊a å la CA-en gi ut flere utputt-variabler. Transfor-
masjonen beregnes over CA-ens utvikling over tid, og baserer seg p̊a antallet
tilstandsendringer for hver enkelt celle i løpet av et tidsvindu. Undersøkelsene
er gjennomført p̊a elementære CA-er (ECA-er), og omhandler fortrinnsvis vari-
asjon i utputt med hensyn p̊a regel, CA-størrelse og lengde av tidsvinduet for
transformasjonen. Utputtvariasjonen er kvantifisert ved å telle antallet unike
spekter fra transformasjonen, og dette blir her kalt “spektermangfoldet” til CA-
en.

Det blir videre gjennomført b̊ade kvalitative og kvantitative undersøkelser. En
kombinasjon av s̊akalte tidromplott og spektrogrammer legges fram som et
verktøy for å undersøke hvordan togglecount-spekteret fra en CA varierer over
tid. Spektertetthetsdiagrammer introduseres som en ny framstilling for å repre-
sentere samtlige mulige spekter for en gitt CA. Spektermangfoldet for ECA-er
av en rekke størrelser og med en rekke vindusstørrelser blir funnet ved hjelp av
simuleringer.

Begrensninger for hva slags spekter ECA-ene kan produsere viser seg å være
gitt av den enkelte CA-regelen, men mange ECA-er viser et stort mangfold av
spekter over hele settet av globale initialtilstander. Generelt øker spektermang-
foldet med økende CA-størrelse s, og med økende vindusstørrelse w for w < s.
ECA-ene blir plassert i tre klasser basert p̊a spektermangfold med hensyn p̊a
vindusstørrelse, noen av dem viser oscillerende oppførsel, og en kobling blir fun-
net til en eksisterende klasseinndeling basert p̊a fourier-transformasjoner. Re-
sultatene viser at togglecount-transformasjonen gir utputt som best̊ar av flere
variabler, og at disse variablene tar verdier som avhenger av ECA-ens initialtil-
stand.
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Part I

Introduction

Invented by Ulam and von Neumann [6] almost seventy years ago, for the
purpose of simulating self-replicating machines, cellular automata (CAs) have
reached many fields ranging from physics to the humanities. As opposed to
modern microprocessors, they are vastly parallel systems of simple locally con-
nected cells, whose state shifting behaviour is only dependent on a local set
of neighbours. Nevertheless, CAs has shown great capabilities at performing
computation [47]. Some CAs are known to hold the property of universal com-
putation [4,8,9,41], which is the ability to emulate any other general computing
machine.

While implementations modelling real world systems are abundant, CAs are
not yet mainstream within the field of computer science. Perhaps the lack of
direct methods for programming cellular systems is to blame. Current efforts
center around the use of genetic algorithms (GAs) as a tool in the search for
CAs with wanted properties [2,27,32]. Examples range from specific tasks such
as finding CAs duplicating a pattern given in the initial state [5] to searching
for CAs showing signs of complex behaviour [31].

The study of CAs and their computational capabilities has led to multiple classi-
fication schemes and parameters for estimating complexity, of which Wolfram’s
classes [45] and Langton’s lambda parameter [18] are well known examples. In
efforts of classification, transforms of both emerging behaviour and global state
have been employed. This thesis revolves around using transforms not to classify
the CA but as a way to provide output.

Any useful computation requires input to be calculated on, and a way to provide
the results of the computation as output. Traditionally, output from CAs mostly
involve the global state of the CA at a single time step. While this is an easy
way to handle output, it is rather limited. Especially for CAs with many cells
rapidly changing states, choosing one time step to treat as the output may
prove challenging. Further, it would be interesting to be able to extract several
outputs. When using the global state as output, this raises a problem of which
part of the global state to use for what part of the output. As the evolved
spatial configuration of a CA is often subject to statistical properties intrinsic
to the rule itself [19], spatial division of the output – and even usage of global
state in the first place – may be problematic, because of the homogeneity and
other limitations these boundaries give to the possible output configurations.

This thesis proposes the togglecount method as a solution to both the issue
of getting multiple output variables and the issue of choosing the correct time
step for the output. It is a simple transform over the temporal evolution of the
CA, effectively omitting the dependence on one time step by relying on several
consecutive time steps. The result is based on the temporal behaviour of the
cells, rather than on one state at a more or less arbitrary time step. The output
of the transform is an array of several output values, in the form of a specter.

The method is investigated in order to find out if homogeneity in the temporal
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domain raises an issue similar to that of spatial homogeneity. The question of
whether the transform is a result of initial state or of the CA rule itself is also
considered. Furthermore, the output range given by the togglecount transform
is investigated with respect to the window size for the transform and to the size
of the CA. As a reality check the results are compared to Wolfram’s classes and
Langtons λ parameter. This results in the following research questions, which
form the basis for the investigations done during this project:

1. To what extent do the elementary CA (ECA) rules have intrinsic bounds
for the spectra produced, and what is the nature of these bounds for
varying CA size, varying window size and over the temporal evolution of
the CA?

2. What determines the number of unique spectra from a CA rule, and how
does the number of spectra change with changing CA size and window
size for the transformation?

3. How do the number of unique spectra relate to Wolfram’s classes and
Langtons λ parameter?

The project description, given at the very beginning of this document, allows for
a wide range of investigations. Here it has been narrowed down and interpreted
as a study on the particular method of togglecount transform, a transformation
suggested by this thesis. The togglecount transform is one example of “how
the emergent behaviour of a cellular automata like machine can be transformed
to multiple variables” for output, and it uses a form of “local frequencies as
a representation of output variables.” The above questions are chosen for the
preliminary investigation of this transform, and the study is limited to ECAs.

The research questions are investigated by simulating ECAs, registering the
count of unique resulting spectra for analysis. A qualitative study is performed
by introducing two visualisations of the spectra. The first, “waterfall plots”,
consists of a spectrogram plotted along with the temporal evolution of the CA
itself, allowing for investigations of the temporal evolution of the specter. The
second, “specter density plots”, is a collection of superimposed spectra, display-
ing the occurring values for each variable of the specter.

The rest of the thesis is organised as follows: In Part II, CAs are introduced
in Section 1 before computation in the context of CAs is handled in Section 2.
Prior research involving transformations are summarised in Section 3, and some
mathematical and statistical concepts are briefly presented in Section 4.

Part III introduces the togglecount transform in Section 5, as well as the use of
waterfall plots and specter density plots in Section 6 and Section 7. An overview
of the experiment approach is given in Section 8, and software written for the
purpose of CA simulation, plotting and data handling is described in Section 9.

Part IV starts with a brief discussion of theoretical limits in Section 10. A
qualitative study of ECA spectra using waterfall plots and specter density plots
is presented in Section 11. Spectral diversity data is investigated in Section 12,
with respect to both the window size for the transform and the size of the CA.

In Part V, findings are summarised in Section 13. An outline for further inves-
tigation is given along with some comments on preliminary data in Section 14.
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Part II

Background

1 Cellular automata

1.1 Definition

CAs are n-dimensional integer lattices of cells, where each cell at any given time
t is in one of a set of k possible states. Cells are updated in discrete time steps
using an update function F that computes the next state for a cell given the
current states of the neighbouring cells. The calculation synchronised, i.e. all
cells change from one time step to the next at the same time.

For one-dimensional CAs, the neighbourhood consists of the cell itself and a
range of r cells in each direction. This results in a neighbourhood size of 2r+ 1.
Formally, the behaviour of a one-dimensional CA can be expressed as

a
(t)
i = F[a

(t−1)
i−r , a

(t−1)
i−r+1, . . . , a

(t−1)
i , . . . , a

(t−1)
i+r ], (1)

where a
(t)
i is the value of cell i at time step t for an automaton ruled by the

function F, with a neighbourhood range r. [45] The update function is also
referred to as the rule of the CA. [47] The set of one-dimensional CAs with rules
of range r = 1 and 2 possible states are called elementary CAs (ECAs). [44].

1.2 Neighbourhoods

For two dimensions the Moore [29] and the von Neumann neighbourhoods are
commonly used. Both employs a combination of the range r and a distance
metric on the lattice. The former uses the Chebyshev distance as the distance
metric, the latter uses the Manhattan distance. Both of these metrics can
be used for any number of dimensions. Examples for r = 2 in one and two
dimensions are shown in Figure 1.

2

2

1

1

(a) One dimension

2

2

2

2

2

2

2

2

2

2

2 21 1

2 21 1

2 21 1

1

1

(b) Moore (2D)

2

2 1 2

2 1 1 2

2 1 2

2

(c) von Neumann (2D)

Figure 1: Some examples of neighbourhoods. Each subfigure shows the neigh-
bourhood of range r = 2 for the black cell. The distance to the black cell is
indicated for the other cells in the neighbourhood. For one dimension the Moore
and von Neumann neighbourhoods are equivalent.
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1.3 Visualisation

The evolution of one-dimensional CAs can be plotted in two dimensions using
spacetime plots, as shown in Figure 2. Here the cells are represented as squares,
whose colour indicates state. Time flows downward on the plot, and the rows
show the spatial configuration of the CA for consecutive time steps. One column
in the plot shows the temporal evolution for one cell.

space

time

initial state

Figure 2: Spacetime plot. Excerpt from larger plot of ECA rule 30. Each row is
a snapshot of the CA for one time step. Each column is the temporal evolution
of one cell.

CAs of higher dimensionality are harder to represent in the plane, due to
the obvious lack of dimensions. One-dimensional series of cells from higher-
dimensional CAs can be plotted using the same spacetime plots as for one-
dimensional CAs [35], providing some insights into the general temporal be-
haviour. Other methods include state transition diagrams [34] and 3D render-
ings of spacetime plots for two spatial and one temporal dimension. [47] Another
option is to use animation to show the evolution of the CA over time, as has
been done for numerous implementations of Conway’s Game of Life.

1.4 Representation

The rule of a CA can be represented in different ways, such as using boolean logic
[44] or implementation as program code [5]. In this thesis, a rule is represented
in tabular form [20] and numbered according to the numbering scheme presented
by Wolfram. [44]

For table representation, each combination of neighbour states is treated as an
integer value whose base is the number of CA states, and sorted numerically.
The next state of the center cell is assigned to each combination, resulting in a
table of next states indexed by the local neighbourhood. An example table for
ECA rule 110 is shown in Table 1.

Using Wolfram’s naming scheme [44], the list of next states is converted to an
integer similarly to the conversion from neighbourhood states to table indexes.
The ordering of digits is such that the next state of the first neighbourhood
index is the least significant digit in the resulting rule number in base k. For
the example in Table 1, the table gives binary rule number 0b01101110, which
is 110 in decimal. An alternative way to show the same naming scheme is
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Neighbourhood Next state
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 1: Table representation of ECA rule 110 = 0b01101110. The neighbour-
hood is used as an index to look up the next state of the center cell.

provided in Figure 3. The possible state combinations for the neighbourhood
and the resulting next state for the center cell are represented using squares as
in spacetime plots. Below are the numerical representations of the next center
cell state, forming the binary representation of the rule number.

0 b 0 0 01 1 1 1 1 = 110

Figure 3: Rule numbering. ECA rule 110 (binary number 0b01101110). First
row indicates neighbourhood states, second row indicates next center cell state.
Binary representation of rule number at the bottom. Based on similar figures
from Wolfram [44,47].

1.5 Attractors, transients and Garden of Eden states

The ks configurations of the cells of a k-coloured CA of size s constitutes the
set of possible global states for that CA. As this set is finite and the evolution of
the CA is deterministic, at some point in the evolution of the CA it will enter a
previously visited global state. The case of a state whose next state is the same
is called a point attractor, while a series of states in a loop is called a cyclic
attractor.

States that are part of an attractor are called attractor states. States that can
only appear as initial states, i.e. states with no preceding states, are called
Garden of Eden states. [29] States that are neither attractor states nor Garden
of Eden states are called transient states.

The part of the CA’s evolution which is either in Garden of Eden or in transient
states is called the transient part, and the transient time is the number of time
steps needed for the CA to reach an attractor. The attractor length is the
number of distinct states in an attractor.
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1.6 Classification

1.6.1 Overview

Different CAs, even of the same rule space, show highly different behaviour. [44]
Several classification schemes for CAs have been proposed [13,15,17,20,48], two
of which [18,45] will be presented in Sections 1.6.2 and 1.6.3. A fourier transform
based classification [33] is summarised in Section 3.4.

1.6.2 Wolfram classes

Wolfram classifies CAs in four classes: [45]

Class I reaches a uniform point attractor after only a few time steps. The
attractor is the same for almost all initial states.

Class II quickly reaches a state of repeating localised structures, i.e. individual
portions of the CA do not interact after a short transient, and each structure
has a short period.

Class III shows lasting random-like behaviour, although some small structures
are always seen as part of the randomness.

Class IV shows localised moving structures with intricate interactions. While the
structures themselves are fairly simple, their interaction is complex and random-
like. It is postulated that class IV automata hold the property of universal
computation [47].

A listing of the classification of the ECA rules is provided in [23].

1.6.3 Langton’s lambda parameter

The λ parameter, introduced by Langton [18], is the proportion of neighbour-
hood configurations leading to a chosen quiescent state, according to the update
function of a CA. The formal definition from Langton is

λ =
KN − n
KN

, (2)

where K is the number of colurs, N is the size of neighbourhood and n is the
number of transitions to the quiescent state. λ = 0.0 when all neighbourhood
configurations leads to the quiescent state, and λ = 1.0 when the quiescent state
is absent from the transition table. While λ is a good parameter for larger CA
rule spaces, only a rough correlation between λ and CA dynamics is found for
ECAs. [18]
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2 Computation in CAs

2.1 The notion of computation

Mitchell et al. [28] describes three different definitions of “computation” in the
context of CAs. The first definition is that the CA performs a “useful” compu-
tational task. Input is taken in the form of an initial configuration, output is the
arrival at some “goal” state or the state after a given number of time steps. The
second definition is that the CA is capable of universal computation and can
emulate a programmable computer given the right initial condition. The third
definition is intrinsic computation, measured as the amount of computational
behavior in the CA independently of its “usefulness”.

According to Langton, [18] the CAs can be viewed either as a machine or as a
physical layer on which to build a machine. In the first case, the machine is the
CA itself while the initial configuration is pure input. In the second case, the
CA provides a simulated physics environment in which an embedded computer
can be built. The initial configuration then consists of both machine and data.
Those two views correspond roughly to the first two meanings of computation
as described by Mitchell.

Universal computation has been proven for several CAs, by von Neumann [41],
Conway et al. [4], Codd [8] and others [1, 9, 10,21,40].

In this thesis, the CA is primarily regarded a function mapping the set of initial
configurations to a set of outputs. The form of computation that is considered
interesting is the work done by the CA to perform this mapping. As in the
first view from Langton, initial configuration is treated as pure input. The
limitations of the output set are extended beyond those of the first definition
from Mitchell, so that it covers any type of data that can be extracted from
the CA during its evolution. This includes any transformation of the spatial
configuration or the temporal behavior of the CA, allowing for exploration of
new types of output.

2.2 Frequently used problems

2.2.1 Overview

Among the most frequently used problems within the field of CAs as computing
machines are pattern generation, pattern replication, density estimation and
the firing squad synchronisation problem. Pattern generation is the problem of
finding a CA that produces a given pattern from a given, simple, initial config-
uration. The problem of pattern replication is that of finding a CA reproducing
multiple instances of a small pattern given as an initial configuration. Both the
density estimation problem and the firing squad synchronisation problem are
somewhat more complicated, and are described in the following subsections.
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2.2.2 Density estimation

The problem of density estimation is the decision problem of deciding whether
p0, the ratio of zeroes in an initial configuration, is above or below a given
threshold pc. The output is a point attractor after M time steps, consisting of
only 0s if p0 < pc and only 1s if p0 > pc. The case of p0 = pc is undefined. [27]
One such problem is the pc = 1/2 task for binary CAs, which has been used in
studies of CA and GAs. [28,36]

2.2.3 Firing squad synchornisation

The firing squad synchronisation problem is the task of constructing a one-
dimensional CA of range r = 1 and arbitrary size s, where all cells are to enter
a “firing state” F simultaneously and for the first time. With the exception of
one cell at the far end of the automata, all cells start out in the quiescient state
L. The far end cell start in the “general” state G. [22,25] Since its introduction,
several solutions have been found. [3, 12,24,26,42,49]

3 Prior research using frequencies

3.1 Overview

Various researchers have investigated fourier spectra of ECAs, both on evolved
spatial configurations [19, 39] and for temporal behaviour [30, 33]. In the clas-
sification cases the specter is used as a fingerprint for classifying the CA under
the assumption that properties of the specter are dependent not on the initial
state but on the CA rule itself. In this section, three studies of ECAs and their
fourier spectra are briefly presented.

3.2 Power spectra and regular languages

Dependence on rule for statistical properties of the attractor states is explicitly
asserted by Li [19], although the only sources for this statement are “W. Li
(unpublished) and H. Gutowitz (private communication).” There does not seem
to be any published studies on spectral diversity with respect to initial state.

The article features fourier transforms of the evolved spatial configuration of all
the ECAs, save for the eight Wolfram class I rules∗.

The article relates CA attractors and regular languages, and provides a method
to calculate the power spectra of regular languages. The generation of charac-
teristic power spectra for a couple of ECA rules are provided as examples.

∗Wolfram class I rules revert quickly to a uniform state, of which there is no use of spatial
power spectra. They would all be zero everywhere but for frequency 0.
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3.3 Spectral equivalence classes

In the paper by Ruivo and Oliveira [39], discrete fourier transforms of evolved
spatial configurations of ECAs are used to relate the rules based on similarities
in the observed spectra. Both periodic and non-periodic boundary conditions
are investigated, periodic first. The spectra are based on the evolved global state
from 1000 initial configurations of size 1024, after 200 time steps. This choice
is validated by running additional simulations for some rules, using larger CAs
and more initial states, with the resulting spectra remaining approximately the
same.

Using a euclidean distance metric for the difference between the various spectra,
59 spectral classes are detected among the ECAs. Of these, some classes have
resembling spectra not deemed equal by the first application of the metric.
Using the distance metric further, 19 groups of connected classes – as well as
connections among these groups – are found. The final result is a connected
graph of the groups, and connected graphs of the spectral classes for each group.

The same method employed for non-periodic boundary conditions results in
different spectral equivalence classes than for the case of periodic boundary
conditions.

3.4 Classification and 1/f noise

Ninagawa [33] investigates the discrete fourier transform (DFT) of the temporal
evolution of ECAs, in particular that of rule 110. All 88 equivalence classes are
investigated and sorted in categories based on their power spectra given by the
DFT.

Category 1 show very low power density, with a possible peak at the highest
frequency. The subcategory with no peak is the set of Wolfram class I rules and
a subset of the class II rules which have point attractors. The one with the peak
is a subset of the class II rules whose localised structures toggles for every time
step.

Category 2 have spectra with broad-banded noise. It is divided into two sub-
classes, where 2-A show greater variation in the specter than 2-B. The latter is
close to white noise (i.e. a flat specter, but of much larger strength than those
of category 1.) The 2-B rules are the same as the Wolfram class III rules†.

Category 3, coined the “Power law spectrum”, consists of spectra where the
power density is inversely proportional to the frequency. This is also called “1/f
noise”. [16] The ECA rules 54, 62 and 110 are classified in this category. These
rules are investigated for long time intervals, and rule 110 is shown to result in
1/f noise even for the longest runs. For rules 54 and 62, the 1/f noise is only
observed for limited observation lengths. It is proposed that 1/f noise is related
to universal computation.

†Although 2-B is presented as coinciding with class III, the list also contains class IV rule
106.
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Two rules do not fit in any of the three categories, and are called “exceptional”.
These are rules 73 and 204. The former has a spacetime plot of stable walls di-
viding areas of chaotic behaviour, resulting in myriad local periods each leading
to a peak in the power spectrum. The latter is the identity rule, whose specter
is zero everywhere but at frequency 0.

4 Mathematical and statistical foundations

4.1 Functions

The mathematical notion of a function is important to the project, and some
formal terminology is quickly described here. The most important terms for
this thesis are shown in Figure 4.

The function f : A → B is a mapping from the non-empty set A to the non-
empty set B. Every element a in A is mapped to an element b in B, and the
notation f(a) = b expresses this mapping for a particular a. The element b is
the image of a, and a is a preimage of b. While b is the sole image of a, b may
have multiple preimages. The set A is called the domain of f , while the set B
is called the codomain of f . The range of f is the set of all images of elements
of A, in other words the subset of B where every element is mapped to by at
least one element of A. [38]

A (domain) B (codomain)

a

b

f : A→ B

range(f)

Figure 4: Functions. Based on similar figures from Rosen [38].

To avoid confusion with the range r of a CA rule, the range of a function will
in this thesis be called “function range”. The size of the function range when
applied to a specter generating CA is coined the “spectral diversity” of the CA.

4.2 Necklaces

When using periodic boundary conditions for a one-dimensional CA, the topol-
ogy of the CA becomes a circle. For some purposes, all rotated versions of a
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global state now can be regarded the same.‡ This is the concept of equivalence
classes of k-ary strings over rotational shift, or k-ary necklaces. [7]

The number of binary necklaces is given by the equation

Zs =
1

s

∑
d|s

ϕ(d)2
s/d (3)

where s is the length of the string, d|s denotes the divisors d of s and ϕ is
Euler’s totient function [11]. Values for the first few string sizes s beginning at
s = 1 are 2, 3, 4, 6, 8, 14, 20, 36. In contrast the series 2s of binary global
states not counting equivalence over rotation is 2, 4, 8, 16, 32, 64, 128, 256
for corresponding values of s. It is clear that rotational equivalence noticeably
limits the number of global states where applicable.

An efficient algorithm for sequentially generating the set of k-ary necklaces of
size s is provided by Fredricksen and Kessler. [11]

4.3 Multichoose

The number of possible spectra when counting the number of toggles for each
cell of a size s CA over a window of size w is limited by both s and w. It can
be viewed as a combinatorial problem of picking one of w possible frequency
counts s times. The number of ways to do this, also known as “w multichoose
s”, can be calculated using the equation:

((
w

s

))
=

(
w + s− 1

s

)
=

(w + s− 1)!

s!(w − 1)!
(4)

4.4 Correlation

Linear association between two statistic variables X and Y can be estimated
using the Pearson product-moment correlation coefficient r:

r(X,Y ) =
Sxy√
SxxSyy

, (5)

where

Sxy =

n∑
i=1

(xi − x̄)(yi − ȳ). (6)

Here, xi denotes the i-th value of the variable X, and x̄ denotes the arithmetic
mean of the values in X.

r takes a value in the range [−1, 1], where 1 indicates a perfect linear relationship
between X and Y , 0 indicates no linear relationship and −1 indicates perfect

‡As will become clear in Section 10, this holds for initial states but not for evolved global
states.
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inverse linear relationship. Further, r2 describes the proportion of the total
variation of the values in Y that can be attributed a linear relationship between
X and Y . [43]
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Part III

Methodology

5 Togglecount

Introduced in this thesis is the togglecount method for transforming the tem-
poral evolution of a CA to output in the form of a specter. The transform is
fairly simple, as shown in Figure 5. Top left is the spacetime plot of a cellular
automata. Each state change of a cell – marked in the figure using red arrows –
is referred to as a “toggle”. For each of the s cells of the automata, the number
of toggles within a time window of w time steps are counted, as shown bottom
left in Figure 5. An array of the number of occurrences for each toggle count
constitutes the final specter, shown in Figure 5 as a bar chart (top right) and
corresponding array (bottom right).

Toggle counts: 2 4 2 3 4 3 4 2

Window,
w = 6

Toggle count

0 1 2 3 4 5

Cells

0

1

2

3

Cells, s = 8

0 0 3 2 3 0

Specter

Array

Figure 5: Togglecount. The number of state changes during a time window of
size w is counted for each of the s cells (left), before the counts are accumulated
to form a specter (right). The specter is visualised as a bar chart (top right)
or listed as an array (bottom right). The specter consists of w integer values
whose sum is s.

Observe that the specter consists of w non-negative integers whose sum is s.
Each integer in the array is a cell count, i.e. the number of cells in the CA with
a given number of toggles within the window of the transformation. The first
integer is for zero toggles, the last integer is for w − 1 toggles. The number of
cells is referred to as being in the “cell count domain”, while the toggle count
with which it is associated is referred to as being in the “frequency domain”.
When plotted, each toggle count in the frequency domain is associated with a
number of cells in the cell count domain.

The togglecount transform addresses the issue of obtaining multiple outputs
from a CA by providing an array of integer values. As it is computationally
simple it allows for easy implementation in both software and hardware, which
constitutes an advantage compared to the fourier transform.
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As togglecount is a transform over the temporal behaviour of the CA, for a
sufficiently large window size the entire cyclic attractor will contribute to the
result. In contrast, choosing one time step from a cyclic attractor yields output
depending on the phase of the attractor. It is thus less of a problem of choosing
the one “correct” time step from the CA. It also allows for using the transient
phase as a basis for output. However, as all point attractors show the same static
behaviour of no toggles, any point attractor will yield the same transform.

6 Waterfall plots

Inspired by spectrograms, used for instance by amateur radio operators and in
sound editing software, a new and combined approach is used in this thesis for
visualising the togglecount spectra of an evolving CA over time. Spectrograms
are plots showing power density along one axis and time along the other. The
idea of the waterfall plots of this thesis is to plot the spacetime plot of a CA
aligned with a spectrogram generated by the togglecount transform over the
same CA using a sliding window on the same temporal evolution. The process
of creating the plot is shown in Figure 6.

0 0 5 2 0 1

0 1 1 4 1 1

(a) (b)

Figure 6: Waterfall plot, w = 6, ECA rule 30. (a) Left, spacetime plot; right,
togglecount transforms of two time frames, represented as numbers and as
shades of gray. (b) Waterfall plot: Graphical representations of the togglecount
transform for each window position, aligned with the spacetime plot.

In Figure 6a, two togglecount transforms are generated from the spacetime dia-
gram to the left, and represented as shades of gray. The series of one-dimensional
specter plots forms a continuous flow of specter data alongside the spacetime
plot, as shown for a range of time steps for the same spacetime plot in Fig-
ure 6b. The plots are arranged so that each line of specter is besides the row in
the spacetime plot which is the last row of the window for that specter. Using
this representation, it is possible to get an intuition for how the togglecount
specter changes with the temporal behaviour of the CA.
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7 Specter density plots

To visualise the spread in resulting spectra from the togglecount transform,
specter density plots are generated by superimposing multiple pixelated two
dimensional specter plots. A pixelated specter plot for the array [0, 0, 5, 2, 0, 1]
is shown in Figure 7a. This is the same as the topmost specter from Figure 6a
in Section 6. For each frequency, i.e. toggle count, a black square marks the
number of cells having that number of toggles.
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Figure 7: Specter density plot, rule 30, CA size s = 8, window size w = 6. (a)
One pixelated specter. (b) All spectra, pixelated, faded and superimposed.

The final specter density plot in Figure 7b is generated by superimposing the
set of pixelated specter plots from all initial configurations. Each occurrence
of a black cell in a pixelated specter plot increments the “blackness” of the
corresponding cell in the specter density plot. The cell of the highest blackness
is painted black, and the rest are painted in a shade linear with respect to
blackness. This means the distribution of cell counts for each frequency can be
read from the plot.

For large CA sizes and window sizes, cells coloured by very few spectra become
very faint to the point of invisibility. Because of this, contribution is capped
at a certain maximum level, so that the contributions from most spectra are
still visible in the density plot. For large w and s the result is still some fading
indicating areas of fewer spectra, but information on distribution above the
threshold is lost. The plot still shows what counts are achievable, which is the
main objective.

8 Experimental approach

The purpose of the project is to find out whether the togglecount transform is
a feasible method for getting multiple variables from a CA. The most alarming
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concern is whether there is enough diversion among the resulting spectra to
make use of the multiple outputs generated. As stated in research question 1
(see Part I), intrinsic bounds on the spectra produced is to be investigated both
with respect to CA size s and transform window size w. Specter density plots
are created for several combinations of s and w, and organised in tabular form,
in order to map the bounds and compare them.

Also of importance is the limitations on and changes in spectral diversity as
window size and CA size changes, as stated in research question 2. Theoretical
limits for spectral diversity as a function of CA size and window size are calcu-
lated based on the number of possible initial configurations and the number of
possible toggle count spectra from a given CA size and window size. Simula-
tions are run to gather data on the spectral diversity for all ECAs over a range
of CA sizes and window sizes. The collected data is plotted and compared to
theoretical limits. Different behaviour of the spectral diversity with respect to
CA size and window size is investigated, with the aid of specter density plots
where needed.

Relation to existing classification schemes are considered during the investiga-
tions of the first two questions, and also employed in the efforts of explaining
observed behaviour.

9 Programs

9.1 Program overview

Various programs have been created for this thesis, to generate plots and data
through simulation and to analyse generated data. Most simulation is done with
the program “codomaincounter”, which is a multithreaded CA simulation tool.
Its purpose is to find the spectral diversity of a set of CAs, and to output this
number labeled with what particular CA it is associated with. The data is fed
to an sqlite database from where data can either be browsed directly using SQL
or be extracted by other programs for analysis.

The program “dbextract” is a small utility program written to extract data
points from the sqlite file, and arrange them space separated in lines of plaintext.

Programs working on the data from dbextract uses standard in and standard
out for data handling, so that steps in the process of analysis and presentation
can be performed either by piping data directly from program to program or
by writing to and reading from files holding intermediate representations and
results. These programs are the following:

“graphmaker”: Generates scatter plots or line plots.

“statistics”: Calculates statistical properties of the data.

In addition, two programs are used for generating images. The first program is
“caprint”, a predecessor to codomaincounter. Originally written to print space-
time plots of ECAs, it ended up being changed repeatedly to perform several

28



different tasks, before ending up writing low resolution image files of superim-
posed spectra. Although intended to be what codomaincounter became, the
combination of architectural limitations and the usability of the superimposed
spectra plots led to the decision to freeze program development, letting the pro-
gram do what it does the best. Cpaprint is now a specter density plot generator
for ECAs. At an earlier stage of development, it produced waterfall plots, but
this capability is regretfully lost during development.

The second image generating program is “spacetime”, which generates space-
time plots of ECAs.

9.2 Main simulation tool

9.2.1 Objective

The CA simulator named codomaincounter is core to the project. Its main
objective is to find the spectral diversity for a given combination of parameters
for the CA and for the transform. It is configured to run a batch of simulations
for a set number of randomly chosen CAs of a given number of colours and
neighbourhood range. Each CA is simulated over a range of CA sizes and for
a set of window sizes for the transformation. The results are written to an sql
file, for import to an sql database.

9.2.2 Main thread

The main thread of the program generates a queue of assignment objects, each
containing the information needed for a simulation run: Number of colours,
neighbourhood range, rule number, CA size and a list of window sizes. Simula-
tion is outsourced to worker threads whose task is to find the spectral diversities
for the given CA for all listed window sizes. The results are saved in the assign-
ment object, before the worker thread exits.

After having initiated a configurable number of worker threads, the main thread
enters a state of periodically checking for finished assignments. Data points from
a finished assignment are written to file, and a new worker thread is started with
a new assignment provided the queue is not empty. The program exits when
the assignment queue is depleted and all data points have been handled.

9.2.3 Worker threads

The worker threads simulate a CA according to the specification given in an
assignment object. A CA object is initialised with size, rule number, range
and number of colours. A rule table is calculated and represented as an array
inside the CA object. Member functions provides access to setting the global
state, getting a pointer to the current state and increment the CA to next time
step. Boundary conditions are handled by using a larger size for the global
state internally than visible outside the class, so that updating to the next
time step is identical for all cells. Outside cells are then updated according
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to cyclic boundary conditions. This internal representation of current state
simplifies the logic for calculating the next time step, and allows for easier
future implementations of additional choices for boundary conditions. The CA
class does not hold any temporal backlog.

A necklace generator using the algorithm from Fredricksen and Kessler [11],
mentioned in Section 4.2, provides the initial states. It is implemented as a
class, with member functions for accessing the current necklace, to increment to
the next necklace and to reset. When incrementing from the last necklace, the
object is reset to the first necklace. A member function returning whether the
current state is the reset state allows for looping through the full set of necklaces
with this as a looping condition. The necklace class handles arbitrary sizes and
number of colours.

A two dimensional array holds the spacetime plot of the CA. This is reused
for each run from initial state. It is arranged so that the temporal domain is
contiguous in memory. This allows for a function performing a transform on
the temporal behaviour of a single cell while being agnostic to the overall CA
size. While this may also be beneficial for speed, optimisation was not a main
reason for this choice. Implementing a togglecount function that only needs a
single pass over each cell while calculating spectra for multiple window sizes
would probably lead to better speed improvements if optimisation was the main
objective.

The spectra, once aggregated from the toggle counts of individual cells, are
saved as vectors in map structures for each window size. When simulation from
all initial states are finished, the sizes of these maps constitutes the spectral
diversities of the CA for the given window sizes. Results are written to the
assignment object and a “finished” flag is set before the thread exits, leaving
the task of registering the results to the main thread.
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Part IV

Results and Discussion

10 Theoretical expectations

10.1 Theoretical limits for spectral diversity

Before analysing the actual spectral diversities, some theoretical limits can be
calculated.

In order to allow for a consistent temporal transform, each subsequent state
has to be spatially located according to the one preceding it. This means all
ks possible global states are eligible during the temporal evolution of the CA.
However, in the final transform only the behaviour of a cell is of importance,
not its spatial location.

This means the whole spacetime plot from an initial configuration can be re-
garded as belonging to an equivalence group over rotation. All rotated versions
of an initial configuration will always result in the same specter, as long as
all other states during the temporal evolution of the CA are treated unequal
over rotation. Equality over rotation is the concept of necklaces, introduced in
Section 4.2.

Using Equation 3 from Section 4.2, the number of distinct initial configurations
for the range of CA sizes have been calculated and are presented in Figure 8.
Also presented in Figure 8 are limits for the number of distinct spectra for
three window sizes. The number of possible spectra is the number of ways to
distribute s cells over w toggle counts, for CA size s and window size w. These
are calculated using Equation 4 from Section 4.3.

The size of a function range can not exceed neither the size of the domain
nor the size of the codomain. In the case of the CAs concerned in this thesis,
this means the spectral diversity can not exceed the number of distinct initial
configurations nor the number of conceivable togglecount spectra.

When the lower bound on spectral diversity is given by the number of distinct
initial configurations, the CA will be denoted as input bound. When the lower
bound on spectral diversity is given by the number of possible spectra, the CA
will be denoted as output bound. As can be seen from Figure 8, the CA is input
bound for small s and output bound for large s. The least required s for a CA
to be output bound increases with window size.
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Figure 8: Number of unique initial states and number of possible spectra for
window sizes w ∈ {2, 4, 8}, for CA sizes in the range [1, 32]. (Note the logarith-
mic scale on the y axis.)

11 Qualitative study of ECA spectra

11.1 Waterfall plots

As a preliminary investigation, waterfall plots of all ECAs are considered. The
parameters for the experiment are CA size s = 200, a sliding window of w = 30
and runs for 300 time steps from an initial condition of one black cell. The plots
show variation between different rules, as shown in Figure 9.

While many rules reach either a point attractor or a short cyclic attractor leading
to constant or near-constant spectra, others show more interesting behaviour.
Rule 62 in Figure 9c is an example of the former, although untypical. Most rules
falling in this category end up having spectra consisting of almost all zeroes,
with the exception of 0 or 29 toggles (i.e. either point attractor or all cells
toggling for every time step.)

Wolfram class III rules 45 and rule 73, in Figure 9a and Figure 9b respectively,
show stable spectra of one and two peaks, with some minor variation. This
is also seen for other Wolfram class III and IV rules. While the spectra may
possibly be very different for other initial states, the randomness of class III
automata would suggest the waterfalls should show more variation over time if
this was the case. Rather, the plots seem to confirm that class III rules have
random qualities, resulting in uniform spectra resembling normal distributions.

Some rules, like rule 126 in Figure 9d, show more variation in the specter over
time. This may indicate a potential for greater spectral diversity. However,
rapid fluctuations between spectra also leads to sensitivity to the placement of
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(a) rule 45 (b) rule73

(c) rule 62 (d) rule 126

Figure 9: Four ECAs (left) and their waterfall plots (right). The waterfall is
calculated using the togglecount transform and a sliding window of size w = 30.
The CAs are of size s = 200 and of periodic boundary conditions. (a) Wide
specter with apparent little variation. (b) Two peaks of unequal width and
strength. (c) Strong and narrow stationary peak. (d) Variation in the frequency
domain over time. Generated by software written for this thesis.

the transform window in the temporal domain. This sensitivity is a problem
togglecount was thought to avoid. It is only occurring for a small number of
rules, which indicates it being a minor issue. Looking up spectral diversities in
the data sets from full simulations reveals that the rules in question are ranking
fairly high in spectral diversity, although several rules have considerable higher
values.
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11.2 Specter density plots

11.2.1 The general case

When investigating specter density plots, the most striking feature is the simi-
larity between different plots of the same rule. When varying the window size w
and CA size s, the plot is stretched in the frequency domain and cell count do-
main respectively. This becomes evident when arranging specter density plots
in tabular form, as is done for two rules in Figure 10. Shown in this figure
are rules 12 and 50, which have very low spectral diversities. The plots show
thin lines for all w and s, showing that a very limited set of spectra is present.
Stretching behaviour is typical for almost all ECAs, while about a third of the
rules are constrained to a specter variation of similar magnitude.
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(a) rule 12
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(b) rule 50

Figure 10: Typical specter density plots of ECAs. Small variation between
spectra results in a fairly thin line, and the overall shape of the plot is stretched
to fit within the range of frequencies and number of cells. Almost all ECAs show
similar stretching behaviour, and about 1/3 of them have similarly restrained
ranges of the underlying spectra. Generated by software written for this thesis.

The fact that 1/3 of the rules have a very limited specter space, as proved by
the specter density plots appearing as thin lines, suggests that intrinsic bounds
for the spectra produced is indeed a severely limiting factor. For this portion of
the rules, the initial configuration have little influence over the resulting specter.
As the spectra of different rules show different shapes, a mapping from rule to
specter is evident. At least for a third of the rule space of ECAs the specter
show much stronger dependence on rule than on initial configuration.
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11.2.2 More relaxed bounds on spectra

When investigating the same rules as in the waterfall plots of Section 11.1, it
becomes clear that the spectra shown in the waterfall are typical for these rules.
Specter density plots for these rules over a range of s and w are arranged in
Figure 11. The bounds provided by these rules are less strict than the narrow
bounds given by the rules of Figure 10.

Rule 45 (Figure 11a) shows all plots resembling normal distribution. Rule 73
(Figure 11b) shows two peaks, but also a general floor of activity over the full
range of frequencies. The peak of rule 62 (Figure 11c) is pronounced, and as
w is increased the density plot holds the general shape while shifting somewhat
towards higher toggle counts. Rule 126 (Figure 11d) has somewhat complex
plots with small detailed “islands” of high cell counts at near zero frequencies.
The scaling over both w and s show the characteristic stretching, apart from
the entire line of s = 15. The shape is skewed towards lower frequencies, and
seems to “lock” for w ≥ 20 leaving a tail of no toggle counts above a certain
threshold.

The deviations from linear scaling of the plots of rules 62 and 126 may seem
puzzling at first. For rule 62, a rule of Wolfram class II, the typical attractor
consists of stationary localised structures, most of which have period three, with
a backdrop also of period three. This explains the location of the peak at 2/3
along the frequency domain. As for the broader base, this may be a trace from
the transient period, with intermediate structures whose cells toggles with other
frequencies.

The lack of scaling of the s = 15 spectra of rule 126 is explained by the rule
entering point attractors around w = 20 for this particular CA size, thus fixing
the cell counts at low frequencies. Another example of a CA with similar be-
haviour is rule 60 for s = 20. As is the case for rule 126, the specter density
plot is skewed and a tail of cell count zero emerges above a certain frequency
threshold.

Similar tail phenomena as for rules 62 and 126 are observed for several rules
of Wolfram classes I and II. As class I quickly leads to a quiescent state, the
tail appears towards higher frequencies just as for rule 126. Wolfram class II
rules whose attractor is typically a point attractor show the same. Class II rules
whose attractor is a uniform frequency for all cells show specter density plots
shifting towards higher frequencies, while leaving an increasingly longer zero
tail at lower frequencies. Because of the short transients and the same typical
behaviour over all CA sizes, the effects are usually visible on the full range of
plots.

11.2.3 “Focused” specter density plots

Some rules show specter density plots that varies greatly both in the w and s
domain, two of which are plotted in Figure 12.

Rule 105 (Figure 12a) seems to hold a set of peaks of constant width whose
positions slide along with increasing window size. Increasing CA size seems to
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Figure 11: Specter density plots of the same ECAs as in the waterfall plots of
Figure 9. As for waterfalls, density plots show variation between the four cases.
(a) Resembling normal distribution. (b) Activity over all frequencies, with two
peaks. (c) One tall peak whose base seems to be of near constant width, while
the placement of the peak in the frequency domain is shifted due to scaling. (d)
The plots of s = 15 seems to “lock” in a fixed pattern for w ≥ 20, while the
other plots show the usual scaling behaviour. Generated by software written for
this thesis.
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Figure 12: Specter density plots of two ECAs whose plots for some combinations
(s, w) are more “focused”. (a) For s = 20, w = 25, the spectra have non-zero
values only on seven out of 25 frequencies. (b) A tendency to form a dotted
cross. Generated by software written for this thesis.

allow for more peaks. The most remarkable plot is the one for s = 20, w =
25. Here, the peaks are replaced by concentrated columns of activity, while
intermediate frequencies are not present. Further, the columns leaves gaps in
the low cell counts for the middle frequencies.

Rule 15 (Figure 12b) show a similar spread in specter density plots, with a
tendency to form a dotted cross. Just as for rule 105, most plots show a set
of overlapping peaks, while in this case several plots are severely limited with
respect to spectral diversity. For the fully focused dotted crosses, each frequency
is limited to hold one of two number of cells.

The issue of focused specter density plots will be revisited in Section 12.1.4.

11.2.4 Concluding remarks on specter density plots

While most rules show distinct shapes of specter density plots, many show large
ranges of cell counts for some frequency ranges. The proposition that the shape
of spectra are mostly dictated by the rule seems to hold true, but there is still
room for spectral diversity within the borders intrinsic to the rule. The nature
and extent of this spectral diversity is investigated in later sections.

37



12 Spectral diversity of ECAs

12.1 Varying window size

12.1.1 General results

In Figures 13, 14, 15 and 20, the spectral diversity of each of the 88 equivalence
classes of ECAs are plotted over a range of window sizes 1 ≤ w ≤ 32. The CA
sizes were 8, 12, 16 and 24.
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Figure 13: Spectral variation, CA size s = 8. All ECAs, superimposed. Period-
icity is evident.

A striking feature of the data set is that while some rules seem to approach a
limit spectral diversity, others show oscillating behaviour. Perhaps more strik-
ing, most oscillation seems to be synchronized with little to no phase shift and a
period equal to the CA size s. Four cases of oscillation show a period of 2s, two
others a period of 1

2s. For the purpose of further investigation, spectral diversity
with respect to window size is classified using the following set of definitions:

� Class W1 rules have constant spectral diversity for window sizes w larger
than the CA size s. For all w > s, all spectral diversities are equal.

� Class W2 rules are those rules that are not of class W1, and where for two
window sizes wa and wb, with spectral diversities Sa and Sb, if wa < wb

then Sa ≤ 2Sb. That is, the function range for a larger window size is
never less than half of the function range for a smaller window size.

� Class W3 rules are those rules that are not of class W1 or W2, and whose
behaviour with respect to window size is periodic. An optional subscript
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Figure 14: Spectral variation, CA size s = 12. All ECAs, superimposed.

denotes the period of the oscillation, which is denoted in terms of the CA
size s.

� Class W4 rules are those rules that are not of any other class, should such
rules exist.

This scheme is proposed in this thesis, for the purpose of classifying rules based
on their togglecount transform. Note that this set of definitions may classify
the same rule as belonging to different classes depending on the choice of s.
E.g. for s = 1 all rules are of class W1, since the emergent behaviour of the one
cell will inevitably be either fixed, toggling once or constantly toggling. Thus,
spectral diversity is constant after a transient of at most one time step. Further
discussion will assume s = 16 unless otherwise stated.

The naming scheme uses a “W” prefix (for “window space”) to distinguish this
class scheme from other CA classifications. In Figure 15 the (s = 16) plots are
colour coded to highlight the classes. Figure 16 shows one example from each
of W1, W2 and the three identified periods of oscillation in W3. The number
of rules of each class belonging to each of the Wolfram classes and Ninagawa
categories are provided in Table 2.

§In the article by Ninagawa [33] rule 26 is listed as being both category 1 and 2-A, while
rule 36 is not listed at all. The assumption here is that the rule 26 listed as category 1 is
in fact the missing rule 36, while the listing as category 2-A is correct. This fits with the
descriptions of what behaviour to be found in each of the categories. Rule 36 is in W1, rule
26 in W2.
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Figure 15: Spectral diversity, CA size s = 16. Colour coded for identified classes
of behaviour with respect to window size. W1: Converges rapidly to a constant.
W2: Converges but does not settle. W3s: Periodic, T = s. W3s̄: Periodic,
T 6= s.

Wolfram class Ninagawa category
I II III IV 1 2-A 2-B 3 E Total

W1 7 28 2 0 34§ 0 2 0 1 37
W2 1 10 7 4 4 6 8 3 1 22
W3 0 27 2 0 0 27 2 0 0 29

Total 8 65 11 4 38 33 12 3 2 88

Table 2: The 88 ECA equivalence classes. Number of ECAs of each Wolfram
class and of each Ninagawa category, grouped by window space classes W1, W2
and W3.

12.1.2 W1 rules

There are 37 rules in the W1 class for CA size 16. Spacetime plots of these
rules for s = 16 and w = 32 are shown in Figure 17, and one example of the
behaviour with respect to window size is shown in Figure 16. Out of the eight
ECAs of Wolfram’s class I, all rules except for rule 168 belong to W1. The
remaining W1 rules are all from Wolfram’s class II, with two exceptions: Rules
60 and 90, both of Wolfram’s class III.

The fact that most class I rules also are in W1 seems reasonable. As the class I
rules reaches a point attractor, once the longest transient is reached no changes
in the togglecount transform are encountered. There are no additional toggles
beyond this point. When rule 168 fails to reach constant spectral diversity at
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Figure 16: Spectral diversity, CA size s = 16. One rule from each of the
identified behaviours for ECAs with respect to window size: Classes W1, W2,
W3s, W32s and W30.5s. Note that rule 60 show a much higher spectral diversity
than what is typical for W1 rules, although the general shape of the graph is
typical.

w = s, it is because for some inputs it shows class II behaviour with (shifting)
localised structures. This adds a component of oscillation, as will be shown for
class W3 in section 12.1.4. The spectral diversity of rule 168 is varying over the
range [1038, 1104] for 16 ≤ w ≤ 32.

Similarly, that the remaining W1 rules are mostly class II is explained by the
definition of class II. Class II behaviour is repeating, localised structures. As
these structures have a limited width, they are also limited with respect to the
togglecount transform. For a structure of width a, the longest “local” cycle is
of length a2. This means the number of possible frequencies is also limited to
a2 for the cells of that structure. For 28 of the 65 class II rules, this results in
the spectral diversity being fixed prior to w = s. They appear in Figure 17 as
the CAs that still has black cells at the bottom of the plot. Here, they have
either reached a point attractor, or a portion of the cells has entered a state of
toggling for every time step while the remaining cells are fixed.

All class II rules identified as class W1 are also identified by Ninagawa as cate-
gory 1. Only three class II rules (37, 94 and 172) are category 1 but not in W1.
This shows a connection between W1 and category 1 behaviour, in filtering out
class II rules whose temporal evolution leads to either a point attractor, or an
attractor of length two.

Rules 60 and 90 are somewhat surprising to find in W1, as class III rules show
random behaviour. One would think that the randomness should result in
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rule 0 rule 1 rule 4 rule 5 rule 8 rule 12 rule 13 rule 19

rule 23 rule 28 rule 29 rule 32 rule 33 rule 36 rule 40 rule 44

rule 50 rule 51 rule 60 rule 72 rule 76 rule 77 rule 78 rule 90

rule 104 rule 108 rule 128 rule 132 rule 136 rule 140 rule 156 rule 160

rule 164 rule 178 rule 200 rule 204 rule 232

Figure 17: Class W1 ECAs. Spacetime plots from the same random initial
configuration. Generated using software written for this thesis.

varying spectral diversity over varying window size. However, both of these rules
turn out to have short enough transients and small enough attractor lengths to
fall within the W1 class. Indeed, for the random initial configuration used in
Figure 17 they both reach the null configuration as a point attractor. Also, rules
60 and 90 by far give the largest spectral diversities for W1 rules, of 3543 and
1429 respectively. The other W1 rules are in the range [1, 483]. This difference
is easily explained by the apparent randomness of class III rules.
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12.1.3 W2 rules

22 ECA rules belong to the W2 class for s = 16. Spacetime plots are shown
in Figure 18, and one example of the spectral diversity with respect to window
size is shown in Figure 16.

rule 9 rule 18 rule 22 rule 25 rule 26 rule 30 rule 37 rule 41

rule 45 rule 54 rule 57 rule 62 rule 73 rule 94 rule 106 rule 110

rule 122 rule 126 rule 134 rule 146 rule 168 168b rule 172 172b

Figure 18: Class W2 ECAs. Spacetime plots from the same random initial
configuration. 168b and 172b show emergent behaviour for an alternative initial
configuration with no consecutive white cells. Generated using software written
for this thesis.

The aforementioned class I rule 168 belong to this class, as explained in sec-
tion 12.1.2. Rule 172, a Wolfram class II rule, show similar behaviour to that of
rule 168: For some rules it shows class I behaviour, for others class II. Rule 18,
while quickly entering the null point attractor in Figure 18, is a Wolfram class
III rule whose typical behaviour is random-like and lasting. All four of the class
IV rules are in W2. These are rules 41, 54, 106 and 110.

As for W1, the occurrence of class II rules can be explained by the localised
structures leading to short (local) attractor lengths. The difference with respect
to the W1 cases is that for class II rules in W2 transients are longer and show
more variation in length, or the diversity of cycle lengths of repeating localised
structures is larger.

The fact that most class III rules are in W2 may have to do with the relative
uniformity of the randomness generated by those rules. As noted in section 11,
class III rules tend to result in spectra resembling normal distributions regardless
of window or CA size. Class III rules are also in Ninagawa category 2-B, which
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are characterised by a power spectrum resembling white noise. Again a link
between togglecount and fourier transform is experienced through the window
space classes and Ninagawa’s categories.

As for the class IV rules, their long transients and long attractors certainly
prevent them from being in W1. Rule 110, which is proven to hold the property
of universal computation [9], is one of the five rules with the highest spectral
diversities throughout the space of window sizes, along with class IV rules 41
and 106. W1 is also the only class to have category 3 rules, as all category 3
rules are to be found in class IV.

The plots of the rules with the largest spectral diversity show little deviation to
a smooth increasing curve. It seems the potential for variation in these CAs is
so high that it is pushing close to the theoretical limit imposed by the number
of unique initial states or the number of possible spectra, thus never falling far
beyond any level achieved by a smaller window size.

12.1.4 W3 rules

The 29 remaining rules all show oscillating behaviour for s = 16. 27 of them are
of class II, and all of these rules yield repeating shifting patterns on spacetime
plots from random initial conditions. The 23 rules showing a period of T = s
are the rules whose emergent patterns shifts by one cell for every time step. The
four remaining class II rules show a period of T = 2s, and those four generate
localised patterns shifting one cell for every two time steps.

Finally, without any apparent shift or symmetry in the typical emergent pat-
terns, class III rules 105 and 150 show the exact same spectral diversity and a
period of T = 8 = 1

2s. Both of these rules are symmetrical, have λ = 1
2 and

are the logical opposites of each other. Their boolean forms are p ⊕ q ⊕ r and
¬(p⊕ q⊕ r) respectively. As seen for one random initial condition in Figure 19,
their typical behaviour for s = 16 is to immediately enter a cyclic attractor of
length 8. Rules 105 and 150 are among the ECA showing “focused” specter
density plots (Section 11.2.3) for certain CA sizes and window sizes.

The reason for shifting patterns resulting in oscillating spectral diversity with
respect to window size is that all cells are essentially toggling in the same pat-
tern. Let the number of toggles during one full such cycle be T , and the period
p. A transform over a window size of p+ 1 will yield T as the toggle count for
all cells. If this period is preceded by a transient of one time step, the specter
from window sizes 2 and p+ 2 will be the same, except the latter will be shifted
T toggle counts in the frequency domain, as all cells have T additional toggles.

At the window sizes aligning with an integer number of loops through the cycle
period p after the initial transient, the same spectral diversity as for the transient
itself will be experienced. For intermediate values, toggle counts may differ
between cells, and more spectral diversity is to be found. The farther away from
the aligned window sizes, the more diversity may occur. For rules with short
transients this results in a repeating oscillating sequence of spectral diversities
with respect to window size.
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rule 2 rule 3 rule 6 rule 7 rule 10 rule 11 rule 14 rule 15

rule 24 rule 27 rule 34 rule 35 rule 38 rule 42 rule 43 rule 46

rule 56 rule 58 rule 74 rule 105 rule 130 rule 138 rule 142 rule 150

rule 152 rule 154 rule 162 rule 170 rule 184

Figure 19: Class W3 ECAs. Spacetime plots from the same random initial
configuration. Generated using software written for this thesis.

Rules with longer transients may experience some of the oscillating effect, but
differences in transient lengths will lead to a differing time step for the oscillating
behaviour to begin. As the oscillations are out of phase, their sum will not lead
to overall oscillating behaviour. This is what happens for the rules with localised
shifting patterns that are in W2.

The oscillating behaviour of 105 and 150 can be given a similar explanation as
for the CAs with short transients and shifting patterns. As they immediately
enter a short cyclic attractor of period p, any cell whose toggle count is T during
that period will have a toggle count kT after k periods. This means the specter
at all window sizes kp + 1 are mapped, with each specter for one k directly
mapping to the specter of another k. The result is that the spectral diversity
at any window size kp + 1 will be the same. As for the pattern shifting rules,
larger spectral diversity will be found for other window sizes.

Most Ninagawa category 2-A rules are in W3. This is related to the shifting
temporal evolution, which leads to a peak in the power spectrum for large
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windows for the fourier transform. For rule 6, whose pattern shifts one cell
every time step, Ninagawa observed a peak at frequency f = w/s, for window
size w and CA size s. [33]. This relates to the behaviour of the togglecount
transform with respect to window size, with a period of w.

12.1.5 W4 rules

Of the 88 ECAs, no rules are of class W4. Decreasing spectral diversity for
increasing window size seems to have a connection to oscillation, either due to
shifting patterns or because of immediate short cycle lengths. When spectral
diversity is introduced for a smaller window size, it seems unlikely to find an
effect permanently undoing this diversity for all larger window sizes.
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Figure 20: Spectral diversity, CA size s = 24. All ECAs, superimposed. The
relative difference in spectral diversity is larger than for smaller CA sizes.

12.2 Varying CA size

12.2.1 General results

Spectral diversity for ECA rules with respect to CA size s are plotted in Fig-
ure 22 and Figure 21, colour coded for which Wolfram class they belong to.
For all window sizes, Wolfram class III and IV rules show the highest spectral
diversities, class II rules are distributed over most of the range of diversities and
class I are mainly centered at the bottom. When s ≤ w, for most combinations
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of s and window size w all class III and class IV rules have spectral diversities
of more than 1/10 of the teoretical bound.

When investigating the λ parameter, a connection to spectral diversity is found,
as is expected. For this investigation, the rule of the lowest λ value was chosen
from each equivalence class, so that the λ value is on the interval [0, 0.5]. While
some rules of all values of λ show little spectral diversity, only one rule with
λ = 2/8, and some rules of λ = 3/8 and λ = 4/8 show a spectral diversity of
more than 1/3 of the theoretical bound for w = 16 and s = 24. This shows a
weak correlation between λ and spectral diversity.
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Figure 21: Spectral diversities along with the bounds given by the domain.
Window size w = 16. Color coded according to Wolfram class. Most rules of
class III and IV are above 1/10 of the bound for most CA sizes 1 ≤ s ≤ 24.
Most class I and II rules show a spectral diversity below 1/10 of the bound, and
are distributed over the full range.

12.2.2 Small CA sizes

For CA sizes s less than almost two times the window size w, the rules with
the highest spectral diversities are virtually at the theoretical limit. This is
most noticeable in Figure 21, where the graphs of some class IV rules overlap
the graph of the bound for most of the graphed interval. Also, the spread of
spectral diversities for rules of all Wolfram classes, as well as that for all window
space classes, is near uniform for the smallest CA sizes.

The spread of spectral diversities with respect to CA size is best illustrated
by comparing the window space graphs of Figure 13 and Figure 20 from Sec-
tion 12.1. In the former, s = 8, and spectral diversities of all types of rules are
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(a) w = 4
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(b) w = 8

Figure 22: Spectral diversities along with the bounds given by the domain and
codomain. Window sizes w = 4 and w = 8. Color coded according to Wolfram
class. (a) w = 4, domain bound for 1 ≤ s ≤ 12, codomain bound for s ≥ 13.
(b) windowsize = 8, domain bound.
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spread over the full range of theoretically possible values. In the latter, s = 24,
and most rules have relatively small values of spectral diversity. Of the rules
with a spectral diversity of more than 1/4 of the bound, few show oscillating
behaviour and none reach a constant value for s = 24. In contrast, for s = 8
most rules of all classes show a diversity of more than 1/4 of the theoretical
maximum.

12.2.3 Large CA sizes

As the CA size grows larger, spectral diversity decreases relative to the theo-
retical bound, for all rules. As seen in Figure 22a, the largest gap occurs at the
point where the CA changes from being input bound to being output bound.
The graph is for window size w = 4, and the CA is output bound from CA size
s = 13. For even larger CA sizes, for the rules with highest spectral diversities
the relative gap slowly decreases. The emergence of a growing gap is also seen
for other window sizes, for example for w = 8 graphed in Figure 22b.

12.2.4 The rule intrinsic bound on spectral diversity

When the spectral diversity is close to the domain bound, it means almost every
unique initial configuration gives a unique specter. For small CA sizes, where
the number of initial configurations is by far the limiting factor, this is the case
for many rules. It relates to the observation of stretching in the s domain of
the specter density plots of Section 11.2.1: Even for small s, the set of initial
configurations results in a full repertoire of differing specter shapes.

For larger CA sizes, even if the theoretical bound on the codomain size allows
for each initial configuration to map to a unique specter, the rule specific specter
limitations blocks part of the codomain from usage. A new bound is imposed
by limitations intrinsic to the rule, encompassing only a fraction of the spectra.
This lowers the codomain boundary to a fraction of its theoretical value, with
the fraction being different for different rules.
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Part V

Conclusion

13 Results

Togglecount, a transformation for the purpose of getting multiple variables as
output from CAs, have been suggested in this thesis. It is a simple transform
over the temporal evolution of the CA. Also introduced is the concept of spec-
tral diversity, which is the number of unique spectra given by the togglecount
transforms of evolutions from all initial configurations.

Some ECAs show more variation of spectra over temporal evolution than others.
For ECAs whose specter heavily depends on the choice of timing for the trans-
form window, this may lead to similar problems as when choosing the global
state on a particular time step for output. A simple investigation of the specter
evolution over time, with a sliding window of constant size for the transform,
suggests most ECAs have little temporal fluctuation in their spectra.

All rules have intrinsic boundaries for the spectra from the togglecount trans-
form over the temporal evolution of the CA. While some rules exhibit strict
boundaries, others allow for more spectral diversity. The general shape of these
boundaries scale with window size and CA size. Some rules show different
boundaries for certain CA sizes, window sizes or combinations thereof.

Spectral diversity over increasing window size can be classified in three classes,
which are proposed in this thesis:

� W1: Approaches a constant spectral diversity prior to w = s, for window
size w and CA size s.

� W2: Approaches a limit spectral diversity, but fails to stabilise. Does not
fall below 1/2 of highest spectral diversity of any smaller window size.

� W3: Spectral diversity is oscillating with respect to w. Related to short
transient and shifting patterns in the attractor.

In addition, class W4 is reserved for rules that do not fit in any of the other
classes although the suggestion is that no such rule exists. A rule may belong
to different classes for different CA sizes. The classes are related to the five
categories of Ninagawa, in that most category 1 rules are W1, most category
2-A rules are W3, and most categories 2-B and 3 rules are W2. As the basis for
the Ninagawa categories is fourier transforms over the temporal evolution of the
CA, this indicates a relation between the fourier transform and the togglecount
transform.

While boundaries for resulting spectra are intrinsic to rules, most rules give room
for spectral diversity. Wolfram class III and IV rules show spectral diversity of
more than 1/10 of the theoretical maximum, for most combinations of CA size
and window size. The theoretical boundaries are given by the number of unique
initial configurations (domain) and the number of possible spectra (codomain).
The latter seems to impose more of a limit than the former. Several rules show
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spectral diversity close to the boundary when the domain is the smaller, while
no rules are close to the boundary when the codomain is the smaller. This is
because of the boundaries for the spectra intrinsic to the rule itself.

Spectral diversity increases with CA size, and the increase is near linear with
domain size for small CA sizes relative to window size. For large CA sizes relative
to window size, spectral diversity is increasing near linearly with codomain size.

Spectral diversity increases with window size, but the increase stops around the
point where the window size reaches the size of the CA. Some rules show lasting
oscillating spectral diversity with respect to window size, most of which has a
period equal to the CA size.

Togglecount allows for multiple variable output from a CA with the constraint
of a sum of these variables equal to the size of the CA, a number of variables
equal to the window size chosen for the transform, and boundaries imposed by
the particular CA rule. For some ECA rules pectral diversity leads to varying
output values for multiple variables, and the togglecount transform seems to
be a feasible way to get multiple variables from a CA. The subject should be
investigated further.

14 Further work

14.1 Changing the boundary condition

By changing the boundary condition, the number of distinct initial configura-
tions will change. Using the null boundary condition will lift the equivalence
on rotation, while introducing the null boundary on one side and the one state
as boundary on the other side will remove equivalence on reflection for asym-
metric rules. As the bound on initial configurations is increased, higher spectral
diversity is to be expected for CA sizes that are now input bound.

14.2 Number of colours and neighbourhood range

Further investigation could be done by increasing the number of colours or
the size of the neighbourhood. The program “codomaincounter” is capable of
simulating CAs of more colours and larger ranges. As a preliminary step the
spectral diversities of 100 random four-colour rules, 1000 random three-colour
rules and 200 random range two binary rules have been found for various CA
sizes and window sizes. This data is yet to be analysed. Further scaling of
colour count and range requires a change in the way codomaincounter handles
rule numbers, as the rule space exceeds what can be represented using 64 bit
integers.

14.3 Dimensionality

A comparison of CAs of different dimensionality using different neighbourhoods
could investigate how these parameters relate. A 2D von Neumann neighbour-
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hood of range 1 and a one dimensional neighbourhood of range 2 both give a
neighbourhood of 5 cells, but the interconnectedness will differ. It could be
interesting to find out how they relate with respect to spectral diversity of the
togglecount transform.

14.4 Larger CAs and windows

While ECAs has been investigated for CA sizes up to 24 and window sizes up
to 32, interesting phenomena may appear on larger CAs or larger window sizes.
Based on knowledge from this thesis, research on larger CA sizes and window
sizes can possibly be more focused, allowing for some shortcuts. For instance,
W1 and W3 rules can be detected and avoided when running tests on large
window sizes.

Specter density plots of large CA sizes and window sizes could prove useful in
determining the shape of the intrinsic boundaries on spectra for a given rule.
Scaling to large CA sizes and window sizes could lead to new insights into
the dynamics of rules showing complex boundaries, but would require either
better simulators, more powerful equipment or the introduction of statistics
(i.e. running simulations only for a limited number of initial configurations).

14.5 Do window space class W4 rules exist?

Four classes of variation in spectral diversity over increasing window size were
introduced in this thesis, in Section 12.1.1. While no ECA seems to be in class
W4, it is not known whether such CAs are possible, either for certain CA sizes
or for other rule spaces. The only observed effects leading to decreasing spectral
diversity for increasing window size are oscillations due to either shifting or short
immediate cyclic attractors. Other effects may still exist, that settles on low
spectral diversity for large window sizes but show large spectral diversity for
intermediate window sizes.

14.6 Walsh-Hadamard transform

Proposed by Wolfram [46] is to use the discrete Walsh-Hadamard transform
[37] for statistical analysis of the emergent configuration of CAs. The fast
Walsh-Hadamard transform is a space efficient version of the transform, which
in contrast to the fast fourier transform uses only addition and subtraction of
real numbers. [14] This makes the fast Walsh-Hadamard transform a candidate
for similar studies as has been done on togglecount in this thesis.

14.7 The distribution of spectral diversities

The distribution of spectral diversities can also be investigated. As has been
shown in Section 12.2.2, for small CA sizes rules are evenly distributed over the
full range of spectral diversities, when for large CA sizes most rules have little
spectral diversity and few rules are close to the bounds. How this distribution
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changes with respect to CA size, window size, window space class and other
parameters could be an interesting topic for further research. “Density estima-
tion” is a large field of statistics, for the purpose of converting a set of values
to a “probability density function” describing the distribution. The method
of “variable kernel density estimation” could be a starting point for plotting
distributions of spectral diversity.
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