
2D and 3D On-Chip Development of
Cellular Automata Machines

Ola Martin Tiseth Støvneng

Master of Science in Informatics

Supervisor: Gunnar Tufte, IDI

Department of Computer and Information Science

Submission date: May 2014

Norwegian University of Science and Technology

I

Abstract

Cellular automata (CAs) are massively parallel machines where many simple cells
work together to solve a larger problem. Each cell is very simple and only interacts
with its neighbouring cells. Evolutionary algorithms (EAs) are often used to evolve
them because they are very difficult to program by conventional methods.

In evolvable hardware (EHW), EAs are used to evolve computer hardware
designs. Field programmable gate arrays (FPGAs) are often used as a platform for
implementing EHW because of their massive reconfigurability. Previous research
at IDI NTNU have resulted in the construction of a virtual FPGA, better suited
for EHW, implemented on an actual FPGA. The virtual FPGA is called an sblock
matrix and is designed as a reconfigurable non-uniform two dimensional (2D) CA.
Each cell in the CA is called an sblock. Also implemented on the physical FPGA
is a developmental system based on cellular development. This system is used to
develop the sblock matrix based on a set of development rules that activate new
sblocks or changes the sblocks’ behaviour based on neighbouring sblocks’ attributes.
The implementation also supports on chip fitness evaluation, which evaluates how
well the current CA is performing its intended task. The fitness evaluation is based
on some transform of the CA’s output data. EAs need such a fitness value for their
operations, so this is useful when evolving the CA.

This thesis’ focus is on improving and extending the system for implementation
on a newer and bigger FPGA chip with more features. There are three focus areas
explored in the thesis, improving the performance of the system, extending the
sblock matrix to be three dimensional (3D), and implementing a new transform for
interpreting output data from the sblock matrix as part of the fitness evaluation.

The results show that the new FPGA allows for making many parts of the
system at least 4 times faster, depending on the size of the sblock matrix. In the
case of running the sblock matrix with fitness evaluation, the performance has been
increased by at least an order of magnitude.

The 3D sblock matrix is much more expensive to implement than the 2D one,
so for implementing larger ones, the performance is scaled back down to that of
the original design.

The new transform of the CA’s output implemented is the discrete Fourier
transform (DFT), which require a lot of multiplication to be done. Implementing
multiplicators on an FPGA is traditionally very expensive, however some newer
FPGAs have dedicated multiplicators that can be taken advantage of. Implementing
a highly parallel DFT using many such multiplicators lets the DFT be as fast as
most other parts of the design without using too many additional resources.

II

Preface

This master’s thesis is conducted at the Norwegian University of Science and
Technology (NTNU), at the Faculty of Information Technology, Mathematics and
Electrical Engineering (IME), at the Department of Computer and Information
Science (IDI), with the The Computer Architecture and Design Group (CARD).

The thesis concludes my two year Master of Science degree in Informatics. It
counts for 60 credits, being the sole work load for the last year of the degree ending
in May 2014.

I would like to thank my supervisor Gunnar Tufte, who has been of tremendous
help throughout my work on this thesis.

Ola Martin Tiseth Støvneng
Trondheim, May 30, 2014

Contents

1 Introduction 1

2 Background Theory 3

2.1 Cellular Automata . 3

2.1.1 Grid Layout . 3

2.1.2 Neighbourhoods . 3

2.1.3 State Change . 4

2.2 Genetic Algorithms . 6

2.3 Development . 8

2.4 Field Programmable Gate Array . 9

2.5 Evolvable Hardware . 10

3 Previous Work 11

3.1 An Evolvable Hardware FPGA and Development 11

3.2 Sblock Matrix and Development Process in Hardware 12

3.2.1 Functionality . 12

3.2.2 Architecture . 13

3.2.3 Implementation . 15

3.3 Fitness Function in Hardware . 19

3.3.1 Run Step Function . 19

3.3.2 Fitness Function . 20

4 Optimising for New Hardware 23

4.1 The New Hardware . 23

4.2 Porting the Design . 24

4.3 Parameterisation of the Design . 25

4.4 Design Improvements . 25

4.4.1 Block RAM . 26

4.4.2 Development . 27

4.4.3 Config . 28

4.4.4 Run Step Function . 29

4.4.5 New Instructions . 29

III

IV CONTENTS

5 Three Dimensional SBlock Matrix 31
5.1 The SBlock Matrix . 32
5.2 BRAM and Development . 32
5.3 Config . 33
5.4 Run Step Function . 33
5.5 3D Instructions . 34

6 Cellular Automaton Output 35
6.1 Discrete Fourier Transform . 35
6.2 Implementation . 37

7 Testing and Results 39
7.1 General Correctness Testing . 39
7.2 Improvements . 40
7.3 DFT . 42
7.4 3D SBM . 44

8 Discussion 47
8.1 Implementation . 48
8.2 Future Work . 48

Bibliography 51

A Instruction Manual 53

B Rule Format 61

C Attached Files 63
C.1 File Hierarchy . 63
C.2 Hardware Design Files . 64
C.3 Test Benches . 66
C.4 Synthesis Results . 66
C.5 Software . 67

D Software 69

List of Figures

2.1 A 1D, 2D, and 3D grid . 4

2.2 Three different 2D CA neighbourhoods. The C indicates what cell’s
neighbourhood it is, and the grey cells mark the neighbourhood in
the grid. 4

2.3 Neighbourhood at the edge of a 2D cyclic CA 5

2.4 A seven cell neighbourhood for a 3D CA 5

2.5 Example run of a 2D uniform cyclic CA following the parity rule.
Black cells indicate live cells. 7

2.6 General FPGA architecture. CLBs and slices are shown in more detail. 10

3.1 An sblock in an SBM. It consists of a configurable LUT and an
output register, or FF. 12

3.2 Abstract overview of Djupdal’s system 13

3.3 Architecture for Djupdal’s design . 14

3.4 Data-flow throughout the configuration of the SBM 16

3.5 Development unit architecture . 17

3.6 Development: cells’ neighbourhood vs BRAM layout 17

3.7 writeType instruction from [3] . 18

3.8 Aamodt’s additions to the design . 20

4.1 Optimised parts in the new design, highlighted by thick lines and
grey boxes. 26

4.2 BRAM layout for the new and old design. The grids represent SBM,
and each cell represents a word of sblock data. The numbers indicate
in what BRAM module the sblocks’ data is stored. 27

4.3 Development: cells and their neighbourhoods vs BRAM layout in
the new and the old design . 28

4.4 Adder tree with clocked registers. It takes 1024 1-bit input signals
and outputs the sum of them as an 11-bit number. 29

5.1 Parts changed for the 3D extension, highlighted in grey and thick
lines. 31

5.2 3D SBM BRAM layout . 32

V

VI LIST OF FIGURES

5.3 Comparison of the writeType instruction from [1, 3] (top) and this
thesis (bottom) . 34

6.1 Average live cells per step for a specific CA 36
6.2 Average DFT of live cells per step for the same CA 36
6.3 The DFT in the architecture . 37
6.4 Simplified DSP slice . 38

7.1 Functional test program . 40
7.2 A typical program . 41
7.3 FPGA LUT usage given array size for original and new design . . . 42
7.4 FPGA LUT usage given array size for design with and without DFT 43

List of Tables

2.1 A simple LUT for a 1D CA. W, C, and E, the states of the neighbouring
cells, is the condition or index. Result is the output, the new state. . 5

2.2 A few different 1D CAs following different rules, and whether or not
they are uniform. 5

2.3 Examples of 1D development rules. The three middle fields are
conditions. The * means ”do not care”. 9

2.4 Development steps for a cyclic 1D CA following the development
rules from table 2.3. 9

2.5 Type to LUT conversion table. Converts developed types to LUTs
used in a CA. 9

4.1 Resource comparison of the old and the new FPGAs 24
4.2 Comparison of synthesis results for the original design on the VirtexE

and the Spartan6 . 25

6.1 Twiddle BRAM content . 38

7.1 Performance comparison for original and new design 40
7.2 Comparison of synthesis results for original and new design 41
7.3 Synthesis results with DFTs using different amounts of DSPs 43
7.4 Performances of the units of the 3D design, along with a comparison

to the 2D design performance. 44
7.5 Synthesis results for the 3D design 45

VII

VIII LIST OF TABLES

Abbreviations

1D one dimensional

2D two dimensional

3D three dimensional

BRAM block RAM

CA cellular automaton

CLB configurable logic block

DFT discrete Fourier transform

DSP digital signal processing

EA evolutionary algorithm

EHW evolvable hardware

FF flip-flop

FPGA field-programmable gate array

GA genetic algorithm

I/O input/output

IOB input/output block

LC logic cell

LED light-emitting diode

LSS load, send, and store

LUT lookup table

PCB printed circuit board

PCI peripheral component interconnect

IX

X CHAPTER 0. ABBREVIATIONS

PCIe PCI express

RAM random access memory

RSF run step function

SBM sblock matrix

SRL shift register LUT

TBUF tri-state buffer

VHDL VHSIC hardware description language

Chapter 1

Introduction

A cellular automaton (CA) is a massively parallel machine made up of many simple
cells in a grid, where each cell only interacts with its close neighbours. The qualities
of such machines are similar to what we find in most cellular structures in nature
[11], the merits of which are that many simple cells work together to perform tasks
far beyond the capabilities of a single cell. Programming such a machine, hoping
to make it perform specific tasks, using conventional methods is very difficult. So
we turn to evolutionary algorithms (EAs) inspired by evolution in nature, to try
to evolve these machines in much the same way that nature has evolved cellular
structures with great success before [11].

In the same way that nature uses DNA as a set of rules to follow when making
cellular structures, we can follow a set of evolved development rules for growing
new cells or changing the function of existing cells, thereby building the CA.

Another difficulty with using a CA to solve problems is knowing how to interpret
the output produced by it. Each cell in a CA has its own output value. One
could use the values of some of the cells after some time as output, one could use
some aspect of how the cells’ outputs change over time, or something completely
different. Output interpretation is very dependent on what task the CA is supposed
to perform and how the CA is initialised with input.

When running a simulation of a CA on a standard processor we lose some of the
merits of massive parallelity and simple cells. Implementing them on configurable
hardware like field-programmable gate arrays (FPGAs) we can keep the massive
parallelity and take advantage of the simplicity of the cells and the interconnection
between them.

Evolvable CAs implemented in hardware is a specialisation of the more general
term evolvable hardware (EHW), which is where computer hardware design meets
bio-inspired artificial intelligence. Concepts from evolution are applied using EAs
to evolve new hardware designs. Such evolution of hardware can lead to new and
interesting design solutions that conventional methods would have a hard time
finding. [9]

FPGAs have many qualities that are useful for EHW, like massive configurability.
However, other qualities, like the typically long configuration times, are not desirable

1

2 CHAPTER 1. INTRODUCTION

[10]. For this reason a new type of FPGA specifically designed with EHW, and
more specifically CAs, in mind has been proposed by Haddow and Tufte [7]. It
consists of a two dimensional (2D) grid of simple configurable blocks, sblocks, with a
very simple interconnect. Production of such FPGAs is probably not very feasible,
as the target market is not large enough to justify the potential production costs.
However, implementing it as a virtual FPGA on an actual FPGA lets us keep the
massive parallelity wanted. This is what has been done by Djupdal [3], and later
extended by Aamodt [1].

The goal of this thesis is to further improve and extend the virtual FPGA
design in the anticipation of a newer and bigger FPGA. There are three main
tasks covered in this thesis, general optimisations to make the design faster on the
new hardware, extending the virtual FPGA to be a three dimensional (3D) grid of
sblocks, and looking at new types of output from the CA.

The thesis structure is as follows:

• Chapter 2 introduces background theory necessary to understand the rest of
this thesis.

• Chapter 3 introduces the previous work on EHW that this thesis is a continuation
of.

• Chapters 4, 5, and 6 are the main chapters, each of which addresses one of
the three main tasks covered in the thesis.

• Chapter 7 describes the testing methodology as well as the results of the work
done in this thesis.

• Chapter 8 discusses the results and the hardware design work done in this
thesis as well as possible future work.

Chapter 2

Background Theory

This chapter introduces theory related to CAs, EAs, development, FPGAs, and
EHW. This is all background theory that should help the reader understand the
main contents of this thesis.

2.1 Cellular Automata

A CA is a regular grid of cells, where each cell has a state which changes depending
on the states of its neighbouring cells [12]. By varying the layout and size of the
grid, the neighbourhood of the cells, and the rules used to change the state, many
different types of CAs can be obtained. This section will take a short look at each
variable.

2.1.1 Grid Layout

The grid of cells in a CA can be laid out in many ways. One important feature of
such a layout is its number of dimensions, one or two are the most common, but
three or more are also possible. Figure 2.1 shows the simplest types of layouts for
one dimensional (1D), 2D, and 3D grids. 2D grids fit the internal architecture of
most FPGAs very well, as most of them consist of a 2D grid of configurable logic
blocks (CLBs), as described in section 2.4.

The 1D grid is simply a line, the 2D grid is in this case a rectangular grid, while
the 3D one is a cubic grid. Other layouts can also be used, for example triangular
or hexagonal grids for a 2D CA.

This thesis will concentrate on rectangular 2D and cubic 3D grids of various
sizes.

2.1.2 Neighbourhoods

The neighbourhood of a cell in a CA defines which cells’ states are to be evaluated
when deciding the next state of the given cell. The neighbourhoods for the

3

4 CHAPTER 2. BACKGROUND THEORY

(a)

(b)

(c)

Figure 2.1: A 1D, 2D, and 3D grid

different cells are usually defined in the same way, by the relative position of a
cell’s neighbours to the cell’s position in the grid. Neighbourhoods are normally
defined in the straightforward way of having the cells closest to a given cell in
its neighbourhood. The cell in question may or may not be a part of its own
neighbourhood. A 2D CA may have its neighbourhoods defined in many different
ways, some examples are shown in figure 2.2. The grey cells are the neighbourhood
of cell C. In the neighbourhood in figure 2.2a, the neighbours are given the names
North (N), East (E), South (S), West (W), and Centre (C).

N
W C E

S

(a)

C

(b)

C

(c)

Figure 2.2: Three different 2D CA neighbourhoods. The C indicates what cell’s
neighbourhood it is, and the grey cells mark the neighbourhood in the grid.

A CA is often defined as cyclic, meaning that the edges are connected to the
edges at the opposite side. This results in neighbourhoods as seen in figure 2.3,
which shows the same neighbourhood as in figure 2.2a, but at the edge of a cyclic
grid.

Figure 2.4 illustrates a neighbourhood for a 3D CA. This neighbourhood simply
extends the 2D neighbourhood from figure 2.3 by adding an Up (U) and a Down
(D) cell, extending into 3D space.

2.1.3 State Change

Each cell in a CA has a state, which has a number of possible values. These values
are typically the same for all the cells in a CA. The most basic CAs operate with
just two different values, on and off, which can simply be represented by ’1’ and ’0’.

2.1. CELLULAR AUTOMATA 5

S

N
E W C

Figure 2.3: Neighbourhood at the edge of
a 2D cyclic CA

D

U
W N

S E

C

Figure 2.4: A seven cell neighbourhood
for a 3D CA

CAs are usually run in steps, each of which are equal. At every step the states of
all the cells are updated at the same time. To determine the next state, the states
of the cells in the neighbourhood are evaluated using a function of some kind.

One way this function can be defined is by using a lookup table (LUT) with
entries for all possible permutations of the states of the neighbours. Table 2.1 is
such a LUT for a simple 1D neighbourhood. This LUT can also be described by
one simple rule: If exactly two neighbours of a cell are on, that cell is on in the next
step, otherwise it is off. In this case the LUT may seem cumbersome compared
to the simple rule, however, it is very useful because it can describe any state
change function. The index is simply a concatenation of the outputs of the three
neighbours. (off on on → 011→ 3)

index W C E Result
0 off off off off
1 off off on off
2 off on off off
3 off on on on
4 on off off off
5 on off on on
6 on on off on
7 on on on off

Table 2.1: A simple LUT for a 1D CA. W, C, and E, the states of the neighbouring
cells, is the condition or index. Result is the output, the new state.

Cell# 1 2 3 4 5
CA# Rule Uniformity
1 30 30 30 30 30 uniform
2 110 110 110 110 110 uniform
3 30 35 100 35 30 non-uniform
4 1 2 3 4 5 non-uniform

Table 2.2: A few different 1D CAs following different rules, and whether or not
they are uniform.

6 CHAPTER 2. BACKGROUND THEORY

The LUT’s size grows exponentially with the number of cells in a neighbourhood
and the number of different states. Given two different states, the neighbourhood
from figure 2.2a would require a LUT of size 32, while the neighbourhood from
figure 2.2b would require a LUT of size 4096.

The LUT in table 2.1 could have a total of 256 configurations. Wolfram [14]
labels these rules for basic 1D CAs with the numbers 0 through 255, where the
number is the LUT. By writing out the results from high index to low for table
2.1 we get: off on on off on off off off, or 01101000, which is a binary number that
translates to 104, meaning that the LUT described by the table is rule 104. Since
the LUTs are complete, only 8 bits are needed to describe them. The rules for
the neighbourhood in figure 2.2a can also be numbered in the same way, but with
32-bit numbers.

When it comes to state changes, uniformity is a very important variable.
Do all cells follow the same rules (uniform), or do they follow different rules
(non-uniform)?

If these are labelled as rules 0 through 255 [14], a CA with all its cells set
to follow rule 30 would be described as uniform, while a non-uniform CA could
potentially have all its cells follow different rules. Table 2.2 shows a few different
uniform and non-uniform CAs.

Figure 2.5 shows an example run with a 2D 8x9 uniform cyclic CA with a 5
cell neighbourhood following the parity rule, i.e., a cell lives if an odd number of
neighbouring cells were alive in the previous time step.

2.2 Genetic Algorithms

Evolutionary algorithms is a class of search heuristics inspired by Darwin’s
teachings on evolution and natural selection. It covers genetic algorithm (GA),
genetic programming, evolutionary strategies, and more. This section will focus on
GAs.

Genetic algorithms use concepts from genetics in combination with evolution to
search for solutions to problems [5]. All GAs have a fairly similar execution, they
all start with a population of individuals called a generation. Each individual has
a genome which defines a possible solution to the problem. Further, they all follow
some or all of these steps:

1. Calculate the fitness of each individual in the population.

2. Select a group of individuals based on fitness.

3. Breed selected individuals with each other to make new individuals for a new
generation.

4. Make a selection of individuals from the old and the new generation that gets
to live on and stay in the population.

5. Start over with the first step, calculating fitness, unless some termination
criterion has been met.

2.2. GENETIC ALGORITHMS 7

(a) Step 0 (b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7 (i) Step 8

(j) Step 9 (k) Step 10 (l) Step 11

Figure 2.5: Example run of a 2D uniform cyclic CA following the parity rule. Black
cells indicate live cells.

8 CHAPTER 2. BACKGROUND THEORY

The fitness is defined by how good the solution is, its calculation can be
anywhere from doing a simple check to running a complex simulation.

The genes are typically represented by a series of zeroes and ones. Breeding
is done by combining genes from two individuals selected for their good fitness
values. Genetic operations like crossover and mutations are applied when breeding.
Crossover is used to combine genes from two individuals, taking some zeroes and
ones from one of them, and some from the other. This results in one or more new
individuals that may or may not have inherited good attributes from their parents.
Mutations are applied to the genes of the new individuals by changing random
zeroes to ones or ones to zeroes. This introduces entropy to the search and allows
for search outside of the genetic material present in the original population.

Some GAs have the new generation of individuals replace the whole previous
generation in the population, while others may choose some of the more fit
individuals from the previous generation to live on to keep their good genes in
the population.

2.3 Development

Most GAs use a genotype-phenotype mapping to translate an individual’s genes,
the genotype, to a possible solution, the phenotype. In many cases, the genotype
directly encodes a set of attributes that make up the whole phenotype. For some
problems however, the solutions are so large that evolving them directly using GAs
becomes impractical. For such problems, having a smaller genotype be developed
into a larger phenotype by some algorithm may be a better solution. The genotype
can then encode a set of variables that the development algorithm uses to make the
phenotype, it can encode variables that help make up the development algorithm
itself, or even both.

In this thesis, development of non-uniform CAs is particularly interesting. Their
development is based on cellular development in nature. A set of development
rules define how new cells should grow, and how existing cells should change. Both
development rules, cell types, and initial state can be encoded by a genotype.

One way to achieve development like this is to use a uniform multistate CA
following a set of development rules. Table 2.3 lists a set of such rules for a
3-neighbourhood 1D CA. Each rule has an entry for the development state, called
type, for each cell in the neighbourhood. For a rule to apply, or be a hit, each
entry must match the type of their respective cell in the neighbourhood. The *
is a wildcard, or a do not care, meaning that cell can have any type for the rule
to apply. If several rules are a hit, the last of them is chosen. The result entry of
the chosen rule determines the new type of the cell. If no rule is chosen, the cell
keeps its type. Table 2.4 shows six development steps for a seven long cyclic CA
following the rules from table 2.3. At each step all the cells are checked for all the
rules, and updated accordingly.

All types used in development represent a LUT, or state change rules, as shown
in table 2.5. All cells in the developed CA are assigned the LUT referred to by
their type.

2.4. FIELD PROGRAMMABLE GATE ARRAY 9

Rule# West Centre East Result
0 1 * * 1
1 * * 1 1
2 1 * 1 2
3 1 2 1 3
4 0 0 0 0

Table 2.3: Examples of 1D development
rules. The three middle fields are
conditions. The * means ”do not care”.

Cell 0 1 2 3 4 5 6
Step

0 0 0 1 0 0 0 0
1 0 1 1 1 0 0 0
2 1 1 2 1 1 0 0
3 1 1 3 1 1 1 1
4 2 1 2 1 2 2 2
5 1 1 3 1 1 2 2
6 1 1 2 1 1 1 1

Table 2.4: Development steps for a cyclic
1D CA following the development rules
from table 2.3.

Type LUT
0 00000000
1 10010110
2 10101010
3 01101000

Table 2.5: Type to LUT conversion table. Converts developed types to LUTs used
in a CA.

A GA using some aspect of the developed CA’s behaviour as a fitness value can
be used to evolve the development rules, the type to LUT table, the initial states
and types of the CA, or even all them at same time. Sometimes evolving only the
development rules is interesting because we know, or have some idea, what cell
types are needed to solve the problem at hand. Other times we know less about
what cell types are needed, in which case the LUTs can be encoded in the genotype
along with the development rules, allowing for evolving them both concurrently.

2.4 Field Programmable Gate Array

An FPGA is an integrated circuit that is reconfigurable, the user can configure
it to run his or her hardware designs [4]. They are often used by hardware
designers in research, development, and verification before sending the design off
for mass production. They are also useful for smaller markets or applications where
implementing hardware in silicon is too expensive, and standard microcontrollers
are not flexible enough. An FPGA is usually mounted on a printed circuit board
(PCB), where it is connected to components as the power supply, light-emitting
diodes (LEDs), switches, and other standard input/output (I/O) ports and
components.

Figure 2.6 shows the main components and overall architecture of most FPGAs.
The input/output blocks (IOBs) are connected to the PCB and its components,
and handle all I/O. The interconnect is configurable and connects the different

10 CHAPTER 2. BACKGROUND THEORY

IOB

CLB

Interconnect

CLB

SLICE

SLICE

SLICE

SLICE

SLICE

LUT

LUT

LUT

LUT

FFs

FFs

FFs

FFs

Figure 2.6: General FPGA architecture. CLBs and slices are shown in more detail.

FPGA components to each other. The CLBs are the main components of the
FPGA, they implement the custom logic the user designs.

Each CLB usually consists of a few logic slices, where each such slice contains a
few LUTs and a few registers. The slices can also have some simple memory called
distributed memory as well as some computational logic like full adders. FPGAs
often contain some block RAM (BRAM) for storing data as well as some digital
signal processing (DSP) slices capable of addition, subtraction, and multiplication.

2.5 Evolvable Hardware

When applying the concepts of evolution and EAs to hardware we get EHW. The
idea is to use an EA to evolve a hardware design that can be implemented on a
configurable hardware device. FPGAs are highly configurable, so they make good
target devices.

One use for EHW is finding novel designs that are difficult to find by humans.
An EA explores a much wider range of alternatives than we could consider [19].

Another proposal is to use EHW to let pieces of hardware adapt to unexpected
changes in its environment and become more fault tolerant [8]. By evolving in the
field it can handle conditions it was not explicitly programmed to tackle.

Chapter 3

Previous Work

This chapter covers the research done by Haddow and Tufte [7, 13] and the work
done by Djupdal [3] and Aamodt [1] in their theses, which this thesis builds directly
upon.

3.1 An Evolvable Hardware FPGA and
Development

FPGAs are widely used in EHW research, however because they are not specifically
built for this purpose they are not as fitting as custom hardware could be. For
conventional FPGAs, illegal configurations that could damage it are avoided by
applying restrictions to the configuration. When evolving a design such restrictions
can be difficult to implement, or undesirable. These are some of the reasons that
Haddow and Tufte [7] suggest a new type of FPGA specifically designed for use
within EHW.

They introduce the sblock as the base building block of the EHW FPGA.
Sblocks are laid out in a 2D grid, an sblock matrix (SBM). Each sblock can
only communicate with their four neighbouring sblocks, limiting the interconnect
so that it cannot be misconfigured. The idea is that each sblock can be individually
configured and illegal configurations are impossible.

Haddow and Tufte suggested several possibilities for internal sblock logic. This
thesis will focus on the one depicted in figure 3.1, which shows an sblock in the SBM.
Each sblock consists of a configurable LUT, and an output register (flip-flop (FF)).
The LUT’s size is 32 bits, and it uses the concatenation of the north, east, south,
west, and centre signals, all coming from neighbouring cells’ output signals, as the
look-up address.

The SBM is used to implement a CA in this thesis, so the two terms are used
interchangeably. The same goes for sblock and cell, as they are the base building
blocks of the SBM and CA, respectively.

Tufte and Haddow [13] introduce knowledge based development rules. They are
like the rules described in section 2.3, but with a differentiation between change

11

12 CHAPTER 3. PREVIOUS WORK

LUT

FF out

config en
config

north
west
east

south

centre

Figure 3.1: An sblock in an SBM. It consists of a configurable LUT and an output
register, or FF.

and growth rules. Both rules apply only to sblocks that are not empty, one that
does not have type 0. When a growth rule is applied, the type of that cell is copied
to a neighbouring cell. A type to LUT table like table 2.5 was also introduced.
Such a table lets us define sblock types that have specific functions, like XOR or
Copy state from North. Such predefined building blocks introduce some knowledge
to the evolution of development rules.

3.2 Sblock Matrix and Development Process in
Hardware

In 2003, as part of his master’s thesis, Djupdal [3] designed and implemented
an EHW design for a BenERA FPGA card. He also made a software driver to
communicate with the design over peripheral component interconnect (PCI). The
design is based on the work described in the previous section [7, 13], and both an
SBM and a development unit is implemented on the FPGA.

3.2.1 Functionality

Figure 3.2 shows a very abstract overview of the system.
The SBM implemented is a 2D non-uniform cyclic two-state CA with a 5 cell

neighbourhood. When running the CA, all the cells are updated at the same time
in a single cycle, or run step. Several run steps can be executed back to back.

The development unit’s functionality is much like the CA development example
from section 2.3, but with slightly more complex development rules. The
development unit works like a multi-state CA with the same 5 cell neighbourhood
as the SBM. It runs in development steps, like the SBM runs in run steps. In each
step, all the cells are developed ”concurrently”, but only two cells are developed at
a time, so it takes more cycles to complete one step.

There is support for doing all necessary configuring over PCI. This includes
development rules, cell type to LUT conversions, and initial states and types for
the SBM cells.

Data can also be read back to the host machine over PCI. This includes the cell

3.2. SBLOCK MATRIX AND DEVELOPMENT PROCESS IN HARDWARE13

Software
on host
computer

PCI Control

Development

SBM

FPGA

Figure 3.2: Abstract overview of Djupdal’s system

type data generated by the development unit and state data from the SBM. Data
can be read any time between development steps and run steps. When reading
type or state data, data is read for either a single cell at a time, or for the whole
CA.

Everything that happens on the FPGA is initiated with an instruction
from the host machine. This includes all configurations, data read back, and
run/development steps. Instructions can be stored in memory on the FPGA, and
later be read and executed. Executing instructions from memory is faster than
receiving them over PCI. This is useful when executing a set of instructions in a
loop.

3.2.2 Architecture

The overall architecture of the hardware design is shown in figure 3.3.
The SBM is the main component in the design. It is a 2D array of sblocks that

is basically a configurable cyclic non-uniform 2D CA with two states for each cell
and a five cell neighbourhood as depicted in figure 2.2a.

The BRAM manager consists of two BRAM units, BRAM0 and BRAM1, each
of which contains type and state data for each sblock in the SBM. They can swap
all their contents with each other, which is particularly useful for development.

The LUT conversion unit is a table as the one in table 2.5. It stores the LUT
data the sblocks are to be configured with, and is indexed with the types of the
sblocks.

The Config unit reads the type and state data from BRAM1, and indexes the
LUTconv unit with the type data to get the LUTs. It then configures the sblocks
in the SBM with the LUT data.

The Readback unit reads the state data from the SBM, and stores it back in
BRAM1, typically after running the SBM.

The Rule Storage contains development rules, like table 2.3, but with south
and north entries and entries for the state for each cell as well. There is also a

14 CHAPTER 3. PREVIOUS WORK

COM40 Control

Rule Storage Development

BRAM MGR

BRAM0 BRAM1

LUTconv Config Readback

SBM

Figure 3.3: Architecture for Djupdal’s design

differentiation between change and growth rules. Change rules may only apply
to a non-empty cell and change its type to the one defined in the result entry.
Growth rules may only apply to an empty cell and change its type to the type of a
neighbouring cell defined by another entry in the rule. The rule format is described
in appendix B.

The Development unit reads type and state data from BRAM0, checks the
development rules it fetches from the rule storage for each sblock, and stores the
developed type and state data in BRAM1.

The Control unit communicates with the host computer using the COM40 unit.
It receives configuration data, instructions to activate the different units and to read
result data from BRAM0 and send it back to the host. It also has a storage for
storing instructions that can later be read and executed. Among the instructions
is a jump instruction allowing for repeating some instructions until a set amount
of developments have been executed.

A typical program flow for the architecture would be:

1. Configure the Rule Storage with evolved development rules.

2. Configure the LUTconv with predefined type to LUT conversions.

3. Configure BRAM0 with initial types and states.

4. Run development, reading from BRAM0 and storing results in BRAM1.

3.2. SBLOCK MATRIX AND DEVELOPMENT PROCESS IN HARDWARE15

5. Configure the SBM with data from BRAM1 and LUTconv.

6. Run SBM for 150 steps.

7. Readback state data from SBM to BRAM1.

8. Swap data in BRAM0 and BRAM1.

9. Send result type and state data, now stored in BRAM0, back to host.

10. Jump to 4.

3.2.3 Implementation

This section’s subsections describe the implementation of the units in the
architecture in more detail.

Sblock Matrix

Each sblock is implemented as shown in figure 3.1. When a run step for the SBM
is executed, the FFs in each cell are simultaneously updated to match their LUT’s
output. The LUTs’ outputs are then updated as the outputs from their neighbours’
FFs are used as their input.

The configurable 32-bit LUT in an sblock is implemented using two 16-bit shift
register LUTs (SRLs). This means they can be configured in 16 clock cycles by
feeding it two bits at a time.

The readback unit stores state data from the SBM in BRAM1 as fast as the
BRAM allows, 8 states per cycle.

BRAM Manager

The BRAM manager contains two BRAM units that are used to store type and
state data, BRAM-A and BRAM-B.

The BRAM manager’s interface is made up of two sets of abstract BRAM
interfaces, BRAM0 and BRAM1. Initially, these interfaces are linked to the
BRAM-A and the BRAM-B units respectively. The BRAM manager can swap the
links, so that BRAM1 is linked to BRAM-A and BRAM0 is linked to BRAM-B.
The links are swapped back and forth with a simple instruction. From the outside
it looks like BRAM0 and BRAM1 simply swapped their contents with each other.

BRAM-A and BRAM-B are identical, they both contain two dual-port BRAM
modules for storing type data and two for storing state data. Each word in the
BRAM modules contains data for two sblocks. With the two BRAM units with
two read/write ports each, the maximum bandwidth becomes 8 types and states,
where two and two of them are in the same word.

The type and state data is stored in raster order according to their position in
the SBM. The rows of the SBM are stored alternatingly in the two BRAM modules
that make up each of BRAM-A and BRAM-B, as shown by the white and grey
rows of cells in figure 3.6.

16 CHAPTER 3. PREVIOUS WORK

The size of the stored types are 5 bits, which allows for 32 different types. The
states are just 1 bit each, on or off.

Configuration Unit

The LUT conversion table is implemented using a single dual-port BRAM module
with 32 words, one for each possible type. The type is used as the address and the
LUTs are stored in it.

Figure 3.4 shows how the config unit works. It starts by reading single words
of type and state data from BRAM1, two types and states each cycle. The type
data is used to get the LUT data from the LUT conversion table, also two LUTs
each cycle. The LUTs are stored in a set of registers.

Config

BRAM1

Types States

LUTconv

Types LUTs R
eg

is
te

rs

LUTs
States

S
h

if
t

R
eg

is
te

rs

LUTs
States

S
b

lo
ck

s

Figure 3.4: Data-flow throughout the configuration of the SBM

After 16 cycles, when 32 LUTs have been stored in the first set of registers, they
are all dumped into a set of shift registers. During the next 16 cycles, 32 sblocks in
the SBM are configured by shifting the LUTs out of the shift registers and into the
sblocks, two bits at a time. At the same time, the first set of registers are loaded
up with a new set of LUT data for a new set of 32 sblocks.

Effectively, this process configures 2 sblocks per cycle, and is repeated until all
sblocks are configured.

Development Unit

Figure 3.5 shows the data paths through the development unit and its components.
Type and state data are read from BRAM0 and development rules are read from
the rule storage. Two groups of 8 rule checkers and the two rule select units do
the main work of the development unit. The developed type and state data are
stored in BRAM1.

Each rule checker can check one cell for one rule each cycle, and each group of 8
is used to check one cell for 8 rules simultaneously. A rule checker outputs whether
the rule is a hit or a miss as well as the resulting type and state of that rule.

The two rule select units each read the outputs of one of the rule checker
groups. It then selects the output for the highest priority rule that is a hit as
its own output type and state, which is then stored in the currently checked cell’s

3.2. SBLOCK MATRIX AND DEVELOPMENT PROCESS IN HARDWARE17

B
R

A
M

0

R
u

le
S

to
ra

g
e

Rule Checkers

R
u

le
S

el
ec

t
R

u
le

S
el

ec
t

B
R

A
M

1

Figure 3.5: Development unit architecture

position in BRAM1. Rules are ordered from low to high priority in the rule storage,
with higher priority rules being stored at higher addresses. If none of the 8 checked
rules is a hit, rule select outputs the cell’s original type and state as read from
either BRAM0 or BRAM1.

The development unit starts by loading a set of 8 rules for the rule checkers. It
then loads words of type and state data one by one (two entries per word) in raster
order. After having checked all the cells for the first set of 8 rules, it loads the next
set of 8 rules from the storage and checks each cell for all of those rules, and so
on. When no rule from the first set is a hit for a given cell, that cell’s original type
and state from BRAM0 is selected by rule select and stored in BRAM1. When
checking subsequent sets of rules, previous cell data used by the rule select units,
in case no rule is a hit, are loaded from BRAM1 instead of BRAM0.

N N
W” C’ C’ E

S S

Figure 3.6: Development: cells’ neighbourhood vs BRAM layout

Figure 3.6 shows two cells, C, and their neighbours, N, E, S, and W. Type and
state data for all these cells are needed for developing the two centre cells. The two
northern cells are stored in the same word in the BRAM, as are the two southern
cells, which are also stored in the same BRAM module. Since the BRAM modules
have two read ports, both the N and S cells can be read at the same time. The

18 CHAPTER 3. PREVIOUS WORK

W, E, and Cs are all stored in the same BRAM module, but within three different
words, so they cannot all be read at the same time. However, due to processing
the cells in raster order, the development unit can simply store some cell data for
eastern cells in some registers and use them as centre cells for the next cycle. The
’ in figure 3.6 marks cells that were loaded during the previous cycle, and ” marks
the ones that were loaded in the cycle before that. This way, only one read port
is generally needed for loading the middle row cells. The other read port is used
to load the centre cells at the start of each row, and the south cell from the end of
the previous row is used as the first west cell on the new row. For the first row, a
single extra cycle must be spent to load all the data needed to get started.

The throughput of the development unit is effectively 8 rules for two cells each
cycle. So for a 32×32 SBM with 13 development rules, development takes about
1024 cycles plus some setup time.

Control Unit

The control unit consists of several smaller units, fetch, decode, hazard, and load,
send, and store (LSS).

The fetch unit fetches instructions from either the host computer via the COM40
module or an internal instruction BRAM. Instructions can be read much more
quickly from BRAM than from COM40, so storing instructions that are to be
repeated many times, as in the program described in section 3.2.2, is preferred.
There is a special instruction for storing instructions in BRAM. When it is received
via COM40, all subsequent instructions are stored until the instruction to stop
storing is received. The jump instruction is used to start executing instructions
from a specified address in BRAM.

Figure 3.7 shows an example instruction, specifically the writeType instruction
used to write a single type to a single cell in BRAM0. The five least significant
bits indicate the opcode unique to the instruction. The next bit indicates whether
the instruction is 32 or 64 bit. Bits 8 through 23 encode the x-y coordinates of the
cell in the SBM and the type is stored in bits 24 through 28.

unused type y x unused 0 00001
31-29 28-24 23-16 15-8 7-6 5 4-0

Figure 3.7: writeType instruction from [3]

The decode unit receives the instructions from fetch, decodes them, and sets
the appropriate control signals. Along with some instructions comes configuration
data for rule storage, LUTconv or BRAM0. The decode unit stores data directly
in the rule storage and LUTconv, while the LSS unit takes care of storing data to
BRAM0. There are three instructions for storing data in BRAM0, one to store a
single type for a cell, one to store a state, and one to set all types and states to a
single type and state. The LSS also takes care of reading data from BRAM0 and
sending it back to the host via COM40. There are instructions for sending single

3.3. FITNESS FUNCTION IN HARDWARE 19

types and states, as well as for sending all the types or states. When sending types
and states, several are grouped together, sending up to 32 bits of data at a time.

The hazard unit makes sure that no hazards of any kind appears. It keeps the
decode unit from issuing new instructions and the fetch unit from accepting new
instructions while one is currently being executed.

The complete set of instructions is detailed in appendix A, do however note
that this includes the new instructions introduced by [1] as well as the extensions
made in this thesis.

3.3 Fitness Function in Hardware

The fitness function of a GA evolving the SBM typically needs to know something
about how the states change from step to step. However, sending all the states
back to the host for each run step takes a lot of time due to the relatively low
efficiency of I/O compared to running of SBM, hundreds of cycles vs one cycle.
For this reason Aamodt [1] implements the fitness function in hardware, on the
same FPGA as the design from [3].

This section covers his additions to the design. They include the run step
function (RSF), the RS BRAM, the fitness function, and two development output
BRAMs. They are depicted in figure 3.8, highlighted by the thick lines and grey
boxes.

The development output units, vector BRAM, and dev-step BRAM store some
data about the development process that can later be sent to the host by the LSS
unit. These units are not further explored in this thesis and are therefore not
described in more detail here.

Also added to the design is an instruction for conditional looping, jumpEq. This
allows for looping over a set of instructions until a specific number of development
steps have been run. There is also a new instruction to reset the development step
counter.

3.3.1 Run Step Function

The RSF is a unit that can read some statistics of the SBM, transform it, and
store it in the RS BRAM, for each run step of the SBM. In Aamodt’s design it
implements the summation function. It counts the number of live cells, sblocks
whose output state is one. The values are stored in the RS BRAM, one entry for
each run step. It uses the same data busses as the readback unit, which is usually
used to read 16 states every other cycle when storing data in BRAM1. However,
the RSF reads 16 states each cycle. These 16 states are added together to a 5-bit
number in one cycle using a small adder tree. An accumulator adds all the 5-bit
numbers to a larger number, which is then stored in the RS BRAM.

The drawback of this function is that the efficiency of the SBM is reduced from
1 cycle per run step to 1/16th of the number of sblocks cycles per run step. Which
for a 32×32 configuration is 64 cycles. There is, however, an overall gain compared
to having to send all the states back to the host at each run step.

20 CHAPTER 3. PREVIOUS WORK

COM40 Control

Rule Storage Development

BRAM MGR

BRAM0 BRAM1

LUTconv Config Readback

SBMRSFRS BRAMFitness

Vector
BRAM

Dev-step
BRAM

Figure 3.8: Aamodt’s additions to the design

The RSF can be redesigned later to capture some other statistics of the SBM,
for example the number of dead cells or the number of cells that changed their
state from the previous cycle.

The contents of the RS BRAM can be sent back to the host using the LSS unit.
It is also read by the fitness function.

3.3.2 Fitness Function

The fitness function uses the data stored in the RS BRAM to calculate a fitness
value. In Aamodt’s design [1] it simply finds the longest sequence of increasing
numbers in the RS BRAM and outputs the length of the sequence as the fitness
value. In combination with the RSF implementation, it means that the fitness of a
CA is based on the longest sequence of subsequent steps where the number of live
cells increases from step to step.

The fitness function, like the RSF, should be redesigned to match the needs of

3.3. FITNESS FUNCTION IN HARDWARE 21

the user. For example, the fitness could be based on how closely the number of live
cells from step to step resembles a given curve.

The output of the fitness function can be sent back to the host using the LSS
unit.

22 CHAPTER 3. PREVIOUS WORK

Chapter 4

Optimising for New
Hardware

As mentioned in the introduction, the present work is based on improving and
extending Djupdal’s [3] and Aamodt’s [1] designs in the anticipation of a newer
hardware platform. This chapter starts off with section 4.1, an introduction to the
new target hardware along with a comparison to the old hardware. The porting of
the design to the new hardware is described in section 4.2, before the last section
describes how each unit has been improved.

4.1 The New Hardware

This section compares the new FPGA, the Spartan6-LX150T [16, 17], and the
development board it is mounted on with the older VirtexE-1000 [18] and its
development board.

Table 4.1 compares some basic numbers for the two FPGAs, where some
numbers are more useful in a comparison than others. The number of logic slices
is slightly less than doubled in the newer FPGA, however each slice contains twice
the amount of LUTs and four times as many FFs. The LUTs in Spartan6 devices
are 6-input, while the ones in the VirtexE devices are only 4-input, making for an
even greater difference between the two chips.

The number of logic cells (LCs) is a more abstract number that reflects the
differences between the basic building blocks of the FPGAs, making it a better
way of comparing the amount of customisable logic on the two units. One LC is
comparable to one 4-input LUT. The VirtexE slices have two such LUTs as well
as some extra logic making them count for 2.25 LCs each. The Spartan6 devices
have four 6-input LUTs along with some extra logic in each slice, making them
comparable to 6.4 LCs. Hence the great difference in LCs, 5.3 times as many in
the Spartan6. The Spartan6 has 12.6 times as much BRAM as the VirtexE, as
well as 3.5 times as much distributed random access memory (RAM). With all this
extra logic and RAM, a faster design should be a possibility.

23

24 CHAPTER 4. OPTIMISING FOR NEW HARDWARE

Slices LUTs FFs LC BRAM Dist. RAM DSPs
VirtexE-1000 12 288 24 576 24 576 27 648 384 Kb 384 Kb N/A

Spartan6-LX150T 23 038 92 152 184 304 147 443 4 824 Kb 1 355 Kb 180

Table 4.1: Resource comparison of the old and the new FPGAs

The Spartan6 has 180 DSP slices that can be used for addition, multiplication,
and accumulation. There is little need for these operations in the base design,
however they become more useful when looking at what we can do with the CA
output in chapter 6.

The old development board uses a separate FPGA to implement PCI logic for
communication with a host computer, making the I/O very cheap to implement on
the VirtexE. This setup requires the communication between the two FPGAs to
run at 40 MHz, which is the reason for the split into two clock domains in Djupdal’s
design, the rest of the design runs at 80 MHz. Spartan6 devices with a T ending
their name, as in Spartan6-LX150T, have on chip support for PCI express (PCIe)
endpoints. Using this requires the usage of some of the configurable logic on the
device, making it more expensive than the PCI on the old hardware. PCIe supports
communication at 100 or 125 MHz, which makes its clock a less limiting factor than
that of PCI.

4.2 Porting the Design

The first step in optimising the design for the new hardware is to make it work on
the new hardware, that is, make implementation on the new target FPGA possible.

In the original design, BRAMs and SRLs were mainly implemented by
referencing device specific components that are not available on the Spartan6.
Instead of updating their initialisation to match Spartan6 components, they are
replaced with complete implementations in the code. This way, the synthesis tool
can map them to appropriate device components regardless of what FPGA is used.

The largest task in porting the design is making the I/O work with the new
PCIe endpoints that replace the PCI FPGA on the old hardware. This task is not
handled in this thesis due to circumstances explained in section 8.2.

After porting the design, comparing the synthesis results for the old device from
[1] with the results for the new design gives a good impression of how much more
we have to work with now. Table 4.2 shows the results for synthesis of a 8×8
and a 32×32 cell configuration for both devices. The tri-state buffers (TBUFs) on
the VirtexE turned out to be the limiting factor, limiting the design to a 32×32
configuration. Modern FPGAs, like Spartan6, no longer have internal TBUFs, so
all tri-states in the design are replaced with logic like multiplexers. Do also note
that the speed for the VirtexE was limited by the communication unit, which will
also be the case for the Spartan6, while the Spartan6 speed shown here is a synthesis
estimate. The speed for the Spartan6 would probably be limited to 125MHz by
PCIe. What we see in the table is that the percentage of BRAMs used is about 10

4.3. PARAMETERISATION OF THE DESIGN 25

Device Size Speed BRAMs Slices TBUFs
VirtexE 8×8 80MHz 79% 32% 2%
Spartan6 8×8 170MHz 8% 7% N/A
VirtexE 32×32 80MHz 79% 49% 10%
Spartan6 32×32 170MHz 8% 11% N/A

Table 4.2: Comparison of synthesis results for the original design on the VirtexE
and the Spartan6

times lower for the Spartan6, and the percentage for the slices is about 4-5 times
lower, which is in line with the comparisons in the previous section.

4.3 Parameterisation of the Design

When improving the design one of the key goals was to make it more parameterised,
making as much as possible configurable using a set of parameters.

Very few aspects of the original design were configurable. In Djupdal’s design,
only the width and height of the SBM as well as the number of development rules
checked at the same time are configurable. Aamodt’s additions to the design are
somewhat configurable when it comes to the amount of BRAM used by each new
RAM unit, and the efficiency of the fitness function.

Most parts of the design have been made more configurable in this thesis. Some
of the most important are number of types and states per word in the BRAM, how
many cells are developed concurrently, and how many sblocks are configured at
the same time. Each of these greatly affect the efficiency of different parts of the
design. Many variables that depend on other configurable variables have also been
added. For example the amount of read ports in the LUTconv is very dependent
on how many sblocks are to be configured each cycle.

Some aspects of the design have been partially parameterised, meaning that
changing the variables would break the design unless some parts are rewritten
to match the new values. For example, the amount of BRAM modules used by
BRAM-A and BRAM-B is configurable, however changing them does not make
much sense without changing many other parts of the design, which is done for
the optimisations described in this chapter as well as the extension described in
chapter 5.

4.4 Design Improvements

This section’s subsections describe how the efficiency of the different units in the
design has been improved. Figure 4.1 highlights with thick lines and grey boxes
the parts that have been changed.

26 CHAPTER 4. OPTIMISING FOR NEW HARDWARE

COM40 Control

Rule Storage Development

BRAM MGR

BRAM0 BRAM1

LUTconv Config Readback

SBMRSFRS BRAMFitness

Vector
BRAM

Dev-step
BRAM

Figure 4.1: Optimised parts in the new design, highlighted by thick lines and grey
boxes.

4.4.1 Block RAM

To allow for a higher memory bandwidth, the parameterised BRAM manager with
its two BRAM units are reconfigured to use more BRAM modules, with wider data
busses. The physical BRAM modules on the Spartan6 have a maximum data bus
size of 2×32 bits, two times because it is dual-port, so two words can be accessed at
the same time. The new design uses four dual-port BRAMs with four cell types and
states in each word, with a maximum cell type size of 8 bits. In comparison, the
old design uses two dual-port BRAMs with two cell types and states in each word,
and 5 bits per cell type. Ignoring the difference in cell type size, the bandwidth for
the new design is 4 times higher than that of the old one. This allows all the units
connected to the BRAM manager to work faster. Figure 4.1 shows these units as
being control, development, config, and readback.

It is important that all the units using the BRAM manager agree on what is

4.4. DESIGN IMPROVEMENTS 27

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3

(a) New

0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1

(b) Old

Figure 4.2: BRAM layout for the new and old design. The grids represent SBM,
and each cell represents a word of sblock data. The numbers indicate in what
BRAM module the sblocks’ data is stored.

stored, and where. Figure 4.2a shows a 32×6 part of the CA grid, where four
and four cells are grouped into one cell in the table. The numbers indicate which
BRAM module those cells’ data are stored in. The old design using only two BRAM
modules per BRAM unit has a somewhat simpler layout. Figure 4.2b shows this
in a 16×6 cut of the CA grid where each number represents a word of two cells.
It is important to remember that each BRAM module is dual-port, meaning two
words from the same module can be read or written at the same time.

Both the old and the new layouts were chosen to optimise for the development
unit’s reading of data.

4.4.2 Development

In addition to making the development unit faster, the new memory layout allows
for it to be simplified as well. As described in section 3.2.3, the development unit
works by looking at sets of cells in raster order, and testing each cell for a set of
development rules. The testing of rules requires the type and state of each cell in
the tested cell’s neighbourhood.

Figure 4.3 shows what cells are developed at the same time (C) along with their
neighbours (N, E, S, and W), for both the new and the old design. The shades
of grey represent the different BRAM modules that the cells’ type and state data
are stored in. In the old design, two cells are developed at a time. Due to the
memory layout, all neighbouring cells’ data cannot be read at the same time. By
preloading, and keeping some cell data between the sets of cells that are developed,
a speed of almost two cells per cycle is still achieved.

By taking advantage of the increased memory bandwidth, the new design can
develop 8 cells per cycle. Due to the new memory layout, the data for all the
neighbours can be loaded simultaneously, removing the need for preloading data,
hereby simplifying the design and saving a few cycles.

The main resource in the development unit is a set of rule testers, each of
which can test one cell against one rule each cycle. In the old design, there are
16 such testers, 8 for each cell tested concurrently, which allows for testing against
8 rules at the same time. The development process must go through each cell

28 CHAPTER 4. OPTIMISING FOR NEW HARDWARE

N N N N N N N N
W C C C C C C C C E

S S S S S S S S

(a) New

N N
W C C E

S S

(b) Old

Figure 4.3: Development: cells and their neighbourhoods vs BRAM layout in the
new and the old design

once for each set of 8 rules. To increase the performance of the development unit
more testing units have to be added. If the new design used only 16, it would be
as slow as the old design, even though it works on more cells at the same time.
Increasing the amount of rule testers to 256 would potentially increase the speed
of development if there are enough rules. Here we have an area/performance trade
off with diminishing returns where a halving in time spent equals a doubling of
resources used. The amount of testing units is therefore parameterised, so the user
can decide how many would be best considering the amount of rules and how much
time development takes compared to other processes.

For the new design, the growth and change rules have been combined to a new
simpler type of change rule. This makes the rule testers slightly simpler, and less
resource demanding. One can still achieve the same growth rules as before by using
a few more rules to represent them.

4.4.3 Config

Configuring a cell in the matrix is done by first reading type and state data from the
SBM BRAM, then looking the type up in the lut conversion memory which yields
a lut configuration that can be fed into the sblock in the SBM. The performance of
the configuration unit is limited by SBM BRAM bandwidth and number of LUT
conversions that can be done each cycle.

The LUT memory is a single dual port BRAM module in the old design,
meaning only two LUT configurations can be read each cycle, while the total SBM
BRAM bandwidth is 8 cell types and states. Section 3.2.3 explains the workings
of the configuration unit. In short, the performance is effectively two sblocks each
cycle, as limited by the LUTconv BRAM.

In the new design, the LUT memory is implemented using several BRAM
modules where the same data is stored in each of them, resulting in a memory
with one write port and a configurable amount of read ports. The number of read
ports is equal to the amount of sblocks we want to configure per cycle. Since there
are a lot of free BRAM modules on the Spartan6, the maximum amount of read
ports is near limitless compared to the logic expenses of configuring the sblock.
The maximum bandwidth to the SBM BRAM is 32 cell types and states.

4.4. DESIGN IMPROVEMENTS 29

4.4.4 Run Step Function

The unit that sums up the number of live cells at each run step, the RSF, is the
one part of the old design that slows down the running of the SBM. 16 cell states
are read at a time, summed up and added to the total. For a 32×32 SBM this
takes 64 cycles at each run step. When it is not used, each run step takes just one
cycle.

11

+10

+ +
9

++++8

++++++++
7

+++++++++ + + + + + + +

6

Figure 4.4: Adder tree with clocked registers. It takes 1024 1-bit input signals and
outputs the sum of them as an 11-bit number.

The new design employs a large adder tree with pipeline registers to achieve a
throughput of one full summation of the matrix per cycle. Figure 4.4 shows such an
adder tree, where the circles represent adders and the rectangles represent clocked
registers. At the top of the tree (not shown) four and four states from the SBM
are input to nodes that add the four states to a 3-bit number. From there, two
and two 3-bit numbers are added to a 4-bit number, then two and two of those are
added to a 5-bit number, and so on going down the layers of the adder tree. At
the bottom is the output, which given a 32×32 SBM is an 11-bit number. At every
other layer of the tree there are clocked output registers from the adders. This is to
keep the adder tree from forming a critical path in the design, which would lower
the potential clock rate of the system.

Such an adder tree requires quite a large amount of resources compared to the
accumulator in the old design, but it allows for the CA to be run at one step per
cycle with a full addition of the states for each run step.

4.4.5 New Instructions

Formerly, there were only three instructions for writing states and types to BRAM0,
one to write a single cell type, one for a single cell state, and one for setting all cells
to a specific state and type. Two new instructions are added to the instruction set

30 CHAPTER 4. OPTIMISING FOR NEW HARDWARE

in the new design, one for writing a whole word of four types to the memory and
one for writing 16 states. Using these instructions makes writing an initial pattern
of states to BRAM0 faster, and resetting to the initial state pattern between runs
can more easily be done with just 1/16th of the instructions and time used before.

Chapter 5

Three Dimensional SBlock
Matrix

This chapter introduces the 3D CA and how it is implemented in the optimised
EHW design described in chapter 4. The goal is to extend the SBM into 3D
space while keeping as much as possible of the design as it was before. Figure 5.1
highlights the affected units with grey and thick lines.

COM40 Control

Rule Storage Development

BRAM MGR

BRAM0 BRAM1

LUTconv Config Readback

SBMRSFRS BRAMFitness

Figure 5.1: Parts changed for the 3D extension, highlighted in grey and thick lines.

31

32 CHAPTER 5. THREE DIMENSIONAL SBLOCK MATRIX

5.1 The SBlock Matrix

By adding layers to the rows and columns of the SBM, it is extended to be a
cube in 3D space, as seen in figure 2.1c. Each sblock has new inputs up and down
in addition to the standard north, east, south, west, and centre which creates the
neighbourhood shown in figure 2.4. For each additional neighbour to a cell the
LUT size is doubled, meaning we now need 128-bit LUTs instead of 32-bit ones.

A configurable LUT is implemented using the distributed RAM capable slices
as SRLs. There are 5420 such slices in the Spartan6-LX150T, each of which can
be configured as up to four 32-bit SRLs, or eight 16-bit ones. Eight 16-bit SRLs
can be combined to the 128-bit LUT needed for a single sblock. This means that
the largest possible configuration that is a power of two is a 16×16×16 3D SBM
which would use about 76% of the relevant slices.

5.2 BRAM and Development

To make development of an sblock efficient the BRAM manager needs to
accommodate for reading all data for a set of cells and all their surrounding
neighbours in just one read cycle. To make this achievable for a 3D SBM the
amount of BRAM modules used in BRAM-A and BRAM-B is doubled from the
four used in the 2D design. The word size is also changed to be half of the size of
the SBM in the x-direction, 8 entries per word for a 16 cell wide SBM.

The new layout, shown in a similar manner to those in figure 4.2, is depicted
in figure 5.2. This is the BRAM layout for a 8×8×8 SBM. Each number in the
tables points to the BRAM module used for storing a word of four cell types and
states, and the column number is the x-position of the first cell in that word.

column: 0 4 0 4 0 4 0 4 0 4 0 4 0 4 0 4
row:
0
1
2
3
4
5
6
7

0 1
2 3
0 1
2 3
0 1
2 3
0 1
2 3

4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7

0 1
2 3
0 1
2 3
0 1
2 3
0 1
2 3

4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7

0 1
2 3
0 1
2 3
0 1
2 3
0 1
2 3

4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7

0 1
2 3
0 1
2 3
0 1
2 3
0 1
2 3

4 5
6 7
4 5
6 7
4 5
6 7
4 5
6 7

layer: 0 1 2 3 4 5 6 7

Figure 5.2: 3D SBM BRAM layout

All units using the BRAM manager are changed to match the new layout, these
include the LSS, config, readback, and development units, all of which can now take
advantage of higher bandwidth of the BRAM.

Also depicted in figure 5.2 is a selection of sblocks (dark grey) and all their
neighbours (light grey). This selection includes two whole rows of layer 4 in the

5.3. CONFIG 33

SBM and the neighbours above in layer 3, below in layer 5, and to the north and
south in layer 4, all of which can be read from the BRAM simultaneously. Due
to selecting two complete rows, all western and eastern neighbours are included
in the dark grey selection. This is the largest selection of words we can read
simultaneously from the BRAM and thus limits development to work on two rows
in a layer of the CA at a time, which for a 16×16×16 configuration would be 32
cells.

The development unit works on two rows of a layer at a time, so when decreasing
the size of the SBM one can decrease its resource usage by lowering the amount
of columns or keep the performance up by lowering the amount of layers or rows
instead. One can also, as before, change the performance of the development unit
by changing the amount of rules that are checked at a time.

To support 3D development the rule format, which is described in detail in
appendix B, is updated to include up and down entries. The rule testers are
extended to check these entries as well.

5.3 Config

The one part of the original design that scales the worst when increasing the LUT
size is the configuration unit. Specifically shifting of data into the sblock LUTs
is very expensive, and to keep performance up we want to shift more data at the
same time than in the 2D configuration with 32-bit LUTs.

The 2D design configures the sblocks by first spending some cycles to read
configuration data from a memory and storing them in 32-bit registers. The data
in the 32-bit registers are then moved to another set of 32-bit registers before being
fed into the sblocks by shifting the registers. While feeding the sblocks, another
set of configuration data is loaded into the first set of registers again, so they are
ready to be used by the time the first set of sblocks have been configured.

128-bit shift registers would be four times as expensive as the already quite
expensive 32-bit ones, so simply changing them to 128-bit ones is not a feasible
solution if we want to keep performance up. Instead, the 3D design’s config unit
can use smaller shift registers by reading only parts of an sblock’s configuration data
at a time. The LUTconv is configured to store smaller parts of the configuration
data in each word, which means that it needs to be read more times per sblock,
which in turn means that it has to have more read ports, and more BRAM modules
to keep the performance up. Specifically, a halving in shift register size leads to a
doubling in BRAM modules used.

5.4 Run Step Function

If using only an adder tree to sum up all the outputs of the SBM, a 16×16×16
configuration leads to an adder tree a bit more than 4 times as large as a 32×32
configuration. For this reason, an accumulator has been reintroduced to the RSF,
and the size of the adder tree has been made configurable. The RSF for the 3D

34 CHAPTER 5. THREE DIMENSIONAL SBLOCK MATRIX

design is thus more similar to the one in [1], but with a potentially larger adder
tree.

When using an adder tree large enough to sum all the outputs, each run step
still uses a single cycle. For every halving in adder tree input size, logic used by it
is more than halved, and the number of cycles spent per run step is doubled.

5.5 3D Instructions

The instruction set has been changed to support the new 3D architecture. Figure
5.3 compares an old and a new instruction. The opcode has been increased to 6
bits, allowing for doubling the amount of instructions. The base instruction size is
increased to 64 bit. All instructions referencing specific cells in the CA have been
extended to include a z variable in its coordinate data.

unused type y x unused 0 00001
31-29 28-24 23-16 15-8 7-6 5 4-0

unused type z y x 00 000001
63-40 39-32 31-24 23-16 15-8 7-6 5-0

Figure 5.3: Comparison of the writeType instruction from [1, 3] (top) and this
thesis (bottom)

Since the LUTsize is increased to 128 bits, the instruction that stores the
configuration data has been extended to be a 196-bit instruction. Therefore support
for up to 256-bit instructions have been added to the instruction set.

The instruction for storing the development rules is extended to have the up
and down fields, making them 22 bits larger.

The same instructions are used for both the 2D and 3D design, except for the
LUT data instruction which is a 64-bit instruction in the 2D design and 196-bit
in the 3D design. The 2D design simply ignores the 3D-specific fields of the
instructions.

The new instruction set is detailed in appendix A.

Chapter 6

Cellular Automaton Output

When evolving a CA a measure of how well the CA is performing, a fitness value,
is needed. The RSF module added by Aamodt [1] simply sums the number of live
cells in the SBM. The fitness function then uses this data when calculating a fitness
value. This chapter explores transforming the output data from the SBM using the
discrete Fourier transform. It starts off with an introduction to the discrete Fourier
transform (DFT), and why it might be interesting, followed by a description of a
hardware implementation.

6.1 Discrete Fourier Transform

The DFT is a transformation of a series of numbers to the frequency domain. The
equation below defines the DFT, X, of a series of complex numbers x.

Xk =

N−1∑
n=0

xne
−i2πkn/N , k ∈ [0, N − 1]

If x contains only real numbers, the latter half of X is simply the first half
reversed, so for real x we are only interested in calculating X0...N/2. The xn part

of the equation is the input to the DFT, while e−i2πkn/N is called the twiddle
factor, and its only dependence on the input is N , the length of the series. The
twiddle factors, given an input size N, can thus be written as a function T (k, n) =
e−i2πkn/N .

Simulations have been run to try to find out whether different transforms of
the output data of a CA produce more interesting data than the raw output data.
Several transforms were explored, but the only promising one was the DFT. Many
simulations using the same CA but with different starting sets of live cells resulted
in the average data plotted in figures 6.1 and 6.2. Figure 6.1 shows the average live
cell count for 128 run steps, whereas figure 6.2 shows the average absolute value of
the DFTs of the same source data as the first figure. The black line in the figure
is the average and the grey area surrounding it is the standard deviation.

35

36 CHAPTER 6. CELLULAR AUTOMATON OUTPUT

0 20 40 60 80 100 120 140
0

100

200

300

400

Run step number

L
iv

e
ce

ll
s

Figure 6.1: Average live cells per step for a specific CA

0 10 20 30 40 50 60 70
0

2,000

4,000

6,000

Frequency

A
m

p
li

tu
d

e

Figure 6.2: Average DFT of live cells per step for the same CA

6.2. IMPLEMENTATION 37

An interesting aspect of the DFT is that repeating patterns that can be difficult
to recognise in the input sequence, as in figure 6.1, can more easily be recognised by
the peaks in a DFT. Many CAs are likely to have such repeating patterns in their
output, which is one reason that DFTs may be interesting when evolving them.

In 2013 Berg [2] explored the evolution of CAs and found that using DFTs
of the output data from the CA in the fitness calculation yielded good results,
promoting the point that a hardware implementation could be interesting.

6.2 Implementation

Figure 6.3 shows the DFT unit placed between the RS BRAM and the fitness
function. It uses data from the RS BRAM as input, and its output is added to the
input for the fitness function.

SBMRSFRS BRAMDFTFitness

Figure 6.3: The DFT in the architecture

The main resources required for DFT calculations are multiplicators,
accumulators, and twiddle factors calculators. Multiplication and accumulation are
two of the main features of the DSP slices on the Spartan6 FPGAs, of which there
are 180 on the LX150T. This accounts for two of the resources needed. However,
calculating twiddle factors is more complex.

The twiddle factor problem is solved by limiting the size of the DFT at
synthesis. The twiddle factors needed for a specific DFT size are all calculated
before programming the FPGA. They are then stored in a BRAM module on
the FPGA in the order they are needed. Table 6.1 shows how the twiddle factors
are stored in memory. Tr(k, n) represents the real part of the twiddle factor that
should be multiplied with the nth value of the input series in the calculation of
the kth value of the DFT output. Ti(k, n) is the same for the imaginary part.
Depending on the DFT size and the precision of the twiddle factors, the twiddle
memory may require many BRAM modules to be implemented due to the high
bandwidth required.

Fast Fourier transform algorithms uses O(N logN) computations and are
normally the go-to choice for DFTs. However, a simpler O(N2) algorithm is easier
to parallelise, especially given a set DFT size. Given a DFT input size of N, we
can use N DSPs in parallel to compute the DFT in just O(N) time. Each DSP is
used to compute the real or imaginary component of a single output number, Xk.

Figure 6.4 shows a simplification of how the DSPs are used. The multiplicator
takes data from the RS BRAM and twiddle factor memory as input. The
accumulator is an adder with an output register. The adder takes its own output

38 CHAPTER 6. CELLULAR AUTOMATON OUTPUT

Address Data
0 Tr(0, 0), Ti(0, 0), Tr(1, 0), Ti(1, 0), . . . Tr(N/2-1, 0), Ti(N/2-1, 0)
1 Tr(0, 1), Ti(0, 1), Tr(1, 1), Ti(1, 1), . . . Tr(N/2-1, 1), Ti(N/2-1, 1)
2 Tr(0, 2), Ti(0, 2), Tr(1, 2), Ti(1, 2), . . . Tr(N/2-1, 2), Ti(N/2-1, 2)
3 Tr(0, 3), Ti(0, 3), Tr(1, 3), Ti(1, 3), . . . Tr(N/2-1, 3), Ti(N/2-1, 3)
...

...
...

...
...

...
...

N-1 Tr(0, N -1), Ti(0, N -1), Tr(1, N -1), Ti(1, N -1), . . . , Tr(N/2-1, N -1), Ti(N/2-1, N -1)

Table 6.1: Twiddle BRAM content

input

twiddle

X +

R
E

G

output

Figure 6.4: Simplified DSP slice

as well as the output from the multiplicator as input. The DSP module can use
any consecutive N number portion of the RS BRAM for the input values.

In case we want to have a larger DFT than we have DSPs for, or simply want
to use less DSPs due to resource problems, there is support for using less of them.
In this case, a smaller set of output data will be computed first, before moving on
to the next set, and so on until the whole DFT is calculated. As one would expect,
for every halving of DSPs, the time spent is doubled. The twiddle memory is also
rearranged to take advantage of the lower bandwidth that is needed.

Appendix A covers the additional instructions introduced for the DFT unit.

Chapter 7

Testing and Results

The first section of this chapter describes how functional correctness testing has
been done during this work. The subsequent sections focus more on results from
synthesis of the design as well as the efficiency of the different units given different
configurations. There is one such section for each main chapter in the thesis.

The process of compiling the hardware design and mapping it to specific
components on an FPGA is called synthesis. This is done using Xilinx ISE [15],
which is described in appendix D.

7.1 General Correctness Testing

Throughout the thesis project, functional and correctness testing have been
done using a simulation test bench combined with a C-program that generates
instructions for the design. The testing has been done in a simulation run by using
ModelSim [6].

The test bench is a simple wrapper around the top-level of the design. All it
does is to set a few PCI signals and run the input clock signal. The c-program
generates ModelSim instructions to set all other input PCI signals. The PCI data
bus signals are set to instructions from a test program made for the hardware.

The functional test used is taken from [1, 3], and is described in figure 7.1. The
output produced by the readTypes and readStates instructions at the end of the
simulation is compared to what we know the output should be for the given test.

Throughout the design work the test has been modified to do more specific tests
of specific parts of the design. ModelSim can generate waveforms of a set of chosen
signals when running a simulation. So, for closer inspections of parts of the design,
one can select the relevant signals and see cycle by cycle if they behave correctly.

Appendix C has an overview of all the files used in this project, including the
hardware design, test benches and the testing program.

39

40 CHAPTER 7. TESTING AND RESULTS

1. init

2. while 150 != devsteps:

3. config

4. run(77)

5. readback

6. switch

7. devstep

8. readTypes

9. readStates

Figure 7.1: Functional test program

7.2 Improvements

This section covers synthesis and performance results of the work done in chapter
4 in comparison with the results from [1, 3].

Table 7.1 shows a performance comparison between the design from [1] (old)
and the new design. The design from [3] has the same performance as [1], but
without the RSF slowing down the SBM running. Because it is negligible for
large enough matrices, the table data does not account for setup overhead for the
different entries. Apart from the RSF and rules per set, most values are 4 times

Design unit Unit Old value New value
BRAM bus width (types) 8 32
Development sblocks per cycle 2 8
Development rules per set 8 8
LUTconv conversions per cycle 2 8
Config sblocks per cycle 2 8
Readback states per cycle 8 32
RSF states per cycle 16 all
RSF cycles per run step 64* 1
SBM speed without RSF 1 1
Write Type types per instruction 1 4
Write State states per instruction 1 16
∗Given a 32×32 matrix.

Table 7.1: Performance comparison for original and new design

larger for the new design. This means that the performance for most parts of the
design is 4 times higher.

Figure 7.2 shows a typical program for design. For a 32×32 matrix the typical
program would be about 3 times faster using the new design. This does not take
into account the difference of clock speed between the old and new hardware, 80
MHz vs 125 MHz. For typical use, the new design on the new hardware is about

7.2. IMPROVEMENTS 41

1. init

2. while 100 != devsteps:

3. config

4. run(150)

5. readback

6. switch

7. devstep - 8 rules

8. readTypes

9. readStates

Figure 7.2: A typical program

4.7 times faster than the old design on the old hardware. When adding RSF to the
equation, the new design would be almost 40 times as fast as the old one.

Aamodt [1] and Djupdal [3] used a test program like the one in figure 7.1,
but with 10000 development steps and 50000 run steps per development step, for
testing the speed of their designs compared to a simulation. For an 8×8 matrix,
Djupdal [3] ended up with 6.3 seconds, Aamodt [1] used 31.3 seconds due to the
RSF, and the simulation used 18 minutes. In simulations the test takes 6.3 seconds
again with the new design. For this test there is no improvement over [3] due to
running the SBM taking about 99% of the time.

SBM size Slice LUTs Slice Registers BRAMs
old new old new old new

8×8 3884 - 5193 - 27 -
16×8 4151 10167 5288 13054 27 36
32×8 4823 10807 5455 13556 27 37
64×8 5700 12098 5766 14441 27 38
128×8 7371 14810 6362 16267 27 41
256×8 - 20741 - 19833 - 45
16×16 4681 10900 5456 13552 27 37
32×32 7563 14858 6363 16259 27 38
64×64 - 31098 - 26937 - 54

Table 7.2: Comparison of synthesis results for original and new design

Table 7.2 shows the resource usage of the new design compared to the old design
when they are both synthesised for the Spartan6 FPGA. The cells without numbers
represent designs that could not be synthesised due to certain design limitations.
The new design uses about 2.5 times as many LUTs as the old one for a small
configuration, and about 2 times as many for the larger configurations. So for a
32×32 matrix we see an approximately 3 times performance gain for an overall
doubling in resource usage.

No parts of the old design scales with the size of the SBM. Thus, only the fact

42 CHAPTER 7. TESTING AND RESULTS

16×8 32×8 64×8 128×8

0.4

0.6

0.8

1

1.2

1.4

1.6
·104

SBM size

U
se

d
L

U
T

s

Figure 7.3: FPGA LUT usage given array size for original and new design

that the SBM becomes bigger increases the resource usage. For the new design
however, the size of the BRAM units as well as the size of the RSF adder tree
change with the size of the matrix. The scaling of the adder tree is reflected
in the higher increase in LUT usage for the new design than for the old design.
This difference can also be seen in figure 7.3, which plots the LUT usage for the
configurations 16×8, 32×8, 64×8, and 128×8 for the old and the new design. The
plot for the new design has a somewhat steeper curve.

7.3 DFT

This section covers the testing and results of the DFT unit described in chapter
6. It starts with functional testing before moving on to synthesis results and
performance.

The DFT unit has been tested with its own simulation test bench. It implements
a BRAM module with example input data, like the RS BRAM in the full design.
The test bench starts the DFT unit and waits for it to finish. When it does, the
test bench compares the DFT unit’s output with the correct DFT. The test bench
can be configured to put the input data anywhere in the BRAM. It will tell the
DFT unit the first address of the data, and the DFT unit should start reading
input from that address.

Table 7.3 shows synthesis results for the design with DFT implemented. Results
for configurations that use 32, 64, and 128 DSP slices to compute the DFT of a
128 value input sequence are shown for a variety of SBM sizes.

In general, the more DSP slices used, the faster the DFT unit, at the cost of

7.3. DFT 43

DSPs: 32 64 128 32 64 128 32 64 128
SBM size Slice LUTs Slice Registers BRAMs

16×8 10985 11355 12027 13598 13595 13594 46 54 70
32×8 11974 12236 12994 14151 14141 14140 47 55 71
64×8 13337 13737 14264 15138 15135 15135 47 55 71
128×8 16158 16660 17218 17009 17006 17006 48 56 72
256×8 21940 22533 23005 20646 20643 20643 48 56 72
16×16 12010 12226 12911 14140 14137 14136 47 55 71
32×32 16188 16534 17140 17001 16998 16998 48 56 72
64×64 33050 - - 27800 - - 49 - -

Table 7.3: Synthesis results with DFTs using different amounts of DSPs

more LUTs and BRAM. There is no advantage using more DSPs than the length
of the input sequence. The 128 DSP configuration spend 128 cycles computing the
DFT, 64 DSPs spend 256 cycles, and 32 DSPs spend 512 cycles.

16×8 32×8 64×8 128×8 256×8
1

1.5

2

·104

SBM size

U
se

d
L

U
T

s

Figure 7.4: FPGA LUT usage given array size for design with and without DFT

A comparison of the three DFT configurations with the results from the previous
section, without DFT, is shown in figure 7.4. The 32 DSP configuration (lower black
curve) is about halfway between the design without DFT (grey curve) and the 128
DSP configuration (upper black curve). This means that the 128 DSP DFT unit
uses almost twice the amount of LUTs as the 32 DSP one. The amount of registers
needed however, is almost the same for both configurations.

The higher amount of BRAM modules needed for the larger DFT unit is due
to the fact that it needs to read more twiddle factors each cycle, leading to a larger

44 CHAPTER 7. TESTING AND RESULTS

memory bandwidth requirement. The design is still far away from using all 268 of
the BRAM modules on the FPGA.

The place and route part of building the design fails for the 64×64 configuration
with 64 or more DSPs. Thus, the configuration with 32 DSPs for that SBM size
is at the edge of what is achievable while keeping performance of the rest of the
design up. This is the case even though only 35% of available LUTs are used and
15% of the registers are used, which shows that the interconnect resource demand
of the design is very high compared to the logic resource demand.

Using the typical program from figure 7.2 again, but with the addition of
computing the DFT, about 23% of the time is spent computing the DFT for the 128
DSP configuration. For the 64 DSP configuration this number is 37%, and for the
32 DSP configuration it is 54%. If there is room for the larger DFT configuration
on the FPGA it should be prioritised.

7.4 3D SBM

Correctness testing of the 3D design was done using the same functional test as
for the 2D design, the test shown in figure 7.1. The development rules and sblock
LUTs are extended to 3D rules and LUTs in a way that they still only work in
a 2D plane. Sets of rules and LUTs are made for the x-y plane, the x-z plane,
and the y-z plane. In this way, development of all cells in relation to each of their
neighbours can be tested, and the interconnect between all the sblocks in the SBM
can be tested. All testing produced correct results in the end.

The optimistic goal when extending the design to support a 3D SBM was to
implement a 16×16×16 SBM and scale the other parts of the design to keep the
performance up. This quickly turned out to be unfeasible when the synthesis tool
claimed the design would use 140% of the available LUTs on the FPGA. The config
unit was to blame, using 75% of the available LUTs on its own. After changing
the config unit and scaling down other parts of the design, as described in chapter
5, synthesis was possible.

The synthesis results shown in table 7.5 were achieved with the performances
per unit shown in table 7.4. The comparison field is a comparison between the

Design Unit Value unit Comparison
BRAM SBM WIDTH*8 types/states bus width 4×
Development SBM WIDTH/2 sblocks per cycle 1×
Development 4 rules per set 1/2×
Config SBM WIDTH/8 sblocks per cycle 1/4×
Readback SBM WIDTH*8 states per cycle 4×
RSF SBM SIZE/4 states per cycle 1/4×
RSF 4 cycles per run step 4×

Table 7.4: Performances of the units of the 3D design, along with a comparison to
the 2D design performance.

7.4. 3D SBM 45

performance of a 16 wide 3D SBM and the 2D design performance. The config
and run step performances are effectively reduced to a quarter, development’s
performance is halved, and readback’s performance is quadrupled.

Again we use the program from figure 7.2 as a reference. A 16×8×8
configuration has the same amount of cells as a 32×32 configuration. The test
program is about three times faster on the 2D design than the 3D design. Thus,
the overall performance is reduced to about one third.

SBM size Slice LUTs Slice Registers BRAMs
8×8×4 6529 6011 55
8×8×8 7668 5726 50
8×16×4 8234 6531 55
8×16×16 18003 8466 51
8×64×4 17798 9219 57
16×4×4 9045 8156 65
16×8×8 14097 9613 66
16×8×16 19720 10516 62
16×16×8 19414 10506 62
16×16×16 37313 14956 68

Table 7.5: Synthesis results for the 3D design

Scaling the SBM width scales other parts of the design as well, like the
development, config, and readback unit. This is reflected in the synthesis results.
The results for a 16×16×8 matrix is almost equal to those for a 16×8×16 matrix.
However, an 8×16×16 matrix uses about 1500 less LUTs and about 2000 less
registers.

The largest synthesisable 3D design is a 16×16×16 SBM with the performance
described above. The tools could however not make the design fit the FPGA after
adding the DFT unit. Scaling down to a 16×16×8 SBM almost halves the LUT
resources used, lets the design fit on the chip, and leaves some wiggle room for
implementing PCIe communication and more interesting fitness functions later.

46 CHAPTER 7. TESTING AND RESULTS

Chapter 8

Discussion

Correctness testing validates both the 2D and 3D designs in simulation. The
functional tests yield the same result as they yielded for Djupdal [3] and Aamodt
[1], meaning the functionality implemented by them still works.

No top-level test for testing the DFT unit specifically has been made. It has
however been tested with its own test bench, which shows that it produces correct
results. No new tests have been specifically designed for the 3D design either, but
it has been tested by running the 2D test in all three orientations, so it should
work with 3D rules as well.

Performance results for the 2D design show that the speed has increased
considerably over [3], and even more over [1]. When compared to [1], the main
contributor is the new adder tree in the RSF, which makes run steps 64 times
faster on a 32×32 matrix. The increase in performance lets the user run more
and/or larger experiments in the same time as a smaller experiment used before.
This is very good for running GAs as they tend to be very time consuming.

For the 3D design the performance had to be scaled down considerably to fit
the target 16×16×16 SBM on the device, leaving it at about the same level as [3].
Even with the downscaling there is not much room left for implementing required
and/or new features as PCIe communication, DFT or interesting fitness functions.
For this to be possible, lowering the SBM size to 16×16×8 or making further design
optimisation is necessary.

Performance and synthesis results for the DFT unit show that a quadrupling
of DSP slices used leads to a quadrupling in performance for that unit, but only a
doubling in LUTs used by that unit. For this reason, using as many DSPs as there
are numbers in the input sequence is recommended for most 2D designs. However,
for the 3D design, LUT resources might be better spent to increase performance
of some other part of the design, sacrificing some of the performance in the DFT
unit.

In general, synthesis results show that smaller SBM configurations use
considerably less resources. These extra resources could be used to further increase
the performance of several parts of the design. For example, a 16×16 matrix
configuration could in theory develop and configure more sblocks at the same time

47

48 CHAPTER 8. DISCUSSION

than a 32×32 matrix configuration could.

8.1 Implementation

Section 4.3 describes how many parts of the design have been parameterised.
Most of these parameterisations are partial, meaning that changing the variables
will make the design unsynthesisable unless more hardware code is changed. For
example, trying to increase the amount of concurrent cell developments or sblock
configurations for the 2D design cannot be done by just changing the parameters,
because the relevant units are not fully parameterised. Increasing the performance
of those units has however been made simpler due to the partial parameterisation;
not as much code needs to be changed as before. For most partially parameterised
units, the part that is not yet parameterised has to do with memory access.

The work on the 3D implementation resulted in several optimisations that were
not later pulled into the 2D design. For example, the configuration unit was
optimised in a way that needed less LUT resources but more BRAMs to achieve
the same performance as before. The amount of unused BRAM modules is very
high for the 2D design, so implementing the optimisations there as well would not
be a problem.

As in [1, 3], only one instruction can be executed at a time. This is to keep
the design simple and easy to further work on and debug. By executing several
instructions concurrently some units in the design could run at the same time
without changing the functional behaviour. For example, the DFT unit could run
at the same time as the SBM run steps, as long as it waits for data generated by
the RSF to be available before trying to read them. This would make the design
more efficient by increased parallelity, but it would also make it more convoluted
and prone to errors.

It is not clear that a 3D SBM can produce more interesting or better results than
a 2D SBM, or that the DFT is a well suited transform for use in fitness calculations.
However, the work done in this thesis should make further research into the subjects
more efficient by providing a hardware platform to run experiments on.

8.2 Future Work

This thesis was written in anticipation of a new PCIe FPGA development board.
The new hardware did not arrive by the end of this work. As a consequence,
the development board specific parts of the hardware design and host computer
software have not been implemented in this thesis. The first thing that needs
to be done to get this design working in hardware is to implement the PCIe
communication in both the FPGA design and the host computer software.

The lack of hardware also means that all functionality testing has been done
in relatively slow simulations. With a full hardware implementation with working
PCIe communication, more comprehensive top-level testing can be done at full

8.2. FUTURE WORK 49

speed in hardware. Top-level tests designed to specifically test the new features
added in this thesis could also be made.

By fully parameterising most parts of the design, the user could more easily
change the performance of the different parts to optimise for the typical program
that he or she will run on the platform. If the user uses very many development
rules, more resources should be devoted to the development unit by reducing the
performance of other units in the design.

Optimisations from the 3D design could be pulled into the 2D design. They
could be made much more similar or even combined. The instruction format and
development rule format have already been unified for the two designs. If combined
well, a 2D SBM would simply be configured as a single layer 3D SBM without up
and down in its neighbourhood.

Djupdal [3] and Aamodt [1] also suggest some future work that is still valid:

• Extend the design to support a Turing complete instruction set.

• Change the RSF and fitness function to fit the needs of the user.

• Currently the size of the SBM can only be a power of two in each direction.
The design could be changed to support other sizes.

The last point is valid for almost all aspects of the design. Configurations per
cycle, cells developed per cycle, DSPs used by the DFT unit, and many more have
to be powers of two. Changing this could let the user more finely tune the design
performance and functionality.

50 CHAPTER 8. DISCUSSION

Bibliography

[1] Kjetil Aamodt. Kunstig utvikling: Utvidelse av fpga-basert sblock-plattform.
Master’s thesis, Norwegian University of Science and Technology, 2005.

[2] Sivert Berg. Evolution of cellular automata using lindenmayer systems and
fourier transforms. Master’s thesis, 2013.

[3] Asbjørn Djupdal. Konstruksjon av maskinvare for kjøring av sblokkbaserte
eksperimenter. Master’s thesis, Norwegian University of Science and
Technology, 2003.

[4] Robert J. Francis, Jonathan Rose, and Zvonko G. Vranesic. Field
programmable gate arrays, volume 180. Springer, 1992.

[5] David Edward Goldberg et al. Genetic algorithms in search, optimization, and
machine learning, volume 412.

[6] Mentor Graphics. Modelsim. URL http://www.mentor.com/products/

fpga/model.

[7] Pauline C. Haddow and Gunnar Tufte. An evolvable hardware fpga for
adaptive hardware. In Evolutionary Computation, 2000. Proceedings of the
2000 Congress on, volume 1, pages 553–560. IEEE, 2000.

[8] Tetsuya Higuchi, Masaya Iwata, Isamu Kajitani, Hitoshi Iba, Yuji Hirao,
Tatsumi Furuya, and Bernard Manderick. Evolvable hardware and its
application to pattern recognition and fault-tolerant systems. In Towards
evolvable hardware, pages 118–135. Springer, 1996.

[9] Tetsuya Higuchi, Yong Liu, and Xin Yao. Evolvable hardware, volume 10.
Springer, 2006.

[10] Paul Layzell. Reducing hardware evolution’s dependency on fpgas.
In Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, 1999.
MicroNeuro’99. Proceedings of the Seventh International Conference on, pages
171–178. IEEE, 1999.

[11] Moshe Sipper. Evolution of parallel cellular machines, volume 4. Springer
Heidelberg, 1997.

51

http://www.mentor.com/products/fpga/model
http://www.mentor.com/products/fpga/model

52 BIBLIOGRAPHY

[12] Tommaso Toffoli and Norman Margolus. Cellular automata machines: a new
environment for modeling. MIT press, 1987.

[13] Gunnar Tufte and Pauline C. Haddow. Building knowledge into developmental
rules for circuit design. In Evolvable Systems: From Biology to Hardware, pages
69–80. Springer, 2003.

[14] Stephen Wolfram. Statistical mechanics of cellular automata. Reviews of
modern physics, 55(3):601, 1983.

[15] Xilinx. Xilinx ise, . URL http://www.xilinx.com/content/xilinx/en/

products/design-tools/ise-design-suite/.

[16] Xilinx. Xilinx ug380 - spartan-6 fpga configuration user guide, . URL http:

//www.xilinx.com/support/documentation/user_guides/ug380.pdf.

[17] Xilinx. Xilinx ds160 - spartan-6 family overview, . URL http://www.xilinx.

com/support/documentation/data_sheets/ds160.pdf.

[18] Xilinx. Xilinx ds022 - virtextm-e 1.8 v field programmable gate arrays,
. URL http://www.xilinx.com/support/documentation/data_sheets/

ds022.pdf.

[19] Xin Yao and Tetsuya Higuchi. Promises and challenges of evolvable hardware.
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 29(1):87–97, 1999.

http://www.xilinx.com/content/xilinx/en/products/design-tools/ise-design-suite/
http://www.xilinx.com/content/xilinx/en/products/design-tools/ise-design-suite/
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/user_guides/ug380.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds022.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds022.pdf

Appendix A

Instruction Manual

This appendix is an updated version of appendix A in [1].
All instructions have the following format:

operands size opcode
n-8 7-6 5-0

• opcode; Unique id for each instruction, increased from 5 to 6 bit.

• size; Defines the size of the instruction.

size instruction size
00 64
01 128
10 192
11 256

Size used to be 1 bit, indicating a 64-bit instruction if set, otherwise 32-bit.
Instructions as long as 256 bit are not currently used.

• operands; instruction specific data

break

Stops running of instructions from BRAM. Used to end a program and start
accepting instructions over PCI.

unused 00 001101
63-8 7-6 5-0

clearBRAM

Sets all sblock data stored in BRAM0 to a given state and type value.
sate unused type unused 00 010011
63 62-40 39-32 31-8 7-6 5-0

53

54 APPENDIX A. INSTRUCTION MANUAL

• type; The type all sblocks are set to have

• state; The state all sblocks are set to have

config

Configures the SBM with data from BRAM1 and LUTconv.
unused 00 000111

63-8 7-6 5-0

devstep

Runs a development step. Data is read from BRAM0 and the result is written to
BRAM1.

unused 00 001010
63-8 7-6 5-0

doFitness

Runs the fitness function.
configurable 00 011010

63-8 7-6 5-0

• configurable; The fitness instruction format is dependent on the implemented fitness
function

end

Stops the storing of instructions to BRAM. This instruction is not stored.
unused 00 001111

63-8 7-6 5-0

jump

Start executing instructions from BRAM at a given address.
unused address 00 001100
63-24 23-8 7-6 5-0

• address; Jump to or start executing from this address in the BRAM

55

jumpEqual

Jumps to a given address in BRAM if the amount of run development steps are
equal to a given value.

value unused address 00 010110
63-48 47-24 23-8 7-6 5-0

• address; The address to jump to

• value; The value used in the comparison

nop

Does nothing.
unused 00 000000

63-8 7-6 5-0

readback

Read back all state data from the SBM to BRAM1.
unused 00 001000

63-8 7-6 5-0

readFitness

Send fitness data back to host.
unused 00 011001

63-8 7-6 5-0

readRuleVector

Send to host a number of vectors describing what rules have been activated for the
development steps.

unused n 00 011000
63-24 23-8 7-6 5-0

• n; The number of vectors to send

readState

Send to host a single sblock’s state from BRAM0.
unused z y x 00 000101
63-32 31-24 23-16 15-8 7-6 5-0

• x ; The sblocks x-position

• y ; The sblocks y-position

• z ; The sblocks z-position, used only for 3D

56 APPENDIX A. INSTRUCTION MANUAL

readStates

Send to host all sblocks’ states from BRAM0.
unused 00 010001

63-8 7-6 5-0

readType

Send to host a single sblocks type from BRAM0.
unused z y x 00 000010
63-32 31-24 23-16 15-8 7-6 5-0

• x ; The sblocks x-position

• y ; The sblocks y-position

• z ; The sblocks z-position, used only for 3D

readTypes

Send to host all sblocks’ types from BRAM0.
unused 00 010000

63-8 7-6 5-0

readSums

Send to host a number of results generated by the RSF.
unused n 00 010100
63-24 23-8 7-6 5-0

• n; The number of values to be sent to host

resetDevCounter

Resets, to zero, the counter that counts the number of development steps that have
been run. Relevant for jumpEq.

unused 00 010111
63-8 7-6 5-0

run

Run the SBM for a given number of run steps.
cycles 00 001001
63-8 7-6 5-0

• cycles; The number of run steps the SBM should be run for

57

readUsedRules

Send to host what rules were activated the previous development step.
unused 00 010101

63-8 7-6 5-0

setNumberOfLastRule

Set the amount of rules are to be used in development. All rules up to and including
the one stored at the specified position in the rule BRAM are used.

unused number 00 010010
63-16 15-8 7-6 5-0

• number ; The highest priority rule in the rule BRAM

startDFT

Start the DFT unit.
unused address unused 00 111000
63-48 47-32 31-8 7-6 5-0

• address; The first address in the RS BRAM the DFT unit should fetch data
from

store

All following instructions are to be stored in the BRAM, until an end instruction
is received.

unused address 00 001110
63-24 23-8 7-6 5-0

• address; The first address in BRAM the program is stored to

switch

Switches the contents of BRAM0 and BRAM1.
unused 00 000011

63-8 7-6 5-0

writeLUTConv

Writes a LUT to the LUT conversion BRAM. For a 2D design instruction, the
LUT is in 95-64, and a 128-bit instruction is enough.

lut unused type unused 10 000110
191-64 63-40 39-32 31-8 7-6 5-0

• type; The address at which to store the LUT

58 APPENDIX A. INSTRUCTION MANUAL

• lut ; The LUTto be stored, for a 2D design it is only 32 bits

writeRule

Writes a development rule to the rule storage.
rule unused number 01 001011

127-39 38-16 15-8 7-6 5-0

• rule; The rule that is stored. Its format is detailed in appendix B

• number ; The address in the rule storage the rule is stored. Rules stored at
higher addresses have a higher priority.

writeState

Writes a single sblock’s state to BRAM0.
state unused z y x 00 000100

63 62-32 31-24 23-16 15-8 7-6 5-0

• x ; The sblocks x-position

• y ; The sblocks y-position

• z ; The sblocks z-position, used only for 3D

• state; The state to be written

writeStates

Writes one word of states to BRAM0 for each BRAM module. For 2D this is 4
words with a total of 16 states. For 3D this is 8 words with a total SBM WIDTH*4
states.

states unused z y x 01 100100
N-64 63-32 31-24 23-16 15-8 7-6 5-0

• x, y and z ; Indicates the position of an sblock, the address of that sblock in
BRAM0 has entries in all the modules that make up BRAM0. State data is
stored at that address in each of them.

• states; The states that are written to BRAM0. The most significant states
are written to the most highest numbered BRAM module

writeType

Writes a single sblock’s type to BRAM0.
unused type z y x 00 000001
63-40 39-32 31-24 23-16 15-8 7-6 5-0

• x ; The sblocks x-position

59

• y ; The sblocks y-position

• z ; The sblocks z-position, used only for 3D

• type; The type to be written

writeTypes

Writes one word of types to BRAM0. For 2D this is 4 types. For 3D this is
SBM WIDTH/2 types.

types unused z y x 01 100001
N-64 63-32 31-24 23-16 15-8 7-6 5-0

• x, y and z ; Indicates the position of an sblock, the word containing that sblock
in BRAM0 is written to

• types; The types that are written to BRAM0.

60 APPENDIX A. INSTRUCTION MANUAL

Appendix B

Rule Format

Each rule has the following fields:
valid type up down north south east west centre result
88 87 86-76 75-65 64-54 53-43 42-32 31-21 20-10 9-0

• valid ; Whether or not the rule is valid. If it is 0, not valid, it is not checked
by the development unit.

• type; Not used in this thesis’ implementations, however could still be
reimplemented. Used to differentiate between change (0) and growth (1) rules.

• up,down,north,south,east,west¢re; Makes up the rule condition. There is
an 11 bit condition on each sblock in the neighbourhood. Up and down are
only used for 3D rules.

• result ; What happens if the rule is a hit.

Condition

The condition on each sblock in the neighbourhood is encoded like this:
ignore state state ignore type type

10 9 8 7-0

• ignore state; Whether or not to take this sblock’s state into account when
checking the rule.

• state; The state the sblock must have for the rule to apply.

• ignore type; Whether or not to take this sblock’s type into account when
checking the rule.

• type; The type the sblock must have for the rule to apply.

Result

The result field is encoded as follows:

61

62 APPENDIX B. RULE FORMAT

no state change new state new type
9 8 7-0

• no state change; Whether or not this rule changes the state of the sblock.

• new state; If this rule does change the state of the sblock, this field contains
the new state, otherwise it is ignored.

• new type; The sblock’s type is changed to this value.

In [1; 3] the result differentiated between growth and change rules, in this thesis
they were combined to a more general change rule.

Appendix C

Attached Files

C.1 File Hierarchy

The files used in this thesis project is attached as a .zip file. The folder hierarchy
in the .zip file is as follows:

• hardware

– 2D
– 3D
– test benches
– synthesis results

∗ 2D

· 16x8
· 16x16
· ...

∗ 3D

· 8x8x4
· 8x8x8
· ...

∗ ...

• software

– 2D
– 3D
– original
– output

The 2D and 3D folders in the hardware folder contain the hardware code for
the 2D and 3D designs respectively. The files are detailed in section C.2.

The test benches folder contain the two simulation test benches used when
testing the designs. They are detailed in section C.3

The synthesis results folder contain several folders, each of which contain a
series of folders containing synthesis results. See section C.4.

The software folder contain testing software written in c, as well as expected
output when running tests. Section C.5 covers this.

63

64 APPENDIX C. ATTACHED FILES

C.2 Hardware Design Files

The hardware design is written in VHSIC hardware description language (VHDL).
There is also a python script that is used to generate the twiddle factor memory.

Files that are new in this thesis are marked with a *. Almost all other files
has also been changed during this thesis’ work. There are two complete sets of
hardware design files, one for 2D and one for 3D. Both of them contain the same
files:

• addr gen.vhd : Used to generate BRAM0 and BRAM1 addresses based on the
x, y and z coordinates for an sblock.

• bitcounter8.vhd,bitcounter4.vhd : bitcounterN uses bitcounter8 and
bitcounter4 at the bottom to sum 8 and 8 input signals.

• bitcounterN.vhd* : Sums N 1-bit input signals. Uses recursion to build an
adder tree with pipeline registers.

• bram inferrer.vhd* : Implements a general BRAM module. Used to infer
BRAM modules on the FPGA.

• com40.vhd : Communication module for PCI communication, should be
replaced with a PCIe communication module.

• counter.vhd : Used throughout the design as a simple counter.

• decode.vhd : Responsible for decoding instructions and initiate the execution
of them. Has a program counter.

• decode and or.vhd* : Decodes a set of 8 bit signals to 256 bit ones and ors the
result.

• dev.vhd : The development unit.

• dft.vhd* : The DFT unit.

• fetch.vhd : Unit responsible for fetching instructions from PCI and the
instruction memory, it also stores instructions in the memory.

• fitness.vhd : Wrapper for the fitness function, receives data from the DFT unit
and RSF.

• fitness funk.vhd : The fitness function currently implemented.

• fitness reg.vhd : Register for storing fitness calculation results.

• funct package.vhd : contain a few helpful functions.

• hazard.vhd : Responsible for stalling other units when some are busy.

• instrmem.vhd : Memory used for storing instructions.

• lss.vhd : Responsible for execution of all instructions that store or read data
from the BRAM0.

• lutconv.vhd : Memory used for implementing the type to LUT conversion table.

• Makefile: Is used to synthesise the design.

C.2. HARDWARE DESIGN FILES 65

• package.vhd.in: Package with component declarations and constants that can
be changed to weak the workings of the design. The file package.vhd is
generated from this file as a first step in the make process.

• rule exec.vhd : Checks an sblock for a development rule. Used by the
development unit.

• rule select.vhd : Selects a result from a set of rules checked for an sblock. Used
by the development unit.

• rule storage.vhd : Memory for storing development rules.

• rulevector mem.vhd : Memory for storing the rulevector generated at
development

• run step funk.vhd : Implements the RSF, currently summing all the states of
the SBM at each run-step.

• runstep mem.vhd : Memory for storing data generated by the RSF.

• sblock.vhd : A single sblock.

• sblock matrix.ucf : Contains user constraints for the design, should be changed
as it is highly development board dependent.

• sblock matrix.vhd : links many sblocks together to make an sblock matrix.

• sbm bram.vhd : The module used for implementing BRAM-A and BRAM-B
in the BRAM manager.

• sbm bram mgr.vhd : Manages BRAM-A and BRAM-B used for storing the
configuration data for the SBM.

• sbm pipe.vhd : Implements the Config unit and other SBM related pipelines.

• srl inferer.vhd* : Used to implement shift registers as configurable LUTs in
the sblocks.

• toplevel.vhd : is the toplevel part of the design. It links many components
together and defines the signals that go in and out of the FPGA.

• twgen.py* : Python script executed by the Makefile to generate twiddle.vhd
which is a file containing all the twiddle factors needed. The script uses
constants from package.vhd to determine the twiddle factors and the layout
of the file.

• twmem.vhd* : Constant memory used for keeping twiddle factors for the DFT
unit.

• usedrules mem.vhd : Memory for storing data on what development rules were
activated for each sblock.

• word select.vhd : A shift register used to activate a set of enable signals one
by one.

66 APPENDIX C. ATTACHED FILES

Synthesising

Before synthesising, make sure the correct constant values are set in package.vhd.in.

Synthetisation uses XILINX ISE, and is streamlined using GNU make. The
Makefile does some preprocessing using python and m4. To synthesise, navigate to
the folder with the design in a terminal and run the following command:

$ make

This will generate the package.vhd and twiddle.vhd files before running all the
commands necessary to run the whole synthesis process and build a bit file for
programming the target FPGA with.

C.3 Test Benches

There are two simulation test benches that are used for simulation testing:

• toplevel tb.vhd : A toplevel test bench for testing the toplevel functionality of
the hardware designs. It simulates some of the input signals to the toplevel
module. The rest, such as PCI data, must be set using simulation scripts
during simulation.

• tb dft.vhd : A test bench for testing the correctness of the DFT unit.

C.4 Synthesis Results

The synthesis results folder contain synthesis results for the original design, the 2D
design with and without DFT and the 3D design with DFT. There are results for
using 32, 64, and 128 DSPs in the DFT unit for the 2D design, while the 3D design
is only synthesised with 32 DSPs. There is one folder for each configuration, each
of which contain several folders with synthesis results for different SBM sizes.

For the 2D designs, these folders have names like 16x16 or 64x8, the first number
indicate the width of the SBM and the second number the height. For 3D designs,
the number of layers is added to the naming convention, resulting in names like
16x16x8, where 8 is the number of layers.

Each such folder has three files:

• package.vhd : The configuration file containing all the constants used in the
hardware design, with the values used for this synthesis.

• tmp.srp: The first report produced during synthesis, xst. Contains resource
requirement and performance estimates.

• sblock matrix.par : Results of the place and route part of synthesis. This file
denotes whether or not all constraints were met and whether or not the design
was fully implemented.

C.5. SOFTWARE 67

C.5 Software

The original folder contains the test software used in [1]. The files contained in it
is:

• Makefile: File that compiles the testing program.

• read print.c: C file with functions for reading output data from the FPGA
over PCI and printing them with pretty formatting.

• read print.h: Header file for read print.

• rules.c: C file for generating development rules.

• rules.h: Header file for rules.

• sblocklib.c: C file for the library used to communicate with the FPGA over
PCI. It contains functions for generating all the instructions.

• sblocklib.h: Header file for sblocklib

• sblocktest.c: C file for the testing program. Contains the main method for
running tests. Also supports generating simulation scripts that can later be
used for testing in a simulation.

• types.h: General types and constants. Including the LUTs the sblocks are
configured with during testing.

The 2D folder contains the same test software, but stripped down to only
make simulation scripts. Most other code will have to be rewritten for PCIe
communication. It is also updated to match the new instruction format and the
new instructions have been added and taken advantage of.

The 3D folder contains the same as the 2D folder, but with instructions,
development rules and sblock LUTs updated to work with the 3D design.

The output folder contains expected output for the different test programs for
a series of sblock matrix sizes.

Compiling and Running

Before compiling the test program, these variables must be exported or set in the
Makefile:

• COORD SIZE X: The size of the SBM in the x-direction is defined by
2COORD SIZE X .

• COORD SIZE Y: The same for the size in the y-direction.

• COORD SIZE Z: The same for the size in the z-direction. Only for the 3D
test program.

Compiling the test program is done by running the command in the folder with
the code:

$ make

This requires a unix system with GNU make installed.
The program can then be run using the following command:

68 APPENDIX C. ATTACHED FILES

$. / s b l o c k t e s t <test> <s i m u l a t i o n s c r i p t >

• <test>: The number of the test to run.

– 0 : Functional test

– 1 : Speed test

– 2 : Rule test

– 3 : Fitness test

– 4 : Fitness speed test

• <simulationscript>: The name of the file the simulation script should be
saved to.

Appendix D

Software

Synthesis of hardware designs have been done on a computer running Ubuntu
12.04.4 LTS (GNU/Linux 3.5.0-47-generic x86 64). Simulations have been done on
a windows server loaded with ModelSim.

• Xilinx ISE version 14.5 : Follows these steps to synthesise a hardware design:

1. xst ; translates the code to Xilinx specific code and does a lot of
optimisations based on knowledge of the target hardware platform.

2. map; maps the different parts of the design to the different hardware
modules that exist on the target hardware.

3. par ; place and route, places the modules described by map in specific
positions on the target hardware and routes the interconnect between
them. This process will try many different placements to try and satisfy
timing constraints, like the system clock rate, while making routing
between all the modules possible.

4. bitgen; produces a configuration file for the target hardware.

• ModelSim: Simulation software used to simulate hardware designs for testing
purposes before hardware implementation.

• Python 2 : For running python code.

• GNU C compiler : For compiling C-code.

• GNU Make: For controlling the synthetisation of the hardware design and
compilation of the testing software.

69

	Introduction
	Background Theory
	Cellular Automata
	Grid Layout
	Neighbourhoods
	State Change

	Genetic Algorithms
	Development
	Field Programmable Gate Array
	Evolvable Hardware

	Previous Work
	An Evolvable Hardware FPGA and Development
	Sblock Matrix and Development Process in Hardware
	Functionality
	Architecture
	Implementation

	Fitness Function in Hardware
	Run Step Function
	Fitness Function

	Optimising for New Hardware
	The New Hardware
	Porting the Design
	Parameterisation of the Design
	Design Improvements
	Block RAM
	Development
	Config
	Run Step Function
	New Instructions

	Three Dimensional SBlock Matrix
	The SBlock Matrix
	BRAM and Development
	Config
	Run Step Function
	3D Instructions

	Cellular Automaton Output
	Discrete Fourier Transform
	Implementation

	Testing and Results
	General Correctness Testing
	Improvements
	DFT
	3D SBM

	Discussion
	Implementation
	Future Work

	Bibliography
	Instruction Manual
	Rule Format
	Attached Files
	File Hierarchy
	Hardware Design Files
	Test Benches
	Synthesis Results
	Software

	Software

