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Abstract

Research on the scattering of electromagnetic waves from rough surfaces has
greatly advanced in the past decades through the access to rigorous numerical
simulations. However, most of the research has focused on surfaces with a Gaus-
sian height distribution. In this thesis, the effect of the skewness of the surface
height distribution on the scattering process is qualitatively examined. This is
accomplished through rigorous numerical simulations of an electromagnetic field
incident on rough surfaces with different values for the surface height skewness.
Both the reflection from opaque materials and transmission from transparent
materials are studied. For the reflected field, strongly skewed surface heights
were found to induce more scattered intensity in the forward direction, both for
positive and negative values of the skewness. For negative values, there was an
additional increase in the scattered intensity for large angles in the forward di-
rection. A negative correlation was found between the surface height skewness
and the size of the enhanced backscattering peak. For non-normal angles of in-
cidence, the intensity in large angle backward directions was found to have a
negative correlation with the surface height skewness. For absorbing materials,
the absorption rate did not seem to be affected by the surface height skewness.
The coherent component of the scattered field from weakly rough surfaces ap-
peared to be slightly larger both for large positive and large negative values of
the surface height skewness. For the transmitted field from transparent materi-
als, the effects of positive and negative values of the surface height skewness were
the same, and only the magnitude had an effect. For a normal angle of incidence,
larger magnitudes of the surface height skewness induced less diffusion, while for
oblique angles of incidence the effect was opposite. The transmittance seemed
to be independent of the surface height skewness. Plausible explanations of the
effects are given by modelling a surface with strongly skewed surface heights as
a relatively flat surface with a few of tall peaks or deep pits.
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Sammendrag

Forskning p̊a spredning av elektromagnetiske felt fra tilfeldig ru overflater har
utviklet seg svært mye gjennom tilgang til numeriske simuleringer. Det meste
arbeidet har vært fokusert p̊a overflater med en gaussisk høydefordeling. I denne
avhandlingen blir spredning fra overflater med en skjev gaussisk fordeling kval-
itativt undersøkt. Dette gjøres gjennom rigorøse numeriske simuleringer av en
elektromagnetisk str̊ale rettet mot overflater med forskjellig grad av skjevhet i
høydefordelingen. B̊ade refleksjon fra ugjennomsiktige materialer og transmisjon
fra gjennomsiktige materialer blir undersøkt. For refleksjon fra ugjennomsiktige
materialer viste resultatene en økning i intensiteten i fremoverretningene for
økende skjevhet i høydefordelingen, b̊ade for positive og negative verdier av
skjevheten. For negative verdier var det en ekstra økning for store vinkler
i fremoverretningen. En negativ korrelasjon ble funnet mellom skjevheten i
høydefordelingen og størrelsen p̊a toppen for̊arsaket av forsterket tilbakespred-
ning. For ikke-normalt innfall hadde spredningen ved store vinkler i bakover-
retningen en negativ korrelasjon med skjevheten i høydefordelingen. Absorp-
sjonskoeffisienten for absorberende materialer viste ingen tydelig korrelasjon med
skjevheten i høydefordelingen. Den koherente komponenten for svakt ru overflater
var noe større for b̊ade store positive og store negative verdier av skjevheten
i høydefordelingen. For det transmitterte feltet fra gjennomsiktige materialer
hadde fortegnet til skjevheten i høydefordelingen neglisjerbar betydning, og bare
størrelsen absoluttverdi hadde noe å si. For vinkeltrett innfall førte lavere abso-
luttverdi til mindre diffusjon, mens for skr̊att innfall var effekten motsatt. Trans-
mittansen viste ingen avhengighet av skjevheten i høydefordelingen. Mulige for-
klaringer p̊a alle disse effektene blir gitt ved å modellere en overflate med stor
skjevhet i høydefordelingen som en relativt flat overflate med noen f̊a skarpe
topper eller bunner.
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Chapter 1

Introduction

Maxwell’s equations were formalized in the late 1800s and form the foundation
of electrodynamics and optics. From these equations one can derive the Fres-
nel equations, which are used to calculate how electromagnetic waves reflect and
transmit when encountering an interface between two media with different refrac-
tive indices. A basic assumption for the Fresnel equations is that the interface is
flat, but no real surface is perfectly flat on every scale. No matter how smooth
a surface may seem, it is bound to be rough on a microscopic scale as all matter
is made out of (non-flat) atoms. In other words, the roughness of a surface is
relative and dependent on the probe used to observe it. If the surface is suffi-
ciently rough, the Fresnel equations no longer apply and other methods must be
used to investigate the scattering of electromagnetic waves. Such methods have
been developed both for numerical simulations and experiments, and an excellent
review paper describing the concepts of the topic is found in Ref. [1]. The inter-
ested reader is referred to this review for a full theoretical basis of rough surface
scattering, while only the concepts relevant to this thesis will be explained here.

With regards to numerical simulations, most previous work is done on sur-
faces where the height of the surface is normally distributed. This is largely due
to practical reasons: the normal distribution is well studied and understood, the
moments of any order can be related to the first two and surfaces with this height
distribution are relatively easy to generate numerically. In addition, such surfaces
can be made experimentally, allowing experimental verification of numerical sim-
ulations.

While these are good reasons to work with the normal distribution, many
surfaces, if not most, do not have normally distributed heights. Examples of
this relevant to this work are surfaces treated with acid or processes similar to
abrasive blasting, where a high pressure stream of particles removes material
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2 CHAPTER 1. INTRODUCTION

from the surface. A common feature of acid treated surfaces is pits where the
acid gathers due to gravity and creates deep and narrow structures, while the
surrounding area remains relatively unaffected due to shorter exposure times.
Abrasive blasting, on the other hand, can leave sharp peaks at locations where
the material is harder than elsewhere, for instance due to impurities or structural
anomalies. Both these processes leave the surfaces with an asymmetric height
distribution with respect to the surface mean. Hence, such surfaces are poorly
approximated by a symmetric normal height distribution.

The purpose of this thesis is to explore how the skewness of the surface height
distribution affects the scattering process. This will be accomplished by creating
rough surfaces with a height distribution which has a tunable skewness, and
running rigorous numerical simulations for different values of this skewness.

1.1 Thesis structure

The work in this thesis is divided into three parts, and the relevant theory will
be explained in each Chapter. All uncited Figures were created by the author.

Chapter 2 gives a more formal description of rough surfaces and how they are
represented numerically.

Chapter 3 describes a random number generator for a skewed distribution.
The choice of the skew normal distribution as a height distribution is motivated
and the relevant properties of the distribution are given. Further, the method of
random number generation is explained before the results of the implementation
of the random number generator are presented. This Chapter is a modified
version of a project report which was written as a preparation for this thesis [2].

Chapter 4 presents an algorithm for generating properly correlated surfaces
from uncorrelated random numbers. A modification of this algorithm is motivated
and explained, before the results of its implementation are presented.

Chapter 5 explains the basics of rough surface scattering simulations as well
as some metrics used to verify the validity of the results. Some adjustments of the
surfaces were necessary to give realistic results, and these methods are explained
and their impact on the surface statistics are shown.

Chapter 6 shows the results of rigorous numerical simulations of scattering
from surfaces with various skewness, and the impact of this skewness on the
scattering process is discussed.

Chapter 7 summarizes and concludes the methods and results presented in
this thesis.

Chapter 8 suggests further work and topics of research relevant to the pre-
sented material.



Chapter 2

Theory of rough surfaces

In this Chapter the characteristics of rough surfaces are described and the tools
necessary to represent such surfaces numerically are outlined.

2.1 A ‘rough’ guide

A qualitative comparison between rough and smooth surfaces is shown in Fig. 2.1.
The surface may be considered smooth if all or most the incident light is scat-
tered in the specular direction, as shown in Figs. 2.1a-b. If the surface becomes
sufficiently rough, most of the light is scattered in other directions, as shown in
Figs. 2.1c-d. This is called diffuse or incoherent scattering.

Figure 2.1: Illustration of the transition between rough and smooth scattering. Fig-
ure 2.1a shows a smooth surface, and all the incident light, indicated by the arrow,
is scattered in the specular direction. Moving right towards Fig. 2.1d, the surfaces
become more rough, resulting in less specular and more diffuse scattering [1, Fig. 1].

3



4 CHAPTER 2. THEORY OF ROUGH SURFACES

Figure 2.2: Basic geometry of specular scattering from a rough surface.

The concept of roughness can be made quantifiable by examining a surface
x3 = ζ(x1) oriented so that x1 is along the surface mean. If two coherent rays
of light are scattered from two arbitrary points (x1, ζ(x1)) and (x′1, ζ(x′1)) on the
surface, a phase difference ∆φ arises in the outgoing rays. If the angle between the
incoming rays and x3 is θ0, the specular component by definition forms an angle
θ0 with the x3 axis (Snell’s law of reflection). An illustration of the geometry is
shown in Fig. 2.2. In isotropic media the phase difference is equal to the difference
in path length multiplied by the wave number. In this simple geometry the phase
difference of the outgoing waves is

∆φ = 2|k||ζ(x1)− ζ(x′1)| cos(θ0), (2.1)

where |k| = 2π/λ is the modulus of the incoming wave vector[1, Eq. 1]. If
ζ(x1) = ζ(x′1) for all x1, the surface is perfectly flat and the phase difference
∆φ is always zero. If ∆φ � π the outgoing rays still interfere constructively,
and the surface may still be considered smooth, as shown in Fig. 2.1b. However,
if ∆φ ' π the waves interfere destructively and the scattered intensity in the
non-specular directions are comparatively larger. This corresponds to a rough
surface as shown in Fig. 2.1d. Thus, ∆φ = π/2 may be considered a borderline
between rough and smooth: The surface is smooth if ∆φ < π/2, otherwise it is
rough. This is called the Rayleigh criterion after the physicist Lord Rayleigh.

The height difference between two arbitrary points on the surface is not a very
consistent way of measuring surface roughness. This height difference is instead
replaced with the root-mean-square (RMS) height or standard deviation δ of the
height fluctuations from the surface mean. This makes the Rayleigh criterion for
rough surfaces [1, Eq. 2]

|k|δ cos(θ0) <
π

4
. (2.2)

The parameters of the probe, |k| and θ0, determine whether a physical surface
characterized by δ should be considered rough or smooth. If the wavelength is
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large compared to the height fluctuations, the product |k|δ becomes small and the
surface is smooth. The same surface may be considered rough if the wavelength
of the probe is comparable to or smaller than δ. Similarly, a rough surface may
become smooth if the angle θ0 grows large enough, even though the wavelength
of the incoming waves and the physical surface are the same.

2.2 Representing rough surfaces

Continuous surfaces must be discretized to be represented numerically. The sur-
face is thus sampled at N discrete points separated by a sampling interval ∆x1.
This gives a set of points ξn = n∆x1, with n = 0, 1, 2, . . . , N − 1. The sampling
interval should be chosen in accordance with the Nyquist criterion for maximum
resolvable frequency [3]. In the context of rough surface scattering, it must be
chosen such that both the wavelength λ of the incident light and the correlation
length a of the surface are well resolved. This correlation length is a characteristic
parameter of a rough surface, which will reappear shortly in the context of auto-
correlation functions. Next, the notation for discrete surfaces used in Appendix A
of Ref. [4] is introduced, where

ζ(ξn) = δ

∞∑
j=−∞

WjXj+n (2.3)

is the surface height at ξn. Here, δ is the standard deviation or RMS roughness
of the surface, {Xn} is a set of random, uncorrelated numbers and {Wj} is a set
of weights. Note that this implies a limitation on the surface profiles: only one
value of ζ is possible for each ξn, hence surfaces with overhangs are not possible
to represent with this notation. The two sets {Xn} and {Wj} determine the
statistical properties of the surface, and their requirements and impact on these
statistics will now be explained.

The random numbers {Xn} determine the height distribution of the surface,
hence the set of heights {ζ(ξn)} will have the same overall statistics as {Xn}
regardless of the weights {Wj}. To ensure that the surface is oriented along the
x1 axis, a vanishing average is required, as

〈Xn〉 = 0⇒ 〈ζ(ξn)〉 = 0. (2.4)

The angle brackets denote an average over an ensemble of surface realizations.
Furthermore, if the RMS roughness of the surface is to be determined by δ, the
random numbers {Xn} must have a standard deviation of 1.

The weights {Wj} determine the height-height correlation (autocorrelation)
of the surface, and these weights should be chosen in such a way that the surface
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has the desired correlation function W (|x1|). For the surface heights ζ(ξn), this
correlation property is expressed by

〈ζ(ξk)ζ(ξk+l)〉 = δ2W (|ξk − ξk+l|). (2.5)

To ensure that δ alone determines the RMS roughness of the resulting surface, the
correlation function needs to be normalized, i.e. W (0) = 1. The effect of different
correlation functions on rough surface scattering has been examined previously
and is not the focus of this work. Hence, the Gaussian correlation function will
be used consistently here. The properly normalized form is given by [1, Eq. 8a]

W (|x1|) = exp

(
−x

2
1

a2

)
. (2.6)

Here a is the previously mentioned correlation length of the surface. This length is
effectively a transversal scale parameter along the x1 axis, and it is of paramount
importance to choose a sampling interval ∆x1 which is significantly smaller than
a.

Another quantity needed for generating surfaces is the power spectral density
(PSD) function. According to the Wiener-Khinchin theorem [5], the autocorre-
lation function and the PSD function are related via a Fourier transform. (This
assumes a stationary process and that the Fourier transform of the autocorre-
lation function exists. This is a stationary process due to ensemble averaging.)
The PSD function in the case of Gaussian autocorrelation is given by [1, Eq. 8b]

g(k) =
√
πa exp

(
−a

2k2

4

)
. (2.7)

The surfaces used in this work are defined only by the height distribution and
(first order) autocorrelation function. These are the most common quantities
used to describe random correlated signals, and other quantities such as higher
order correlations will be assumed negligible.

The next Chapter describes a random number generator which is used to
generate {Xn}, while Chapter 3 shows how the weights {Wj} are manipulated
to give a surface generation algorithm.



Chapter 3

A skewed random number
generator

A skew normal distribution as described by A. Azzalini was chosen for the ran-
dom numbers Xn [6], and the details on its properties are presented in the next
Section. This distribution has a skewness parameter which can be used to tweak
the skewness within a certain range, and setting this parameter to zero gives the
normal distribution. This property is very useful as it allows a gradual transition
from the previously studied case of the normal distribution to a skewed distribu-
tion. Comparing simulation results with different skewnesses will show which, if
any, scattering effects are stronger or weaker for a surface with a skewed height
distribution. A description of the distribution is given along with the method of
number generation, before the results of the generated numbers are presented.

3.1 Properties of the skew normal distribution

The skew normal distribution has the form

f(x) =
2

ω
φ

(
x− ξ
ω

)
Φ

(
α

(
x− ξ
ω

))
. (3.1)

Here, φ(x) is the standard normal probability density function given by

φ(x) =
1√
2π

exp(−x
2

2
) (3.2)
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Figure 3.1: f(x) plotted for several values of α with ξ = 0 and ω = 1.

and Φ(x) is the cumulative distribution function of the normal distribution given
by

Φ(x) =

∫ x

−∞
φ(x′) dx′. (3.3)

The parameters α, ξ and ω are shape, location and scale, respectively. The
parameter α defines the skewness of the distribution, and examples of f(x) with
different values of α are shown in Fig. 3.1. If α = 0, then Φ(0) = 1

2 and f(x) is
equal to the normal distribution. In this special case ξ is the mean and ω is the
standard deviation. Note that this is not true for any α 6= 0. The distribution
is right skewed for α > 0 and left skewed for α < 0. It is also antisymmetric
about α: the distribution is mirrored about ξ as α→ −α. As α grows large, the
distribution tends towards two times the half normal density as shown in Fig. 3.1
when α = 1000.

The first three moments of the distribution are needed to ensure a zero mean
and a variance of 1, and to know the relation between α and the skewness of the
distribution. They can be found by calculating the moment-generating function,
given for a stochastic variable X with a probability density function p(x) by

MX(t) = E(etX) =

∫ ∞
−∞

p(x)etx dx. (3.4)
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The nth moment is then given by

E(Xn) =
∂nMX

∂tn

∣∣∣∣
t=0

. (3.5)

The moment-generating function of a skew normal variable Z with ξ = 0 and
ω = 1 is given in Ref. [6] as

MZ(t) = 2 exp(t2/2)Φ(δt) (3.6)

with δ = α/
√

1 + α2. For a skew normal variable X with location ξ and scale ω,
the moment-generating function is

MX(t) = MωZ+ξ(t) = exp(ξt)MZ(ωt) = 2 exp

(
ξt+ (ωt)2

2

)
Φ(δωt). (3.7)

Applying Eq. (3.5) to Eq. (3.7) gives the first three moments

µ ≡ E(X) = ξ + ωδ

√
2

π
, (3.8)

σ2 ≡ E(X2) = ω2

(
1− 2δ2

π

)
(3.9)

and

γ ≡ E(X3) =
4− π

2

(
δ
√

2/π
)3

(1− 2δ2/π)3/2
. (3.10)

The symbols µ, σ and γ will be used for mean, standard deviation and skewness,
respectively. The skewness of the distribution cannot grow without bounds, but
is limited to the interval (−γmax, γmax) where γmax ≈ 0.995. This can be shown
by first noting that δ is a monotonically increasing function of α and is limited
to the interval (−1, 1). It is not immediately apparent that γ is monotonically
increasing, but this is shown with a quick calculation. The monotonic properties

of γ are the same as those of h(δ) = δ3/(1− 2δ2

π )3/2, and the derivative of h(δ) is

d

dδ
h(δ) =

3δ2(1− 2δ2/π)3/2 − δ3 · 32 (1− 2δ2/π)1/2(− 4δ
π )

(1− 2δ2/π)3

=
3δ2

(1− 2δ2/π)5/2
.

This expression is non-negative and real for δ2 < π
2 , and thus γ(δ) is also mono-

tonically increasing on the interval −π2 < δ < π
2 . As δ(α) is limited to (−1, 1), γ

is monotonically increasing for all α and the limits δ = ±1 give the correspond-
ing limits on γ. The maximally skewed distribution is shown in Fig. 3.1 when
α = 1000. The skewness γ as a function of the shape parameter α is shown as a
solid line in the upper graph of Fig. 3.6 on page 14.
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3.2 A method for generating skew normal ran-
dom numbers

For the application at hand, the properties µ = 0 and σ = 1 are desired, as
scaling will be done later. This is accomplished by choosing ω = 1/(1 − 2δ2/π)
and ξ = −ωδ

√
2/π for the chosen α. Then, the rejection method as described in

Subsection 7.3.6 of Ref. [7] is used, which will be briefly described here.
Suppose that a random number generator for the probability distribution p(x)

is desired. If it was possible to generate uniformly distributed points in two di-
mensions under the graph of p(x), the x-values of those points would have the
desired distribution. Suppose further that there exists a function g(x) ≥ p(x)
for all x for which a random number generation algorithm is known (e.g. nor-
mal distribution, uniform distribution...). To generate a set of points uniformly
distributed under the graph of g(x), a set {xi} of random numbers from g(x)
is first generated. For each xi a second random number yi is generated from a
uniform distribution on the interval [0, g(xi)]. The set {xi, yi} is now uniformly
distributed under g(x). Hence, the subset that lie under the graph of p(x) are
also uniformly distributed. By rejecting the points with yi > p(xi), the remaining
{xi} have the desired distribution. This gives the following algorithm, illustrated
in Fig. 3.2:

1. Find a function g(x) ≥ p(x) for all x with a known method of random
number generation.

2. Generate a random number x0 from g(x).

3. Generate a random number y0 from a uniform distribution on the interval
[0, g(x0)].

4. Accept x0 if y0 ≤ p(x0), otherwise reject it and go back to step 2.

In the case of the skew normal distribution f(x), Φ(x) < 1 for all x (it is the
cumulative of the normal distribution, so lim

x→∞
Φ(x) = 1) and thus

f(x) <
2

ω
φ(
x− ξ
ω

) ≡ g(x). (3.11)

The right hand side of Eq. (3.11) is the normal distribution scaled by a factor of
two. Normal deviates are easily generated using for instance the Marsaglia polar
method [8]. A note on the rejection method’s effectiveness is that it depends on
the choice of g(x). In this case the area under the curve of g(x) is twice as large as
the area under the curve of f(x). This implies that it takes on average two random
normal numbers to generate one random skew normal number. The method
and results presented in this section were used to implement a random number
generator for skew normal numbers in the Fortran 90 programming language.
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Figure 3.2: Illustration of the rejection method. Here, p(x) = f(x) with α = 4 and
g(x) is a normal distribution multiplied by 2.

3.3 Results and discussion

To test the generator, samples of N = 2 · 107 numbers were generated with
varying α and the mean, variance and skewness were compared to the expected
values. The results are shown in Figs. 3.3-3.6. Figure 3.3 shows a histogram
of the sample with α = −8 along with the corresponding probability density
function, demonstrating that the numbers are from a skew normal distribution.
Due to the central limit theorem the mean, variance and skewness of the samples
have a normal distribution with expected values 0, 1 and γ(α), respectively. The
standard deviation for the mean of each sample is 1/

√
N ' 2.2 · 10−4, and this

is consistent with the size of the fluctuations shown in Fig. 3.4. Determining the
standard deviation of the second and third moments requires some calculation,
and is shown in Appendix A. The standard deviation of the second moment has
an α dependence and is shown in Fig. 3.5. The analytical standard deviation
is around 3 · 10−4 near α = 0 and converges towards approximately twice the
size as |α| grows. The fluctuations in the second moment are somewhat smaller
than expected, as 20 of 21 samples lie within one standard deviation. (For a
normal distribution about 70% of the samples are expected to be found within
one standard deviation, which in this case is around 14-15.) The upper graph of
Fig. 3.6 shows γ as a function of α along with the mean value of the skewness for
the generated samples. The lower graph shows the deviations from the expected
values, indicating fluctuations of the size 10−3. Again, 20 of 21 samples lie within
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one standard deviation, so the fluctuations are smaller than expected.
During the early testing of the generator, the observed variance and skewness

of the samples were consistently smaller than the expectation by a few percent,
and never larger, as would normally be the case in about half the samples. This
turned out to be a problem with the numeric precision. Taking the variance as an
example, this is on average in the order of magnitude of 1. As the sample grows
large, the relative contribution of each generated number to the total variance is
of the order of magnitude 1/N ' 10−7. This gave a rounding error in the total
variance as many of the contributions were too small and neglected, but this was
easily fixed by adjusting the generator from single to double precision.

The same rounding error was suspected to be the cause of the smaller-than-
expected fluctuations in the second and third moment, but reducing the sample
size N to as little as 104 did not change the outcome. In the end this discrepancy
was assumed to be a numerical artefact, and was not investigated further as the
number generator produces random numbers with an accuracy well within the
requirements of this application.
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Figure 3.3: A scaled histogram of a sample of N = 2 · 107 generated numbers with
α = −8 with the corresponding analytical probability density function (PDF) for
comparison.
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Figure 3.4: Sample deviations from the expected µ = 0 for different values of α.
The sample size was N = 2 · 107 and the red lines indicate one standard deviation.
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Figure 3.5: Sample deviations from the expected variance σ = 1 for the same samples
as those shown in Fig. 3.4. The red lines indicate one standard deviation as calculated
in Appendix A.
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γ(α) along with the average skewness of the samples. The bottom graph shows the
deviations from the expected skewness γ(α) with red lines indicating one standard
deviation as calculated in Appendix A.



Chapter 4

Correlated surfaces

With a working random number generator in place, the next step is to create a
realistic surface where the heights are correlated, and not just statistical noise.
For this purpose, two algorithms will be presented. The first is called Fourier
filtering and provides a simple way of generating signals with any correlation
function. The drawback of this method is that it only works for signals with
normally distributed amplitudes (i.e. surface heights). This is unfortunate as the
explicit purpose of this thesis is to deviate from the normal height distribution to
explore the effect of the skewness of the height distribution. However, the Fourier
filtering method is central in the algorithm presented by Nichols et al. (in this
thesis named only Nichols’ algorithm for brevity) [9]. With this algorithm it is
possible to generate correlated surfaces using any set of numbers and (in principle)
any correlation function. The principles of both methods will be given before the
results of the implementation of Nichols’ algorithm are presented. To end this
Chapter, a brief comparison of the two algorithms is given.

The methods require a discrete Fourier transform, here defined as

x̂(k) = FT(x(j)) ≡
N−1∑
j=0

x(j) exp(−i2πj/N) (4.1)

for the forward transform and

x(j) = FT−1(x̂(k)) ≡ 1

N

N−1∑
k=0

x̂(k) exp(i2πk/N) (4.2)

for the inverse.

15
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4.1 Fourier filtering

In Chapter 2 the surface was represented as a set of amplitudes at discrete loca-
tions ξn along the x1-axis with amplitudes ζ(ξn). The amplitudes were generated
from random, uncorrelated numbers {Xn} and a set of weights {Wj}, written as

ζ(ξk) =

∞∑
j=−∞

WjXj+k. (4.3)

The set {Wj} is determined by first examining the average height-height corre-
lation

〈ζ(ξk)ζ(ξk+l)〉 = 〈δ2
∞∑

m=−∞

∞∑
j=−∞

WmWjXm+kXj+k+l〉

= δ2
∞∑

m=−∞

∞∑
j=−∞

WmWj〈Xm+kXj+k+l〉. (4.4)

The angle brackets 〈· · · 〉 denote an average over an ensemble of realizations. The
random numbers {Xn} are uncorrelated and have a standard deviation of 1, thus

〈XmXn〉 = δmn, (4.5)

where δmn is the Kronecker delta. Using this in Eq. (4.4) gives

〈ζ(ξk)ζ(ξk+l)〉 = δ2
∞∑

j=−∞
WjWj−l. (4.6)

The Wiener-Khinchin theorem states that the autocorrelation function of a sta-
tionary random process has a spectral decomposition given by the power spec-
trum of that process [5]. The power spectrum was introduced in Chapter 2 as the
Fourier transform of the autocorrelation function. Due to the ensemble averaging
this process is stationary, and the theorem applies. For this process, this implies

〈ζ(ξk)ζ(ξk+l)〉 = δ2
∫ ∞
−∞

1

2π
exp(iQξl)g(|Q|) dQ, (4.7)

where g(|Q|) is the power spectral density given by Eq. (2.7) for the Gaussian
case. Next comes a derivation given in Appendix A of Ref. [4]. First, the weights
are written as the Fourier transform of some function Ŵ (Q), yielding

Wj =

∫ ∞
−∞

1

2π
Ŵ (Q) exp(iQξj) dQ. (4.8)
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Using
∞∑

j=−∞
f(ξj) =

1

∆x

∫ ∞
−∞

f(ξ) dξ (4.9)

in the limit ∆x→ 0, Eqs. (4.6) and (4.7) give

1

∆x

∫ ∞
−∞

1

2π
Ŵ (Q)Ŵ (−Q) exp(iQξl) dQ =

∫ ∞
−∞

1

2π
g(|Q|) exp(iQξl) dQ. (4.10)

Assuming that Ŵ (Q) is real, Eq. (4.10) gives

Ŵ (Q) = (∆x)1/2g1/2(|Q|), (4.11)

which can be substituted into Eq. (4.8) to give

Wj = (∆x)1/2
∫ ∞
−∞

1

2π
g1/2(|Q|) exp(iQξj) dQ. (4.12)

This is in principle enough to calculate the weights and generate randomly
rough surfaces. However, a special case occurs if the random numbers Xn have
a normal distribution. As the Fourier transform of a Gaussian function is a
Gaussian function itself, a set of Gaussian numbers {Xj} can be used as both in
the frequency domain and spatial domain without actually performing a Fourier
transform. As Eq (4.12) is a Fourier transform of the square root of the power
spectral density, Eq (4.3) can be viewed as a convolution of

√
g(k) and {Xj}.

Hence, the following algorithm is obtained for generating surfaces of length L
with power spectral density g(k) from a set of N random Gaussian uncorrelated
numbers {Xj}:

1. Assign {Xj} to the locations ξj = j∆x1, with j = 0, 1, 2, . . . , (N − 1) and
∆x = L/N . This is the initial surface y(ξj).

2. Sample g(k) at discrete frequencies kn = (n−N/2)∆k, where ∆k = 2π/L
and n = 0, 1, 2, . . . , (N − 1).

3. Calculate the Fourier transform ŷ(kn) = FT(y(ξj)).

4. Calculate ζ̂(kn) = ŷ(kn) · (g(kn))1/2.

5. Generate the surface in real space via the inverse discrete Fourier transform
ζ(ξj) = FT−1(ζ̂(kn)).

The surface {ζ(ξj)} now has the height-height correlation corresponding to the
power spectral density g(k). Unfortunately, the assumption of normal height
distribution has been made to get to this point. If this algorithm is used on any
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other height distributions, the surface is whitened by the process, which means
that the heights tend towards a normal distribution. The driving force behind this
process is the central limit theorem, hence the effect is stronger for large values
of N . This effect was discovered when attempts were made to generate surfaces
with a skew normal height distribution and the resulting height distributions
had lost up to 50% of their original skewness. In effect, Fourier filtering is an
excellent way of generating correlated surfaces, but only as long as the target
height distribution is a normal distribution.

4.2 Nichols’ algorithm

Nichols et al. proposed a simple solution to this problem which allows the combi-
nation of, in principle, any height distribution with any correlation function [9].
The only limitation mentioned is that sharp peaks in the power spectral density
are not compatible with strongly asymmetrical height distributions. The exam-
ple given is trying to combine an exponential height distribution with a narrow
band pass filter as correlation function. Such special cases are rare, and this
limitation is not a problem in the context of this work. The method works by
iteratively reordering the original data and using Fourier filtering to determine
the reordering process. As the resulting surfaces are comprised of the exact data
points of the original signal, the generated surfaces are guaranteed to have the
correct height distribution. The algorithm to generate a surface with length L
and power spectral density g(k) from a set of N random uncorrelated numbers
{Xj} is as follows:

1. Assign the N random numbers {Xj} to the locations ξj = j∆x with j =
0, 1, . . . , N − 1 and ∆x = L/N . This is the initial surface y(ξj).

2. Store a copy of y(ξj) in a vector s(j) and sort by ascending value. Hence,
the smallest value in y(ξj) is stored in s(1), the second smallest value in
y(ξj) in s(2) and so on, such that s(1) ≤ s(2) ≤ . . . ≤ s(N).

3. Sample g(k) at discrete frequencies kn = (n−N/2)∆k, where ∆k = 2π/L
and n = 0, 1, . . . , N − 1.

4. Calculate the Fourier transform ŷ(kn) = FT(y(ξj)).

5. Find the phases φ(kn) = tan−1
(

Im(ŷ(kn)
Re(ŷ(kn)

)
.

6. Calculate ζ̂(kn) = exp(iφ(kn))(g(kn))1/2.

7. Generate the surface in real space via the inverse Fourier transform: ζ(ξj) =

FT−1(ζ̂(kn)).
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8. Replace the values of ζ(ξj) with the values stored in s(j), replacing the
smallest value of ζ(ξj) with s(1), the second smallest in ζ(ξj) with s(2) and
so on. As the numbers are replaced, keep record of the position at which
each element of s(j) is stored in ζ(ξj).

9. If all the numbers in s(j) are assigned the same position as the last iteration,
the algorithm is terminated with ζ(ξj) as the resulting surface. Otherwise,
steps 4-9 are repeated, replacing y(ξj) with the current surface ζ(ξj) in step
4.

In the original algorithm the mean of y(ξj) is removed in the beginning and
reinserted at the end, and the variance of y(ξj) is scaled by the variance of g(k).
This is not strictly necessary here, as the mean and variance of y(ξj) are close to
0 and 1, respectively, and W (x1) is normalized. Note that step 6 is essentially a
Fourier filtering process, as it combines the amplitudes of g(kj) with the phases
of the Fourier transform of the underlying numbers. After the inverse transform
in step 7 the surface has the correct correlation, but the height distribution is
whitened. Step 8 corrects this by replacing the height distribution with the
original values, which in turn affects the height-height correlation.

This algorithm is essentially the solution to a optimization problem, where
a set of numbers are to be reordered to approximate a target autocorrelation
function. The problem always has at least two solutions, as mirroring the surface
about x1 = L/2 gives the same autocorrelation. It is not known whether there
may be more solutions, and if there are, whether the algorithm finds the global
optimum. Santos and Yacoub were able to show that the algorithm converges
asymptotically to the correct power spectral density as N becomes large [10].
However, several adjustments were necessary in order to make the algorithm
work in practice, including making sure that the algorithm is not caught in an
infinite loop in steps 4-9. Details on these adjustments and their effect on the
surfaces are given in Section 5.3.

Nichols’ algorithm was implemented using Fortran 90, and an implementa-
tion of the Quicksort algorithm1 written by Juliana Rew2 was used to sort the
numbers. This code was modified to also keep track of the indices of the sorted
numbers in order to terminate the surface generation algorithm after convergence
is achieved.

4.3 Results and discussion

Results from testing of Nichols’ algorithm are presented in Figs. 4.1-4.3. Fig-
ure 4.1 shows surface realizations for different values of the skewness parameter

1http://www.fortran.com/qsort_c.f95
2http://www.cisl.ucar.edu/staff/juliana/
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α, demonstrating the qualitative impact of the surface height skewness. Figure 4.2
shows the corresponding average height histograms and height-height correlation
functions for Nζ = 1000 surface realizations as well as their target (analytical)
functions. The parameters for the surfaces are length L = 10µm, correlation
length a = 2µm and RMS roughness δ = 1µm, and they were disctretized using
N = 4096 data points. As ∆x1 = L/N = 2.44 nm� a, the details in the surfaces
are well resolved. Figure 4.3 shows surface realizations and average correlation
functions for α = 7 and different values of a.

The surfaces in Fig. 4.1 look mostly smooth and well behaved, but they all
have a few very sharp peaks and troughs. Examples are found near x1 = 1.5µm
for both α = 7 (top) and α = −7 (bottom). Even in the Gaussian case in
the middle surface there is a sharp downward spike near x1 = −3.5µm and an
upward spike near x1 = 0.5µm. These spikes are a direct consequence of using
Nichols’ algorithm. If a statistical outlier is generated in the original set of random
numbers, it will need to be put somewhere in the resulting surface. This can result
in very sharp peaks, which in turn leads to extremely large local derivatives. The
first and second derivatives are used in the simulations in Chapter 5, where the
necessity of smoothing the surfaces will be demonstrated.

As Nichols’ algorithm reorders the original data, the histogram plots in Fig. 4.2
are equivalent to those shown in Section 3.3. The histograms are included here as
well for completeness and as an additional visualization of the impact of the skew-
ness parameter on the surface realizations. The average autocorrelation functions
in the left column of Fig. 4.2 are very close to their targets, but it is worth noting
that there is a small anticorrelation 〈ζ(x1)ζ(x′1)〉 < 0 for |x1−x′1| > 200 nm = 2a.
However, the correlation function, including this anticorrelation, is consistent for
different values of α, thus the main objective of testing the effect of height distri-
bution skewness on the scattering process can still be accomplished. To ensure
consistent correlation, one should take care to use Nichols’ algorithm also for the
special case of α = 0, even though it might be tempting to use the more efficient
Fourier filtering.

As expected, the surfaces get more ‘spiky’ as |α| increases. Note that the
skewness for α = 7 is γ(α) = 0.917, which is fairly close to γmax ' 0.995 (with
corresponding negative numbers for α = −7). In other words, surfaces with a
skew normal height distribution cannot be much more ‘spiky’ than the top and
bottom surface in Fig. 4.1. It is also worth pointing out that due to a large ratio
between the RMS roughness δ and the correlation length a (in Figs. 4.1 the ratio
is δ/a = 10) these surfaces have very steep features compared to what is usually
used for simulation purposes. An experimental measurement of a real surface by
Simonsen et al. found δ/a = 0.04µm/1.3µm = 0.03 [11], and simulations in the
review by the same author frequently uses a ratio of δ/a ' 0.5 [1].

Figure 4.3 shows plots of generated and target correlation functions as well
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Figure 4.1: Surface realizations for different values of α. From top to bottom the
values of α are 7, 3, 0, −3 and −7, respectively, and the corresponding skewnesses
in µm are 0.917, 0.667, 0, −0.667 and −0.917. The other parameters were length
L = 10µm, RMS roughness δ = 1µm and correlation length a = 100 nm for all the
realizations.
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Figure 4.2: Left column: Average correlation functions (blue) compared to the target
(red) for the corresponding values of α as in Fig. 4.1. Right column: Surface height
histograms (blue crosses) and target height distribution (red) for the same values of
α. The sample size was Nζ = 1000 surfaces and the other parameters are the same
as in Fig. 4.1.
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as a surface realization like those shown in Figs. 4.1 and 4.2, but for varying
correlation lengths a. It appears that the weak anticorrelation is dependent on
a: larger correlation lengths give larger anticorrelation. The transition from
correlation to anticorrelation happens at |x1 − x′1| ' 2a. These results show
that the problem of anticorrelation that arise from using Nichols’ algorithm can
be minimized by choosing a large system length L compared to the correlation
length a. The anticorrelations for large distances |x1 − x′1| seen in Fig. 4.3 are
around −0.007, −0.015 and −0.033 for a = 50 nm, a = 100 nm and a = 200 nm,
respectively. This implies that the ratio a/L should not exceed 0.01, which is the
ratio in the middle plot. If this is not possible for the system to be simulated,
an overhead factor can be used. In this case, a surface of length mL is generated
using mN data points, before a section of N data points is extracted. The
overhead factor m should be chosen such that mL ≥ 100a. In Section 5.3 it is
demonstrated that an overhead factor was necessary for other reasons as well.

The surface realizations show how the correlation length a affects the structure
of the surface. Note that the surfaces are generated from the exact same data
points, only rearranged to give the appropriate autocorrelation. Again one typical
consequence of using Nichols’ algorithm is apparent: an outlier with a value of
almost ζ(x1) = 5µm has been generated with few data points with similar values.
This data point still has to be placed somewhere, which gives a very sharp spike
near x1 = −1µm both for a = 100 nm and a = 200 nm. (The data point is also
found near x1 = 4.5µm for a = 50 nm, but the impact is less pronounced as the
short correlation length gives a very spiky surface in general.)

4.3.1 Fourier filtering and Nichols’ algorithm: a brief com-
parison

The biggest advantage of using Nichols’ algorithm is clear: it allows the com-
bination of any height distribution with any autocorrelation function. It is also
clear that this algorithm gives the correct height distribution, as the resulting sur-
face has the exact same height distribution as the input. The results have already
shown two drawbacks: the surfaces show a weak anticorrelation for |x1−x′1| > 2a
when a/L is larger than about 100, and outliers in the input data give sharp
peaks in the surfaces resulting in large local derivatives. These problems will be
addressed in Section 5.3.

Another drawback is the issue of computational cost. Each iteration in
Nichols’ algorithm involves a forward and backward Fourier transform plus a
sorting of the signal in order to replace the whitened signal with the original
data points. Efficient implementations of Fourier transform and sorting algo-
rithms both require O(N log(N)) operations (on average). The effect of N on
the number of iterations required by Nichols’ algorithm was not investigated, but
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Figure 4.3: Results of surface generator testing using Nichols’ algorithm. The left
column shows the average empirical correlation compared to the target. The right
column shows a surface realization with the corresponding correlation function. The
correlation lengths for the top, middle and bottom plots were 50 nm, 100 nm and
200 nm, respectively. The surface parameters are length L = 10µm, rms-height δ =
1µm and skewness parameter α = 7. They were discretized with 4096 points, and
the autocorrelations were averaged over 1000 surfaces. The three surface realizations
were generated from the exact same vector of data points, only reordered to give the
appropriate correlation.
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it is natural to assume that larger N require more iterations. The advantage of
the Fourier filtering algorithm its effectiveness: it requires fewer operations than
a single iteration of Nichols’ algorithm as it only needs the Fourier transforms.
In addition, the resulting surfaces are significantly smoother. However, it only
works for Gaussian height distributions.

A last potential advantage for Fourier filtering is that it has been shown
to work for two-dimensional surfaces. Although there are no apparent reasons
Nichols algorithm should not work by simply performing Fourier filtering and
data substitution for two dimensions, this has not been tested and it is possible
that practical problems can arise.



26 CHAPTER 4. CORRELATED SURFACES



Chapter 5

Numerical simulations

Keeping in mind that the main task of this thesis is studying the effect of surface
height skewness on scattering processes, it is clear that the height distribution
and surface generator described in the previous two Chapters provide the neces-
sary tools. The skewness of the height distribution can be altered via a skewness
parameter α while keeping the mean and variance constant, and the surface gen-
erator reorders an input of random numbers to create surfaces with a constant
autocorrelation. This allows simulations where only the skewness is varied while
the other statistical properties of the surfaces are equal. The surface generator
was integrated in the code of Maxwell1D, a Fortran 90 program created by I. Si-
monsen designed to simulate one-dimensional rough surface scattering. Both the
theory behind this program and its implementation is beyond the scope of this
work, and the interested reader is again referred to Ref. [1]. However, subjects
relevant to this thesis will be explained, such as input parameters, output pa-
rameters and a few scattering phenomena. In addition, simulation results showed
that the surfaces had to be filtered, and the method and results of this filtering
will be presented.

5.1 Geometry and input parameters

The geometry of the scattering process is shown in Fig. 5.1. An electromagnetic
beam of light with wavelength λ and finite width g is incident on an interface
between two media. (Note that g is different from the power spectrum g(k). The
notation follows the convention in the literature.) The polarization of the incident
field will be specified as either p-polarized (parallel to the plane of incidence
spanned by x1 and x3) or s-polarized (perpendicular to the plane of incidence).
The medium above the interface is a vacuum with dielectric constant ε0(ω) = 1,
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Figure 5.1: Sketch of the scattering geometry. The lengths λ and g and the size of
the height fluctuations are not to scale. Notice the directions for which the different
angles are defined positive.

and the medium below has a complex dielectric constant ε(ω). The interface
is the surface ζ(ξ1) from the rough surface generator. In practical applications
the beam width g is often negligible compared to the surface length L, but in
simulations L must have a finite size. Here a compromise must be found: if
L ' g (or smaller) computational artefacts such as lost energy at the edges may
occur, but increasing the system size (i.e. the number of discretization points
along x1) has a significant computational cost. A reasonable compromise for the
Maxwell1D program is L ' 4g.

For an incident beam characterized by the parameters g, λ and θ0 the field
along the surface is calculated and the outgoing field is calculated for θs dis-
cretized on the interval (−90◦, 90◦). The standard input parameters given in Ta-
ble 5.1 will be used unless specified otherwise. The overhead factor m will be ex-
plained in Subsection 5.3.1. For the standard parameters |k|δ = (2π/0.6127µm) ·
1µm, and the surfaces are rough according to the Rayleigh criterion given in
Eq. (2.2) for angles of incidence up to θ0 = 86◦.

5.2 Output parameters

The relevant output parameters from Maxwell1D are unitarity, coherent fraction
of the total scattering and mean differential reflection coefficient (MDRC) for
opaque (non transparent) materials, and mean differential transmission coefficient
and transmittance for transparent materials.

Unitarity is the ratio between the incoming and the outgoing energy and is a
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Table 5.1: Standard parameters used in simulations, unless specified otherwise.

Parameter Symbol Value
Surface length L 25.6µm
RMS roughness δ 1µm
Correlation length a 2µm
Wavelength λ 0.6127µm
Beam width g 6.217µm
Discretization ∆x1 0.06217µm
Number discretization points along θs and θt Nθ 501
Number of realizations Nζ 10000
Overhead factor m 20

first measure of the consistency of the simulation. If the medium is non absorbing
(i.e. Im(ε(ω)) = 0), the unitarity should ideally be exactly 1. Figure 5.2 shows
the unitarity of a flat surface without absorption as a function of the angle of
incidence θ0. There are already computational artefacts, as the unitarity is 1-2%
too low for θ0 = [0◦, 70◦] in p-polarization and 1-2% too high in s-polarization.
If θ0 = 80◦ the unitarity suddenly drops for both polarizations. For this work
θ0 will be restricted to the interval [0◦, 60◦]. Note that the unitarity converges
after a few samples, so the standard 10 000 are not needed here. For media with
Im(ε(ω)) > 0 the unitarity should be a number on the interval (0, 1) and is used
to measure the absorption in the medium.

The coherent fraction of the total scattering states how much of the scattered
intensity which was scattered non-diffusely, as discussed in Chapter 2.1 and il-
lustrated in Fig. 2.1. This will be a number between 0 (strongly rough surface)
and 1 (flat surface). Note that the coherent component is not the same as the
scattered intensity in the specular direction, but in a lab experiment it is not
possible to distinguish the coherent and incoherent components.

The mean differential reflection coefficient (MDRC) is the reflected intensity as
a function of the scattering angle θs. It is denoted as 〈∂Rp/∂θs〉 for p-polarization
and 〈∂Rs/∂θs〉 for s-polarization. The MDRC is linked to the unitarity: the total
area under the curve of the MDRC is equal to the unitarity for non absorbing
materials. Unlike the unitarity, the MDRC converges slowly, and is the reason
why 10 000 samples are used. The program Maxwell1D also allows the separation
of the coherent and incoherent parts of the scattered intensity instead of looking
at the total intensity. The coherent fraction of the total scattering is again linked
to the coherent component: it is equal to the total area under the curve of the
coherent component.

For certain parameters, the MDRC demonstrates a phenomenon called en-
hanced backscattering. This is a multiple scattering phenomenon that arises
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Figure 5.2: Unitarity of flat surfaces, calculated using Nζ = 500 realizations, RMS
roughness δ = 0.00001 and ε(ω) = −17.2 (no absorption). The other parameters
are given in Table 5.1.

from the constructive interference of double scattering paths and is a signature
of rough surfaces. An illustration of double backscattering paths is shown in
Fig. 5.3. Two incoming parallel rays are scattered twice at the same locations. If
θ0 6= −θs, the path lengths are different and thus the phases are in general differ-
ent. The waves travelling along the paths will hence not interfere constructively
in general. However, if θ0 = −θs, the path lengths, and thus the phases, are the
same, and the waves interfere constructively. If −θs is close to θ0, there is still
constructive interference, albeit to a lesser extent. This gives rise to an enhanced
backscattering peak in the MDRC around θs = −θ0. The enhanced backscat-
tering phenomenon was experimentally confirmed by Méndez and O’Donnell in
1987 [12].

Figure 5.4 shows an example of a single sample of the differential reflection
coefficient (left) and the average of Nζ = 10 000 samples (right). The single
sample has a large component near the specular direction θs = 20◦. Around this
peak there are random fluctuations in the intensity. These are characteristic of
scattering patterns from randomly rough surfaces and are called speckles. The
MDRC (right) shows a clear example of an enhanced backscattering peak in the
direction of the source at θs = −20◦.

The mean differential transmission coefficient (MDTC) is the equivalent to the
MDRC, but for transmission angles θt (c.f. 5.1). Naturally, it is non-zero only for
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Figure 5.3: Illustration of double backscattering paths. The paths interfere construc-
tively when θs = −θ0.
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Figure 5.4: Example of single sample differential reflection coefficient (left) and mean
differential reflection coefficient (MDRC) from Nζ = 10 000 samples (right). Both
scattering patterns are from surfaces with a Gaussian height distribution. The angle
of incidence θ0 = 20◦ is indicated by the dashed lines. Note the difference in scale
on the y-axis. The dielectric constant was ε(ω) = −17.2 + 0.498i (silver, [13]), and
the other parameters are given in Table 5.1.
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transparent materials (Re(ε(ω)) > 0). It is denoted 〈∂Tp/∂θt〉 for p-polarization
and 〈∂Ts/∂θt〉 for s-polarization.

Transmittance is the ratio between the incoming energy and the transmitted
energy for transparent materials. For non absorbing materials (i.e. Im(ε(ω)) = 0)
the sum of the transmittance and reflectance is equal to the unitarity and ideally
1. Hence, the transmittance also gives an indication of the size of the reflectance.
The transmittance and the MDTC are also linked as the transmittance is the
area under the curve of the MDTC.

5.3 Nichols revisited: Practical adjustments

For the numerical simulations used in this work, it turned out that the surfaces
needed to be a lot smoother than the ones shown in Chapter 4. If the local deriva-
tives become very large at some location the electromagnetic field will diverge.
This in turn “lights up” the rest of the surface, so large local derivatives at a
few locations affect the whole surface. Ultimately this resulted in unitarites as
large as 1.3 and MDRCs for the special case of normally distributed heights that
did not adequately approximate those from surfaces generated with the Fourier
filtering method. Such unitarities are clearly unacceptable, as this implies the
creation of energy (30% more energy out than in). Nichols’ algorithm is con-
strained to only use the original data, and this turned out to give very large
and noisy local derivatives, as will be demonstrated in Subsection 5.3.2. In this
Section two adjustments to Nichols algorithm are outlined, and their impact on
the surface statistics is shown.

5.3.1 Overhead factor

The first adjustment was using a overhead factor for generating the surfaces.
This was briefly mentioned in Sec. 4.3 as a method to avoid anticorrelation in
cases where the ratio a/L is too large. To generate a surface of length L using N
data points, one instead generates a surface of length mL using mN data points.
Afterwards, a section of length L comprised of N data points is extracted. The
effect of this, in addition to reducing anticorrelation, is that the algorithm has a
larger ‘pool’ of random numbers to choose from, so that peaks caused by outliers
can be smoothened by placing less extreme outliers next to them. There is no
correct or recommended value for m in general as it will vary depending on
the application and input parameters. In particular, the choice of discretization
interval ∆x1 will affect the choice of m. The drawback of large overhead factors is
the computational cost mentioned in Section 4.3.1. By trial and error a reasonable
compromise for the parameters in Table 5.1 was found to be the interval m =
[10, 25]. (The minimum requirement to avoid anticorrelation was mL ≥ 100a,
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which gives gives a minimum overhead factor of m = 7.8 in this case.) Overhead
factors of 50 and 100 were tried, but this resulted in very long generation times
with little or no effect on the MDRC.

It was also discovered during testing that if the number of data points becomes
very large (mN ∼ 20 000), Nichols’ algorithm is increasingly likely to halt in an
infinite loop where two or more elements are swapped cyclically. The exact cause
of this was not investigated, instead the code was modified so that the surface was
discarded and a new was generated if it had not converged after 3000 iterations.

To reduce the computational cost of large overhead factors, it is also possible
to extract multiple sections of length L. As was demonstrated in Sec. 4.3, the
height-height correlation is negligible after about 2a, hence several surfaces which
are statistically independent may be extracted by discarding sections of a few
correlation lengths between them. A last note on overhead factors is that they
are also used in Fourier filtering. Here a surface of length 2L is generated and a
section of length L is extracted from the middle to avoid computational artefacts
at the edges of the surface.

5.3.2 Wavelet filtering

The first attempt to smoothen the surface and its derivatives further was a Fourier
filter which set high frequency components to zero. This proved inefficient, as
local first and second derivatives were still extremely large compared to surfaces
generated with the Fourier filtering method, and the filtered surfaces were unable
to reproduce results produced with the Fourier filtering method. Thus a wavelet
filter was applied, which greatly improved the results. Wavelet transforms are
similar to the Fourier transform in the sense that a signal is represented as a set of
coefficients, and applications for wavelet transforms include data compression and
signal analysis. A detailed description will not be given here, but an “engineer’s
approach” description with examples and code is given in Section 13.10 of Ref. [7].

One of the advantages of wavelets compared to Fourier filters is that while
Fourier filters are localized in frequency but not in space, wavelets are localized
in both. With a Fourier filter, an attempt to remove high frequency structures
may potentially affect the entire surface. A wavelet filter, on the other hand,
allows removal of such structures only at the locations where they exist, leaving
the rest of the surface virtually unaffected. However, for both filtering methods
the correlation length a has a corresponding frequency, and it is extremely im-
portant not to filter out frequencies comparable to or larger than this correlation
frequency.

Wavelet filtering of an extreme example is shown in Fig. 5.5. Here, a surface
has been generated using the parameters in Table 5.1 and skewness parameter
α = 10. The left column shows the surface, its first derivative and its second
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derivative from top to bottom. The right column shows the section of the surface
and derivatives indicated by the black boxes. It is immediately apparent that
the filtering process has a minimal impact on the surface height distribution
and autocorrelation, as the unfiltered and filtered surfaces are so close that the
unfiltered surface is hardly visible behind the filtered surface. For a majority
of the surface, the derivatives are also very close and the wavelet filter simply
removes minor noise. However, an extremely sharp peak has been generated near
x1 = −4µm. The close up (top right) shows that Nichols’ algorithm was not able
to smooth this peak out, even with an overhead factor of 20. The result is a large
and noisy first derivative and a wildly fluctuating second derivative at this peak.
The wavelet filtered surface is very close to the unfiltered, but is substantially
smoother. This results in smoother, smaller derivatives which are more accurate
to the overall trend of the surface. The maximum and minimum values of the
second derivative are in this case reduced to about one tenth of their unfiltered
value. Although the skewness parameter α and example was chosen specifically
to provide a challenge for the filter, the filtering also greatly improves the local
derivatives in general. It will be demonstrated shortly that filtering was strictly
necessary also for the Gaussian case.

Altering the surface heights affects both the height distribution and autocor-
relation of the surfaces. To ensure that the relevant statistics are not altered too
much by the filter, 10 000 surfaces were generated using the parameters in Ta-
ble 5.1 and skewness parameter α = 10, and the statistics were calculated both
with and without the filter. The height distributions and autocorrelations are
shown in Fig. 5.6. The unfiltered and filtered data are hardly distinguishable,
despite a huge difference in local derivatives. The changes of surface heights are
also insignificant with respect to the total averages of the mean, variance and
skewness of the heights of all the sample, as the filtering process changed each of
them by less than 0.1%. These results show that wavelet filtering is an excellent
way of smoothing the surfaces created by Nichols’ algorithm while preserving the
height distribution and autocorrelation.

5.4 Reproduction

To test the quality of the generated surfaces, simulations were run in the Gaussian
case of α = 0 to compare with results from previous work where Fourier filtered
surfaces were used. In this Section the results of these simulations are presented,
and the necessity of wavelet filtering is demonstrated.

The MDRCs generated from rigorous simulations using the Fourier method,
Nichols’ algorithm without filtering and Nichols’ algorithm with an overhead
factor and wavelet filter are shown in Fig. 5.7 as blue, green and red curves,
respectively. Most of the MDRCs show a clear backscattering peak at θs = −θ0,
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Figure 5.5: Illustration of the effect of wavelet filtering on a surface (top), its deriva-
tive (middle) and its second derivative (bottom). The unfiltered realization is shown
in blue, while the filtered is shown in red. The left column shows the entire surface,
while the right column shows the portions indicated by the black boxes. The surface
is generated using the parameters in Table 5.1, skewness parameter α = 10 and an
overhead factor of 20.



36 CHAPTER 5. NUMERICAL SIMULATIONS

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

|x
1
 − x

1
’| [µm]

W
(x

1
)

 

 
Unfiltered

Filtered

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

1

2

3

4
x 10

−3

ζ(x
1
) [µm]

F
re

q
u

e
n

c
y

 

 
Unfiltered

Filtered

Figure 5.6: Effect of wavelet filtering on surface height statistics and autocorrelation.
The filtered and unfiltered data are for the same ensemble of Nζ = 10 000 surfaces
generated using the parameters in Table 5.1 and α = 10.

Table 5.2: Unitarities for the MDRCs shown in Fig. 5.7.

θ0 [deg] Polarization Fourier Nichols (filtered) Nichols (unfiltered)
0 p 0.9463 0.9460 1.2421
20 p 0.9445 0.9448 1.1550
40 p 0.9379 0.9375 1.0871
0 s 0.9982 0.9986 1.0417
20 s 0.9990 0.9985 1.0392
40 s 1.0007 1.0002 1.0404

indicated by the vertical dashed lines. The results for p-polarization immediately
show that the unitarities for the unfiltered surfaces are not acceptable, as the area
under its curve is substantially larger than that for Fourier filtrated surfaces. The
corresponding unitarities for the MDRCs are given in Table 5.2. The results for
p-polarization are worse than those for s-polarization due to the fact that the
previously mentioned field divergence for large local derivatives only happens
with p-polarized light. Although the MDRCs generated for s-polarized light are
less noisy, they can hardly be said to reproduce those of Fourier filtered surfaces.
For normal incidence (θ0 = 0◦, top right) the MDRC follows the major trends,
but it is about 0.05 too high or too low for most angles θs. Both for θ0 = 20◦ and
θ0 = 40◦, there is a huge dip in the MDRC near the specular directions θs = 20◦

and θ0 = 40◦, respectively. These dips can also be seen in p-polarization, although
it is less apparent due to the fluctuations. All in all, the unfiltered surfaces cannot
be said to reproduce the results of Fourier filtered surfaces.
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Figure 5.7: Plots of the MDRC as a function of θs generated using the parameters in
Table 5.1. The left column is for p-polarized light and the right is for s-polarized. The
angle of incidence θ0 was 0◦, 20◦ and 40◦ for top, middle and bottom row respectively,
and is indicated as a vertical dashed line. For the blue graphs the Fourier filtering
method was used to generate the surfaces, so this represents a target for Nichols’
algorithm. For the green graphs Nichols’ algorithm was used with an overhead factor
of m = 2, while for the red the factor was m = 20 and the surfaces were filtered
using wavelets. The dielectric constant was ε(ω) = −17.2 + 0.498i and the other
parameters are given in Table 5.1.
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Although the MDRCs generated from filtered surfaces are not perfectly consis-
tent with the ones generated from Fourier filtered surfaces, they are close enough
for the purpose of this work. The discrepancies might be reduced by increasing
the number of samples Nζ or the overhead factor m, or by decreasing the sam-
pling interval ∆x1. Naturally, these adjustments all come with a computational
cost. As the surface generator adequately reproduces previous work, the next
step is to tune the skewness parameter α to study the effect of the skewness of
the surface height distribution.



Chapter 6

Results and discussion

Rigorous simulations using the parameters in Table 5.1 on page 29 were run for
multiple values of the skewness parameter α. The results will be divided into
opaque (non transparent) materials and transparent materials. A material is
opaque if Re(ε) < 0 and transparent if Re(ε) > 0. The results for the mean dif-
ferential reflection/transmission coefficient, unitarity, transmittance and coherent
fraction of the scattered intensity are shown in this Chapter, and the impact of
the surface height skewness γ(α) on the scattering process is discussed.

6.1 Opaque materials

For the results in this Section the dielectric constant for silver with a value of
ε(ω) = −17.2 + 0.498i was used [13], unless stated otherwise.

6.1.1 MDRC

Figures 6.1 and 6.2 show results for the MDRC for p- and s-polarizations, re-
spectively. There is still some noise around θs = [−20◦, 40◦] for θ0 = 20◦ and
θ0 = 40◦, which could probably be reduced by more samples or a smaller sampling
interval ∆x1. However, the results show the overall effect. Note that the blue
curves are for Gaussian surfaces and are identical in both columns. The positive
skewnesses (left columns in Figs. 6.1 and 6.2) will be discussed first, before they
are compared to negative skewnesses.

The top left plot in both Figures show MDRCs for varying positive skewnesses
and normal incidence. Although the difference between Gaussian (blue) and
strongly skewed (red) surface heights is not large, one of the effects seems to
be that increasing skewness reduces the backscattering peak at θs = 0◦. This

39
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Figure 6.1: MDRC for p-polarization. The left column is for positive skewnesses γ(α)
with values γ(2) = 0.45 (µm)3 (green) and γ(5) = 0.85 (µm)3 (red), and the right
is for the negative values γ(−2) = −0.45 (µm)3 (green) and γ(−5) = −0.85 (µm)3

(red). The blue curve is for Gaussian surfaces in both columns. The angles of
incidence θ0 were 0◦, 20◦ and 40◦ for top, middle and bottom row respectively, and
are indicated by the vertical dashed lines. The parameters were dielectric constant
was ε(ω) = −17.2 + 0.498i, length L = 25.6µm, wavelength λ = 0.6127µm and
correlation length a = 2µm. The other parameters are given in Table 5.1.
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Figure 6.2: Similar to Fig. 6.1, but for s-polarization.
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intensity is instead scattered near the local maxima located near θs = ±10◦. The
locations of these local maxima are shifted a few degrees towards θs = 0◦. These
locations are related to the average distance between consecutive peaks on the
surface, and this shift is similar to the effect of a longer correlation distance a. A
possible explanation can be found by realizing that as the surface height skewness
increases, the distance between large peaks must also increase. The reason is that
as some peak heights increase, others must decrease in order to keep the RMS
roughness δ constant. This effect can be seen in Fig. 4.1 by comparing the middle
surface (γ(α) = 0µm) to the top and bottom surfaces (γ(α) = ±0.917µm).
Hence, the resulting surface effectively has smaller height fluctuations in between
sharp peaks, with correspondingly larger distances between the sharp peaks. This
argument could explain why the correlation length appears longer than actually
it is.

The argument may also be used to explain the differences seen for θ0 = 20◦

and θ0 = 40◦. For θ0 = 20◦ the MDRCs are still very close, but a skewed surface
height induces more scattering in the forward direction (θs > 0) at the cost of
the backward direction. If the sharp peaks are ignored, the rest of the surface
looks less rough than a corresponding Gaussian surface, and less rough surfaces
scatter more intensity in the specular direction. This is even more apparent in
the MDRCs for θ0 = 40◦. Whereas the Gaussian MDRCs (blue) are almost sym-
metric about θs = 0◦ in this case, a skewness of γ = 0.85µm shifts a significant
amount of the scattered intensity from the backward to the forward directions.
The difference disappears around θs = 60◦. This also has an intuitive explana-
tion: if the scattering location is in a ‘flat’ area in between tall peaks and the
scattering angle θs is large, there is a large probability that the wave will be
scattered again at the next tall peak. After this, it is relatively unlikely to scat-
ter again. Thus, this process reduces the intensity for large θs. In addition, the
backscattering peak becomes slightly more pronounced as the skewness increases,
especially in s-polarization.

From the plots for negative skewnesses (right column in both Figs. 6.1 and
6.2), it is immediately apparent that increasing the magnitude of the surface
height skewness produces many of the same effects regardless of its sign. The
reason for this is that surfaces with large magnitudes of the surface height skew-
ness look very similar outside the peaks and pits. However, there are a few notable
differences in the MDRCs. For θ0 = 0◦ (top), the effect on the backscattering
peak is opposite compared to a positive surface height skewness, as a larger neg-
ative surface height skewness induces more backscattering instead of less. This
is easily explained by looking at the difference of a field scattered from a peak
compared to a pit. Both peaks and pits on the surfaces are relatively symmetric
with respect to the mean surface normal, due to a symmetric correlation func-
tion. At normal incidence, a peak will act as a convex mirror and scatter the
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incoming field in all directions. Only a small fraction of the field has a chance
to scatter again and hence possibly contribute to enhanced backscattering. By
contrast, a pit acts as a concave mirror, and the field scattered in a pit is likely
to scatter in it again. As the pit is relatively symmetric with respect to the angle
of incidence, the double scattering events that cause the backscattering peaks are
very likely compared to a surface peak. By close inspection, the effect of this
enlarged backscattering peak is also visible for θ0 = 20◦ (middle) and θ0 = 40◦

(bottom) in both Figs. 6.1 and 6.2.

A second difference is seen for angle of incidence θ0 = 40◦ (bottom) and
scattering angles θs > 60◦. If a wave is scattered with a large scattering angle θs,
a surface with negative surface height skewness does not have large peaks to stop
it. Thus, the scattered wave is allowed to propagate and contribute to a larger
intensity also for large scattering angles θs.

The arguments given are also consistent with the difference seen for θs =
[−90◦,−60◦]. The results show that positive skewness increases the scattering
in these directions, while negative skewness decreases it. This can again be
explained by the existence of tall peaks for positive skewness, and the lack of
such peaks for negative skewness. If the incident field is scattered at an angle
−90◦ < θs < −60◦ near the top of a tall peak, it is unlikely to scatter again, as
this would require a nearby taller peak. Scattering in the backward direction is
more likely from ‘steep’ sections of the surface, i.e. locations where the local first
derivative is relatively large. Such sections are found on the left side of peaks
and right side of pits. If the incoming field is scattered from the right side of a
pit, it will most likely also scatter against the left side of the pit before escaping.
On the other hand, if it scatters against a peak, it is comparatively more likely
not to scatter again and contribute to the intensity at large negative angles θs.

6.1.2 Unitarity

Figure 6.3 shows the calculated unitarities for different values of the surface height
skewness. The unitarities for θ0 = 0◦, θ0 = 20◦ and θ0 = 40◦ were calculated for
the MDRCs in Figs. 6.1 and 6.2.

The unitarities for p-polarization (left) look fairly constant, i.e. independent of
surface height skewness. A notable feature is a spike for all θ0 at γ(α) = 0.667µm.
This is believed to be a computational artefact, as it was not present when the
data was checked after about 7500 out of 10 000 samples, nor was it present
when an overhead factor of m = 10 was used. A possible explanation is that a
surface may have been generated which the wavelet filter could not make smooth
enough. This would cause a field divergence and an increase in the unitarities,
as was seen in Section 5.4. This also explains why there is no such spike in s-
polarization. There is also a small negative trend for increasing γ(α) for all θ0
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Figure 6.3: Unitarity as a function of surface height skewness for p-polarization (left)
and s-polarization (right). The circles represent the data points while the dashed lines
are interpolations. The dielectric constant was ε(ω) = −17.2+0.498i, and the other
parameters used are given in Table 5.1.

except θ0 = 60◦. However, the difference from maximum to minimum unitarity
(ignoring the spike) is about 0.5% for θ0 = 0◦ and this effect may just as well be
a computational artefact.

The unitarities for s-polarization (right) have a clearer trend, but it is very
small. The difference between the maximum and minimum unitarities is less than
1% for all θ0, and the trend may have the same origin as for p-polarization.

As an extra test to see whether there is a correlation between absorption and
surface height skewness, simulations were performed with a material with a higher
absorption coefficient, i.e. a larger Im(ε(ω)). The material chosen was cobalt with
dielectric constant ε(ω) = −10.8 + 22.95i for λ = 0.6127 nm (SOPRA database).
Figure 6.4 shows the unitarity as a function of the surface height skewness for
p-polarized (left) and s-polarized light. Again, the absorption seems independent
of the surface height skewness. One notable exception is γ(α) = −0.85µm where
the rises significantly for all angles of incidence. Although there also seems to be
a trend in θ0 = 0◦ and θ0 = 20◦ leading up to this, it is quite possible that it is
a numerical artefact as discussed previously.

To summarize, the unitarity cannot be conclusively said to have a dependence
on the skewness.

6.1.3 Coherent component

Figure 6.5 shows the coherent fraction of the total scattered intensity as a func-
tion of the surface height skewness. For all skewnesses and incident angles θ0
the fraction is extremely small (∼ 10−4), as is expected from strongly rough sur-
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Figure 6.4: Unitarity as a function of skewness with p-polarization (left) and s-
polarization (right) calculated using Nζ = 500 samples. The circles represent the
data points while the dashed lines are interpolations. The material was cobalt with
a dielectric constant was ε(ω) = −10.8 + 22.95i (SOPRA database), and the other
parameters used are given in Table 5.1.

faces. Unlike the unitarities seen in the previous Section, there is no apparent
dependence on γ(α) (nor θ0), and the fractions are most likely just noise.

To conduct a better study of the coherent component, simulations using Nζ =
500 samples, δ = 0.2µm and the parameters in Table 5.1 were run. For these
parameters, the Rayleigh criterion for rough surfaces given in Eq. (2.2) gives
θ0 = 40◦. Hence, for the angles of incidence used in these simulations, they are
called weakly rough surfaces. The results for the coherent component are shown
in Fig. 6.6. The tendency seems to be a slightly larger coherent component for
large absolute values of surface height skewness, which is consistent with the
argument of a less rough surface in between large peaks and pits for large |α|.
However, as the effect is fairly small, this should be investigated further before a
conclusion is drawn.
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Figure 6.5: Coherent fraction of the scattered intensity for p-polarization (left) and
s-polarization (right). The circles represent the data points while the dashed lines
are interpolations. The dielectric constant was ε(ω) = −17.2+0.498i, and the other
parameters used are given in Table 5.1.
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Figure 6.6: Coherent fraction of the scattered intensity from a weakly rough surface
for p-polarization (left) and s-polarization (right). The circles represent the data
points while the dashed lines are interpolations. The dielectric constant was ε(ω) =
−17.2 + 0.498i, the RMS roughness was δ = 0.2µm and the other parameters used
are given in Table 5.1.
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6.2 Transparent materials

For the results in this Section the dielectric constant of fused silica glass with a
value of ε(ω) = 2.1247 + 0i was used [14], unless stated otherwise. The effect of
the surface height skewness on the MDRC was the same as for opaque materials
presented in the previous section, and will not be repeated here. As this is a
transparent material, the mean differential transmission coefficient (MTDC) will
be discussed instead.

6.2.1 MDTC

Figures 6.7 and 6.8 show the MDTCs for fused silica glass and the parameters
shown in Table 5.1. It is immediately apparent that there is virtually no difference
between positive (left columns) and negative (right columns) skewnesses, and only
the magnitude affects the results.

For normal incidence (top row) the transmitted intensity is slightly shifted
towards θt = 0◦ as the magnitude of the surface height skewness increases. A
possible explanation for this is that as the peaks get taller or the pits deeper, the
surface outside the peaks and pits flattens, as previously discussed. As coherent
light is transmitted through a rough surface, the interface acts as a diffusion
lens. The coherence is lost and the intensity is spread to other directions than
the incident. A rougher surface gives more diffusion, while a flatter surface gives
less. Hence, a strongly skewed surface profile, being flatter outside peaks and
pits, gives less diffusion. The diffusion effect is demonstrated by the manner in
which the transmitted intensity is centred around θt = θ0, but spread out. If the
interface was flat, the MDTC would have the same profile as the incident wave,
and sharply peaked around θt = θ0.

The diffusion effect reverses as the angle of incidence θ0 becomes large, while
the MDTC peak is shifted slightly towards θt = 0◦. A possible explanation is
again rooted in narrow peaks and pits in an otherwise relatively flat surface.
While the peaks and pits are ‘small’ when viewed from normal incidence, their
relative size to the surrounding surface increases as they are viewed more from the
side. This corresponds to a larger θ0. Hence, as θ0 grows, the surface effectively
grows rougher, inducing more diffusion.

The observant reader will perhaps recognize the shape of the MDTCs in
Figs. 6.7 and 6.8. Indeed, Fig. 6.9 shows an example of an MDTC that is reason-
ably well approximated by the skew normal distribution presented in Chapter 3.
It may seem that the MDTCs are another way of generating skew normal distri-
butions, and that increasing θ0 is equivalent to decreasing α!
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Figure 6.7: MDTC for p-polarization. The left column is for positive skewnesses γ(α)
with values γ(2) = 0.45 (µm)3 (green) and γ(5) = 0.85 (µm)3 (red), and the right
is for the negative values γ(−2) = −0.45 (µm)3 (green) and γ(−5) = −0.85 (µm)3

(red). The blue curve is for Gaussian surfaces in both columns. The angles of
incidence θ0 were 0◦, 20◦ and 40◦ for top, middle and bottom row respectively, and
are indicated by the vertical dashed lines. The parameters were dielectric constant
was ε(ω) = 2.1247 + 0i, length L = 25.6µm, wavelength λ = 0.6127µm and
correlation length a = 2µm. The other parameters are given in Table 5.1.
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Figure 6.8: Similar to Fig. 6.7, but for s-polarization.
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Figure 6.9: MDTC for α = 0, θ0 = 40◦ and p-polarization (blue) and f(x) given
by Eq. (3.1) (dashed green). The parameters for f(x) are ξ = 45◦, ω = 18◦ and
α = −6, and a scaling factor of 58. The MDTC is the same as in Fig. 6.7.

6.2.2 Transmittance

The transmittances of the previous MTDCs (as well as for θ0 = 60◦) are shown in
Fig. 6.10 for p-polarization (left) and s-polarization (right). The transmittances
look fairly constant, indicating that the transmittance is independent of the sur-
face height skewness γ(α). One notable exception is found for p-polarization for
γ(α) = −0.85µm, where the transmittances increase by 1-2% for all θ0. While
it is possible that this is physically real and caused by a scattering phenomenon
(for example the effect of Brewster’s angle), it is most likely a numerical artefact
as seen for the unitarities in Subsection 6.1.2.
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Figure 6.10: Transmittance as a function of surface height skewness for p-polarized
(left) and s-polarized (right) light. The dielectric constant was ε(ω) = 2.1247 + 0i,
and the other parameters used are given in Table 5.1.
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Chapter 7

Summary and conclusions

The effect of surface height skewness on rough surface scattering processes has
been investigated. To this end, a skewed probability distribution with a cor-
responding random number generator was needed, as well as a technique for
generating rough surfaces numerically.

In Chapter 3, a skew normal distribution was motivated for the chosen skewed
probability distribution. A random number generator was implemented in For-
tran 90 and verified to give the expected results.

In Chapter 4, a surface generation surface algorithm described by Nichols et
al. was implemented in Fortran 90 to generate properly correlated surfaces from
the random numbers, and the algorithm was verified to give consistent results.
The limitations of the algorithm were outlined, and its advantages and drawbacks
were compared to the method of Fourier filtering.

In Chapter 5, the surface generator was integrated into the simulation pro-
gram Maxwell1D, a program created by I. Simonsen to numerically simulate the
scattering of an electromagnetic field incident on a rough interface. The necessity
of applying a wavelet filter on the surfaces was justified, after which the generated
surfaces proved able to reproduce known results for the case of a Gaussian height
distribution.

In Chapter 6, the results for rigorous simulations of scattering from surfaces
with different surface height skewnesses are presented and discussed. Both the
reflection from non-transparent (opaque) materials and the transmission from
transparent materials were examined.

For the reflection from opaque materials, strongly skewed surface heights in-
duced more scattered intensity in the forward directions, both for positive and
negative values of the skewness. The proposed explanation is a model for a surface
with strongly skewed heights where the surface is relatively flat between sharp
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peaks or deep pits. A flatter surface scatters more intensity in the forward direc-
tions. For negative values of the skewness, there was an additional increase in the
scattered intensity for scattering angles θs = [60◦, 90◦]. This phenomenon was
attributed to the lack of peaks to scatter the intensity for these directions. Simi-
larly, the scattered intensity showed a negative correlation with the surface height
skewness for oblique angles of incidence for scattering angles θs = [−60◦,−90◦].
Whereas a peak has a relatively large probability of scattering the incident field
in these directions, as pit correspondingly has a smaller probability. The results
also showed a negative correlation between the surface height skewness and the
size of the enhanced backscattering peak. This was attributed to the fact that
the multiple scattering events that cause the enhanced backscattering peak to
occur, happen more frequently in a pit (negative skewness) than between peaks
(positive skewness). There were no strong indications for a correlation between
surface height skewness and absorption in absorbing materials, but a strongly
skewed surface height profile (both positive and negative skewness) seemed to
induce slightly more coherent scattering for weakly rough surfaces. This is again
explained by a relatively flat surface between peaks and pits.

For the transmitted field from transparent materials, the effects of positive
and negative values of the surface height skewness were the same, and only the
magnitude had an effect. For a normal angle of incidence strongly skewed surface
heights induced less diffusion, which is consistent with the model of the surfaces
becoming effectively less rough as the magnitude of the skewness increases. For
oblique angles of incidence the effect is opposite. The suggested explanation was
that the effective size of the peaks and pits as viewed from the source of the field
increases when the angle of incidence increases. This causes the ‘effective rough-
ness’ of the surface to increase, yielding more diffusion. The total transmittance
seemed to be independent of the surface height skewness.



Chapter 8

Further work

The main focus of this work has been the reflection and transmission from strongly
rough interfaces. However, surfaces may also be weakly rough, as was briefly
mentioned in Subsection 6.1.3. For such surfaces, enhanced backscattering from
multiple scattering events is very weak, but instead enhanced backscattering may
be caused by a phenomenon known as surface plasmon polaritons [1, Sec. 3.4].
A study of the effect of the surface height skewness on this process has not yet
been conducted, and is a topic for future research.

The correlation length a and RMS roughness δ were mostly kept constant
in this work. Changing the parameters could possibly enhance or reduce the
effects of a skewed surface height distribution, and a study of this might give
greater insight into the details of the scattering process. Also, other height-height
correlation functions might impact the effects of the surface height skewness.

Scattering systems with more than one interface can produce a phenomenon
called satellite peaks [1, Subsec. 5.2.2]. Here, a film is placed on top of a material,
supporting guided waves. Rigorous numerical simulations could also show how
this phenomenon is affected by the skewness of the height of the interface.

In this work, the angular distribution of the scattered intensity was only
studied in the far field. By studying the distribution of the tangential component
of the field along the surface, the impact of the surface height skewness could
also be determined for the near field.

For two-dimensional surfaces, polarization transitions between p- and s-polar-
izations are possible, and the surface height skewness might enhance or reduce this
effect. This would require implementing and testing Nichols’ (or an equivalent)
algorithm for producing rough surfaces with a height distribution different from
the Gaussian in two dimension and is a larger task than the previous suggestions.

Naturally, it would be interesting to see if the results from these simulations
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are accurate to results from a lab experiment, and if the predicted effects of
increased skewness correspond to the actual effects.

Lastly, as Nichols’ algorithm allows surfaces of any height distribution, it is
up to the imagination of the reader which distribution(s) might be an interesting
case for study.
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Appendix A

Variances of higher
moments

The variance of the second moment is easily calculated using the properties of
the skew normal distribution. Property H in Ref. [6] says that if Z is a skew
normal distributed variable with ξ = 0 and ω = 1, then Z2 is χ2 distributed
with one degree of freedom. This gives Var(Z2) = 2. If X is a skew normal
variable with E(X) = 0 and Var(X) = 1, then (X+E(Z)) ·

√
Var(Z) ∼ Z. Using

Var(aX + b) = a2 Var(X) and Var(X) = 1 gives

Var(Z2) = Var
(
(X + E(Z)) ·

√
Var(Z))2

)
= (Var(Z))2 ·Var

(
X2 + 2X E(Z) + (E(Z))2

)
= (Var(Z))2 ·

(
Var(X2) + 4(E(Z))2

)
= 2, (A.1)

which gives

Var(X2) =
2

(Var(Z))2
− 4(E(Z))2. (A.2)

The expectation and variance of Z are given in Eqs. (3.8) and (3.9) with ξ = 0
and ω = 1. The variance of X2 is α dependent, due to the α dependence of
E(Z) and Var(Z). Finally, for the average 〈X2〉 of a large sample of N numbers,
the second moment has a normal distribution with expectation E(X2) = σ and
standard deviation

σ(〈X2〉) =

√
Var(X2)

N
(A.3)

according to the central limit theorem.
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The variance of the third moment is not as easily calculated. The most obvious
method is to use the method of moments and find

Var(X3) = E
(
(X3)2

)
−
(
E(X3)

)2
.

The expectation values can be found using Eq. (3.5), but this quickly turns
cumbersome as it involves differentiating Eq. (3.7) six times using the chain
rule. However, software allowing algebraic manipulation of expressions such
as Maple handles this well, and the code

Mz := t 7→ e1/2 ξ t+1/2ω2t2
(
1 + erf

(
1/2 δ ω t

√
2
))

f := t 7→ d6

dt6 Mz (t)−
(
d3

dt3 Mz (t)
)2

VarGamma := eval (f (t) , t = 0)

VarGamma := eval
(

VarGamma, [ξ = −ω δ
√

2π−1]
)

VarGamma := eval

(
VarGamma, [ω =

(
1− 2 δ2

π

)−1
]

)
VarGamma := eval

(
VarGamma, [δ = α√

1+α2
]
)

stdGamma :=
√

VarGamma

simplify (stdGamma)

gives the standard deviation

σ(X3) = π3/2

(
1 + α2

)3
2 (π + π α2 − 2α2)

6

(
−18α6 − 75π α6 − 104π2α6

+ 60π3α6 − 312π2α4 + 180π3α4 − 135π α4

− 288π2α2 + 180π3α2 + 60π3
)

(A.4)

for the distribution scaled so that E(X) = 0 and Var(X) = 1. Finally, for the
average 〈X3〉 of a large sample of N numbers, the third moment has a normal
distribution with expectation E(X3) = γ and standard deviation

σ(〈X3〉) =
σ(X3)√

N
(A.5)

according to the central limit theorem.


