
Visualization of the Composition and
Execution of Java-Code and
Swing-Interfaces

Håvard Tørresen

Master of Science in Informatics

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: December 2014

Norwegian University of Science and Technology

Abstract

Some new students find it hard to understand the concepts of object oriented
programming. This is especially true with the model view controller architecture, as
the internal connections can become quite complex. In order to assist new students
with their comprehension, this report investigates multiple available tools, focusing
on those suitable to the teaching environment for the HCI course at NTNU. After
a comparison of the available tools, JIVE was chosen for a detailed study. Through
the use of a modified design science approach, several areas with a potential for
improvement were found and elaborated upon, and some of these were selected for
further improvement. An evaluation of the changes showed promising results, but
further work is desirable for proper determination of its potential, and to resolve
remaining issues in the areas of performance and usability.

I

II

Acknowledgements

I would like to thank the following people for their assistance in making this project
possible:

Hallvard Trætteberg
For providing supervision, feedback, and an interesting task.

Bharat Jayaraman
Demian Lessa
For the development of JIVE, and for making its source code available under the
Eclipse Public License, enabling third party development.

III

IV

Contents

1 Introduction 1
1.1 Research questions . 2

2 Prestudy 3
2.1 Methods . 3
2.2 Existing tools . 5
2.3 Selecting a tool . 6

3 Methodology 9
3.1 Awareness . 9
3.2 Suggestion . 9
3.3 Development . 10
3.4 Evaluation . 10
3.5 Conclusion . 11

4 An exploration of JIVE 13
4.1 Features . 14

4.1.1 The object-diagram . 14
4.1.2 The sequence-diagram . 14
4.1.3 Time-stepping . 18
4.1.4 The exclusion filter . 18
4.1.5 The model views . 18
4.1.6 Searching . 19

4.2 Suggested changes . 19
4.2.1 Visual changes to the diagrams 20
4.2.2 Compacting diagrams . 21
4.2.3 Changes to the filter . 23
4.2.4 Searching . 24
4.2.5 Automation . 24

5 Implemented changes 25
5.1 Labeling of objects . 25
5.2 Expanding the filter . 26
5.3 The isolated view . 27

V

5.4 Relaxing the search . 30

6 Evaluating usefulness 31
6.1 The test . 31
6.2 Results . 33

6.2.1 Performance . 33
6.2.2 New issues . 34

7 Conclusion 37
7.1 Research questions . 37
7.2 Future work . 38

Glossary 41

Acronyms 45

Bibliography 47

A Accessing the source code 49
A.1 JIVE . 49
A.2 The modified version . 49

VI

List of Figures

4.1 The JIVE perspective in Eclipse. 13
4.2 A contour-diagram generated by JIVE. 15
4.3 A sequence-diagram generated by JIVE, while running an instance

of HCI-Exercise 1. 15
4.4 The sequence-diagram right-click menu. 16
4.5 Normal and collapsed section of a sequence-diagram. 17
4.6 The JIVE search panel. 19
4.7 Comparison of the suggested label-changes to the diagrams. 20
4.8 Listeners are relabeled, and connected to the objects they listen to.

The illustration is based on figure 4.2. 21
4.9 A section of a larger sequence-diagram, showing method calls crossing

several unrelated lifelines. 22
4.10 An example of how figure 4.9 might look in an isolated view. 23

5.1 A view of how instantiated interfaces are shown after the modification. 25
5.2 The JIVE-tab in the launch configuration menu. 26
5.3 The new Isolated view option. 27
5.4 How figure 4.9 looks in the isolated view. 28
5.5 Another example of the isolated view, showing a significantly reorga-

nized diagram. 29

6.1 The two example programs used in the evaluation. 32
6.2 Contour-diagram that has grown unnecessarily large. 35

VII

Chapter 1

Introduction

Upon starting their studies in computer science, new students may find the general
concepts of programming, and object oriented programming in particular, to be
difficult to grasp. The understanding of computers, and how they work, is not given
a lot of attention in the school system – which is more concerned with the use of
computers as tools, not how these tools are made – and only a few students have
actually tried learning programming before beginning at the university.

With little or no previous knowledge, it can be hard to understand the concepts,
and to get a mental model of what is going on when writing a program. Especially
code not written by themselves, for example exercise frameworks and automatically
generated code, can be hard to get a good understanding of. Traditional debuggers
are not necessarily helpful when detecting a runtime error, as they tend to only
point at where the error occurred, along with a classification. Depending on the
language and tools being used, this error may be specific enough to, for example,
indicate an indexing error, or so vague that it only says ‘something went wrong
here’. The result is often that a significant amount of time is spent searching for
the cause of a bug, instead of actually fixing it [Ko et al., 2006].

The use of Integrated Development Environments (IDEs) – tools that integrate
source code editors with facilities for compiling and running programs, and inter-
cepting errors that occur during run-time – can help with the challenge of finding
the cause of an error, and might even suggest a way to fix it. But getting an
overview of an entire program, and how its components interact with each other is
not necessarily easier. Introducing tools that present the state of a program in a
simple, visual way may help students understand how a program works, and how
its components interact with each other.

During the second year of the computer science, and the informatics studies
at NTNU, there is an increased focus on projects and more complex software.
Among the mandatory courses of these studies, we find the course TDT4180 –
Human–Computer Interaction (HCI). This course handles topics related to creating
programs with a Graphical User Interface (GUI), and specifically how to implement
a Model View Controller (MVC) architectural pattern using Swing – a part of the
framework surrounding the Java programming language, providing components that

1

are frequently used in graphical interfaces. The learning goals for the HCI-course
are as follows:

Introduction to important concepts, methods and techniques related to
human–computer interaction and design of user interfaces. Knowledge
and practical experience with implementation of user interfaces in object-
oriented frameworks.

Through the course, students are introduced both to the theories of good user
interface design, and how such interfaces can be implemented in Java. Java, and the
Eclipse IDE, make a common framework for many of the programming courses at
NTNU, which makes compatibility with them an important criteria when looking
for tools to support the students.

The MVC pattern describes a way of dividing graphical applications into a
trinity of models, views and controllers. The models store data, and only accepts
modifications from the controller. The controller acts as a mediator between views
and models, ensuring a safe and consistent modification of the model, and informing
views of any changes. The views are simply presenters of the data contained in the
model. While the view can request data directly from the model, all modifications
are relayed through the controller. This pattern provides several benefits, such
as separation of responsibility, modularity and robustness, but it can also be
complicated to implement properly.

1.1 Research questions

The goal of this report is to look into the available tools that can aid developers,
concentrating on the potential use in the HCI-course. This implies a focus on how
to better understand the interactions within programs implementing the MVC
pattern, as well as the behavior of graphical interfaces. Looking into the tools, it
will identify the different types, as well as their strengths and weaknesses, using this
as a basis for comparison. After comparing, and determining which tool is likely to
be of most use, the report will look at both the potential for improvement, and how
it may fit into the teaching process, including the effect of any improvements made.
To be more specific, the following research questions have been formulated:

Research Question 1 What is the current state of the various visualization tools
that are available?

Research Question 2 Could any of these be integrated into the current teaching
environment at NTNU, consisting of Java and Eclipse?

Research Question 3 Is there room for improvement in how these tools are used,
and the ease of using them, so that the information they provide can be refined or
presented in a more understandable way?

Research Question 4 Would the use of such tools and any improvements actually
be useful for the students, and help them understand the internal structure, and
order of execution, in a program?

2

Chapter 2

Prestudy

This chapter will serve to get an overview of the current situation of debugging
methods, visualization techniques, and the various tools that are available.

2.1 Methods

Debuggers are tools that are designed to aid a developer in the process of finding
errors, or bugs, in a program. Depending on the language and platform, this ranges
from gathering information when a program crashes, to inserting breakpoints – points
in the code where the debugged program will be suspended, allowing the contents
of its memory to be inspected, and potentially modified. While having obvious
uses, these techniques requires a certain level of knowledge of both the program
in question, and programming in general, to be really useful. The information
provided by these debuggers is mainly textual, and that can itself be a limiting
factor in the understanding of the programs [Larkin and Simon, 1987].

Larkin and Simon has shown that the use of diagrams can enable an individual
to absorb the presented information faster than if it was purely textual. It is
then natural to explore the generation of diagrams to visualize the structure of a
program, and its path of execution, as a way of helping developers. The Object
Management Group (OMG) has, with the Unified Modeling Language (UML)
specification, established a widely used standard for how a large variety of diagrams
describing software design and architecture should be formed. Of these, it is the
class-, object- and sequence-diagrams that are of most use when describing the
architecture and execution pattern of a program. Such diagrams can make it easier
to get an overview of a program’s current state, see the contents of objects and
how they relate to each other, and to understand how the various components work
together.

Class-diagrams show what classes, or objects, a program consists of. The classes
are described with both the methods they contain, and connections they have to
other classes, indicating relations between them.

Object-diagrams are similar to class-diagrams in that they both show the objects

3

of a program and their connections between each other. They differ in that while
the class-diagram shows the connection between classes and what the classes are
composed of, whereas the object-diagram shows the state of a program at a certain
point in time. As a program is executed, its state changes, and the exact combination
of objects and the connections between them will change accordingly, and the object-
diagram reflects this. Some programs will return to a certain state after performing
a task, while others do not have this ‘stable state’. The transitions between different
states can be illustrated with a state-diagram, which typically abstracts the states
to ‘idle’ and various ‘tasks’, like ‘processing input’.

A sequence-diagram shows the order in which the program is executed. The active
components are shown at the top, with vertical lifelines below them, representing
time. The lifelines alternate between thin and bold lines to indicate whether or not
they are involved in the execution at a specific point in time. As the components in
the program invoke methods on each other, their respective lifelines are connected
to each other with arrows.

Depending on the desired kind of diagram, different techniques are used for the
generation. Class-diagrams can be made by analyzing the source code of a program,
while object-diagrams require information that can only be acquired by analyzing a
running program, and logging what happens. Such a log, or execution trace, can
also be used to create a sequence-diagram, as those also need information that can
not necessarily be acquired by analyzing code. State-diagrams are usually created
manually by a system architect during the planning of a system, as they are used
to specify the general behavior of a system.

Execution traces can also be used to enable backwards stepping of program
execution. Stepping back in time allows the user to not only see the failure state
of a program, but to go back and see what caused the problem, instead of adding
a new breakpoint and running the program again. There are different ways to
store the information describing each step, providing various trade-offs between
access-time and memory usage. The straightforward way would be to store each
state independently, sacrificing memory for a near-constant load time. The load
time will be affected by the amount of data that must be analyzed, but there is
no need to work through any of the steps in between. If the data is stored as a
differential to the previous state, the opposite situation is created. The amount of
memory required is significantly reduced, and stepping to the immediate neighbors
is very fast, but jumping between any two steps would require analyzing every step
in between the two. A hybrid approach is also possible, relying on a differential
model, but also introducing checkpoints every n steps, where all information is
stored. By adjusting the value of n to fit the characteristics of the system that the
tool is running on, an appropriate balance between the two previous methods can
be found.

The potential disadvantages of manual backstepping can be avoided by using
queries instead. Queries enable the user to ask the debugger about the current and
earlier states of execution in a simple way. The debugger then does the work of
finding what was asked for, instead of the user manually searching through the
program states.

4

A major drawback of execution traces, is the performance penalty from doing
extra work for every step in the execution. The amount of work will vary, depending
on implementation details and of course what is done with the log. If all the
tracing-process does is write to a log-file, which will be used later, it is possible to
achieve a significantly smaller performance impact compared to a system that does
real-time analysis of the data.

2.2 Existing tools

There are currently several existing tools that provide one or more of the methods
mentioned above. The following list is not exhaustive, but includes some of the
most relevant tools, considering the focus of this report. Some of the tools listed
below does not support Java or Eclipse, but have interesting features that are worth
mentioning, despite their incompatibilities with the desired teaching environment.
Download links for the tools are listed in their respective glossary entries for the
tools that are available.

GNU debugger (GDB) A part of the GNU project, and maintained by the Free
Software Foundation, it offers a tracing environment, and support for many
languages, although the support for Java is limited. Due to its Command
Line Interface (CLI), it is not necessarily easy to use on its own, and as a
consequence, there are several front-end platforms that provide a graphical
environment around GDB, including Eclipse.

Code Canvas [Deline and Rowan, 2010] Developed by Microsoft, uses an inter-
esting way of visualizing an entire project, everything from source-code to
design documents and diagrams are layered onto a large canvas. This allows
the user to easily navigate between various elements, but this tool is restricted
to Microsoft Visual Studio, and the languages it supports.

Trace Viewer Plugin [Köckerbauer et al., 2010] Developed by the MNM-team
at the Ludwig Maximilian University of Munich, Germany. A plugin for
g-Eclipse – a now discontinued version of Eclipse, geared for development
of grid-computing software. Uses a trace to generate visualizations of the
program execution. These visualizations should make the execution easier
to understand, but the plugin is designed for tracing the massively parallel
programs that are used on high performance computing clusters, and requires
a special version of Eclipse. Smaller programs, like the ones students write as
a part of the exercises in the HCI-course, are not massively parallel, making
the diagrams of them less useful.

Trace-Oriented Debugger [Pothier et al., 2007] Developed at the University of
Chile in Santiago. Utilizes execution traces to enable its debugging and
querying features. It offers high performance tracing, being able to maintain
usable interaction while debugging complex software, but its only visual
representation of programs is the ‘mural’, a graph that shows event density
over time.

5

Whyline [Ko and Myers, 2009] Developed at the Carnegie Mellon University,
Pennsylvania, USA. Like the Trace-Oriented Debugger, it makes use of exe-
cution traces to enable querying, instead of providing visualizations. It aims
to explain why something happened in a program, and does so by looking at
the history of the involved components. This tool only exists as a separate
application, and does not integrate into any IDE.

Debug Visualization Plugin for Eclipse provides an alternative to the variable
view in Eclipse’s debug-perspective, producing a graph that represents the
variables of a program. The users still needs to use regular techniques they
would use normally in order to pause the program-execution, and be able
to actually view the state of the variables, as this plugin does not do any
tracing. This was previously tested in the course TDT4100 – Object oriented
programming, with the conclusion that the generated diagram quickly became
too large, showing the contents of objects that were not important, and
shuffling objects as new ones were added.

JAVAVIS [Oechsle and Schmitt, 2002] Developed at the University of Applied
Sciences in Trier, Germany. Creates visualizations in the form of UML
sequence- and object-diagrams, but does not include any debugging features.

Jinsight [De Pauw and Vlissides, 1998] is a powerful tool built by IBM, supporting
both tracing and visualization. However, it is restricted to z/OS and Linux
on System z, preventing most people, and especially students, from using it.

Java Interactive Visualization Environment (JIVE) [Lessa et al., 2010]
Developed at the University at Buffalo, New York, USA. A tool that utilizes
execution traces to generate diagrams while running a program. It is installed
as an Eclipse plugin, and adds several new views to display the information
it provides. In addition to generating diagrams, the trace log is also used to
enable backstepping, which is coupled with the diagrams to always show the
selected execution state.

2.3 Selecting a tool

Of the mentioned tools, the Trace Viewer Plugin, Trace-Oriented Debugger, Debug
Visualization Plugin, and JIVE are all available as Eclipse-plugins, and are thus
fairly simple to integrate into the existing teaching process. While GDB supports
both Java and Eclipse, the Eclipse-integration is mainly to enable the use of Eclipse
as an environment for writing programs in C and C++. Since Eclipse already
includes a powerful debugger for Java, it is not considered necessary to use another
for the same purpose. As the other tools that were mentioned lacks support for
Java, Eclipse, or both, they are all deemed unfit for integration with the desired
teaching environment. The features provided by the remaining tools varies. Some
are overlapping, like the tracing, while others offer completely different functionality,
or combine a different set of techniques. As they are all plugins that integrate

6

into Eclipse, they both allow and encourage usage alongside the existing debugging
functionality, instead of attempting to replace it. Users are also free to not use
them, if that is what they desire.

The Trace Viewer Plugin is as mentioned, designed for massive parallelism,
and requires a specific version of Eclipse, which has been discontinued. As small
programs with a graphical interface, such as those that are used in the HCI-exercises,
are typically not massively parallel, but instead almost entirely serial in nature, this
tool does not fit the scope of the course. Due to this, and the fact that the plugin
itself is no longer available, it is not suited for further study.

The Trace-Oriented Debugger provides a debugging environment supported by
trace logs. It presents its information mostly in a textual way, and does not generate
any visual diagrams of the program structure or execution order. It does offer a
‘mural’, a graph depicting the frequency of events through time, but this does not
describe the program structure in any way. While providing support for developers
by letting them look back at earlier stages of their programs, and quickly jump to
events of interest, the lack of visual information can be considered a drawback.

The Debug Visualization Plugin expands on the debugging functionality of
Eclipse by providing a visual view of variables, and is designed to be used alongside
the rest of the debugging environment in Eclipse. It does not perform any tracing,
and instead uses the information exposed by Eclipse’s debugger when the debugged
program reaches a breakpoint to draw its diagram. As mentioned, this plugin
has already been tested with another course. This testing concluded that while
the information it provides is useful, the elements in the diagram does not stay
put, causing confusion as they move around during execution. There were also
complaints about too much information being displayed, making it hard to get an
overview of the program, and identifying the important components. The latest
version of this plugin does support the hiding of elements, as well as letting the user
reorganize the diagram, but any such configuration seems to be reset when moving
to a new breakpoint.

JIVE seems to be the only tool that utilizes all three methods mentioned in
section 2.1, as well as being freely available as a plugin for Eclipse, making it easy
to install and use. During program execution, JIVE generates both a contour-
diagram [Jayaraman and Baltus, 1996] – a diagram similar to object-diagrams –
and a sequence-diagram. Combined with an execution trace, it allows the user to
jump back and forth in the execution, and have the diagrams updated accordingly.
Querying is supported with pre-defined search-templates added to the built-in search
window in Eclipse.

While the diagrams, like the diagram generated by the Debug Visualization
Plugin, may suffer from the inclusion of too many objects, JIVE integrates a filtering
mechanism to reduce the amount of objects included in both diagrams.

Due to all the extra work being done when using JIVE to debug a program,
the performance is not always acceptable. For small non-interactive programs, the
added waiting time may not be a problem, but larger programs are likely to suffer
from a significant increase in execution time, and even simple interactive programs
can use up to a second to respond to input on a fairly powerful computer.

7

8

Chapter 3

Methodology

While exploring the field in the previous chapter, the first research question was
answered in the process. The remaining chapters will be used to answer the
remaining questions following an adaptation of the ‘design science’ process.

As described in [Vaishnavi and Kuechler, 2004], design science involves a five-
step process consisting of the following phases: Awareness of the problem, suggestion,
development, evaluation and conclusion. These phases can be revisited during the
process, resulting in an iterative cyclic process. Repeating previous steps can often
be necessary as more knowledge of a subject is acquired, and previous assumptions
must be reconsidered.

While the report will generally follow this process, some of the steps are suited
for adjustments to better fit the task. Each of the steps are summarized below,
with an explanation of the intended deviation from the normal process.

3.1 Awareness

Gaining awareness of the problem is necessary to be able to solve it. In this case, the
problem will be any issues discovered with JIVE. Through a thorough exploration
of JIVE and its features, it is a fair assumption that some of the most apparent
issues will be revealed. This exploration is also intended to better understand
whether JIVE can be properly integrated with the teaching environment, or if any
modifications are required.

While it is likely that several issues will be revealed, it is natural to continue the
process of exploration instead of moving on to the next step in the design science
process and repeating the entire cycle for each issue that is revealed. This results
in a focused exploration-phase, and likely a more efficient use of time.

3.2 Suggestion

The same all-at-once approach will be taken when considering suggestions to solve
the discovered issues. During both this and the previous phase, it is necessary to

9

prioritize the various issues according to the evaluated importance and estimated
effort required to solve the issues. This is mainly to provide focus for the next
phase, development, where it is assumed that most of the time will be spent. Proper
prioritizing will help towards an efficient use of the available time.

3.3 Development

As opposed to the previous two steps, the attention is directed at single issues
during the development-phase. In this phase, it is expected that the awareness- and
suggestion-phases will be revisited, triggered by the discovery of technical details
that change the feasibility of a solution. Partial implementations will be subject to
internal evaluations where specific solutions are considered, and the awareness of
the problem is updated accordingly.

3.4 Evaluation

While each of the issues that result in an implemented change goes through internal
evaluation during development, there is also need for external evaluation. This is
another phase where it is suitable to gather all issues, as they are all part of the
package that is JIVE.

In order to determine the usefulness of JIVE, and the effect of the implemented
changes, the external evaluation will be performed with participants from the
targeted user group. As mentioned in the introduction, this group consists of
students in their second year of the computer science and informatics programs.

The types of evaluations available are limited, with web-based questionnaires
and in-person interviews being most suitable.

Reaching a wide audience, the use of web-based questionnaires can provide
a large amount of data to support the research, but the nature of what is being
evaluated makes this method unfit. In order to give proper answers, the participants
require a hands-on experience with the tool, and that would require them to acquire
and install both the original version, and the modified version. This is a rather large
obstacle that would deter most potential candidates from participating, and defeats
the point of a questionnaire. Although they could be tasked with comparing images
of existing and new functionality, and given performance numbers to consider, it
would not be the same as actually experiencing the differences, and getting to
explore them at the user’s own pace.

Another issue appears in how questions are formulated, and what kind of answers
they result in. Requiring participants to quantify their experiences along numbered
scales makes it easy to combine the results from all participants. On the other
hand, as each question must be limited in scope in order to get a precise answer, the
amount of questions needed to get a good overview of each participants experience,
can easily be perceived as different ways of asking the same question, resulting in
repeated answers.

The alternative is an in-person evaluation with a smaller group of students,

10

where the participants get access to a pre-configured system and enough time to
make an informed opinion of what they are presented with. As the availability of
volunteers is limited, a properly executed in-person evaluation is likely to get more
information out of the participants, by asking questions and discussing potential
issues with them.

A hybrid approach could also be used by performing an in-person evaluation,
and requiring participants to fill in a questionnaire afterwards. This would still
require one or more pre-configured systems, and some time spent on each participant
to give an introduction to the tool they are evaluating. Doing this in an effective
manner, requires multiple assistants, and while the meaning of the questions could
be further explained upon request, the answers would still be limited in the same
manner as with a web-based questionnaire.

3.5 Conclusion

The final phase will summarize the results from the previous steps in light of the
research questions, and attempt to reach a conclusion on the research. This is
again a collective step, where all issues are considered as a whole. Focus will be
on whether the previous steps have been able to provide answers to the research
questions, and the success in that regard. Some attention will also be given to
consider whether other approaches might have been better suited, and in what
direction any future research should look.

11

12

Chapter 4

An exploration of JIVE

This chapter will provide details on the various features of JIVE, and how they are
used. This will be followed by an identification of various weaknesses, if any, as well
as suggestions on how those areas may be improved.

Figure 4.1: The JIVE perspective in Eclipse.

13

4.1 Features

As mentioned in the prestudy, JIVE installs as a plugin in the Eclipse IDE, adding
another perspective in the environment shown in figure 4.1. The default views
shown in this perspective are the Object Diagram and Sequence Diagram views,
making the diagrams that are generated during debugging the two most apparent
features of JIVE. The diagrams are updated according to the current state of the
debugged program, so that the backtracking functionality allows you to see the
entire execution graphically, step-by-step. The other views provided by JIVE are
as follows: Contour Model, Sequence Model, Execution Trace and Search.

4.1.1 The object-diagram

The Object Diagram-view shows the current state of the program by using a contour-
diagram. Contour-diagrams, as shown in figure 4.2, are based on an old technique to
give semantics to ALGOL-like languages. The basis has been extended to support
modern concepts, such as object-oriented programming, and can be compared to
object-diagrams, in terms of the information that is shown. Objects are represented
by a box, or contour. Within the contour, the object’s variables are shown, with
name, type and value. The contour also uses arrows to point at other contours
that are related, e.g. another object representing the value of a variable, or an
enumerator. Inheritance is shown by putting the contour of an object within
the contour of the extended object. Object instances are kept separate from the
contours representing inheritance, but will have relational links when necessary.
Method calls are also represented in the diagram, in their own contours, linked to
the calling object. JIVE offers to hide some of the information, such as inheritance
or the composition of objects, in order to make the diagram smaller, and easier to
read. This can be especially useful when working with larger programs that are
composed of many objects and relations. Visibility is aided by the use of colors to
highlight specific elements of the diagram, such as variables bound to objects, and
method-calls.

4.1.2 The sequence-diagram

The sequence-diagrams, shown in figure 4.3, are fairly standard, with threads and
object instances represented by boxes in a row at the top, each with a vertical line
coming down. The actual process is shown with a thicker lifeline overlaying the
vertical line of the object that is currently active, with arrows between lifelines
representing method-calls. In order to differentiate the threads where the execution
is happening, the sequences are colored with the same color as the thread-box the
sequence originates from, regardless of which objects and methods are involved.
Figure 4.3 shows the two colors that represent the threads ‘main’ and ‘AWT-
event-thread’, and how the elements in the diagram are colored by their parent
thread.

14

Figure 4.2: A contour-diagram generated by JIVE.

Figure 4.3: A sequence-diagram generated by JIVE, while running an instance of
HCI-Exercise 1.

15

Figure 4.4: The sequence-diagram right-click menu.

Right-clicking on a lifeline provides the ability to collapse method-calls orig-
inating from that lifeline in order to hide unnecessary information, as shown in
figure 4.4. The collapse-menu gives four options when used on the lifeline of an
object: After, Before, Children and Here. Before and After collapses lifelines that
occurred before or after the selected event, at the same depth in the sequence-tree.
Children collapses all events that are children of the selected event, while Here
collapses the selected event. Right-clicking on an object instance at the top of
the diagram also gives the opportunity to collapse that object’s entire lifeline, the
result of which can be seen in figure 4.5. While this figure shows the result of
collapsing the lifeline of an object, a similar result can be achieved by selecting
Collapse–Children at the parent lifeline, or by selecting Collapse–Here on each of
the three method-calls shown. The same options are also available for expanding
collapsed elements. Right-clicking also provides to set the execution-state via the
Jump to-option, updating the contour-diagram and -model to show that state.

16

(a) Normal.

(b) Collapsed.

Figure 4.5: Normal and collapsed section of a sequence-diagram. Note the ‘+’ symbols
in (b), at the top of each bar, indicating a collapsed element.

17

Both of the diagrams can be saved as an image at any time, enabling the user
to look at diagrams from earlier runs, instead of being forced to view them through
JIVE. These images can also be useful as documentation. This also helps to visualize
any changes made to a program, and to see what the effects are on the program
flow. The controls above each of the diagrams also provide magnification, making
the diagrams larger or smaller, and further helping with the handling of larger
diagrams.

4.1.3 Time-stepping

Closely related to the diagrams, is the ability to quickly jump backwards and
forwards between execution states. This is enabled by the trace-log, which contains
an entry for every single event that occurs during the execution of a program,
excluding those that are removed by the exclusion filter. Each event is assigned an
identifying number, in ascending order, and information about thread, type, caller,
target, and the location of the source-code is stored. The log is used as the basis
for the models that make up the diagrams, and can be saved as both XML- and
CSV-files for later use.

When jumping between execution sates, both of the diagrams are updated
accordingly. The contour-diagram shows a representation of that state, while a
horizontal line is added to the sequence-diagram to show where the state is located
on the time-line.

4.1.4 The exclusion filter

As mentioned in the prestudy in chapter 2, logging every event has a significant
impact on run-time performance, limiting the size and complexity of the programs
that can be used with JIVE in a meaningful way. On the other hand, it allows quick
jumping between recorded states, as opposed to techniques that save a snapshot at
predefined intervals, requiring the program to be run from the snapshot-state to
the desired one, even if it is just a single step backwards.

In order to improve both performance and readability, the mentioned exclusion
filter checks the origin of each event, and determines whether or not the event is
to be logged. By default, the filter excludes the entire Java API, and by doing so,
it focuses on the classes that are made by the user. This filter can be adjusted to
better suit the program being analyzed, by adding or removing entries in order to
hide or show details of the execution, respectively.

JIVE maintains an individual filter for each debug launch configuration in eclipse,
all based on a default filter. This makes it possible to have different filters for the
same program, with for instance varying degrees of detail, or different areas of focus.

4.1.5 The model views

The model-views each display an alternate view of their respective diagrams. They
show the data-model representing the diagrams in a hierarchical structure, much
like the organization of files and folders. Right-clicking on an event in the sequence

18

model allows you to set the execution state to that event, and have the diagrams
updated accordingly. Clicking on elements in the contour-model allows you to
inspect the values of objects and their variables.

4.1.6 Searching

Finally, the trace-log enables the use of queries to search for specific events in the
execution. The queries are presented through a new tab in the Eclipse search-window
as seen in figure 4.6, easily accessible through the search-view, and comes with
several pre-defined templates to simplify searching. For example, searching for when
a variable gets a certain value, only requires the user to specify the variable-name,
the object it is contained within, and the value.

Figure 4.6: The JIVE search panel.

4.2 Suggested changes

While exploring the features of JIVE, a few issues regarding use and behavior were
encountered. None of these issues can be considered to be of major importance,
but they still expose a potential for improvement. This section will point out some
of the issues, and suggest specific improvements to address them.

19

4.2.1 Visual changes to the diagrams

In both the sequence- and the contour-diagrams, object instances are labeled with
the name of the object type and an instance-number, separated with a colon, e.g.
‘PersonPanel:1’. While this provides the expected information, it is affected by the
way Java handles the naming of anonymous inner types – classes that are defined
within another class, and not given a name by the developer. Java automatically
names these classes by appending a dollar sign and an identifying number to the
name of the class they are defined within, e.g. ‘PersonPanel$1’. GUI-programs
are written with several such classes to handle user input, each implementing
a listener-interface of some kind, and they show up in the diagrams with their
generated names, that do not reflect the purpose of the class. The ability to detect
an inner type with a generic name, and display the interface it implements instead
of its actual name, should help with this issue. This should make listener-heavy
programs more understandable, as the kind of listeners in use will be clearly visible,
removing the need to guess based on when they are invoked in the sequence-diagram.
Figure 4.7 illustrates this as the change from part (a) to part (b).

To further help users identify listeners, they could be visually linked to the
objects they are listening to in the contour-diagram, making it clearly visible which
object is being listened to by the different listeners. Figure 4.8 illustrates this
change, along with the relabeled objects. While the effect is possible to achieve
by applying an appropriate filter, this filter must let a large amount of objects
through, causing the diagrams to become cluttered and challenging to navigate.
This is partially caused by the design of the Swing-framework, as a component
does not have direct control of its listeners, but instead delegates the handling of
listeners to another object. Additionally, JIVE does not show inherited fields unless
the ancestor-object is let through the filter, and as listeners are typically handled
by inherited methods, this adds another series of types that must get through the
filter.

On the other hand, the effect caused by the listener being triggered is clearly
visible in the sequence-diagram. It is possible that connecting this effect with a
user’s interactions with a program is simple enough for the user to not need the
addition of a specific link.

(a) Original, cropped view of figure 4.2.

(b) Changed naming of anonymous inner types.

Figure 4.7: Comparison of the suggested label-changes to the diagrams.

A last visual change would be to attempt further identification of the components

20

that make up an MVC-architecture, and highlight them. Being a change focusing
solely on a specific architecture, it must be possible to deactivate when not needed.
The major challenge with this feature is to find a way to identify the different
components. While listeners can usually be identified by their name, or by their
implementation of certain interfaces, this is not necessarily the case for models
and controllers. A possible solution would be to require developers to follow a
certain naming scheme, but this would still have a risk of false positives – leading to
incorrect diagrams. It can not be expected that users will adopt such a scheme for
the sole purpose of using a specific tool, consequently, this solution is not pursued.

The highlighting could be done by adding colored frames to the identified objects,
or by adding an icon indicating the role of a given object. While highlighting is not
as big of a challenge compared to the identification, it does pose the problem of
maintaining the readability of the diagrams, and not make them harder to read due
to the added elements.

Figure 4.8: Listeners are relabeled, and connected to the objects they listen to. The
illustration is based on figure 4.2.

4.2.2 Compacting diagrams

Both the sequence- and the contour-diagrams can easily grow to sizes that make
them hard to get an overview of, and to navigate. While the contour-diagram
offers different presentation modes, by for instance only showing objects, and not
their data-fields, the sequence-diagram offers fewer options. Collapsing parts of the
diagrams do help in reducing the amount of information shown, and thus ease the
interpretation of the diagram, but there are still some issues that result from how
the diagram is drawn.

Firstly, there is currently no method of vertically compressing the sequence-
diagram, resulting in long sequences with no visible interaction if that sequence has
already been collapsed, or if there are a lot of filtered events occurring within the
lifeline of an object. There is an ongoing development to solve this, by substituting
an event-pattern with a single new event, and thus reducing the vertical size of the

21

diagram. If this technique is applied when using the existing horizontal collapse,
the diagram should shrink in both directions.

The other issue is a consequence of having the objects at the top of the sequence-
diagram added in the order in which they are used. This is generally a good way
of ordering the objects, especially when considering the start-up sequence of a
program, which is then displayed in a well organized way. Where this approach
becomes problematic, is when the newer objects start interacting with the older
ones, causing the lines that indicate method calls to cross over parts of the diagram,
and often going back and forth. This problem is illustrated in figure 4.9, where a
listener triggers activity in an older part of the program.

Figure 4.9: A section of a larger sequence-diagram, showing method calls crossing several
unrelated lifelines.

In some cases, the amount of unrelated lifelines that surround a sequence
becomes so large, that fitting the entire sequence within the view of a single screen
is impossible without zooming out, and thus rendering the text unreadable. Scrolling
sideways to follow consecutive events is not ideal, and can potentially be disorienting.
This could be solved by allowing users to view such a sub-sequence in a separate,
isolated environment, with the objects lined up in the order in which they are used,
as illustrated in figure 4.10.

22

Figure 4.10: An example of how figure 4.9 might look in an isolated view.

4.2.3 Changes to the filter

The filter operates by excluding unwanted elements from the trace-log, and only
takes a list of elements to exclude as input. While this simplifies the internal
operation, and makes it easy for users to understand, it also makes it hard to build
a more fine grained filter. For example, a package containing several sub-packages is
excluded, but one of those sub-packages is not. The current way to achieve this is to
individually list each of the sub-packages that are excluded, while omitting the one
that should be included. This results in a potentially large list of packages, and will
take an unnecessary amount of work to add to the filter. By instead allowing the
users to add the one package to be included, and using both a list of inclusions and
a list of exclusions to build the filter, the amount of work for the user is significantly
reduced while maintaining readability.

23

Changing the filter is currently done by adding or removing one entry at a
time, making large changes time consuming and prone to spelling errors. Since
the filters are stored in the XML-files Eclipse uses to describe how to launch a
program, directly modifying these files is a possible work-around for making large
changes, but they require Eclipse to be restarted to have any effect. These files are
also hidden within the configuration folders that Eclipse uses, making them hard
to find without instructions. Having an easier way of swapping, or making large
changes to filters, would likely increase the use of custom filters, and would enable
the distribution of pre-made filters, designed for specific purposes. This feature
could be extended further, to include multiple default filters that a user could select
from when running a program.

4.2.4 Searching

The ability to search through all logged events can be a useful feature, depending
on the scenario in which JIVE is used. When merely getting an overview of a
program, it is likely not needed at all, but for debugging purposes, it has a clear
use as a way of finding specific events. The search is unfortunately very strict in
its interpretation of the search terms, being both case-sensitive, and requiring full
class names, including the path to where the class resides. It is assumed that this
behavior was chosen in order to give an accurate and limited set of results, instead
of risking a large amount of false positives. On the other hand, this behavior goes
against the expectations set by most search providers in other areas and can lead to
confusion. At worst, users may be led to believe that the search is non-functional.
By relaxing the search criteria to not be case sensitive, and to allow partial matches,
the usage of this feature would be less confusing, and still allow the users to narrow
their results by being more specific with their search-terms.

4.2.5 Automation

Despite the measures that have been taken to reduce the performance impact of
JIVE, it will always be possible to create a scenario where the analyzed program
will take a significant amount of time to run, for instance when testing a larger
project. For non-interactive programs, this is only a matter of waiting for them
to finish. But in order to get the desired results from an interactive program, it
becomes necessary to check back regularly in order to provide the correct input.

Integrating automation tools that trigger pre-defined inputs when they detect
that the program is waiting for interaction, would go a long way towards solving this.
A user could first run a session without JIVE, and record the desired interactions.
These interactions would then be fed into the automaton tool and played back
during the JIVE-run. As this kind of feature is not required for the exercises given
as a part of the HCI-course, it is not prioritized above the other changes.

24

Chapter 5

Implemented changes

This chapter will list the changes that were made to JIVE, and give some information
on how they work.

In order to be able to implement any changes, it was first necessary to gain
some knowledge about how Eclipse’s plugin-framework is used, and how JIVE is
structured.

Instructions on how to acquire both the original and the modified source code
can be found in appendix A.

5.1 Labeling of objects

The first change to be implemented was the identification and presentation of
instantiated interfaces. These are now displayed in the diagrams with an appropriate
icon, as well as being labeled with the interface they implement, instead of the
generic class name that they are assigned by default. An example of this is shown
in figure 5.1. This function was also expanded to identify and label instances of
abstract classes, and the lambda expressions that were introduced with Java 8. In
order to still allow the actual class name to be visible, the tool-tip shown when
hovering the mouse pointer over an object remains unmodified, and displays the
actual class name and icon.

Figure 5.1: A view of how instantiated interfaces are shown after the modification. Also
shown is the tool-tip text for the second instance from the left. Originally, they would be
labeled as ‘ButtonsNText$1:1’, ‘ButtonsNText$2:1’ and so on, with the green class-icon.

25

5.2 Expanding the filter

The filtering function was expanded with the ability to specify packages that are
not to be excluded from the execution model, as suggested in section 4.2. Adding a
package for inclusion is done by prefixing the package-name with a ‘+’ when adding
it to the filter, as shown in figure 5.2. As an example, the default filter excludes
the ‘javax’ package, and any subpackages that are not specifically listed with a ‘+’
in front. When adding the line ‘+javax.swing.*’ in order to let Swing–components
through the filter, every subpackage of ‘javax.swing’ is let though the filter as well,
which is the intended design.

Figure 5.2: The JIVE-tab in the launch configuration menu, showing the default exclusion
filter, with the addition of an entry to include ‘javax.swing.*’.

Unfortunately, there are a lot of classes in both Swing and its subpackages that
are not used directly when writing Swing-programs, and a user will have no interest
in seeing these in the diagrams. This can result in very poor performance – as
unnecessary events are logged and added to the underlying model – as well as
cluttered diagrams. By adding these unwanted classes to the filter for exclusion,
the problem is handled. Depending on the package in question, the amount of

26

extra items added to the filter can become quite large, and identifying all unwanted
classes and subpackages may take hours at worst. A weakness in the filter is related
to the problem of unwanted packages. Due to its design, allowing the contents of a
package will also allow any classes that are contained directly within the parent
package, as the parent also has to be removed from the internal list of exclusions
that make up the filter. This is not a big problem in the case of ‘javax.swing’, as
the ‘javax’ package does not contain any classes, but there are most likely other
packages that will show this behavior.

Internally, the filter is still only excluding events. The changes were made to
the construction-phase, where every package that is found in the Eclipse workspace
is added if it is found in the list that the user has made. This allows the removal of
entries that are marked with a ‘+’, but results in a rather large filter that affects
the performance negatively, as is shown in the evaluation results in section 6.2.1.
During development, the performance was not a major concern, and as such, it
was not prioritized. It is possible to reduce the impact of the filtering changes by
further altering the construction process to result in a smaller filter. By improving
the way an event is checked against the filter, possibly by looking up hashed values
instead of comparing strings, further gains should be possible.

5.3 The isolated view

The isolated view was implemented as a separate view-tab, and does what was
proposed in figure 4.10: It displays the events caused by the selected event, and hides
everything else. Figure 5.4 shows what figure 4.10 looked like after the modification.
Figure 5.5 shows a similar, but slightly more complex situation in the isolated view.
By right-clicking on an event in the regular sequence-diagram, and selecting the
Isolated view -option, shown in figure 5.3, the isolated view is triggered. It is also
possible to further focus on a part of the diagram from within the isolated view,
by right-clicking on the desired event, and selecting the Isolated view -option again.
All of the functionality from the regular sequence-diagram has been retained in the
isolated view, so that the only difference is which parts of the execution are visible.

Figure 5.3: The new Isolated view option.

27

Figure 5.4: How figure 4.9 looks in the isolated view. The three last elements shown
on the top are referred to in parts of the diagram not shown. This view was achieved by
initiating the isolated view from the ‘AWT-EventQueue’ lifeline.

28

Figure 5.5: Another example of the isolated view, showing a significantly reorganized
diagram.

29

5.4 Relaxing the search

The searching functionality was relaxed by allowing partial matches, and disabling
case sensitivity. While relaxing the search may cause false positives, a user should be
able to identify such cases quickly, or at least identify the results they were looking
for. The fact that partial matches and case insensitivity is the standard behavior in
most search-engines, sets an expectation for the behavior of the search within JIVE.
Unfortunately, due to the existing implementation consisting of separate searching-
and matching-methods for each search type, not all searches were updated to this
relaxed state in order to prioritize more important changes. The only changed
search was the Object Created -search. Ideally the searches should all be matched
through the same matching method, only differing in the gathering of necessary
information.

30

Chapter 6

Evaluating usefulness

This chapter will look at the external evaluation of JIVE and the implemented
changes, providing details on both the execution of the evaluation, and the results
that were acquired.

6.1 The test

In order to evaluate both the usefulness of JIVE, and the changes that were
implemented, the evaluation was performed individually with a small group of
six students. The participants were initially recruited through a request sent to
everyone that were taking a second-year course that is mandatory for those who
follow the informatics program. This group was selected as they were matching the
target group outlined in chapter 1.

After only getting a single response, another request was sent to the students’
association of the computer science program, bringing in the five remaining par-
ticipants. The latter group were all in their third year, and had already finished
the HCI-course the previous semester. This meant that they were familiar with
the example programs, and had some knowledge of the MVC-pattern and how it
behaves in Java-swing. While this excluded the experiences of someone completely
unfamiliar to these concepts, it did give the insight of relatively fresh experiences,
as the participants remembered what they were finding hard to understand during
the course.

The test started with a demonstration of the unmodified version of JIVE, showing
the diagrams, trace logs and filtering using implementations of the first and the last
exercise of the HCI-course as examples. After getting familiar with JIVE, they were
shown the modified version, focusing on the new features and changes that were
implemented. The original version was kept available during the entire evaluation,
allowing an easier comparison by switching between the two.

During the test they were asked questions about how easily they understood
the diagrams, and how useful they found the changes to be. As well as whether the
performance trade-off was acceptable for occasional use, if they could see themselves

31

using JIVE, and if so, in what situations.
The example programs both consisted of a simple user interface in Swing,

implementing the MVC pattern. Exercise 1 consists of a text field and two buttons
to transform the text entered in that field to either uppercase or lowercase, and
with an option to continually transform as new text is written. Exercise 4 is an
application that manages a simple list of people. The interface it presents is split
between a list of people, and a set of text fields to enter information about the
selected person, as well as buttons to create new, and delete existing people.

The two remaining exercises serve to build a bridge between the first and last,
in terms of complexity and knowledge of the MVC-pattern, with the last exercise
building directly on top of the third.

Both of these programs, shown in figure 6.1, were relatively simple, with few
events following directly from user interaction, and as such, should have a limited
performance reduction when used with JIVE. More complex programs are likely to
suffer a greater performance impact from JIVE, but are also out of the scope for
the HCI-course.

(a) HCI-exercise 1.

(b) HCI-exercise 4.

Figure 6.1: The two example programs used in the evaluation.

32

6.2 Results

The evaluation resulted in mostly positive feedback, with every participant seeing
some kind of use for a tool like JIVE. Of those in their third year, only one
participant did not consider the use of diagrams to understand code to be useful. In
his experience, he learned just as well from reading the code directly, and building
his own mental model of the program structure, but as he preferred simple text
editors to IDEs, he could be considered to be outside of the target demographic.
On the other hand, he did recognize the usefulness of JIVE as a tool to create
documentation, and for presenting his own work to other participants in a project.
The rest of the participants shared the view that JIVE, or a similar tool, could have
been very useful when trying to understand the connection between GUI elements,
listeners, and the actions that are triggered by them. A few specifically mentioned
that they found that connection to be difficult to understand. One of them also
had experiences as a student assistant, and recognized JIVE as a tool that could
give students a needed insight into what is going on in their programs.

The diagrams themselves were found to be both sufficiently detailed, and easy to
understand, showing the available information in a simple and structured manner.
The tendency for the diagrams to grow large and unwieldy did become a problem,
especially when running with the less restrictive filter that was showing more of
the Swing-internals. When hiding everything but user-created classes, the diagrams
remained at an acceptable size, although the sequence-diagram got quite long after
a while.

The implemented changes were generally well-received, with the ability to view
a subsection of the sequence-diagram in the isolated view being the most preferred
change. The changes to the filtering mechanism, while useful, were found to still be
somewhat hard to use, due to the lack of an easy way of importing an existing filter,
and the amount of work necessary to adapt a filter to the program being examined.
The modified labeling of object instances provided a small, but useful addition to
the visible information.

6.2.1 Performance

Regarding performance, it has already been shown in section 2.1 that the tracing
behavior of JIVE must affect the analyzed program negatively. The specific penalty
varies with the complexity of the program, and the level of detail that is being
logged. The performance was measured as the time between starting the program,
and the moment it could be interacted with. Each of the example programs were
run with both versions of JIVE, and with two different levels of detail in the filter for
the modified version, for a total of six measurements. They were tested separately
from the user evaluation, but on the same computer. Each result was measured five
times, with the averages reported in table 6.1.

33

Table 6.1: Timing results from benchmarking

Version of JIVE Program 5-run average

Original Exercise 1 5.0 s

Modified, standard filter Exercise 1 16.5 s

Modified, Swing-focused filter Exercise 1 18.3 s

Original Exercise 4 8.2 s

Modified, standard filter Exercise 4 25.0 s

Modified, Swing-focused filter Exercise 4 54.4 s

As these results show, there is a significant degradation in performance when
going from the original version of JIVE to the modified one. The impact of letting
a larger amount of events through the filter adds another solid penalty. The reason
for the latter has been explained in section 4.1, and is simply a reflection of the
added work of processing more events as they are allowed through the filter. The
impact observed from simply switching to the modified version can be explained
by the way the filter mechanism was altered. By first constructing a list of every
package found in the workspace of the chosen program, and then use this list to
add and remove excluded packages from the filter, the filter remains an exclusion
filter, and its size reflects the size of the package list. When JIVE then checks to
see if an event matches an entry in the filter, it has to look through a large amount
of entries, and that clearly affects its performance.

As expected, the participants all agreed that the performance of JIVE was too
poor for continuous use, but they still found it acceptable for the occasional use that
getting familiar with an example or documenting a project would require. While a
larger project could take several minutes to reach the initial stable state for a user
to interact, the user would only be interested in including the entire project when
generating documentation for delivery. By using the filter to ignore well known
parts of the project, the more interesting or complex parts could more easily be
shown while saving time. In either case, the performance was not found to be a
reason to never use JIVE, but it would clearly depend on the complexity of the
program, as well as what the filter would be letting through.

6.2.2 New issues

While the feedback from the participants was generally positive, they still found
some areas that they thought could be further improved with new or modified
functionality.

The mentioned challenge with importing an existing filter, was among the sug-
gested changes. Along with this, there was a desire to add a suggestion-functionality
that would behave similarly to the autocomplete feature found in many search
providers, including parts of Eclipse. This feature would suggest package-names as
the user started typing in the text field to add a new entry.

34

Another issue was the risk of diagrams becoming so large that they would
be nearly impossible to navigate. The size would especially become a problem
when running larger programs, or when letting more objects through the filter.
To help with this, there was a desire to have the line of objects at the top of the
sequence-diagram visible at all times, regardless of how far down in the diagram the
user is currently looking, which would make the larger diagrams easier to navigate.
The ability to compress the height of the sequence-diagram was also suggested.

Following along the same lines, it was suggested that the placement of objects in
the contour-diagram could be reworked to give a more compact diagram. Figure 6.2
illustrates the problem, with a lot of unused space, and especially bottom row of
objects extending far beyond the rest. If the size of the diagram was restricted, for
instance by preventing it from growing wider than the top row, preferring multiple
shorter rows of objects instead of a few long ones. This would let users see more
information without scrolling the view of the diagram or zooming out.

Figure 6.2: Contour-diagram that has grown unnecessarily large.

Finally, it was suggested that it should be possible to trigger the isolated view
from the mentioned line of objects at the top of the sequence-diagram instead of
having to find the desired objects, and then scroll down to find the first event it is
involved in.

35

36

Chapter 7

Conclusion

This chapter will summarize the findings of the previous sections in light of the
research questions that were put forth in the introduction.

7.1 Research questions

Research Question 1 What is the current state of the various visualization tools
that are available?

There are currently several different tools that can aid a developer in his under-
standing of programming, ranging from the regular debuggers found in most IDEs,
to code analysis tools and execution tracers. A few of these tools are listed in the
prestudy in chapter 2. This paper has focused on the tools that provide information
from programs as they are running, and has found that most of them are based on
a limited set of techniques to provide their users with information. The techniques
in use are mostly based on trace-logging, with an analysis of the log after the
program has finished execution. This analysis is then used to provide a detailed
description of the program’s behavior, often with interactive navigation of the data.
Other techniques involve visualization with graphs and diagrams, either based
on trace-logs, or on run-time-data captured when a program is suspended at a
breakpoint. Not all of the discovered tools were available for download, and might
be considered abandoned, while others are still under active development.

Research Question 2 Could any of these be integrated into the current teaching
environment at NTNU, consisting of Java and Eclipse?

Among the tools that were examined, a variety of platforms were supported. Due
to the focus of the report, most of them were designed around supporting programs
written in Java, and a majority of these were integrated with Eclipse by design. As
such, they could be integrated with several courses at NTNU, both through use dur-
ing lectures, or by making them a part of the recommended tools. This would cover
most students participating in a course, except those who actively choose not to use

37

them. The most promising tool, JIVE, was chosen in section 2.3 for its combination
of tracing and diagrams. It has already been successfully used to explain design
patterns to students in a graduate-level seminar [Gestwicki and Jayaraman, 2005,
p. 99], indicating that it is suitable as an educational aid.

Research Question 3 Is there room for improvement in how these tools are used,
and the ease of using them, so that the information they provide can be refined or
presented in a more understandable way?

Section 2.3 concludes that JIVE is the tool that is most suitable for use in the
target environment, and, as such, it was selected for further study. As detailed
in chapter 4, there is a potential for improvements in how JIVE works, and what
kind of usage it encourages. While the existing features are useful as they are,
some of them were found to be insufficient in terms of usability. Certain classes
were considered to have a confusing naming scheme that made their identification
difficult. Larger programs were also found to make the sequence-diagram quickly
grow to large sizes, making it harder to get an overview.

Some of these points were the focus of the improvements that were implemented
in chapter 5, and their results are summarized when answering the last research
question. Other potential improvements were identified during the evaluation, and
are detailed in section 7.2.

Research Question 4 Would the use of such tools and any improvements actually
be useful for the students, and help them understand the internal structure, and
order of execution, in a program?

As the results from the user evaluation show, the use of JIVE, or a similar tool,
can certainly be of use for students that are having trouble understanding the
interactions within the programs they are creating. While the exact use case varied,
all of the students that participated in the evaluation saw some situation where
JIVE would have been useful. Some referred to situations they experienced when
they were taking the HCI-course, and to experiences as a student assistant, while
others imagined the use for generating accurate documentation for projects.

The implemented changes were all well received, and were considered to be an im-
provement upon the official version of JIVE. The participants also expressed desires
for further changes, some of which were already identified, but not implemented,
and some that could be considered as new ideas.

7.2 Future work

This report has explored some of the currently available tools that are designed
to help developers get an insight into the software they are working on, focusing
on usage in connection with education. Through the exploration of JIVE, several
potential points of improvement were identified, but not implemented due to
prioritizing within a limited time frame. Additional improvements were discovered
by the evaluation participants during the evaluation. All of these modifications are
summarized, in no particular order, in the following list:

38

• Less restrictive search
• Further improvements to the filtering performance and granularity
• Improving the way the filter is edited
• Compression of sequence-diagram height
• Making the top of the sequence-diagram visible at all times
• Restricting growth of contour-diagram
• Further exploration of indicating indirect connections in the contour-diagram

The usage and performance of the filter is an important point to continue
working on. As the filter directly affects the experience of JIVE, both by reducing
the size of the trace-log, and through its performance impact, this is the key factor
in enabling the use of JIVE for larger programs. While the live analysis that JIVE
does makes it unlikely that performance will reach the point where continuous use
can be considered, a significant reduction in startup- and response-time can be
achieved.

With larger programs, the search function becomes more important. As detailed
in section 4.2.4, the relaxation of the search terms will make the behavior more
similar to the behavior expected of other search providers, causing less confusion.

Apart from the implementation of additional modifications, it would be desirable
to start the use of JIVE during lectures, and encourage students to try the tool for
themselves. This can be considered a natural next step in gaining more data on its
use, in order to properly understand how students can benefit from such a tool, as
well as identifying and prioritizing further refinements of JIVE.

39

40

Glossary

ALGOrithmic Language A family of imperative programming languages de-
veloped in the 1950s. Influenced many other languages e.g. C, Pascal and
Ada.

Breakpoint An instruction that is inserted into the source code, telling the pro-
cessor to halt program execution at a certain point, and allowing a debugger
to inspect the state of that program.

Code Canvas A visualization-tool for Microsoft visual studio, showing code, dia-
grams and documents on a large layered canvas.
http://research.microsoft.com/en-us/projects/codecanvas/

Comma Separated Values A common plain-text file format for storing values,
separated by a comma. Sometimes called character separated values, as the
separator is not necessarily a comma.

Command Line Interface A text-based interface for interacting with programs
via a terminal.

Contour-diagram An enhanced object-diagram, showing objects, their variables
and their relations to other objects.
[Jayaraman and Baltus, 1996, Streib and Soma, 2010]

Debug Visualization Plugin An Eclipse plugin that provides a graphical view
of variables during debugging.
https://code.google.com/a/eclipselabs.org/p/debugvisualisation/

Execution trace A log of all changes to the state of a program throughout its
execution.

EXtensible Markup Language A markup language defining a set of rules for
encoding documents in a format readable for both humans and machines.
http://www.w3.org/TR/REC-xml/

GNU debugger A multiplatform, multilanguage CLI-debugger with tracing.
http://www.sourceware.org/gdb/

Graphical User Interface A user interface composed of graphical elements, as
opposed to a CLI.

41

http://research.microsoft.com/en-us/projects/codecanvas/
https://code.google.com/a/eclipselabs.org/p/debugvisualisation/
http://www.w3.org/TR/REC-xml/
http://www.sourceware.org/gdb/

Human–Computer Interaction The study of design and use of interfaces be-
tween humans and computers. It is also the name of the NTNU-course
TDT4180 .

Integrated Development Environment A software application that provides
facilities for software development such as source code editor, compiler etc.

Java Interactive Visualization Environment An advanced debugging tool sup-
porting visualisation, backward stepping, and querying. As of the writing of
this report, the latest version is 1.9.29.v20121216b
http://www.cse.buffalo.edu/jive/

[Lessa and Jayaraman, 2010][Czyz and Jayaraman, 2007]

JAVAVIS Tool that generates UML-diagrams from running Java applications.
Not to be confused with the computer vision library with the same name.
[Oechsle and Schmitt, 2002]

Jinsight An advanced debugger made by IBM, supports visualization, and powerful
analysis.
[De Pauw and Vlissides, 1998]

Lambda expression Also known as anonymous function or function literal. A
function definition that is not bound to an identifier. Such functions are often
passed as arguments to and from other functions.

Lifeline An essential component of sequence-diagrams. Indicates when, during
execution, an object is active in a program.

Model View Controller A design pattern defining an architecture where data is
kept separate from the logic that is responsible for the modification of data,
as well as the components that present the data.

Object Management Group An international, open membership, non-profit
computer industry standards consortium. Most notably responsible for the
development of the UML standard.

Trace Viewer Plugin Tool to visualize and analyze communication of parallel
message passing programs.
[Köckerbauer et al., 2010]

Trace-Oriented Debugger A debugging tool that executes queries on program
traces.
http://pleiad.cl/tod/

[Pothier et al., 2007]

Unified Modeling Language A language describing the components needed to
create models of a system, as well as defining how these models should look.
http://www.uml.org/

42

http://www.cse.buffalo.edu/jive/
http://pleiad.cl/tod/
http://www.uml.org/

Whyline A query-based debugger that provides an easy way to find out why things
are as they are.
http://www.cs.cmu.edu/~NatProg/whyline-java.html

[Ko and Myers, 2009]

43

http://www.cs.cmu.edu/~NatProg/whyline-java.html

44

Acronyms

ALGOL ALGOrithmic Language

CLI Command Line Interface

CSV Comma Separated Values

GDB GNU debugger

GUI Graphical User Interface

HCI Human–Computer Interaction

IDE Integrated Development Environment

JIVE Java Interactive Visualization Environment

MVC Model View Controller

OMG Object Management Group

UML Unified Modeling Language

XML eXtensible Markup Language

45

Bibliography

[Czyz and Jayaraman, 2007] Czyz, J. and Jayaraman, B. (2007). Declarative and
Visual Debugging in Eclipse. Proceedings of the 2007 OOPSLA workshop on
eclipse technology eXchange, pages 31–35.

[De Pauw and Vlissides, 1998] De Pauw, W. and Vlissides, J. (1998). Visualizing
Object-Oriented Programs with Jinsight. Object-Oriented Technology: ECOOP’98
Workshop Reader, pages 541–542.

[Deline and Rowan, 2010] Deline, R. and Rowan, K. (2010). Code Canvas: Zooming
towards Better Development Environments. pages 207–210.

[Gestwicki and Jayaraman, 2005] Gestwicki, P. and Jayaraman, B. (2005). Method-
ology and architecture of JIVE. Proceedings of the 2005 ACM symposium on
Software visualization, 1(212):95–104.

[Jayaraman and Baltus, 1996] Jayaraman, B. and Baltus, C. (1996). Visualizing
program execution. Proceedings 1996 IEEE Symposium on Visual Languages,
pages 30–37.

[Ko et al., 2006] Ko, A., Myers, B., Coblenz, M., and Aung, H. (2006). An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Information
during Software Maintenance Tasks. IEEE Transactions on Software Engineering,
32(12):971–987.

[Ko and Myers, 2009] Ko, A. J. and Myers, B. a. (2009). Finding causes of program
output with the Java Whyline. Proceedings of the 27th international conference
on Human factors in computing systems - CHI 09, pages 1569–1578.

[Köckerbauer et al., 2010] Köckerbauer, T., Klausecker, C., and Kranzlmüller, D.
(2010). Scalable Parallel Debugging with g-Eclipse. In Müller, M. S., Resch, M. M.,
Schulz, A., and Nagel, W. E., editors, Tools for High Performance Computing
2009, pages 115–123. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Larkin and Simon, 1987] Larkin, J. H. and Simon, H. A. (1987). Why a Diagram
is (Sometimes) Worth Ten Thousand Words. Cognitive science, 11(1):65–99.

[Lessa and Jayaraman, 2010] Lessa, D. and Jayaraman, B. (2010). Temporal Model
for Debugging and Visualizations. Technical report, Department of Computer
Science and Engineering, University at Buffalo.

47

[Lessa et al., 2010] Lessa, D., Jayaraman, B., and Czyz, J. K. (2010). Scalable
Visualizations and Query-Based Debugging. Technical report, Department of
Computer Science and Engineering, University at Buffalo.

[Oechsle and Schmitt, 2002] Oechsle, R. and Schmitt, T. (2002). JAVAVIS: Auto-
matic Program Visualization with Object and Sequence Diagrams Using the Java
Debug Interface (JDI). In Software Visualization, pages 176–190.

[Pothier et al., 2007] Pothier, G., Tanter, E., and Piquer, J. (2007). Scalable
Omniscient Debugging. ACM SIGPLAN Notices, 42(10):535.

[Streib and Soma, 2010] Streib, J. T. and Soma, T. (2010). Using contour diagrams
and JIVE to illustrate object-oriented semantics in the Java programming lan-
guage. Proceedings of the 41st ACM technical symposium on Computer science
education, pages 510–514.

[Vaishnavi and Kuechler, 2004] Vaishnavi, V. and Kuechler, B. (2004). Design
Science Research in Information Systems.

48

Appendix A

Accessing the source code

A.1 JIVE

The source code of JIVE can be acquired by following the installation instructions
at http://www.cse.buffalo.edu/jive/download.html. After the installation is
complete, a set of jar-archive files can be found in Eclipse’s plugin folder, which is
located in the user-directory. The plugin is divided into several archives, representing
the plugin fragments. The source code for each fragment can be found within the
respective archives, and can be extracted with an appropriate program. After
extracting the code, it can be imported into Eclipse as a project, note that all
fragments are needed to successfully run the plugin after import.

A.2 The modified version

The modified source code can be found at the following repository at Github:
https://github.com/Skabbkladden/Meister/, within the folders code/JIVE/.
The modified version can then be imported into Eclipse as a project.

49

http://www.cse.buffalo.edu/jive/download.html
https://github.com/Skabbkladden/Meister/
code/JIVE/

	Introduction
	Research questions

	Prestudy
	Methods
	Existing tools
	Selecting a tool

	Methodology
	Awareness
	Suggestion
	Development
	Evaluation
	Conclusion

	An exploration of JIVE
	Features
	The object-diagram
	The sequence-diagram
	Time-stepping
	The exclusion filter
	The model views
	Searching

	Suggested changes
	Visual changes to the diagrams
	Compacting diagrams
	Changes to the filter
	Searching
	Automation

	Implemented changes
	Labeling of objects
	Expanding the filter
	The isolated view
	Relaxing the search

	Evaluating usefulness
	The test
	Results
	Performance
	New issues

	Conclusion
	Research questions
	Future work

	Glossary
	Acronyms
	Bibliography
	Accessing the source code
	JIVE
	The modified version

