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Abstract

Certain aspects of the Lorentz transformation, sometimes called beaming,
aberration or transverse Doppler effect, induce viscosity-like effects on extended
objects moving through radiation fields. In this thesis, these effects are investi-
gated in the contexts of a cosmic background radiation and near a Schwarzschild
star.

Sammendrag

Visse aspekter ved Lorentztransformasjonen, noen ganger kalt beaming, aber-
rasjon eller transversal Doppler-effekt, fører til viskositetslignende effekter p̊a
utstrakte objekter som beveger seg gjennom str̊alingsfelt. I denne oppgaven
undersøkes disse effektene for kosmisk bakgrunnstr̊aling og i nærheten av en
Schwarzschild-stjerne.

Preface

This thesis is the result of a personal initiative by the author, rather than
being a project presented by the faculty as master’s material. As a consequence,
the initial formulation of the problem was somewhat more vague than your
average NTNU thesis, and it took an entire year to discover century-old material
on related subjects such as the YORP or Poynting-Robertson effects. With such
intuitive names, I obviously should have guessed.

The work has mostly been independent, with the exception of some article
exchanges and email correspondence with my advisor, professor K̊are Olaussen,
who reviewed the final product. He also held the course on gravity and cos-
mology I attended in my BSc, and it was while working on his problem sets
on relativistic beaming that the idea of a viscous metric first entered my head.
This inspired me to investigate relativistic fluid mechanics and wonder about
non-conservative systems.

Notation

This document uses a (+−−−) metric and c = 1 units unless otherwise noted.
Equations are not necessarily simplified by hand, but by the Maple software.
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Chapter 1

Introduction

In introductory physics one learns to think in terms of mechanical vectors and
scalars, and a common problem posits a schematic description of a physical
configuration, challenging the student to intuit which physical laws to use and
which equations to write down.

As one transitions to a general relativistic mindset, one may find that the
ways to answer intuitive questions become more opaque. Since the classical force
of gravity is purely attractive, every kinematic impact or collision that overcomes
the pull of gravity must include something more. As amusing as it sounds, it
would take an insane model to see yourself in a mirror and conclude that every
photon was reflected through gravitational lensing. However, including these
additional interactions can be challenging, as formal rigor must take priority
over intuition once vectors become local and tensors too complex to visualize.

A prime example is the damped harmonic oscillator experiencing viscosity.
Whereas one in Lagrangian mechanics could include non-conservative friction
terms through the Rayleigh dissipation function, how does one implement such
an effect in a relativistic capacity? It is important that energy-momentum is
locally conserved, so any such dissipation must be kept track of if it is to later
generate the curvature of space-time, but how?

We know from the special theory of relativity that the observed passage of
time and space can change with one’s reference frame, but can the metric itself be
viscous? From a mathematical point of view such a proposition sounds strange,
but if curvature can be an emulation of position-dependent acceleration, it’s far
from obvious that it would not also be capable of emulating velocity-dependent
acceleration once the metric is a dynamic variable.

As one ponders these questions, one is invariably reminded of the concept
of the aether. Though it has long since been dismissed as a velocity-governing
medium for light, the Doppler effect implies that the cosmic background radi-
ation still provides an ever-so-slight velocity-dependent radiation pressure on a
moving observer, so any complete cosmological model would need to treat its
”viscosity” - or rather, the energy loss of any moving observer to the anisotropic
ambient radiation field.

By the same token, as the Earth orbits the Sun it moves through a radiation
field, which should slow down the orbit through collisions with the photons from
the side. Evidently, the Earth’s been orbiting for a long time and looks to keep
orbiting for quite a while longer, so why does this seem to not be happening?
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Chapter 1

The fluid dynamics treated in introductory courses on general relativity tend
to restrict it to perfect fluids - ones that are isotropic, homogeneous and free of
viscosity - and these are primarily used to derive the FRW cosmological models
rather than for any local treatment.

This thesis, however, asks the question of how to treat the general kine-
matics of local interaction with relativistic fluids, and primarily considers two
interesting special cases: interaction with the cosmic background radiation, and
movement through the radiation field around a Schwarzschild star. On the way,
we seek to understand how these viscosity-like effects relate to the curvature of
space-time, if at all.

The text is set up to highlight the transition from the classical mindset to the
relativistic one, by first treating a motivating and intuitive special relativistic
effect in chapter 1, then introducing the language of general relativity in chapter
2 and 3, and finally analyzing the viscosity-like effects and their relation to
curved geometry in the chapter 4 and 5.

1.1 Aberration of light

We start off in the context of special relativity by attempting to establish an
intuition for how the Lorentz transform affects radiation, hopefully highlighting
some physical implications.

”Aberration” refers to how the Lorentz transform can bend beams of light. A
characteristic example of aberration can be visualized by considering an isotrop-
ically radiating object in its rest frame versus a frame where it is moving.

Figure 1.1: Intensities in the rest frame (left) and moving frame (right).

In the rest-frame, the forces on the object caused by the departing photons
cancel thanks to the isotropy, so it remains at rest. However, in the moving frame
the departing photons are Doppler-shifted, so they must be more energetic in the
forward direction. The radiation is now anisotropic, and according to Newton’s
third law there is an apparent net force opposite the direction of motion. This
is seemingly paradoxical; does the object accelerate or not?

Thankfully, the paradox can be explained in the covariant formalism using
four-momenta: Even in the rest frame there is a momentum change ṗµ, but it
arises from the object losing energy to the radiation:

ṗµ =(−Φ,0) (Rest frame) (1.1a)

ṗν = Λν
µṗ

µ =(−γΦ,−γΦ~v) (Moving frame) (1.1b)

which effectively means it is getting lighter (less massive), not slower.
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Chapter 1

1.2 The Poynting-Robertson effect

The Poynting-Robertson effect describes the effect of aberration on a black body
moving in an approximately circular orbit around a star. As with many effects in
relativity there are several ways to visualize it depending on choice of reference
frame. One way is to think of it as a variant of the aberrant force from the
previous section where the energy is constantly being refilled by the nearby
star, leaving only the accelerative force. Another way is to imagine it in the
object’s co-moving frame as similar to running through a rain of radiation.

The rain-running analogy1

Imagine there is no wind on a rainy day. An observer standing still will see the
rain as falling straight down, but a moving one will start crashing into droplets
from the side. From their reference frame it looks like the rain is falling at an
angle, as if there was wind.

When it comes to the vertical component of the rain, things are pretty much
the same - whenever they move out of the path of one droplet, they move into
the path of another, so the big difference is the added horizontal component of
the rain. The faster the observer runs, the faster they get wet, and even if there
was no air resistance, the water would provide resistance of its own through
momentum transfer to the observer.

Figure 1.2: Radiation in the stellar frame (left) and planet frame (right).

Objects moving through space can experience something similar. While there
is no inherent aether-resistance for the movement of planets to emulate wind
resistance, space is not a perfect vacuum. Planets are constantly bombarded by
radiation, and near a star it plays the part of the rain in the above analogy:
The faster your orbit, the more radiation pressure seems from come from the
front, slowing you down. It’s important to note that this is separate from the
electric field rotating into a magnetic field under a Lorentz transformation; in
the radiation domain this is a purely kinetic effect.

Since planet orbits seem to be stable we can intuit that this effect must
be very weak and certainly dominated by gravity on the macroscopic scale.
However, if the parameters are just right this velocity-dependent force could
have a significant impact on a trajectory.

1MinutePhysics has an excellent short video on running through the rain on their Youtube
channel, which can be found at http://www.youtube.com/watch?v=3MqYE2UuN24
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Chapter 1

Calculation of the Poynting-Robertson effect

What is now known as the Poynting-Robertson effect was first predicted by J.H.
Poynting[3] in 1903 using the then-popular context of a luminiferous aether, who
calculated it to be

FPR = vWA (1.2)

where v is the orbital speed of the object in the stellar rest frame and W is the
incoming radiation power flux on its cross-section A. In 1937 this result was
verified by Robertson[4] in the context of general relativity.

To simplify calculations, we consider a locally Minkowski coordinate system
(t, x, y, z) far away from the source of radiation and aligned such that in the
stellar frame, the photon momenta are all given along the tangent vector λµ =
(1, 1, 0, 0) with energy density W , and the particle’s 4-velocity is given by uµ =
(ṫ, ẋ, ẏ, ż) = (γ, 0, γv, 0).

If we once more model the object as a black body which radiates its thermal
energy isotropically, its momentum change is the momentum of absorbed pho-
tons per unit of time. We will calculate the effect for two kinds of object: Firstly
a sphere, which has the computational benefit of the cross-section in the rest
frame being the same no matter the angle of incoming photons, and secondly
a cube, which highlights the physics of how different kinds of surface element
move through radiation.

Sphere

For a black sphere with cross-sectional area A, the force experienced in the
sphere’s rest frame is given by the momentum flux onto A. The photon density
Lorentz-contracts2 to γW and the direction is simply given along the λ-vectors
transformed to the sphere’s rest frame, resulting in a force of

F µ
Sphere =

{
(0, γ,−γ2v, 0)WA (Rest frame)

(−γ3v2, γ,−γ3v, 0)WA (Stellar frame)
(1.3)

where we have assumed the absorbed energy in the rest frame is immediately
re-emitted isotropically, counterbalancing the time-indexed component of ṗ.

Cube

For a black cube with side areas A aligned along its trajectory, the four-force
can split into the two contributions coming from the front surface and the side
surface. The frontal momentum per eigentime is given analogously to the rain-
running analogy by

ForceFront =

(
Momentum

photon

)
×
(

Photons

time

)
=

(
Momentum

photon

)
× Photons

Volume
×
(

Area× Distance

time

)
(1.4)

⇒ F µ
Front(v) =Λµ

σ(−v)(0, 1,−γv, 0)σWAγv (1.5)

=(−γ3v3, γv,−γ3v2, 0)WA

2Guess treats a spherical source in his paper[2] and arrives at the same result.
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Chapter 1

We see the collision force in the y direction is ∝ γ3v2W , which is intuitive
in the sense that you collide with ”faster” particles at a faster rate. However,
there’s also an apparent drag on the surface in the x direction! It’s noteworthy
that if the surface had been reflective instead of black, that drag would not
have occurred - even if it were to rotate so a surface pointed directly toward the
radiation, a reflective surface would experience a force more similar to the black
sphere than the black cube.

For the side-surface we don’t need the velocity or volume term, because
whenever you move out of the way of one photon you move into the path of
another. In the rest frame, the relativistic correction arising from the Lorentz-
contracted number density balances against the time-dilated collision rate, owing
to the fact that the speed of light is constant and proportionally less of it is going
sideways.

F µ
Side =W (−γ2v2, 1,−γ2v, 0) (1.6)

totaling

F µ
Tot =(1 + γv)W (−γ2v2, 1,−γ2v, 0) (1.7)

We see that the proportionality between the cube and the sphere is 1+γv
γ

,
which corresponds to how the cube’s cross-section is increased at high speeds
due to the inclination of the radiation in the rest frame.
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Figure 1.3: The increase in cross-section for a moving cube. One could say that
this makes the sphere more ”photo-dynamic” than the cube.
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Observed 3-acceleration

The 4-acceleration is related to the observed 3-acceleration by

~F/m = ∂τ ~U = ∂τ (γ~v) = γ̇~v + γ~a = γ3(~v · ~a)~v + γ~a = γ3~a‖ + γ~a⊥ (1.8)

where we used (1 + γ2v2)~a‖ = γ2~a‖ to decompose ~a into parallel and orthogonal
components. If we disregard the transverse component for a sphere, we can now
write down a simple differential equation governing the evolution of the orbital
velocity v in the stellar frame in terms of eigentime

∂τv =− vWA

m
⇒ v(τ) = v(0)e−

WA
m

τ (1.9)

which agrees with Poynting and Robertson’s results.
Here we observe the effective ”viscosity” of light at work, as it is damped

similarly to the amplitude of the damped harmonic oscillator. Once we have
introduced some necessary tools, we will revisit the Poynting-Robertson effect
in more detail in chapter 3.

1.3 Thermal effects and rotating bodies

In the previous section, the cube happened to have equal drag forces on each
surface, so if we assume the center of mass to be in the center of the cube, it
experienced no net torque. Furthermore, it was assumed perfectly conductive
and did not accrue inertia from being heated.

These assumptions may yield good approximations for small objects, but
since the speed of heat diffusion is only material dependent we can expect large
objects to be able to radiate anisotropically[5]. Even highly conductive bodies
that do radiate isotropically can experience a torque owing to the stress on its
surfaces relative to the center of energy. These thermal effects are usually weak,
but can have long-term consequences for orbits, rotations and precession. For
instance, Asteroid 2009FD may or may not be on a collision course with Earth
around 2190[6], and that time scale is sufficiently long for higher-order thermal
phenomena like the Yarkovsky effect to be relevant.

Orbital effects

Diurnal pressure means that the warmer day-side emits more than the cold
night-side, partially bridging the gap between the radial force experienced by
black and reflective bodies in orbit. (See eq. (4.9) and eq. (4.8))

The diurnal Yarkovsky effect occurs on a rotating body due to day/night-
cycles. The absorbed heat is not instantly emitted, and so the areas in dusk
are warmer than the areas in dawn, which can speed up or slow down the orbit
depending on the direction of rotation.

The seasonal Yarkovsky effect occurs on orbiting bodies. Areas in fall are
warmer than areas in spring, slowing down orbital speed. This effect is more
significant for an object precessing on a tilted axis.

6
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Rotational effects

Buoyancy can be intuited as similar to how parachutes
or sailboats align with the direction of air-flow, thereby
defining an ”up”.

Inertial amplification occurs to rotating bodies and black
bodies, as the energies near the surface are higher than near the
center of rotation, thus contributing slightly more to the inertia.
Realistically, most materials will tear themselves apart before this
becomes relevant.

Inertial shift occurs when the center of energy shifts due
to the thermal energy distribution. It’s an extremely weak
effect, and can only affect large, slowly-rotating black bodies
with very low density to any measurable degree.

Rotational beaming occurs to rapidly rotating black bodies.
Incoming radiation drags more on the dawning side than the dusk
side, slowing down the rotation. Warm bodies emit photons at an
angle, causing an apparent torque even if the rest frame has none.
However, if there are no other causes of torque the situation is
much like linear aberration: no angular acceleration is realized, for the decrease
in angular momentum comes instead from the reduced moment of inertia. This
can be thought of as the Poynting-Robertson effect of rotation.

The YORP albedo effect occurs on an object with variations
in albedo.3 Among thermodynamic considerations, darker areas
are dragged, reflective areas are not, so a half-black, half-white
sphere would begin rotating its black hemisphere toward night-
time.

The thermal YORP effect describes rotational emission
pressure, i.e. when the temperature distribution is such as to
cause a torque. Affects, for instance, an impact crater on a
hillside.

While each of these effects have their domain of relevance, we will in this
document mostly restrict ourselves to modelling symmetric, non-rotating and
perfectly conductive objects, for which only the Poynting-Robertson effect is a
primary concern.

3”YORP” referring to Yarkovsky-O’Keefe-Radzievskii-Paddack, the names of those who
contributed to its discovery.
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Chapter 2

General relativistic dynamics

If we wish to further explore the implications of the Poynting-Robertson effect,
the obvious case to investigate is how it affects an object caught in a star’s
gravity well. After all, if the aberration of the radiation field causes every
orbiting object to lose energy doesn’t that mean that every planet eventually
falls into the star?

Describing relativistic effects in a gravitational field requires that we move
from the special theory of relativity to the general theory. Though the names
are similar, this transition can often be more daunting than the step from non-
relativistic to special relativistic physics.

This chapter aims to describe how the kinematic formalism changes from flat
to curved space. However, before we can truly treat the physics of curved space
we first need the mathematical tools to describe it.

2.1 A little differential topology

To talk about geometry in a general space, we need a rigorous definition of a
vector. This is trickier than one might expect if one doesn’t have experience
with non-euclidean geometry, primarily because the notion of ”distance vector”
between two points x and y can no longer be given by x − y, as one is so used
to seeing at the undergraduate level.

The reasoning behind this is that while our coordinate values may live in
some region of euclidean Rn in which addition are allowed, they map to dif-
ferent points on a manifold. While the points parametrized by the coordinate
homotopy f(s) = xs+ (1− s)y will follow some line between x and y, there’s no
guarantee that it will be straight. For example, consider flat polar coordinates:
The line drawn along (r0s, 0) is a straight radial line, but the polar curve along
(r0, s) is not.

The tangent bundle

Instead, if we want to use vectors, we need to enter the tangent bundle. This
construct assigns a vector space to each point, allowing us to use vector calculus
only to relate vectors at that point. This may initially sound like abstract
nonsense to a young physics student - vectors at a point? But then one realizes
that most familiar vectors other than the distance vector - be they magnetic

9
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fields, momentum or spin - are of this type. They have no end point, they’re
merely visualized that way on diagrams at an arbitrary scale. In reality, they
are abstract functions associate to a point, and they ”live” in its tangent space.

There are two common ways to interpret the elements of a tangent space at
point labeled by coordinate x.

Germs are equivalence classes of parametrized curves f(s) to the manifold
under the equivalence relation [f ] ∼ [g] ⇔ f(0) = g(0), f ′(0) = g′(0), under-
stood as functions from R 7→ Rn, the latter representing the coordinates near
x. These tangent vectors are readily understood as four-velocities ẋ along some
curve.

Derivations are generated by the linear maps that send scalar functions on
the manifold to R while satisfying Leibniz’ product rule. These can be thought
of as directional derivatives of the form vµ d

dxµ
.

Differential topology is sometimes cited as being the study of things that
are invariant under change of notation, and this is a prime example - the two
definitions are equivalent. Showing this rigorously takes a few pages1 of checking
well-definedness and other things important to a mathematician, but a physicist
should be satisfied noting that in both representations,

[f ]′(x) = (x′(0), y′(0), z′(0)) Dx = (x′, y′, z′) · ∇ (2.1)

have the same number of independent parameters.
We can thus use both interpretations at our leisure, allowing us to intuit that

one can envision a set of coordinate vectors (dxi)
µ defined in the tangent spaces

along the trajectory ẋµ, where they’re given by derivations along the coordinates
observed in the inertial frame as ”directions” rather than realized trajectories.

This means that as soon as we know how to identify an inertial frame in
curved space, we can connect our understanding of special relativistic dynamics
with the formalism of general spaces.

Covectors and differential n-forms

Before we treat inertial frames, it’s worth mentioning one thing mathematicians
love above all else: duality. Over the past century, even physicists have begun
to develop duality theories, and it’s proven a useful tool.

In short, a dual vector, sometimes called covector or 1-form, is a linear
functional of vectors. By Riesz’ representation theorem, the covector space
is isomorphic to the vector space, but introducing notation helps reduce the
number of mistakes made. In quantum physics, for example, if the ket-vector
is the vector, then the bra-vector is the covector, and together they produce
either a scalar or a matrix, much like the index notation does in relativity.
In fact, this is precisely where covectors enter our formalism - the vectors we
know as contravariant vectors, while their duals are covariant ones. The duality
transformation is simply multiplication by the metric.2

1See, for example, chapter 4 of B. Dundas’ Differential Topology.
2In fact, from a mathematical point of view most of the metrics of physics arise precisely

from an inner product structure on the tangent bundle of a finite-dimensional manifold. This
explains why we visualize them as coordinate-dependent matrices when a general mathemat-
ical metric doesn’t have to be.
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From the mathematical toolbox of covectors, we attain the concept of dual
coordinate basis, denoted (dxi)µ, which span the cotangent space the same way
the coordinate derivatives span the tangent space. From this dual basis we can
construct higher n-forms, or completely antisymmetric tensors, by using the
wedge product :

(ω ∧ σ)µν = ωµσν − ωνσµ (1-form) ∧ (1-form) = (2-form) (2.2)

(∧ni ωµi)µ1,µ2,.. = det(ωµi) (Wedge of n 1-forms) = (n-form) (2.3)

The wedge is a natural generalization of the cross product we know from
three dimensions. Through it we can find rigorous notions of normal vectors
and volume forms, the correct quantities to use when evaluating integrals.3

For instance, in Minkowski space the spatial 3-volume dV µ = εµabcdxadybdzc
represents the normal vector of a three-dimensional surface embedded in four
dimensions, which is orthogonal to dx, dy and dz.

Speaking of integrals, the most powerful tool acquired from the mathematics
of covectors is the generalized Stokes theorem. The theorem relates integral
values on a manifold M to integral values on its boundary ∂M , stating that for
an (n− 1)-form ω we have ∫

M

dω =

∫
∂M

ω (2.4)

Though the d represents a general exterior derivative, for the purposes of any
calculations done in this document the theorem can be thought of as the nat-
ural extension of the divergence theorem to four dimensions, where it supports
our conservation laws. Other special cases include the usual Stokes’ theorem
for a circle in three dimensions, Green’s theorem in two dimensions, and the
fundamental theorem of analysis in one dimension.

2.2 The variational principle

One way of defining a straight line between two points is as a trajectory that
extremizes the proper distance between them. Given a parametrized line x(τ)
we can integrate a scalar along its trajectory, which in this case is

δS = δ

∫
x(τ)

dS = δ

∫
x(τ)

√
gµνdxµ(ẋ)dxν(ẋ) = δ

∫ t1

t0

√
gµν

dxµ

dτ

dxν

dτ
dτ = 0 (2.5)

This is analogous to how physically realized trajectories extremize the action in
Lagrangian mechanics. The Euler-Lagrange equations that follow from choosing
dS
dτ

as a Lagrangian are called the Geodesic equations, and assuming the metric
to only be coordinate-dependent, they take the form

∂

∂xα
L =

1

2L

(
∂

∂xα
gµν

)
ẋµẋν (2.6)

d

dτ

∂

∂ẋα
L =

d

dτ

1

2L
gµν(δ

µ
αẋ

ν + ẋµδνα) =
d

dτ

1

2L
(gαµẋ

µ + gναẋ
ν) (2.7)

3Nevertheless, we will keep suppressing the notation if treating it would be a diversion.
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By choosing the eigentime parameter τ such that dS
dτ

= L = 1 and using the
product and chain rules for d

dτ
gαµẋ

µ = gαµẍ
µ +

(
ẋν ∂

∂xν
gαµ
)
ẋµ, we can isolate ẍα

gαµẍ
µ =

1

2

∂gµν
∂xα

ẋµẋν − 1

2
ẋν
dgαµ
dxν

ẋµ − 1

2
ẋµ
dgνα
dxµ

ẋν (2.8)

This is commonly written in terms of the Christoffel symbols, denoted Γαµν

Γαµν ≡
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) (2.9)

⇒ dẋα

dτ
=− Γαµν ẋ

µẋν (2.10)

Trajectories xµ(τ) that satisfy the geodesic equation are called geodesics, and
serve as our definition for straight lines. In a space curved by gravity, these are
the physically realized trajectories. Gravity is no longer a force, but rather a
re-definition of straightness. The non-Euclidean nature is revealed by realizing
that straight lines can now intersect at more than one point. For instance,
polar and azimuthal orbits around the Earth intersect twice, which violates the
parallel postulate of Euclidean geometry.

Since the equivalence principle equates observed acceleration with gravity,
a freely falling observer would need to observe vanishing Christoffel symbols in
their locally Cartesian reference frame. Thus, this re-definition is sometimes
counter-intuitive: It implies that someone jumping in a parabola is following a
straight line, while someone standing still or walking on the ground is not.

2.3 Curved lines in curved space

Of course, not all lines are straight. Systems that experience non-gravitational
forces are accelerated due to other effects than the curvature of space, and we
need a formalism that handles both straight and curved lines, like we’re used to
from flat space.

The covariant derivative

Partial derivatives, as we’re used to seeing them, are usually thought of as
”rate of change along the coordinate axis”. However, there’s no guarantee that
the coordinate axis will be a straight line. In 2D flat space given by polar
coordinates, for instance, the trajectory (r, θ) = (r0, ωτ) following the polar
angle is not straight. That trajectory follows ẍ = 0, and so requires something
which compensates for the Christoffel symbols in eq. (2.10).

In order to compute ”straight” differentials independent of coordinate sys-
tems, we introduce the covariant derivative, denoted Dµ. It corresponds to the
usual coordinate gradient for scalars, but is defined on tensorial quantities in
terms of the coordinate derivatives and Christoffel symbols:

Dµv
α = ∂µv

α + Γαµνv
ν (2.11)

Dµvν = ∂µvα − Γαµνvα (2.12)

Dµv
αβ..
σλ.. = ∂µv

αβ..
σλ.. +

(
Γαµνv

νβ..
σλ.. + Γβµνv

αν..
σλ.. + ..

)
−
(

Γνµσv
αβ..
νλ.. + Γνµλv

αβ..
σν.. + ..

)
(2.13)

12



Chapter 2

summed over contravariant indices and subtracted over covariant indices, which
corresponds to whether one would use a coordinate transform or its inverse to
generalize its rest-frame quantity.

For a 1-vector, this looks somewhat familiar. Indeed, using Dµ and the chain
rule for d

dτ
= ẋµ ∂

∂xµ
, the geodesic equation is simplified to

Dτ ẋ
α = ẋµDµẋ

α = 0 (2.14)

which looks oddly like Newton’s first law: an object experiencing no covariant
acceleration moves in a straight line.

On an intuitive level, replacing dτ with Dτ respects a tensor’s status as a
local quantity by generating translations in some direction ẋ. A vector is moved
to another tangent space by managing the effects of curvature and choice of
coordinate system - things that are more mathematical artifacts than physically
measurable quantities.

Newton’s laws

If there is a physical acceleration occurring from some source other than gravita-
tion, the geodesic equation Dτ ẋ

µ = 0 no longer holds, and the lines are no longer
straight. Fortunately, the covariant derivative allows for a covariant formulation
of Newton’s laws, which is satisfyingly similar to what we’re used to.

1. In the absence of forces, Dτp
µ = 0.

2. Force is mass4 times acceleration, F µ = mAµ = mDτ ẋ
µ.

3. Total four-momentum is conserved, Dτp
µ
tot = 0.

It’s worth remembering that vectorial quantities like the four-momentum
mathematically live in the tangent spaces of each point, and so their conservation
law is intrinsically local. Two trajectories - for instance, a circular orbit and an
elliptic one - may intersect at two different points and observe a change in the
other’s relative momentum even though neither experienced any force.

In chapter 3 we’ll see how to define the momentum flow in terms of the
energy-stress tensor T µν , for which Newton’s third law becomes a divergence
relation of the form DνT

µν = 0.

Example: Forces in a co-rotating frame

One benefit of the covariant formalism is that the four-force always transforms
as a vector under coordinate transforms; any special treatment warranted by
choosing non-inertial coordinates is tucked into the Christoffel symbols. To
exemplify this, we will transform a force vector from a co-rotating Cartesian
frame to polar coordinates in flat space.

What this means is that around any given point (r0, θ0) we define a locally
Cartesian coordinate system (x, y) aligned along the ∂r̂ and r0∂θ̂ direction, i.e.
(x, y) = (r0 + a∂r̂, r0θ0 + br0∂θ̂).

4Assuming constant rest energy, no thermal fluctuations.
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Now, assuming we have a force vector (F x, F y) in a frame at (r, θ), one might
think of the calculation

ẏ = rθ̇ + ṙθ ÿ = rθ̈ + 2θ̇ṙ + r̈θ (2.15)

and conclude that solving this equation for θ̈ and inserting ÿ = F y/m gives
you the expression for F θ/m. This is what one would do in non-relativistic
mechanics, giving rise to concepts like the Coriolis effect and Centrifugal forces.

Were we to insert this solution as a force in the covariant version of New-
ton’s second law, however, we would run into issues, because the extra terms
are already taken care of by the Christoffel symbols in the covariant derivative.
Including them on both sides of the equality sign would double their contribu-
tion!

In this age of computer-aided Christoffel symbol handling, the lesson to
be learned is that one shouldn’t over-think things and simply use the general
transformation rule for vectors:

F r =
∂r

∂xµ
F µ = F x F θ =

∂θ

∂xµ
F µ =

1

r
F y (2.16)

2.4 Rotation and torques

If our goal was to treat the many kinds of rotation from section 1.3, we would
need a framework to treat angular momentum. Classically, this is given by

~J = ~r × ~p (2.17)

As mentioned at the start of this chapter, the cross product on a three-
dimensional manifold is a wedge product of 1-forms into a 2-form, but by Hodge
?-duality5 it’s still representable as a unique vector in 3-space. This is how
we often choose to visualize angular momentum in classical mechanics. In four
dimensions, however, there is no unique axis orthogonal two the two vectors,
and so 2-forms remain 2-forms.

In addition, it is only in a Cartesian inertial frame that we can treat the
coordinate separation from the center of mass as a vector ∆xµ, where the angular
momentum is defined as the wedge product

Jµν = ∆x ∧ p = ∆xµpν −∆xνpµ (2.18)

Similarly, if we recall the classical expression for torques

~M = ~r × ~F (2.19)

5The physicist’s way of interpreting Hodge ?-duality is to note that an anti-symmetric 3×3
matrix has 3 independent parameters, same as a 3-vector, and one transforms between the
two by contracting with the Levi-Cevita tensor when calculating the cross product. For a
4 × 4 matrix, it’s 6, which cannot be listed as a 4-vector. Rigorously, Hodge ?-duality is an
equivalence between n-forms and (d−n)-forms on a d-dimensional smooth manifold such that
〈a| ∧ 〈?b| = 〈a|b〉〈ddV |. For details consult the problems section of Madsen and Tornehave’s
book on differential topology, From Calculus to Cohomology (1997).
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we generalize to

Mµν = ∆xµF ν −∆xνF µ (2.20)

It’s worth remembering that in general curved space the coordinate list xµ

is not necessarily a vector even though ẋµ is, so the above must be derived in
a local frame before transforming to the curved-space generalization, and non-
local objects are often problematic since any response to a force will propagate
through a medium at most the speed of light.

Nevertheless, there can be macroscopic conservation laws that behave like
conservation of angular momentum. If a general metric has a symmetry it gives
rise to a Killing vector η such that the inner product ηµẋ

µ along any geodesic
ẋµ is conserved.

Thus, in axisymmetric geometries there exists a conserved quantity some-
times used to describe the orbital angular momentum of point-particles:

l ≡ mηµẋ
µ (2.21)

where η is the Killing vector associated to the metric’s independence on polar
angle. In the Schwarzschild geometry with the usual coordinates the Killing
vector of φ is ηµ = (0, 0, 0, 1), making the polar angular momentum around the
equator be l = mgφφφ̇ = mr2φ̇, which agrees with classical results.

Thus, there are methods that work for both rotational and orbital angular
momenta, with the caveat that if a body is spinning on the scale where relativis-
tic effects are relevant, most rigid materials will rip themselves asunder. Only
massive stars and black holes are able to endure the high stresses that come
with relativistic rotation.

15



Chapter 2

16



Chapter 3

The Stress-Energy Tensor

The elements of the Stress-Energy tensor, which is usually denoted T µν , can be
thought of as generalized momentum flux densities, where energy is considered
as the time-component of the four-momentum. In Cartesian coordinates it’s
easily interpreted as

T µν =
dP µ

d4V
dxν =


Energy Energy
density flux

Momentum Stress
densities tensor

 (3.1)

In natural units, this can be shown to be a symmetric tensor. We note that
the time-indexed elements are simply the spatial three-densities of the four-
momentum, and the spatially indexed components are force two-densities, i.e.
the pressures and stresses we know from the classical theory. These can be
recovered by applying the tensor to a normal vector in the relevant direction, so
in accordance with the last chapter we have

dpµ = T µνuνdV dF i = T iνnνdA (3.2)

where uν refers to the four-velocity of the 3-surface in question, not its content.
It’s worth noting that the net force acting on the surfaces an enclosed volume
requires a compatible orientation of the normal vectors, and any physical test
surface aiming to measure the net dynamic force needs to have an infinitesimal
thickness dl. Such a test surface experiences

FSurf =
(
T iν(x+ dl)− T iν(x)

)
nνdA (3.3)

=

(
dT iν

dx
dl

)
nνdA (3.4)

which relates nicely to the language of non-relativistic stress and strain used in
fluid mechanics and elastics. In this sense any constant stress-energy tensor is
static, and a test surface that doesn’t directly interfere by changing the stress-
energy tensor by its presence will not be accelerated.
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Conservation of energy-momentum

From eq. (3.2) we see that forces and momenta are related through the stress
tensor, and we may wonder if we can find a way to interpret the conservation
laws for energy-momentum in it. The answer is yes, we can.

Using the interpretations of eq. (3.1), conservation of energy means that the
time-derivative of the energy of any given test volume must be balanced by the
energy flux out of it, so we immediately find ∂µT

µ0 = 0. Similar arguments hold
for each component of the four-momentum, so in other words

∂µT
µν = 0 (3.5)

We only really know this to be true in inertial frames, in accordance with
special relativity. Luckily, we know from chapter 2 how to compute derivatives
along a geodesic using the covariant derivative, so this conservation law can be
transformed to arbitrary non-inertial coordinates as

DµT
µν = DνT

µν = 0 (3.6)

which represents the local conservation of energy-momentum. This is subtly
different from an absolute conservation law, as it allows us to model phenomena
such as the expansion of the universe, where observed energy densities may be
decreasing in response to the dynamic space-time.

Angular momentum density

Using eq. (3.2), the familiar angular momentum (2.18) and torque (2.20) of an
object in its rest frame can be expressed in terms of the stress-energy tensor:

J µνα ≡dxµT να − dxνT µα (3.7)

Jµν =

∫
dx ∧ dp =

∫
J µναuαd

3V (3.8)

Mµν =

∫
dx ∧ dF =

∫
J µναnαd

2A (3.9)

The angular momentum density inherits its conservation law from conserva-
tion of the stress-energy tensor:

DαJ µνα = 0 (3.10)

Though we will not be making much use of angular momentum in this doc-
ument, it’s satisfying to know that a formalism for it exists.
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3.1 The Poynting-Robertson effect revisited

With the energy-stress tensor and covariant formalism in hand, we can now
revisit the example from section 1.1 with a stress tensor of the form T µν =
Wλµλν , where λµ = (1, 1, 0, 0) is a tangent vector for the photons in the stellar
frame.

Black body absorption with isotropic emissions

A small black body with high conductivity can to a good approximation be
assumed to radiate isotropically. In reality it will never be quite true, of course,
but it simplifies the model a fair bit.

In the context of a uniform ensemble of photons, the force elements of the
stress-energy tensor can be thought of as a measure of photon momenta crossing
a surface in the given direction per unit of time. A black body can be considered
to be undergoing inelastic collisions with all these, completely absorbing their
3-momenta. In other words, the force experienced by a black surface element
dA with normal nν is given as

dF i =T iνnνdA (3.11)

Assuming isotropic emission from the rest frame during black body radiation,
some relativistic beaming may be observed, but this will exert no net 3-force on
the remaining mass. Conservation of energy in the rest frame allows us to verify
the necessity of an extra term to arrive at a covariant formula,

dF µ =(gµλ − u
µuλ)T

λνnνdA (3.12)

which in the rest frame equates to projecting onto the spatial parts. If T µν =
Wλµλν as in chapter 1.2, this formula immediately produces the expected results
- with the benefit of being usable in any geometry and for any shape!

Perfect reflection

Until now we’ve only treated the movement of black bodies, but those are not
our only options! A real object will experience partial absorption and partial
reflection, so we need to investigate how reflection works.

We know the photon flux density from T µν , so we’ll first investigate how a
single photon Compton scatters off a massive particle.

Denote the pre-collision variables by greek letters and the post-collision ones
by latin, with the exception of m, µ, θ and φ, which are the invariant mass,
index, and angles.

Conservation of four-momentum reads

πµ + ωµ = (ε+ ω, ~π + ~ω) = (E + f, ~p+ ~f) = pµ + fµ (3.13)

from which we derive

∆P µ ≡ pµ − πµ = ωµ − fµ (3.14)

∆Pµ∆P µ = m2 − 2πµp
µ +m2 = 0− 2ωµf

µ + 0

= 2m2 − 2Eε+ 2pπ cosφ (3.15)

= −2fω + 2fω cos θ
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Figure 3.1: Compton scattering off a heavy reflective surface.

Next, consider the massive particle’s rest frame system, where ~π = ~0, ε = m

m2 − Em = −m∆P 0 = m(f − ω) =− fω(1− cos θ) (3.16)

⇒ f =

(
1

ω
+

1

m
(1− cos θ)

)−1
=

ω

1 + ω
m

(1− cos θ)
(3.17)

In order to use this to calculate the momentum transfer per photon, we define
c = (1− cos θ)/m to compactify our notation.

ω − f = E −m =
√
p2 +m2 −m (3.18)

p2 = (ω − ω

1 + ωc
+m)2 −m2

=

((
ω2c

1 + ωc
+m

)2

−m2

)
(3.19)

=
ω4c2 + 2ω2mc(1 + ωc)

(1 + ωc)2

which, in the limit where m� ω, is to a good approximation

≈ 2ω2(1− cos θ)⇒ |p| = 2ω sin

(
θ

2

)
= 2~ω · n̂ (3.20)

where n̂ is the normal of the reflective surface, along which the momentum is
transferred. Note that this means a simple inclined plane can provide thrust
sideways, like a sail. In terms of the stress-energy tensor the total momentum
flux on a surface element is then given

dF λ = 2nλnµT
µνnνdA (3.21)

These are the primary models we will treat in chapter 4 and 5.
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3.2 The Einstein field equations

Lastly, the Einstein field equations, or EFE for short, describe how the stress-
energy-tensor gives rise to the curvature of space. While its derivation can
take an entire book, it’s commonly formulated in natural units where Newton’s
gravitational constant GN = 1 and the speed of light c = 1 as

Gµν = 8πTµν (3.22)

whereGµν is a complicated measure of curvature derived from the metric through
the covariant derivative. Solving the EFE exactly is a rare occurrence, and for
the purposes of this document it will suffice to consider the linearized field equa-
tions, where the stress-energy is related to the metric perturbation hµν such that
gµν = ηµν + hµν by either of

�

(
hµν −

hαα
2
ηµν

)
=8πTµν . (3.23a)

�hµν =8πTµν − 4πTαα ηµν (3.23b)

The common notation defines the trace-reversed version of either side by
h̄µν = hµν − 1

2
hααηµν and T̄µν = Tµν − 1

2
Tαα ηµν .

The linearized equations are a fair approximation as long as hµν � ηµν .
Furthermore, it is often analytically solvable, with the general solution provided
in section 23.3 of Hartle[1] as

h̄µν(t, x) = 4

∫
d3x′

T µν(t− |x− x′|, x′)
|x− x′|

(3.24)

as a perturbation to Cartesian flat space.
For either set of equations, one thing is clear: Curvature can arise as a

consequence of velocity through the momentum densities. A rotating star, for
instance, doesn’t curve space-time only through the gravitational potential of
its mass-energy, but also the momentum of its rotation. This result is what
turns the Schwarzschild metric into the Kerr metric, where a gravitomagnetic
drag arises due to the star’s angular momentum.

The way a Lorentz boost affects a diagonal stress-energy by generating off-
diagonal terms. We therefore expect any velocity-dependent metrization of the
stress to appear as the g0i-terms that mix time and space, which seems intuitive.
With that in mind, it appears plausible that we can emulate viscosity through
the metric, though the exact form requires a little more calculation.

Still, for matter moving at speeds low compared to the speed of light the
spatial momentum is small compared to the mass, which supports the model of
matter-dominated stress-energy as approximately diag(ρ, 0, 0, 0) for the purposes
of generating curvature. On the other hand, a radiation fluid behaves precisely
opposite - the stress-energy is the same in every direction, supporting the pattern
diag(ρ, ρ

3
, ρ
3
, ρ
3
).

We thus see that the two models generate curvature in different ways. Dust
generates equal contributions to space and time through the non-zero trace,
while radiation is traceless and contributes three times more to the time-component
of the metric than the spatial components.
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Near a Schwarzschild star

In the last chapter we learned how to compute the interaction of the stress-
energy tensor of a uniform radiation field with black and reflective surfaces in
locally flat space. However, the true test of the accrued formalism comes in
curved space, and the natural geometry to investigate is the geometry near a
point-mass, represented by the Schwarzschild metric

gµνdx
µdxν =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1
dr2 − r2

(
dφ2 + sin2 φdθ2

)
(4.1)

Since this geometry is spherically symmetric and we don’t expect any az-
imuthal forces to appear, we can restrict our computation to the equatorial
(2 + 1)-dimensional slice of space-time (t, r, θ) for which the metric is simply

gµν = diag

((
1− 2M

r

)
,−
(

1− 2M

r

)−1
,−r2

)
(4.2)

In order to relate the rest-frame force vector to Schwarzschild coordinates, we
can further introduce co-rotating locally Minkowski frames where (dt, dx, dy) =
(dt, dr, rdθ) near each point as described in section 2.3, thereby maintaining
the simple representation of T µν for a radial photon flow and allowing us to
compute Lorentz transforms in these frames using (ṫ, ẋ, ẏ) = (ṫ, ṙ, rθ̇) such that
ẏ corresponds to an orbital velocity. This is useful when it comes to transforming
the normal vectors on the surface of the object to their moving frames, which is
needed to compute the inner product terms of chapter 3.

Using index-less simplified notation eq. (3.12) and eq. (3.21), describing the
forces experienced by black and reflective surface elements in the co-rotating
stellar frame, can be written

dFB =(1− uu†)T (Λn̂)dA (4.3)

dFR =Λ−1n̂
(
(Λn̂)†T (Λn̂)

)
dA = Λ−1n̂(n̂(ΛTΛ)n̂)dA (4.4)

where Λ refers to the Lorentz transformation from the stellar frame to the ob-
ject’s frame, T is the stress-energy tensor, u is the four-velocity and n̂ is the
normal vector of the sunward-pointing surface to integrate over. The resulting
vector is the total force experienced due to radiation in the co-rotated frame at
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rest with respect to the stellar frame. If further transformed back to spherical
coordinates, the geodesic equation is modified to

ẍα = −Γαµν ẋ
µẋν + Fα (4.5)

where we learned how to calculate Γαµν from the metric in chapter 2.

Γ0µν =

 0 M
r2

0
M
r2

0 0
0 0 0

 , Γ1µν =

−Mr2 0 0
0 M

(r−2M)2
0

0 0 r

 , Γ2µν =

0 0 0
0 0−r
0−r 0

 (4.6)

For complicated shapes, the surface integrals for the radiation force can be
somewhat computationally heavy. The simplest shapes, which will be modelled
in this chapter, are a sphere and a co-rotating, approximately cubical object
with surface normals aligned in the r̂ and θ̂ directions.

To verify that we achieve the special case of the Poynting-Robertson effect as
predicted in section 1.2, we let Maple calculate the force for cubes and a sphere
in the co-rotating frame, then simplifying the equation by setting ṙ = 0.

F µ
S =

WA

r2

−γẏ2γ
−γ2ẏ

 (Black sphere) (4.7)

F µ
R =

WA

r2

 −2ẏ3

2
−2γẏ2

 (Reflective cube) (4.8)

F µ
B =

WA

r2

 −ẏ3 − ẏ2ẏ + 1
−γ (ẏ2 + ẏ)

 (Black cube) (4.9)

Were it not for the linear term, the forces experienced by the cubes would
be proportional, as they are for the black cube and sphere.

F µ
B =

1 + ẏ

γ
F µ
S =

1

2
F µ
R +

WA

r2

−ẏ2ẏ
−γẏ

 (4.10)

Similarly, to verify that we achieve the Doppler effect we set θ̇ = 0.

FS = FB =
1

2
FR =

−ẋ(γ − ẋ)2

γ(γ − ẋ)2

0

WA

r2
(4.11)

This looks reasonable - the frequency of each photon is shifted by as much as
the frequency of photon encounters. Following the calculations of section 1.2 the
observed 3-acceleration simply becomes a‖ = (1 − v)2, for which the corrective
term is of lowest-order −2v, making the trajectory more resistant to radial
perturbations than orbital.

These expressions can easily be included in the geodesic equations as a four-
force by applying the coordinate transformation back to spherical coordinates.
However, which parameters are appropriate to choose?
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4.1 Effective cross-sections

The importance of the Poynting-Robertson effect can depend on several circum-
stantial parameters, but the most intuitive one is the ratio of radial radiation
force to Newtonian gravitational force α = Frad

Fgrav
≈ WA

GMm
, which in natural units

of solar masses simplifies to the WA
m

that appears in eq. (1.9). Along with the
velocity-dependent ratio of radial to orbital cross-section for a given type of
object this is sufficient to describe all the radiation-dependent forces.

However, the effective radial cross-section has consequences not only for the
Poynting-Robertson effect, but also for stable orbits. If the radial pressure
is strong enough, α will compensate sufficiently for gravity that an otherwise
circular orbit will exceed the escape velocity of the reduced effective potential.

To see when this happens, we can compare the Newtonian orbital and escape
velocities with or without radiation:

vorbit =

√
GM

r
7→
√
GM(1− α)

r
(4.12)

vescape =

√
2GM

r
7→
√

2GM(1− α)

r
(4.13)

In general, we can use the Kepler formalism for an elliptic orbit of eccentricity
e starting at its perihelion to calculate the reach of a vessel with cross-section α
leaving a circularly orbiting planet.

vper =

√
GM

r
≡

√
(1 + e)(1− α)GM

rper
⇒ 1 + e =

1

1− α
(4.14)

⇒ rapi =rper
1 + e

1− e
= rper

1
1−α

2− 1
1−α

=
rper

1− 2α
(4.15)

So to leading order, the normal orbital velocity overtakes the effective escape
velocity when α = 0.5, which we will call the critical cross-section. This is what a
radiation-powered craft leaving a normal orbit would need to escape the gravity
well. If α = 1, we call it supercritical. This is when the net radial force reverses,
the sun becomes repulsive, and there are no possible stable orbits. Since both
the classical gravitational pull and the radiation pressure decay as 1/r2, this
observation is approximately radius-independent.1

Relative cross-sections

Having established this range of interesting parameters for radial pressure, we
can now further investigate how the Poynting-Robertson effect relates to it.
Since our test surfaces are symmetrically aligned, we have relatively simple
velocity-dependent expressions for the ratio of orbital to radial force:

β =
F y

F x
=

{−γ2v = −v +O(v3) (Black sphere)
−γ3v2 = −v2 +O(v4) (Reflective cube)
−γ2v = −v +O(v3) (Black cube)

(4.16)

1As long as r �M at least.
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Thus, to leading order in v, the orbital force in a circular orbit adjusted for
radial pressure depends on α and the radius as

F y = βα
Mm

r2
∝
{
vα
r2
∝ α

√
1−α
r2.5

(Black)
v2α
r2
∝ α−α2

r3
(Reflective)

(4.17)

with cross-sectional maxima at α = 2
3

and α = 0.5, respectively. The radius-
dependence makes it clear that these would only be comparable close to the
Schwarzschild radius. Nevertheless, the radius deficit ∆r per orbit increases
since the effective Newtonian energy is (α−1)M

2r
, meaning

∆E ≈ F y · 2πr ≈ (1− α)Mm

2r2
∆r =

1− α
2

F x

α
∆r (4.18)

⇒ ∆r

r
= 4π

βα

1− α
∝

{
α√
r−αr (Black)
α
r

(Reflective)
(4.19)

For elliptic orbits one can go through similar calculations, but the interesting
observations can be made entirely qualitatively. Since the radius-dependence of
the orbital force is of a higher negative order than gravity, the energy loss near
the perihelion, where the orbital velocity exceeds circular parameters, is greater
than that near the apihelion, where the situation is reversed. This reduces the
eccentricity of the orbit with every pass.

α Reflective cube Black cube Black sphere

0.2

0.5

0.7

Figure 4.1: Decaying Poynting-Robertson trajectories starting at 100M distance
with an adjusted initial orbital velocity v0 = 0.1

√
1− α, which would be appro-

priate for a Newtonian circular orbit in the absence of relativistic corrections.
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In fig. 4.1 we see the Poynting-Robertson effect in practice for a Schwarzschild
geometry and symmetrically shaped objects. Even for objects with critical radial
cross-sections slow orbits do exist, but due to the shapes these are eventually
caught by the orbital friction.

It’s worth noting that a reflective surface, which experiences twice the ra-
dial pressure and only higher-order orbital decay, reaches critical cross-sections
much easier. As briefly mentioned in section 3.1, inclined reflective sails are
even capable of providing orbital thrust depending on their alignment, easily
overcoming the Poynting-Robertson effect.

Scale bias of radiation pressure

Generally, naturally occurring objects in space tend to be symmetric enough to
approximate the volume as ∝ r3 and cross-section as ∝ r2. This implies that

α ∝ A

m
∝ r2

ρr3
=

1

ρr
(4.20)

meaning large symmetric objects such as planets are mostly unaffected by radi-
ation pressure. On the other hand, small objects such as motes of dust or ice
falling off comets are more easily affected. Depending on their initial velocity
and cross-section, these either get launched out of the solar system on a hyper-
bolic orbit or eaten by the Poynting-Robertson effect, effectively cleaning the
dust from stable, circular orbits and leaving mostly solid macroscopic objects.

Planet α
Mercury 4.8·10−14

Venus 3·10−14

Earth 2.23·10−14

Mars 4.99 ·10−14

Jupiter 9.2 ·10−15

Saturn 2 ·10−14

Uranus 2.7 ·10−14

Neptune 2 ·10−14

Body α
Pluto 3.3 ·10−13

Ceres 6.3 ·10−13

2 Pallas 9.2 ·10−13

4 Vesta 9 ·10−13

10 Hygiea 1 ·10−12

624 Hektor 3.1 ·10−12

951 Gaspra 4.3 ·10−12

25143 Itokawa 1.2 ·10−8

Data source: WolframAlpha Knowledgebase, 2015

Table 4.1: First-order force ratio estimates assuming a sphere model with α =

(1 + a)
L�r2⊕

4GM�m⊕c
where a is the albedo. As expected, smaller objects are more

affected, but none approach critical values.

This also means only certain kinds of interstellar dust that enter the solar
system are likely to remain. Too small, and the sun becomes repulsive. Too
large, and an initially positive-energy hyperbolic trajectory is unlikely to lose
sufficient energy in one pass to cross the energy threshold and be caught.

From the analysis of elliptic orbits losing eccentricity, it seems intuitive that
the kind of dust most likely to be caught should have a near-critical cross-section
and be on an initially slow hyperbolic trajectory which takes it close to the sun.
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4.2 Radiation pressure in the Solar system

We may be curious to what degree radiation pressure affects us and the future
of our space exploration. If we stop using natural units and insert table values,
the critical mass area density for a reflective surface is m

A
= 2L�

α4πGM�c
= L�

πGM�c
≈

3g/m2 or alternatively A
m

= 327m2/kg as the sail area required for a given
payload. In other words, if the radial radiation pressure is to carry a 30-ton
habitable craft straight out of the solar system, it would require ten square
kilometers worth of sail even if we could disregard the mass of the sail itself.

To compare, some of the thinnest commercially used book paper reaches
grammages of 25g/m2 with an α = 0.06, while the thinnest materials in con-
sideration for application as solar sails come down to 5.27g/m2 or α = 0.29. If
the thickness could be further halved, an enterprising astronaut on their way to
Mars could toss a sheet of it out of the solar system as soon as they left Earth’s
gravity well.

A solar sail-ship capable of adjusting its effective cross-section between sub-
critical and critical values will be able to go anywhere beyond Earth in a single
orbit. We find that the greatest orbital ratio of two successive planets lies
between Mars and Jupiter, at 3.41. To bridge that gap in a single elliptic orbit,
a radially aligned solar sail launched from Mars would need either an α > 0.35 or
some assist letting it exceed Mars’ orbital velocity. To reach Mars from Earth,
you would only need an α > 0.17, which is within our current technological
ability.

Of course, a practically engineered solar sail needs not be symmetrically
designed or radially aligned, and a slanted reflective sail can provide an orbital
acceleration just like the sails of a water-based sailboat can. At non-relativistic
speeds this easily overcomes the Poynting-Robertson effect for a reflective surface
- though amusingly, if one slants the sail forward only half as much as the
Poynting-Robertson slants the sun’s rays, the photons will ”scoop” to reflect on
the front of the sail in a way that provides a negative radial force.

The Earth-Mars transfer orbit

When evaluating propulsion methods for individual missions to Mars, one has
to consider whether launching a large sail out of Earth’s gravity well is more
efficient than providing the same thrust to the payload without the sail. If the
sail makes up a significant portion of the craft’s mass, it may require more energy
to lift it out of Earth’s gravity well than is necessary to propel the payload alone
to Mars.

However, once a sufficiently large sail is in space, it would be able to easily
carry light cargo back and forth between high-Earth-orbit and Mars without
need for further propulsion. This is an ineffective method for rocket-based craft,
because any cargo to be loaded near the Earth would need to match the carrier’s
initial orbital velocity, and so would be able to coast to Mars on its own. On
the other hand, a sail surfing on the radial radiation pressure would be able to
match much lower loading speeds near the Earth, but its elliptic trajectory could
carry small payloads on each trip, making up the energy loss through slants or
gravity assists.
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The size of the payload would depend on the effective cross-section of the sail,
the relative positions of Earth and Mars at that time, and whether one wishes
to spend time accelerating the orbital speed through slanting the sail instead of
surfing. The latter is a bit of a trade-off, since inclining the sail to increase the
relative cross-section β simultaneously decreases the radial cross-section α.

Poynting-Robertson in the Solar system

It should be clear that since planetary orbits appear stable, the Poynting-
Robertson effect can’t be as dominant as it appears in fig. 4.1. To put things
into perspective, let’s ask whether the effect of radiation pressure effect on a
planet exceeds the decrease in gravitation caused by the energy leaving the sun
in the first place.

For the Earth, at orbital radius R with observed solar luminosity W , we get

Ėgrav =− GmṀ

R
=
Gm

R
4πR2W = 4πRWGm (4.21)

ĖPR =− γ3v2WA ≈ −πr2v2W (4.22)

⇒ |Ėgrav|
|ĖPR|

=
4GmR

v2r2
≈ 4

m

M

(
R

r

)2

= 6.6 · 103 (4.23)

In other words, the energy gained from the sun getting lighter as it radiates is
three orders of magnitude larger than the energy lost to the Poynting-Robertson
effect - and even though the sun loses roughly 4 · 109kg/s, that only corresponds
to 6.7 · 10−14% of the total mass per year, and that isn’t very noticeable!

Planet |Ėgrav|
|ĖPR|

Mercury 3.8·102

Venus 3.2·103

Earth 6.6·103

Mars 5.8 ·103

Jupiter 4.8 ·105

Saturn 7.0 ·105

Uranus 2.2 ·106

Neptune 7.0 ·106

Body |Ėgrav|
|ĖPR|

Pluto 6.6 ·105

Ceres 1.4 ·103

2 Pallas 1.0 ·103

4 Vesta 9.6 ·102

10 Hygiea 1.2 ·103

624 Hektor 9.8 ·102

951 Gaspra 1.5 ·102

25143 Itokawa 1 ·10−1

Data source: WolframAlpha Knowledgebase, 2015

Table 4.2: First-order energy ratio estimates assuming a black sphere model.

In table 4.2 we see similar calculations for other objects in the solar system.
It’s worth disclaiming that for high-albedo asymmetric asteroids this can be
orders of magnitude off, but the general trend of smaller objects experiencing a
larger relative contribution should still hold.
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The cosmic background fluid

We’ve seen how radiation affects trajectories through its kinematic pressure near
a star. However, radiation is not only found near stars. Even in the interstellar
medium, far from any given star, there is a background radiation field. This
is not only because of the nearest light sources, for there is an ambient cosmic
background radiation field of around 2.7 Kelvin, which is believed to be a heat
relic of the Big Bang. This chooses a subtly special reference frame in the sense
that the cosmic background radiation looks isotropic in it.

Note that this does not violate Einstein’s special relativity because it doesn’t
change the form of any physical laws. Measuring speed relative to the cosmic
background radiation is only a slightly more general variant of measuring relative
to the Sun or the Earth.

Nevertheless, deviation from this frame has consequences thanks to an isotropic
version of the Poynting-Robertson effect. Pressures increase in your direction of
travel, draining ever so slight amounts of energy until you come to rest in the
fluid. In that sense, the expansion of the universe can be intuited in terms of
its effect on the radiation field: as the universe expands, the radiation energy is
distributed over a larger area, and even if an object were to not be pulled along
by space-time alone, the expanding radiation would provide a source of drag.

On the single-particle scale, a similar argument gives rise to the Greisen-
Zatsepin-Kxuzmin limit, which puts an upper bound on the energy of ultra-
relativistic charged cosmic rays coming from distant sources. However, this is
not so much a kinematic effect as it is a quantum one: if a proton has an energy
higher than about 8 Joules, the blue-shifted cosmic background photons will be
energetic enough to produce π0-particles through interaction with the proton,
thereby transforming kinetic energy into mass in the center-of-energy frame.

The GZK limit seems to correspond well to most observations of cosmic rays,
but for a simple extended surface undergoing purely kinetic interaction there is
no clear energy cut-off under which the dominant interaction is suppressed.
Instead, such a surface smoothly experiences more and more resistance or drag,
which is reminiscent of the Poynting-Robertson effect.

This chapter aims to investigate the more general interaction between a
relativistic fluid and a surface.
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5.1 Relativistic fluids

In general, the stress-energy of a relativistic fluid can be written as

T µν = (ρ+ p)UµUν − pgµν︸ ︷︷ ︸
Co-moving terms

+ (Uµqν + qµUν) + πµµ︸ ︷︷ ︸
Transverse terms

(5.1)

where Uµ is a flow vector, ρ is the rest-frame energy density, p is the isotropic
pressure, qµ is a heat flux vector and πµν is a viscous shear tensor. These terms
can be grouped into three types:

1. Matter, which in the rest frame appears only in the time component:
ρUµUν .

2. Pressure, which in the rest frame is projected onto the spatial components:
p(UµUν − gµν).

3. Shear effects, which are orthogonal to the fluid’s motion:
qµUµ = 0
πµνUν = 0.

The usual treatment of relativistic fluids restricts itself to perfect fluids, which
are assumed to have no shear components, and so have simplified stress-energy
tensors of the form

T µν = (ρ+ p)UµUν − pgµν (5.2)

which is fair to use for fluids without significant interaction.1

When investigating the evolution of the universe, one commonly further
restricts to the two interesting special cases mentioned in section 3.2: Dusts,
which for velocities much smaller than the speed of light have negligible pressure
and describe a matter-dominated universe, and radiation fluids, which are akin
to classical photon gases in that the equation of state is ρ = 3p.

While useful tools to describe the various stages of the universe on a large
scale, it proves too broad when it comes to describing specific interactions with
physically extended objects. Using the stress-energy tensor for a radiation fluid
as given, for instance, would imply that a test surface moving along one of
its normals through a radiation fluid would experience pressure from the front
equal to the pressure from the back, resulting in no net force, when intuitively
the Doppler effect would result in a momentum difference of 2γω cos θ between
forward- and backward-facing photons at an angle θ with the trajectory.

The reason for the inadequacy is that when a physical object interacts with
the stress-energy, it not only affects the object’s trajectory, it also changes the
stress-energy through shading, reflection, absorption and emission. When we
treated the interaction near the Schwarzschild star this was a simple case of
choosing what surfaces were in the shade, but in an approximately isotropic
background radiation, each part of the surface is only partially shaded.

1While photon-photon interactions do occur, implementing it as a shear viscosity for the
purposes of matter creation is beyond the scope of this document.
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Movement in a radiation fluid

We need to model an ensemble of directed photons, distributed in such a way
that they recover the perfect fluid in the absence of an interfering object. In
the isotropic CMB frame the velocity distribution of such ambient radiation is
simple:

Uµ(φ, θ) = (1,− cos θ sinφ,− sin θ sinφ,− cosφ) (5.3)

dT µν(φ, θ) = Φ(θ, φ)UµUνdΩ (5.4)

where the coordinate photon density is Φ(θ, φ)dΩ = Φ0dθd(cosφ). If we inte-
grate both angles, we get

T µν =

∫ 1

−1
d(cosφ)

∫ 2π

0

dθdT µν = 4πΦ0diag

(
1,

1

3
,
1

3
,
1

3

)
(5.5)

which is in accordance with the expression for a radiation fluid in its rest frame.
If we only wish to calculate the contributions of the photons relevant to a moving,
partially shaded surface, we can transform to a co-moving frame and use the
formula for relativistic beaming to determine the integration limits:

cosφ 7→ cosα− vz
1− vz cosα

⇒ 0 7→ 0,
π

2
7→ arccos(−vz), π 7→ π (5.6)

This allows us to easily calculate the rest-frame force experienced by each surface
of an isotropically radiating black cube moving along one of its normals.

F µ
Front = A(gµα − uµuα)

∫ 1

−vz
d(cosφ)

∫ 2π

0

dθTανnν

= −2πΦ0A

3

(1 + vz)
2

1− vz
ẑµ (5.7)

F µ
Back = A(gµα − uµuα)

∫ −vz
−1

d(cosφ)

∫ 2π

0

dθTανnν

=
2πΦ0A

3

(1− vz)2

1 + vz
ẑµ (5.8)

F µ
Side = A(gµα − uµuα)

∫ 1

−1
d(cosφ)

∫ π

0

dθTανnν

= −πΦ0Aγvz ẑ
µ +

2πΦ0A

3
nµ (5.9)

The transverse forces on the side cancel due to symmetry, leaving

F z
Front − F z

Back =− vz(4γ2 − 1)T 33A (5.10a)

F z
Drag =− γvzT 00A (5.10b)

F z
Tot =− vz(4γ2 + 3γ − 1)T 33A (5.10c)

The longitudinal Doppler shift results in both linear and cubic terms, while the
total drag force on the sides can be formulated as the Poynting-Robertson effect
in its relation to the energy density.

At low speeds, γ ≈ 1 and the drag and frontal forces are approximately equal,
the difference being of order O(v3z). This means an isotropically radiating black
cube experiences roughly the same force as a reflective cube, but a general black
body is less sensitive to asymmetry than a reflective body is. This agrees with
the uniform field case, as the reflective surface can steer by sailing transversally.
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5.2 A model of shadow

Until now, we’ve investigated how an object is affected by the presence of a
radiation field, but in light of having to include partial shading, we may want to
turn the question on its head: how is the radiation field affected by the presence
of an object? Using the method of the previous section, we can now model
the consequences of a massless black sphere at rest in an isotropic and other-
wise homogenous radiation fluid. Realistically, most physical surfaces are coarse
enough to radiate its thermal energy chaotically, but in order to differentiate
this model from a purely reflective or transparent surface, let’s assume a per-
fect sphere which only radiates radially. This will affect the total stress-energy
by replacing the otherwise isotropic radiation shadowed by the object with a
radially directed beam.

Resultant stress-energy

Consider a black, radially radiating sphere of radius R at rest. Using the rest-
frame integration limits from the previous section we see that an infinitesimal
surface element dA absorbs energy at a rate of T 0inidA = πΦ0dA. This trans-
lates to radial radiation from that surface element, which decays at a rate of R2

r2

as the distance r from the origin increases.

Due to the spherical symmetry we can without loss of generalization consider
any point as extending from the sphere’s south pole. The azimuthal integration
limit for the stress-energy due to the shadow of the sphere is then

R = r sinφ⇒ cosφ =
√

1−R2/r2 ≡ c (5.11)

So the total radiation stress-energy T µν is calculated to be

T µν(r) =

∫ 2π

0

dθ

∫ c

−1
d(cosφ)dT µν + πΦ0

R2

r2
λµλν

=
1 + c

2
T µν +

R2

r2
πΦ0

3
(diag(3, c, c, 3− 2c)) (5.12)

We see that the Minkowski trace is T 00 − T 11 − T 22 − T 33 = 0, just as
with the general radiation fluid. We also have that as r � R ⇒ c 7→ 1, which
returns to the isotropic stress-energy T µν , while when r = R the radial pressure
is 2.5 times larger than the transverse pressure. The lack of off-diagonal terms is
because we chose the rest frame for simplicity - in a moving frame the expression
can be expected to be far more complicated, with different results depending on
whether the sphere is heat-conductive or not.
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The gravity of a shadow

We know from the Einstein equation that a change in stress-energy implies a
change in the metric, and it’s therefore of interest to inquire about the weak
gravitational field generated by the mere presence of this shadow. For this
we use the linearized field equation (3.23b), which is further simplified by the
tracelessness of the stress-energy:

�hµν =k

(
Tµν −

1

2
ηµνT

α
α

)
(5.13)

⇒ �hµν =kTµν (5.14)

Now, any harmonic vacuum solution can be inserted on the left-hand side
without affecting the right-hand side. These would be gravitational waves, which
are not of interest to a static system such as this. If we can assume our metric
independent of time we reduce to the Laplace equation with sources instead:

∇2hµν = −kTµν (5.15)

Were it not for discarding the trace, the static weak-field approximation of
Newtonian gravity would satisfy this. In fact, the general solution given by

hµν(x) = 4

∫
d3x′
T µν(x′)
|x− x′|

(5.16)

looks quite similar to the Newtonian calculation for the gravitational potential
of a source distribution. We briefly despair over the divergence of the infinite
contributions in an infinite universe, but then move on and shuffle the diver-
gence into the cosmological constant since we’re only interested in the difference
relative to the isotropic case which we assume to be flat Minkowski space. In
effect this translates to letting T µν 7→ T µν − T µν when it comes to evaluating
the integral.

Time metric

Using the spatial symmetry of the energy density, we calculate the contribution
from the stress-energy of each spherical shell of radius r to the metric at a point
Z away from the origin.

∆h00 =4 ·
∫ 2π

0

dθr2drT 00(r)

∫ 1

−1

d cosφ√
(Z − r cosφ)2 + r2 sin2 φ

(5.17a)

=8πr2T 00(r)dr

∫ 1

−1

d cosφ√
Z2 − 2Zr cosφ+ r2

(5.17b)

=8πr2T 00(r)dr
2

max(r, Z)
(5.17c)

=
16πr2

max(r, Z)

(
c− 1

2
4 +

R2

r2

)
πΦ0 (5.17d)
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To simplify calculations, we adopt units of π2Φ0.

⇒ ∆h00 =
16r2

max(r, Z)

(
2c− 2 +

R2

r2

)
(5.18)

=
−16r2

max(r, Z)
(1− c)2

If we integrate this expression directly, we get several levels of divergence.
However, if we expand c in terms of R2

r2
, we see that

2c = 2

√
1− R2

r2
= 2− R2

r2
− R4

4r4
− ... (5.19)

which means that the first two expansion terms are precisely enough to coun-
terbalance the other divergent terms. The exact expression is

h00 =− 16

∫ Z

R

r2

Z
(1− c)2dr − 16

∫ ∞
Z

r(1− c)2dr (5.20a)

=
16

3Z

[
(2c− 2)r3 + (3− 2c)R2r

]Z
R

+ 16
[
(c− 1)r2 − ln(c+ 1)R2

]∞
Z

(5.20b)

=
16

3

(
(1− c)Z2 + (3− 2c)R2 − R3

Z
+ 3R2 ln

(
c+ 1

2

)
− 3R2

2

)
(5.20c)

=
16

3

(
(1− c)Z2 +

(
3

2
− 2c+ 3 ln

(
c+ 1

2

))
R2 − R3

Z

)
(5.20d)

where c is now evaluated at r = Z. We see that the series expansion of c once
more presents a cancellation of both divergent and constant terms, so the leading
orders are

h00 ≈ 16

3

R3

Z
+ 2

R4

Z2
+

1

6

R6

Z4
+O

(
1

Z6

)
(5.21)

The dominant term, which arises from the lowest integration limit at R, can
also be written as 4πR3

3
T 00/Z, which precisely corresponds to how h00 experiences

a ”hole” of missing energy which fails to attract gravitationally. Of course, if we
assume the object to be massive, this term competes with the Newtonian weak
static field. Thanks to the linearity of our simplified equations, however, this
would not affect the contribution from the traceless part of the stress-energy,
which remains a perturbation.

Spatial metric

The spatially indexed elements are a little more complicated, as the contribution
of each spherical shell can be split into a symmetric and asymmetric part. The
symmetric contributions are almost a third of h00, the only difference appearing
in the higher-order terms of c− 1:

∆hiisymm =
16r2

3 max(r, Z)

(
2c− 2 + c

R2

r2

)
(5.22)

=
∆h00

3
+

16R2dr

3 max(r, Z)
(c− 1)
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The asymmetric term, which arises from the direction of the beam term λµλν ,
has its Z-contribution from each point on a sphere weighted by the azimuthal
angle as cos2 φ and the XY -contributions by sin2 φ sin2 θ and sin2 φ cos2 θ so
the total contribution from such a shell isn’t proportional to (max(r, Z))−1 but
rather

∆hzzasymm =8R2 (1− c) dr
∫ 1

−1

d(cosφ) cos2 φ√
Z2 − 2Zr cosφ+ r2

(5.23a)

=
16

3
R2 (1− c) dr ·

{
1
Z

+ 2
5
r2

Z3 Z > r > R
1
r

+ 2
5
Z2

r3
Z < r

(5.23b)

and

∆hxxasymm =4R2 (1− c) dr
∫ 1

−1

d(cosφ)(1− cos2 φ)√
Z2 − 2Zr cosφ+ r2

(5.24a)

=
16

3
R2 (1− c) dr ·

{
1
Z
− 1

5
r2

Z3 Z > r > R
1
r
− 1

5
Z2

r3
Z < r

(5.24b)

We see that the first terms exactly cancel the symmetric contribution, and
the remainder relates the Z and XY contributions by a relative factor −2, as
required by tracelessness. The net contribution of a spherical shell is then

∆hzz =
∆h00

3
+

32R2

15
(1− c) dr ·

{
r2

Z3 Z > r > R
Z2

r3
Z < r

(5.25)

⇒ hzz =
h00

3
+

32R2

15Z3

[
(1− c3)x

3

3

]Z
R

+
32Z2

15

[
− R

2

2x2
− c3

3

]∞
Z

=
h00

3
+

32

15

(
(1− c3)R

2

3
− 0− Z2

3
+
R2

2
+
Z2c3

3

)
(5.26)

=
h00

3
+

16

9

(
2

5
(c5 − 1)Z2 +R2

)
hxx = hyy =

h00

3
− 8

9

(
2

5
(c5 − 1)Z2 +R2

)
(5.27)

Once more, if we were to expand c5 = 1 − 5R2

2Z2 + ..., both divergent and
constant terms are cancelled, verifying that it indeed is a weak contribution of
leading order Z−2.

hzz =
16

9

((
2c5 − 5c+ 3

5

)
Z2 +

(
5

2
− 2c+ 3 ln

(
c+ 1

2

)
− R

Z

)
R2

)
(5.28)

≈− 16

9

R3

Z
+ 2

R4

Z2
− 1

6

R6

Z4
+O

(
1

Z8

)
hxx =

16

9

((
6− 5c− c5

5

)
Z2 +

(
1− 2c+ 3 ln

(
c+ 1

2

)
− R

Z

)
R2

)
(5.29)

≈− 16

9

R3

Z
+

1

6

R6

Z4
+O

(
1

Z6

)
While these calculations seem to work out, they’re not very pretty. The

first thing we can do is define some quantities like the negative vacuum energy
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parameter of the missing volume and the quantities in the parantheses that are
only dependent on the ratio R

Z
through c, using Z2 = R2

1−c2 :

M ≡4πR3

3
· 4πΦ0

3
(5.30)

Θ ≡ 1

1 + c
+

3

2
− 2c+ 3 ln

(
1 + c

2

)
(5.31)

σ ≡1− 2

5

(
1− c5

1− c2

)
(5.32)

⇒ hµν =

(
MΘ

R
− M

Z

)
diag(3, 1, 1, 1) +

Mσ

2R
diag(0,−1,−1, 2) (5.33)

which we now can rotate to an arbitrary direction to use Z as a radius.

Figure 5.1: σ and Θ for various values of R. As expected, they decay rapidly.

Thus we see that even the slightest correction to homogeneity can have com-
plex consequences for the curvature of space, highlighting how deep the rabbit
hole goes. Though we started with something as seemingly straight-forward as
the Poynting-Robertson effect, we now see that an object that interacts with
photons will implicitly also affect curvature - even if it is at rest! A dynamic
shadow such as that arising from the Poynting-Robertson effect would be even
more complex, depending on parameters such as the mass, velocity and heat
conductivity of the object.

Granted, it’s a negligible effect for macroscopic considerations in the real
world, but nevertheless an interesting perspective on how chaotic curvature in
a radiation-dominated universe must be on the small scale.
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Conclusion and considerations

In chapter 1 we described how we expect a change of reference frame to be able to
incur velocity-dependent forces, and promised to investigate the mathematical
tools needed to describe such effects in a general setting.

After introducing geodesics, covariant derivatives and four-forces, we’ve now
demonstrated how the Poynting-Robertson effect can be included in dynamic
calculations as a non-gravitational term. The parameters relevant to the force
were identified, and their meager values for many real-world scenarios explain
why the phenomenon is often paid little heed. Though higher-order thermal
effects such as the Yarkovsky and YORP effects were identified, they were not
treated in as much detail as Poynting-Robertson, which we expect to dominate.

On the way, we acquired a perspective on the viability of solar sails for space
travel. While not necessarily the best solution for every situation, it shows
clear potential for certain types of missions and is worth further development.
In particular, a simulation of the Mars-Earth transfer orbit could see potential
application in the future.

Unfortunately, one of the questions asked in the introduction was only given
a cursory treatment: Can the metric itself emulate viscosity?

We’ve seen how the linearized field equations can give rise to implicitly
velocity-dependent T 0i and by extension g0i-components of the metrics, which
is where we would expect the viscous effects to appear. We’ve also seen how to
calculate change in metric arising from a fluid-interacting object, but we only
went into detail for the isotropic rest frame as a static contribution. As a future
project it would be interesting to augment the shadow model by making the
object move, thereby incurring a velocity-dependent effect on the metric both
through its own energy-momentum and its fluid-interaction. The question is
then whether this procedure could provide the proper friction-like correction to
the geodesics through Christoffel symbols rather than as a four-force.

Ultimately we could compare this to the corrections of a weakly Kerr metric
to see whether gravitomagnetic frame-dragging can be modelled as a Poynting-
Robertson effect based on gravitational radiation. After all, frame-dragging is
linear in the orbital velocity, much like the Poynting-Robertson effect for an
absorbing body is. The settings may be different, but the similarities spark
curiosity.
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