
Cosmic Rays from Pair-Instability 
Supernova Remnants

Marie Kristine Foss

MSc in Physics

Supervisor: Michael Kachelriess, IFY

Department of Physics

Submission date: May 2015

Norwegian University of Science and Technology



 



i

Abstract
Pair-instability supernovae are the most energetic thermonuclear explosions in the
Universe, up to 100 times more energetic than type Ia supernovae. Around redshift
z & 6 approximately one out of ten supernovae was a pair-instability supernova. In
the local universe, however, this number is drastically reduced to less than one out
of ten thousand. In this thesis we look at progenitors both among the first gener-
ation of stars and in the local universe. We determine the dynamical evolution of
the supernova blast wave propagating through the interstellar medium. The max-
imum energy a cosmic ray proton can be accelerated to in the supernova remnant
is then found to be 4 × 1015 eV, for a mean magnetic field of 100µG parallel to
the shock front. Lastly, the proton and neutrino flux for a Pop III pair-instability
supernova is estimated. The diffuse neutrino flux for Pop III PI SNe is found to
be a sub-dominant contribution to the observed flux.

Sammendrag
Par-ustabile supernovaer er de mest energifulle eksplosjonene i universet, og frigir
opp til 100 ganger mer energi enn type Ia supernovaer. Tidlig i universets histo-
rie (rødforskyvning z & 6) var en av ti supernovaer en par-ustabil supernova. I
det lokale universet er dette tallet drastisk redusert til mindre enn en av ti tusen.
I denne masteroppgaven ser vi p̊a forgjengere b̊ade blant den første generasjo-
nen av stjerner og stjerner i det lokale universet. Vi bestemmer først hvordan en
eksplosjonsbølge som følge av en par-ustabil supernova beveger seg gjennom det
interstellare medium. Den høyeste energien proton kan akselereres opp til i en
supernovarest ble funnet til å være 4× 1015 eV n̊ar magnetfeltet i supernovaresten
ble satt til å være gjennomsnittlig 100µG. Til sist estimeres fluksen av protoner
og nøytrinoer fra alle par-ustabile supernovaer for z & 6. Den isotropiske fluksen
av nøytrinoer viste seg å bidra svært lite til den m̊alte bakgrunnen av nøytrinoer.
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Introduction

Pair-instability supernovae are the most energetic thermonuclear explosions in the
Universe. The ejected energy is typically around 1052 erg, with the most massive
ones being almost 100 times more energetic than a type Ia supernova. After carbon
burning, the temperature in the core of the progenitor is so high that electron and
positron pairs are created, which causes an instability, hence the name. The core
contracts until oxygen and silicon ignites explosively, and the star is completely
blown apart, leaving no remnant core.

Pair-instability supernovae are believed to have been very common for the first gen-
eration of stars, and central for the chemical enrichment of the Universe. The first
stars (Population III or just Pop III) are assumed to have been very massive and
metal-free. Pop III stars more massive than 65M� can encounter pair-instability,
but have to be within the range of (150 − 260)M�, or (90 − 140)M� if they are
rotating, to die as a pair-instability supernova. During the supernova explosion,
huge amounts of 56Ni are released, and heavier elements are created.
As it turns out pair-instability in the core is not exclusive to Pop III stars, as there
are some firm pair-instability supernova candidates in the local universe. It is
not understood how such massive stars can form in high metallicity environments.
One possibility is the merging of stars in young, dense clouds. Either way, massive
(M > 150M�) stars have been observed in the local universe.

This thesis starts with some background information about stellar evolution in
chapters 1 and 2. In chapter 3 we take a closer look at pair-instability supernovae.
We discuss fluid dynamics in chapter 4, a topic needed to understand the supernova
shock. In chapter 5 we look at the analytic solution to the dynamical evolution
of the blast wave into the interstellar medium. And finally a consequence of the
explosion, acceleration of cosmic rays in chapter 6. Here we discuss diffusive par-
ticle acceleration and how to calculate the maximum energy of a cosmic ray and
the cosmic ray flux. Along the way, theory is used to find some properties pair-
instability supernovae with both local and Population III progenitors. Finally, in
chapter 7, we sum up the thesis and look at what is to come.
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Chapter 1

The Evolution of Stars

A star is a body that is bound by self-gravity and that radiates energy supplied
by an internal source. There are three main stages of stellar evolution; the for-
mation, the main-sequence (MS) phase, and the most interesting one, the post-
main-sequence phase. For a more detailed picture see [8] or [9]. All stars can be
organized in a Hertzsprung-Russell (HR) diagram, by surface temperature and lu-
minosity. An example is given in figure 1.1. The thick, diagonal line are all stars
in the MS phase, the extension to the upper right are red giants, and the ones on
the lower left are white dwarfs.

1.1 Star Formation
Stars are born in giant gaseous, low-density clouds. These clouds are often subject
to perturbations which lead to a region of higher density, increased gas pressure and
increased gravitational pull. If the cloud is unstable, it can collapse and form stars.
Consider a uniform, spherical cloud with mass M , radius R, and temperature T .
The gravitational energy is then

V = −3
5
GM2

R
, (1.1)

where G is the gravitational constant, and the kinetic energy is

K = 3
2
M

m
kBT. (1.2)

Here, m is the mass per particle and kB the Boltzmann constant. For the cloud to
be gravitationally bound, the gravitational forces holding the cloud together has to
be greater than the forces driving it apart, |V | > K. This, along with the density,
ρ = M/(4π/3)R3, gives the Jeans length,

RJ =
[

15kBT

8πGmρ

]1/2
, (1.3)

3



4 CHAPTER 1. THE EVOLUTION OF STARS

Figure 1.1: HR diagram for 41704 stars from the Hipparcos Catalogue [1].

which is a lower limit for the dimension of a gravitationally bound region. And the
Jeans mass,

MJ = 4π
3 R3

Jρ = 4π
3

[
15kBT

8πGm

]3/2
ρ−1/2, (1.4)

an upper limit for the mass. Once a cloud becomes gravitationally bound it will
begin to collapse. The collapsing region is called a fragment, and will, due to the
increased gravitational pull, increase its mass by accretion of surrounding gas. For
a bound system, the virial theorem provides a relation between potential energy V
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and kinetic energy K, and is given by

〈K〉 = −1
2 〈V 〉. (1.5)

If the kinetic energy increases, the potential energy decreases. In this case, the
potential energy is gravitational, and the kinetic energy is thermal. As material
accretes, gravitational energy is released and turned into thermal energy, thus the
temperature increases. The temperature will increase until it reaches the threshold
for hydrogen ignition, and the star becomes a MS star.
If the cloud is rotating, the collapse is slowed down. This is due to conservation of
angular momentum. The angular momentum for a uniform sphere with radius r is
L = (2/5)Mr2ω, where ω is the angular speed. As the cloud collapses, ω increases.
Each particle is not only pulled inwards, but also in the direction of the rotation.
Thus, the inwards acceleration a(r) = GM/r2 − r2ω is lower compared to a non-
rotating cloud. If ω becomes large enough, ω = (GM/r3)1/2, the rotation can halt
the collapse perpendicular to the axis of rotation. Movement parallel to the axis
of rotation is unaffected, and the star-forming fragment will flatten, thus making
it harder to obtain stellar densities. When it is no longer able to collapse further,
it will break up into smaller pieces, where some of them can continue collapsing.
This is a possible explanation of the high incidence of binary systems.
Magnetic fields can have an important effect on star formation, as most clouds are
sufficiently ionised, making them good conductors. The effect of a magnetic field B
becomes important when the associated energy is comparable to the gravitational
energy, (

B2

8π

)(
4π
3 R3

)
∼ 3

5
GM2

R
, (1.6)

where B2/8π is the magnetic energy density in Gaussian units. As a molecular
cloud collapses, the magnetic field strength increases. The charged particles exert
a pressure which slows down the collapse. Ions and neutrals might not stay perfectly
mixed. As ions drift relative to the neutrals, some of the magnetic flux escape from
the cloud. This is called ambipolar diffusion. Sometimes ions collide with neutrals,
transferring momentum. This leads to an increase in temperature. Ambipolar
diffusion thus serves as a heating source for the cloud, and allows for gradual
contraction. This process is thought to produce low mass stars.

1.2 Main-Sequence

A star spends most of its lifetime on the MS. The MS phase is characterised by
hydrogen burning in the core. The nuclear energy generated in the core is trans-
ported outwards by convection or radiation. The larger the mass of the star, the
shorter time the star is in the MS phase.
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1.2.1 Nuclear Processes
Depending on the core temperature there are three main nuclear processes taking
place in the core during the MS phase, changing the composition of the star. These
changes are the reason MS stars forms a band, rather than a thin line, on the HR
diagram.

Hydrogen burning I, also known as the proton-proton chain, is the primary
source of energy generation. It requires a temperature of 107 K. The net result of
this chain is that four protons make one helium nucleus (α-particle), in addition
to two positrons, two neutrons, and two photons,

p + p → 2H + e+ + νe
2H + p → 3He + γ

3He + 3He → 4He + 2p.

The positron will quickly annihilate, heating the gas. The gamma-ray travels a
small distance before being absorbed, also heating the gas, while the neutrino es-
capes completely.

The triple-α process occurs in more massive stars, where the core tempera-
ture lies around 108 K. This process is especially important at the end of the MS
phase. The first step in the chain is

4He + 4He 
 8Be.
8Be is unstable and will either break up or capture a third α-particle,

4He + 8Be → 12C + γ.

The 12C nucleus works as a catalyst for a third nuclear process:

Hydrogen burning II, the CNO cycle,
12C + p → 13N + γ

13N → 13C + e+ + νe
13C + p → 14N + γ
14N + p → 15O + γ

15O → 15N + e+ + νe
15N + p → 12C + 4He.

Here as well, four protons make one 4He nucleus, in addition to two neutrinos, two
positrons, and three photons.

1.2.2 Mass Loss
For low-mass stars mass loss is negligible, however, more massive stars lose a sig-
nificant fraction of their mass during the time spent on the MS. Mass loss takes
two forms: continuous stellar winds and sudden ejections of a mass shell, called
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superwind. The former is the important one during the MS phase. The wind is
generated in the atmosphere of the star, driven by the radiation pressure. The
ejected mass Ṁδt acquires escape velocity vesc by absorbing a fraction f of the
momentum carried by the radiation (L/c)δt. We write

Ṁδtvesc = f
L

c
δt, (1.7)

where L is the luminosity and c the light speed. Inserting v2
esc = 2GM/R we get

the mass-loss rate
Ṁ =

(
f

2
vesc

c

)
LR

GM
. (1.8)

1.3 Stellar Old Age
When all the hydrogen in the core has been converted into helium, the MS phase
is over. On the HR diagram, the star will move towards the red giant branch. How
that happens depends on the mass of the star.

1.3.1 Low Mass Stars
The core temperature in low mass stars (M < 5M�) is too low for helium to fuse
into heavier elements. This leads to a dynamical instability, the gravitational pull
is stronger than the radiation pressure and the core contracts. The temperature
now raises until it is sufficiently high for helium burning to take place and the
contraction halts.
For stars of mass M < 2M�, the core of the star is so dense it becomes degenerate
before helium burning starts. Thus the fusion from helium to carbon takes place
very fast, resulting in a helium flash, if the mass of the core is about 0.5M�.
The degeneracy is lifted, the core expands and helium burning becomes stable.
The temperature in the layer right outside the core increases leading to hydrogen
burning in the shell and a separation from the core as it expands. Since the core
and the envelope is separate, the core becomes isothermal while the mass increases.
However, the mass Mc cannot be arbitrarily high. The stability condition is

Mc

M
. constant

(
µenv

µc

)2
, (1.9)

where µenv is the mean molecular weight in the envelope, and µc the mean molecular
weight in the core. When Mc reaches this limit, the core starts to contract. For
stars that are more massive than 2M�, Mc already exceeds the condition above,
and contracts once the hydrogen is exhausted. The contraction stops when pressure
balances gravity.
Meanwhile, the outer layer is heated and expands. Expansion of the gas leads
to lower temperature. As the temperature difference between the surface and
the interior increases, the energy flow between the two regions increases as well.
More photons are then absorbed, which increases the temperature. Thus, the
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surface temperature is close to constant, while the luminosity increases due to the
expansion. The star has now become a red giant. When the helium in the core has
fused into carbon and oxygen, the temperature is too low for further fusion, and
the core contracts once again. A helium burning shell develops, and the envelope
expands. The outer layers of the red giant are weakly held together. As photons
from inside the star are absorbed by the outer layers, their momentum is absorbed
as well, causing the shell to move even further outward. This is the second type of
mass loss briefly mentioned in section 1.2.2. The shells are thus ejected. The core,
which now consists of carbon and oxygen, contracts until the electrons in the core
becomes degenerate, turning the core into a white dwarf. As the core contracts
the effective surface temperature reaches 30,000 K, and the radiated photons ionize
the atoms in the ejected shells, making them shine by fluorescence. The shining
envelope is called a planetary nebula. Some stars never reach sufficiently high
temperature for helium ignition, they lose their envelope before that stage and
leave helium white dwarfs.

1.3.2 Massive Stars
Just as for low mass stars, massive stars also have a helium burning core and a
hydrogen burning shell. When the helium in the core is exhausted, carbon and
oxygen fuses into even heavier elements. The star then has a carbon and oxygen
burning core, a helium burning shell, and a hydrogen burning shell. The core keeps
building up heavier elements, and more layers are developed, until the inner core
is made of iron group elements. The core is then surrounded by shells of silicone,
oxygen, neon, carbon, helium, and a hydrogen rich envelope. The luminosity of
the core increases, causing a heating, and thus an expansion of the outer layers.
The star becomes a red supergiant. Since iron cannot fuse into heavier elements
without spending energy, contraction of the core is inevitable. This will be further
discussed in the next chapter.



Chapter 2

Types of Supernovae

Some stars have a more violent death than others. A supernova (SN) is a star
undergoing an explosion that briefly outshines an entire galaxy. SNe are divided
into two groups, type I and type II. The difference of these is the presence of
hydrogen lines in the spectrum. A type I SN shows no hydrogen lines, whereas a
type II does.

2.1 Type Ia Supernovae
Type Ia is the most frequent one of the type I SNe. It can occur in close binary
systems where one of the stars is a white dwarf. Consider a binary system in
a coordinate system rotating with the stars, then draw surfaces with constant
effective potential. There are five points, called Lagrangian points, where the
effective gravitational force is zero. One of the points, L1, lies between the stars
and connects an equipotential surface shaped as a dumb-bell, see figure 2.1. The
volume enclosed is called Roche lobes, and delimits the area in which material is
gravitationally bound to only one of the stars. The more massive star will evolve off
the MS first, and become a red giant. If the red giant becomes large enough to fill
its Roche lobe, some of its mass can be transferred onto the other star, through the
point L1. The star losing mass will eventually become a white dwarf, or an other
collapsed object. In the case of a possible type Ia SN it is interesting if the other
star also develops into a red giant that fills its Roche lobe. Then mass will transfer
back onto the white dwarf. If enough mass falls onto the white dwarf to make its
mass greater than the Chandrasekhar limit, MCH ≈ 1.44M�, it will collapse. The
collapse triggers carbon detonation. The nuclear energy released is greater than
the gravitational pull and the white dwarf explodes, leaving no remnant. During
the explosion, the temperature rises to the point where a significant amount of 56Ni
is created. Later 56Ni decays into 56Co, which then decays into 56Fe.
If the second star is not able to fill its Roche lobe, but instead evolves to a white
dwarf, we get a white dwarf binary. The white dwarfs radiate gravitational waves,
and in order to make up for the energy loss, the distance between them decreases.

9
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Figure 2.1: Roche lobes for a detached binary system, with L1 marked.

Eventually, one of them will fill its Roche lobe and accrete material onto the other.
The merging of two white dwarfs might result in a type Ia SN [10].

2.1.1 Other Type I Supernovae
Type Ib and Ic are core collapse SNe [11]. The progenitors are massive stars who
have lost their hydrogen rich envelope either due to strong winds or a partner in a
close binary system. In addition to its hydrogen rich envelope, a type Ic progenitor
has also lost its helium shell. The spectral differences can be seen in figure 2.2.
The mechanism behind SNe of type Ib/c is more similar to type II than type Ia.

2.2 Type II Supernovae
When a massive star (M > 10M�) reaches the end of its time as a MS star it
blows up and becomes a red supergiant, see section 1.3.2. The iron core contracts,
making the electrons degenerate. When the mass of the degenerate core exceeds
the Chandrasekhar limit, the electron degenerate pressure can no longer support
the core and it collapses further. During the collapse, some of the energy is released
and then absorbed by the iron nucleus, causing the iron to break,

56Fe → 13 4He + 4n.

The loss of energy is so severe, that the collapse turns into an almost free fall.
This drives the temperature even higher. The photons become energetic enough to
break the helium nuclei into protons and neutrons. As the density increases, the
liberated protons couple with electrons to create neutrons and neutrinos,

e− + p → n + νe.
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Figure 2.2: The difference in type I SN spectra [2].

The pressure then drops, continuing the collapse until the neutron gas becomes
degenerate, at a density around 1015 g/cm3. The collapse results in an explosion
where most of the mass of the star is blown away. Exactly how it happens is not
well-known. The core is compressed to the point where nuclei starts to overlap.
Thus, nuclear forces kick in, and the equation of state stiffens. This can halt the
collapse and make the material bounce back, creating a shock wave. The large
number of emitted neutrinos (1057 for a 10M� star [8]) might also have something
to do with it. Due to the high density, neutrinos are trapped in the core, creating
a neutrinosphere. A significant amount of the neutrino energy is then absorbed by
the envelope, giving it a push outwards. During the explosion, heavier elements
are created. The remaining degenerate neutron core is classified as a neutron star.
If the gravitational pull is larger than the neutron degeneracy pressure, the core
will continue to collapse. We do not know of another source of pressure that might
halt the collapse, so when radius of the core reaches its Schwarzschild radius,

RS = 2GM
c2

, (2.1)

it will become a black hole.
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2.2.1 Subclasses of Type II Supernovae
One can separate type II SNe into four subclasses: IIL, IIP, IIn, and IIb [11].
IIL (Linear luminosity decline) and IIP (luminosity Plateau of 2-3 months, then
decline) are considered normal type II SN, and refers to the shape of the light
curves. These two subclasses are not completely separated, since some cases show
a mixture between IIL and IIP. A small subset of type II SNe shows some narrow
emission lines, and are classified as type IIn SNe. These lines are most likely due to
interaction with dense circumstellar media. A type IIb SN shows similar spectrum
as type II SNe at the beginning, but after a while the spectrum resembles that of
a type Ib SN, hence the b in IIb.



Chapter 3

Pair-Instability Supernova

Pair-instability (PI) SNe are the most energetic thermonuclear explosions in the
universe [6]. The physics of a PI SN is thought to be well-understood: After carbon
burning the temperature is so high, T > 109 K, that electron-positron pairs are
created. Thermal pressure drops and the core contracts. This leads to explosive
burning of oxygen and silicon. The energy released completely unbinds the star.
Whether or not a star is susceptible to PI depends not only on its mass, but on
metallicity, mass loss, and mixing due to rotation [12]. Rotation leads to a more
chemically homogeneous interior and higher oxygen core masses. A rotating star
can therefore encounter PI at lower masses. Higher metallicity means stronger
winds and more mass loss. Thus, stars with higher metallicity have to be more
massive to die as PI SNe.

3.1 Early Universe
The properties of the first stars are not well known. These first stars are catego-
rized as Population III (Pop III), whereas in the local universe stars are of Pop
I (young and metal-rich) or Pop II (old and metal-poor) [8]. Pop III stars are
thought to have been born in 105 − 106M� dark matter halos [5], either individu-
ally or as clusters. Due to the lack of observational data it is hard to predict their
masses, but they were probably massive (15− 500M�) and extremely metal poor
(Z < 10−3.5 Z�). It is believed that the first massive stars ended their life as PI,
type IIn, and core collapse (CC) SNe, and that they are the origin of the massive
black holes we now find in the centre of galaxies. Another believed consequence of
PI SN is the chemical enrichment of the Universe.
The Pop III progenitors of PI SNe are usually in the mass range of 140-260 M�
and die as either red hypergiants or blue giants. For stars rotating with a speed of
∼ 50 % of break up velocity, the mass range is lowered to 90 − 140M� [6]. They
die as compact He cores due to rotational mixing. A slightly less massive star
(∼ 100M�, or ∼ 85M� if the star is rotating) can also encounter PI [13], but
the released energy will fail to completely unbind the star. Instead the star will

13
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shed outer layers in a series of violent ejections. This is called a pulsational pair-
instability (PPI) SN. The first ejected shell is usually the most massive one, and is
followed by less massive shells with higher velocity. If two shells collide it will be
a very luminous event, and might be an explanation to superluminous supernovae
such as SN 2006gy. The remaining core will eventually collapse into a neutron
star or a black hole. If the mass of the star exceeds 260M�, it will experience PI,
but the released energy is consumed by the disintegration of alpha particles into
nucleons. Thus the net energy is not enough to halt the collapse, and the star will
collapse into a black hole.
The comoving Pop III PI SN rate is estimated to lie between 10−8 and 10−6 yr−1 Mpc−3,
which gives approximately 1 PI SN per 10 SNe in the early universe (redshift
6 . z . 25) [14].

3.2 Local Universe
In the local universe stars have higher metallicities, which means that massive stars
will lose most of their mass during their lifetime, and reduce them to compact
helium cores. Thus, a local star have to be much more massive in order to explode
as a PI SN. The problem with this is the believed upper limit to stellar mass, which
were thought to be ∼ 150M�. However, the resent discovery that the star cluster
R136 in the Large Magellanic Cloud hosts stars with masses above this limit [4],
together with the two candidates SN 2007bi and SN 2213-1745, suggest that PI
SNe were not limited to the first stars. A possibility of achieving such massive
stars in the local universe is by runaway collisions in young, dense star clusters,
which could result in a merged star with sufficient mass [15]. The local PI SN rate
is estimated to be ∼ 2× 10−9 yr−1 Mpc−3, which gives less than one PI SN per ten
thousand SNe.

3.2.1 SN 2007bi
SN 2007bi at redshift z = 0.123, discovered early in 2007, is classified as a peculiar
type Ic supernova. Young et al. [16] compared the light curve of SN 2007bi with
other discovered type Ic SNe covering a wide range of properties. SN 2007bi had
a peak magnitude of M ∼ −21.3 mag, which is two magnitudes brighter than
the over-luminous SN 1998bw. The light curve also shows a much slower decline
compared to the others, which, together with the broad peak, indicate a very large
ejected mass. Light curves of type Ic SNe are powered by the decay of 56Ni. The
estimated amount of nickel synthesised in the explosion is MNi = 3.5 − 4.5 M�.
Young et al. then argues whether SN 2007bi was a PI or a CC SN, leaning on the
latter. Gal-Yam et al. [17] claim, however, that their findings are inconsistent with
CC models. They compare the light curve of SN 2007bi to PI SN models, and it
is well-fitted for a 100-110 M� helium core. They estimate the amount of nickel
to be & 7 M� and the progenitor to have had a helium core with M ≈ 100 M�,
which could only lead to a PI SN. In comparison, Whalen et al. [4] lists a nickel
amount of 9.2 M� associated with a 109 M� helium core for a local PI SN.
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3.2.2 SN 2213-1745
Cooke et al. [18] discovered SN 2213-1745 at z = 2.05, which is another super-
luminous SN with peak magnitude M ∼ −21 mag in the far-ultraviolet, in a stack
of images taken in June - November in 2005 and 2006. They classified it as a
SLSN-R, a super-luminous SN with a slowly evolving light curve. The light curve
is similar to that of SN 2007bi, both fade slower than any other super-luminous
SN. Due to the close agreement, Cooke et al. estimates that they had a similar
amount of synthesised 56Ni, and that the progenitor of SN 2213-1745 had an initial
mass of ∼ 250 M�. In their discussion they rule out the possibility of an active
galactic nucleus, which can produce similar energies. SN 2213-1745 thus provide
the first far-ultraviolet data for a possible PI SN. Cooke et al. also discuss the
case SN 1000+0216 at z = 3.90, which might have been a PPI or a super-luminous
type II SN. However, due to the limiting photometric coverage it is not possible to
determine which subclass it belongs to.
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Chapter 4

Fluid Dynamics

Most astrophysical objects, e.g. stars, nebulae, and the interstellar medium (ISM),
are fluids. Fluid dynamics, the theory of the movement of gases and liquids, there-
fore plays an important role in many astrophysical problems [19].

4.1 Basic Fluid Equations
A fluid in (local) thermodynamic equilibrium can be completely described by the
density, velocity, and temperature of any point in the fluid. The motion of a fluid
can then be described with a handful of equations. Consider a fluid element with
volume V , density ρ, and velocity u. For an ideal fluid, viscosity is neglected.

4.1.1 The Continuity equation
Let the volume V be fixed in space and enclosed by a surface S. The total mass
of the fluid element is

∫
V
ρdV . The time derivative of this mass is the flux of mass

into V across S,
d
dt

∫
V

ρdV = −
∫
S

(ρu) · ndS, (4.1)

where n is a normal vector pointing outward on V . The volume is fixed in space,
so it does not matter if we integrate or differentiate first. Using the divergence
theorem, ∫

V

(∇ · F) dV =
∫
S

F · ndS, (4.2)

we can rewrite equation (4.1):∫
V

∂ρ

∂t
dV = −

∫
V

∇ · (ρu) dV. (4.3)

Since the volume V can be chosen arbitrarily, we thus have

∂ρ

∂t
+ ∇ · (ρu) = 0, (4.4)

17
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which is the continuity equation.

4.1.2 The Momentum Equation
Assume now that the volume moves with the fluid. The rate of change of the
volume (or any other quantity moving with the fluid) with respect to time can
then be expressed with the material, or convective, derivative D/Dt:

DV

Dt
= ∂V

∂t
+ u ·∇V. (4.5)

The momentum of the fluid element is
∫
V
ρudV , and its rate of change is the same

as the net force acting on the fluid element. There are two types of forces acting on
the fluid: body and surface forces. Body forces, e.g. gravity, act on the particles
in the fluid element. The net effect is

∫
V
ρf dV , where f is the body force per unit

mass. Surface forces act normally on the surface with net effect
∫
S
−PndS, where

P is the pressure. The rate of change of the momentum is then

d
dt

∫
V

ρudV =
∫
S

−PndS +
∫
V

ρf dV. (4.6)

When we place the time derivative inside the integral, it becomes a material deriva-
tive. Since the mass of the fluid is invariant, we get

d
dt

∫
V

ρudV =
∫
V

ρ
Du
Dt

dV. (4.7)

Eq. (4.6) together with the divergence theorem, eq.(4.2), thus gives∫
V

ρ
Du
Dt

dV =
∫
V

(−∇P + ρf )dV. (4.8)

Again, the choice of V is arbitrary, so we have that

ρ
Du
Dt

= ρ

(
∂u
∂t

+ (u ·∇)u
)

= −∇P + ρf , (4.9)

which is the equation of motion for a fluid.

4.1.3 The Energy Equations
The dot product of the equation of motion, eq. (4.9), with the velocity u,

D

Dt

(
1
2u2

)
= −1

ρ
u ·∇P + u · f , (4.10)

is the same as the rate of change of the kinetic energy. Equation (4.10) is called
the mechanical energy equation.

Let U be the internal energy density. The rate of change of the total energy
must be equal to the work done on the fluid plus the rate at which heat is added
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to the fluid. Heat can either be generated at a rate ε per unit mass within the
fluid element (nuclear radiation) or added by the heat flux F across the surface
(radiative heat flux)

d
dt

∫
V

(
1
2u2 + U

)
ρdV =

∫
S

u · (−Pn) dS +
∫
V

u · f ρdV

+
∫
V

ερdV −
∫
S

F · ndS
(4.11)

Using eq. (4.2) and the fact that the volume is arbitrarily chosen, we get

ρ

(
D

Dt

(
1
2u2

)
+ DU

Dt

)
= −∇ · (Pu) + ρu · f + ρε−∇ · F . (4.12)

Subtracting the mechanical energy equation (4.10), we obtain the thermal energy
equation

DU

Dt
= P

ρ2
Dρ

Dt
+ ε− 1

ρ
∇ · F . (4.13)

If the system is in thermal equilibrium ε = (1/ρ)∇ · F , and the thermal energy
equation is simplified to

DU

Dt
= P

ρ2
Dρ

Dt
. (4.14)

4.1.4 The Equation of State
An equation of state (EoS) is a relation between pressure P , temperature T , and
density ρ of a system. For an ideal gas the EoS is

P = nkBT, (4.15)

where n is the number of particles per volume. We assume first that the stellar
gas is an ideal gas. Since there are different species of particles in the stellar gas,
the total pressure is the sum of the pressure exerted by the different species: ions,
electrons, and photons. The total gas pressure (ions and electrons) is then given
by

Pgas = PI + Pe = (nI + ne) kBT =
(

1
µI

+ 1
µe

)
ρ

mH
kBT = ρkBT

µmH
, (4.16)

where µI is the mean atomic mass of stellar material, µ−1
e is the average number of

free electrons per nucleon, and mH is the atomic mass unit. The radiation pressure,
from photons that transfer momentum to gas particles, is

Prad = 4
3
σ

c
T 4, (4.17)

where σ is the Stefan-Boltzmann constant. If the gas is degenerate, the EoS is

Pdeg = Kργ , (4.18)

where K is a constant, and γ is the adiabatic exponent. The adiabatic exponent
has the value γ = 5

3 for a non-relativistic degenerate gas, and γ = 4
3 for a relativistic

degenerate gas. For a more detailed discussion, see [8].
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4.1.5 Astrophysical Fluids
For a star, the only body force is due to self-gravity, f = −∇Φ. Equations (4.4),
(4.9), and (4.13) are then

Dρ

Dt
+ ρ∇ · u = 0 (4.19)

ρ
Du
Dt

+ ∇P + ρ∇Φ = 0 (4.20)

DU

Dt
− P

ρ2
Dρ

Dt
− ε+ 1

ρ
∇ · F = 0. (4.21)

These equations, together with the Poisson equation, ∇2Φ = 4πGρ, and an EoS,
fully describes the system. We assume that ε and F are known functions of the
other variables. In one spatial dimension these equations can be rewritten to say

∂tρ+ ∂x(ρu) = 0 (4.22)
∂t(ρu) + ∂x(ρu2 + P ) = −ρ∂xΦ (4.23)

∂t

(
ρ

[
1
2u

2 + U

])
+ ∂x

(
ρu

[
1
2u

2 + U + P

ρ

])
= −ρ∂xΦ + ρε− ∂xF, (4.24)

adding the kinetic energy to the last equation.

4.2 Shocks
A shock is a propagating discontinuity caused by e.g. a SN explosion. The shock
propagates through matter with a velocity higher than the sound speed. In the
following subsections, consider a fluid initially at rest with uniform density ρ0, pres-
sure P0, temperature T0, and internal energy density U0. Assume thermodynamic
equilibrium. Our discussion follow the book by Katz [20].

4.2.1 Sound Waves
Let the fluid undergo a small perturbation,

ρ = ρ0 + δρ (4.25)
P = P0 + δP (4.26)
u = δu, (4.27)

and assume that there are no external forces present. Inserting these new values
into equations (4.4) and (4.9), only keeping first order terms in small quantities,
we obtain

∂δρ

∂t
+ ρ0 (∇ · δu) = 0 (4.28)

∂δu
∂t

+ 1
ρ0

∇δP = 0. (4.29)
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Assuming the perturbations are adiabatic, we can reduce the number of variables
with

δP =
(
∂P

∂ρ

)
δρ, (4.30)

which is analogous to the EoS. Eliminating δu from (4.28) and (4.29) by partial
derivation with respect to time and to space respectively, gives

∂2δρ

∂t2
= ∇2δP =

(
∂P

∂ρ

)
∇2δρ. (4.31)

This is the wave equation, ∂tρ = c2s ∇2ρ, with cs =
√

(∂P/∂ρ) as the adiabatic
sound speed. If the perturbations are isothermal, we have δP = a2δρ, where a is
the isothermal sound speed. In all cases between adiabatic and isothermal, sound
waves are dispersive and damped.

4.2.2 Shocks
Consider now a shock with velocity vsh propagating through the fluid. Behind
the shock, the fluid has density ρ1, pressure P1, velocity u1, temperature T1, and
internal energy density U1. Everywhere in the fluid, except at the shock, thermal
equilibrium holds. In the lab frame the unshocked fluid is at rest. From the
conservation laws, which can be easily read from equations (4.22)-(4.24), we find

(ρ1 − ρ0)vsh = ρ1u1 (4.32)
ρ0u1vsh = P1 − P0 (4.33)

ρ0

(
1
2u2

1 + U1 − U0

)
vsh = P1u1, (4.34)

Eq. (4.32) can be rewritten as u1 = vsh(ρ1 − ρ0)/ρ1. Combining this with eq.
(4.33), and solving for vsh and u1 separately, we find

v2
sh = ρ1

ρ0

(P1 − P0)
(ρ1 − ρ0) ; u2

1 = (P1 − P0)(ρ1 − ρ0)
ρ1ρ0

. (4.35)

To keep the solution simple, we assume that the shock propagates at a constant
rate. To do this, it is necessary to continually supply energy and momentum from
the outside. If this is not done, the shock will gradually weaken, and the solution
will be more complex. In the rest frame of the shock, the unshocked fluid has
velocity v0 and the shocked fluid has velocity v1. Equations (4.32)-(4.34) then
becomes

ρ1v1 = ρ0v0 (4.36)
P1 + ρ1v2

1 = P0 + ρ0v2
0 (4.37)

U1 + P1

ρ1
+ 1

2v2
1 = U0 + P0

ρ0
+ 1

2v2
0, (4.38)
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which yield

v2
0 = ρ1

ρ0

(
P1 − P0

ρ1 − ρ0

)
; v2

1 = ρ0

ρ1

(
P1 − P0

ρ1 − ρ0

)
. (4.39)

The three equations (4.36)-(4.38) have four variables on each side, ρi, vi, Pi, and
Ui. To solve this system of equations, we need an additional constraint in the form
of an EoS. Using that of an ideal gas, P = Kργ , and dU = −PdV , we get the
constraint

Ui = 1
γ − 1

Pi
ρi
. (4.40)

Inserting this and eq. (4.39) into eq. (4.38) gives

γ

γ − 1
P1

ρ1
+ 1

2
ρ1

ρ0

(
P1 − P0

ρ1 − ρ0

)
= γ

γ − 1
P0

ρ0
+ 1

2
ρ0

ρ1

(
P1 − P0

ρ1 − ρ0

)
.

Multiplying with ρ1ρ0, collecting terms with γ on one side, and then using the fact
that

(
ρ2

1 − ρ2
0
)

= (ρ1 − ρ0)2 + 2ρ0 (ρ1 − ρ0) to make it linear in ρ, we obtain

γ

γ − 1(P0ρ1 − P1ρ0) = 1
2(ρ1 + ρ0)(P1 − P0).

Separating terms with ρ1 and ρ0 gives

ρ1

(
P1 + γ + 1

γ − 1P0

)
= ρ0

(
P0 + γ + 1

γ − 1P1

)
.

We now have the ratio between ρ1 and ρ0:

ρ1

ρ0
= (γ − 1)P0 + (γ + 1)P1

(γ − 1)P1 + (γ + 1)P0
. (4.41)

For a strong shock, P1 � P0,

ρ1

ρ0
= V0

V1
≈ γ + 1
γ − 1 , (4.42)

so no matter how strong the shock is, it cannot compress matter more than by a
factor (γ + 1)/(γ − 1). This factor is 4 for γ = 5/3, and 7 for γ = 4/3.



Chapter 5

Blast Waves

A blast wave is an outward travelling shock produced by an explosion within a
fluid [20]. A supernova remnant (SNR) is the result of interaction between the
ambient medium and the ejected stellar medium. In the rest frame of the ambient
medium a supernova starts off as a point explosion. During the evolution of the
SNR, the propagation can be divided into three stages: an ejecta dominated (ED)
stage, the Sedov-Taylor (ST) stage, and a radiation dominated stage, also known as
the pressure-driven snowplow (PDS) stage. Sometimes the remnant enter a fourth
stage, the momentum-conserving snowplow [21] before it merges with the ISM.

The ED stage is initiated when the shock breaks through the outer layer of the
stellar progenitor [3]. The ejected material behaves like a piston in the ambient
gas, moving with a velocity larger than the sound speed. It is thus preceded by a
shock wave, which heats, compresses, and accelerates the ambient medium. The
shocked ambient medium pushes back, which results in a reverse shock travelling
inwards. The unshocked ejected material expands freely until it is decelerated by
the reverse shock. The SNR enters the ST stage when the mass of shocked ambient
gas is greater than the mass of ejected material. When most of the ejected energy
has been transferred to the ambient medium, the blast wave is adiabatic. Even-
tually the shock is decelerated to the point where it becomes radiative. The SNR
has then entered the PDS stage. A thin shell forms behind the shock front, driven
by the pressure of the enclosed hotter shocked ambient medium. As the interior
pushes the shell outwards, it loses energy. When all of the thermal energy is lost
to radiation, the SNR evolves into the momentum-conserving snowplow stage. At
the end of the final stage the shock is weak, propagating nearly at the sound speed.
The shell breaks up and the SNR merges with the ISM. Usually this happens before
the SNR can evolve into the momentum-conserving snowplow stage.

23
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5.1 Analytic Solution
An analytical one-dimensional approach of the trajectory connecting the first two
stages was calculated by Truelove and McKee in 1999 [3]. As a full description is
very complex, they had to make certain assumptions. Effects of such as convective
instabilities, thermal conduction, magnetic fields, and radiative cooling was ne-
glected. Both the ejected material and the ISM was assumed to be homogeneous.
The initial conditions introduced three independent parameters: the ejecta energy
E, ejecta mass Mej, and the ambient density ρ0. Combining these by dimensional
analysis gives characteristic scales of length and time, which in the case of uniform
ambient medium are

Rch = M
1/3
ej ρ

−1/3
0 = 3.07

(
Mej

M�

)1/3
n
−1/3
0 pc, (5.1)

tch = E−1/2M
5/6
ej ρ

−1/3
0 = 423E−1/2

51

(
Mej

M�

)5/6
n
−1/3
0 yr. (5.2)

Here, n0 is the ambient hydrogen number density in units of cm−3, and E51 is
the ejected energy in units of 1051 erg. From these characteristic quantities, they
defined dimensionless variables R∗ = R/Rch, t∗ = t/tch, and v∗ = v/vch, where
vch = Rch/tch. In the case of a non-uniform ambient medium, we have

Rch =
(
Mej

M�

)1/(3−s)
ρ−1/(3−s)
s , (5.3)

tch = E
−1/2
51

(
Mej

M�

)[(5−s)/2(3−s)]
ρ−1/(3−s)
s , (5.4)

where ρs is a normalization constant. A finite ambient mass require s < 3. For a
stellar wind we have s = 2 and ρs = Ṁw/ (4πvw), where Ṁw is the mass luminosity
of the wind and vw is the wind speed.
The density of the ejected material follow a power-law with index n, ρ ∝ r−n. A
type Ia SN can be described by n = 7, a PI SN is assumed to follow either n = 0
or n = 2. Let Rsh be the radius and Vsh the velocity of the blast wave. Truelove
and McKee’s analytical equations for the trajectory of the shock in the ED stage
for n < 3 is

t∗(R∗sh) =
(α

2

)1/2 R∗sh
`ED

[
1− 3− n

3

(
φED

`EDfn

)1/2
R
∗3/2
sh

]−2/(3−n)

(5.5)

V ∗sh(R∗sh) =
(

2
α

)1/2
`ED

×

(
(1− [(3− n)/3](φED/`EDfn)1/2R

∗3/2
sh )(5−n)/(3−n)

1 + (n/3)(φED/`EDfn)1/2R
∗3/2
sh

)
,

(5.6)
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where ` = Rsh(t)/Rr(t), Rr(t) is the radius of the reverse shock, φ is the ratio of
the pressure behind the reverse shock and the blast wave, α = 2E/Mejv

2
ej, fn is

derived from the structure function f(v/vej) = fn(v/vej)−n, which describes the
time-independent shape of the distribution. For n < 3 we have

fn = 3− n
4π ; α = 3− n

5− n. (5.7)

The remaining values are listed in table 5.1.

n `ED φED t∗ST R∗ST
0 1.10 0.0961 0.495 0.727
2 1.10 0.0947 0.387 0.679
6 1.39 0.39 1.04 1.07
7 1.26 0.47 0.732 0.881

Table 5.1: Parameters for various n from [3].

For n > 5, the analytical equations for the ED stage is

R∗sh(t∗) =
{

27
4π

1
n(n− 3)

`n−2
ED
φED

[
10
3

(
n− 5
n− 3

)](n−3)/2
}1/n

t∗(n−3)/n (5.8)

V ∗sh(t∗) =
(
n− 3
n

){
27
4π

1
n(n− 3)

`n−2
ED
φED

[
10
3

(
n− 5
n− 3

)](n−3)/2
}1/n

t∗−3/n, (5.9)

where `ED and φED is listed in table 5.1 for some n > 5.
The ST stage is more straightforward to approximate. Truelove and McKee con-
nected the ”classical ST” solution Rsh(t) = (ξ0Et2/ρ0)1/5, where ξ0 = 2.026 when
γ = 5/3, to the general ED solution. In terms of dimensionless variables, they got

R∗sh(t∗) = [R∗5/2ST + ξ
1/2
0 (t∗ − t∗ST)]2/5 (5.10)

V ∗sh(t∗) = 2
5ξ

1/2
0 [R∗5/2ST + ξ

1/2
0 (t∗ − t∗ST)]−3/5, (5.11)

where t∗ST and R∗ST are the (dimensionless) fiducial transition time and radius,
respectively, between the two stages. t∗ST and R∗ST depend on the chosen power-
law, n, and are listed in table 5.1 for some n. Figure 5.1 shows the dimensionless
trajectories for n = 0, 2, 6, 7.
Earlier, in 1988, Cioffi et al. [21] connected the ST stage with the PDS stage in a
similar way. The fiducial transition time, radius, and velocity was found to be

tPDS ∼= 13, 300E3/14
51 n

−4/7
0 ζ−5/14

m yr (5.12)

RPDS ∼= 14E2/7
51 n

−3/7
0 ζ−1/7

m pc (5.13)

vPDS ∼= 413E1/14
51 n

1/7
0 ζ3/14

m km s−1, (5.14)
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Figure 5.1: Dimensionless shock trajectories for various n.

respectively, where ζm is a dimensionless metallicity correction factor of order unity.
The expansion equations were estimated to be

Rsh(t∗) = RPDS

(
4
3 t∗ −

1
3

)3/10
(5.15)

Vsh(t∗) = vPDS
2
5

(
4
3 t∗ −

1
3

)−7/10
, (5.16)

where t∗ = t/tPDS.

5.2 Evolution of a PI SNR
To determine the dynamical evolution of a PI SN blast wave, we use the analytical
equations from the previous section and values from a series of papers by Whalen
et al. [6, 5, 4]. We assume that the shock follows either a n = 0 or a n = 2
density profile, and insert values from table 5.1. To get the right dimensions, we
have to multiply equations (5.5)-(5.6) and (5.10)-(5.11) with the corresponding
characteristic values, Vsh = vch × V ∗sh, Rsh = Rch × R∗sh, and t = tch × t∗. These
values are dependent on the parameters n0, Mej, and E51, and vary between local
and Pop III PI SNe.

5.2.1 Local PI SN
A local PI SN can occur in a region with both high and low density, with a number
density ranging from 10−4 cm−3 to 106 cm−3. We assume the ISM to be uniform
and to have a number density n0 = 0.1 (low) and n0 = 104 (high). For a local PI
SN we have to account for the mass loss of the progenitor, due to its metallicity
and rotation. A star rotating with velocity v = 0.4 vcrit, where vcrit is the breakup
velocity, is assumed to have lost its hydrogen envelope at the onset of PI. A star
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with, e.g., initial mass M = 150M� will then be reduced to a 109M� helium core,
and a 200M� star is reduced to 130M� [4]. At that point the mass is within the
mass range for a rotating PI SN, 90− 140M�, see chapter 3. Some characteristic
values can be found in table 5.2.

Mej/M� n0(cm−3) E51 Rch(pc) tch(yr) vch(108cm/s)
109 0.1 42.0 31.6 7013.0 4.41
130 0.1 65.0 33.5 6528.8 5.02
109 104 42.0 0.681 151.09 4.41
130 104 65.0 0.722 140.66 5.02

Table 5.2: Characteristic values for local PI SNRs in an ISM with different number
densities n0 [4].

In comparison, a 110M� and a 130M� Pop III star rotating with v = 0.5 vcrit can
explode as a PI SN with ejected energy 39×1051 erg and 52×1051 erg respectively,
see next section. Figure 5.2 shows the trajectories of the shock front in local
PI SNe initiated by rotating progenitors with initial masses 150M� and 200M�.
The initial shock velocity is the same in both cases, however, as suspected, the
deceleration is greater in the dense medium than in the sparse one. We see that
there is no major difference between a n = 0 and a n = 2 density profile, and will
therefore mainly use n = 2.

5.2.2 Pop III PI SN
The interstellar medium surrounding Pop III stars is assumed to have a hydrogen
number density of n0 = (0.1− 1) cm−3 out to (100− 200) pc [5]. Here, we assume
it to be uniform and choose n0 = 0.1 cm−3. Due to the low metallicity, mass loss is
negligible, and the ejected mass is the same as the initial mass. The characteristic
values of PI SNe caused by both rotating and non-rotating Pop III stars of different
mass and metallicity is then given in table 5.3. Trajectories of the shock front in
Pop III PI SNe is shown in figure 5.3.

From figures 5.2 and 5.3 we see that higher metallicity leads to higher shock velocity
and larger radius for both non-rotating and rotating progenitors. The difference in
velocity and radius seems to be larger for lower masses. Regardless of metallicity
and rotation, after 15,000 years, the shock velocity is approximately the same for
all cases.
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Figure 5.2: Evolution of the shock in a local 150M� and 200M� PI SN with a
n = 0 (dashed) and n = 2 (solid) density profile, surrounded by an ISM with
number density n0 = 0.1 (upper) and n0 = 104 (lower).

Mej/M� Z(Z�) E51 Rch(pc) tch(yr) vch(108cm/s)
150 10−4 9.00 35.1 19768 1.74
175 10−4 21.3 37.0 14611 2.48
200 10−4 33.0 38.7 13120 2.88
225 10−4 46.7 40.2 12167 3.23
250 10−4 69.2 41.7 10912 3.74
175 0 14.6 37.0 17648 2.05
200 0 27.8 38.7 14295 2.65
225 0 42.5 40.2 12754 3.08
250 0 63.2 41.7 11418 3.57
90 0 9.90 29.6 12314 2.35
110 0 39.0 31.7 7333.3 4.23
130 0 52.0 33.5 7299.5 4.49
140 0 80.0 34.3 6959.9 4.82

Table 5.3: Characteristic values for Pop III PI SNRs with progenitors of different
masses and metallicities [5] when n0 = 0.1. The bottom three are rotating with
0.5 vcrit [6].
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Figure 5.3: Evolution of the shock in a Pop III PI SNR with a n = 2 density profile,
different masses, and metallicities Z = 10−4 Z� (upper) and Z = 0 (middle), and
rotating Z = 0 (lower).
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Chapter 6

Cosmic Rays

Cosmic rays are high energy particles mostly consistent of protons (∼ 90%[22]),
with the rest being alpha particles, heavier nuclei, and electrons. Their origin is not
fully known. Most of the cosmic rays entering our atmosphere come from within
the Galaxy. The cosmic rays with the highest energies might be of extragalactic
origin, produced by active galaxies. In a SN, charged particles can be accelerated
to high energies [23] via diffusive shock acceleration. Energetic particles excite
Alfvén waves as they stream through the shock front. These waves generates
magnetic fluctuations which scatter the particles by random walk. The scattering
confines the particles to the vicinity of the shock. This result in first order Fermi
acceleration, due to crossing of the shock front several times. The magnetic field is
essential for the acceleration to high energies. In a young SNR, the magnetic field
is amplified up to 1 mG, which is ∼ 100 times more than the average magnetic field
in the ISM. This amplification could be due to several instabilities due to, e.g.,
turbulence driven by a beam of cosmic rays. The ambient magnetic field is tangled
and contains loops. The cosmic ray current j interact with these loops, and the
loops are stretched with a force j×B. This causes an instability and the magnetic
field increases. This instability can increase the magnetic field 100 times its initial
value [24].

6.1 Fermi Acceleration
An energetic particle is able to pass the shock front freely, every time it does it
gains the relative energy

ξ = Ek+1 − Ek
Ek

. (6.1)

We want to derive the average energy gain 〈ξ〉 per encounter. Here one encounter
is a pair of one crossing in and one out. The scattering in the pre and post shocked
medium works via magnetic field fluctuations and is collisionless. In a simplified
picture, consider first a magnetic cloud moving with velocity V � c as in the left
of figure 6.1. A cosmic ray particle initially with energy E1 enters the cloud at an

31
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angle θ1. In the rest frame of the cloud the particle has total energy

E′1 = γE1(1− β cos θ1), (6.2)

where β = V/c and γ = 1/
√

1− β2. Inside the cloud the particle ”scatters” on the
fluctuations of the magnetic field. The particle exits at an angle θ2 with an energy

E2 = γE′2(1 + β cos θ′2), (6.3)
where E′2 is the energy in the rest frame of the cloud just before it escapes. Since
the scattering is collisionless and the cloud is very massive, energy is conserved,
E′2 = E′1. The relative energy gain is then

ξ = E2 − E1

E1 = 1− β cos θ1 + β cos θ′2 − β2 cos θ1 cos θ′2
1− β2 − 1. (6.4)

To find 〈ξ〉 we then need 〈cos θ1〉 and 〈cos θ′2〉. The probability of a collision is
proportional to the relative velocity between the cloud and the particle, and the
collision rate is

dn
d cos θ1

= 1
2(1− β cos θ1). (6.5)

With −1 6 cos θ1 6 1 this gives

〈cos θ1〉 =
∫

cos θ1
dn

d cos θ1
d cos θ1∫ dn

d cos θ1
d cos θ1

= −β3 . (6.6)

Since the particle scatters many times inside the cloud, the exit direction is random
so dn/dcos θ′2 = constant and 〈cos θ′2〉 = 0 when −1 6 cos θ′2 6 1. Averaging over
eq. (6.4) thus gives

〈ξ〉 = 1 + β2/3
1− β2 − 1 ≈ 4

3β
2. (6.7)

This is the original, second order, Fermi mechanism [22]. After many encounters
there is a net gain of energy, but one encounter could result in either energy gain
or loss. Consider now a plane shock front moving with velocity V � c, as the right
hand side of figure 6.1. The relativistic particle crosses the shock front at an angle
θ1, scatters in the shocked medium, and crosses the shock again at an angle θ′2 with
an energy E2. The energies and angles are the same as in the previous case, but
now −1 6 cos θ1 6 0 and 0 6 cos θ′2 6 1. We have

dn
d cos θ1

= 2 cos θ1 and dn
d cos θ′2

= 2 cos θ′2, (6.8)

which gives 〈cos θ1〉 = −2/3 and 〈cos θ′2〉 = 2/3. Inserted into eq. (6.4) we now get

〈ξ〉 = 1 + (4/3)β + (4/9)β2

1− β2 − 1 ≈ 4
3β. (6.9)

This is the first order Fermi acceleration. The particle always gains energy after
an encounter with the shock front. After n acceleration cycles the energy En of a
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Figure 6.1: Acceleration by a moving cloud (left) and at a shock front (right).

cosmic ray is En = E0(1 + ξ)n. Assuming the escape probability pesc is constant,
the probability to stay in the region after n cycles is (1 − pesc)n. The number of
particles that are accelerated up to energy En is

N ∝
∞∑
k=n

(1− pesc)k = (1− pesc)n

pesc
. (6.10)

After inserting n = ln(E/E0)/ ln(1 + ξ) and some algebra we find

N ∝ 1
pesc

(
E

E0

)−α
, (6.11)

where
α = ln

(
1

1− pesc

)
/ ln(1 + ξ). (6.12)

When pesc � 1 and ξ � 1, we have α ≈ pesc/ξ. The energy spectrum produced by
Fermi acceleration is thus

dN
dE ∝

(
E

E0

)−(α+1)
. (6.13)

Thus, both first and second order Fermi acceleration produces a power-law energy
spectrum, which is compatible with the observed spectrum. It can be shown for
diffuse shock acceleration that α ≈ 1.

6.2 Maximum Energy
The number of times a particle crosses the shock front is a random variable, and
some particles can achieve very high energies. Since the lifetime of the SN shock
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front is finite, the maximum energy a particle can achieve is limited. It is then
interesting to know what this maximum energy limit is.
Fermi acceleration of cosmic rays give rise to diffusion in momentum space. The
diffusion length cannot be smaller than the gyroradius of the relativistic particle
rg = E/ZeB, where Ze is the electric charge of the particle. The smallest diffusion
coefficient allowed in the model is then the Bohm diffusion coefficient κB = 1

3rgc
[22, 25]. Let u1 and u2 be the velocity of the upstream and downstream, respec-
tively, of the shock. The acceleration time scale was derived by Drury in 1983 [25]
and found to be

tacc = 3
u1 − u2

(
κ1

u1
+ κ2

u2

)
, (6.14)

where κi ∝ 1/Bi is the diffusion coefficient on each side of the shock. Let then
u1 = Vsh and B1 = B. The ambient medium has adiabatic compression factor
four (γ = 5/3, see section 4.2.2), so u2 = Vsh/4. If the magnetic field is parallel
to the shock front, the field is compressed and B2 = 4B. If the magnetic field is
perpendicular to the shock front it is unaffected and B2 = B. We write 4κ1+16κ2 =
χκB so that

tacc = χ
κB
V 2

sh
= χ

3
cE

ZeBV 2
sh
, (6.15)

where χ is 8 when B is parallel to the shock front and 20 when B is perpendicular.
From this, it is easy to show that the energy gain rate from acceleration is(

dE
dt

)
acc

= 3
χ

eBV 2
sh

c
(6.16)

for a proton (Z = 1). The adiabatic expansion of the SNR leads to an energy loss
which has to be accounted for. From basic dimensional analysis we know that the
specific energy E is proportional to pressure P and specific volume V , E ∝ PV .
Combining this with the EoS P = Kργ ∝ V −γ from section 4.1.4 gives E ∝ V 1−γ .
Derivation with respect to time gives the adiabatic energy loss(

dE
dt

)
ad

= (1− γ)E
V

dV
dt , (6.17)

where V is the volume of the SNR. Since we assume the SNR to evolve spherically,
we have that V = (4/3)πR3

sh and dV/dt = 4πR2
shVsh. Thus(

dE
dt

)
ad

= 3(1− γ)VshE

Rsh
. (6.18)

The maximum proton energy is thus found by solving the differential equation(
dE
dt

)
p

= 3
χ

eBV 2
sh

c
− 2VshE

Rsh
. (6.19)

To find the maximum energy a proton can obtain in a PI SNR, we need the results
from section 5.2. The dependence of χ and n is shown in figure 6.2 for a non-
rotating, zero-metallicity Pop III star with an initial mass of 175M�. Here we
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Figure 6.2: χ dependency of the maximum proton energy for a zero-metallicity
175M� Pop III PI SNR with a n = 2 (solid) and n = 0 (dashed) density profile.
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Figure 6.3: Magnetic field B dependency of the maximum proton energy for a
zero-metallicity 175M� Pop III PI SNR with χ = 8 and n = 2.

see that the difference between n = 0 and n = 2 is greater than in section 5.2, as
a n = 2 density profile result in a maximum energy twice as large as for a n = 0
density profile during the first ∼ 1000 years. After that, assuming the SNR has not
yet merged with the ISM, the adiabatic energy loss is greater than the energy gain,
and there is no difference between the two density profiles. The dependence of the
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magnetic field B is shown in figure 6.3. Since (dE/dt) ∝ B/χ, the strength and
direction of the magnetic field makes a huge difference in maximum proton energy,
as can be seen in figure 6.2 and 6.3. Choosing χ = 8, n = 2, and B = 100µG, the
mass dependence is shown in figure 6.4 for both local and Pop III PI SNRs.
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Figure 6.4: Maximum proton energy in PI SNRs caused by non-rotating Pop III
stars with metallicity Z = 10−4Z� (upper left) and Z = 0 (upper right), rotating
Pop III stars (lower left), and local stars (lower right).

Electrons make up around 2 % of cosmic rays and are also accelerated by the Fermi
mechanism. To find the maximum energy of an electron we have to consider energy
loss from effects such as synchrotron radiation and inverse Compton scattering. The
maximum electron energy is briefly discussed in appendix A.

6.3 Secondary Particles
The production of secondary particles, or just secondaries, occurs when cosmic ray
particles collide with particles of the ISM near the source [22]. Secondaries are
created in hadronuclear (pp) and photohadronic (pγ) reactions. Around the SNR
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pp interactions are the main source for secondary particles. The interaction rate for
a high energy proton colliding inelastically with a proton at rest is Ppp = σppn0c,
where σpp is the proton-proton inelastic cross section [26]. σpp depends on the
energy of the moving proton, and thus the center of mass energy (2Emp)1/2, and
lies in the range of (30− 75) mb [7]. The collision will produce new particles, most
of which are unstable and decay quickly, mainly pions. Due to their short lifetime,
pions decay before they interact further,

π0 → 2γ (6.20)
π± → µ± + νµ(ν̄µ). (6.21)

Muons have a very small interaction cross section, and will decay as

µ± → e± + νe(ν̄e) + ν̄µ(νµ), (6.22)

and we are left with photons, electrons, positrons, and neutrinos. The electrons
and positrons of different muon decays might annihilate, adding more photons.
The resulting neutrinos will have typical energies around 0.04Ep [27].
pγ-secondaries are produced when cosmic rays collide with background photons
[26],

γ + p→ n + π+ (6.23)
γ + p→ p + π0. (6.24)

The pions decay as previously stated, and n→ p + e− + ν̄e.
The source function of a secondary particle of type i is given by [22]

qi(E) = 4πρ
m

∫
dE′ dσ(E,E′)

dE
dN
dE′ , (6.25)

where E is the energy of the secondary, E′ the energy of the primary, and dσ(E,E′)/dE
is the differential cross section.

6.4 Cosmic Ray Flux
The cosmic ray flux from PI SNe is found via the cosmic ray energy spectrum,
which is given by

dN
dE = N0

(
E

E0

)−Γ
, (6.26)

where Γ = α + 1 in eq. (6.13), N0 is a normalization constant, and E0 is an
arbitrarily chosen reference energy, e.g. the rest energy of a relativistic proton
mpc

2 ≈ 1 GeV. To determine N0 we need to know the total energy ECR that goes
into cosmic rays, which we assume to be 10 % of the total ejected energy. Then we
have that

ECR =
Emax∫
E0

dEE dN
dE , (6.27)
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where Emax is the maximum proton energy found in 6.2, Emax ∼ 4×1015 eV seems
to be a good representation. A PI SN with a 175M� non-rotating, zero-metallicity
progenitor will have cosmic ray energy ECR = 1.46 × 1051 erg, and a rotating
110M� progenitor will have ECR = 3.9 × 1051 erg, see section 5.2. From this we
find N0 to be

N0 = (2− Γ) ECRE
−Γ
0

E2−Γ
max − E2−Γ

0
≈ (Γ− 2)ECRE

−2
0 . (6.28)

We insert N0 into the spectrum in eq. (6.26) and obtain

dN
dE = (2− Γ) ECRE

−Γ

E2−Γ
max − E2−Γ

0
≈ (Γ− 2)ECRE

−ΓEΓ−2
0 . (6.29)

The intensity I(E) of cosmic rays is proportional to the number density n(E) of
relativistic cosmic rays, I(E) = (c/4π)n(E) [28]. We assume the PI SNe to emit
cosmic rays isotropically. The total intensity of cosmic rays from every PI SNe
throughout the history of the Universe is then given by

ICR(E) = c

4π

zmax∫
z0

dz
H(z)(1 + z) ṅ(z)dN

dE (E′ = E(1 + z)), (6.30)

where ṅ is the SN rate, and H(z) ≈ 72[0.68 + 0.32(1 + z)3]1/2 km s−1 Mpc−1 is the
Hubble parameter as a function of redshift, see appendix B.
The Pop III PI SN rate ṅPISN can be found via the star formation rate (SFR) [14]

ṅPISN(z) = SFR(z)
∫

PISN d logMψ(M)∫
PopIII d logMMψ(M)

, (6.31)

where ψ(M) is the Pop III initial mass function. The masses of Pop III stars range
from (5 − 500)M� and stars of (140 − 260)M�, or (90 − 260)M� if we include
rotating stars, die as PI SNe (see chapter 3). The SFR of Pop III stars is first
assumed to be constant through time and is estimated to be 10−4M� yr−1Mpc−3

[14], and we assume a Salpeter slope for the initial mass function ψ(M) ∝M−1.35

[29]. If we only include non-rotating stars, we get ṅPISN ≈ 7 × 10−8 yr−1 Mpc−3.
The flux of cosmic rays is then plotted as E2ICR(E) in figure 6.5 for different Γ’s.
Since not much is known of these first stars, it might be better to look at a flux
range. The Pop III SFR is estimated to range between 10−5−10−3M� yr−1 Mpc−3

up to z = 6 [30]. Including rotating stars, the flux range is shown in figure 6.6 for
a mean magnetic field of B = 100µG and Γ = 2.2.
A different approach to find the flux is to look at PI SNe as if the SNe happens
in a galaxy like the star burst galaxy M82 or the Milky Way. For this we need to
know the SFR and cosmic ray luminosity LCR of these galaxies. We then find the
luminosity density QCR = LCR/V , where V is the volume, corresponding to a SFR
of 1M� yr−1 Mpc−3. We then have

QCR = ṅ

Emax∫
E0

dEE dN
dE = ṅN0E

Γ
0

2− Γ
(
E2−Γ

max − E2−Γ
0

)
≈ ṅN0

Γ− 2E
2
0 , (6.32)
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Figure 6.5: Cosmic ray flux from Pop III PI SNRs with different energy spectrum
slopes Γ.
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which implies that ṅ ≈ (Γ− 2)QCR/N0E
2
0 . We define qCR ≡ ṅ(dN/dE), insert ṅ,

and obtain

qCR = QCR

E2
0/(Γ− 2)

(
SFR

1M�yr−1Mpc−3

)
(E/E0)−Γ. (6.33)

To compare this to the first approach we switch ṅ(dN/dE) with qCR in equation
(6.30),

I(E) = c

4π

Emax∫
E0

dz
H(z)(1 + z)qCR(E′), (6.34)

with E′ = E(1 + z), and insert the Pop III SFR.

M82 has a SFR of 8M�/yr and LCR ≈ 2× 1040 erg/s [31], which gives

QCR = 2× 1040 erg/s
8 Mpc3 = 5× 10−23 eV cm−3 s−1. (6.35)

The Milky Way has SFR = 2M�/yr [31] and LCR ≈ 8 × 1040 erg/s [32], which
gives

QCR = 8× 1040erg/s
2 Mpc3 = 8× 10−22 eV cm−3 s−1. (6.36)

Inserted into eq. (6.33) with SFR = 10−4M�yr−1 Mpc−3 and Γ = 2.2, and plotted
as E2I(E) in figure 6.7 together with the one found earlier. From this is seems like
the first approach might be an overestimate, especially considered that not all Pop
III stars die as PI SNe.

6.4.1 Neutrino Flux
The neutrino intensity is proportional to the proton intensity, and is given by

Iν(E) = fint(E)Yν(E,Γ)ICR(E), (6.37)

where fint(E) is the interaction probability and Yν(E,Γ) is the yield. Formally
Yν(E,Γ) is the number of neutrinos produced by one proton with the same energy,
colliding inelastically with another proton. The yields used here are energy inde-
pendent and listed in table 6.1 for different Γ’s. For a low number density ns in the
SNR, fint(E) = cnsσppτesc is the average number of collisions experienced by one
proton, where τesc is the average escape time. In higher densities, when fint > 1,
we have that fint ≈ 1/(1− 0.5Γ−1) = 1.77, when Γ = 2.2.

Due to neutrino oscillations, it is not necessary to distinguish between different
species of neutrinos. We therefore consider every neutrino specie as one, and use
only Yν from table 6.1. The neutrino flux is then plotted in figure 6.8, comparing
it to the proton flux, when Γ = 2.2 and fint = 1. From figure 6.8, we see that the
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Figure 6.7: Cosmic ray flux estimated by different approaches: Cosmic ray energy
is 10 % of ejected energy (1st), all Pop III PI SNe happened in a galaxy like the
Milky Way (2nd MW) or M82 (2nd M82).

Γ 2.1 2.2 2.3 2.4 2.5
νe 35.1 26.3 19.5 14.5 11.0
ν̄e 23.6 17.7 12.8 9.31 6.87
νµ 63.1 47.3 34.9 26.0 19.6
ν̄µ 63.1 47.3 34.9 25.9 19.5
Yν 185 139 102 75.7 57.0

Table 6.1: Yields Y (Γ)× 103 of pp neutrinos with Yν =
∑
νi
Yνi

[7].

diffuse neutrino flux from Pop III PI SNRs is less than 10−3 eV cm−2 s−1sr−1, and
therefore they contribute less than 0.01 % to the isotropic neutrino background,
which is ∼ 10 eV cm−2 s−1sr−1 [27]. Looking at figure 6.6 we see that even the
upper limit of the proton flux from Pop III PI SNe is below this value, and then
the neutrinos contributes less than 1 % to the diffuse background flux.
The same amount of energy goes into photons, however, photons scatter off of the
background, and are harder to track. Therefore they will not be considered here.
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Figure 6.8: The pp neutrino flux compared to the proton flux when fint = 1.



Chapter 7

Conclusion and Outlook

In this thesis we have considered an analytical set of equation, developed by
Truelove and McKee, to determine the dynamical evolution of a SN blast wave.
We have then used data obtained by several numerical simulations preformed by
Whalen et al. to see how a PI SN blast wave propagates. We have looked at
how cosmic rays are accelerated to high energies in the SNR, and the maximum
energy they can achieve. The maximum energy depended heavily on the magnetic
field around the shock front, and was found to be 4× 1015 eV for a mean magnetic
field of 100µG. Assuming that the SNR has not merged with the ISM within a
few thousand years, the adiabatic energy loss will eventually be greater than the
energy gain. We looked at secondary cosmic rays, and found the diffusive neutrino
flux, which is sub-dominate, contributing less than 1 % to the neutrino background.

If more time was available it would be interesting to look at the propagation of a
SNR through a stellar wind (s = 2). This would be most relevant for local stars
that experience mass loss due to stellar winds at the end of their lifetime. Another
possibility would be to estimate the photon flux. As photons interact with the
background, initiating electromagnetic cascades, it would require more work.

There are still a lot of unanswered questions when it comes to the first stars,
after all, no Pop III stars have been observed so far. All data used in this thesis
are from numerical simulations, and the expected mass range depend on which
model is used. No models can constrain the Pop III initial mass function. In this
thesis we used a Salpeter slope, but there are some speculations that a top-heavy
initial mass function would be a better fit. A different initial mass function could
rise or lower the diffuse flux found here. Future near-infrared missions like the
James Webb Space Telescope (JWST) and the Wide-Field Infra-red Survey Tele-
scope (WFIRST) are expected to detect Pop III PI SNe, and thus give a deeper
understanding about both Pop III stars and PI SNe.
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Appendix A

Maximum Electron Energy

Electrons are accelerated in a SNR in the same way as protons in section 6.2.
However, due to the electron’s light mass effects such as bremsstrahlung, which
are negligible for protons, and inverse Compton scattering have to be accounted
for. Bremsstrahlung is electromagnetic radiation produced when a charged particle
accelerates [33]. Synchrotron radiation is a special case of bremsstrahlung, and
leads to an energy loss(

dE
dt

)
synch

= −4
3
σTE

2UB

m2c3
= −σTB

2E2

6πm2c3
, (A.1)

where σT = 6.65 × 10−25 cm2 is the Thompson scattering cross section. Inverse
Compton scattering is when an electron scatter off of a photon. The electron loses
energy, and the energy loss rate is given by(

dE
dt

)
IC

= −4
3
σTE

2Uph

m2c3
, (A.2)

where Uph is the photon energy density. The maximum electron energy is thus
found by solving(

dE
dt

)
e

= 3
χ

eBV 2
sh

c
− 2VshE

Rsh
− 4

3
σTE

2

m2c3

(
B2

8π + Uph

)
. (A.3)

For Uph = 0.6 eV cm−3, the maximum electron energy obtained in a typical PI SNR
is shown in figure A.1 for different magnetic field strengths.
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Figure A.1: Maximum electron energy for different magnetic field strengths.



Appendix B

Cosmology

Assume the Universe to be homogeneous and isotropic. The geometry of the Uni-
verse is then described by the Friedmann-Robertson-Walker metric [34]

ds2 = dt2 −R2(t)
[

dr2

1− kr2 + r2(sin2 ϑ)dφ2 + dϑ2
]
, (B.1)

where k ∈ {−1, 0, 1} specifies the curvature (k = 0 flat, k = ±1 positive/negative
curvature), and R(t) is a scale factor. The equations of motion for the Universe is
derived from Einstein’s field equation

Rµν −
1
2gµνR = 8πGTµν + Λgµν , (B.2)

where Λ is the cosmological constant, gµν is the space-time metric described by eq.
(B.1), and

Tµν = −Pgµν + (P + ρ)vµvν (B.3)
is the energy-momentum tensor for a perfect fluid with pressure P , energy density
ρ, and co-moving velocity v = (1, 0, 0, 0). From eq. (B.2) and (B.3) we find the
Friedmann equation

H2 =
(
Ṙ

R

)2

= 8π
3 Gρ− k

R2 + Λ
3 , (B.4)

where H is the Hubble parameter, and the ”acceleration equation”

R̈

R
= Λ

3 −
4πG

3 (ρ+ 3P ), (B.5)

which determines the acceleration (or deceleration) of the Universe. As matter has
ρ > 0 and P ≥ 0, the Universe cannot be static when Λ = 0, and since Ṙ > 0, the
Universe has a finite age. If we let k = 0 and Λ = 0 in the Friedmann eq., we find
a critical density

ρcrit = 3H2

8πG, (B.6)
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which can be used to define cosmological density parameters Ωi = ρi/ρcrit. We
distinguish between the different contributions to the total density, and define
the density parameter for relativistic particles Ωr, for the vacuum Ωv, and for
pressureless matter Ωm. With present day values, eq. (B.4) can be rewritten as

k

R2
0

= H2
0 (Ωm + Ωr + Ωv − 1). (B.7)

With Λ = 8πGρΛ 6= 0 the cosmological constant acts as a constant energy density
with density parameter ΩΛ = Λ/(3H2). Inserted into equation (B.5)

R̈

R
= 8πG

3 ρΛ −
4πG

3 (ρ+ 3P ), (B.8)

we see that Λ is equivalent to matter with an EoS w = P/ρ = −1.
For observational cosmology, we have to account for the expansion of the Universe.
As the Universe expands, the wavelength λ of photons expand by the same propor-
tion, λ2/λ1 = R(t2)/R(t1). If we let t1 be arbitrary and t2 the present time t0, we
have λ0/λ = R0/R(t). This shift in wavelength is called redshift, and is defined to
be z ≡ ∆λ/λ. With ∆λ = λ0−λ, we then have 1+z = R0/R(t). If we differentiate
this we get

dz
dR = d

dR

(
R0

R

)
= −R0

R2 . (B.9)

Combing the former equation with H = Ṙ/R = (dR/dt)R⇒ dR/R = Hdt gives

dt = dz
H(z)(1 + z) . (B.10)

To find H(z) we go back to the Friedmann equation (B.4) and eq. (B.7). Let
Ωtot = Ωm + Ωr + Ωv, then

k

R2
0

= H2
0 (Ωtot − 1). (B.11)

Remembering that 1 + z = R0/R(t), we can rewrite the former equation for arbi-
trary times

k

R2 = k

R2
0

(1 + z)2 = H2
0 (Ωtot − 1)(1 + z)2 (B.12)

We then need to know how the different energy densities vary over time. For an
adiabatic expansion, conservation of energy is dU = −PdV . With P = wρ and
U = ρV ∝ ρR3, we have

d
(
ρR3) = −Pd

(
R3) (B.13)

dρ
dRR

3 + 3ρR2 = −3wρR2. (B.14)

Separating variables and integrating gives

ρ ∝ R−3(1+w) =
(

1 + z

R0

)3(1+w)
, (B.15)
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with w = 0 for matter and w = 1/3 for radiation. With this in mind, we divide
the Friedmann equation (B.4) by H2

0 = (8π/3)Gρcrit and obtain

H(z)2

H2
0

= (1− Ωtot)(1 + z)2 + Ωv(1 + z)3+3w

+ Ωm(1 + z)3 + Ωr(1 + z)4.

(B.16)

The density contribution from relativistic particles are very small, so we can neglect
Ωr. The vacuum energy (dark energy) acts like a cosmological constant with w =
−1. With Ωtot ≈ 1 eq. (B.16) is then simplified to

H(z) = H0[Ωv + Ωm(1 + z)3]1/2. (B.17)

Today’s values are estimated to be H0 = (72.0 ± 3.0) km s−1 Mpc−1, Ωv = 0.68 ±
0.02, and Ωm = 0.32± 0.01 assuming k = 0 [35].
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