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Problem Description

This project aims to design and implement stream processing algorithms for solving
the skyline problem over stream data. It includes a short literature study of existing
techniques proposed for this topic. Then, the designed algorithms will be imple-
mented using Storm (http://storm-project.net/). The student on this project will
become familiar with state-of-the-art technologies for data management and pro-
cessing in cloud computing or cluster platforms. A prerequisite is good knowledge
of a programming languages (preferably Java), and good knowledge of database
systems.

Veileder: Kjell Bratbergsengen.
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Abstract

Skyline computing has received considerable attention over the last decade. The
skyline of a multidimensional point set, consist of interesting points which are not
dominated by any other point within base set. Lately the attention has especially
been related to computing over data streams. This thesis targets multiple horizon-
tal split streams, using horizontal and vertical scaling provided by Storm, a stream
processing framework for cluster. Skylines are incrementally computed when data
from streams are received. When multiple layers of skylines are utilized, every
increment of a skyline is send onto next layer for further computing. The last
layer will contain the final skyline set. Different Storm topologies were proposed,
implemented and tested. A discussion of significant observations and an overall
conclusion is presented. Some adoptions and optimizations were made towards
algorithm completeness to suit an imaged stock exchange setting with limited re-
sources available for a stock trader.
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Sammendrag

Skylineberegninger1 har f̊att stor oppmerksomhet det siste ti̊aret. Skyliner fra et
sett med flerdimensjonale punkt, best̊ar av interessante punkter som ikke er domin-
ert av noe annet punkt fra det opprinnelige settet. I det siste har oppmerksomheten
særlig vært knyttet til å beregne skyliner over datastrømmer. Denne avhandlingen
sikter p̊a å beregne skyliner over horisontalt delte kilder, ved hjelp av horisontal og
vertikal skalering levert av Storm, et strømprosessering rammeverk for maskinklyn-
ger. Skyliner beregnes trinnvis n̊ar data fra kilder mottas. N̊ar flere lag med pros-
essering benyttes for å beregne skyliner, blir hvert inkrement av en skyline sendt
til neste lag for videre beregning. Det siste laget vil inneholde det ferdige skyline
settet. Forskjellige topologier for Storm ble foresl̊att, implementert og testet. En
diskusjon av vesentlige observasjoner og en konklusjon er presentert. Noen tilpas-
ninger og optimaliseringer ble gjort med tanke p̊a algoritmefullstendighet. Det ble
gjennomført for å tilpasse en skissert situasjon, hvor en aksjemegler p̊a børsen har
begrensede ressurser tilgjengelig for dataprosessering.

1Det ble bevisst valgt å bruke det engelske begrepet skyline. Det ville kunne oversettes med
horisont, men det ville nødvendigvis ikke representert beregningen med samme innarbeidede
faglige tyngde som skyline.
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1 Introduction

1.1 The Era of Big Data

Rapid advances in data collection and storage technology together with a huge in-
crease of devices containing sensors connected at the edges of networks, made the
world generate over 1 ZB of data in 2010, and amazing 2.8 ZB in 2012 and by 2014
we will generate 7 ZB a year [62]. Technology advancement has enabled organi-
zations and government agencies to generate, capture and utilize huge amounts of
data.

To handle the increasing flood of data, the trend has been to scale up by in-
creasing storage and processing power in mainframes. As Moores law hit the wall,
naturally mainframes did the same. For batch processing, the breakthrough came
with Google-filesystem, followed by Hadoop-filesystem, and Hadoop Map-Reduce.
Big clusters processing through the big data overnight, with Hadoop, gave an ad-
mirable advantage of knowledge. Data that had been considered worthless waste
accumulated over time, could now produce useful information. The advantages in-
clude showing better search results, more appropriate advertises for products and
much more.

It is no big secret that search of knowledge from fresh data is even more valu-
able. In a competitive market with close to real-time processing of data streams,
sometimes two minutes can be too late. E.g. for time-sensitive problem instances
like detecting and catching fraud, it is obvious that big data must be used as soon
as it streams into your enterprise, in order to maximize its value [17].
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1.2 Problem description

With the entrance of high-frequency trading robots to the stock exchange, day
trading literally became impossible without help from computers to extract useful
information from the stock exchanges’ order books. An order book can simply be
imagined as a two sided electronic list, to keep track of sellers and buyers interests.
At given times, one or more matching engines would run, using the list as input,
and fulfil a deal when the interest match.

Most stock exchanges only take a commission when a trade is conducted, allow-
ing robots to flood order books with illegitimate interests that has no other purpose
than trying to manipulate the market and deceive humans and other robots. Direct
manipulation of stocks is illegal, but the robots are getting away with this behavior.
This behavior is rather a political problem.

To face the change, big trading companies put millions of dollars into razor
sharp equipment and well educated mathematicians, without facing the resource
constraints as individuals or small businesses. The amount of knowledge they are
able to extract give them an admirable advantage.

This thesis was done with the following constraints in mind, a stock exchange
setting, and a rather limited level of resources available. The problem input was
defined as one or multiple data streams, originating from one or multiple stock
exchanges, and containing information about stocks and interest changes. The
resources available would put an efficient constraint on how much consumption of
data that is possible. The data streams are considered endless and may have a
higher data rate and throughput, than what available resources can consume. In
reality, packages with information would be skipped. In my test cases, the input is
tuned or throttled close to the utilized equipment’s maximum possible throughput.

With a flood of arriving data one adaptation was utilized. Data considered not
useful at the time of arrival are not accumulated for later use. It exist no chance to
run over old data a second time, as new and more precious data is already available
from the streams. That again imply that we can not get an algorithm output, that
can be considered complete.
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1.3 The Aim of This Thesis

The aim of this thesis, derived from problem description above, is to introduce
low latency skyline computation in a stream environment on an endless stream of
generated data. Calculating skylines continuously on the fly instead of calculating
it on requests. That will be done on a small cluster using Storm [27], a cluster
stream processing framework. This work is hopefully highlighting some of the
pitfalls and many challenges on the road.

1.4 Computing Resources

NTNU offered shared access to one of their small clusters. That offer was appreci-
ated but not utilized because of a set of reasons including:

• The ability to utilize the cluster exactly at the time when it was needed.
Storm has the ability to run locally for debugging, however some issues is
directly related to, or first visible when running distributed.

• The ability to modify all needed software and underlying operative system
configuration in any needed way. Including cherry picking a Storm version
with specific dependencies.

• Available resources in reach to assembly a personal cluster.

A personal cluster was therefore built in a shared student flat. The cluster network
was composed of spare parts originating from participation in organizing computer
gatherings. The compute nodes were spare computers both my own and computers
supplied by friends and family.
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1.5 Outline

Section 1 gives an introduction to this thesis. The remainder is organized as fol-
lows: Chapter 2 contains background information on skylines and related work.
Section 3 gives a short review on state of the art stream processing frameworks.
Section 4 describes core concepts of Storm framework. Section 5 introduces some
essential parts of Storms programming interface. Section 6 describes method and
implementations. Section 7 present results and a related discussion. Chapter 8
concludes this thesis.

Notices:

• The complete appendix is my work and covers solutions to tasks I ran into
during setup, configuring and controlling one small personal Storm cluster. It
is meant as a starting point guide for easing replication, and giving possible
future projects a smoother start.

• Figures not having a reference are my creation.
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2 Background

2.1 Skyline

The Skyline operator has been around for a while in the database research world.
It has been a hot research topic over at least the last decade. The problem was
known as the maximum vector problem, before [46] introduced it as the skyline
operator [52] [46]. Skylines have been found suitable for applications doing multi
criteria based optimizations, decision making and finding user preferences [47] [52].
A common example for usage is the stock trader that needs to know which stocks
that are worth investing in, based on trading records [47]. The skyline problem was
first studied in a centralized way, but as evolution has pushed ahead for storing and
processing in a distributed way, distributed approaches have also been covered [52].

Definition 1 (The Skyline operator):
The Skyline operator filters out an interesting set of points from a potential large
set of points. A point is interesting if it is not dominated by any other point [46].
A point p1 is dominating point p2, if point p1 is found to be equal or better than
point p2 in all dimension and is at least better in one of the dimensions [46].

A commonly used problem instance is querying on a hotel distance price rela-
tion, a users preference may be to get the cheapest hotels with the shortest distance
to the beach [47] [46] [52]. In many cases will the preference for a dimension be
a vector containing signs for each dimension that can be used to decide what is
better, lower or higher values. It is also possible to implement logic in a domain
specified function for handling the comparison and decision. For prototype imple-
menting a skyline is the feature not extremely relevant as it only adds a different
constant to the runtime of each p1 comparison p2. So from now on will the thesis
stick with the simplification, that the lower values is best. An example skyline is
shown in Figure 1 on page 6.

2.1.1 Windows

”A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly

by timestamp) sequence of items. It is impossible to control the order in which items

arrive, nor is it feasible to locally store a stream in its entirety.” [51]

As a stream is considered endless, it is obvious that in most cases the problem
instance will be constrained to return results from a specific portion of the stream
that we are able to keep in memory, called a window. The window could be de-
fined to, e.g. process and return results based on information arrived the last 15
minutes, hour, day or even seconds. Such a window is called a time based window,
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Figure 1: A two dimensional skyline.

also known as physical window. Windows can also be based on count, or other
metrics. A count based window could limit the window to the last ten, hundred,
thousand, ten thousand... or even million last received packets. This is also known
as a logical window [51].

Windows can be classified with the following domains. The direction of move-
ment and update interval. First the movement, if the window has two fixed end-
points it is defined as a fixed window. If it has one fixed and one moving endpoint it
would be defined as a landmark window and finally if it has two moving endpoints,
either forwards or backwards, it is defined as a sliding window [51]. Second, the
update interval: Eager or lazy. The eager interval updates the window upon arrival
of each new item, also called tuple. The lazy interval is like batching, and induces
a jumping window. In the case the interval is larger than the window size, it will
result in a non-overlapping series of tumbling windows [51].

When using a query model it is typical to define how often, or at what interval,
the operator should run the query over the defined window.

2.1.2 Constrained Skyline

A constrained skyline is calculated with constraints on one or multiple specified
dimensions. In a stock trade example a stock trader might want to only obtain
skyline points, imitating stocks, with last trading prices between X and Y [47].
Depending on requirements, a subspace can be defined and points failing the con-
straint can be optimized away. A range specifying a constraint does not need to be
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closed. A constraint on skyline points may be applied by a complex function that
includes usage of knowledge from other data sources, and is therefore not limited
to number ranges.

[63, J. Lin and J. Wei] bring up some of the typical assumption connected
with computing skylines and highlights constrained skylines as one of them. They
also suggest a method for efficient compute constrained skyline points over streams
against a count-based sliding window.

2.1.3 Runtime

If the skyline operator is implemented as defined in Def.1 (on page 5) using nested
loop construct, runtime of the d dimensional Skyline will be number of input points
n multiplied with points in Skyline m. Runtime will be equal to O(nm), with the
compression of points to be done in constant time.

For the special case: one dimensional Skyline, runtime would be trivial. The
Skyline m can only hold instances of the current minimum value, that all would
have the same numeric value. That taken into account, runtime for this case will
be n multiplied with m, and m defined as 1 and n defined as problem input size.
So the runtime with one dimension will be equal to O(n).

2.1.4 Optimizations

Many skyline implementations over data streams utilize a count or time based
sliding window. Updating a sliding window is expensive and therefore many of
the proposed optimizations are directly targeted towards an update of the sliding
window as it progresses. One possible way of doing that builds on the idea of
memorizing relationships between current skyline points and its successors [59]. It
also exist optimizations targeting static datasets, datasets where the entire prob-
lem input is available. Existing optimizations strategies towards a static dataset
includes usage of; Indexes, R*tree, presorting, divide and conquer (dividing into
incomparable partitions), distribution, P2P, usage of filterpoints (thereunder killer
tuples), scoring filter and calculations of area of a dominated region. Some of those
optimization strategies used for static data can also be utilized over streams.

An optimization for processing points with a high dimensionality over streams,
is to vertically split points to temporary disconnect them from dimensions not
needed for computing. That will save both bandwidth and increase data locality.
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Figure 2: Scatter plots illustrating different correlation.
Stripped down figure from, [57, p.78].

2.1.5 Input Data

There exist many forms of input data. Input data can be based on synthetic data
or real data, or a mix. Real datasets, are datasets captured from real world events
without any modifications. A modified real dataset is considered to be a synthetic
dataset. Synthetic datasets are normally not originating from a real world source.
They are typically generated in a sub random way to have a given distribution and
comply to a given set of predefined attributes that necessarily would not show up
in real world data.

It is common to describe the linear relationships between dimensions in a
dataset. That is done statistically with calculating correlation coefficient. A lin-
ear coefficient is always in the range -1 to 1. There are more ways to calculate the
coefficient depending on the data type. What they all share is that a correlation co-
efficient of one means that the data points have a perfect correlation. Zero means
none correlation found and negative means that the data is anti-correlated [57,
p.76-78,375]. Scatter points illustrating different correlations are shown in Figure
2 on page 8.

When big amounts of multidimensional data are processed, they are often sub-
jected to horizontal and vertical split. Horizontal data-split indicates that a dataset
with data-points represented as rows, is split into subsets containing complete rows.
Vertical split, may be a split on specific dimensions or columns. Vertical split is
often done on multi-dimensional data to disconnect dimensions that are not needed
for the calculation you want to do on the dataset. Most times an identifier is kept
or created, to make it possible to rejoin data-points with its other dimensions at
a later point. A mixed split utilize both vertical and horizontal data-splits. The
splits are represented graphically in Figure 3 on page 9.
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Figure 3: Data splits.
First datasheet is showing a horizontal split on rows. Second a vertical split on
columns. Third a mixed split on columns and rows. Grey indicates a possible

portion.

2.2 Related work

[52, K. Hose and A. Vlachou] present a great overview over what has been done
and some topics that require more attention in research on the skyline operator in
highly distributed environments.

[59, Sun et al.] propose BOCS, an algorithm to address continuous skyline
queries over multiple distributed data streams. BOCS distributed monitoring ar-
chitecture is represented in Figure 4. (on page 10). BOCS consists of two parts,
a communication protocol named as the algorithm, and a centralized algorithm
named GridSky. The BOCS name derives from how the communication protocol
is designed. It is Based On Changes of Skyline. As the name indicates, only in-
cremental changes also named delta skylines will be sent from remote sites to a
coordinator site. The receiving coordinator site preserves the delta skylines and
utilizes GridSky to update the global skyline. GridSky is also used on remote sites
to do a progressive update of their local skylines.

GridSky is an algorithm for efficiently creating and updating a skyline under a
sliding window. It uses an event list to memorize and handle expiration of skyline
points, and to replace points with their proper successors. GridSky organizes its
data objects in a basic grid. On arrival of new points that grid is utilized for
efficiently finding dominated objects and the amount of time it will maximum stay
in the window.

The approach of this thesis differs from [59] in multiple ways. With the utilized
stream processing framework, a shared nothing can be combined with a shared
strategy. BOCS uses a shared nothing architecture. In this thesis a horizontal
Central Processing Unit (CPU) scaling over nodes will have a shared nothing ar-
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Figure 4: BOCS distributed monitoring architecture.
[59]

chitecture, and vertical CPU scaling on nodes will utilize shared level two caches.
This thesis also stands out with its choice of filter usage and the usage of a tumbled
landmark window. However, validity of points might be better ensured for general
purpose skylines with usage of a sliding window.

3 State of the Art

This part will show some major differences from Storm to other state of the art
close to real-time stream processing alternatives. Processing Big Data is not new,
and has been done for a while with Hadoop. Therefore Hadoop basics will be
covered to some extent to make it clear: Hadoops batch processing, (with Map-
Reduce) is very different. A modification of Hadoop can not turn Hadoop in to a
high throughput stream-processing framework like Storm.



3 STATE OF THE ART 11

3.1 S4

”S4 is a general-purpose, distributed, scalable, fault-tolerant, pluggable platform
that allows programmers to easily develop applications for processing continuous
unbounded streams of data.” [24] S4 might be the closest competitor to Storm.
The biggest difference is its lack of support for guaranteed message processing [22].
S4 has the disadvantage of having complex xml to set up its streams, and is also
more complex to debug. S4 has automatic load-balancing, but it comes with the
disadvantage of opaque task distribution. So overall Storm seems to be superior.
We might see a slowly death of S4 as the founder, YAHOO, seems to have taken
Storm into production for some of its own loads [20]. The overall activity, and the
activity on mailing lists on [25, S4 Project Incubation Status] is not looking too
promising.

3.2 Esper

Esper is a component for complex event processing (CEP) and event series analysis.
Esper is designed to be highly scalable and fault tolerant. Still the design goal of
Esper core is not to scale across distributed Java Virtual Machines (JVM) [53].
Esper can be queried continuously in a Structed Query Language, SQL, like style
and contains a lot of the operators we are familiar with from the database domain.
Esper leaves it up to the user to feed it with data in a distributed and failsafe way.
Esper has a lot of different aggregation-functions that can be done on streams.
Where it falls short, Esper was not designed for horizontal scalability on distributed
clusters.

3.3 StreamBase

Streambase is a CEP that originate from a high frequency stock trading system
for use on the Wall Street, to a fully featured CEP. Streambase is fronting domain
specific language, built on the JVM, with a graphical graph based data-flow. It
allows extending through an API and is shipped with a pluggable message system
supporting guaranteed message passing. StreamBase has cluster scalability, reli-
ability, low latency and high throughput. It can typically process 100 thousand
of messages per second. It comes loaded with a great feature set of options, and
solutions to typically predefined sets of problems [9] [61].

Compared to Storm, StreamBase is complex software. It is also proprietary and
the source code is not publicly available. StreamBases reliability relies on a hot
standbys. Hot standby enables a very fast recovery and lower guaranteed latency
in the case of failure [61].
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3.4 Hadoop

Hadoop is a batch orientated framework for distributed computing, processing
massive amounts of data in parallel. Hadoop provides high scalability and re-
liability for computational problems that can be expressed in the Map-Reduce
paradigm [18] [43].

Map-Reduce

The core concepts of Map-Reduce is a mapping phase followed by a reduce phase.
The map phase transforms an input data row of key and value to an output list of
key/value pairs:

Listing 1: ’The Map [16]’

1 map(key1,value) -> list<key2,value2>

For an input row the Map returns a list containing zero or more (key,value) pairs.The
output can have a different key from the input, and the same key may have multiple
entries [16].

In the reduce phase, ”a reduce transform is provided to take all values for a
specific key, and generate a new list of the reduced output.” [16]

Listing 2: ’The Reduce [16]’

1 reduce(key2, list<value2>) -> list<value3>

Map and reduce processes need to be stateless, not depending on any data
generated in the same Map-Reduce job to achieve maximum parallelism. It is no
feature to control in which order maps or reductions runs. The reduce operation
will not happen until all the Maps are done, implying that results are unavailable
until the entire mapping phase is finished [18].

The parallel dataflow in a Map-Reduce is excellently shown in Figure 5 on page
13, taken from [48]. The figure shows the enter and exit points for the stored data.
The combiner function is an optional function to do partial merging based on keys,
having pairs with the same key value to be handled as one group by the reducer.
The optional partitioning function is provided to make user-defined partitioning in
cases where the general partitioning falls short [48].



4 STORM 13

Figure 5: Dataflow in Map-Reduce.
Copied from [48].

Filesystem

Hadoop also provides a distributed file system that stores multiple copies of the
data distributed on the compute nodes. It enables Hadoop applications to reliably
work with petabytes of data [16].

4 Storm

Storm is a distributed, reliable, fault-tolerant system for processing streams of
data [54]. The Storm project is free and got open-sourced 17th September 2011
and is lead by Nathan Marz. It consisted then of approximately 15 thousand lines
of code, roughly divided fifty-fifty between Java and Clojure [36] [1]. Storm can
be used with many programming languages as it utilizes Apache Thrift for service
deployment [6]. Storm also comes with a great and simple API [5].

”Storm exists in the same space as complex event processing systems like Esper,

Streambase, and S4. Among these, the most closely comparable system is S4. The

biggest difference between Storm and S4 is that Storm guarantees messages will be pro-

cessed even in the face of failures whereas S4 will sometimes lose messages.” [55]2

Storms message reliability have the ability to guarantee that every tuple emitted

2 [55] was discovered to be temporary offline or unavailable on 31.03.14
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by a spout(source), will be fully processed by topologies when making use of Storms
”at-least-once processing guarantee”. Storms ”at-least-once processing guarantee”
tracks every tuple as they travel through the topology. It is one of Storms core
mechanisms, and can be imaged done with a tuple tracking tree or a directed acyclic
graph (DAG), as a tuple is allowed to anchor to multiple other tuples. One tracking
tree will be created for every tuple emitted by spouts. Those tracking trees will
receive acknowledgements from bolts. When a tree is fully acknowledged within a
given time-limit, the tracker of that tuple will notify the spout so the tuple is not
replayed from its source [2]. In the other case, when the tuple is not fully processed
or lost, a time-out will occur and the message will be replayed from its source [2].

This basic message reliability achieved from ”at-least-once processing guaran-
tee”, is equal the guarantee from a queue based system [2]. Storm also comes with
Trident, a higher level of abstraction that can obtain exactly once processing [2].

Storm comes with no built-in data storage layer. Therefore Storm would typi-
cally need an external distributed database like Cassandra [7] or Riak [23], alongside
topologies for persistent storage or ability to do a stateless playback from a source
(spout) [55]. Storm comes without a storage layer, because it is impossible for one
data storage layer to satisfy all different applications that might have different data
models and access patterns. Storm is a computing system and not a storage sys-
tem. ”However, Storm does have some powerful facilities for achieving data locality
even when using an external database.” [55]

Storm has many possible use cases like low latency analytic, online machine
learning, continuous computation, Distributed Remote Procedure Calls (DRPC),
Extract Transform Load (ETL) and more [12] [27]. Some Storm functionality like
the DRPC is not covered as it is not considered to be directly relevant for my
problem scope.

4.1 Spouts

A spout act as a source, it will typically generate or get data from external sources,
and emit them onto one or multiple streams. Where a spout gets its data from is up
to the implementation of it. A spout typically implements an interface or extends
an abstract implementation to guarantee the basic functionality and the rest is
left to the designer. A spout can be designed to read from different queue types
like Kestrel(”a simple, distributed message queue system” [42]), RabbitMQ(a reliable

enterprise messaging broker [21]) and more. There already exist good example of such
implementations. Spouts may read from an external API, like twitters steraming
API, a database or simply a file [3] [5]. Spouts may emit zero, one or many tuples
on to the desired streams when the next tuple is requested [54]. A spout can be
defined in any language, Non-JVM implementations talk to Storm over a JSON-
based protocol over stdin and stdout [6].
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BoltSpout

Stream

Figure 6: Basic topology with spout stream and bolt.

4.2 Bolts

Logical operations are supposed to be implemented in bolts. A bolt typically
implements an interface or extends an abstract implementation to guarantee the
basic functionality and the rest is left to the designer. Typical logical functions
that could take place in bolts are; filters, aggregations, joins, persistence of state
or tuples with the use of databases, functions and so on. A bolt can process any
arbitrary number of given input streams and produce output on any arbitrary
number of streams, including new streams [5]. When bolts are processing an input
tuple from a stream, it can according to implemented logic legally emit zero, one
or many tuples on to the desired streams [54]. A bolt can also be defined in any
language as Non-JVM implementations talk to Storm over a JSON-based protocol
over stdin and stdout [6].

4.3 Topologies

A topology is the top level abstraction of a multi-stage stream computation. A
topology expresses the network of spout and bolts, where every edge in the network
indicates a bolt subscribing to the output stream of some other spouts or bolts.
Storm does allow cycles in topologies. A Storm topology will also run indefinitely,
or until manually killed when first deployed [5]. A simple visual understanding of
how topologies and bolts will be presented can be found in Figure 6 on page 15.

Storm has multiple different Topology abstractions, one higher level abstrac-
tions is Trident. Trident provides ”exactly-once processing, ’transactional’ datas-
tore persistence, and a set of common stream analytics operations” [37] through its
interfaces. Trident support aggregations, groupings, filters and functions. Topolo-
gyBuilder is a lower level abstraction. It is very basic and has the ability for ”at
least once processing” of tuples. TopologyBuilder and Trident is bundled as parts
of Storm. It is also worth to mention the transactional topologies that introduced
”exactly once processing” of tuples to Storm. Transactional topologies have be-
come superseded by Trident in Storm 0.8.0, and will therefore be deprecated and
scheduled for removal soon [28].
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4.4 Streams

Streams in Storm topologies will consist of tuples. A tuple is a named list of values.
It will typically contain the values emitted, the tasks ID, the stream ID and the
message ID. The stream tuples can carry any object as long as the object has a
defined serializer available. Storm uses the Kryo [13] framework for its serialization,
but also has the possibility to fallback on Java’s slow built in one. ”Kryo is a fast and
efficient object graph serialization framework for Java.” [13] Storm automatically
includes serializations for the basic datatypes [5]. For more complex types is it
possible to extend Kyro to understand them, write an object description for Kyro
and register the extension with Storm.

When setting up Storm streams, how streams are consumed by bolts, Storm has
predefined stream groupings for multiple standard applications. This grouping will
imply how the bolts running in parallel will share the input streams among them.
The bolts can have different patterns of sharing for the different input streams.
When assigning an input stream to a bolt it will be identified with the component
ID of the producing component [54].

4.5 Clusters

Storm is designed to run on compute clusters. A cluster computing environment
uses off the shelf hardware and software connected, often over fast Ethernet con-
nections [49]. The number of computer nodes in a cluster may range from a few
to thousands. The nodes will run their own operative system and co-operate in
solving larger problems.

For clusters consisting of higher numbers of nodes, the chosen network topology
will affect overall performance. The ideal network would have low latency, high-
bandwidth, and low overhead protocols. Small clusters typically use star topology
(see Figure 7 on p.17). Star topology can be achieved with the use of a single switch.
The network can be scaled up to a high number of nodes using tree topology. A
downside of tree topology is that it is not suitable for communication intensive
applications. The root node will quickly become bottleneck and enforce a different
topology. Some switches will let you bind links to obtain fat tree topology (Figure
8 on p.17) and can by that alleviate the problem, but not eliminate it.

Mesh topologies (Figure 9 on p.17) have the benefit of multiple paths giving
redundancy. In a full mesh it will be nodes(nodes − 1)/2 connections, implying
a high cost. A partial mesh benefits from some of the redundancy at a reduced
cost, but can not match the benefits of the next topology. There exist cube topolo-
gies, but more important hypercube topologies (Figure 10 on p.18). Hypercubes
close to eliminate the earlier mentioned bottleneck interconnect problem. In a d-
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Figure 7: Star network topology.

Figure 8: Fat tree network topology.

dimensional hypercube a node will direct connect to d other nodes. The shortest
path from a node to another node, will be the Hamming distance. The distance is
calculated as the number of bits that differ in the source and the destination ad-
dress. There are other high performance network topologies related to hypercubes.
The hypercube is a toroidal topology with the number of nodes equal two along
each dimension. The torus topology is defined as a n-dimensional grid topology
connected circular in more dimensions [15]. Both torus and grid based topologies
are exploited in high performance clusters.

Figure 9: Mesh network topology
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Figure 10: 4D Hypercube network topology

Nimbus Zookeper Supervisor

Figure 11: Storm cluster nodes.

4.6 Nodes

The Storm cluster is composed of one master node and worker nodes. The master
node runs a daemon called ”Nimbus” which is responsible for distributing code,
assigning tasks, and checking for failures. Each worker node runs a daemon called
”Supervisor” which listens for work and starts and stops local worker processes.
Nimbus and Supervisor daemons are fail-fast and stateless, which makes them
robust, and coordination between them is handled by Apache ZooKeeper [41]. For
a visual understanding of the nodes please see Figure 11 on page 18. For a deeper
understanding of the fault handling see section 4.9 on page 20.

4.7 Worker breakdown

The supervisor daemon starts and stops worker processes. A worker process is a
physical JVM process that executes a subset of all the tasks for the topology [10].
A worker process spawns Executors as threads. Those threads will contain one
or more instances of the logic from one type of spouts or bolts. The predefined
ratio between Executor and tasks is normally 1:1. For a visual breakdown of the
supervisor and workers please see Figure 12 on page 19.
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Figure 12: Supervisor and Worker breakdown.

If the combined parallelism of the topology exceeds the number of allocated
workers, each workers Executor will execute multiple tasks within a thread. When
a sufficient number of workers exist, Storm will try to evenly distribute the tasks
(spouts and bolts), across the assigned workers. Figure 12 points out that task
is not equal with thread in the Storm architecture. However, in the old Storm
architecture task was equal thread, but this complicated the semantics. How?
Imagine a stream of words having field grouping performed on it. All equal words
will always go to the same bolt so you can easily count them. The problem arise
when dynamic scaling of a counting task is needed. It would require creation of
another thread and spliting of the existing task. That would not be possible to do
dynamically without affecting semantics. The same trouble will also arise with the
old model when bolts contain state information [29].

4.8 Workers message passing

Workers are using JØMQ [45] for their direct communication with other work-
ers, over network or socket when on same node. JØMQ is the Java binding for
ØMQ [44]. ØMQ is pronunced zeromq and is the name of a socket library that
also act as a concurrency framework [44] [45].

Communication within a worker process is different. The communication be-
tween threads is done with LMAX Disruptor [11]. That is an awesome high perfor-
mance inter-thread messaging library, inspired by the principles from more known
ring buffer, with some clever modifications on how access to ring buffer is controlled.
It also differs from traditional ring buffer in data structure as pointer to the end of
the buffer is taken out of the data structure [50]. It is also worth to mention that
it avoids locks using semaphores instead. (Compare And Swap/Set (CAS) opera-
tions). That gives a admirable boost as it does not include the operative system
calls, that leads to context switches and in worst case rescheduling on a different
core with plausible lost cache. An explanation of exactly how LMAX Disruptor
works can be found in the talk by Martin Thompson and Michael Barker [60]. A



4 STORM 20

Figure 13: Inter-worker communication.
[56, (c) Michael. G. Noll]

more in depth representation of the overall internal worker massage passing archi-
tecture is represented in Figure 13 on page 20. (Used with approval, thanks Michael.)

4.9 Reliability

Some of Storms fault-tolerance relies on its use of the architectural fail-fast pattern.
Fail-fast implies that execution should fail fast and die visible, instead of trying to
recover from an event and potentially reach and unstable state where you might fail
slowly [58]. Storm is using this pattern for its components, as it is even harder to
debug an unstable distributed problem. Storm is not strictly following the design
pattern, as it supplies standard values for parts of it’s configuration.
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The Storm deamons, ”Nimbus” and ”Supervisor” needs to be run under the
watch of an external supervisor service on their representative nodes. If components
on a computing node continuously fails and fails to heartbeat, will Storm assign
the process to an another available computing node, if none is available will it
dictate existing Supervisors to create the dead workers tasks across the cluster as
threads [14].

So when workers die will the Storm Supervisor handle the situation. Both the
Nimbus and Supervisors are designed to be stateless so when Storm Supervisors
resign, the local supervisor service can not manage to bring the Supervisor back
online, will Nimbus handle the situation. When Nimbus dies should the local
supervisor service bring it back up, should it repeatedly fail will the Storm cluster
administrator be dead. In theory, on the first hand do we have a single point of
failure here, as it is only one Nimbus instance, with no node to take over the job on
a failure. On the other hand is it not posing any big threat to a running cluster, as
no worker processes are affected by the death of Nimbus or their Supervisor as the
cluster communication and heartbeats are done through the Zookeeper cluster [14].

4.10 Measuring Performance

The Storm User Interface (Storm UI) when running on the Nimbus node, will
provide capacity metrics for the topologies bolts and total number of tuples seen
on different streams. It will report bolts performance capacity as a percentage of
full capacity, calculated by how much time the bolt spent executing tuples, over the
last ten minute time interval. If a bolt is close to 100% in the Storm UI, it could
be a plausible solution be to increase the parallelism of that bolt [29]. The Storm
UI will also provide information of totally acknowledged and transferred tuples on
a component level for all running topologies.

4.11 Scalability

Storm is easy to scale, it is just to add new nodes to the cluster and storm will
reassign tasks to new machines [29]. You also have options to tweak different parts
of a running topology parallelism on the fly [4].

Storm is designed with inherent parallel topologies in mind, making Storm able
to process very high amount of messages with low latency. The Storm project
has reported Storm to be able to process one million, 100 byte sized messages
per second, per node on hardware with 24GB memory and two 12 threads Intel
E565@2,4GHz [4]. It is however notable, that Storm Wiki [22, Rationale] page
states close to the same for a cluster consisting of ten nodes.
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4.12 Roadmap

Storm is on its entry path to become under the umbrella of The Apache Software
Foundation. That will most likely increase the ecosystem around Storm and boost
its development. It also signals that it is safe to rely on Storm, as Storm most
likely will be around for the next years [35].

The upcoming version 0.9.0 has implemented some new interesting features.
Ranging from making the messages between workers pluggable, the move from
ØMQ to Netty [19], and the added support for blowfish encryption based tuple se-
rialization [39]. Netty is ”an asynchronous event-driven network application frame-
work for rapid development of maintainable high performance protocol servers &
clients” [19]. Blowfish is a symmetric-key block cipher that can be used to encrypt
data streams.

Other features that might see light is; peer to peer torrent file sharing protocol
to spread submitted topologies on cluster. Static swap of running topologies as
dynamic swap is rather complex and Storm strives to keep complexity low. One
thing that for sure will show up is a resource aware queuing on workers, giving at
least the ability to queue on worker node with a specific hardware available. It is
also likely to see work being done to increase the parallelism of Nimbus and remove
the potential single point of failure [14]. We might see Online Machine Learning
Algorithms like what Apache Muppet is for Apache Hadoop for Storm [34]. A Suite
of performance benchmarks is also likely to develop and become merged [34].

5 Programming with Storm

An explanation of Storms most basic API is needed for better understanding of
the implementations of the skyline-topologies and their representative spouts and
bolts.

There are Domain Specific Languages (DSL) for implementing spouts, bolts
and topologies in Storm. The focus here will be on Java, as Java has the ma-
jority of the interfaces and my implementations are done with Java. The main
interfaces of Storm API is the two Java interfaces IRichBolt and IRichSpout, and
TopologyBuilder. Storm follows the naming conventions to prefix Java Interfaces
with ”I” because Storm also includes a set of base classes that provides the default
implementation that can be extended. They can be found in Storm jar under back-
type/storm/topology/base/’*’.java and are mainly meant as templates that can be
extended.
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5.1 Spouts

IRichSpout is the main interface for creating spouts with Java, it extends the
interface ISpout and IComponent [33]. The main difference between IRichSpout
and ISpout is that IRichSpout adds the method declareOutputFields, that serves
the purpose of making the user able to declare output stream fields as a part of
their implemented spout [38].

A spout run as a task inside an executor. The executors run their assigned
tasks in an asynchronous loop. Implying that spout logic in task also run as an
asynchronous loop, also named a tight loop. If executor has only one spout task,
the execution path in an active spout will be ack(), fail() and at last nextTuple().
All of them inherited from the ISpout interface.

ISpout interface has the following characteristics:

Functions are void, and will not return any values on completion.

• ack() is taking messageID as a java.lang.Object to identify that tuple with
that identifier have been fully processed and should be taken out of the
tuple queue.

• nextTuple() is not taking any argument. When function is called it is
supposed to put one or more tuples into its output streams.

• fail() is taking messageID as a java.lang.Object to identify that the tuple
with that identifier have failed to be fully processed and should be sutured
to outgoing tuple queue.

• open() It is called when spout is initialized within worker, it provides an
environment for spout. Function can be used to prepare the spout be-
fore processing. First argument provides topology configuration. Second
argument provides topology context. Third argument provides SpoutOut-
putCollector.

• close() Has no argument and is executed when spout is about to shutdown.
However it has no guarantee to be called before shutdown because Storm
Supervisors ’kill -9’ workers. (’kill’ sends a signal to a process, the -9 flag
sends a non-blocking exit. In a non-blocking exit the kernel may remove
the process without informing the process of it.)

Two more functions are worth mentioning: Activating, activate() and for deac-
tivating, deactivate(). Both functions have no parameters, and can be invoked from
Storm UI and Storm Command Line Interface. Those Storm UI commands pur-
pose is to toggle if Storm invoke the nextTuple() function or not. Simply explained
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those functions in the API are used to arrange access to run code before Storm
stops calls to nextTuple() and before it starts calls of nextTuple(). In addition to
be invoked on toggling of textitnextTuple() calls, the corresponding logic in spouts
declared deactivate will be run on spout creation and activate function will be run
before topology starts it initial processing.

5.2 Bolts

IRichBolt is the main interface for creating bolts with Java, it extends the interface
IBolt and IComponent [32]. The main difference between IRichBolt and IBolt is
that IRichBolt adds the method declareOutputFields, that serves the purpose of
making the user able to declare output stream fields as a part of their implemented
bolt [38]. In cases where guaranteed message passing is turned off, or when auto
acknowledging of received tuples is wanted, can the slightly simpler interface IBa-
sicBolt be used. IBasicBolt extends IComponent like IRichBolt but it does not
extend IBolt.

IBasicBolt and IRichBolt require the following functions in bolts implementing
one of them; prepare(), execute() and cleanup(). However IBasicBolt and IRichBolt
differ in the arguments. IBasicBolt require the BasicOutputCollector to be a part
of the execute() function and IRichBolt require its OutputCollector to be a part of
the prepare() function. OutputCollectors does what the name indicates, object is
used to emit tuples on to streams.

Bolts as spouts, run as one or multiple tasks inside an executor. Executors run
their assigned tasks in an asynchronous loop. Implying that logic in the task run
as asynchronous loop.

IRichBolt and IBasicBolt have the following in common:

Functions are void, and will not return any values on completion.

• prepare(); It is called when bolt is initialized within a worker, it pro-
vides bolt with an environment. Function can be used to prepare bolt for
processing. First argument provides topology config. Second argument
provides topology context.

• execute(); It is called every time bolt is processing a tuple. Received tuple
is first argument of the function.

• cleanup(); Has no argument and is executed when bolt is about to shut-
down. However it has no guarantee to be called before shutdown because
Storm Supervisors ’kill -9’ workers.
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5.3 Topologies

Storm has multiple different abstraction levels. TopologyBuilder is the most basic
one and will be covered to some extent here. The TopologyBuilder class exposes
the Java API to ease process of creating a Thrift structure. Thrift is a interface
definition language that is used to define and create services. Thrift is capable of
creating a complete stack for servers and client services [8]. More details of Storms
Thrift usage can be found in [36]. The TopologyBuilder hide the complexity of
the underlying Thrift structure and thereby greatly eases the process of creating
topologies [40].

Stream groupings available for use when crating stream networks in topologies are:

1. Shuffle grouping: Tuples are randomly distributed across the bolt’s tasks in a
way such that each bolt is guaranteed an equal number of tuples.

2. Fields grouping: The stream is partitioned by the fields specified in the group-
ing. For example, if the stream is grouped by the ”user-id” field, tuples with the
same ”user-id” will always go to the same task, but tuples with different ”user-
id”’s may go to different tasks.

3. All grouping: The stream is replicated across all the bolt’s tasks. Use this
grouping with care.

4. Global grouping: The entire stream goes to one single task. Specifically, it
goes to the task with the lowest id.

5. None grouping: Specifies that it is not important how the stream is grouped.
Currently, none groupings are equivalent to shuffle groupings. Eventually
though, Storm will push down bolts with none groupings to execute in the same
thread as the bolt or spout they subscribe from (when possible).

6. Direct grouping: This is a special kind of grouping. A stream grouped this way
means that producer of tuple decides which task of the consumer will receive
this tuple. Direct groupings can only be declared on streams that have been
declared as direct streams. Tuples emitted to a direct stream must be emitted
using one of the emitDirect methods. A bolt can get task ids of its consumers
by either using the provided TopologyContext or by keeping track of the output
of the emit method in OutputCollector (which returns task id that tuple was
sent to).

7. Local or shuffle grouping: If the target bolt has one or more tasks in the same
worker process, tuples will be shuffled to just those in-process tasks. Otherwise,
this acts like a normal shuffle grouping.

[10, List and explanation, copied with minor modifications from Consepts, Storm
Wiki.]
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5.3.1 Configuration

Storm has an extensive set of available configuration options for different compo-
nents. When guide in the appendix is used to set up a Storm cluster, those options
can be defined on nodes in the file ”/home/stormuser/storm-0.8.2/conf/storm.yaml”.

A more practical way that allows options to be topology bound instead of node
specific, is to set options from within Java. That can be done using a plain Java
Map that is attached when submitting topology to the cluster. The same way can
be utilized to submit options from a command line interface. I found it preferable
to keep settings local to topology and attaching plain Java Map on submit of
topologies to the cluster.

The different ways to set options are illustrated below.

Listing 3: ’topology config example code’

1 // The Config class is a Java Class that extends java.lang.HashMap.

2 Config configObject = new Config();

3

4 // Some configuration options have their own setters.

5 // Enable debug output. Bolts and spouts will log eg. every tuppel they

emit.

6 configObject.setDebug(true);

7

8 // The Java Map put way, with one of my Enum types.

9 // What type of generator shall be used. /* UNIFORM, ANTICORRELATED,

CORRELATED */

10 configObject.put(CustomConfig.GeneratorType,

DistributionType.ANTICORRELATED.getId());

11

12 // The Java Map put way, with a value.

13 configObject.put(conf.TOPOLOGY_EXECUTOR_RECEIVE_BUFFER_SIZE,1024);

14

15 // Make sure to attach the created configObject when submitting the

topology.

16 // StormSubmitter.submitTopology(topologyName, configObject,

builder.createTopology());

There are numerous possible configuration options for Storm. This part will
highlight some options used, the rest is found in [31, Storm api - Config]. Storm
ignores any unknown configuration options. Storm encourage users to extend avail-
able configuration options to suit their personal needs, as the configuration can be
reached from within spout and bolts. I made use of this feature and cover those
extended configuration options as well.
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Storm configuration options:

1. Config.TOPOLOGY ACKER EXECUTORS This option sets the number
of executers to spawn for acknowledging tuples in the topology. Setting it to 0
will disable reliability and tuples will be instantly acknowledged when they leave
spouts.

2. configObject.setDebug(value); Vale is False or True. This option toggle
logging of emitted messages in Storm topology.

3. configObject.setMaxSpoutPending(value); Sets the maximum number of
pending tuples for one spout. This option has no effect when reliability is turned
off.

4. configObject.setNumWorkers(value); Set number of worker processes to
utilize for this topology.

5. Config.TOPOLOGY TICK TUPLE FREQ SECS Set the frequency in
seconds, for how often a component shall receive a tick tuple from the ” system”
component and ” tick” stream. Option is meant to be component-specific and
can be set with creating a configuration object in components getComponent-
Configuration method. After creating the configObject and setting this option,
return the configObject.

6. Config.TOPOLOGY FALL BACK ON JAVA SERIALIZATION: In a
production environment it should be set false. Using the standard Java serializa-
tion is extremely expensive for tuples. It is made available only for prototyping.

7. Config.TOPOLOGY SKIP MISSING KRYO REGISTRATIONS:
When set to true, Storm will ignore Kryo serializer registrations that ain’t
available on the JVM classpath.

8. configObject.registerSerialization(double[].class); This object setter can
be used to register Kryo serialization classes. The parameter given, double[].class
register a pre-implemented Kryo serialization for an array of the primitive double
datatype.

9. Config.TOPOLOGY WORKER CHILDOPTS: Topology specific, JVM
processes started by the Storm Worker will have the given string attached as
a command line argument when JVM process starts. This will come in addition
to the Config.WORKER CHILDOPTS.

10. Config.WORKER CHILDOPTS: Workers started by this Storm Supervisor
will have the given string attached as command line argument to the JVM
process when started.

11. Config.TOPOLOGY EXECUTOR RECEIVE BUFFER SIZE: Chang-
ing executor’s in queue size. Maximum number of tuples held by executor await-
ing for local processing of task. Takes a value of the form 2n. A to high value
typically will lead to starvation of heartbeats, as heartbeat is queued as normal
tuples.

12. Config.TOPOLOGY EXECUTOR SEND BUFFER SIZE: Changing
the executor’s out queue size. Maximum number of tuples processed by task,
awaiting transfer to shared network transfer queue. Takes a value of the form
2n.
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13. Config.NIMBUS TASK TIMEOUT SECS: The time in seconds before
Nimbus time out a not answering task.

14. Config.ZMQ HWM: Worker to worker communication. ØMQ Buffer size in
items before it takes action eg. blocking.

15. Config.ZMQ THREADS: Number of ØMQ IO-threads that should be used
by the ØMQ in each worker process.

16. Config.ZMQ LINGER MILLIS: Setting the timeout for ØMQ in millisec-
onds.

Extended configuration options:

1. CustomConfig.DimensionMaxValue: Highest value for a dimension in the
point. Only relevant for spouts in GenerateDatasetTopology.

2. CustomConfig.PointDimensions: Indicates which dataset to load, and
therefore also how many dimensions a point in the dataset have. Used by all
components that need to know dataset dimensionality.

3. CustomConfig.GeneratorType: Indicates the distribution to be used. It is
used by the spouts reading a dataset or generating a dataset.

4. CustomConfig.ToggleSleepValue: This is used as a throttle for BinFileRead-
Spout. It is a basic counter that adds one each time the spout run nextTuple().
When it reaches the limit, spout sleeps for a short period of time and sets counter
back to zero. Default value when not specified is 10 times. The value −1 disables
the throttle.

5. CustomConfig.ToggleSleepTime: Set BinFileReadSpouts sleep time in mil-
liseconds, default: 1 ms when ToggleSleepValue is enabled, and this configuration
option is unset.

The relevant code can be found in the supplied jar under the source folder, in the
package no.stud.util.

5.3.2 Tick Tuples

This subsection introduces Tick tuples to hopefully ease the understanding of how
the SimpleSkylineBolt (described in section 6.4.2 on page 37) outputs the cardinal-
ity of bolt’s skyline on a 10 second interval.

Tick tuples are tuples generated on time based intervals to have components do
a certain task on a fixed interval. The time interval is set in seconds with configura-
tion option TOPOLOGY TICK TUPLE FREQ SECS. The configuration option
is local to component, implying that different bolts have the possibility of having
different time intervals. An example is shown below:
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Listing 4: ’getComponentConfiguration’

1 public Map<String, Object> getComponentConfiguration() {

2 Config configObject = new Config();

3 configObject.put(Config.TOPOLOGY_TICK_TUPLE_FREQ_SECS, 10);

4 return configObject;

5 }

Tick tuples originate from ” system” component and should be received from
” tick” stream. One way to check if received tuple is a Tick tuple is shown below:

Listing 5: ’Tick tuple check’

1 // An example bolt execute method:

2 public void execute(Tuple tuple, BasicOutputCollector collector) {

3 // Check if tick tuple:

4 if(tuple.getSourceComponent().equals(Constants.SYSTEM_COMPONENT_ID)

&&

tuple.getSourceStreamId().equals(Constants.SYSTEM_TICK_STREAM_ID))

{

5 \\ It is a Tick tuple.

6 } else {

7 \\ It is a normal tuple.

8 } // End if

9 } // End function

Testing of tuples can be further simplified. Implementing the logical expressions in a
method returning one boolean value will result in a test like e.g: ”if(isTickTuple(tuple))...”.

5.3.3 Building Topologies

When building topologies the first step is to decide on which topology abstraction
to use. As mentioned, in this case the TopologyBuilder abstraction will be used.
To build a topology with two spouts, emitting onto two streams, and one bolt
consuming those streams will the following be needed:

An instance of the TopologyBuilder, lets name it builder. That is done in line
#1 in the topology example code below.

Next we need to create two spouts and give them a unique ID. The ID is
referenced by bolts that consume the output of those spouts. Spouts are give IDs
SpoutOne and SpoutTwo. That is done in lines #3 and #4 with the first argument
of setSpout. The setSpout functions second parameter is a class implementing
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a spout interface, with other words an implementation of a spout. The third
parameter should be a number that indicates the parallelism of that spout in terms
of how many executors to allocate for it. The builder.setSpout() function returns
the declared spout-object so additional settings for the spout can be submitted
directly to the returned object. Appending .setNumTasks(n) on the object will
give spout a total of n tasks across topology.

In line #3 a spout is created with the component ID SpoutOne, having one
initial executor running one task. Line #4 creates a spout with the component ID
SpoutTwo, having four initial executors running 128 tasks spread on executors. It
is time for a quick recap; Task parallelism is static for the lifetime of a topology,
and thereby can not be changed on the fly with the Storm rebalance command.
In the example code, a rebalance could be used to adjust the number of executors
for SpoutTwo to a number between one and 128. The same could not be done for
SpoutOne as it only has one task. When parallelism or task parallelism hints are
not set, both will be set to one.

Line # 6 adds a bolt to the topology. The setBolt function has the same
characteristic for its arguments as the setSpout function. First is component ID,
second a class implementing one of the available bolt interfaces, followed by the
executor parallelism hint. The setBolt function returns the declared bolt-object
making it easy to set additional options for the declared bolt on the same line of
code. In addition to define bolts IDs and parallelism hints when declaring bolts, it
is usual to declare what stream(s) they should subscribe to and consume.

BoltOne declared on line #6 is initially assigned one executor, but has two
tasks. It is assigned to consume the default streams from SpoutOne and SpoutTwo.
The stream groupings are described in section 5.3 on page 25. In this example
Shuffle grouping is used, and the two tasks will get an equal number of tuples from
both spout streams. Imagine the bolt is programmed to sum up all seen tuples
and output the final sum to standard output once every 10 second. In this case
with two bolt tasks it would be one executor running those sequential inside an
executor. Two tasks will therefore lead to two partial sums that have to be added
together for a total sum. In cases requiring a total sum, there are two obvious
ways to reach it; Either set the task parallelism to one, or add additional bolt that
subscribe to the output of BoltOne with taskParallelism equal one. In last case
BoltOne would also require modification to output its partial results to a stream
instead of standard out.

Listing 6: ’Topology example code’

1 TopologyBuilder builder = new TopologyBuilder();

2

3 builder.setSpout("SpoutOne", new MySpoutOne(), 1).setNumTasks(1);

4 builder.setSpout("SpoutTwo", new MySpoutTwo(), 4).setNumTasks(128);

5

6 builder.setBolt("BoltOne", new MyBolt(), 1).setNumTasks(2)
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.shuffleGrouping("SpoutOne").shuffleGrouping("SpoutTwo");

5.3.4 Walk-through

This subsection will walk through the most essential parts of SimpleSkylineTopology
described in section 6.5.2 on page 38. Having the explanation of ”Topology example
code” from section 5.3.3 starting on page 29 fresh in mind is advantageous. The
complete implementation of SimpleSkylineTopology can be found in the appendix
on page 78. SimpleSkylineTopology is illustrated in Figure 16 on page 39. In the
figure is spout indicated with S and bolt with B.

”SimpleSkylineTopology.java”

19 TopologyBuilder builder = new TopologyBuilder();
20 String topologyName = ”SimpleSkylineTopology”;

Line # 19 creates an instance of TopologyBuilder with the most basic topology
abstraction level and line # 20 specifies the topology name.

26 builder .setSpout(”Generator”,new BinFileReadSpout(), 1);

Line # 26 declares a BinFileReadSpout spout in the topology. It is given component
ID ”Generator”. The spout is set to have one executor and no task parallelism is
indicated, making it one task.

28 builder .setBolt(”Simple−SL”, new SimpleSkylineBolt() , 1).
localOrShuffleGrouping(”Generator”);

Line # 28 declares a SimpleSkylineBolt in the topology. It is given component ID
”Simple-SL”. It is set to have same parallelism as the spout above. Line # 28 also
specify that declared bolt should subscribe to component with the ID ”Generator”
using the local or shuffled grouping. The grouping does not matter in this case, as
it is only one task to receive the stream.

32 Config conf = new Config();
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42 conf.put(CustomConfig.PointDimensions, 5);
45 conf.put(CustomConfig.GeneratorType, DistributionType.

ANTICORRELATED.getId());
48 conf.put(CustomConfig.ToggleSleepValue, 2);
51 conf.put(CustomConfig.ToggleSleepTime, 20);
55 conf.put(Config.TOPOLOGY ACKER EXECUTORS, 0);

Line # 32 creates a configuration object. This object holds topology configuration
to be submit together with topology to cluster. The configuration options in line #
42,45,48,51 and 55 is described in section 5.3.1 on page 27 and page 28. The listed
settings specifies that it is five dimensions (line # 42), the dataset used should be
anti-correlated (line # 45), spout should sleep for 20ms every 2nd time it executes
(line # 48 and 51). Line # 55 specifies that it should not be an acker task, thereby
turns message reliability off. All tuples will be instantly acknowledged when leaving
the spout.

102 if (args != null && args.length == 0) {
106 StormSubmitter.submitTopology(topologyName, conf,

builder.createTopology());
116 } else if (args.length > 0) {

The if statement in line # 102 is not needed. It was introduced to allow fast
switching between submitting defined topology to cluster and running in local de-
bug mode. Line # 106 submits the topology to the cluster, attaching topology
name and configuration.

It was decided not to dive into BinFileReadSpout and SimpleSkylineBolt step
by step to avoid this section becoming to extensive. BinFileReadSpout and Sim-
pleSkylineBolt are fairly well documented in their implementations.

6 Method

Different topologies have been implemented to show differences in tested setups.
For every iteration the complexity of those topologies will increase with appliance
of techniques described later. The abstraction level used was the most basic one,
TopologyBuilder. The decision on topology abstraction was done after weighing
multiple facts.

I decided not to use Storms ”at least processed once guarantee”, or ”only once
guarantee”, because the problem already implies omitting of data from the input
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stream. The completeness of the algorithm output would not be considerably worse
when messages are lost during processing, than omitted on arrival as a part of the
problem limitation.

There is another reason for turning down the usage of ”only once guarantee”. In
a worst case scenario where a point would be processed multiple times, the point
would either be rejected multiple times or stay as multiple points in the skyline.
In a real setting one of the points dimensions would be an identifier enabling the
point to rejoin with its data abstracted away on an initial horizontal data-split.
The identifier would not be used in skyline calculations, but is used to guarantee
uniqueness of final points, and thereby also rejects a point that already is present
in the skyline.

The first argument weighs against higher topology abstraction or stronger mes-
sage guarantee. It is not needed and it comes with unnecessary processing and
message overhead. The second argument: There is no need for transactional be-
haviour, it does not really add anything in this skyline setting. On the other hand,
using at least once guarantee would make it possible to control the workers send
and receive buffers in a better way as the spout would simply stop emitting new
tuples when it hits a predefined limit of unprocessed tuples. The best argument
against is; Utilization wise it is best when topology is in a balance where bolts can
keep up with spouts. In other cases data will be waiting in full buffers. However
Storm allows for specifying internal queues’ size and how many tuples a spout can
have pending.

The way Storm implement its internal guaranteed message passing is selectively
inexpensive. Which alone weigh for using a higher abstraction level as Trident. The
Trident abstraction level was considered, but Trident did not support bolts to have
multiple output streams. This was the final deal breaker for a higher abstraction
level. The issue is described more in depth in [30]. It would be possible to modify
Storm source code to the wanted behaviour, but it was not considered the target
of this thesis. The problem with only one output stream is demonstrated in the
illustrated BroadcastSkylineTopology. (section 6.5.6 on page 41) With Trident, the
topology would be impossible. In fact impossible is a bit wrong, as the bolts can
funnel all outgoing tuples in the same stream, forcing the same bolts to subscribe to
the output from itself, and the others, and then do demultiplexing on all incoming.
Anyhow that is not a solution as the bolts would at certain times, output the whole
partial skyline in addition to filter points, implying a no doubt overflow death of
the topology.

6.1 Constrained Skyline

The experiments have been run with no constraints on any dimension. That has
been done with keeping every dimension as the data type Double, but noticeable
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is the range for each dimension forced between zero and one million.

6.2 Optimizations

The nested loop algorithm was used to compare against every point in the skyline
at the arrival. This stands in a great contrast to GridSky. The main reason it differs
from GridSky lays on the decision of not using a continuous window. GridSky did
optimizations on windows, like removing points that would never be a part of the
skyline, in my case a tumbling landmark window was used, as it hopefully should
suit the problem better as it is able to consume or process way more tuples to
extract information.

A quick recap of the continuous window, typically keep a given number of items,
and then add and remove x-points to the window, and do a recalculation over the
items in the window. Such an approach imply rerunning over bigger partitions of
the data multiple times, and that was considered too expensive.

The optimization done on the tumbled landmark window, was to drop tuples
when they were not part of the skyline, as it would never be part of the skyline
later either. The tumbling of the window was done by restarting the topology. A
better way doing tumbling would be to implement a flush to bolts holding state
information like filters and partial or final skylines. TickTuples could be used to
initiate such flushes.

Filtering on a value constraint can easily be added to any bolt. It is advanta-
geous that as little as possible of uninteresting points reaches resource demanding
bolts. Bolts with a low level of parallelism and a high part of sequential code.
Filtering on constraints should be applied early in any topology. The needed logic
could be added to a generic FilterForwardBolt, all it would need is to instantly
reject points when a dimension is not matching a given constrain. More about
FilterForwardBolt can be found in section 6.4.3 on page 37.

If datasets were generated to be more similar to real stock data, they would
probably have 200 dimensions maybe even more. It would be ideal to sort out
points that could be of interest with a filter. A point that is found to be of interest
can then be optimized with vertical split before it is sent to the next layer of
processing. The reason for doing vertical split is to get the dimensionality of real
data points from a stock exchange down to a reasonable number and thereby also
size.

Imagine a horrible large skyline with 200 dimensions and only five of them are
used to calculate the skyline. In that case the memory foot print of the skyline
would be 40 times bigger, dramatically increase the chances for or the number of
cache misses. A cache miss is when the Central Processing Unit (CPU) has to go to
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the next level of cache or in worst case off chip to the RAM to get the needed data.
Unnecessary data dimensions elongating cache will waste cache lines obtained for
other processes.

6.3 Data generation

The source for generating data with Java, directly to a file, was supplied from
my first supervisor at NTNU. The algorithm and most of the code for generating
uniform, correlated and anti-correlated was kept as it was. The biggest changes
were to adopt it to suit inside a Storm spout.

The reason for adapting it to fit in a Storm spout was, that I could not see
any reason for not increasing parallelism. When generating hundreds of millions
of numbers, the different generated distribution will not have their correlation pat-
terns changed with a slightly increase of parallelism using different seeds.

For a understanding of the data generation and its topology, please see Figure 14
on page 36. The Java implementation of the topology can be found in the supplied
jar archive in the source folder under package no.stud and GenerateDatasetTopol-
ogy.java. The implementations of the spout and bolt used for generating can be
found in their representative packages, under the file-names BinFileDumpBolt.java
and GenerateDataset.java For the generating of data was Storms message passing
reliability redundancies not considered needed, or a likely pitfall when left out.

The data generator wrapped in a spout could be used directly as input to
the skyline bolts, but the generation of points are an expensive process that would
possible drain a little cluster for computing power needed for computing of skylines.
For same reason was it decided to use binary data written directly to and from files
to feed topologies.

For the actual data generator, configuration option DimensionMaxValue was
kept at one million for all generated datasets. The number of dimensions was set
to 5 and 10 and ran with the Uniform, Anti-Correlated and Correlated generators.
For every dataset a minimum of 10GB was generated on every node for later use.
The parallelism in term of executors was set to 8 for the spout and 4 for the bolt.
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Figure 14: Generate-Dataset-Topology.

6.4 Basic Components

This subsection presents a component breakdown of the most used spouts and
bolts.

General info:

• The Java implementation of spouts can be found in the supplied jar archive
in the source folder under package no.stud.spouts.

• The Java implementation of bolts can be found in the supplied jar archive in
the source folder under package no.stud.bolts.

6.4.1 BinFileReadSpout

The BinFileReadSpout is the main data source in the represented topologies. As
the name indicates, the spout does read a binary file and feeds the content onto
a stream. In the cases where the spout had parallelism higher than one was the
spout programmed to read different input files using modulation on the task index
identification. It was done to avoid feeding the same input multiple times in parallel
into the topologies. When it was not done the skyline points would have n copies of
itself in skylines, where n represent the number of spout tasks reading the same file.
That would lead to a significant lower throughput in topologies, as performance of
skyline bolts is closely related to number of skyline points kept in bolts local state.

The BinFileReadSpout needs to be configured with how often it should sleep,
how long it should sleep in milliseconds, what dataset it should read (in terms of
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dimensions and correlation type). Detailed information about the configuration
options and how to set them can be found in Section 5.3.1 on page 28.

6.4.2 SimpleSkylineBolt

The SimpleSkylineBolt is as the name indicates, a bolt that creates a skyline using
the nested loop approach. The bolt is making use of TickTuples, and every ten
second it will report the current skyline size to the assigned workers standard
output. The standard output is written to the workers log on the node, and can
be manually collected from there.

6.4.3 FilterForwardSkylineBolt

The FilterForwardSkylineBolt is as the name indicates, a bolt that does filtering
and forwarding points that pass filter. The points not passing this filter will be
rejected and omitted from future processing. A filter can be used to improve overall
performance. A filter would typically be used to discard points that do not apply
to a given constraint on one or more of the dimensions.

In this case FilterForwardSkylineBolt is implemented to do simple pre-skyline
consisting of max 100 points, overwriting the oldest point if the pre-skyline is
already at the max size of 100 points. To always overwrite the oldest skyline point
was a design choice to make sure that the filter would adapt to possible drift in the
input stream.

6.4.4 IncrForwardSkylineBolt

IncrForwardSkylineBolt is a implementation based on SimpleSkylineBolt. The bolt
mainly differs with an output stream. The bolt will emit all tuples that are added
to the local skyline onto that output stream. When the bolt emits such a stream,
it does allow for the possibility to merge multiple skylines created with different
instances of the same bolt to be merged into a final, or more complete skyline. The
bolt has no limitation on the size of its local skyline.

6.5 Topologies

This subsection presents a breakdown of certain topologies.
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General info:

• The Java implementation of the topologies can be found in the supplied jar
archive in the source folder under package no.stud.

• The stream groupings shown in the figures are covered in section 5.3 on page
25

6.5.1 BlackHoleTopology

The BlackHoleTopology is as the name indicates, a topology where bolts act as a
black hole. The bolts in the topology use ”local or shuffled grouping” consuming
the ”Generator” stream. ”Generator” stream will therefore stay on the node when
a BlackHoleBolt exist on same node. When the streams stay on same node, it
will make use of internal messaging. The experiment with BlackHoleTopology was
created to gain an really rough indication of how much tuples the compute nodes
could manage to process with different message costs.

Test one and two forces all logic to one process, with multiple threads, en-
forcing usage of LMAX Disruptor for message passing. Test two differs from test
one as it will show how sleep value affects the throughput. The third test shows
how the throughput in topology will be affected when a node runs multiple work-
ers(processes) instead of multiple executors(threads). In contrast to test one and
two is test three making use of ØMQ for the message passing. Test four will show
the total maximum throughput when not making use ØMQ as every node will have
their own instance of BlackHoleBolt.

The BlackHoleTopology is implemented in BlackHoleTopology.java and Figure
15 (on page 39) shows how spouts and bolts are utilized and connected, in the
implementations.

6.5.2 SimpleSkylineTopology

This is the basic implementation of a nested loop skyline in a stream environment.
It is simple in the way that we can have one or multiple spouts feeding only one
SimpleSkylineBolt. The SimpleSkylineBolt will consume points from its input buffer
and check them one by one, at arrival against already existing skyline in the bolt.
The bolt is not capable of having parallelism higher than one, as it is nothing in
this topology to combine the skyline points from different partial skyline sources.
In fact the bolt has no output stream.

For inputs that generate big skylines, this topologys SimpleSkylineBolt most
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Figure 16: Simple-Skyline-Topology.

likely will be CPU and later on memory bound. Bolt speed is doomed to decay
over time when skyline size m increase. That will possible lead the heartbeats to
starvation, and the bolt will most likely die or be killed during a forced restarted
from the supervisor, that believes it is dead.

The SimpleSkylineTopology is implemented in SimpleSkylineTopology.java. Sim-
pleSkylineTopology.java is explained in section 5.3.4 on page 31, and is thereby also
represented in the appendix on page 78 . Figure 16 on page 39 shows how spouts
and bolts are utilized and connected, in the implementations.

6.5.3 FilteredSimpleSkylineTopology

The topology has its name from the fact that it is the SimpleSkylineTopology com-
bined with one executor running two FilterForwardBolt tasks. The thought behind
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Figure 17: Filtered-Simple-Skyline-Topology.

this test, was how a simple filter would impact the performance of the original
SimpleSkylineTopology. This topology still has the limitations of the SimpleSky-
lineTopology when the filter has a low filter rate.

The FilteredSimpleSkylineTopology is implemented in FilteredSimpleSkylineTopol-
ogy.java and Figure 17 (on page 40) shows how spouts and bolts are utilized and
connected, in the implementations.

6.5.4 ImprovedSkylineTopology

The ImprovedSkylineTopology is an improvement over the SimpleSkylineTopology
allowing parallelism like the one seen in BOCS monitoring architecture (see Figure
4 on p. 10.). Having a look at the topology representation in Figure 18 on p. 41.
The IncrForwardSkylineBolt is making a partial skyline of its input stream and is
emitting every increase to the final skyline that is made with the SimpleSkylineBolt.

The ImprovedSkylineTopology is implemented in ImprovedSkylineTopology.java
and Figure 18 (on page 41) shows how spouts and bolts are utilized and connected,
in the implementations.

6.5.5 FilteredImprovedSkylineTopology

The FilteredImprovedSkylineTopology builds on the same design as the Improved-
SkylineTopology. It mainly differs because it adds a filter layer (FilterForwardSky-
lineBolt) in front of the IncrForwardSkylineBolt.

The filtered improved skyline topology is an extension of the improved skyline
topology. The main difference here is that the topology is extended with additional
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Figure 18: Improved-Skyline-Topology.
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Figure 19: Filtered-Improved-Skyline-Topology.

layer of bolts to do filtering. That will cause some extra delay on the path before
the points makes it into the final skyline.

The FilteredImprovedSkylineTopology is implemented in FilteredImprovedSky-
lineTopology.java and Figure 19 (on page 41) shows how spouts and bolts are
utilized and connected, in the implementations.

6.5.6 BroadcastSkylineTopology

The BroadcastSkylineTopology is allowing parallelism. BroadcastSkylineBolt holds
a portion of the skyline in its memory. Whenever it is possible, the bolt should
not hold on to a bigger skyline than what it can fit into the CPU’s level two cache.
BroadcastSkylineBolt processes tuples and broadcast when it adds a point to the
skyline. Unless points are lost, added points will be processed off all BroadcastSky-
lineBolt. BroadcastSkylineBolt will use the received broadcast as filter-points and
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therefore will not keeping them.

Overall processing cost in the BroadcastSkylineTopology will be higher com-
pared to the other skyline topologies. That because it requires a lot more com-
munication and overhead in processing, as every skyline point will be broadcasted.
Therefore, all the skyline points will be processed by every partial skyline.

Another disadvantage is when stream X seems to always be worse than stream
Y. In that case the BroadcastSkylineBolt reciving stream X may add a lot of false
positives to its local skyline and spam bolts intercommunication stream. Therefore
a better approach would be to have filter in front that receives filter points from a
broadcast stream of filter points. BroadcastSkylineTopology have a final bolt that
assemble the final skyline on a time based interval defined with eg. Tick tuples.
Partial skylines would needed to be merged, as it is no guarantee that the messages
and partial skylines will be in sync when submitted. The topology is represented
in Figure 20 on page 42.
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7 Results and Discussion

7.1 Results

Results will be presented with the number of tuples processed during a 10 minute
period, measured from start-up of topologies. Tests run with topologies using only
one worker, were run sequentially on the same i5 node. That was done to eliminate
the difference from slightly different hardware in the cluster. Unless otherwise is
specified; taskParallelism of spouts and bolts is one to one with number of executors
assigned. A quick recap, Executor is equal to a thread.

General table explaination:

• # is the line identifier in the table.

• DD is short for Data Distribution, and indicates if the test data run with is of (U)niform,
(C)orrelated or the AntiCorrelated(AC) type.

• Nodes indicates how many nodes that are utilized.

• Executors indicates how many Executors that are utilized.

• Workers indicates how many Workers that are utilized.

• Msg/s is short for messages per second. Indicating how much input data the topology
is consuming from the spouts. Calculated over a ten minute interval. (The ten min total
consumed divided by 600.)

• Capacity indicates the load on a bolt or group of bolts. Calculated over a ten minute
interval.

• Execution indicates the average time spent in logic of a bolt, or group of bolts over the
last ten minutes.

• Processed indicates the total number of messages in the stream, consumed by a bolt. In
topologies with one bolt will that be the same as total of spout produced.

• Skyline indicates the size of the Skyline at ten minutes, measured with tick tuples.

• ms indicates the sleep time in ms.

• S is the number of spouts in topology.

• N/A indicates that the measure is not applicable.

• Fail indicates that a topology failed partially or totally within ten minutes.

• Bn is short for the parallelism hint for that Bolt, where n indicates which bolt it is,
numbered from left to right in the topology. So the first bolt after a spout would be n = 1
the second n = 2 and continues.

• PBn is short for Processed Bolt, where n indicates which bolt, numbered from left to
right in the topology. So the first bolt after a spout would be n = 1 the second n = 2 and
continues. Processed is explained above.

• CBn is short for Capacity Bolt, where n indicates which bolt, numbered from left to right
in the topology. So the first bolt after a spout would be n = 1 the second n = 2 and
continues. Capacity is explained above.



7 RESULTS AND DISCUSSION 44

• EBn is short for Execution Bolt, where n indicates which bolt, numbered from left to
right in the topology. So the first bolt after a spout would be n = 1 the second n = 2 and
continues. Execution is explained above.

7.1.1 BlackHoleTopology

Tests numbered 1 to 3 was performed serially on the i5 node, so the difference in
hardware was eliminated as a source of error. The tests were run for ten minutes
with five dimensional data. Since the stream grouping used is ”local or shuffled”
and it existed a local bolt, test four utilized the 4 available nodes, showing the
maximum number of processed messages on those four nodes not utilizing ØMQ.

The dimensionality of the data sets have an impact, but not big compared to
using it in a skyline. The ten dimentional sets were therefore not tested. The tests
do close to nothing with the data. All data received by the bolt got dereferenced
after some simple instructions and were left for the garbage collector to collect.
The results are shown in Table 1.

# Nodes Workers Executors Processed msg/s Sleep ms Capacity Execution S B1

1 1 1 4 20 562 040 34.3k 15 1 0.023 0.001 3 1
2 1 1 4 123 318 800 205.5k -1 N/A 0.106 0.001 3 1
3 1 4 4 72 279 340 120.5k -1 N/A 0.072 0.001 3 1
4 4 4 16 485 529 900 809.2k -1 N/A 0.130 0.001 12 4

Table 1: BlackHoleTopology results.

7.1.2 SimpleSkylineTopology

When running more than one spout per node, the spouts were programmed to
make use of different input files to avoid a skyline having 3 equal points for every
point in the skyline. Tests were done with one worker, running for ten minutes.
Test # 1 to 6 was run sequential for both the ten and five dimensional set on the
same i5 node.

The results from testing this topology can be found in Table 2 on page 45.
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(a)One worker, one SimpleSkylineBolt and ten dimensions.
# DD Processed Msg/s Skyline Capacity Execution Sleep ms S
1 AC 87080 0.2k 88 060 0.429 2.956 2 20 1
2 AC Heartbeat failure 4 10 1
3 U Heartbeat failure 5 1 2
4 U 519 680 0.9k 84 408 0.920 1.064 4 4 1
5 C 7 410 520 12.4k 20 082 0.944 0.076 -1 N/A 3
6 C 8 432 400 14.0k 4 641 0. 607 0.043 5 1 3

(b)One worker, one SimpleSkylineBolt and five dimensions.
# DD Processed Msg/s Skyline Capacity Execution Sleep ms S
1 AC 249 180 0.4k 165 200 0.937 2.384 4 6 1
2 AC Heartbeat failure 2 1 1
3 U 8 618 940 14.4k 8 126 0.753 0.052 -1 1 3
4 U 15 081 500 25.1k 9 795 0.954 0.038 10 1 3
5 U 11 465 980 19.1k 7 456 0.788 0.041 7 1 3
6 C 41 779 860 69.6k 2 223 0.864 0.012 -1 N/A 3

Table 2: SimpleSkylineTopology results.

7.1.3 FilteredSimpleSkylineTopology

The results from testing this topology can be found in Table 3 on page 45. It is
also correct to state that filter bolt had a task parallelism of two, except for test
#1 with AC that had one executor and one task. Having the task parallelism of
two is making it possible to assign additional executor to the filter bolt. However
that was not utilized.

The results from testing this topology can be found in Table 3 on page 45.
Comparing the message throughput in this topology with the results from Sim-
pleSkylineTopology shows how the simple filter impacts performance.

One worker,one FilterForwardSkylineBolt, one SimpleSkylineBolt and five dimensions.
# DD PB1 PB2 Msg/s Skyline CB1 EB1 CB2 EB2 Sleep ms S
1 AC 230 480 229 360 0.4k 165 078 0.709 3.274 0.709 2.057 4 6 1
2 U 9 713 760 4 705 860 16.2k 6 868 0.286 0.018 0.555 0.071 10 1 2
3 U 14 192 200 7 463 420 23.7k 8 452 0.286 0.012 0.661 0.053 10 1 3
4 U 16 211 140 11 195 400 27.0k 10 871 0.820 0.030 0.919 0.049 20 1 3
5 C 23 782 860 19 460 39.6k 1 387 0.173 0.004 0.002 0.059 20 1 3
6 C 91 230 380 65 420 152.1k 4 920 0.583 0.004 0.016 0.148 -1 N/A 3

Table 3: FilteredSimpleSkylineTopology results.

7.1.4 ImprovedSkylineTopology

ImprovedSkylineTopology shows message throughput when utilizing of all comput-
ing nodes in the cluster. However it is not scaling well for anti-correlated inputs.
The reason is very familiar to why the SimpleSkylineTopology is not scaling that
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well. SimpleSkylineBolt tailoring the final skyline, can not keep up with input when
cardinality of the skyline set has grown to big.

The results from testing this topology can be found in Table 4 on page 46. When
it was less than 4 spouts in this topology, parallelism of IncrForwardSkylineBolt
was set to number of spouts.

Four workers, four/two IncrForwardSkylineBolt, one SimpleSkylineBolt and five dimensions.
# DD PB1 PB2 Msg/s Skyline CB1 EB1 CB2 EB2 Sleep ms S
1 AC 360 120 70 980 0.6k 17 347 0.324 0.843 0.059 0.502 4 20 2
2 AC 684 340 81 020 1.1k 19 331 0.503 0.668 0.061 0.450 4 10 2
3 U 43 012 900 78 460 71.7k 13 053 0.813 0.041 0.051 0.390 7 1 12
4 C 43 547 920 11 360 72.6k 2 425 0.430 0.014 0.002 0.096 7 1 12
5 C 194 766 580 9 640 324.6k 7 972 0.881 0.008 0.004 0.240 -1 N/A 8
6 C Failed, ØMQ uncontrolled memory usage. -1 N/A 9
7 C Failed, ØMQ uncontrolled memory usage. -1 N/A 12

Table 4: ImprovedSkylineTopology results.

7.1.5 FilteredImprovedSkylineTopology

FilteredImprovedSkylineTopology shows message throughput when utilizing of all
computing nodes in the cluster in combination with filters. It will therefore be
natural to compare it with ImprovedSkylineTopology that also utilize all the com-
puting nodes without filter. FilteredImprovedSkylineTopology is not expected to
scale better than ImprovedSkylineTopology for anti-correlated inputs. For a topol-
ogy too scale better with high cardinality on final skyline set, a direct targeting of
skyline cardinality would be needed.

The results from testing this topology can be found in Table 5 on page 46.

Table split, test settings.
# Sleep ms S
1 4 10 2
2 4 5 2
3 20 1 12
4 -1 N/A 8
5 -1 N/A 12

Four workers, four/two FilterForwardSkylineBolt, four/two IncrForwardSkylineBolt,
one SimpleSkylineBolt and five dimensions.

# DD PB1 PB2 PB3 Msg/s Skyline CB1 EB1 CB2 EB2 CB3 EB3

1 AC 563 240 561 780 104 620 0.9k 27 763 0.024 0.037 0.429 0.511 0.235 1.335
2 AC Failed, ØMQ uncontrolled memory usage.
3 U 67 387 560 41 881 860 63 200 112.3k 16 183 0.839 0.022 0.986 0.048 0.035 0.330
4 C 324 431 260 109 320 12 800 540.7k 8 679 0.555 0.003 0.006 0.104 0.006 0.262
5 C 303 278 640 337 360 22 380 505.5k 11 486 0.523 0.004 0.031 0.132 0.031 0.850

Table 5: FilteredImprovedSkylineTopology results.
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7.1.6 BroadcastSkylineTopology

Topologies based on BroadcastSkylineTopology was not implemented and there-
fore naturally not measured. Topologies based on BroadcastSkylineTopologies was
work in progress mainly targeting, memory usage thereunder cardinality of partial
skylines. However time disposable to finish this thesis put an effective limitation
on further research on this topic.

7.2 Discussion

7.2.1 Environment

The Storm cluster was realised of cheap commodity hardware. A typical node
consist of a 4 core based Intel i5 or AMD Phenom II in the 2.5-3.5 Ghz range with
at least 4 GB RAM available for each worker process. In total Storm cluster consist
of four worker nodes running one Storm Supervisor each, with a total of 4 available
workers.

One single coordination node contains Zookeeper cluster, Storm UI and one
Storm Nimbus instance. Monitoring and fail-safeing of Storm Nimbus, Storm UI
and Zookeeper was done with a service named Supervisor. The same service was
utilized on the compute nodes to monitor Storm Supervisor.

Nodes have 1 Gb star network connected through a switch except for coordi-
nator node that has 100 Mb connection and slightly weaker hardware. Having
slightly weaker hardware and slower network for coordination node was not a bot-
tleneck. Zookeeper is used to hold cluster coordination data, dictated by Nimbus
administering the topologies. It was further confirmed with running ’ifstat -S’ for
network usage and ’top’ for processing power. It is a rather small cluster, but
it provided great performance and the ability to measure message throughput in
Storm topologies. The cluster is shown in Figure 21 on page 48.

Compute nodes Hard Disk Drive (HDD) performance was not considered a
problem. For nodes accessing an external HDD over the Universal Serial Bus 2
(USB2), sequential capacity was measured to approximate 31.3MB/sec on single
sequential reads. The single read was measured with the Linux command ‘sudo
hdparm -t /dev/sda‘. hdparm -t is doing a raw read, implying that the file system
overhead was not included in resulting measurements.

Notable; When more than one BinFileReadSpout was running on the same node,
reads would not be strictly sequential. However BinFileReadSput was implemented
using buffered reading and therefore reads bigger chunks for each disk access. For
cases with e.g. four BinFileReadSpout on the same node, would it be four sequential
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Figure 21: Storm cluster environment.

streams read from HDD. Files on disk was written sequentially one at the time
during the generation. In the case of three readers on the same node was the reads
from the HDD spotted to be approximately 5.87MB/s, the utility used was ’iotop’.

It was also done measurements of the network. It was done using the Linux
command ‘iperf‘. iperf is a tool made for doing network throughput tests. Two
of the compute nodes was set up as iperf servers and having another compute
node connecting to it. The command used to connect compute nodes was ‘iperf -c
10.0.0.X -d -t 60 -i 10‘. the arguments is; c - client, d - bidirectional test, t - how
long the test should run, i - on what interval the throughput should be reported.
Two such tests were run in parallel with the bidirectional streams, implying four
streams. Resulting throughput for those four streams was better than 850 Mbit-
s/sec on all streams for all report intervals, for both directions. With every compute
node capable of having over 100 MByte/sec in and out, it was concluded that the
network was no bottleneck. However it needs to be mentioned that no inspection
on how Storms TCP packet size would be the same as used in the test. The test
utilized the operative systems standard value.
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7.2.2 Datasets

A synthetic dataset was used as it allows extremely many values in each dimension,
and thereby allowed to pressure the limits of what the topologies could handle.
Compared to a real dataset from a stock exchange where dimensions often will
be more limited in their ranges, and indirectly reduce number of possible skyline
points m in a possible endless stream.

I decided on sticking with 5 and 10 dimensions for the generated correlated,
anti-correlated and uniform datasets. Mainly to be able to run tests with different
computing loads. Doubling of the dimensions had a huge impact on the perfor-
mance in several ways. It allows a much faster increase in the size of the total
skyline. Ten dimensions instead of five also double numbers of elements that are
compared when comparing two points. The cost of generating the static datasets
was not measured as it is considered not relevant to the skylines performance.

From the results of the Simple-Skyline-Topology in Table 2 can we see that the
topology had issues not breaking down even with one spout feeding the topology.
That was especially for the AntiCorrelated and Uniform distributions, result line
1-4. It was very time consuming to find a balance for, how often the spout should
sleep. For how long it should sleep, and how many of them it should be. To not
spend to much time on tweaking, was it decided to drop future testing of the ten
dimensional set and focus on the five dimensional one.

With point generator wrapped inside a spout, generating spouts could serve
tuples directly as input to bolts. That was not utilized. Generating points are
an expensive process of generating randomness, that would possible drain a little
cluster for a lot computing power. In this case; Computing power needed for
computing partial and final skylines. For the same reason of not utilizing direct
generation, it was decided to use binary data written directly to and from files to
feed topologies.

7.2.3 Weaknesses

In the proposed methods for skyline topologies, a point is considered valid until the
window is tumbled. That is chosen by design for being able to handle a massive
flood of data. However it can be argued for that a point(an imaged stock interests),
only will live for a short period of time. That fact can not be denied, but it can
be given an account for. In the tumbled landmark window it would be ideal to
filter short living illegitimate stock interests at arrival of points, when discovered.
That can be done using filters. However, a point that is considered invalid for
other reasons can be removed at any time, without hurting the completeness of
the algorithm used. This decision of removing or keeping invalid points until the
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window is tumbled would be left to the stock trader.

Changing to a sliding window would possible keep better track of validity of
points. However it will imply a very small window size compared to tumbled
landmark. Sliding window could be optimized with graphs or networks calculating
skyline candidates and eliminate no candidates. But those optimizations do not
change the fact that a sliding window can process way less as it implies some extra
processing and storing of possible candidates. When a point is taken out from
the skyline, the complete skyline is recalculated unless it is known which points
the removed point dominated. And still, it might be other points dominating the
same points. Keeping track of candidate points is complex and will most likely lean
toward a micro batch system for exploiting data locality better during reprocessing.

If ageing and decaying of points was utilized for a landmark window, it would
still give a guarantee that returned points will be among the best, but necessarily
not the best set from an operators point of view. A point matching a stock trader’s
current choice, might decay and the closest stock offer is not represented in the
skyline as the decayed point just dominated it. To give a better guarantee it is
possible to design implementations so points dominated by other points that are
about to decay would be kept for a short while. However, this again will lead to
a bigger memory footprint, higher processing cost, and less available space in the
level two cache. A suggestion would be to stick with a tumbling window, and look
into partial tumbling as an operator might prefer not starting from scratch every
ten minutes.

Validity of points is considered a weakness, it is very complex to extract a
stock trader’s validity policy without closer co-operation with a stock trader. A
stock trader’s point validity policy might vary with direction of stocks main index.
Validity policy could undergo more work to verify right design choice.

Generated datasets could have their linear coefficient correlation values cal-
culated, and confirm correct distributions. If slightly erroneous correlations exist
it would not effect this thesis’ prototyping purpose. However, skyline cardinality
is strongly connected to dataset correlation. For performance the important part
will remain skyline cardinality, as it effects the time we need to process one input
tuple.

CPU frequencies on compute nodes was set to regulate them-selves according
to CPU load. It is the default setting for Ubuntu server. This undesirable config-
uration was discovered after all measurements were completed, hence no way back
to set all the CPU core frequencies to a fixed value.

Testing of topologies was not done multiple times and an average was not
calculated, because of this thesis’ time constraints. Testing therefore deviate from
established practices. It also needs to be highlighted that results in Table 2 and
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3 might be slightly erroneous. After testing and interpreting an error in the code
was discovered. It could possible affect which order input files were utilized, when
spouts parallelism was not maximised. Correct distribution and dimensions were
always used, but utilizing of sets in the same order was therefore not guaranteed
and might have effected the results slightly. When inspecting the results in Table
5, when comparing results obtained in row # 5 and row # 6, something does seem
a bit odd. It should not be affected of the programming error mentioned above,
however, those numbers speak for themselves and clearly indicates something is
wrong. Suspecting multiple points of the same values exist, issue might be from a
human error related to a recovery of datasets after a fatal HDD crash. Time for
further investigation was not available.

7.2.4 Performance

When utilizing one node a great performance boost was discovered when compar-
ing no filter versus filter usage. Comparing FilteredSimpleSkylineTopology results
(Table 3 on page 45) with the SimpleSkylineTopology results (Table 2 (b) on page
45). Particularly for row # 6, correlated distribution, it is clearly visible that for
the correct type of data distribution even the simple filter is very efficient. This is
also confirmed by comparing the results of ImprovedSkylineTopology(Table 4 on
page 46) with FilteredImprovedSkylineTopology(Table 5 on page 46).

Comparing row # 6 in FilteredSimpleSkylineTopology featuring 91.2 million
messages processed versus row # 6 in SimpleSkylineTopology’s 41.8 millions. Fil-
teredSimpleSkylineTopology has a performance improvement of 118% over the Sim-
pleSkylineTopolgy for the correlated dataset. For anti-correlated and uniform was
no significant difference observed. Comparing PB1 versus PB2 in FilteredSim-
pleSkylineTopology, it is clear that filtering has a big impact for uniform data.
However, the additional cost of extra context switches and processing, seems not
to be able to payback the extra cost without having additional CPU cores to exploit.
Filter is observed to have close to no significance when processing anti-correlated
streams.

A Performance improvement of 66.5 % was observed utilizing filter for Im-
provedSkylineTopology, comparing row #5 in ImprovedSkylineTopology with row
# 4 in FilteredImprovedSkylineTopology. Comparing PB1 versus PB2 for Filtered-
ImprovedSkylineTopology reveal the same as mentioned in the paragraph above,
for uniform and anti-correlated.

The performance boost of utilizing multiple nodes without effect of filter is
shown when comparing SimpleSkylineTopology with ImprovedSkylineTopology. Here
again is uniform and particularly anti-correlated scaling worse. It is also possible to
compare with BlackHoleTopology that indicates practical maximum for different
settings.
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Figure 22: Possible utilization on single CPU node.

Number of workers on one node effects Storms performance significantly.
It might be tempting to run multiple workers on a single multi-core CPU. That
should be avoided unless the workers are supposed to run different topologies at the
same time on one node. Running multiple workers will lead to a major increased
of context switching and a major increase in communication overhead. Going from
internal thread to thread communication to communication over the operative-
systems socket layer is expensive.

Underlying architecture is very important to understand in more ways, and
to play on its premisses to get improved performance. What a close to ideal schedul-
ing of a topology like e.g. FilteredImprovedSkylineTopology would look like is
shown in Figure 22 on page 52. Scheduling executors onto nodes using Local or
Shuffled Grouping, making it possible for the data-stream to occasionally stay on
chip and flow through level two cache.

JVM Garbage Collector is known to impact performance of Java applica-
tions. The impact is known to cause freezes of applications running for a short
period of time. Because of a problem introduced in next section, the Garbage Col-
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lector (GC) was tuned to be very aggressive and it was therefore also consuming
way more CPU time than strictly needed. That has of-course coloured the overall
performance, but was intentional left on to enforce a difficult circumstance that
would occur occasionally with time anyway.

7.2.5 Trouble

During the use of Storm I have run into a lot of different problems. One of the
most annoying one as a newcomer was the following experience:

Problems raised when a topology was created and run with the reliability (guar-
anteed message passing) turned off. The described problems also apply for the case
where the Storm TOPOLOGY MAX SPOUT PENDING is set to a arbitrary high or
unlimited value. TOPOLOGY MAX SPOUT PENDING act as a limit for emitting tu-
ples onto the streams. The limit is task local. When the limit is hit, the spout will
stop emitting new tuples until it has received an acknowledge or failed a tuple.

With no tracking of tuples and spouts emitting onto streams with no limit, given
the tight loop described in section 5.1 on page 23, the ack() and fail() functions
do nothing, and nextTuple() consume the given CPU timeslot emitting tuples non-
estop. (Given that spouts have tuples to emit, something it has in endless streams.)
It was suggested to have it sleep for a short amount of time in cases spout had no
input to send. That was not the case and a sleep policy was therefore not applied
at first.

Carrying on with spouts having no throttling policy. They were always ready
for scheduling, and always had work to do. That in combination with a fair CPU
scheduler lead to spouts flooding streams. Bolts had heavier logic and could not
stand a chance to keep up with spouts. But still, it should not be that dramatical
with full internal buffers? With no reliability turned on, it would still be normal
to expect some kind of flow control, either back pressure or overflows. In the case
of back pressure would a slowdown of a component in topology cause slowdown of
component in front of that component. In the case of a overflow tactic it would be
to discard messages when buffer is full.

Regardless of utilized flow control, one node running a worker with such a
workhorse of a spout described above, seemed to run out of memory insanely fast.
Its CPU usage was also noticeable close to maximum. The first thought was that
something in the code was not dereferencing proper, but nothing supporting that
hypothesis was found. Could it simply be that the JVM GC could not keep up
with cardinality of points created and discarded? JVM GC was configured to be
aggressive and allowed to spend a lot of time. However, the fault still persisted,
enforcing a thorough dive. Starting with inspecting Java heaps where nothing
particular was discovered. Moving on inspecting the JVM Storm Worker process
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it slowly came to light that ØMQ was causing the memory consumption, with its
internal socket buffering.

With the memory consumption localized. Possibilities to elevate it were tried.
One possibility of setting the ”High water mark” on ØMQ sockets making them
block when specified buffer size is reached, was utilized hoping for a back pressure
effect. It sadly showed quickly to be causing starvation of heartbeats. Realizing
that underlying ØMQ worker to worker communication could not utilize back pres-
sure or discard overflowed packages the step towards a throttling policy for spouts
was done. The alternative that includes Storms TOPOLOGY MAX SPOUT PENDING

configuration option is not available without tuple tracking.

One pattern was discovered after running a lot of tests, making it possible to
recognizance when ØMQ was about to cause a major fault. The common pattern
was discovered to be when a bolt or a group of bolts have acked a lot more or less
than it should from a stream. With reliability turned off every received tuple will be
instant acknowledged and counted for statistics. To confirm the fault when pattern
is showing, a Java utility like ’jvmtop’ combined with the usage of ’top’ would be
handy. ’jvmtop’ will show a breakdown of the Java process’ heaps. Those heaps
would typically show to be of expected size, but when the same JVM process is
inspected in top will it quickly reveal that JVM worker process is heading towards
consuming all available RAM.

For a reproduced situation in a controlled manner; a simple node was set to run
four workers to force traffic over ØMQ sockets using the BlackHoleTopology. Have
a look at Figure 23 on page 55, to see how memory usage and processing is slowly
running out of control.

Another annoying issue is when the topologies are partially crashing, it is
often a result of high latency on a components execution in combination with a
JVM Garbage Collector (GC) run.

I also ran into a lot of other different sized problems and error messages. Some
errors and their plausible solutions are to be found in the appendix section 9.6 on
page 74.
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Figure 23: Failing ØMQ worker to worker communication.
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8 Conclusion and Recommendations

8.1 Conclusion

The main goal of this thesis was to introduce a low latency skyline computation in
a stream environment. This goal was reached. Skylines was computed ”on the fly”
instead of ”on request”. The different skyline computations were implemented on
top of Storm utilizing different strategies to exploit parallelism and optimization
filter. The overall performance with Storm appeared to be stunning, specially when
accounting for running on mid-end commodity hardware.

Processing thousands of messages per second was a pleasure with Storm. To use
the most basic abstraction level, was a medium success. It enforced a whole lot of
work with the basic concepts of the underlying architecture and inner workings of
Storm. That to make sure Storm and the frameworks Storm relies on did behave as
expected. With underlying issues sorted out, and with fairly large skylines around
and above ten thousand points; The small cluster did manage to process above 100
thousand messages per second for uniform distribution and above 500 thousand
for correlated distribution, both with five dimensional points. However, process-
ing anti-correlated distributed datasets was showing a disappointing performance.
Those datasets lead to high cardinality on skylines sets with an accompanying
high processing cost. Bottlenecks observed are sequential skyline merge processes.
Processing cost is increasing significantly for bolts when cardinality of skyline set
outgrow CPU level two cache. For anti-correlated datasets that happens rapidly,
and leads to the observation of a disheartening performance. Topologies using other
strategies for utilizing more processing power will need further research. Bolts col-
laborating on holding a skyline in their level two cache could be one way to go.

The introduction of filter showed small filters containing up to hundred points,
could more than significantly reduce the number of points that need to be forwarded
for future processing with correlated distribution. Same filter showed a significant
reduction for uniform distributions. For anti-correlated distributions could a small
reduction be observed, probably not worth the filter processing cost.

Personally an important discovery was; Always when a part of the process re-
lated to this thesis was done, I moved on to the next stage. It then magically
showed how the previous part should have been iterated over again, as improve-
ments would be possible by simply doing something slightly different. However,
after X-iterations over different parts of the thesis with accompanying improve-
ments, I was forced to move on because of the time constraint. It was very visible
for the part containing time consuming testing. It was simply no way back. It was
a great experience. However, I personally wished to reach working implementations
earlier, so some time could be allocated to target higher cardinality skylines on top
of Storm.
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8.2 Recommendations

This thesis covers some possible implementations of the skyline operator over
streams with Storm framework. However it is still much more that can have further
attention in this specific research path.

• Targeting high cardinality skylines.

Other obvious improvements and extensions that are directly related and might be
introduced to my existing work are:

• Utilizing smaller batches through topologies, it is not really realistic to pull
a single tuple from the stock exchange source at the time.

• Test with more realistic data, and utilize both vertical and horizontal split of
tuples with bolts. With more realistic data would a tuple ID be needed, and
could also be used to guarantee no duplicate tuples in skyline.

• With a more realistic approach would defining a set of realistic constraints
on dimensions make filter bolts more useful.

• Flushing of the tumble window with the use of tick tuples. Achieving a
more realistic handling of window in contrast to restarting topologies every
X minute.

• Improving topologies with better strategies for filter bolts, both on the deci-
sion of filter points and possible sharing of them.

• Making use of the upcoming Storm 9.+, and utilize the pluggable worker
communication. Making use of Netty [19] looks promising as it is a pure
Java based implementation, that most likely will give a huge boost in worker
to worker communication.

• Utilizing of Storms pluggable scheduler for achieving fine grained control over
which executors that are assigned to which nodes.
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9 Appendix: Details

Note:

When commands are listed in subsections, and nothing else is specified are those
commands to be interpret as commands that is supposed to be ran in a Linux shell
(a command-line interpreter).

Exception:

• # indicates comments and will not execute anything.

• vim is a text editor, the edit to be done is indicated with :::VIM::: Some
text edit. :::END:::
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9.1 Setup of local Storm cluster

”Storm has a ’local mode’ where a Storm cluster is simulated in-process. This is
useful for development and testing.” [5] This section will cover how to set up a local
Storm cluster for local topology testing and building Storm projects using Storm,
Java, Clojure and Leiningen.

9.1.1 Make the workstation ready

To be able to use Storm locally do we need to download a copy of Storm and extract
it. We would also need to install leiningen, it would be our build tool for creating
jar archives. The installation can be done with the following commands:

Listing 7: ’Install Storm on workstation.’

1 cd ~

2 wget https://www.dropbox.com/s/fl4kr7w0oc8ihdw/storm-0.8.2.zip

3 unzip storm-0.8.2.zip

4 sudo apt-get install leiningen -y

9.1.2 Compiling and packaging of dependencies

Leiningen is a build and dependency management tool. It is used for automating
Clojure projects. The aim of Leiningen is offering a build tool with less complexity
than Maven. Leiningen is invoked with the following command: ”lein arguments”

Most used commands arguments are:

• jar - Compile and package up all the project’s files into a jar file.

• javac - Compile Java source files.

• uberjar - Compile and package up the project files and all dependencies into
a jar file.

• help - Displaying the tools CLI help.

9.1.3 Setting up a fresh storm project

First thing needed is a project workspace:
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Listing 8: ’Setting up a fresh Storm project.’

1 $ mkdir -p ~/project/src/no/randompackage

Second, a definition of the project. Name it ’project.cli ’ and save it in ’∼/project/ ’
folder.

Listing 9: ’project.clj’

1 ;; ~/project/project.clj

2 (defproject storm-starter "0.0.1-SNAPSHOT"

3 :java-source-path "src/"

4 :javac-options {:debug "true" :fork "true"}

5 :jvm-opts ["-Djava.library.path=/usr/local/lib:/opt/local/lib:/usr/lib"]

6 :dependencies []

7 ;; :main [TopologyMain]

8 :dev-dependencies [

9 [storm "0.8.2"]

10 ])

Implement a test topology in the folder ’∼/project/src’. Section 5 can be used
as a starting point.

To create an jar containing the dependencies and the topology. Run the follow-
ing command while standing in the project root (’∼/project/ ):

Listing 10: ’Compile and create a jar.’

1 lein uberjar

To launch Storm topology defined in TopologyMain.class, run the following
command:

Listing 11: ’Launch Storm topology on workstation.’

1 # Launch storm with given topology

2 storm-0.8.2/bin/storm jar topology.jar no\.randompackage.\TopologyMain



9 APPENDIX: DETAILS 65

9.1.4 Error probing

When Storm crashes it is wise to check the log directories for clues. Storm logs for
workers, nimbus and ui is located in ’∼/storm-0.8.2/logs/*’ When Storm is ran in
remote cluster mode, those logs will be located on their representative nodes. Logs
related to supervising of Storm components, are located at representative nodes in
the folder ’∼/log/storm/* ’

It is worth mentioning, when Storm can not execute a given topology, Storm
will not do anything. More troubleshooting information can also be found at:
https://github.com/nathanmarz/storm/wiki/Troubleshooting

9.1.5 Fault handling

Storm is designed to be fault safe. It keeps no track of state in Storm Supervisor,
workers or nimbus process. The required state info is kept safe in Zookeeper cluster.
When Storm components encounters errors and fails, they will die visible. It is the
supervisors task to relaunch a failing component.

9.2 Setup of remote Storm cluster

For the workstation to connect and submit jars containing topologies and resources
to a remote Storm cluster, it needs to know where the nimbus instance is located.
To define for Storm CLI where nimbus is located run the following:

mkdir ~/.storm;

echo ’nimbus.host: "10.0.0.212"’ >> ~/.storm/storm.yaml

9.2.1 Requirements for Storm cluster

To set up a recommended Storm cluster, the following is needed; An Apache
Zookeeper cluster 3.3.3, ØMQ 2.1.7, JØMQ for ØMQ 2.1.7, Storm 0.8.2, Java
6 and Python 2.6.6. The ZooKeeper cluster is used to manage the necessary state
info for the different components of the cluster. JØMQ is the Java binding for
ØMQ, which is used as the worker to worker messaging passing system [26]. I have
successfully ran Storm with Zookeeper 3.3.5 and Oracle Java 7.

https://github.com/nathanmarz/storm/wiki/Troubleshooting
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9.2.2 Setup Storm Clusters

It is possible to automatically deploy and configure Storm on Amazon Web Services
EC2 with the storm-deploy project [26].

To set up a supervisor node on Ubuntu 12.04.3 the following can be used as a
guide:

”Setup Storm Supervisor”

1 # This is not a bash/sh script but a listing of commands, with

2 # highlighting in certain editors, for installing Storm Supervisor cluster

3 # and it depencies on Ubuntu LTS 12.04.3. Locale used ’en_US.UTF-8’.

4 #

5 # Installed with ’server’ and ’openssh-server’ package

6 # Can be installed with:

7 # sudo tasksel install server

8 # sudo tasksel install openssh-server

9

10 # Note: 10.0.0.209 is hosting the Zookeeper-server, and Storm nimbus.

11 # ØMQ, JØMQ and the build dependencies tools should also be installed

12 # on the Nimbus and UI node.

13

14 # Upgrade last kernel minior release.

15 sudo apt-get update && sudo apt-get dist-upgrade -y

16

17 # If a newer kernel is needed due to newer hardware

18 # sudo apt-get install linux-generic-lts-saucy -y

19

20 # Install build-depencies tools services.

21 sudo apt-get install make g++ openjdk-6-jdk automake git -y

22 sudo apt-get install pkg-config libtool supervisor tree -y

23 sudo apt-get install uuid-dev libpgm-5.1-0 autoconf unzip -y

24

25 # Set JAVA_HOME for buildtools to find java.

26 export JAVA_HOME=/usr/lib/jvm/java-6-openjdk-amd64/

27

28 # Download build and install ZeroMQ.

29 cd ~

30 wget http://download.zeromq.org/zeromq-2.1.7.tar.gz

31 tar -xzf zeromq-2.1.7.tar.gz

32 cd ~/zeromq-2.1.7

33 ./autogen.sh

34 ./configure

35 make

36 sudo make install

37

38 # Download build and install Javabindings for ZeroMQ.

39 cd ~
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40 git clone https://github.com/nathanmarz/jzmq.git

41 cd ~/jzmq/src

42 touch classdist_noinst.stamp

43 CLASSPATH=.:./.:$CLASSPATH javac -d . org/zeromq/ZMQ.java

org/zeromq/ZMQException.java org/zeromq/ZMQQueue.java

org/zeromq/ZMQForwarder.java org/zeromq/ZMQStreamer.java

44 cd ~/jzmq/

45 ./autogen.sh

46 ./configure

47 make

48 sudo make install

49

50 # Download, install and configure Storm.

51 cd ~

52 wget https://www.dropbox.com/s/fl4kr7w0oc8ihdw/storm-0.8.2.zip

53 unzip storm-0.8.2.zip

54 vim storm-0.8.2/conf/storm.yaml

55 :::VIM:::

56 storm.zookeeper.servers:

57 - "10.0.0.209"

58 nimbus.host: "10.0.0.209"

59 # The number of workers running on the machine, for each port is a

available worker.

60 supervisor.slots.ports:

61 - 6700

62 # - 6701

63 # - 6702

64 # - 6703

65 storm.local.dir: "/mnt/storm"

66 :::END:::

67

68 # Create the Storm datafolder and give it correct permissions.

69 sudo mkdir -p /mnt/storm

70 sudo chown stormuser:stormuser /mnt/storm

71

72 # Let the stormuser controll the supervisor

73 sudo vim /etc/supervisor/supervisord.conf

74 :::VIM:::

75 chown=root:supervisor

76 chmod=0770

77 :::END:::

78 sudo groupadd supervisor

79 sudo service supervisor restart

80 sudo usermod -a -G supervisor stormuser

81

82 # Put storm supervisor under supervisoring and let it access log

83 sudo mkdir -p /home/stormuser/log/storm/

84 sudo chmod -R 775 /home/stormuser/log/

85 sudo chown -R root:stormuser /home/stormuser/log

86 sudo vim /etc/supervisor/conf.d/storm_supervisor.conf
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87 :::vim:::

88 [program:storm_supervisor_script]

89 user=stormuser

90 command=/home/stormuser/storm-0.8.2/bin/storm supervisor

91 autostart=true

92 autorestart=true

93 stderr_logfile=/home/stormuser/log/storm/supervisor.err.log

94 stdout_logfile=/home/stormuser/log/storm/supervisor.out.log

95 :::END:::

96

97 # Make sure the Storm supervisor can reach each other.

98 sudo vim /etc/hosts

99 :::VIM:::

100 # NB! If the dns ain’t having localhostnames mapped to IP, all

101 # IPs and corresponding hostname will be needed to manually

102 # add to the hosts file.

103 :::END:::

104

105 # Make the supervisor is started, load new config and starts

106 # supervisoring the Storm supervisor.

107 sudo service supervisor restart

108 sudo supervisorctl reload

109

110

111 # ifstat -S have been used to show current network traffic on

112 # spesific hosts over ssh.

113 sudo apt-get install ifstat

Setup Zookeeper cluster

A Storm cluster use one Zookeeper cluster for its internal coordination of nodes.
The load on the Zookerper cluster is low, as Zookeeper is not used for internal
message passing. In most cases a singel node Zookeeper cluster, will be sufficient.
However for supporting failover or large Storm custers a cluster should be used [26].
Zookeeper is fail-fast, like Storm components, and will exit on errors. That implies
that Zookeeper should also be run under a supervisor service. When running
Zookeeper in a production environment, it is critical to set up some handling of
Zookeepers massive data and transaction logs. That can be done with a cron task.
Cron is a daemon to execute scheduled commands. The linux command ’crontab
-e’ can be used to set up a cron task.

Installing and setup of Zookeeper is outlined bellow:

”Setup Zookeeper”
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1 # This is not a bash/sh script but a listing of commands, with

2 # highlighting in certain editors, for installing Zookeeper single node

cluster

3 # and it depencies on Ubuntu LTS 12.04.3. Locale used ’en_US.UTF-8’.

4

5 sudo apt-get install zookeeper supervisor -y

6

7 # Let the zoouser controll the supervisor

8 sudo vim /etc/supervisor/supervisord.conf

9 :::VIM:::

10 chown=root:supervisor

11 chmod=0770

12 :::END:::

13 sudo groupadd supervisor

14 sudo usermod -a -G supervisor zoouser

15 sudo usermod -a -G zookeeper zoouser

16

17 # Put Zookeeper under supervisoring and let it access log

18 sudo mkdir -p /home/zoouser/log/zookeeper/

19 sudo chmod -R 775 /home/zoouser/log/

20 sudo chown -R root:zoouser /home/zoouser/log

21 sudo vim /etc/supervisor/conf.d/zookeeper.conf

22 :::vim:::

23 [program:zookeeper_script]

24 user=zookeeper

25 command=/usr/share/zookeeper/bin/zkServer.sh start-foreground

26 autostart=true

27 autorestart=true

28 stderr_logfile=/home/zoouser/log/zookeeper/zookeeper.err.log

29 stdout_logfile=/home/zoouser/log/zookeeper/zookeeper.out.log

30 :::END:::

31

32 # Changes to the standard Zookeeper configuration can be done here

33 sudo vim /etc/zookeeper/conf/zoo.cfg

34 :::vim:::

35 # specify all zookeeper servers

36 server.1=zookeeperHostIP:2888:3888

37 # On a single node cluster should the leader serve clients.

38 leaderServes=yes

39 :::END:::

40

41 # Set the zookeeper nodeID in the zookeeper cluster.

42 sudo vim /etc/zookeeper/conf/myid

43

44 # Make the supervisor is started, load new config and starts

45 # supervisoring the Storm supervisor.

46 sudo service supervisor restart

47 sudo supervisorctl reload
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Setting up Storm Nimbus and Storm UI

Follow the outlining bellow to install Storm Nimbus and Storm UI onto one node.

”Storm Nimbus and Storm UI”

1 # This is not a bash/sh script but a listing of commands, with

2 # highlighting in certain editors. Its purpose is installing Nimbus node

with Storm UI

3 # and its dependencies on Ubuntu LTS 12.04.3. Locale used ’en_US.UTF-8’.

4

5 # ØMQ, JØMQ and the build dependencies tools should also be installed on

6 # the Nimbus and UI node. How to do it is covered under, Setup Storm

Supervisor.

7

8

9 # Download, install and configure Storm.

10 cd ~

11 wget https://www.dropbox.com/s/fl4kr7w0oc8ihdw/storm-0.8.2.zip

12 unzip storm-0.8.2.zip

13 vim storm-0.8.2/conf/storm.yaml

14 :::VIM:::

15 storm.zookeeper.servers:

16 - "10.0.0.209"

17 nimbus.host: "10.0.0.209"

18 #supervisor.slots.ports:

19 # - 6700

20 # - 6701

21 # - 6702

22 # - 6703

23 storm.local.dir: "/mnt/storm"

24 :::END:::

25

26 # Create the storm datafolder and give it correct permissions.

27 sudo mkdir -p /mnt/storm

28 sudo chown stormuser:stormuser /mnt/storm

29

30 # Let the stormuser controll the supervisor

31 sudo vim /etc/supervisor/supervisord.conf

32 :::VIM:::

33 chown=root:supervisor

34 chmod=0770

35 :::END:::

36 sudo groupadd supervisor

37 sudo service supervisor restart

38 sudo usermod -a -G supervisor stormuser

39

40 # Put storm supervisor under supervisoring and let it access log

41 sudo mkdir -p /home/stormuser/log/storm/
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42 sudo chmod -R 775 /home/stormuser/log/

43 sudo chown -R root:stormuser /home/stormuser/log

44 sudo vim /etc/supervisor/conf.d/storm_nimbus.conf

45 :::vim:::

46 [program:storm_nimbus_script]

47 user=stormuser

48 command=/home/stormuser/storm-0.8.2/bin/storm nimbus

49 autostart=true

50 autorestart=true

51 stderr_logfile=/home/stormuser/log/storm/nimbus.err.log

52 stdout_logfile=/home/stormuser/log/storm/nimbus.out.log

53 :::END:::

54

55 # Put Storm UI under supervisoring and let it access log

56 sudo vim /etc/supervisor/conf.d/storm_ui.conf

57 :::vim:::

58 [program:storm_ui_script]

59 user=stormuser

60 command=/home/stormuser/storm-0.8.2/bin/storm ui

61 autostart=true

62 autorestart=true

63 stderr_logfile=/home/stormuser/log/storm/ui.err.log

64 stdout_logfile=/home/stormuser/log/storm/ui.out.log

65 :::END:::

66

67 # Make the supervisor is started, load new config and starts

68 # supervisoring the Storm supervisor.

69 sudo service supervisor restart

70 sudo supervisorctl reload

9.3 Storm CLI

Coverage of available Storms Command Line Interface commands.

”Storm CLI”

1 # Execute a topology

2 storm jar storm-packed-topology.jar topology\.package\.path\topologyclass

argument1 argumentN

3

4 # Kill a topology, and allows it to wait x seconds for current processing

messages to finish.

5 storm kill topology-name [-w wait-time-secs]

6

7 # Activate a topology’s spouts.

8 storm activate topology-name
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9

10 # Deactivate a topology’s spouts.

11 storm deactivate topology-name

12

13 # Rebalance a topology automatic onto new nodes, keep the number of workers

and current parallelism.

14 storm rebalance topology-name [-w wait-time-secs]

15

16 # Rebalance a topology manually, changing the number of workers and current

parallelism of components. The e parameter is changing the number of

Executors for the given bolt\spout.

17 storm rebalance topology-name [-w wait-time-secs] -n new-number-of-workers

-e spout-name=new-number -e bolt-name=new-number

18

19 # Open a Clojure REPL, with the storm jars and configuration on classpath.

20 storm repl

21

22 # Print Storms clients classpath.

23 storm classpath

24

25 # Print the value of a entry in the local Storm config.

26 storm localconfvalue conf-name

27

28 # Print the value of a entry in the Storm cluster’s config. Must be run on

a cluster machine.

29 storm remoteconfvalue conf-name

30

31 # Starts the Storm Nimbus, should be run under supervisor service.

32 storm nimbus

33

34 # Starts the Storm Supervisor, should be run under supervisor service.

35 storm supervisor

36

37 # Starts the Storm UI webserver, should be run under supervisor service.

38 storm ui

39

40 # Starts the Storm DRPC, should be run under supervisor service.

41 storm drpc

9.4 Java Virtual Machines

To use Oracle 7 JVM instead of OpenJDK the following is needed; Download Ora-
cle Java Runtime Environment (JRE) or Oracle Java Development Kit (JDK) from
http://www.oracle.com/technetwork/java/javase/downloads/index.html . Next
follow the outlining bellow, it is necessary to adopt commands to your downloaded

http://www.oracle.com/technetwork/java/javase/downloads/index.html
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file.

”Changing java.”

1 # Extract the and change owner.

2 sudo tar xzvf jdk-7u45-linux-x64.tar.gz -C /usr/lib/jvm/

3 sudo chown -R root:root /usr/lib/jvm/jdk1.7.0_45

4

5 # Tell Ubuntu it exists.

6 sudo update-alternatives --install "/usr/bin/java" "java"

"/usr/lib/jvm/jdk1.7.0_45/bin/java" 1

7

8 # Pick the desired Java to use.

9 sudo update-alternatives --config java

The Java JRE is not containing the developer tools and javac, that is used for
compiling. Installing and changing the default javac command can be done the
same way.

”Changing javac.”

1 # Make sure the JDK, is extracted and have correct ownership.

2

3 # Tell Ubuntu it exists.

4 sudo update-alternatives --install "/usr/bin/javac" "javac"

"/usr/lib/jvm/jdk1.7.0_45/bin/javac" 1

5

6 # Pick the desired Javac to use.

7 sudo update-alternatives --config javac

9.5 Changing Storm Parallelism on the fly

An already running topology can have its bolt parallelism changed without restart-
ing cluster or resubmitting Storm topology to cluster. Storm UI can issue an auto
rebalance command. Storm CLI tool can submit an extensive rebalance. That
rebalance allow changing number of workers assigned to a topology, and number of
executors assigned to a bolt or spout. Number of tasks is permanent and can not
be changed on the fly.

”Storm rebalance.”

1 # Rebalance a topology manually, changing the number of workers and current

parallelism of components.

2 storm rebalance topology-name -w wait-time-secs -n new-number-of-workers -e

spout-name=new-number -e bolt-name=new-number -e
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other-bolt-name=new-number

3

4 # An example rebalance of the "Example topology code" in Section 5.3.3 on

page 30.

5 storm rebalance exampleTopology -w 10 -n 4 -e SpoutTwo=64 -e BoltOne=1

When rebalance command is issued, topology will deactivate spouts, wait 10 sec-
onds and then carry out the changes. After rebalance parallelism will be; Four
worker nodes utilized, SpoutOne will not be touched, SpoutTwo will get 64 execu-
tors and BoltOne will still have one executor.

9.6 Troubleshooting

As of Storms current state, it is nearly impossible to stay out of running into errors.
Errors that to some extent can be obfuscated compared to user friendly ones. This
part will cover some of those errors encountered and feasible solutions.

Failing to submit topology to a nimbus cluster.

”Thrift error”

1 java.lang.RuntimeException: org.apache.thrift7.transport.TTransportException: java.
net.ConnectException: Connection refused

2 at backtype.storm.utils .NimbusClient.<init>(NimbusClient.java:36)
3 at backtype.storm.utils .NimbusClient.getConfiguredClient(NimbusClient.java

:17)
4 at backtype.storm.StormSubmitter.submitTopology(StormSubmitter.java:69)
5 at backtype.storm.StormSubmitter.submitTopology(StormSubmitter.java:40)
6 at no.stud.BlackHoleTopology.main(BlackHoleTopology.java:90)
7 Caused by: org.apache.thrift7 .transport.TTransportException: java.net.

ConnectException: Connection refused
8 at org.apache. thrift7 .transport.TSocket.open(TSocket.java:183)
9 at org.apache. thrift7 .transport.TFramedTransport.open(TFramedTransport.

java:81)
10 at backtype.storm.utils .NimbusClient.<init>(NimbusClient.java:34)
11 ... 4 more
12 Caused by: java.net.ConnectException: Connection refused
13 at java.net.PlainSocketImpl.socketConnect(Native Method)

Possible solution:
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This error is caused when Storm client cant reach nimbus service. First check
network and that nimbus service is running.

Make sure it is only one entry for nimbus.host in ’˜/.storm/storm.yaml ’ file. If
no file exist, it can be crated with the following commands.

mkdir ~/.storm;

echo ’nimbus.host: "10.0.0.212"’ > ~/.storm/storm.yaml

Make sure to substitute the IP-address with the correct IP-address assigned
to Nimbus host. Further notice; Do not interpret ’˜/.storm/storm.yaml ’ to be
the same file or interchangeable with the ’storm/conf/storm.yaml ’ file. The later is
used by the Nimbus and Supervisor daemons. Storm is known not to be compatible
with IPv6, make sure only IPv4 is available.

IPv6

Storm is not compatible with IPv6.

Possible solution:

Possible solutions is to disable IPv6 for the interface Storm is assigned to (e.g.
interface eth0). It is also possible to totally disable IPv6. After changing the
referenced config file, do a reboot.

IPv4 can be enforced for storm supervisor children from the configuration,
adding -Djava.net.preferIPv4Stack=true to the supervisor child options and restart-
ing the supervisor should work. -Djava.net.preferIPv4Stack=true can also be set
directly from Java with the System.setProperty(”java.net.preferIPv4Stack”, ”true”);

I preferred turning IPv6 off directly on the interface.

”Disable IPv6 on eth0:”

1 #

2 # /etc/sysctl.conf

3 # Add the following line to the .conf for

4 # disabling IPv6 for eth0.

5 #

6 net.ipv6.conf.eth0.disable_ipv6 = 1
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”Disable IPv6 totally:”

1 #

2 # /etc/sysctl.conf

3 # Add the following lines to the file for

4 # disabling IPv6 for all interfaces.

5 #

6 net.ipv6.conf.all.disable_ipv6 = 1

7 net.ipv6.conf.default.disable_ipv6 = 1

8 net.ipv6.conf.lo.disable_ipv6 = 1

Failing to start supervisor:
Supervisor restart after a few secounds:

”Possible error message from supervisor.log”

1 2014−02−09 22:03:44 supervisor [INFO] Starting supervisor with id 3a042ed7−54bf−4
ddc−8e48−15668a6a3230 at host i5

2 2014−02−09 22:03:45 event [ERROR] Error when processing event
3 java.lang.RuntimeException: java.io.EOFException
4 at backtype.storm.utils . Utils . deserialize (Utils . java:68)
5 at backtype.storm.utils .LocalState.snapshot(LocalState.java:24)
6 at backtype.storm.utils .LocalState.get(LocalState.java:28)
7 at backtype.storm.daemon.supervisor$sync processes.invoke(supervisor.clj:192)
8 at clojure .lang.AFn.applyToHelper(AFn.java:161)
9 at clojure .lang.AFn.applyTo(AFn.java:151)

10 at clojure .core$apply.invoke(core. clj :603)
11 at clojure . core$partial$fn 4070 .doInvoke(core. clj :2343)
12 at clojure .lang.RestFn.invoke(RestFn.java:397)
13 at backtype.storm.event$event manager$fn 2507.invoke(event.clj:24)
14 at clojure .lang.AFn.run(AFn.java:24)
15 at java.lang.Thread.run(Thread.java:744)
16 Caused by: java.io .EOFException
17 at java. io .ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.

java:2325)
18 at java. io .ObjectInputStream$BlockDataInputStream.readShort(

ObjectInputStream.java:2794)
19 at java. io .ObjectInputStream.readStreamHeader(ObjectInputStream.java:801)
20 at java. io .ObjectInputStream.<init>(ObjectInputStream.java:299)
21 at backtype.storm.utils . Utils . deserialize (Utils . java:63)
22 ... 11 more

Possible solution:
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This error is caused when Storm Supervisor daemon is having a corrupted local
state. It is known to run into such a state when topology or supervisor get an
improper shut-down.

The solution is to clear up the supervisors local state. It can be done with the
following command.

1 rm -rf /mnt/storm/supervisor/
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9.7 Attached code

The complete code can be found in the attached .jar file.

”SimpleSkylineTopology”

1 package no.stud;

2

3 import backtype.storm.Config;

4 import backtype.storm.LocalCluster;

5 import backtype.storm.StormSubmitter;

6 import backtype.storm.topology.TopologyBuilder;

7

8 import no.stud.bolts.SimpleSkylineBolt;

9 import no.stud.spouts.BinFileReadSpout;

10 import no.stud.spouts.GenerateDatasetSpout;

11 import no.stud.util.CustomConfig;

12 import no.stud.util.DistributionType;

13

14

15 public class SimpleSkylineTopology {

16 public static void main(String[] args) throws InterruptedException {

17

18 // Topology definition

19 TopologyBuilder builder = new TopologyBuilder();

20 String topologyName = "SimpleSkylineTopology";

21

22 // GenerateData on the fly.

23 // builder.setSpout("Generator", new GenerateDatasetSpout(),

3);

24

25 // ReadDataset from file. /* N - how many instances */

26 builder.setSpout("Generator",new BinFileReadSpout(), 1);

27

28 builder.setBolt("Simple-SL", new SimpleSkylineBolt() , 1).

localOrShuffleGrouping("Generator");

29

30

31 // Configuration, create a new configuration object that can be

sumbitted with the topology.

32 Config conf = new Config();

33

34 // Put arguments from ./storm jar file.jar Topology args1

argsn in configfile.

35 // conf.put(submitArgs, args[0]);

36

37 /** Data generator configuration. **/

38 // Max value for a dimension in the point.

39 // conf.put(CustomConfig.DimensionMaxValue, 1000000);
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40

41 // How many dimensions a point has.

42 conf.put(CustomConfig.PointDimensions, 5);

43

44 // What type of generator shall be used. /* Uniform,

AntiCorrelated, Correlated */

45 conf.put(CustomConfig.GeneratorType, DistributionType.

ANTICORRELATED.getId());

46

47 // Set the toggle sleep value, to enable to trottle the

spouts.

48 conf.put(CustomConfig.ToggleSleepValue, 2);

49

50 // Set the sleep time in ms, default 1ms when enabled.

51 conf.put(CustomConfig.ToggleSleepTime, 20);

52

53 /** Topology configuration **/

54 // Disabling reliability. (Setting how many executers to

spawn for acking.)

55 conf.put(Config.TOPOLOGY_ACKER_EXECUTORS, 0);

56

57 // Bolts and Spouts will log eg. every tuppel they emit.

58 conf.setDebug(false);

59

60 // Maximum pending tuples, has no effect when reliability is

disabled.

61 conf.setMaxSpoutPending(5000);

62

63 // Set the max number of storm workers. Remember acker is

using one task.

64 conf.setNumWorkers(1);

65

66 // Fallback on java is extreme expencive and is there only

for prototyping.

67 conf.put(Config.TOPOLOGY_FALL_BACK_ON_JAVA_SERIALIZATION,

false);

68

69 // Make storm ignore kryo registrations that ain’t availble

on the classpath.

70 conf.put(Config.TOPOLOGY_SKIP_MISSING_KRYO_REGISTRATIONS,

true);

71

72 // Register kyro serialization for the double[] datatype.

73 conf.registerSerialization(double[].class);

74

75

76 /** JVM options **/

77 // Set a very aggresive GBC, as we mostly relay on generating

data and droping it, also tuning memory settings eg.
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78 conf.put(Config.TOPOLOGY_WORKER_CHILDOPTS, "-d64 -XX:

GCTimeRatio=1 -XX:+AggressiveOpts -XX:+UseLargePages -XX:

MaxNewSize=4g ");

79 // internal note.

80 // conf.put(Config.TOPOLOGY_WORKER_CHILDOPTS, "-Xmx768m -XX:

MaxPermSize=1024m");

81

82 // Deny config from automaticly getting some options two

times.

83 conf.put(Config.WORKER_CHILDOPTS, " ");

84

85 /** Nimbus fails heartbeat **/

86 // conf.put(conf.TOPOLOGY_EXECUTOR_RECEIVE_BUFFER_SIZE,128);

87 // conf.put(conf.TOPOLOGY_EXECUTOR_SEND_BUFFER_SIZE,128);

88 // conf.put(conf.NIMBUS_TASK_TIMEOUT_SECS,5);

89

90

91 /** ZMQ (ZeroMQ), flow control parameters. ZMQ is fire and

forget **/

92 // Buffersize in items before, it takes action eg. blocking.

Infinite

93 // or a abitary high number will make it eat all your memory.

If all bolts can’t keep up.

94 // conf.put(Config.ZMQ_HWM, 0); // Controlling the behaivor

in spots\bolts instead.

95 // Number of ZMQ threads that should be used by the ZMQ

context in each worker process.

96 // conf.put(Config.ZMQ_THREADS, 1);

97 // Setting the timeout for ZMQ

98 // conf.put(Config.ZMQ_LINGER_MILLIS, 5000);

99

100

101 // Decide on to run local or remote dipending on args.

102 if (args != null && args.length == 0) {

103 // Topology run cluster

104 try{

105 // Submit the topology.

106 StormSubmitter.submitTopology(topologyName,

conf, builder.createTopology());

107

108 // Will be catched of storm and printed.

109 } catch (Exception ex) {

110 ex.printStackTrace();

111 /* Throws:

112 AlreadyAliveException - if a topology

with this name is already running

113 InvalidTopologyException - if an

invalid topology was submitted

114 */

115 }
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116 } else if(args.length > 0) {

117

118 // Local topology testing

119

120 // Local cluster config changes

121 conf.setMaxSpoutPending(1); // Maximum

pending tuples, has no effect when reliability is

disabled.

122 conf.setDebug(true); // Bolts

and Spouts will log eg. every tuppel they emit.

123

124 // Topology run local

125 LocalCluster cluster = new LocalCluster(); // Creat a

local cluster

126 cluster.submitTopology("LocalToplogie", conf, builder.

createTopology()); // Submit the topology to the

local cluster.

127

128 // Delay the shutdown of the local-cluster.

129 Thread.sleep(300000); // Delay in

ms. ~5 min.

130 cluster.shutdown(); // Shut

down the local cluster.

131 }

132 } // end function

133 } // end class
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