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Abstract

St. Olavs hospital has supplied a dataset of 2703 tissue samples from the tumor
periphery from approximately 900 patients organized on tissue microarrays
(TMA). In this project we wish to examine all these tissue samples with image
processing to determine if second harmonic generation microscope images of
tissue can improve classification of cancer type (I, II, III) or in other words,
cancer aggresiveness. This thesis documents methods which automates the
microscope imaging of TMA and show how images can be correlated to clinical
data. Datamining methods can then be used on this dataset to look for patterns
which can be used in classifcation.

Automated microscope scanning is easy in consept, but the implementation
depends on many aspects of the experimental setup. Some of the aspects
discussed in this thesis are:

• Develop image analysis algorithms that are robust to experimental varia-
tions.

• Handle systematic errors like intensity variation and rotation between
scanning raster pattern and stage coordinate system.

• Automatic stitching of regular spaced images with little signal entropy in
seams.

• Adjusting z-plane tilt for large area samples with micrometer precision.
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• Interfacing with commercial Leica software.

The focus of this thesis is on TMA and the experimental setup with a Leica SP8
microscope, but some the aspects listed above are not unique to this context
only.

The conclusions are:

• Large area scans should adjust specimen plane to be at even distance to
the objective to be time effective and avoid out of focus images.

• Using heuristics/constraints improves the reliability to automatic stitching
algorithms, failing gracefully on images with little entropy in overlap.

• Leica LAS version X 1.1.0.12420 have limited support for automatic mi-
croscopy, but it’s possible to work around limitations to leverage fully
automated TMA-scanning.
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Chapter 1

Introduction

With a population in Norway just above 5 million1, three thousand women
are diagnosed with breast cancer each year2. This makes breast cancer the
most common kind of cancer, affecting one of every eleventh woman. Luckily
breast cancer is often not deadly or treatable, shown by the fatalities which
was 649 in 20122. Norwegian University of Science and Technology (NTNU)
and St. Olavs hospital have been cooperating on reasearch to find new ways to
improve diagnosis. The cooperation yielded a study of 37 subjects which showed
positive results on difference of collagen structure from different parts of tumor
tissue3. The goal of this project is to delvelop the necessary tools to expand the
study from 37 subjects to the whole dataset of approximately 900 subjects.

The means to achieve the expanded dataset is to automate microscope imaging,
with main focus on tissue microarrays. Tissue micro arrays are glass slides with
samples arranged in a matrix pattern seen in figure 1.1. As tissue microarrays is
a standard way of organizing tissue samples, not unique to breast cancer tissue,
this project is relevant for other studies too.
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10 CHAPTER 1. INTRODUCTION

Figure 1.1: Tissue micro array of breast tissue at perifery of tumor. Three test
samples (upper right of the array) are beside the 14× 9 samples to avoid mix up
of patients when rotating the slide.

The tissue micro array shown in figure 1.1 is ≈ 24 × 15 mm in size. Using a
moderate objective of 25x with 400× 400 µm field of view, a single scan of the
total dataset is

24mm
400µm ·

15mm
400µm = 2250 images.

Depending on the precission of the microscope stage, images are not necessarry
easily put together. Also, keeping the microscope in focus for the whole surface
can be challenging. Another approach would be not to scan the whole area in
one scan, but to scan each of the 14 · 9 = 126 tissue specimens one by one. The
challenge with scanning each region one by one is that the samples are often not
equally spaced, and a lot of manual, error prone, labor is required to define the
areas to scan. The method in this thesis tries to simplify the scanning process
and prepare the images for further analysis.

The thesis is written with focus on two parts, namely automating the collection
of images and correlating samples to clinical data. Together, the methods
described should enable researchers to run experiments on large datasets of
tissue microarrays.
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A reader of this text should be familiar with general physics. Matters that are
specific to scanning microscopy and image processing will be described in the
theory section, along with software concepts used. The methods section seeks
to make the reader able to replicate the experiment on any kind of microscope,
but some software and solutions is specific to the Leica SP8. The discussion
holds details on alternative approaches and should clarify reasons for the choices
made. As the project mainly consisted of developing automated microscope
scanning, the methods is also the result of the thesis, hence a result chapter is
not included.

All source code in the project was implemented in the programming language
Python4. The reader does not need to be proficient in Python programming, but
acquaintance with the syntax is assumed. Code blocks will be used to clarify how
problems have been solved or algorithms implemented. Details not essential to
the problem at hand have been omitted to keep focus on the essential parts. As
the total amount of source code is above thousand lines it is not included in the
appendix but rather available at Github with full history5. A brief description
on installation of the software is included in the appendix.
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Chapter 2

Theory

Tissue microarrays

A tissue microarray is a collection of specimen aranged in a matrix pattern. The
specimens are typically sliced with microtome from a paraffin block containing
cylinders of tissue in rows and columns. Cylinders for the paraffin block are
often picked out by a pathologist who evaluate the histology of a larger tissue
sample and choose appropriate locations.

The thickness of slices are in the magnitude of 4-5 µm, which gives efficient use
of tissue samples in the sense that several hundred TMAs can be made from a
block containing cylinders which can be several mm6. A specimen spot will refer
to a single sample in the array.

13
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Scanning microscope

Figure 2.1 illustrate the internal workings of a Leica SP8 scanning microscope
which have an epi-illumination setup. Epi-illumination is when the detectors
(26) and light source (1, 3, 5, 7) are on the same side of the objective (18). But
as seen, the epi-setup also allows for transmitted detectors (19), which were the
ones in use. By scanning one means that the light source is focused to a specific
point of the specimen, and scanned line by line in a raster pattern. While the
laser is scanned over the surface, a photomultiplier tube (PMT) measures the
incoming light in regular time intervals (samples) and each measured sample is
saved to an image pixel.

The PMT is a sensor which converts photon intensity into an electrical signal.
The tube works by accelerating electrons that have been liberated from an
electrode by incomming photons. The flux of electrons is multiplied several times
by aranged electrodes inside the tube, resulting in an amplification which makes
it possible to measure small amounts of light7.

The scanning is done by a galvanometric mirror (14). The term non-descanned
detector indicate that the light does not travel via the scanning mirror before
reaching the detector. In SP8, (17) and (19) are non-descanned detectors, where
(17) measure reflected light and (19) measure transmitted light. The condensor
and aperture are not illustrated in figure 2.1. Both are present between the glass
slide and the external non-descanned detector (19). Condensor collects light for
the transmission non-descanned detector. The aperture is an adjustable opening
which can be used to limit the amount of incomming light. Higher aperture
values means more opening.

Field of view is the spatial area which fits inside one image. The field of view
depends on the magnification of the objective and the scanner zoom. Scanner
zoom is when the scanner is set to oscillate with a smaller amplitude while still
sampling at the same rate. As field of view is at the magnitude of 1× 10−4 m,
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Figure 2.1: Internals of a Leica SP8 microscope. Picture from Leica SP8
brochure8.

specimen must be moved around to image a larger area. The device that moves
the specimen is called a stage. Here stage position, or specimen position, is
denoted with a upper case X to distinguish it from lower case x which denote
image pixel position.

The resolution of a conventional light microscope is given by the objective and/or
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condensor numerical aperture (NA)7:

d = 1.22λ
NAcondensor + NAobjective

. (2.1)

Here d is the minimum separable spatial distance defined by the Rayleigh
criterion, λ is the wavelength of the light and NA is the numerical aperture. The
numerical aperture is defined by

NA = n sin θ, (2.2)

where n is the refractive index of the medium (air, water, oil) and θ is the half
angle of the light cone the objective can accept.

A dichroic mirror, also called a dichromatic beamsplitter, is a filter which split
light of different wavelengths. The filter has a sharp transition between reflecting
and transmitting light, resulting in short wavelengths being reflected and long
wavelengths passing through7. This is useful when having several detectors
which should detect different wavelengths. The mirror is usually angled 45° to
disperse the short wavelengths 90°.

Second harmonic generation (SHG) is a nonlinear scattering process of two
photons with the same wavelengths. The process is an interaction where the
photons are transformed to a single emitted photon of half the wavelength.
The process is dependent on orientation of electric dipoles in the specimen and
aligned assemblies of asymetric molecules usually provides the proper conditions.
Collagen does hold the proper conditions for SHG-imaging and as the probability
for SHG is extremely low, a high intensity laser is necessary to generate it7.
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Image processing

Contents of this section are worked out from the book Digital Image Processing
by Gonzalez and Woods9.

An image is a two dimensional array of values, where each position in the array
is called a pixel. Resolution is the number of pixels an image holds. E.g., a
resolution of 1024× 1024 is an image with 1024 pixels in both x- and y-direction,
totalling 1× 106 pixels. Each pixel represent a physical position of the specimen,
where the value is the amount of light measured from the detector when scanning
the specimen surface with a light source. The physical size of the pixel depends
on objective, zoom and resolution. All images in this thesis are 8 bit grayscale
images, meaning that each pixel can hold 28 = 256 values. In an ideal experiment
a pixel value of zero denote zero detected light and 255 is the maximum, but
this is an simplification as noise is measured too.

f(x, y) denotes the intesity of pixel at position (x, y), where (0, 0) is the top left
of the image, positive x-direction going right and positive y-direction going down.
m× n will denote the number of pixels in in respectively x- and y-direction. A
subscript of the image name is used if several images are discussed, e.g., mf is
the number of x-pixels in image f(x, y).

The histogram of an image is the count of intensities in the image. In example,
an image with 8 bit depth spans values from 0 to 255 and the histogram consists
of 256 bins. The 0-bin contain the sum of pixels equal to zero. Summing up all
the histogram bins gives total number of pixels in the image.

Otsu thresholding

Otsu tresholding optimizes the between-class variance in terms of intensity values.
The computation is done on the image histogram, giving the optimal threshold
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for separating intensity classes. The output is a segmented binary image where
all pixels above the threshold is True and the rest of the pixels False.

Spatial image filters

A spatial image filter consists of a center pixel, its neighborhood defined by
a structuring element and an operation. Structuring element is typically a
rectangle, but can be of any shape. The operation can for example be calculating
the mean of the neighborhood, assigning the mean value to the center pixel.
Formally the spatial filter is defined as

g(x, y) =
a∑

s=−a

b∑
t=−b

w(s, t)f(x+ s, y + t). (2.3)

Here g(x, y) is the result, w(x, y) is the structuring element, f(x, y) is the image
the filter is performed on and assuming odd size of the structuring element,
a = (mw − 1)/2 and b = (nw − 1)/2.

In the case of a mean filter with neighborhood or 3× 3, w(x, y) would consist of
3 rows and 3 columns with the value 1/9.

Sliding window filters

A sliding window filter is similar to a spatial filter in the sense that there
is a center pixel and a neighborhood defined by a structuring element. The
neighborhood is called a sliding window as the neighborhood is updated by
removing values going out of the neighborhood and adding values coming into
the neighborhood when moving to the next pixel.

Typically the window is kept as a histogram in memory, instead of doing
computation directly with the image values. Doing computation on the histogram
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can be more efficient for certain operations, as the image memory is accessed
less often.

Image registration

Image registration is the process of putting images into the same coordinate
system. In this context the sources are images from different microscope stage
coordinates. One way of finding how images are relatively displaced is by
using cross-correlation. The cross-correlation of two images is the process of
zero-padding the one image and using the other image as structuring element.
Cross-correlating f(x, y) by g(x, y) is defined as

h(x, y) = f(x, y)FF g(x, y) =
∑
s

∑
t

g(s, t)f(x+ s, y + t). (2.4)

Here g(x, y) is the structuring element of size s× t and f(x, y) is the zero-padded
image. The structuring element in cross-correlation is often called a template
and the process of cross-correlation is called template matching. The maximum
peak(s) in h(x, y) is where the template has the best match, which may be in
several positions if several matches are made. The cross-correlation is dependent
on intensity variations and requires the images to have high entropy to get clear
matches. E.g., a strictly even background have low entropy and gives equal
match for the whole image.

If f(x, y) and g(x, y) are large images, calculation of equation 2.4 is computational
costly. To reduce the calculation one might use the cross-correlation theorem
which uses Fourier transform to reduce number of calculations. A 2D discrete
Fourier transform (DFT) of an image f(x, y) is computed by

F (u, v) = F {f(x, y)} =
m−1∑
x=0

n−1∑
y=0

f(x, y)e−i2π(ux/m+vy/n). (2.5)
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Here F (u, v) is the frequency domain image and F {f(x, y)} is the notation for
the Fourier transform of f(x, y).

Similar the inverse Fourier is defined as

f(x, y) = F−1 {f(x, y)} = 1
mn

m−1∑
u=0

n−1∑
v=0

F (u, v)ei2π(ux/m+vy/n). (2.6)

The sums of equation 2.5 and equation 2.6 are independent and can be separated
in rows and columns, yielding the fast Fourier transform which reduces the
calculation complexity from O(mn) to O(m logm+ n logn).

The DFT has the property that a element wise multiplication in the frequency
domain with one of the images complex conjugated is equivalent to a cross-
correlation in the real domain. The cross-correlation theorem states

f(x, y)FF g(x, y) = F−1 {F ∗(u, v)G(u, v)} . (2.7)

Here it’s assumed that images are zero padded and F ∗(u, v) denotes the complex
conjugate of F (u, v). Cross-correlation in the frequency domain is also called
phase correlation.

Software

Leica LAS

Leica Application Suite (LAS) is the software that contols the SP8 microscope.
LAS comes with a function called Matrix Screener, which allows the user to
define structured areas to scan. The software uses the concepts fields and wells.
A field is essentially an image, and a well is a collection of regular spaced images.
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The wells may be regular spaced, or an offset between wells can be defined in
the graphical user interface. When the scan job is started LAS stores images in
a folder tree in the TIFF format (see Image formats).

CAM

In addition to controlling the microscope with the graphical user interface, a
function called Computer Assisted Microscopy (CAM) can be enabled. CAM is
a socket interface, meaning one send bytes over a network interface. This is very
similar to how one can write bytes to a file, but in addition the socket interface
can respond and send bytes back. The network interface runs on TCP port
8895 and one may communicate locally or over a TCP/IP network. A set of 44
commands are available, but only three of them are intresting for the purpose
of controlling scans; load, autofocusscan and startscan. More details on the
interface can be found in the manual10 or by studying the source code of the
Python package leicacam11. Code block 1 show how one can communicate with
the microscope in Python.

Code block 1 Communicating with the Leica SP8 microscope using Python.

from socket import socket

CAM = socket() # initialize object
CAM.connect(('localhost', 8895)) # connect to LAS
welcome_msg = self.socket.recv(1024) # get up to 1024 bytes
msg = b'/cli:python /app:matrix /cmd:getinfo /dev:stage' # bytes string
CAM.send(msg) # send messange
response = CAM.recv(1024) # read response
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XML

Extensible Markup Language is a declarative language which most high level
programming languages speak, which makes it suitable for computer program
communication. An XML-file contain a single root and tree structure with parent
and children nodes. Any position in the tree can be specified with an XPath.
Code Block 2 show a typical structure of a XML-file.

Code block 2 Illustration of a typical XML-tree structure.

<?xml version="1.0"?>
<root>

<parent>
<child attr="val1">text1</child>
<child attr="val2">text2</child>

</parent>
<parent>

<child attr="val3">text3</child>
<child attr="val4">text4</child>

</parent>
</root>

The XML-file might be nested with several childen and parents, but code block 2
holds for illustration purposes. XPath for the first child in the first parent
is ./parent/child[@attribute="val1"]. Here . is the root, / defines path (or
nesting if you like) and [@attribute="val"] defines that the attribute named
attr should be of value val1. This XPath finds the child with text1, as this is
the only child with attr="val1". In converse, ./parent/child finds all children.
Code block 3 show how one would read properties from the XML-file in code
block 2.
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Code block 3 Accessing XML properties with the Python built-in module
xml.etree.

import xml.etree.ElementTree as ET

tree = ET.parse('/path/to/file.xml') # read xml
first_child = tree.find('./parent/child') # find one element
print(first_child.attrib['attr'] == "val1") # check attribute value
all_children = tree.findall('./parent/child') # find all elements
print(len(all_children)) # number of elements found

Scanning Template

A scanning template is an XML-file read by LAS which defines which fields and
wells to scan. The structure of the file is the following:

• ./ScanningTemplate/Properties holds experiment settings like start posi-
tion, displacement between fields and wells, which Z-drive to use, and so
on.

• ./ScanFieldArray holds all fields (images) and their settings as attributes
of ./ScanFieldArray/ScanFieldData.

• ./ScanWellArray holds all wells (collection of images) and their settings as
attributes of ./ScanWellArray/ScanWellData.

OCR

Optical character recognition (OCR) is recognition of characters in an image.
OCR internals are not discussed here, but it basically works by looking at
patterns in the image to convert it to text.
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Image formats

Image formats referred to in this text are:

• Tagged Image File Format (TIFF) is ISO standardized12 and can contain
both raw and compressed images. TIFF images can be opened in most
image programs.

• Portable Network Graphics (PNG) is both ISO and W3 standardized13,14.
Image data is stored with lossless compression. PNG images can be opened
in most image programs.

• Leica Image Format (LIF) is not a standardized format. LIF can be opened
by several programs for scientific image processing (e.g., LAS, Matlab and
Fiji).



Chapter 3

Methods

TMA samples can contain up to 1000 samples on each glass slide6. Though the
complexity can be handled by a human, the process of manually scanning TMA
consist of a lot of error prone work. Good tools to organize the work of scanning
TMAs is therefore vital in helping the researcher.

The methods described here seek to provide those tools. The main aim is to
reduce mental overhead and physical time at the microscope for the user. Using
the methods described, the user avoids a lot of repetitive, trivial, labor and
can turn his attention on the research. This chapter contains description of
microscope settings, steps for automated scanning and procedure for correlation
to clinical data.

Microscope

The images were collected with a Leica SP8 microscope using LAS software
version X 1.1.0.12420 from Leica Microsystems CMS GmbH. Two lasers were
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used, a Coherent laser and a LASOS argon laser. Full specification of lasers is in
table 3.1.

Table 3.1: Lasers

Brand Model Specifications

Coherent Chameleon Vision-S Modelocked Ti:Sapphire, wavelengths
690-1050 nm, 2500 mW, 80 MHz pulsed
repetition rate, ≈ 75 fs pulse width

LASOS LGK 7872 ML05 Argon continious wave, wavelengths 458,
476, 488, 496 and 514 nm, 65mW

All images are from transmitted light measured with non-descanned PMT
detectors. Two non-descanned PMT detectors were used with dichrioc mirror
of 495 nm and band pass filters of 525/50 nm and 445/20 nm. Rotation of
scanning pattern was set to 1.7° to align scanning coordinate system with stage
coordinate system (read more in Rotation). Frequency of scanning mirror was
set to 600 lines/second (maximum speed with 0.75 zoom).

Images were saved as TIFF with 8 bit intensity depth and then converted to
PNG to reduce storage space. The images were also rotated 270°, as LAS stores
the TIFF-images with axes swapped with regards to the stage coordinate system.
The procedure is listed in code block 4.

Overview images

Overview images were collected with a technique similar to bright-field microscopy
except that the light source is a scanning laser. 10x air objective along with
argon laser in table 3.1, 514 nm emission line was used. Output power was set
to 2.48% and intensity to 0.10. Forward light was imaged using 0.55 NA air
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Code block 4 Compress and rotate images.

from leicaexperiment import Experiment
from PIL import Image

experiment = Experiment('path/to/experiment')
experiment.compress(delete_tif=True) # lossless PNG compression

for filename in experiment.images:
img = Image(filename)
img = img.rotate(270) # image axes same as stage axes
img.save(filename)

condensor with non-descanned PMT detector and 525/50 nm bandpass filter.

The aperture of transmitted light and the detector gain was adjusted so that
the histogram of intensities was in the center of the total range without getting
peaks at minimum and maximum values. Zoom 0.75 and 512× 512 pixels image
resolution was used, which gives images of ≈ 1500× 1500 µm and resolution of
≈ 3× 3 µm.

SHG images

SHG images were collected with a 25x/0.95 NA water objective. The pulsed
infrared laser was set to 890 nm, intensity 20%, gain 40%, offset 80% and
electro-optic modulator on. 0.9 NA air condensor was used and forward light
was measured with non-descanned PMT detector using a 445/20 nm bandpass
filter. Gain of PMT detector was adjusted so that signal spanned the whole
intensity range. Aperture was set to 24 (maximum). Resolution of 1024× 1024
pixels was used.
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Automated TMA scanning

The automated scanning aims to lift the burden of manual labor and prevent
errors in the imaging process. The procedure finds specimen spots in an overview
image and scans the specimen areas with wanted acquisition parameters. The
process consists roughly of the steps:

1. Collecting overview images with low magnification.
2. Segment specimen spots in the overview image.
3. Scan each specimen spot with chosen acquisition parameters (e.g., high

magnification).

The steps listed above is fairly straight forward, but several instrumental and
technical details are important to get a working solution. To better get an
overview of the procedure, the aspects are listed here and described in further
detail in it’s own section.

In step 1, collecting overview images:

• Correcting for uneven illumination,
• adjusting scanner rotation
• and reliable stitching.

In step 2, segmentation:

• Discriminate specimen spots from background,
• excluding false positives
• and calculating specimen row and column position.

And in step 3, scanning each specimen spot:
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• Calculating stage position from pixel position
• and communicating with the microscope.

Together, the steps provides an automated scanning which is invariant to varia-
tions in intensity, specimen sizes and tissue microarray size.

Step 1: Collecting overview images

To find specimen, overview images were collected with the settings described
in the microscope section above. To minimize scanning time, minimum zoom
(0.75) was used, which yielded the intensity variation seen in figure 3.1 (a) and
(b). The uneven illumination is unwanted mainly beacuse of two reasons:

• Discriminating specimen intensities from background intensities with
thresholding can give false positives when intensities are overlapping.

• Contrast is weakened, giving less clarity for human viewing purposes.

In addition, rotation of scanner raster pattern should be adjusted to avoid jagged
stitch. The stitching mechanism will also be described, as existing stitching
software was found to be unreliable.

Uneven illumination

The uneven illumination in the experimental setup is illustrated in figure 3.1
(a). By assuming the intensity variation in all the pixels follow the slope of the
background, equalization can be done by dividing the image by the normalized
intensity profile of the background. The procedure is listed in code block 5.

As seen in code block 5, the image is first normalized. images_minimum and
images_maximum was found by selecting the median of respectively minimum and
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Code block 5 Equalizing an image

equalized = img.astype(np.float) # assure datatype have real division ability
equalized -= images_minimum # normalize
equalized /= images_maximum - images_minimum
equalized /= intensity_profile # equalize
equalized[equalized > 1] = 1 # clip values

maximum intensity of all images. Normalizing to the same range for all images
is prefered to using local minimum and maximum which can give considerable
differences to normalization between images.

intensity_profile is a curve fit for one of the background rows in a selected
image. The row was found by calculating variance of all rows in the image and
choosing the one with least variance. The user should verify that the row indeed
is a background row by plotting it or viewing the image.

Figure 3.1: (a) Image of glass slide only for illustrating the uneven illumination.
Dots are impurities on the glass slide. (b) Original image. Image is selected
for finding the intensity profile. The white line is the row with least variance
used for equalization. The line is wider than one pixel for viewing purposes. (c)
Equalized version of (b). Note that (a), (b) and (c) are displaying values from
130 to 230 to highlight the intensity variation, colorbar is shown to the right.

Figure 3.1(b) show the selected image and the row with least variance is indicated
as a white line. The intensity profile was fitted to a second degree polynomial
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to avoid noise and all images were equalized by the code in code block 5. The
intensity profile with it’s curve fit can be seen in figure 3.2(a). The effect on
pixel values can be seen in figure 3.2(b) and (c), where each dot represents a
pixel value with increasing image x-position on the x-axis.

Figure 3.2: (a) Intensities for the line with least variance of figure 3.1(b). The
curve is fitted to a second degree polynomial to supress noise. (b) Intensities
for image in figure 3.1(b). Each dot represents a pixel. (c) Intensities for
the equalized image in figure 3.1(c). Each dot represents a pixel. Note that
the intensities is both spread across the whole intensity range (0-255) and the
skewness is fairly straightened out.

The intensity variation was in one dimension only, which allowed for the simpler
dividing by a row intensity profile. For more complex intensity variations, a
similiar approach can be done by curve fitting the background to a surface, then
divide images by the surface intensity profile.

Rotation

To get images registered to the stage coordinate system the scanning pattern
and the stage should share the same coordinate system. It’s not uncommon that
it does not, giving the result of a jagged stitch seen in figure 3.3.

To align the coordinate systems, relative rotation between scanner raster pattern
and stage coordinate system was measured and adjusted. The measurement was
done by calculating displacement of two neighbor images using phase correlation.
The rotation is then given by
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(a) Illustration of rotated scanning mirror
coordinate system. Stitch highlighted as dots
on end of lines.

(b) Stitch of two images when stage and
scanning pattern does not hold the same
coordinate system.

Figure 3.3: Illustrations and stitch of two images with scanning pattern rotated
compared to stage movement. In (a) the first row of the first image lines up
with second row in second image. The second image should therefore be one
pixel above the first image. In (b) relative scanning pattern rotation is counter
clockwise, giving the second image below the first image. A calculation of stage
position by y-equivalent to equation ?? gives a systematic error in the y-position
if stitches are jagged.

θ = arctan
(

∆y
∆x

)
. (3.1)

Here ∆y and ∆x is the displacement in pixels between images. To align the
coordinate systems, scanning rotation was set to −θ in LAS.

Stitching

To allow whole specimen spots to be found by segmentation, overview images
must be stitched together. Stitching by existing software gave unreliable results
seen in figure 3.4(a) due to lack of control in translation constraints. To make
sure the stitching does not fail, the method here takes the assumptions:
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• Images are regular spaced.
• Images are of same size.
• Scale in edge of images are constant, e.g., translation is the only transfor-

mation between images.
• Side by side images have translation in one dimension only (see section on

rotation above).

The procedure may not work well for all experimental setups, but showed good
performance in regards to precision for the Leica SP8 stage.

Figure 3.4: (a) Unreliable stitching with Fiji. The image translation calculated
by phase correlation is chosen without adhering to displacement constraints. (b)
Using same overlap for all images gives reliable stitch.

The procedure of stitching consists of phase correlating all neighbor images,
calculating the median translation and using this median translation for all
images. The median is used as correlation between two images with little entropy
in the seam is prone to fail. More details on this matter are described in the
discussion. Code block 6 show the basics of the procedure on a row of images
for sake of simplicity.
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Code block 6 Stitch row of images by using median translation from phase
correlation.

from skimage.feature import register_translation
import numpy as np

# find all neighbor translations
translations = []
prev = row_of_imgs[0] # row_of_imgs: list of 2d arrays
for img in row_of_imgs[1:]: # exclude first image

translation, error, phasediff = register_translation(prev, img)
translations.append(translation) # add translation to the list
prev = img # reference to previous image

translations = np.array(translations) # allow for slice notation
offset_y = np.median(translations[:,0]) # median x translation
offset_x = np.median(translations[:,1]) # median y translation
assert offset_x == 0, "x-offset should be zero, " \\

+ "adjust the scanning mirror rotation"

# combine into one image
y, x = img.shape # assume images of same size
n = len(row_of_images) # number of images
total_height = n*y - offset_y*(n-1) # stitched image height
stitched_img = np.zeros((total_height, x)) # empty image
for i, img in enumerate(row_of_images):

y_start = i*y - i*offset_y # limits in stitched image
stitched_img[y_start:y_start+y, :] = img

Step 2: Find specimen spots by segmentation

After step 1 we have a large stitched overview image of specimen spots. We
would now like to classify which parts of the image that are background and
which parts hold the specimen spots. Looking at figure 3.4(b) the contrast
in the center of the TMA is weaker than on the edges. To improve this, the
crucial observation is that background signal tend to vary less than specimen
signal. This fact makes it easier to discriminate specimen spots to background
by filtering the image before segmenting it with Otsu.

In addition, relying only on Otsu thresholding gives a lot of small segments which
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are not specimen spots. To exclude these false positives, area size of segments
were used as a classification.

Lastly, we’ll want to calculate row and column of the specimen spots so that the
image can be correlated to clinical data.

Filter and segment the overview image

Figure 3.5: Otsu thresholding of figure 3.4(b) zoomed into four specimen
spots for clarity. (a) Otsu thresholding applied without any filters. Picks
out dark areas, but disjointed, especially for brighter areas in specimen spots.
(b) Thresholding after a local bilateral population filter. Quite noisy in the
background. (c) Thresholding after local bilateral population and local mean
filter. Background noise is gone and sample spots are segmented continuously.

As briefly mentioned, the goal of filtering the overview image is to improve
discrimination between areas with background and specimen so specimen spots
can be distinguished. A filter that has the appropriate characteristics is the
population bilateral filter, which counts number of pixels in the neighborhood of
the center pixel that is within a specified intensity range relative to the center
pixel intensity.

The stitched overview image was 5122× 8810 = 45 Megapixels, giving total filter
time of 20 seconds with skimage.filters.rank.pop_bilateral on a single core of
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a Intel i3 2.3 GHz CPU. As the process of segmentation was implemented as
an interactive graphical user interface, filter time of 20 seconds was considered
unresponsive. To approve responsiveness, the filter was implemented as a sliding
window filter in Python and compiled with numba15. The numba compiled filter
took 4.5 seconds on a single core of a Intel i3 2.3 GHz CPU. As the microscope
computer was equipped with 16 CPU cores, the filtering was parallized with
dask16, giving filtering in real time.

Assuming one has an algorithm that updates the local histogram based on a
structuring element, the inner computation of a population bilateral filter is
given in code block 3. A full implementation of the filter can be seen in the filters
submodule of leicaautomator17. Values of s0 = s1 = 10 gave high discrimination
of specimen and background on overview images collected with settings specified
in the microscope section.

def pop_bilateral_inner_computation(histogram, val, s0, s1):
"Returns number of pixels that are within [val-s0, val+s0]."
count = 0
histogram_max = histogram.size

for bin in range(val-s0, val+s1+1):
if bin < 0 or bin >= histogram_max: # don't count outside range

continue
count += hist[bin] # add counts from bin

return count

To reduce noise after the bilateral population filter, a mean filter was applied.
The size of structure element was 9 × 9 pixels for both filters. Figure 3.5(a),
(b) and (c) show how the segmentation is affected by the filters. Code for
reproducing the steps is in code block 7.

Excluding false positives in segmentation

After segmentation we have a binary image as shown in figure 3.5(c). The image
contains several small dots that are not specimen spots. The dots can be removed
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Code block 7 Filter and segment an image with local bilateral population and
Otsu thresholding.

import numpy as np
from skimage.filters import threshold_otsu
from skimage.util import apply_parallel # available from v0.12
from scipy.ndimage import uniform_filter # mean filter
from leicaautomator.filters import pop_bilateral

selem = np.ones((9,9)) # 9x9 structuring element
# apply filter on all cpu cores, depth=4: overlap halv selem size
filtered = apply_parallel(pop_bilateral, image, depth=4,

extra_keywords={'selem': selem})
filtered = apply_parallel(uniform_filter, image, depth=4,

extra_keywords={'size': 9})
threshold = threshold_otsu(filtered) # get optimal threshold
segmented = filtered >= threshold # low values indicate specimen

by sorting all segment regions by area size, then excluding the smallest ones.
Figure 3.6(a) show segments sorted by falling area size. Code block 8 illustrate
how the small segments were excluded, keeping only the largest ones.

Code block 8 Exclude small segments which are false positives.

from skimage.measure import label, regionprops

labels = label(segmented, background=0) # background=0: exclude background
regions = regionprops(labels) # measure region properties
regions.sort(key=lambda r: -r.area) # sort by area size, largest first

max_regions = 126
if len(regions) > max_regions:

regions = regions[:max_regions] # only keep max_regions

Calculating row and column position

As specimen spots are pretty well arranged in rows and columns, calculating
the specimen row and column position lifts the burden of labeling the scanned
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Figure 3.6: (a) Sorted region areas. Area size drops dramatically around
region 125 comparable to the number of specimen spots on each slide which was
14 · 9 = 126. Plot does not have corresponding x-axis with (b) and (c), as regions
are sorted by size. (b) Regions sorted by position. The two plots do no share
the same x-axis. There is a gap between the positions when row and columns
are increasing. (c) X distance to previous region when regions are sorted by
x-position. Same x-axis as in (b) for the x-position plot. 14 peaks indicate that
the image contain 15 columns.

specimen by the user.

By looking at two fairly vertical columns of specimens, one can observe that the
x-coordinate of specimens group around a mean x-coordinate and that there is
a jump in x-coordinate when going to the next column of specimens (seen in
figure 3.6(b)). A derivative can be calculated by sorting the segmented regions
by coordinate and subtract the current region’s position to the previous region’s
position (seen in figure 3.6(c)). The derivative can then be used to increment
row or column when looping through the segmented regions and adding the row
and column property to the region in question. The procedure is shown in code
block 9.

Interactive segmentation

As experimental factors like detector gain, laser intensity, light absorption of
specimen, etc. can give considerable variations in images, step 2 was implemented
as a interactive graphical user interface. The interface allows the user to adjust
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Code block 9 Calculate row and column position to specimen spots.

for r in regions:
r.y, r.x, r.y_end, r.x_end = r.bbox # for notational convenience

for direction in 'yx': # same algorithm for row and columns
regions.sort(key=lambda r: getattr(r, direction))

previous = regions[0]
for region in regions: # calc distance to previous region

dx = getattr(region, direction) - getattr(previous, direction)
setattr(region, 'd' + direction, dx)
previous = region

filter settings and verify which regions to scan by deleting, moving or adding
regions. The interface is show in figure 3.7.

Figure 3.7: The process of segmentation in a graphical user interface. Regions
4,2, 11,7 and 14,1 might be adjusted by the user, all other regions are detected
fairly well.
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Step 3: Scanning each specimen spot

From step 2 we have a list of regions and their pixel position in the stitched
overview image. Last step is to calculate the stage position to the regions and
scan the regions by communicating with the microscope.

Calculate stage position from pixel position

To convert pixel position to stage position one need a reference point and the pixel
resolution. For simplicity, the procedure for calculating stage coordinate is shown
for x-coordinate only, as the calculations for y-coordinate is fully equivalent.
Pixel resolution was calculated by

xresolution = ∆x
∆X . (3.2)

Here ∆x is displacement in pixels from the stitch in step 1, and ∆X is
stage displacement in meters read from XPath ./ScanningTemplate/Properties

/ScanFieldStageDistanceX in the overview scanning template in the experiment
folder (AdditionalData/{ScanningTemplate}overview.xml).

Keeping stage position constant when zooming, either by changing objective or
decreasing amplitude of scanning mirror oscillation, yields the same physical
position in center of field of view. This means that image stage position reported
by the microscope is the center pixel. One can use the center of the first image
as the reference point, but using pixel (0,0) is simpler as one can find out where
the center pixel is one time, then later forget about it.

In other words, the reference point for x-position is at f(0, y), the left most pixel.
This reference point was calculated by

Xref = Xcenter −
m

2 · xresolution. (3.3)
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In equation 3.3Xcenter is the stage position for the top left image,m is the number
of pixels in the image and xresolution is from equation 3.2. Xcenter was read from
XPath ./ScanFieldArray/ScanFieldData[@WellX="1"][@WellY="1"][@FieldX="1"]

[@FieldY="1"]/FieldXCoordinate in the overview scanning template.

The stage x-coordinate for any pixel is then given by

X = Xref + x · xresolution. (3.4)

Here X is the stage x-coordinate, Xref is the reference point and xresolution is
from equation 3.2.

Moving the stage to the position calculated from equation 3.4 will center the
location in the field of view. By reversing equation 3.3 one moves the position
to the edge of the image. How much to shift the position depends on the field of
view in the scan job, given by the objective and the zoom. The start coordinate
of the scan job was calculated by

Xstart = X + ∆Xfield−distance

2 . (3.5)

Here Xstart is the x-coordinate for the first image, X is calculated from the
bounding box coordinate to the region in question, and Xfield−distance is
stage displacement between fields. Similar to equation 3.2, Xfield−distance

was read from ./ScanningTemplate/Properties /ScanFieldStageDistanceX

in the acquisition scanning template found in folder C:\Users\TCS-User\

AppData\Roaming\Leica Microsystems\LAS\MatrixScreener\ScanningTemplates.

Using the stage displacement and not the true field of view gives an error in the
calculation of Xstart by

ε = 1
2(∆Xfield−distance −∆Ximg), (3.6)
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as stage displacement Xfield−distance is not strictly equal to the field of view
Ximg when images are scanned with overlap. This was considered neglectible as
∆Xfield−distance ≈ ∆Ximg and number of scanned fields was calculated by

Fx = d ∆X
∆Xfield−distance

e, (3.7)

which is a slight overestimate. In equation 3.7 Fx is number of fields in x-direction,
∆X is size of detected specimen spot and Xfield−distance is displacement between
fields.

Scanning each region

After the step above one have start position Xstart and number of fields to scan
Fx. What remains is communicating with the microscope and record output
filenames of the scans.

To avoid unnecessary long stage movements between rows or columns, regions
were looped through in a zick-zack pattern, given by their row and column
position. For each region the scanning template was edited, the template was
loaded and the scan was started through CAM. Single scanning templates
were used due to a LAS software limitation; scanning templates with irregular
displaced wells is not supported. Code block 10 illustrates the scanning procedure,
using the high level communication interface leicacam.

Alignment of z-plane

The specimen spots in figure 1.1 are 5 µm thick, making it challenging to keep
the distance from specimen plane to objective equal when moving 25 mm. Also,
if the specimen plane is substantially tilted, a single image might become out of
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Code block 10 Automated scanning of regions with CAM.

from leicascanningtemplate import ScanningTemplate as ST
from leicaautomator import zick_zack_sort
from leicacam import CAM

cam = CAM() # instantiate connection to microscope

# regions sorted as [r(1,1), r(1,2), r(2,2), r(2,1), r(3,1), r(3,2), ...]
# here r(2,1) is region(col=2, row=1)
regions = zick_zack_sort(regions, ('well_x', 'well_y'))

tmpl_path = r"C:\Users\TCS-User\AppData\Roaming\Leica Microsystems\LAS" \
+ r"\MatrixScreener\ScanningTemplates" + "\\"

tmpl_name = tmpl_path + '{ScanningTemplate}leicaautomator'
for n, region in enumerate(regions):

# alternate between tmpl_name0/1.xml
# LAS cannot load same filename twice
tmpl = ST(tmpl_name + str(n%2) + '.xml')
# start position for first field
tmpl.move_well(1, 1, region.real_x, region.real_y)
# limit size of scan
tmpl.enable_fields((region.fields_y, region_fields_x))
tmpl.write() # save scanning template
cam.load_template(tmpl.filename) # load into LAS
cam.autofocus_scan() # do autofocus
cam.wait_for('inf', 'scanfinished') # wait for autofocus to finish
cam.start_scan() # run scan job
# record output filename
region.experiment_name = cam.wait_for('relpath')['relpath']
cam.wait_for('inf', 'scanfinished') # wait for scan to finish

focus at edges. To overcome changing z-coordinate when moving large distances,
the stage insert seen in figure 3.8(b) was developed. The stage insert allows the
user to adjust the specimen plane before scanning.

To demonstrate the level of accuracy required for the stage insert consider the
field of view of a 63x objective with minimum zoom (0.75) which is 246× 246
µm. To get the stage insert steady for this level of precission, mouldable glue
was added to corners of stage insert and glass slide holder. This makes both the
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stage insert and glass slide fixed, even when adjusting the specimen plane.

The specimen plane was adjusted by the procedure:

1. Find which of the corners in the tissue microarray has the highest z-
coordinate.

2. Set stage z-coordinate some microns above the highest corner.
3. Adjust all corners into focus (e.g., lifting them).
4. Repeat until specimen plane is leveled at same z-coordinate.

This makes it possible to image a whole specimen of 1.2 mm with one autofocus
scan only and also avoids the scenario illustrated in figure 3.8(a).

(a) Tilted z-plane of sample seen from the
side. Black lines indicate two images and the
objective focus for those. Illustration is not
drawn in scale.

(b) Sample holder with adjustment of
specimen-plane.

Figure 3.8: (a) When having a tilted specimen plane, stage z-coordinate must
be adjusted to keep specimen in focus when moving x- or y-coordinate. Also,
the seam between images is not be from the same physical area, which might
cause some trouble for thicker samples when they are stitched. (b) Stage insert
which allows the user to adjust the specimen plane. Mouldable glue was used to
make the insert fit precisely in the microscope and keep the glass slide fixed in
it’s holder.
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Correlating images with patient data

Each TMA glass slide contains samples from 42 patients, meaning that there is
three specimen spots for each patient. The slides are numbered and specimen
spots on all slides are given identifiers. Figure 3.9 illustrates some of the identifiers
for slide ten (TP-10, tumor peripheral number ten), called a slide map. As
seen, the identifiers consists of two numbers. The first number is the patient
identifier and the second number is the sample number. The patient identifier is
not incrementing systematically, so the slide maps were scanned to read out the
identifier for each position.

(a) Original slide map. (b) Filtered slide map.

Figure 3.9: (a) Top of slide map TP-10. Identifiers are not incrementing
systematically and are inside circles, making them hard to read directly with
OCR. (b) Only text inside circles are kept after the slide map has been filtered.

Before the slide maps were read with OCR, they were filtered to include only
text inside circles. The filter removes the rest by:

• Segment the image with Otsu threshold.
• Widen segments by dilation (make sure segmentation connects lines).
• Selects circles in the segmented image by a circle score.
• Remove everything outside selected circles.

The circle score was calculated as shown in code block 11.
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Code block 11 Calculate score of region being a circle.

def circle_score(r): # r is a regionprops object
y0,x0,y1,x1 = r.bbox # for notational convenience
height = y1-y0 # calc height
width = x1-x0 # calc width
radius = (r.convex_area/3.14)**0.5 # expected radius
score = 10-abs(height-width) # high score if height == width
score += 10-abs(radius - height/2) # high score if expected radius
if r.area < 5000 or r.area > 8000: # penalty for wrong sizes

score -= 20
return score

All slide maps were filtered with code block 12. After the filtering, Prizmo18

was used to read the slide maps. The text output was checked for errors
programatically. The following was checked:

• Identifier should be of correct format.
• Identifier should increment.
• Patients should be registered with correct slide in database column TP_nr.
• Each patient should have three samples.

OCR errors were fixed manually and other errors were recorded (see section
Slide map errors in the appendix).

Every patient identifier from the slide map was saved to a Stata database along
with its slide number, row and column. A database with outcomes of was
supplied, and code block 13 show how the clinical data can be correlated with
specimen spots.
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Code block 12 Filter slide map and keep only text inside circles.

import numpy as np
from skimage.morphology import binary_dilation
from skimage.measure import label, regionprops

thresh = filters.threshold_otsu(img) # Otsu thresholding
binary = img <= thresh # segment image
selem = np.ones((3,3))
binary = binary_dilation(binary, selem) # enhance lines
labeled = label(binary) # find connected segments

mask = np.zeros_like(img, dtype=np.bool) # mask of circles in image
for r in regionprops(labeled): # for every segment

if circle_score(r) > 0: # circle found
y,x,y1,x1 = r.bbox # for notational convenience
m = np.index_exp[y:y1, x:x1] # where circle is found
mask[m] = r.convex_image # use the convex image as mask

img[-mask] = 255 # all pixels except contents of
# circles to 255 (white)

Code block 13 Get patient outcome of sample on TP-1 row 3 column 5.

import pandas as pd

locations = pd.read_stata('data/ids/locations.dta') # read databases
clinical_data = pd.read_stata('data/clinic_data.dta')

condition = (locations.TP_nr == 1) & \ # position query
(locations.TP_rad == 3) & \
(locations.TP_kolonne == 5)

patient_id = locations[condition]['ID_deltaker'] # get patient id
assert len(patient_id) == 1 # 1 patient registered at row/col
# clinical data query
condition = clinical_data.ID_deltaker == patient_id.iloc[0]
outcome = clinical_data[condition]['GRAD'] # get outcome



48 CHAPTER 3. METHODS



Chapter 4

Discussion

To evaluate the methods described in the previous chapter, this chapter will take
up aspects that that lead to the developed methods. Where applicable, possible
alternatives are also discussed.

Not all topics from the methods chapter are discussed, as some aspects are
beyond the scope of this project. The topics discussed are:

• Scanning
• Rotation
• Stitching
• Communicating with microscope
• Adjusting the specimen plane
• SHG images

49
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Scanning

To illustrate the pros of automated scanning, lets compare it to the manual
approach. By using LAS matrix screener, the procedure is fairly structured. The
manual labor in the scanning would roughly consist of:

1. Count number of rows and columns.
2. Align TMA in microscope.
3. Measure average inter sample displacement.
4. Find the maximum sized specimen spot and measure its size.
5. Define an experiment holding the correct number of rows, columns, dis-

placement between samples and sample size.
6. Update inter sample offsets one by one.
7. Potetially disable fields on specimen spots with smaller size than the

largest.
8. Potentially identify and rule out missing samples.
9. Make sure autofocus positions holds signal (e.g., specimen spot should be

in the autofocus image).
10. Scan.

The procedure was tested out and step 6 was the most labor intensive, browsing
through 126 specimen spots and aligning them. An alignment of one specimen
spot took about 40 seconds, giving 1.5 hours of intensive click-and-adjust. An
error in some of the steps can potentially disrupt steps further down the line,
making the procedure even more time consuming. In example, inaccuracy in
average displacement between samples leads to displacement adjustment of
many wells, accidentally bumping the sample holder could impose restart of the
procedure, and so on.

In addition, it’s easy to “get lost” in the tissue microarray with the limited field
of view. The glass slides holds 14 columns of specimen spots, which is 60 side by
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side non-overlapping images with a 25x objective. This means it’s a must keep
track of the position in the array. If losing track over specimen row and column
position, one needs to go to a reference point, usually the edge of the array, to
get back on track.

A simple means to avoid some of the steps in the intricate procedure above
is using a single scan containing the whole matrix area. The procedure then
simplifies to:

1. Align TMA in microscope.
2. Find outer boundaries.
3. Create predictive focus map or define autofocus for more or less regular

spaced intervals containing a specimen spot.
4. Scan.
5. Separate specimen spots in images and assign row and column to them.

Compared to the first procedure listed, this procedure have the advantage
of being less labor intensive when on the microscope, but manually browsing
through 24 mm · 15 mm / (400 µm)2 = 2250 images may be a daunting task
without a specialized tool.

The main concern with the simple scan was focus and a couple of scans confirmed
this concern by having out of focus portions. The out of focus can be due several
reasons, e.g., inter specimen z-displacement or temperature changes moving the
specimens in z-direction. As the autofocus in LAS runs before the scan, the only
way to tackle temperature changes is by chopping up the scan in several chunks.
As the goal was to reduce manual labor, doing this as a part of the procedure
was not considered viable.

In addition, automated scanning is a low hanging fruit because we have these
conditions:
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• Specimen spots in TMA are relatively easy to discriminate to background.
• Tissue is somewhat aranged.
• Tools in microscope software exists for controlling a scan.

In other words, automated scanning was considered the approach with most
pros and least cons. To avoid the focus trouble, most of the parts in the first
procedure was automated, so the labor for the user of the microscope reduces to:

1. Align TMA in microscope.
2. Find outer boundaries for overview scan.
3. Verify and/or modify specimen spots to scan.
4. Scan.

This was considered to meet the goals; reduce mental overhead when collecting
images from TMA glass slides.

Rotation

LAS comes with a interactive graphical user interface for calibrating the scanning
rotation. When using the rotation calibration a live image is shown with a line
drawn in the middle of the image. The rotation can be adjusted in real time
while moving the stage. A reference point should then follow the line if the
scanning mirror and stage holds the same coordinate system. The user himself
have to find the rotation in a inductive manner by counting pixels or measuring
how far the reference point moves away from the line when moving the stage.
Accuracy depends on how easily the reference point is distinguished from the
rest of the image and how thoroughly the user is with his measurements. In
comparison, the procedure described in the rotation section in the method gives
the same precission in less time.
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Stitching

With 10x objective and 0.75 zoom, maximum field of view is reported as 1550×
1550 µm. Average specimen spot diameter was ≈ 1200 µm. These two facts
would allow for imaging specimen spots into separate images if they were neatly
arranged. This was found not to be true for our dataset, and it would also
burden the user of the microscope to measure and define a scan with correct
inter specimen displacement. A more robust way is therefore to combine all
images into one.

Combining images can be done in interactive manner, where a program loads
images as one “moves” around. But creating this abstraction would demand
for a way other programs can “talk” to the abstract image object. Therefore
a simpler approach was used, stitching all images into one large image. This
allows for any program that can open PNG to work with the images.

First approach on stitching was to use existing stitching software, in specific
the Grid/Collection stitching-plugin of Fiji19. The plugins finds displacements
between images by using phase correlation, and it works fairly well except for the
lack of control when phase correlation fails. The failing of the phase correlation
is mainly due to little entropy in the seam between images. It can be seen
in figure 3.4, where the failed row have to much overlap. The failed row is a
clean cut in the sense that the overlap between the images contain background
only and no specimen. A background surface is fairly uniform and gives a flat
correlation in contrast to the wanted peak which express a match is found. In
other words, the overlap between the images contain too little information for
correlation and the match fails.

In addition to failures of phase correlation, we would also like to constrain stitch
between two images to be in one dimension only. This is due to the systematic
error which may occur if the coordinate systems of stage and scanning pattern
are not the same. E.g., consider two side by side images as in figure 3.3. We know
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that the stage translation is only in x-direction, but the phase correlation tells
us otherwise. As we want to register images into the stage coordinate system,
rotation of scanning mirror is adjusted, but some minor rotation may still be
experienced. This might be due stage inaccuracy, unlinearities in scanning pattern
or wrong match from the phase correlation. Whatever the cause, offsetting images
in dimension only gives at worst an error in X in the end of every stitch, but in
case of offsetting in both dimensions gives at worst a growing error. A way to
overcome this error is by calculating X from the nearest image metadata, but
this was not looked into.

Taking away outliers in the registered translation of figure 3.4 gave standard
deviation of 2.5 pixels, which in the context of overview images gives enough
precission for defining the SHG scan job.

The stitching algorithm can be used with the python package microscopestitching20,
code block 14 show an example of how to use it.

Code block 14 Stitching images with the Python package microscopestitching.

from microscopestitching import stitch
from glob import glob

files = glob('path/to/images/*')
images = []
for i, file in enumerate(files):

# rectangle of 4 rows and len(files)//4 columns
row = i % 4
column = i // 4
images.append((file, row, column))

stitched_image = stitch(images)



COMMUNICATING WITH MICROSCOPE 55

Communicating with microscope

The CAM specification holds 44 commands, which is quite a lot, but to put
the amount of commands in perspective one have to categorize the commands.
When categorizing the commands one find that:

• 13 of the commands requires the user to define a distinct pattern in the
experiment using the graphical user interface, making them semi-automatic.
In example, a CAM-list can be specified, which is a list of fields or wells to
scan. But CAM-list commands are only available if the experiment contain
a halt called “Wait for CAM-command”.

• 13 of the commands are duplicates of settings that can be defined or read
in the experiment’s XML-files. Though this can certainly be useful for
some experiments, e.g., you can change flow of water pump without loading
a new experiment, they are not useful for automating a TMA scan.

• 5 of the commands are duplicate ways for moving the stage. E.g., there is
one command that saves the current stage position and an accompanying
command to return to that position. The same can easily be done by
reading the stage position, saving the position to a variable and using
regular go-to command.

In addition to the notes above, LAS does not read all settings from XML-files.
One example that is a major drawback for automated TMA scanning, is the lack
of support for loading irregular spaced wells. The graphical user interface is able
to save such experiments, but loading an experiment which has wells with offset
is not possible. The load will not fail, but rather silently reset the offset defined
in the scanning template.

The fact that irregular spaced wells cannot be loaded directly lead to the
workaround of loading each specimen spot as a single template. The load time
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for an experiment is about 30 seconds, so total time spent on loading is 126
specimen spots · 30 seconds ≈ 1 hour.

Another limitation is the missing command for taking an single image. To
achieve this, one of the workarounds has to be done:

• Create a template with a single field enabled at the correct position, load
the template and start the scan.

• Create an empty experiment which holds a dummy scan along with the
“Wait for CAM-command”, load this experiment, start the scan, then send
CAM-list commands.

Another drawback is the setup required before one can start communicating
with LAS. The steps are:

1. Open LAS.
2. Chose configuration.
3. Select Matrix Screener.
4. Load experiment that has CAM enabled or create experiment, load it and

enable CAM in the experiment.

The aspects above makes automated scanning with Leica SP8 limited, but still
a lot of labor hours are saved.

Adjusting the specimen plane

Two factors was involved when deciding to develop the stage insert; autofocusing
and glass slides that have considerably tilted specimen plane.

The time of an autofocus depends on how many steps it consists of and which
acquisition parameters are used. With a range of 80 µm and step size of 2 µm,
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it usually takes several seconds. Doing this on all images is not an option, as
autofocusing then uses several hours, even more time than the scanning time
alone takes.

Even if autofocus could solve some z-alignment issues, some glass slides may have
too much tilt in specimen plane to allow autofocus alone to tackle it. E.g., some
slides had coverslip of 170 µm mounted to the end, making the glass slide lean on
the coverslip for one side but not the other. The effect is that a single image will
be out of focus, seen as little signal in edges. This factor forces the adjustment
of specimen plane. Though using a stage insert is not strictly a necessity, one
could for example use tape to align the glass slide. Still, adjusting the specimen
plane with a stage insert was considered beneficial enough to develop it.

SHG images, fibers and machine learning

The main reason for using SHG when scanning the samples it to image tissue
structure. As mentioned, collagen fiber holds the proper conditions to generate
SHG signal. In addition, no prepation other than slicing the tissue with micro-
tome is necessary, which makes SHG an undemanding technique. In the breast
tissue there are few other molecules that generate SHG signal, giving tissue only
images as seen in figure 4.1. Having tissue only images means that tissue can be
analysed directly without any pre-processing of the image.

Image processing can then extract the features. By example, amount of collagen
tissue can be analysed by the intensity in the image, tissue orientation can
be extraxted by analysing the frequency domain21. Other measures might be
matches for known structures like mammary glands channels, Indian files22,
thickness of fiber and so on.

With the features extracted, predictive machine learning may help find releation-
ships in the dataset. Code block 15 shows the concept.
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Figure 4.1: SHG image of a specimen spot with strong fibers going in circle,
typically seen around mammary glands channels.

A benefit of using this approach, is that adding features or trying new models is
cheap in terms of human work. If feature extraction is refined, one can re-run
the model quickly and see if it improves the results. This allows for a new
way of thinking about diagnosis, and can enable the researcher to release the
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Code block 15 Training a model to be able to predict outcome base on a
feature-array.

# model is a DecisionTree, with maximum 4 decisions
# model is improved if choice will decrease remaining data's entropy
clf = tree.DecisionTreeClassifier(criterion='entropy', max_depth=4)
# training the model on 60 patients
clf.fit(fibers.data[0:60], fibers.target[0:60])
# test if the model does work on the rest of the dataset
for i in range(60, len(fibers.files)):

predicted = clf.predict(fibers.data[i]) # predicting
real = fibers.target[i] # real outcome
identifier = fibers.files[i] # identifier for current test
if predicted != real: # prediction failed

print('WRONG! File: %s, Predicted: %s' % (identifier, predicted))
wrong += 1

else: # prediction was right
right += 1

# print total results
print('Right: {}, Wrong: {}'.format(right, wrong))

creativeness and play with the data.
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Chapter 5

Conclusion

A procedure for collecting microscope images of tissue micro arrays and corre-
lating specimen array elements to clinical data has been demonstrated. The
software packages are developed with the Leica SP8 microscope in mind, but
could be adjusted for other microscope that has the ability to scan and export
images by a communication interface.

How a collected dataset along with its outcome can be used in machine learning
has been briefly illustrated, an area of research that most certainly brings exciting
analysis possibilities to the table.
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Chapter 6

Appendix

Python software

The software in this thesis is written in Python due to Python’s cross-platform
support, simple syntax and vast scientific ecosystem. With Python one gets free
access to a lot of scientific software libraries of high quality and top-level support
through channels like Github. As source code for most libraries are available,
stepping into the nitty-gritty details give insight in algorithms and can be very
educational.

Any Python package mentioned in the code blocks is install-able through pip. In
example leicacam can be installed by opening a terminal and type pip install

leicacam. The computer must have pip23 and the required compilers if the
package depends on compiling code. This is true for most of the software,
it depends on fast algorithms implemented in compiled languages like C and
Fortran.

Compiling the huge scientific libraries like numpy and scipy can take a while,
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so it’s recommended to use a Python distribution like Anaconda24. Anaconda
pre-ships with the most common scientific libraries and it also contains the
package manager conda which have pre-compiled packages available for most
operating systems.

Slide map errors

TP2, row 3, col 6 - patient id missing in db: 66
TP6, row 1, col 9 - patient id missing in db: 222
TP3, row 1, col 3 - id 68, wrong TP_nr in db: 3.0 != 2.0
TP6, row 1, col 3 - id 209, wrong TP_nr in db: 6.0 != 4.0
TP6, row 1, col 6 - id 221, wrong TP_nr in db: 6.0 != 5.0

TP22, row 2, col 6 - id 130, wrong TP_nr in db: 22.0 != 3.0
TP22, row 2, col 9 - id 244, wrong TP_nr in db: 22.0 != 5.0
TP22, row 3, col 3 - id 281, wrong TP_nr in db: 22.0 != 6.0
TP22, row 3, col 6 - id 296, wrong TP_nr in db: 22.0 != 6.0
TP22, row 3, col 9 - id 309, wrong TP_nr in db: 22.0 != 6.0
TP22, row 4, col 3 - id 318, wrong TP_nr in db: 22.0 != 6.0
TP22, row 4, col 6 - id 376, wrong TP_nr in db: 22.0 != 7.0
TP22, row 4, col 9 - id 396, wrong TP_nr in db: 22.0 != 8.0
TP22, row 5, col 3 - id 413, wrong TP_nr in db: 22.0 != 8.0
TP22, row 5, col 6 - id 449, wrong TP_nr in db: 22.0 != 9.0
TP22, row 5, col 9 - id 453, wrong TP_nr in db: 22.0 != 9.0
TP22, row 6, col 3 - id 487, wrong TP_nr in db: 22.0 != 10.0
TP22, row 6, col 6 - id 493, wrong TP_nr in db: 22.0 != 10.0
TP22, row 6, col 9 - id 525, wrong TP_nr in db: 22.0 != 10.0
TP22, row 7, col 3 - id 728, wrong TP_nr in db: 22.0 != 15.0
TP3, row 9, col 6 - TP_nr not registered in db for ID_deltaker 140
TP5, row 9, col 9 - TP_nr not registered in db for ID_deltaker 251
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TP9, row 10, col 9 - there should be 3 samples: ['467a-1']
TP9, row 11, col 3 - there should be 3 samples: ['467b-1', '467b-2'])
TP9, row 12, col 6 - there should be 3 samples: ['471a-1', '471a-2']
TP9, row 12, col 9 - there should be 3 samples: ['471b-1']

TP10, row 8, col 6 - there should be 3 samples: ['507-1', '507-2']
TP10, row 12, col 6 - there should be 3 samples: ['525-2', '525-3']
TP11, row 11, col 6 - there should be 3 samples: ['566-1', '566-2']
TP3, row 1, col 3 - patient id did not increment:

['68-1', '68-2', '68-3'] < ['102b-1', '102b-2', '102b-3']
TP4, row 1, col 3 - patient id did not increment:

['162a-1', '162a-2', '162a-3'] < ['163-1', '163-2', '163-3']
TP6, row 1, col 3 - patient id did not increment:

['209-1', '209-2', '209-3'] < ['268-1', '268-2', '268-3']
TP11, row 6, col 3 - patient id did not increment:

['549-1', '549-2', '549-3'] < ['552-1', '552-2', '552-3']
TP22, row 2, col 6 - patient id did not increment:

['130-1', '130-2', '130-3'] < ['3067-1', '3067-2', '3067-3']
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