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Abstract
The interplay between ferromagnetic and superconducting order in hybrid struc-
tures has in recent years attracted considerable interest due to the rich quantum
physics that emerges in such systems in addition to their potential application
value in low-temperature spintronics. In this thesis, we aim to investigate how
spin-supercurrents and the magnetization configuration in ferromagnetic Joseph-
son junctions interact with each other. This is done in the ballistic limit where one
may construct wavefunctions that represent quasiparticle excitations and bound-
states that may carry a supercurrent. Combining this with the Landau-Lifshitz-
Gilbert equation, we find the contribution from the superconducting correlations
to the effective field that determines the time-dependence of the magnetization.
We first consider the scattering states for a domain wall ferromagnet in a Joseph-
son junction. Then we consider a simpler model consisting of a ferromagnetic
bilayer sandwiched by two superconductors. In the latter case, we show that the
superconducting phase difference can be used to switch the magnetization orienta-
tion of the free layer. Our results suggest that it is possible to use superconductors
to control the ground-state configuration of magnetic spin-valves, which in turn
could lead to interesting magnetoresistance-like effects.

i



Sammendrag
Samspillet mellom ferromagnetisk og superledende orden i hybridstrukturer har de
siste årene tiltrukket seg betydelig interesse grunnet den rikholdige kvantefysikken
som fremkommer i slike system i tillegg til deres potensielle bruksomr̊ader i spin-
tronikk. I denne oppgaven sikter vi p̊a å undersøke hvordan spin-superstrømmer
og magnetiseringskonfigurasjonen i ferromagnetiske Josephson overganger p̊avirker
hverandre. Dette gjøres i den ballistiske grensen hvor man kan konstruere bølge-
funksjoner som representerer kvasipartikkeleksitasjoner og bundne tilstander som
kan lede en superstrøm. Ved å kombinere dette med Landau-Lifshitz-Gilbert
ligningen, finner vi bidraget fra de superledende korrelasjonene til det effektive
feltet som bestemmer tidsavhengigheten til magnetiseringen. Vi betrakter først
spredningstilstandene for en domenevegg-ferromagnet i en Josephson overgang.
Deretter ser vi p̊a en enklere model best̊aende av en tolags ferromagnet innek-
lemt mellom to superledere. I det siste tilfellet, viser vi at den superledende
faseforskjellen kan brukes til å snu magnetiseringretningen i det frie laget. V̊are
resultater tyder p̊a at det er mulig å kontrollere grunntilstandskonfigurasjonen til
magnetiske spinnventiler, noe som kan lede til interessante magnetoresistanseffek-
ter.
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Chapter 1

Introduction

Hybrid structures of superconductors and ferromagnets provide a venue for in-

vestigating the interplay between superconductivity and magnetism, which rarely

coexist in bulk materials1. The very different and seemingly incompatible proper-

ties of these materials nevertheless give rise to a variety of interesting effects near

their interfaces [1].

1.1 Coexistence of ferromagnetism and super-

conductivity

Both ferromagnetism and superconductivity are examples of ordered phases which

eschew an explanation in terms of classical physics and can thus be considered

macroscopic manifestation of quantum mechanical behaviour. These phases can

occur when the system is cooled down below a material-dependent critical transi-

tion temperature. While magnetism had been known to exist since ancient times,

superconductivity was first discovered in by Heike Kamerlingh Onnes in 1911 [2],

who observed the vanishing of resistivity in mercury at 4.2 K. A microscopic theory

to described the phenomenom was formulated by Bardeen, Cooper and Schieffer
1A range of materials have been shown to be exceptions to this rule including the uranium-

based heavy fermion compounds.

1



Chapter 1. Introduction 2

in 1957 [3]. A year earlier, Vitaly Ginzburg had considered that superconductivity

would be suppressed by interaction with the vector potential of a magnetic field.

After the BCS theory was introduced it also became clear how superconductivity

would be destroyed by an exchange field. On this basis the relationship between

superconductivity and ferromagnetism were long viewed as antagonistic. This pic-

ture has been challenged in recent years as it has been demonstrated how these

effects can coexist under certain conditions. It is even possible for a material to

be ferromagnetic and superconducting at the same time as has been observed in

UGe2 [4] and URhGe [5] amongst others.

Electrons carry both spin and charge. Conventional electronic devices are based on

the charge of electrons, while leaving the spin degree of freedom unexploited. The

manipulation of the spin degree of freedom is the focus of spintronics [6], which in

recent decades has become an active research field. While the first spin transport

experiments [7, 8] were conducted in ferromagnet-superconductor bilayers, most

of the research done on spintronics has involved spin-polarized resistive currents.

Resistance leads to energy loss through Joule heating [9] and dissipation which

would be minimized by using supercurrents. The combination of superconductivity

and spintronics is currently receiving much attention [10] and offers much new

territory to be explored.

The object of this thesis is to investigate the prospect of using supercurrents to

control the magnetization in a textured ferromagnet which could potentially find

application in low temperature spintronics.

1.2 Outline

We begin by introducing the microscopic theory of superconductivity and ferro-

magnetism in chapters 2 and 3 respectively. This will serve as background for

understanding the phenomena described in chapter 4 on some key aspects of the

relevant effects that arise in hybrid structures consisting of superconductors and

ferromagnets. Chapter 5 sets up a model for deriving the energies of the bound
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states in the junction. Finding these energies is central to our approach as they

contribute to the free energy of the system and thus determine the equilibrium

configuration. In chapter 6 we will study a bilayer structure of two ferromagnets

sandwiched between two superconductors with the aim of obtaining analytical re-

sults. Chapter 7 concludes the thesis with a summary and discussion, followed by

an outlook on future development.



Chapter 2

Superconductivity

The superconducting state differs radically from a normal metal. The most no-

table phenomenological manifestations of superconductivity are the vanishing of

electrical resistivity and the expulsion of magnetic fields, called the Meißner ef-

fect. For type I-superconductor, the expulsion is complete and they are sometimes

called perfect diamagnets. Type II-superconductors will for a certain range of field

strengths allow for inhomogeneous penetration of magnetic flux lines, forming vor-

tices. Both types are characterized by zero resistivity which has been observed by

letting persistent currents flow without attenuation for more than a year.

In this chapter we introduce the microscopic BCS-theory of superconductivity

which explains these properties and other experimental facts observed in con-

ventional (low temperature) superconductors. A microscopic theory of high-Tc
superconductors is still being sought.

2.1 BCS theory

A microscopic theory of superconductivity was presented in a 1957 paper by John

Bardeen, Leon N. Cooper and John R. Schrieffer [3]. The basis of the theory is

the existence of an attractive interaction between electrons which under certain

conditions dominates the repulsive screened Coulomb interaction. In conventional

4



Chapter 2. Superconductivity 5

(BCS) superconductors, the attractive interaction is due to virtual exchange of

phonons, but the mechanism of attraction is not important as the results apply

more generally.

The Hamiltonian for the system can in second quantization language be written

H − µN =
∑
kσ
εkc
†
kσckσ +

∑
kk′

Vkk′c
†
k↑c
†
−k↓c−k′↓ck′↑ (2.1)

, where µ is the chemical potential, which in metals is essentially equivalent to the

Fermi energy, and

εk ≡ εk − µ = ~2k2

2m − µ (2.2)

Henceforth we write simply H in place of H − µN .

2.1.1 BCS mean-field theory

The superconducting phase is characterized by a macroscopic number of Cooper

pairs and the expectation values of the pair annihilation(creation) operators must

be non-zero.

In the mean-field approximation we assume that the fluctuations around the ex-

pectation value are small, so that we can write

c−k↓ck↑ = 〈c−k↓ck↑〉+ c−k↓ck↑ − 〈c−k↓ck↑〉.︸ ︷︷ ︸
δk

(2.3)

By inserting this into the Hamiltonian (2.1) and keeping only terms up to linear

order in the fluctuations, δk, we get

H =
∑
kσ
εkc
†
kσckσ +

∑
kk′

Vkk′
[
〈c−k′↓ck′↑〉δ†k + 〈c†k↑c

†
−k↓〉δk′ + 〈c

†
k↑c
†
−k↓〉〈c−k′↓ck′↑〉

]
=
∑
kσ
εkc
†
kσckσ +

∑
kk′

Vkk′
[
〈c−k′↓ck′↑〉c†k↑c

†
−k↓ + 〈c†k↑c

†
−k↓〉c−k′↓ck′↑ − 〈c†k↑c

†
−k↓〉〈c−k′↓ck′↑〉

]
.
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This is now an effective one-body Hamiltonian. We can make this clearer by

introducing the pairing potential defined by

∆k ≡ −
∑
k′
Vkk′〈c−k′↓ck′↑〉 (2.4)

as well as the constant E0 ≡
∑

k[εk + 〈c†k↑c
†
−k↓〉∆k].

H = E0 +
∑
kσ
εk[c†kσckσ − 1] +

∑
k
−
[
∆kc

†
k↑c
†
−k↓ + ∆∗kc−k↓ck↑

]
(2.5)

By exploiting the fermionic anti-commutation relations (2.8a) and the fact that εk

(2.2) is even in momentum we can rewrite the second term as ∑k εk[c†k↑ck↑−c
†
k↓ck↓]

and use this to emphasize the bilinear form of the mean-field Hamiltonian:

H = E0 +
∑
k

(
c†k↑ c-k↓

) εk −∆k

−∆∗k −εk


 ck↑
c†-k↓

 . (2.6)

The particle-hole operator (ck↑, c†-k↓)T is called a Nambu Spinor.

2.1.2 Diagonalization of the BCS Hamiltonian

Diagonalization of the effective one-particle Hamiltonian (2.5) is accomplished via

the introduction of new fermionic operators

γk↑

γ†-k↓

 =

u∗k −v∗k
vk uk


 ck↑
c†-k↓

 . (2.7)

In order that this transformation preserve the canonical anti-commutation rela-

tions:

{γ†kσ, γk′σ′} = {c†kσ, ck′σ′} = δkk′δσσ′ (2.8a)

{γ†kσ, γ
†
k′σ′} ={c†kσ, c

†
k′σ′} = {γkσ, γk′σ′} = {ckσ, ck′σ′} = 0, (2.8b)
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we must require that

{γ†k↑, γk↑} = {ukc
†
k↑ − v∗kc−k↓, u

∗
kck↑ − vkc

†
−k↓}

= |uk|2 {c†k↑, ck↑}︸ ︷︷ ︸
=1

+|vk|2 {c−k↓, c
†
−k↓}︸ ︷︷ ︸

=1

−u∗kv∗k {ck↑, c−k↓}︸ ︷︷ ︸
=0

−ukvk {c†−k↓, c
†
k↑}︸ ︷︷ ︸

=0

= |uk|2 + |vk|2 = 1. (2.9)

With this constraint (2.7) is a unitary, canonical transformation called a Bogoliubov

transformation. The inverse transformation is now given by

 ck↑
c†-k↓

 =

 uk v∗k

−vk u∗k


γk↑

γ†-k↓

 . (2.10)

This can now be inserted into the Hamiltonian (2.6).

H = E0 +
∑
k

(
γ†k↑ γ-k↓

)u∗k −v∗k
vk uk


 εk −∆k

−∆∗k −εk


 uk v∗k

−vk u∗k


γk↑

γ†-k↓

 (2.11)

The matrix product in the above equation is

εk(|uk|2 − |vk|2) + (∆ku
∗
kvk + c.c.) 2εku

∗
kv
∗
k + ∆∗k(v∗k)2 −∆k(u∗k)2

2εkukvk + ∆kv
2
k −∆∗ku2

k −εk(|uk|2 − |vk|2)− (∆ku
∗
kvk + c.c.)


(2.12)

The off-diagonal terms disappear if we impose the constraint 2εkukvk = ∆∗ku2
k −

∆kv
2
k. The real and imaginary parts of this equation together with the unitarity

condition (2.9) reduce the degrees of freedom for choosing the coefficients uk and

vk from four to one. The remaining degree of freedom allows us to multiply uk

and vk by a common phase factor, ϕk. We fulfill the unitarity condition (2.9) with

the parameterization

uk = ei(ϕk+φk) cos θk, vk = ei(ϕk−φk) sin θk, ∆k = |∆k|eiγk .

The diagonalization constraint then requires the phase of the product ukvk to

equal the phase of the pairing potential (i.e. φk = γk/2), while the real parameter
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θk must satisfy tan θk = |∆k|/εk. The use of some trigonometric identities then

reveals

|uk|2 = 1
2

1 + εk√
ε2

k + |∆k|2

 (2.13a)

|vk|2 = 1
2

1− εk√
ε2

k + |∆k|2

. (2.13b)

.

The resulting Hamiltonian is that of a free fermion quasiparticle gas

H = E0 +
∑
k
Ek(γ†k↑γk↑ − γ†-k↓γ-k↓), (2.14)

with dispersion relation

Ek =
√
ε2

k + |∆k|2 (2.15)

The dispersion relation reveals the role of |∆k| as a gap in the quasiparticle exci-

tation spectrum. This energy gap makes the BCS ground state stable.

2.1.3 Bogolons

The quasiparticles, sometimes called bogolons, They are mostly electron(hole)-

like far above (below) the Fermi surface. Only close to the Fermi surface do the

bogolons consist of electrons and holes of comparable amplitudes. We recover the

normal state in the limit ∆k → 0. Then the dispersion (2.15) is simply |εk| and

(2.13) reduces to

|uk|2 = 1
2

1 + εk

|εk|

 =


1 if εk > 0

0 if εk < 0
(2.16a)

|vk|2 = 1
2

1− εk

|εk|

 =


0 if εk > 0

1 if εk < 0
(2.16b)
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We see that in the normal state the quasiparticles created are electrons (holes) for

energies above (below) the Fermi energy.

2.1.4 Bogoliubov-de Gennes equations

The Bogoliubov-de Gennes (BdG) equations [11] generalize the BCS formalism

to treat superconductors with spatially varying pairing strength ∆(x), chemical

potential µ(x), and Hartree potential V (x).

In the ballstic limit when spin-flip processes can be neglected, the time-evolution

of the quasiparticle state is determined by

i~
∂

∂t

u(x)

v(x)

 =

H(x) ∆(x)

∆∗(x) −H∗(x)


u(x)

v(x)

 (2.17)

where

H(x) = 1
2m(−i~∇− e

c
A(x))2 − µ(x) + V (x). (2.18)

Where x is simply the spatial coordinate. The pairing potential ∆(x) has to be

determined self-consistently, although this will not be our task here.



Chapter 3

Ferromagnetism

Micromagnetism describes magnetism at a length scale that is large enough to

make the continuum approximation and consider the magnetization as the average

of many magnetic moments instead of considering the individual spins separately.

At the same time the scale is fine enough to resolve the individual domains of a

ferromagnet.

3.1 Free energy of a ferromagnet

The main contributions to the free energy of a ferromagnet include exchange en-

ergy, anisotropy energy and magnetostatic energy. All of these interactions tend

to align the spin in the same direction. When a macroscopic number of spins

point in the same direction, a stray field will form. In order to minimize the stray

field, it may be energetically favourable for the ferromagnets to split into domains.

The regions between such domains are called domain walls. In the next section

we will show how to find the shape of such a wall in the kinds of systems we are

considering.

10
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The equilibrium magnetization is found by varying the free energy functional of

the system. This gives the effective field

Heff = − δF
δM

, (3.1)

which plays a central role in the dynamics of the magnetization.

———————————————

3.2 Equilibrium magnetization in a nanowire

We will consider a system with no external field where the main contributions to

the free energy comes from exchange interactions and anisotropy. The magnitude

of M(x) is the saturation magnetization, Ms, which does not depend upon x. We

define the unit direction vector

m(x) = M(x)
Ms

. (3.2)

It will be useful to express m(x) in Cartesian as well as spherical coordinates

m(x) =


mx

my

mz

 =


cosϕ sin θ

sinϕ sin θ

cos θ

 . (3.3)

A magnetization along the wire could produce an important magnetic field in the

superconductor. We choose an easy axis along the z-axis and hard axis along the

x-axis.

The free energy per area for this system is

F =
∫

dx
[
A(∂xm)2 −Km2

z +K⊥m
2
x

]
, (3.4)
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where A is the exchange stiffness and K and K⊥ are anisotropy constants. We

assume that K⊥ � K.

With m expressed in spherical coordinates we have up to a constant

F =
∫

dx
[
A(∂xθ)2 + A sin2 θ(∂xϕ)2 + sin2 θ(K +K⊥ cos2 ϕ)

]
. (3.5)

A stationary configuration fulfills the Euler−Lagrange (EL) equations

δF
δθ

= sin 2θ
[
A(∂xϕ)2 +K +K⊥ cos2 ϕ

]
− 2A∂2

xθ = 0, (3.6)

δF
δϕ

= − sin2 θ
[
K⊥ sin 2ϕ+ 2A∂2

xϕ+ 4A cot θ(∂xθ)(∂xϕ)
]

= 0. (3.7)

If we assume ϕ is independent of x (i.e. ∂xϕ = 0), the EL equation for ϕ reduces

to sin 2ϕ = 0. The stable configuration has ϕ = ±π
2 , which means the DW lies

wholly in the yz-plane (i.e. perpendicular to the hard axis). The EL equation for

θ becomes ∂2
xθ = 1

λ2 sin θ cos θ, where we have introduced the domain wall width

λ =
√

A
K

. We exploit that ∂θ(∂xθ)2 = 2∂2
xθ and obtain (∂xθ)2 = 1

λ2 sin2 θ + const.

To determine the integration constant we must specify the boundary conditions.

We imagine a semi-infinite ferromagnet where the magnetization (3.2) is homoge-

neous far from the domain wall (DW) and goes from pointing along −ẑ at −∞ to

+ẑ at +∞. This gives the boundary conditions

lim
x→±∞

∂xθ = 0, lim
x→±∞

cos θ = ±1. (3.8)

This is satisfied by ∂xθ = − 1
λ

sin θ. By separation of variables, we get

x = −λ
∫ dθ

sin θ = −λ
∫ 2i eiθ dθ

e2iθ−1 = −λ
∫ 2du
u2 − 1

= −λ ln u− 1
u+ 1 +X + iπλ = −λ ln tan θ

2 +X (3.9)
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The integration constant, X, has a physical interpretation as the center of mass

(CM) of the DW. Solving for θ(x) we get

θ(x) = 2 arctan exp(−x−X
λ

). (3.10)

By inserting (3.10) into (3.2) with ϕ = ±π
2 we see that the equilibrium shape

of the domain wall is m(x) = (0,± sech(x−X
λ

), tanh(x−X
λ

))T . The magnetization

turns in the plane of the wall. This is called a Néel wall or transverse wall.

Later on we want to consider a slow time dependence of X and ϕ1. In anticipation

of this we reinstate an arbitrary ϕ and the magnetization becomes

m(x) =


cosϕ sech(x−X

λ
)

sinϕ sech(x−X
λ

)

tanh(x−X
λ

)

 . (3.11)

3.3 Magnetization Dynamics

The motion of the magnetization in a solid is described by the Landau-Lifshitz-

Gilbert equation [12]

∂m
∂t

= γm×Heff + αm× ∂m
∂t

, (3.12)

where γ is the gyromagnetic ratio and α is the Gilbert damping constant. By

the use of an identity from vector calculus, the LLG equation can be shown to be

mathematically equivalent to the earlier Landau-Lifshitz equation,

∂m
∂t

= γm×Heff − λm×m×Heff , (3.13)

which clearly shows that the magnetization will be at rest when it is aligned with

the effective field.

1For the equilibrium solution to remain valid, ϕ must stay close to its value at the minimum.
It is thus safe to assume that K � K⊥ cos2 ϕ so that the time dependence of λ can be neglected.
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Hybrid structures

When materials with different long-range order are placed in good contact, new

physical phenomena can arise at their interface. The Cooper pairs from super-

conductor will leak into a nearby normal metal where they can survive over con-

siderable lengths. This is called the proximity effect. A similar effect occurs in

superconductor/ferromagnet junction [1], though the penetration length is much

shorter due to the pair breaking effect of the exchange field. While in an S/N-

junction the pair amplitude decays monotonically, in an S/F-junction it oscillates

as will be explained below.

4.1 Josephson effect

The Josephson effect [13] is the phenomenon that a current can flow through

a nonsuperconducting junction even in the absence of a voltage bias. At finite

temperature , the equilibrium current I in a Josephson junction is found by dif-

ferentiating the free energy F of the junction with respect to the phase difference

φ between the two superconductors

I(φ) = 2e
~
∂F

∂φ
(4.1)

14
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4.2 Andreev reflection

Transmission of an electron with energy less than the superconductor gap from a

normal (N) metal through an interface to a superconductor (S) is forbidden to the

absence of available quasiparticle states. In order for charge to be conserved when

an incident electron from the N side impinges on the barrier to a superconductor, it

will be reflected as a hole while a Cooper pair is generated in the superconductor.

This process is called Andreev reflection as it was discovered by Alexandr Andreev

in 1964 [14].

4.3 Proximity effect in superconductor/ferromag-

net junctions

A conventional Cooper pair consists of two electrons with momenta on the opposite

side of the Fermi surface in a singlet state. We can write this state as

1√
2

(| ↑,k〉| ↓,−k〉 − | ↓,k〉| ↑,−k〉) (4.2)

In a ferromagnet, the electronic bands for spin-up and spin-down are split by an

amount 2Eex. Consequently a Cooper pair acquires a center-of-mass momentum,

leading to an inhomogeneous phase where the pair amplitude is oscillates with

wavenumber corresponding to the CM momentum. This is called a FFLO phase as

it was independently discovered in 1964 by Peter Fulde and Richard Ferrell [15] and

by Anatoly Larkin and Yurii Ovchinnikov [16]. The oscillations do not penetrate

far into the ferromagnetic region because the Zeeman field in the ferromagnet

tends to align the spins and thereby breaking up the singlet state [1].
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4.4 Induced spin-triplet pairing

Long range superconducting correlations in a ferromagnet requires that the Cooper

pairs are formed by electrons of equal spin. The pair correlation function is re-

quired to be antisymmetric with respect to interchanging two fermions in order to

obey the Pauli exclusion principle [17]. The conventional pairing for the Cooper

pairs in BCS-theory is an s-wave spin singlet that is even in momentum and

Matsubara frequency. Yet as long as the overall symmetry is odd, several other

possibilities are allowed as described in [18]. One example of which is the odd

triplet pairing which is odd in frequency with s-wave equal-spin triplet pairing

(see review [19]). The equal-spin Cooper pairs are not broken apart by the ex-

change field and can penetrate up to hundreds of nanometer into a ferromagnet

[20]. This remains valid even if the ferromagnet is a half-metal where only one spin

conductance channel is available [21, 22]. For an explanation on how triplet pair-

ing can be induced in a conventional singlet superconductor junction containing a

textured ferromagnet or spin-active barriers, see [23] or [10].

4.5 Spin-transfer torque

A spin-polarized current carries angular momentum which can affect the orienta-

tion of the magnetization in a ferromagnet [24–26]. This phenomenon is called a

spin-transfer torque after Slonczewski [27]. In the case of resistive currents, this

effect has been devoted much attention (see e.g. [28] for a review on current-driven

domain wall motion). Also the case of magnetization dynamics with supercurrent

has been studied in several works [29–32]. Yet more work needs to be done to

clarify how the Andreev bound state spectrum can be used to derive the interplay

between superconducting phase difference φ and the magnetization orientation

[33]. The relationship is complicated as they have a feedback effect on each other

[34]. We come back to this in chapter 6 after we have seen how to find the Andreev

bound states.



Chapter 5

Andreev bound states

The purpose of this chapter is to show how find the energy levels of the Andreev

bound states (ABS) in a superconductor/ferromagnet/superconductor (S/F/S)

junction in the ballistic limit of low impurity density. Here we define the math-

ematical model of the system and present the formalism in the context of our

model.

We assume that the characteristic time for the magnetization to vary, is long com-

pared to the time scale of the scattering problem (τm � ~∆−1
0 ). We can therefor

regard the system as time independent while we determine the ABS energies. In

other words, we are considering an adiabatically changing magnetization such that

the system is considered to be in a quasi-equilibrium state at all times.

5.1 Blonder-Tinkham-Klapwijk theory

We derive the ABS energies in a scattering framework, using the BdG equations

to treat transmission and reflection at the interfaces. This approach is known as

the Blonder-Tinkham-Klapwijk (BTK) theory [35] and was originally applied to

transport through an N/S interface. It has since been extended by several authors

to encompass various effects in F/S junctions [36, 37]. .

17
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The BTK model is named after G.E. Blonder, M. Tinkham and T.M. Klapwijk

who in 1982 [35] presented a unified treatment of transport through a N/S.

While most earlier work had relied on the transfer Hamiltonian, BTK applied

the scattering formalism, using the BdG-equations to treat the transmission and

reflection of particles at N-S interface [35]. By including a potential barrier of ar-

bitrary strength at the interface encompassing both the tunneling and the metallic

limits, as well as the intermediate regime.

5.2 Model and formalism

We consider an S/F/S-junction of width L parallel to the x-axis. The ferromag-

netic region contains a domain wall. The leads are conventional s-wave singlet

superconducting electrodes. The leads are isotropic in the yz-plane. We assume

that the wavefunction is separable and that the nontrivial spatial variation is con-

fined to the x-axis. The y- and z-dependence can then be factored out of the

wavefunction

Ψ(r) = Ψ(x) ei(kyy+kzz) (5.1)

We will omit the trivial y- and z-dependence and treat the system as effectively

one-dimensional and let

kF →
√
k2
F − k2

y − k2
z . (5.2)

5.2.1 Basis and notation

Since spin-flip processes can occur at the interfaces it is necessary to consider

the full spin⊗Nambu (particle-hole) space and a four-component wave function

Ψ(x) = (u↑(x), u↓(x), v↑(x), v↓(x))T which represents the state

|Ψ(x)〉 =
∑
σ

[uσ(x)|e〉+ vσ(x)|h〉]⊗ |σ〉, (5.3)
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where {e, h} is the particle-hole index and σ ∈ {↑, ↓} is the spin index, giving the

spin-orientation with respect to the quantization axis, which we take to be the

z-axis.

We use boldface letters to denote 3-vectors, an arrow above 2-vectors and put a

hat on 2x2-matrices. We denote the Pauli matrices with σ̂i in spin space and τ̂i in

Nambu space. Together with the 2x2-identity matrix which we denote σ̂0 in spin

space, the Pauli matrices form a basis for the Hilbert space of 2x2-matrices:

σ̂0 =

1 0

0 1

 , σ̂1 =

0 1

1 0

 , σ̂2 =

0 −i

i 0

 , σ̂3 =

1 0

0 −1

 . (5.4)

Ψ(x) is a four-component spin-polarized quasiparticle state. The upper half has

the dynamics of a electronlike spinor, while the lower half is effectively a holelike

spinor. For a nonzero order parameter, ∆̂(x), the two halves are not independent.

5.2.2 Bogoliubov-de Gennes equations

The quasiparticle propagation throughout the system is governed by the BdG-

equations  Ĥ0(x) ∆̂(x)

−∆̂∗(x) −Ĥ∗0 (x)

Ψ(x) = EΨ(x). (5.5)

,

where Ĥ0(x) is the single-particle Hamiltonian that remains in the case of a van-

ishing pairing potential and ∆̂(x) is the mean-field order parameter. For s-wave

pairing it takes the form ∆̂(x) = iσ̂2∆(x).

The order parameter is taken to be constant in each of the superconducting regions

with equal magnitude (same material), but the phase may be different in the two

S regions separated by the junction. With s-wave pairing we have

∆̂(x) = iσ̂2∆0[eiφLΘ(−x) + eiφRΘ(x− L)] (5.6)
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We assume that the dominant contribution of the magnetic field to the energy

of the ferromagnetic region is the Zeeman term so that we can neglect making

the minimal substitution in the momentum operator, p̂ = −i~∇. The magneti-

zation is assumed to depend only on the x-coordinate. The magnetic part of the

Hamiltonian is thus

ĤZ(x) = −hσ ·m(x) (5.7)

where σ = (σ̂1, σ̂2, σ̂3) is the Pauli vector, m(x) is the local magnetization direction

and h represents the strength of the effective exchange field. The single-particle

Hamiltonian Ĥ0(x) changes abruptly at the interfaces:

Ĥ0(x) = ĤS[Θ(−x)+Θ(x−L)]+ĤF (x)Θ(x)Θ(L−x)+ V̂ [δ(x)+δ(x−L)], (5.8)

where ĤS = hSσ̂0 and ĤF = hF σ̂0 + ĤZ with hS/F = − ~2

2mS/F
d2

dx2 − µS/F . We have

allowed for different effective masses and Fermi energies in the ferromagnet and

superconductor, distinguished by a subscript.

5.2.3 Spin-active interfaces

We model the interfaces by a δ-function potential barrier which consist of a spin-

independent part of strength V0 and spin-active part of strength ρV0. This barrier

has the form [38]

V̂ = V0[σ̂0 − ρ · σ] = V0

 1− ρz −(ρx − iρy)

−(ρx + iρy) 1 + ρz

 . (5.9)

where ρ is a vector parallel to the magnetic moment at the interface. Its magnitude

ρ effectively measures the relative importance of the spin-independent and the

spin-dependent parts of the potential.
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5.2.4 Boundary conditions

Charge conservation mandates continuity of the wave function which implies

ΨL(0) = ΨF (0) ≡ Ψ(0), (5.10)

ΨR(L) = ΨF (L) ≡ Ψ(L). (5.11)

On the other hand, the derivative of the wave function is not continuous in the

case of a δ-function barrier. In order to get the appropriate boundary conditions

on the derivative, we integrate the BdG-eq. (5.5).

0 = lim
ε→0

∫ ε

−ε
EΨ(x)dx = lim

ε→0

∫ ε

−ε

 Ĥ0 ∆̂

−∆̂∗ −Ĥ∗0

Ψ(x)dx

=

V̂ 0

0 −V̂ ∗

Ψ(0) + lim
ε→0

∫ 0−

−ε

 ĤS ∆̂

−∆̂∗ −Ĥ∗S

ΨL(x)dx+ lim
ε→0

∫ ε

0+

ĤF 0

0 −Ĥ∗F

ΨF (x)dx

=

V̂ 0

0 −V̂ ∗

Ψ(0) + ~2

2mS

lim
ε→0

∫ 0−

−ε

−I 0

0 I

Ψ′′L(0)dx+ ~2

2mF

lim
ε→0

∫ ε

0+

−I 0

0 I

Ψ′′F (0)dx

=

V̂ 0

0 −V̂ ∗

Ψ(0)− ~2

2mS

−I 0

0 I

Ψ′L(0) + ~2

2mF

−I 0

0 I

Ψ′F (0)

Changing the sign of the lower equations and moving the derivatives to the left-

hand side results in

~2

2mF

Ψ′F (0)− ~2

2mS

Ψ′L(0) =

V̂ 0

0 V̂ ∗

Ψ(0). (5.12)

Similarly, integration over the second interface yields

~2

2mS

Ψ′R(L)− ~2

2mF

Ψ′F (L) =

V̂ 0

0 V̂ ∗

Ψ(L). (5.13)
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5.3 Superconducting region

The solutions in either superconducting region are plane waves of the form

Ψk(x) =



uk↑

uk↓

vk↑

vk↓


eikx . (5.14)

The effect of hS(5.8) on the plane wave solutions is equivalent to multiplication

with the kinetic energy relative the Fermi level, εk = ~2k2

2mS − µS.

The BdG matrix equation (5.5) becomes



εk 0 0 ∆0eiφ

0 εk −∆0eiφ 0

0 −∆0e−iφ −εk 0

∆0e−iφ 0 0 −εk





uk↑

uk↓

vk↑

vk↓


= E



uk↑

uk↓

vk↑

vk↓


(5.15)

For this system to have nontrivial solutions, we must have E2 = ε2
k + ∆2

0. There

are two roots for E of which only the positive one pertains to the excitations above

the ground state (E > 0) with which we are concerned. The corresponding wave

vectors have magnitude

k± = kS

√√√√1± (E2 −∆2
0)1/2

µS
, (5.16)



Chapter 5. Andreev bound states 23

where kS =
√

2mSµS/~ is the Fermi vector in the superconductor. The eight

(non-normalized) linearly independent solutions are

Ψ±e↑(x) =



ueiφ/2

0

0

ve−iφ/2


e±ik

+x, Ψ±e↓(x) =



0

ueiφ/2

−ve−iφ/2

0


e±ik+x, (5.17)

Ψ±h↑(x) =



veiφ/2

0

0

ue−iφ/2


e±ik

−x, Ψ±h↓(x) =



0

−veiφ/2

ue−iφ/2

0


e±ik

−x, (5.18)

where u and v are the BCS coherence factors

u =
√

1
2

[
1 + (E2 −∆2

0)1/2

E

]
, (5.19a)

v =
√

1
2

[
1− (E2 −∆2

0)1/2

E

]
. (5.19b)

Above the gap, u, v and k± are real and we can write (5.19) as

u =
√

∆0

2Ee
1
2 arcosh E

∆0 , (5.20a)

v =
√

∆0

2Ee
− 1

2 arcosh E
∆0 . (5.20b)

The solutions (5.17) represent propagating modes which carry current. Charge

conservation mandates unitarity of the S-matrix. To obtain the subgap mode we

can write (5.20) as

u = eβ/2√
2 cosh 2β

, v = e−β/2√
2 cosh 2β

(5.21)

and analytically continue the parameter β to subgap energies

β =


arcosh E

∆0
, E > ∆0

i arccos E
∆0
, E < ∆0

(5.22)
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Wave directions are defined by their group velocity

vg = ∂E

∂~k
= εk
E

~k
mS

. (5.23)

For excitations above the ground state (E > 0), the waves eik+x and e−ik−x are

right-moving, whereas e−ik+x and eik−x are left-moving.

The wave vectors (5.16) acquire imaginary parts for subgap excitations (|E| <

∆0). Such excitations must vanish in the bulk superconductor, so only the waves

outgoing from the interfaces can propagate in the superconducting region. Thus

the wave functions in the left (L) and right (R) regions are

ΨL(x) = a1Ψ−e↑(x) + a2Ψ−e↓(x) + a3Ψ+
h↓(x) + a4Ψ+

h↑(x), (5.24)

ΨR(x+ L) = b1Ψ+
e↑(x) + b2Ψ+

e↓(x) + b3Ψ−h↓(x) + b4Ψ−h↑(x). (5.25)

The origin has been shifted in (5.25) to simplify the boundary equations at x = L.

Shifting the origin simply amounts to absorbing a phase factors in the coefficients,

bi. It is understood that the phase φ appearing in (5.17) is different in the left and

the right regions. We can write (5.24) and (5.25) more explicitly:
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ΨL(x) =a1



ueiφL/2

0

0

ve−iφL/2


e−ik+x + a2



0

ueiφL/2

−ve−iφL/2

0


e−ik+x

+a3



0

−veiφL/2

ue−iφL/2

0


eik
−x + a4



veiφL/2

0

0

ue−iφL/2


eik−x

ΨR(x) =b1



ueiφR/2

0

0

ve−iφR/2


eik+(x−L) + b2



0

ueiφR/2

−ve−iφR/2

0


eik+(x−L)

+b3



0

−veiφR/2

ue−iφR/2

0


e−ik−(x−L) + b4



veiφR/2

0

0

ue−iφR/2


e−ik−(x−L)

5.4 Ferromagnetic region

In the ferromagnetic region, the superconducting order parameter is zero so that

the Schrödinger equation (5.5) for the upper and lower components of the eigen-

vectors, ΨF (x), decouple.

ĤF (x) 0

0 −Ĥ∗F (x)

ΨF = EΨF (5.26)

The problem can thus be simplified by splitting the four-component ΨF (x) into

two pseudo-spinors, ~f(x) and ~g(x), describing electrons and holes1 respectively.
1We refer to these states as ”holes” because they obey the time-reversed Schrödinger equation
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ΨF =

~f(x)

~g(x)

 , where ~f(x) =

f↑(x)

f↓(x)

 and ~g(x) =

g↑(x)

g↓(x)

 . (5.27)

If ~f(x) is an eigenvector of the hermitian operator ĤF (x) with eigenvalue E, then
~f ∗(x) is an eigenvector of −Ĥ∗F (x) with eigenvalue −E. The hole states can thus

be obtained from the electron states by complex conjugating and switching the

sign of the energy.

The Hamiltonian contains a Zeeman term (5.7) which depends on the magnetiza-

tion. Thus, in order to find the wave function, we must first determine the shape

of the domain wall. For the ferromagnet described in section 3.2, where we de-

rived the magnetization m(x) = (cosϕ sech(x−X
λ

), sinϕ sech(x−X
λ

), tanh(x−X
λ

))T ,

we get

ĤZ = −h

 tanh(x−X
λ

) e−iϕ sech(x−X
λ

)

eiϕ sech(x−X
λ

) − tanh(x−X
λ

)

 . (5.28)

5.4.1 Trigonometric domain wall

As an approximation to the hyperbolic form in (3.11) we will consider a ferro-

magnetic region divided into two homogeneous domains of opposite orientations

separated by a trigonometric wall. This greatly simplifies our problem as the ho-

mogeneous case is trivial and we know the trigonometric wall permits an exact

expression for the wavefunction [39].

m(x) =


(cosϕ cos(x−X

λ
), sinϕ cos(x−X

λ
), sin(x−X

λ
))T , for |x−X| < π

2λ

(0, 0, sgn(x−X))T , for |x−X| ≥ π
2λ

(5.29)

The boundaries are placed at x = X ± π
2λ to ensure a continuous magnetization

throughout the ferromagnetic region. We note that the limit λ→∞ corresponds

to a homogeneous magnetization in the xy-plane. We will use this as a check on

our solutions.
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Outside the domain wall (|x − X| ≥ π
2λ) the magnetization is homogeneous par-

allel or anti-parallel to the z-axis and the Schrödinger equation becomes

ĤF
~f(x) = −

[ ~2

2mF

d2

dx2 + µF + h sgn(x−X)σ̂3

]
~f(x) = E ~f(x). (5.30)

The solutions are the one-component plane waves

~f±↑ (x) =

1

0

 e±iq↑x, ~f±↓ (x) =

0

1

 e±iq↓x. (5.31)

with eigenvalues

Eσ = ~2q2
σ

2mF

− µF − h sgn(x−X)σ. (5.32)

The corresponding wave vectors have magnitude

qσ =
√

2mF

~2 (µF + Eσ + h sgn(x−X)σ). (5.33)

As the relevant energies are negligible compared to the Fermi energy, this reduces

to

qσ =
√

2mF

~2 (µF − h sgn(x−X)σ) = qF
√

1 + 2b sgn(x−X)σ, (5.34)

where b = h/2µF and qF =
√

2mFµF/~ is the Fermi vector in the ferromagnet

and σ = ±1 is positive for spin-up, so that on either side of the domain wall the

majority spins have larger wave vector for a given energy.

Since the Hamiltonian is real, the hole states are the same as those for electrons,

but with the sign of the energies switched. Since we are neglecting the energy

anyway, this sign change has no effect and we can use the same basis functions for

holes and electrons.

Inside the domain wall (|x−X| < π
2λ) the Zeeman term becomes

ĤZ = −h

 sin(x−X
λ

) e−iϕ cos(x−X
λ

)

eiϕ cos(x−X
λ

) − sin(x−X
λ

)

 (5.35)
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It is useful [40] to introduce a local spin basis where the spin orientations are

(anti)parallel to the local magnetization m(x). In this basis the Zeeman term

is diagonal: ĤL
Z = −hσ̂3. The local and external bases are related by a unitary

transformation |x, ↑L〉
|x, ↓L〉

 = UT (x)

|x, ↑〉
|x, ↓〉

 (5.36)

We obtain the full local Hamiltonian by a unitary transformation from the external

basis

ĤL
F = U †ĤFU, (5.37)

where U(x) is the unitary matrix

U(x) =

 cos(x−X2λ −
π
4 ) e−iϕ sin(x−X2λ −

π
4 )

−eiϕ sin(x−X2λ −
π
4 ) cos(x−X2λ −

π
4 )

 . (5.38)

After transforming the differential operator,

U †
d2

dx2U = U †
[
U

d2

dx2 +
(d2U

dx2

)
+ 2

(dU
dx

) d
dx

]
, (5.39)

we obtain the local Hamiltonian

ĤL
F = − ~2

2mF

[ d2

dx2 −
1

4λ2 + 1
λ

 0 e−iϕ

−eiϕ 0

 d
dx

]
− µF − h σ̂3. (5.40)

The spinors we have expressed in the external basis can equivalently be expressed

in the local basis:

|e〉 = f↑(x)|x, ↑〉+ f↓(x)|x, ↓〉 = fL↑ (x)|x, ↑L〉+ fL↓ (x)|x, ↓L〉

|h〉 = g↑(x)|x, ↑〉+ g↓(x)|x, ↓〉 = gL↑ (x)|x, ↑L〉+ gL↓ (x)|x, ↓L〉

The change-of-basis matrix is again U(x) (5.38) so that the Schrödinger equation

(5.26) is still valid in the new basis:

ĤL
F
~fL = U †ĤFUU

† ~f = U †E ~f = E ~fL (5.41)
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The eigenfunctions are most easily found in the local basis where (5.26) becomes

ĤL
F (x) 0

0 −ĤL∗
F (x)


~fL(x)

~gL(x)

 = E

~fL(x)

~gL(x)

 . (5.42)

We solve the two decoupled equations separately by first making an anzats for the

electron states

~fL(x) =

C↑
C↓

 eiqx, while ~gL(x) = 0. (5.43)

Now the Schrödinger equation becomes a simple linear algebra problem. The

energies, E, and the solutions, (C↑, C↓)T , are the eigenvalues and eigenvectors of

the matrix
 ~2

2mF (q2 + 1
4λ2 )− µF − h ie−iϕ ~2

2mF
q
λ

−ieiϕ ~2

2mF
q
λ

~2

2mF (q2 + 1
4λ2 )− µF + h

 . (5.44)

From the characteristic equation, we obtain the eigenvalues

E = −µF + ~2

2mF

(
q2 + 1

4λ2

)
∓
√

(h)2 +
( ~2

2mF

q

λ

)2
. (5.45)

The eigenvectors with eigenvalues (5.45) satisfy

C↑
C↓

= ∓ie−iϕ(q/qF )√
(q/qF )2 + (b/a)2 ∓ b/a

, where a = (2λqF )−1, b = h/2µF . (5.46)

We demand that the eigenvectors be normalized according to |C↑|2 + |C↓|2 = 1,

which gives

|C↑|2 = 1
2

1± b/a√
(q/qF )2 + (b/a)2

, |C↓|2 = 1
2

1∓ b/a√
(q/qF )2 + (b/a)2

. (5.47)

The corresponding wave vectors are the positive and negative square roots of

q2
± = 1

4λ2 + 2mF

~2

µF + E ±
√
h2 + ~2

2mF

µF + E

λ2

. (5.48)
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We note that these wave vectors are the same as those obtained in [33] for Joseph-

son junction with a trigonometric DW, though our notation is different. When the

energy dependence is neglected, the magnitude of the wave vectors of the bound

states in the domain wall are determined by characteristics of the material and can

be written in terms of the Fermi wave vector and the parameters a and b defined

above

q± = qF

√
1 + a2 ± 2

√
a2 + b2. (5.49)

The dimensionless parameters a and b measure the relative importance of the

effective exchange energy (represented by λ and h) compared to the Fermi level

(represented by qF and µF ). They can be used to explore various limits. We

first check the case of a homogeneous ferromagnet which corresponds to letting

a → 0 (λ → ∞) and get back our results from the homogeneous domains: q± =

qF
√

1± 2b. The limit b << a (hλ << µF/qF ) corresponds to a weak exchange

field and narrow DW and yields q± = qF

[
1±a± b2

2a(1±a)

]
and in the limit of a long

DW and somewhat weak exchange a << b << 1, q± = qF
√

1± 2b
[
1± a2

2b
1±b
1±2b

]
≈

qF

[
1± b± a2

2b (1± b)
]
.

From (5.47) we see that the relative phase factor between the components is

∓i e−iϕ sgn(q). In analogy with (5.21) we write

|C±σ | =

√√√√√1
2

1± b/a√
(q/qF )2 + (b/a)2

 = e±σα±/2√
2 cosh 2α±

, α± = arcosh

√√√√1 + q2
F b

2

q2
±a2

(5.50)

Now the basis of the solution space can be written

1√
2 cosh 2αs

 e−iϕ/2 esαs/2

±si eiϕ/2 e−sαs/2

 e±iqs(x−X), (5.51)

where s = {+,−} and q± are the positive square roots of (5.48).

The hole states can be obtained from the electron wave vectors by complex con-

jugating and changing the sign of the energy, E, in (5.48). Since the energies are

negligible compared to the Fermi energy, the sign change has no effect and complex
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conjugation is all that is needed. We are now ready to write out the full expression

for the wave function inside the domain wall in the local basis: ΨL
F (x) =

c1



e−iϕC+
↑

iC+
↓

0

0


eiq+x + c2



e−iϕC+
↑

−iC+
↓

0

0


e−iq+x + c3



e−iϕC−↑

−iC−↓
0

0


eiq−x + c4



e−iϕC−↑

iC−↓

0

0


e−iq−x+

d1



0

0

eiϕC+
↑

iC+
↓


eiq+x + d2



0

0

eiϕC+
↑

−iC+
↓


e−iq+x + d3



0

0

eiϕC−↑

−iC−↓


eiq−x + d4



0

0

eiϕC−↑

iC−↓


e−iq−x

(5.52)

The boundary conditions (5.2.4) are expressed in the external basis. So we should

identify the matrix that transforms the local wave functions into the external basis

via

ΨF (x) = U4x4(x)ΨL
F (x). (5.53)

The Schrödinger equation in the local basis (5.42) is equivalent to its expression

in the external basis (5.26) if the coordinate vectors are related by

~f(x)

~g(x)

 =

U(x) 0

0 U∗(x)


~fL(x)

~gL(x)

 . (5.54)

Thus, the matrix that connects the representations of the wave function in the

local and external bases is

U4x4(x) =



c e−iϕs 0 0

−eiϕs c 0 0

0 0 c eiϕs

0 0 −e−iϕs c


. (5.55)
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We write c = cos(x−X2λ −
π
4 ) and s = sin(x−X2λ −

π
4 ) to shorten our notation. We

will need the derivative of U4x4(x) which is

U ′4x4(x) = − 1
2λ



s −e−iϕc 0 0

eiϕc s 0 0

0 0 s −eiϕc

0 0 e−iϕc s


. (5.56)

5.4.2 Local basis

We have seen the usefulness of the local spin basis for a trigonometric DW. We

now use this approach on a more general DW, with the magnetization determined

by the angles (θ, ϕ) as in (3.3). Without committing to a particular choice of ϕ

and θ = θ(x), we write the Zeeman term in spherical coordinates

ĤZ = −h

 cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

 , (5.57)

and seek solutions to the Schrödinger equation for electrons in the ferromagnet

f ′′↑
f ′′↓

 = −2mF

~2

E + µF + h

 cos θ e−iϕ sin θ

eiϕ sin θ − cos θ



f↑
f↓

 (5.58)

The matrix of the Zeeman term (5.57) is hermitian for any magnetization and is

diagonalizable by a unitary matrix2. The eigenvalues are ±h and the eigenspace

has an orthonormal basis consisting the column vectors of the unitary matrix

U =

e−iϕ/2 cos θ
2 −e

−iϕ/2 sin θ
2

eiϕ/2 sin θ
2 eiϕ/2 cos θ

2

 . (5.59)

Diagonalizing (5.57) with (5.59) we get the Zeeman term in the local basis

ĤL
Z = U †ĤZU = −hσ̂3. (5.60)

2Hermitian matrices are normal.
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5.4.3 Homogeneous magnetization

For a magnetization of arbitrary, but uniform direction, the kinetic operator is

unaffected by the basis transformation and the local Schrödinger equation is thus

d2

dx2

fL↑
fL↓

 = −2mF

~2

E + µF + hσ̂3


fL↑
fL↓

 (5.61)

The solutions are one-component plane waves (δ↑σ, δ↓σ)T e±iqσx, with dispersion

Eσ = ~2q2
σ

2mF

− µF − σh, (5.62)

where σ = {↑, ↓} = {+,−}. The corresponding wave vectors have magnitude

qσ =
√

2mF

~2 (µF + Eσ + σh) = qF
√

1 + 2bσ, (5.63)

where qF =
√

2mFµF/~ is the Fermi vector in the ferromagnet and bσ = (Eσ +

σh)/2µF . Transforming with U gives the solutions in the external basis

e−iϕ/2 cos θ
2

eiϕ/2 sin θ
2

 e±iq↑x,
−e−iϕ/2 sin θ

2

eiϕ/2 cos θ
2

 e±iq↓x. (5.64)

5.5 Conclusion

We have here set up the necessary equations to calculate the ABS energies in

the ballistic limit. The next step is seemingly trivial: insert the derived form of

the wavefunction into the boundary conditions, collect them all in a matrix and

calculate the determinant. In reality it is not so easy as we have introduced a large

set of free parameters that will complicate calculations and obscure the results.

For greater transparency it will be most useful to explore a only a few effects at

the time.

As mentioned in the introduction to this chapter, we have assumed an adiabatic

time-evolution of the magnetization. As discussed in [41] we do not have an
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explicit expression for the relaxation time, but is expected to be long, which makes

the adiabatic treatment valid. In this case it will be possible to let some of the

parameters of the domain wall (e.g. its center of mass) acquire a time-dependence

governed by the LLG equation after having found the Andreev bound states in

equilibrium.



Chapter 6

Bilayer

The simplest case of a textured ferromagnet is provided by two adjacent mon-

odomain ferromagnets with noncolinear magnetization. For this system we can

obtain analytical solutions for the ABS energies which through their contribution

to the free energy, will allow us to study the interplay between the spin-polarized

Josephson current and the magnetization configuration at equilibrium.

6.1 Theory

Consider a bilayer of two homogeneous ferromagnets with a relative angle θ be-

tween their magnetization vectors as shown in figure 6.1.

The equilibrium spin current τ = ∂F/∂θ between the layers is formally equal to a

torque and similar in form to the equation for the Josephson current (4.1). Waintal

and Brouwer [34] combined these two equations to obtain

∂I

∂θ
= 2e

~
∂τ

∂φ
, (6.1)

which shows that the torque will depend on φ when the current depends on θ.

As I is known to depend sensitively on θ [42, 43], the above equation shows that

35
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the Josephson current should be able to provide a spin-transfer torque on the

magnetization.

Figure 6.1: A bilayer of two monodomain ferromagnets with different thick-
nesses and anisotropy pinning, sandwiched between two singlet s-wave super-

conductors.

6.1.1 Model

Josephson junction consisting of two homogeneous ferromagnets sandwiched be-

tween two singlet superconducting leads (see fig. 6.1). The magnetization in the

leftmost layer (F1) is fixed perpendicular to the junction, while the magnetization

in the rightmost layer (F2) is arbitrary. The second layer must thus consist of

a softer magnet, while the first layer has strong anisotropy pinning. In order to

achieve a decoupling of the two layers in an experimental setting the exchange

coupling between the layers could be reduced by inserting a normal metal spacer.

For simplicity we ignore this and assume the barrier between the ferromagnets is

perfectly transparent.

6.1.2 Andreev levels

To find the Andreev levels we first solve the BdG-equations (5.5) to obtain the

eigenstates as we did in chapter 5. We assume that the effective masses are the

same in all regions, while allowing different strengths for the two barriers. The
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one-particle Hamiltonian (5.8) for this system takes the form

Ĥ0(x) =
(
− 1
k2
F

d2

dx2 − 1 + Z1

k2
F

δ(x+ l1) + Z2

kF
δ(x− l2)

)
µσ̂0 − hσ ·m(x) (6.2)

, where Z1 and Z2 are the normalized barrier strengths at the S/F-interfaces, h is

the strength of the effective exchange field which is the same in both ferromagnets.

We then collect the boundary equations into a homogeneous matrix equation and

calculate the determinant using the algebraic software Maple. The calculated

determinant is on the form

c4(e4β + e−4β) + c2(e2β + e−2β) + c0, (6.3)

where β = i arccos ε
∆0

as in (5.22). The energies corresponding to the eigenvalues

of nontrivial solutions are found by setting the above expression equal to zero and

solving for cos iβ.

0 = 2c4 cos 4iβ + 2c2 cos 2iβ + c0

= 16c4 cos4 iβ + (4c2 − 16c4) cos2 iβ + 2c4 − 2c2 + c0

⇒ 8c4 cos2 iβ = 4c4 − c2 ±
√

8c2
4 + c2

2 − 4c0c4 (6.4)

The ABS energies are then

ε± = ∆0

√√√√√4c4 − c2

8c4
±

√√√√8c2
4 + c2

2 − 4c0c4

64c2
4

(6.5)

6.1.3 Free energy

The free energy is simply that of a collection of independent fermions [44], consid-

ering only excitations above the Fermi level

F = −2kBT
∑
σ

ln 2 cosh
(

εσ
2kBT

)
(6.6)
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For junctions much shorter than the superconductor coherence length, ξ, the

Josephson current, I(φ), can be estimated from the discrete energy levels by using

(6.6) in (4.1) which gives

I = −2e
~
∑
σ

tanh
(

εσ
2kBT

)
∂εσ
∂φ

(6.7)

In general, the Josephson current, I(φ), will depend on the full quasiparticle excita-

tion spectrum, but in the short junction regime, the continuous spectrum (ε > ∆0),

does not contribute to I(φ) [45].

From the LLG equation (3.12), we see that the time-dependence of the magne-

tization, m, is proportional to m ×Heff . Thus in the ground state the effective

field is parallel to the magnetization. As the ABS energies are independent of the

azimuthal angle of the magnetization, it is the variation of the free energy with

respect to the polar angle, θ, which causes an effective field perpendicular to m,

providing an effective torque

∂F

∂θ
= −

∑
σ

tanh
(

εσ
2kBT

)
∂εσ
∂θ

(6.8)

6.2 Results

We found the ABS energies to be of the form

ε± = ∆0

√
A−B sin2(φ2 )±

√
C, (6.9)

where A,B and C are functions of cos θ. C is also a second degree polynomial

of cosφ. In the general case of arbitrary strength of the exchange field, h, the

coefficients are rather complicated and unwieldy. First we look at the case where

h = 0 to check that in this limit our results agree with the well-known results

for nonmagnetic Josephson junctions. The quantities calculated for this case are

marked with the subscript zero. We then allow for a weak exchange field and
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expand up to second order in the dimensionless parameter b = h/2µF , which was

introduced in (5.46).

In the absence of an exchange field, the coefficients in (6.9) reduce to

A0 = 1, C0 = 0, B0 = (1 + ζ)−1, (6.10)

and the ABS spectrum is completely degenerate, consisting of the single energy

ε0 = ∆0

√√√√cos2(φ2 ) + ζ

1 + ζ
, (6.11)

where ζ measures the effect of insulating barriers at the S/F interfaces. It is

symmetric with respect to interchanging the two barriers and can be expressed as

ζ = Z2 + z2 sin kFL(Z cos kFL+ (z2/4− 1) sin kFL), (6.12)

where Z and z are respectively the arithmetic and the geometric mean of the two

barriers (see table 6.1). When the interfaces are completely transparent equation

(6.11) reduces to ε0 = ∆0 cos(φ2 ), which is the familiar result for an S/N/S-junction

[46]. A nonzero barrier strength (ζ > 0) modifies this expression by lifting and

broadening the minimum.

The Josephson current becomes

I0(φ) = −2e
~

tanh( ε0

2kBT
) ∆0 sinφ
4
√

(1 + ζ)(cos2(φ2 ) + ζ)
. (6.13)

This expression is independent of θ, and vanishes when φ = 0 or φ = π. As the

free energy (6.6) is strictly increasing away from zero ε0 = 0, the ground state is

at φ = 0.

In the quasiclassical limit (h << µ), the energies take on the form

ε± = ∆0√
1 + ζ

√
cos2(φ2 ) + ζ −A+ B sin2(φ2 )− C sin2(φ2 ) sin2( θ2) +D sin2( θ2)±

√
G.
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The coefficients A,B, C,D and G are all of second order in b = h/2µ. We use

calligraphic letters for coefficients that do not depend on either φ nor θ, but can

depend on the parameters of the junction summarized in table 6.1. G is a rather

complicated expression, but can be neglected to lowest nonzero order in b when

calculating the equilibrium current. While A and B depend on the total thickness

of the ferromagnetic layer, L, but not on the thicknesses of the individual layers

separately, C and D also depend on the relative thickness of the layers. Their

expressions simplify if we also assume that the junction is short (kFL << 1)

A = 2k2
FL

2b2

(1 + Z2)2 , B = Zk2
FLb

2

(1 + Z2)2 , C = 4k2
F l

2b2(3− Z2)
(1 + Z2)3 , D = 8k2

F l
2b2

(1 + Z2)2 , (6.14)

The leading order term is still ε0, which is independent of θ. Differentiating (6.14)

with respect to θ gives to second order in b

∂F

∂θ
≈ − tanh( ε0

2kBT
) ∆0 sin θ
4
√

(1 + ζ)(cos2(φ2 ) + ζ)

(
D − C sin2(φ2 )

)
(6.15)

Irrespective of φ, the torque vanishes when the magnetization in the free layer is

parallel (θ = 0) or anti-parallel (θ = π) to the fixed-layer magnetization. Which of

these is a minimum, is determined by differentiating again with respect to θ, which

is trivially accomplished by replacing sin θ with cos θ in (6.15). We see that a stable

equilibrium requires 0 > cos θ(D − C sin2(φ2 )). If C < D, the minimum will be at

θ = π at irrespective of φ, while C > D allows for switching the magnetization state

by tuning the phase difference between the superconductors. In the transparent

case, C−D = 4k2
F l

2, where l =
√
l1l2 is the geometric mean of the layer thicknesses.

This means that magnetization switching by a spin supercurrent should be possible

in the case of a weak field and no barriers.

To see if the effect persist when the exchange is not so weak, we plot the free energy

in the transparent regime as a function of φ and of θ in figure 6.2 for h = µ/5 (i.e.

b = 0.1). Again we find that the minimum at φ = 0 and θ = π, yet if we can make

φ = π, the minimum with respect to the magnetization configuration will switch

to θ = 0.
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We also plot the eigenvalues (6.9) as a function of φ for different values of θ in figure

6.3. We see that when θ is near π, the Andreev levels become near degenerate as

in the absence of spin splitting.

Figure 6.2: ABS contribution to the free energy in units of kBT as a function
of φ (left) and as function of θ (right) in the transparent case (Z = 0). We have

fixed kFL = 10, l1 = l2, b = 0.1,∆0 = 3kBT/2.

Table 6.1: Table of parameters of the junction and their relation to each other

symbol definition meaning

b h/2µ normalized exchange field

l1, l2 layer thicknesses
L l1 + l2 total thickness
l

√
l1l2 geometric mean

Z1, Z2 normalized barrier strengths
Z (Z1 + Z2)/2 arithmetic mean
z

√
Z1Z2 geometric mean
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6.3 Discussion

We found that for a weak field and short junction, the ground state is φ = 0, θ = π

and the system is essentially equivalent to an S/N/S junction. This can be un-

derstood by considering an electron and a hole propagating through the junction.

If the exchange field is opposite in the two layers, the phase shifts picked up in

the second layer will cancel the phase gained in the first layer. If the two layers

are of equal length, the cancellation is complete and the equivalence to an S/N/S

junction holds even for stronger fields [47] as we see in the case plotted in 6.3.

We have tried not to include many parameters in order to enable symbolic com-

putation and thus obtain analytical results. Nevertheless we still have included

more quantities than we have had the time to study the effects of e.g the of differ-

ent layer thicknesses and different barrier strengths. Completing the study of the

effects already included in the model will be the logical next step.

In future studies one may include a low but nonzero anisotropy in the soft fer-

romagnet to evaluate the competition between the anisotropy and ABS energies.

This could be useful for identifying experimentally suitable materials.

For an arbitrary field strength and layer thicknesses, the energies can be computed,

yet their form is too complicated to write down. They can still be used to analyze

different limits and specific values of the parameters in addition to the transparent

limit we looked at in 6.2.

We have not found a ground state with a nonzero φ. Yet we can still induce

magnetization switching via a loop geometry and a very small external field (that

does not affect the magnetization dynamics) as was suggested in [33]. In that

article it was also found (for a different ferromagnetic region than the one consid-

ered here) that spin-active interfaces is important for affecting φ by changing the

magnetization. We thus think this would be an interesting effect to add to our

model.



Chapter 6. Bilayer 43

Figure 6.3: ABS energies ∆0 as a function of φ for different values of θ in the
transparent case (Z = 0). We have fixed kFL = 10, l1 = l2, b = 0.1.
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Conclusion

We have formulated a model for investigating domain wall dynamics induced by

spin supercurrents that is capable of reproducing known results in the simplest

limits of homogeneous magnetization while also accommodating more complicated

scenarios caused by a spatially varying bulk magnetization as well as spin mixing

and rotation at the interfaces.

We then considered a simpler model consisting of a ferromagnetic bilayer sand-

wiched by two superconductors and showed that the superconducting phase dif-

ference can be used to switch the magnetization orientation of the free layer. Our

results suggest that it is possible to use superconductors to control the ground-

state configuration of magnetic spin-valves, which in turn could lead to interesting

magnetoresistance-like effects [48]. These effects are of considerable interest in

spintronics as they have among other things been suggested for application in

magnetoresistive random access memory (MRAM) [28].

The greatest disadvantage of such a general model is that the vast parameter space

makes obtaining universal results computationally intensive and even in the cases

where we have been able to finish the calculation without running out of memory,

the resulting expressions are cumbersome to work with.

The model can be simplified and fitted to more narrowly defined problems with

a limited set of parameters which may yield more manageable expressions. The

44
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bilayer provides a convenient case to obtain analytical results and can be analyzed

further.

We have in our analysis of the bilayer system in 6 concentrated on equilibrium

configuration, but with the adiabatic assumption discussed in chapter 5 the ABS

contribution to the free energy can be used to consider a time-dependence of the

magnetization governed by the LLG equation.
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