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Abstract

In this project a steady state approach is used to study the stability of surface
nanobubbles in water electrolysis. A two dimensional domain is considered, where
an electrode of length 100 nm is partly covered by a bubble. The results indicates
that a single nanobubble which partially covers the electrode can be stable, as long as
the electrogeneration of hydrogen is sufficient to balance the dissolution of hydrogen
at near the cap of the bubble. The effect of the evaporation rate constant on the
stability of the bubble is investigated, and the results indicates that as evaporation
rate constant is increased from 0.01 m/s to a 100 m/s the needed production of
hydrogen for a given bubble to be stable decreases. For values outside this range
the needed production of hydrogen in converges to a constant value depending on
the geometry of the bubble.

Sammendrag

I dette prosjektet benyttes en steady state tilnærming for å studere stabiliteten til
en overflate nanobobler i vann-elektrolyse. Et to dimensionalt domene blir studert,
hvor en elektrode av lengde 100nm er delvis dekket av av en boble. Resultatene
indikerer at en enkel nanoboble som delvis dekker elektroden kan være stabil, s̊a
fremt produksjonen av hydrogen er tilstrekkelig stor. Effekten av fordampningsrate
konstanten har p̊a stabiliteten til en boble er undersøkt, og resultatene indikerer
at n̊ar fordamningsrate konstanten øker fra 0.01 m/s til 100 m/s vil den trengte
produksjonen for at en gitt boble skal være stabil avta. For verdier utenfor dette
intervallet vil den trengte produksjonen av hyrogen konvergere mot en gitt verdi
avhengig av geometrien til boblen.
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1 INTRODUCTION

1 Introduction

Nanobubbles are a a nanoscopic phenomenon that has recently been discovered in various
areas of interfacial physics, one of them being electrolysis. They should according to
classical diffusion theory rapidly dissolve. But many experiments have demonstrated
that they are stable, and there has not yet been established a full understanding of
their longevity [6] [13] [18] [10]. In electrolysis the high gas concentration seems to be a
important factor, both for the formation and as an explanation for their stability.

Electrolysis and fuel cells are a important areas of study, especially for the generation
of hydrogen as a renewable energy source. Hydrogen can be used as an efficient energy
carrier for fuel cells, which can replace almost all application where fossil fuels are being
used today. PEM fuels cells are virtually without any harmful emissions, and the only
bi-product is pure water. There exist and are currently being developed many different
methods for producing hydrogen, but the most reliable and practical method that are in
use today is through water electrolysis. Other studies indicates that there is a potential
to produce cheap hydrogen in solar rich areas using PV power plants, and transport the
hydrogen to where the power is needed. But for this to be profitable the cost of hydrogen
production must be reduced[2]

One of the problems with the hydrogen production in electrolysis, is that the high
concentration of hydrogen leads the formation of nanobubbles. These bubble covers
the electrode where the gas is being produced, and therefore greatly reduce production
efficiency. And as the physics behind the existence and stability of bubbles are not yet fully
understood, they constitute an important problem in the production of hydrogen. The
subject is quite new, but in recent years many studies, both theoretical and experimental,
have been initiated.

1.1 Nanobubbles and longevity

In experiments there are observed three different types of nanobubbles, bulk-, surface
nanobubbles and micropancakes. Bulk bubbles are spherical bubbles suspended in bulk
liquids, with a typical radii of 50-100 nm. Surface nanobubbles are spherical caps found
at the solid/liquid interface, with a typical radii of curvature of 100-1000 nm and heights
and width of 5-20 and 50-100 nm, respectively. Micropancakes are also found at the
solid/liquid interface and is observed with widths of order of several hundred nanometer,
with a height of just 1-2 nm [13]. There is not completely understood whether or not
there is a link between surface bubbles and micropancakes.

1.2 Electrolysis

Electrolysis is a well known technique to drive a non-spontaneous chemical reaction using
a direct current, such a chemical reaction can be the separation of water to hydrogen and
oxygen,

2H2O 
 O2 + 4H+ + 4e−.

2H2O 
 O2 + 2H2
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1.3 Hydrogen nanobubbles in water electrolysis 1 INTRODUCTION

Another application of such a chemical reaction can be to run the process in reverse
by instead of applying energy trough a current, such as the case in the electrolysis, one
can receive energy through a current by applying the gases (e.g. oxygen from the air and
stored hydrogen). Such a device, that convert chemical energy to electric energy, is called
a fuel cell.

The most common method used in electrolysis is the Polymer electrolyte membrane
(PEM) electrolysis, where one separate the cathode and anode with a polymer membrane.
The reduction of water is occurring at the anode, and the protons can move trough the
membrane, where as the oxygen or hydrogen will have a small cross-over rate. The
reduction of the protons then occur at the cathode, and the power source drives the
electrons from the anode to the cathode. At each electrode there will occur a production
of gas, and if the gas concentration becomes high enough the formation of nanobubbles
can occur.

1.3 Hydrogen nanobubbles in water electrolysis

The observed nanobubbles are very flat, and have radii of order, a ≈ 50nm at the surface
and a height h ≈ 10nm, which yields a low contact angle of θ ≈ 10◦ [3]. Classical theory
of diffusion yields that such small bubbles should dissolve on a time scale of microseconds,
but in experiments they seem to last for several hours (O(104) seconds), or even days [18].

1.4 Latest work

Many experiments have observed the longevity of nanobubbles, and formed both in
clusters and on a single nano electrode. By varying the applied voltage or the reaction
time the formation and growth of bubbles can be precisely controlled.[18] [17] [5]. The
numerical work on nanobubbles is mostly done by using molecular dynamics, which
can quickly become cumbersome. Other works, such as Brenner and Lohse [13], have
demonstrated that a near wall gas enrichment can be used to explain a dynamic equilibrium.

1.5 Thesis outline

The scope of this thesis is to examine the scaling of the lifetime of surface nanobubbles
through a simple model using a finite difference scheme, with a specific interest for the
evaporation rate constant, α, and its impact on the longevity of a nanobubble. Using
a diffusion flow hydrogen through the liquid phase and Henry’s Law to model the rate
of flow between the gaseous- and liquid phase, a simple model for a half-cell reaction is
obtained.

A quadratic domain of 500 × 500 nm is considered, with a electrode of a 100 nm
partially covered by a bubble. The domain is discretized by dividing it into a uniform
grid. A Dirichlet boundary condition is imposed on the sides far away from the electrode,
and a Neumann boundary condition is imposed on the two other sides of the domain,
except for at the electrode. A bubble of a certain geometry is imposed on the system,
partially covering the electrode and therefore reducing the net production of hydrogen.
The production of hydrogen at the free area of the electrode is imposed on the system as
a Neumann boundary condition.
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1 INTRODUCTION 1.5 Thesis outline

First a simple model of a completely flat bubble with a Neumann boundary condition
of zero flux is imposed on the system. The solution of the steady state diffusion equation
is then computed for the system, in order to obtain the concentration profile of the system.
The total system cannot be claimed to be a steady state solution as long as there is not
a nonzero flux between the phases, as this would imply a change of size of the bubble.
The net flux between the phases is dependent on the contact angle, and the calculated
concentration profile is not. Therefore the contact angle that yields a zero net flux can
be calculated for the imposed conditions on the system.

A second model is then considered, where the geometry of the bubble is included in
the model. A Robin boundary condition is imposed on the system along the surface of
the bubble, as the flux between the phases will depend on the concentration in the liquid.
The concentration profile for the system can then be calculated by solving the steady
state diffusion equation for the model. As in the flat bubble approximation, the system
cannot be claimed to be a steady state solution as long as there is a nonzero flux between
the phases. The imposed flux at the electrode must then be varied in order to obtain a
concentration profile that yields a zero net flux between the phases.
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2 EXPERIMENTAL EVIDENCE

2 Experimental evidence

2.1 Experiments and numerical work

An important paper for this thesis is the experiment conducted by Lou and White[6],
where an single nanobubble is formed on an electrode of length 50 nm. The observation is
that there is a sudden drop in the current associated with the transport-limited reduction
of protons, the decrease in current is in equivalent with a ∼ 95% blockage of the electrode.
Other experiments have observed and controlled the growth of the bubbles by varying the
applied current.[17]. The process is recorded with AFM measurements, and the observed
effect is that the bubble grows until it reaches a dynamic equilibrium.

At larger electrodes the bubble clusters are formed [18], where the formation, growth
and coalescence of bubbles are recorded using in-situ tapping mode atomic force microscopy,
an example of such images is shown in figure 1

Figure 1: Electrochemically generated nanobubbles on a highly oriented pyrolytic graphite
surface. (a) CV curve recorded at a scan rate of 0.2 V/s. (b) Height and (c) phase images
of of generated nanobubbles (light spherical cap features) after a voltage of -1,5 V being
applied for 10s. TMAFM images of nanobubbles obtained after applying a voltage of -2.1
V for 2 s (d) before and (e) after tip pertubation. [18, figure 1]

The spatial distribution of surface nanobubbles in such clusters is found not to be
randomly distributed lhuissier2014spatial, which is attributed to the history of nucleation
during the formation of the bubble. The sizes a nanobubble in such a cluster is found to be
strongly correlated with the area of the bubble-depleted zone around it. This correlation
indicates that the bubble growth is due to diffusion of gash through the liquid and through
gas absorbed on the surface. This effect is shown in figures 2 and 3.
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2 EXPERIMENTAL EVIDENCE 2.1 Experiments and numerical work

Figure 2: Portion of a typical AFM image of nanobubbles. (a) The cellular diagrams
depicted is Voronoi diagrams constructed from the bubbles center (red circle). (b)
Modified Voronoi diagram based on the bubbles triple contact line (pink line). The
bubbles footprint (colored pink), is associated with the modified Voronoi cell (cyan). The
bubble footprint has an area a, and the area of the modified Voronoi diagram has an area
A [5, figure 1]

Figure 3: The area A of the modified Voronoi cell plottet versus the area a from figure
2, where the correlation between the modified Voronoi cell of a bubble and its radii is
shown. [5, figure 4]

Most of the numerical work regarding nanobubbles are models using molecular dynamics.
It is very very cumbersome, but can be effective in determining macroscopic thermodynamic
properties for systems that obey the ergodic hypothesis [7] [12].
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2.2 Dynamical equilibrium 2 EXPERIMENTAL EVIDENCE

2.2 Dynamical equilibrium

Bubbles with radices in the scale of 100nm-1µm would by classical diffusion theory dissolve
at a timescale of microseconds.[11] But the observed lifetime of the bubbles are at least 10-
11 orders of magnitude longer, so they are quite stable. There are two popular explications
for this longevity of the bubbles, contamination and a dynamic equilibrium.

The contamination explanation is that the presence of insoluble contaminates (e.g.
polymers) accumulate on the liquid/gas interface, the surface tension will decrease and
a barrier preventing diffusion will be formed. The lowering of the surface tension will
cause the driving force of the dissolution to be greatly reduced. If the contaminants
become pinned to the bubble, the density of the contamination will increase as the
bubble shrinks. This will in turn lead to a further decrease in surface tension. As the
pressure difference (Laplace pressure), is proportional to the surface tension, this will also
decrease. One can even achieve a negative surface tension. Then the only driving force
for the dissolution of the bubble will be the increase in entropy by mixing of components,
which often will take an incredible long time. The problem with this explanation is the
assumption of the presence of containments, the formation of nanobubbles are found in
many different systems with different techniques and chemicals. Even the most purified
chemical solutions will contain contaminants, if not extraordinary measures are taken.
And the small surface of the bubble will then yield that the need for contaminants to cover
the surface of the bubble is equally small. A more problematic side of the explanation
is the contamination will only decrease the diffusive outflux, and not completely prevent
it. This is due to the fact of thermal fluctuations of the contaminate layer, which will
the imply that there will always be ”holes” in the contaminate layer. Therefore there will
always be an diffusive outflux present, possibly greatly reduced, albeit always present.
One would then expect to observe a slow reduction in size over time, but nanobubbles are
shown to have a stable volume in experiments.

A more accepted theory is the dynamic equilibrium model, which uses near-wall gas
enrichment as a replenishing gas source. The theory is that gas concentration will be
higher near the hydrophobic wall, and therefore there can be an influx of gas near the
wall and as the concentration decreases as one approaches the top of the spherical cap,
there will be an outflux. Then as long as the bubble is small enough, there will be an total
influx, which will lead to a increased volume. Or if the bubble is larger than a critical
value there will be a net outflux, and the volume will decrease. Then there should be a
critical size when the influx near the wall will balance the outflux at the top. This could
explain the stability of nanobubbles, and the preferred sizes observed experimentally.
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2 EXPERIMENTAL EVIDENCE 2.2 Dynamical equilibrium

Figure 4: Dynamic equilibrium model using near wall gas enrichment. Near a hydrophobic
substrate the concentration of dissolved gas is higher than at the top, and this could lead
to a net flux of zero here the outflux at the to, jout, cancels the influx near the substrate,
jin.[figure 1 (a)] [10]

There are however some aspects with the dynamic equilibrium that needs to be
explained, if the net influx at the wall is to be upheld while a net outflux occurs at
the top of the bubble. There needs to be a replenishing of the gas that flows from the
fluid in to the bubble, and out from the top. As shown in figure 4, there would also be a
need for an energy source that drives the flow of gas.

In a half-cell reaction with a formed bubble, there will obviously be a replenishing of
the gas near the surface form the half-cell reaction and a the energy source is the applied
current. Such dynamically stabilized nanobubbles are observed in experiments, where a
surface nanobubble partly covers the electrode [6].
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3 MODELLING

3 Modelling

3.1 General theory

3.1.1 Diffusion

Diffusion is a term used to describe the spontaneous movement of a substance, and at
a macroscopic scale is recognized as the net movement of a substance from regions with
high concentration to regions with low concentration. Diffusion can often be described
through a flux, ~J , that is proportional to a concentration gradient, ∇C. This relation is
known as Fick’s first law,

~J = −D∇C, (1)

where the proportionality constant, D, is called the diffusion constant. This relation
is only valid at a steady state. To describe the concentration profile over time one has
Fick’s second law, which can be derived from mass-conservation and Fick’s first law. By
considering a small control volume one can show that,

∂C

∂t
= −∇ · ~J, (2)

by applying the applying the divergence operator Fick’s first law, and using [2] one
get;

∇ · ~J = −∇ · (D∇C), (3)

∂C

∂t
= D∇2C, (4)

assuming D is constant in space.

3.1.2 Laplace pressure

The pressure difference between the inside and outside of a curved surface is known as
the Laplace pressure, which can be determined from the Young-Laplace equation,

∆p = pin − pout = γ

(
1

R1

+
1

R2

)
. (5)

Where the R denotes the radii of curvature and γ is the surface tension between the
fluid and liquid. If the curved surface is a sphere, or a segment of a sphere, the principal
radii of curvature are identical.
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3 MODELLING 3.1 General theory

a

R

θ
h

Figure 5: Geometry of a surface nanobubble, with radii of curvature R, contact angle θ,
height h and surface coverage radii a.

It is often more useful in such cases as in figure 5 to use the contact angle between the
liquid and gaseous phase, and the radii of the bubble. Through trigonometry it is trivial
to deduce that the pressure-difference can be expressed as,

∆p =
2γ

R
=

2γ sin(θ)

a
. (6)

If the ideal gas law is assumed to hold for the gas in the bubble, the concentration
inside the bubble can be expressed as,

Cb =
n

V
=

p

RgT
=

1

RT

(
pf +

2γ sin(θ)

a

)
, (7)

where pf is the pressure in the fluid.

3.1.3 Henry’s Law

Henry’s law states that of a given temperature and volume the amount of dissolved gas
in a liquid is directly proportional to the partial pressure of the gas in equilibrium with
that liquid. That is,

ppartial = HpC
∗
aq, (8)

where ppartial is the partial pressure of the gas in the solute and C∗aq is the concentration
of the solute. Hp is refereed to as Henry’s constant, and could also be defined as a
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3.2 Finite difference and one-sided derivatives 3 MODELLING

dimensionless quantity at a given temperature and pressure. The dimensionless Henry’s
constant, H, is then defined as,

H =
C∗aq
C∗gas

. (9)

A common mathematical model for describing the net flux per unit area, across a
surface is to assume it is proportional to the concentration difference from the equilibrium

J = α(Caq −HCgas). (10)

Here the flux is defined as positive from the aqueous solution to the bubble. One can
explain the motivation for equation [10] from the mathematical modelling principle that
it is the simplest form of describing the flux whilst upholding that the flux at equilibrium
is zero and the increase or decrease in either concentration will lead to, respectively, an
increased or decreased flux in the opposite direction. A Taylor expansion around the
equilibrium C∗aq, C

∗
gas, can further support the reasoning behind the model, assuming the

flux only depend on the respective concentrations.

J(Caq, Cgas) = J(C∗aq, C
∗
gas) +

∂J

∂Caq

∣∣∣∣
eq

(Caq − C∗aq) +
∂J

∂Cgas

∣∣∣∣
eq

(Cgas − C∗gas) +O(2). (11)

Where the fist term, the flux at equilibrium, is obviously zero. The easiest approach to
treat the expression, is to expand the flux around a point where one of the concentrations
is held at equilibrium. This is due to the fact that there is infinitely many equilibrium
concentrations, and there is no trivial way to proceed. However, in a steady state system,
with a bubble of constant size and concentration will be the equilibrium concentration,
and therefore C∗gas = Cb, where Cb is the concentration of gas in the bubble. By inserting
equation [9] into equation [11], an approximation for J is obtained,

J ≈ ∂J

∂Caq

∣∣∣∣
eq

(Caq −HCb) (12)

= α(Caq −HCb). (13)

This is equivalent to calculating the Taylor series and approximating the infinitesimally
increased concentration with the use of Henry’s law, C∗aq ≈ HCg = H(C∗g +∆Cg) and vice
versa. As Henry’s law reflects the relative concentrations at equilibrium, the expression
can not be claimed to be a proof for equation 10. However the linear dependence is
proven in the expansions where one of the concentrations is held at equilibrium, yields an
approximation that is second order accurate assuming Henry’s Law holds.

3.2 Finite difference and one-sided derivatives

The finite-difference method uses a grid and a combination of discrete function values at
the grid points to numerically solve a set of PDEs. The partial derivative at a grid point
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3 MODELLING 3.2 Finite difference and one-sided derivatives

can be approximated through the function values at neighbouring points and the finite
difference between the grid points. There are three different types of finite differences,
central difference (second order accurate), forward- and backwards difference (first order
accurate). Finite difference techniques work fine for all interior points of a domain, where
all the neighbouring points lie inside of the domain. The boundary will by definition have
some neighbouring points that lie outside of the domain, and only forward- or backwards
differences can be defined through grid points inside of the domain and next to the
boundary. It is therefore impossible to express higher orders of partial derivatives at
the boundary, and an approximation of functions partial derivative will only be first order
accurate. Any boundary condition that specifies the values of the functions derivatives,
or some combination of different orders of derivatives, will therefore need other methods
of approximations to uphold second order of accuracy.

A way to achieve a higher order of accuracy is to calculate the derivatives at the
boundary as one-sided derivatives. The method can be derived through a Taylor expansion
of the function to obtain an expression for the derivative.

u(x) = u(0) + x

(
∂u

∂x

)
x=0

+
x2

2

(
∂2u

∂x2

)
x=0

+ ... (14)

≈ a+ bx+ cx2 (15)

∂u

∂x
≈ b+ 2cx, (16)(

∂u

∂x

)
x=0

≈ b. (17)

The function value at a distance, x, is approximated up to the second order of the
distance, and the derivative evaluated at the boundary is expressed as some constant, b
and c for the second and third order respectively. Now by setting the distance between
the points to ∆x, and inserting into the expression for u, one obtains,

u0 = a, (18)

u1 = a+ b(∆x) + c(∆x)2, (19)

u2 = a+ 2b(∆x) + 4c(∆x)2. (20)

There are three equations, with three unknowns, a, b and c, so it is straightforward to
solve the set of equations, for the first-order derivative at the boundary:

b =

(
∂u

∂x

)
0

=
−3u0 + 4u1 − u2

2∆x
. (21)

The error can be analysed, by inserting the derived expression into the Taylor expansion
for the function.
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3.3 Model domain 3 MODELLING

(
∂u

∂x

)
i

≈ αui + βui+1 + γui+2

∆x
(22)

ui+1 = ui + ∆x

(
∂u

∂x

)
i

+
(∆x)2

2

(
∂2u

∂x2

)
i

+
(∆x)3

3!

(
∂3u

∂x3

)
i

+ ... (23)

ui+2 = ui + 2∆x

(
∂u

∂x

)
i

+
(2∆x)2

2

(
∂2u

∂x2

)
i

+
(2∆x)3

3!

(
∂3u

∂x3

)
i

+ ... (24)

By using these expressions for the two nearest neighbours of the boundary point,
and expressing the approximation for the first order derivative in terms of the Taylor
expansion, one obtains

(
∂u

∂x

)
i

≈ αui + βui+1 + γui+2

∆x
(25)

=
α + β + γ

∆x
ui + (β + 2γ)

(
∂u

∂x

)
i

+
∆x

2
(β + 4γ) +O(∆x2.) (26)

(27)

For the approximation to be second-order accurate one has to have the left hand side
(the expression that was previously derived as equation [21)], to be equal to the first-order
derivative plus the higher order terms. One then obtains

α + β + γ = 0, β + 2γ = 1, β + 4γ = 0. (28)

⇒ γ = −1/2, β = 2, α = −3/2. (29)

⇒
(
∂u

∂x

)
0

=
−3u0 + 4u1 − u2

2∆x
+O(∆x2). (30)

This then proofs that equation [21] is second order accurate.

3.3 Model domain

A two dimensional representation cathode half cell of a water electrolysis with a nanobubble
centred is illustrated in figure 6.

Figure 6: Illustration of the half cell, arrows indicate a flux.

The hydrogen is generated on a electrode, e.g patina, which is partly covered by a
nanobubble in the center of the electrode. There is trivial to see that due to the symmetry
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of the half cell that the problem can be solved by inspecting the left or right half of the
half cell and using a no flux condition where the split the cell. Further there is assumed
to be a constant hydrogen generation per unit area, j0, and that the rest of the bottom
of the cell is a solid which yield a no flux condition. And far away from the electrode
the hydrogen concentration is at saturation level, CL. To use a finite difference scheme
to solve the steady state problem, a grid has to be defined to express the derivatives,
illustrated in figure 7.

Figure 7: Representation of model system, which is divided into (n−1)×(n−1) domains.
The electrode is located in the bottom left corner, partially covered by the bubble with
radii a. The flux at the electrode is set to j0, and along the rest of the bottom and the
left side of the domain there is imposed a no flux condition. At the top and right side of
the domain the concentration is set to the saturation condition, CL. The grid points are
labelled from 1 in the top left corner to n2 in the bottom right corner.

If the grid-points is labelled from 1 to n2, her from top left to right, top to bottom.
If one uses a finite differences scheme to set up an equation for each point, one obtains a
set of n2 equations with as many unknowns. And one can write the set of equations as,

A~C = ~b. (31)

Here ~C is the column vector of length n2, containing the concentration at all of the
points - which is what one wants to find. And the n2×n2 matrix, A is the indices matrix,
reflecting the dependence between the concentrations, and ~b is the boundary values is
stored in a column vector.

3.3.1 Interior points

To set up the equations for the interior points, Fick’s second law is applied, and assuming
no mass accumulation there is easy to show that the equation for a point i is:
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D
Ci+1 + Ci−1 + Ci+n + Ci−n − 4Ci

∆x2
= 0. (32)

Then these equations can be represented in the matrix equation, one for each interior
point and each of them corresponds to a row in the matrix equation, j,

Aj,i = −4 (33)

Aj,i−1 = Aj,i+1 = Aj,i−n = Aj,i+n = 1. (34)

bj = 0 (35)

(36)

3.3.2 Saturation boundary condition

For all of the boundary points at saturation level for the involved gas, the equations are
quite straightforward

Ci = CL (37)

(38)

When converted to matrix form, the equation for the relevant points becomes

Aj,i = 1, (39)

bj = CL. (40)

3.3.3 Flux boundary condition

Along the other boundaries one has a flux boundary condition, and these can be implemented
by using Fick’s first law and applying the one sided derivative. It clearly seen that the
equation for the no flux boundary condition to in the left side of the domain becomes

D
−3Ci + 4Ci+1 − Ci+2

2∆x
= 0. (41)

(42)

The no flux boundary condition along the bottom of the domain, will be similar to
the left side,

D
−3Ci + 4Ci−n − Ci−2n

2∆x
= 0. (43)

(44)

Implemented in the matrix equation, equation for the relevant points becomes
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3 MODELLING 3.4 Flat bubble approximation

Aj,i = −3 Aj,i+1 = 4, Aj,i+2 = −1 For the left side (45)

Aj,i = −3 Aj,i−n = 4, Aj,i−2n = −1 For the bottom. (46)

bj = 0. (47)

Assuming that the gas production occurs at a constant rate, wit a net flux of j0,
perpendicular to the surface, one will similarly as the no-flux boundary condition use the
one sided derivative, with another boundary value

−D−3Ci + 4Ci−n − Ci−2n
2∆x

= j0. (48)

(49)

Implemented in the matrix equation, equation for the relevant points becomes

Aj,i = −3 Aj,i−n = 4, Aj,i−2n = −1 (50)

bj = −2j0∆x

D
. (51)

3.4 Flat bubble approximation

To be able to complete the boundaries, one has to impose a boundary condition at the
liquid-vapour interface. To include the curvature of the bubble, the gas occupy a certain
volume above the disk. The simplest approach is to use the fact that the measured
contact angles for nanobubbles is very low, and use this legitimize an approximation of a
flat bubble. And by assuming steady state and, still be able calculate the concentration
distribution. One would the further also assume a no flux boundary at the gas-liquid
interface. And therefore the boundary condition at the bubble is the same as the no flux
boundary condition.

It is now easy to us a two step approach to investigate whether or not a stable surface
bubble can exist under the imposed conditions. By using 10 with the bubble concentration
calculated from equation [7], the flux of gas between the liquid-gas interface can be
calculated. As there is assumed a steady state, the only valid result is that of which
will yield a net flux of zero. This is due to the effect that otherwise the bubble will grow
or shrink, and the system can not be claimed to be in a steady state.

The procedure is then thus use a numerical integration scheme, and the flux per unit
time is integrated over the bubble surface. And using the flat bubble approximation, the
integration would be trivial to calculate by applying the trapezoidal rule [1]. Assuming
the bubble stretches over m domains of length h, over a distance equal to the length of
the surface a. And assuming a uniform distribution of the gas inside the bubble, the
integration becomes,
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Jtot =

∫ xm

x0

J(s)dx = α
m−1∑
i=0

∫ xi+1

xi

(Caq(x)−HCg)dx (52)

≈ α

[
h

2

m−1∑
i=0

(Caq(xi) + Caq(xi+1))− SHCg

]
(53)

= α (Ib − SHCg) . (54)

Where Jtot, is the definite integral of the flux over the bubble.

As the contact angle is not needed in order to compute the concentration profile, it
can be changed in order to achieve a zero net flux over the surface of the bubble. Thus
by solving Jtot = 0, the contact angle for a steady state system can be calculated to be,

sin(θ) =
RTIb −HSpf

2Hγ
. (55)

3.5 Including bubble curvature

To include the bubble in the numerical scheme, a problem that arises is illustrated in
figure 8

Figure 8: External boundary point

The problem that arises is the occurrence of points like P in figure 8, where one, or
more of the neighbouring points are at the boundary. It is obvious that such points cannot
be approximated as in [32], when the point N lies on the other side of the boundary, and
the point B is closer to point P than S.

An approximation can be obtained by calculating the first partial derivative at the
halfway point, P+, halfway between N and P , and P− halfway between P and B.[9]
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uN − uP
yN − yP

=
∂u

∂y
(P+) (56)

uP − uB
yP − yB

=
∂u

∂y
(P−). (57)

(58)

The distance between these two half-way points is (yN − yB)/2. Further the distance
yP − yB = β∆y, where ∆y is the grid size and 0 < β < 1. Thus the second partial
derivative can be expressed as

uyy ≈
2

yN − yB

(
uN − uP
yN − yP

− uP − uB
yP − yB

)
(59)

≈ 2uN
(β + 1)(∆y)2

− 2uP
β(∆y)2

+
2uB

β(β + 1)(∆y)2
. (60)

The equations for such points will be the same as for other interior point, except for
the correction of β, which has to be calculated for each point. To set up the indices matrix
for such points is then similar to the other exterior points, but each point will have to be
individually treated when the β will in differ for each point. The equation for points such
as P , with a correction for the uyy-derivative,

Aj,P = −2− 2

β
(61)

Aj,W = Aj,E = 1 (62)

Aj,B =
2

β(β + 1)
(63)

Aj,N =
2

β + 1
(64)

bj = 0. (65)

(66)

Where Aj,P etc. indicate the indices for point P and so forth. The approximation
is obviously upheld for both coordinates, and due to the linearity of the laplacian the
derivative in each direction is independent of each other. Therefore in cases such as W in
figure 8, uxx will have to be approximated in similar fashion. Further such points has to
be taken into account when setting up the equations for the interior points. An easy way
to do this, is to consider the rectangle that is spanned by the grid lines of the horizontal
grid line that is just above the bubble height and the vertical line that is just to the left
where the bubble surface intersect the electrode. Points outside of this domain will not
have any neighbours that lies inside of the boundary.

Estimating the the derivative in such a manor is equivalent to extrapolating from
interior and boundary points to a fictitious exterior point, and then applying the standard
difference scheme. A quadratic extrapolation of uS in figure 8 would yield equation [60].

To still have a well defined problem, a set of equations is needed for the points added
along the boundary to the model. It is possible to define a no flux condition as in
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the flat bubble approximation, but it is almost as simple to impose a Robin boundary
condition along the normal to the surface and applying [10]. Thus the flux, Neumann
boundary condition, should depend on the concentration, Dirichlet boundary condition,
at the boundary. The normal derivative for these boundary points has to approximated,
and can be approximated by investigating figure 9.

Figure 9: Normal derivative at a curved boundary

A normal derivative can be approximated by assuming that the normal at B meets
the horizontal mesh line EPW at Z and suppose the lengths are,

ZP = p∆x, PB = β∆y, BZ = q∆y, (67)

where 0 ≤ p ≤ 1, 0 ≤ β ≤ 1 and 0 < 1 ≤
√

1 + (∆x/∆y)2. The normal derivative can
be approximated by,

∂u

∂n
≈ uB − uZ

q∆y
. (68)

An approximation of the value of uZ can be obtained by linear interpolation between
uW and uP ,

uZ ≈ puW + (1− p)uP . (69)

Thus the normal derivative can be approximated by,

∂u

∂n
≈ uB − puW − (1− p)uP

q∆y
. (70)
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The flux between the liquid and gaseous phase is govern by equation [10], and by
inserting the approximation for the normal derivative, the indices matrix can be obtained.

Aj,W = p/q (71)

Aj,P = (1− p)/q (72)

Aj,B = −1/q −∆yα/D (73)

bj = −α∆yHCb/D. (74)

In both cases where the points where the bubble and the mesh intersects has to be
found for each bubble, when the points will depend on the geometry of the bubble and the
resolution of the mesh. Its trivial to solve this geometrical problem through parametrizing
the bubble surface as a spherical cap with a given radius and center. The normal at any
given point along the surface will obviously be parallel with the straight line from the
point to the center.

3.5.1 Steady state solution

A steady state system is a system where all time derivatives are zero, and therefore the
model represents a steady state system as long as the net flux between the bubble and
liquid is zero. The net flux into the bubble can be calculating by integrating equation [10]
along the surface, S, of the bubble.

Jnet = α

∫
S

(Caq −HCb)dS. (75)

As in the flat bubble approximation, the trapezoidal rule[1] can be applied to evaluate
the integral over the surface. If the boundary points at the surface is labelled from 1 to
N , with x-values increasing with N , the integral can be approximated as,

Jnet ≈ αR

(
1

2

N−1∑
i=1

[
(Ci + Ci+1) arcsin

(
xi+1 − xi

R

)]
−HCbθ

)
. (76)

Since the distance between the points in genera differ, each surface segment will have
to be individually evaluated.

In the flat bubble approximation the contact angle needed not to be to defined to set up
the equations, and could therefore be changed in order to achieve a net flux if zero. When
the curvature of the bubble is included all parameters has to be set in advance, and it is
no longer possible to change any parameters without imposing a change in concentration
profile.

To achieve a net flux equal to zero, the most reasonable approach is to vary j0 for a
given geometry. This is of course due to the fact that only a few rows of column vector
~b will change. Further one knows that when no production of hydrogen occur, there will
be a net outflux from the bubble. And if a high enough production of hydrogen occurs,
then there will be a net influx. Thus a bijection can be used to find an influx j0 in order
to achieve a net flux of zero. The bijection method is well known, and is a product of
the intermediate value theorem. By setting the minimal value for the bijection method
at 0, and the maximum at a sufficiently large flux, one can iterate until the net outflux is
essentially zero.
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3.6 Bulk nanobubble dissolution

To show how the α effects the time for a bubble to dissolve, it is easy to compare the
results with that of a simple model for a bulk bubble dissolution in three dimensions.
Where the same approximations, isothermal and mechanical equilibrium, is still assumed.
Further one assumes that the process is slow, namely that the speed of which the surface
move is slow.

Figure 10: Bulk bubble dissolution for a bubble with concentration Cb, and radii R(T )

The equations for the system is trivial to set up, where the concentration inside the
bubble can be found from equation [7],

Cb =
2γ +Rp

RTRg

. (77)

And the concentration profile in the liquid is calculated from equation [2], with
appropriate boundary conditions, the first being that the concentration falls off to zero as
r goes to infinity, the other will depend on dissolution of gas from the bubble. To solve
the laplacian in three dimensions with isotropy is straightforward, and the concentration
in the liquid can be expressed as,

C(r) = A/r +B = A/r. (78)

To simplify the model, the two extreme cases where α goes to zero and infinity can be
considered. When α is close to zero, the flux at the bubble boundary will be determined
by a flux balance between the outflux from the bubble - [10] and the diffusion of gas
through liquid,

J(R) = −D∇C
∣∣
R

= 2DA/R2 = α (HCb − C(R)) (79)

⇒ A(R) =
αHR

DRgT
· 2γ + pR

1 + αR/D
. (80)

From conservation of mass/particles, the change in molecules inside the bubble is equal
to the total outflux,
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d

dt
(V Cb) = −

∫
S

JdS = S · J = 4πR2J(R), (81)

where S is the surface of the bubble. By inserting equation [80] and equation [7], that
is assuming instantaneous mechanical equilibrium, into [81] and rearranging, an ODE for
the radius can be found,

Ṙ = −3αH

(
2γ + pR

4γ + 3pR

)
· 1

1 + αR/D
. (82)

As R goes to zero (R� γ/p and R� D/α), the ODE can be simplified to

Ṙ ≈ −3αH. (83)

It is also possible to calculate the analytical solution of equation [82] with integration
by substitution (u = 1 + pfR/(2γ)), and assuming initial conditions R(t = 0) = R0 and
t = 0,

t =
−1

3αH

[(
4γ2α

Dp2f
− 2γ

pf

)
ln

(
2γ +Rpf
2γ +R0pf

)
+

(
3− 2γα

Dpf

)
(R−R0) +

3α

2D

(
R2 −R2

0

)]
.

(84)

In the case of where α goes to infinity, the rate of which the gas can dissolve is so
rapid that the concentration at the boundary will be in equilibrium with the gaseous
phase according to Henry’s law, and the expression for A now becomes,

C(R) = HCb (85)

⇒ J(R) =
DH

RTRg

(2γ/R + p) . (86)

Equation [81] still holds, and by inserting equations [86] and [7], and rearranging and
ODE for the radius can be found,

Ṙ = −3DH

R

(
2γ +Rp

4γ + 3pR

)
. (87)

Similarly, when R� γ/p, the ODE can be simplified to

2RṘ ≈ 3DH. (88)

The analytical solution of equation [87] with the same initial conditions as in the case
where α goes to zero can be calculated to be,

t(R) = −4γ2

p2f
ln

(
2γ +Rpf
2γ +R0pf

)
+

2γ

pf
(R−R0)−

3

2

(
R2 −R2

0

)
. (89)
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3.7 Numerics and computational specifications

The computer used is a Lenovo Think Pad x220i, with an INTEL i3-2350M CPU with
2.3 GHZ processor and 4 GB RAM. The executional time of the algorithm for a curved
boundary condition for one iteration is of order seconds, and the executional time for an
steady state solution will depend on the starting conditions for the bijection. For typical
parameters there is a need of 10-12 iterations, and the execution time will therefore be of
an order of O(10)s.
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4 Results

4.1 Flat bubble

In the flat bubble approximation, an electrode of a 100 nm is partially covered with a
bubble with an imposed radii. A flux is then imposed on the system, and the concentration
profile for a bubble the system can be calculated. Two examples are illustrated in figures
11 and 12.

Figure 11: Relative hydrogen concentrations distribution, with radii 75nm, and flux 0.1
mol/sm2 from a partially covered electrode of a 100nm.

Figure 12: Relative hydrogen concentration distribution, with radii 75nm, and flux 0.5
mol/sm2 from a partially covered electrode of a 100 nm.
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One sees that concentration of hydrogen spreads out in the liquid through diffusion,
and thus is falls off as the distance to the electrode increases. The flux of hydrogen between
the liquid and the bubble can be evaluated through calculating the surface integral of
equation [54] over the surface of the bubble. And from equation [55], the contact angle
can be calculated for such a system. The contact angle as a function of the radius is
shown in figure 13;

Figure 13: The contact angle [deg] as a function of the radii, with fluxes in the range of
0.05-0.1 mol/sm2.

A negative contact angle is inconsistent with how the system is defined, is only arises
from the way the contact angle is calculated in equation [55]. And it is therefore clear
that the given concentration profile cannot upheld a nanobubble of the imposed radii,
and the system is therefore not a steady state solution.

To investigate the properties of [55], the contact angle as a function of flux. Such cases
is shown in figures 14 - 17.
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Figure 14: The contact angle [deg], as a function of the flux, at a constant radii.

Figure 15: The contact angle [deg], as a function of the flux, at a constant radii.
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Figure 16: The contact angle [deg], as a function of the flux, at a constant radii.

Figure 17: The contact angle [deg], as a function of the flux, at a constant radii.

The linear nature of the contact angles, is illustrated in figure 18. In the figure the
calculated contact angle and a linear regression line is plotted. The regression is made
for fluxes lower than 0.5 mol/sm2, and for a bubble with radii 55 nm. The regression line
has a slope of 0.0108 rad·s·m2/mol.
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Figure 18: Linear estimation of a nanobubble with radii 55 nm. θ(j) = 0.0108j rad

4.1.1 Linear dependence

From the figures 14 - 17, one observes that the contact angle is nearly linear with respect
to the flux, at least for small contact angles. It is well known that in a two-dimensional
steady state diffusion with one of the Neumann boundary condition, the concentration at
any fixed point in space is directly proportional to this imposed flux boundary condition.
Thus the concentration of hydrogen along the surface of the bubble would be proportional
to the imposed flux j0. From equation [7] it is observed that concentration in the bubble
at a fixed radii, is proportional to sin(θ), and by equations [10] and [54] it is observed that
the flux at any point along the boundary is dependent on the concentration differences
along the surface of the bubble. It is therefore expected that the imposed flux on the
electrode for a steady state solution should be proportional to sin(θ) for a fixed radii.

It is well known that at small angles, one can approximate sin(ε) ≈ ε. The plots is
obviously shown in degrees, but this is only a scaling factor between the units for degrees
and radians. And as indicated by figure 18 the linear dependence is decreasing as the
flux increase. By applying common values for the system to equation [55], it is easy to
approximate θ ∼ 10−2j0 rad, which is in good agreement with the slope of the linear
estimation shown in figure 18.

4.2 Curved surface

When the bubble surface is included and a flux boundary condition along the bubble, the
steady state concentration profile for a nanobubble with an imposed radii and contact
angle can be calculated, and illustrated in figures 19 - 22.
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Figure 19: The concentration profile of hydrogen through the domain of 500 × 500nm,
for a surface bubble with θ = 20 deg and radii a = 50 nm. The electrode is located at
x = 0−100 and y = 500, that is the top left corner. The bubble covers the electrode from
x = 0 to x = anm, and the production of hydrogen occurs on the par of the electrode
which is not covered by the bubble.

Figure 20: Contour-plot of the concentration profile of hydrogen through the domain of
500 × 500nm, for a surface bubble with θ = 20 deg and radii a = 50 nm. The electrode
is located at x = 0− 100 and y = 500, that is the top left corner. The bubble covers the
electrode from x = 0 to x = anm, and the production of hydrogen occurs on the par of
the electrode which is not covered by the bubble.
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Figure 21: The concentration profile of hydrogen through the domain of 500 × 500nm,
for a surface bubble with θ = 20 deg and radii a = 75 nm. The electrode is located at
x = 0−100 and y = 500, that is the top left corner. The bubble covers the electrode from
x = 0 to x = a nm, and the production of hydrogen occurs on the par of the electrode
which is not covered by the bubble.

Figure 22: Contour-plot of the concentration profile of hydrogen through the domain of
500 × 500nm, for a surface bubble with θ = 20 deg and radii a = 75 nm. The electrode
is located at x = 0− 100 and y = 500, that is the top left corner. The bubble covers the
electrode from x = 0 to x = anm, and the production of hydrogen occurs on the par of
the electrode which is not covered by the bubble.
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The contact angle is a material dependent quantity, so it can be expected that for
a system with given gas, liquid and solid phases, the contact angle would be constant.
Further there is also expected that the as the flux between the liquid and the vapour
is proportional to α, the production of hydrogen may depend on α. The flux from the
electrode j0 for a stable bubble with given contact angles in the range 7.5 − 32.5 deg, is
shown as a function of the radii of the bubble for α in the range of 0.01− 1 m/s in figures
23 - 31

Figure 23: The needed influx j0 as a function of the contact angle for α = 0.1
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Figure 24: The needed influx j0 as a function of the contact angle for α = 0.1

Figure 25: The needed influx j0 as a function of the contact angle for α = 0.1
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Figure 26: The needed influx j0 as a function of the contact angle for α = 0.01

Figure 27: The needed influx j0 as a function of the contact angle for α = 0.01
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Figure 28: The needed influx j0 as a function of the contact angle for α = 0.01

Figure 29: The needed influx j0 as a function of the contact angle for α = 1
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Figure 30: The needed influx j0 as a function of the contact angle for α = 1

Figure 31: The needed influx j0 as a function of the contact angle for α = 1

The overall form of the flux 0 is as expected. Where at small radices the concentration
in the bubble will be high, and thus a high concentration along the surface of the bubble is
needed to be close to equilibrium. As the radii is increased whilst the contact angle remains
constant the concentration decreases, and thus the concentrations along the bubble surface
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will have to be decreased in order for the system to be at a steady state. As the radii
is increased, the area of the electrode where hydrogen production can occur decreases
and therefore when the bubble covers a large part of the electrode and the net influx
of hydrogen is decreased for a given j0. Therefore for bubbles with large radices, a,
approaches the length of the electrode, the flux per unit area has to be increased in order
to achieve a concentration profile that yields a steady state solution. It is also worth
noting that for a concentration profile that yields a nonzero flux between the liquid and
gas phase, the system cannot be claimed to be at a steady state. Therefore a claim of
either a bubble growth or reduction based on a net positive or negative flux.

As in the flat bubble approximation, a higher contact angle would yield a higher
concentration inside the bubble and therefore a higher concentration along the surface of
the bubble and thus the flux at the electrode has to be increased.

Figure 32: The imposed flux j0 as a function of θ for a given radii with α = 0.1.
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Figure 33: The imposed flux j0 as a function of θ for a given radii with α = 0.01.

Figure 34: The imposed flux j0 as a function of θ for a given radii with α = 1.

The same linear dependence between the flux and the contact angle is observed for
the curved surface as in the flat bubble approximation.
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4.3 Estimation of α

The effect of α is illustrated in figure 35-36.

Figure 35: The flux j0 as a function of α for a stable nanobubble with θ = 20 deg and
radii of 50 and 75 nm. The x-axis is the common logarithm (base of 10) of α witch varies
from 10−5 to 104

Figure 36: The flux j0 as a function of α for a stable nanobubble with θ = 40 deg and
radii of 50 and 75 nm. The x-axis is the common logarithm (base of 10) of α witch varies
from 10−5 to 104

As α goes to zero, the flux converges to a towards a constant value. This is to be
expected, because in the limit α → 0, the boundary condition along the surface of the
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bubble becomes a Neumann boundary condition. Therefore all concentration profiles will
be independent of α, and only depend on the imposed flux and the geometry the bubble.
The bubble covers parts of the electrode, so the net influx of hydrogen into the system
will depend on the radii of the bubble and the concentration of gas inside the bubble
depend on the contact angle. The diffusion of hydrogen away from the electrode will
be restricted by the area of the domain which the bubble covers. Thus for any imposed
flux and bubble geometry, the calculated concentration profiles will be the solution of the
steady state diffusion equation in two dimensions with mixed boundary conditions.

Any calculated concentration profile cannot be claimed to be a steady state solution, as
the net flux across the boundary of the bubble will have to be zero for all time-derivative
of the system to zero. So the steady state solution of the system is the concentration
profile that yields a net flux of zero across the boundary of the bubble. From [10] it
is observed that the net flux is proportional to α, and as the concentration profiles are
independent of α, the problem becomes simply to find the concentration profile where the
integral of weighted concentration differences, Caq −HCb, is zero. As the concentrations
is independent of α, so will the needed imposed flux j0 be. An example for concentration
along the surface of the bubble for small α are shown in figure 37

Figure 37: The concentration of dissolved hydrogen along the boundary of the bubble for
small α, α = 10−4 and 10−5.

In the other extreme case, where alpha goes to infinity, the boundary condition
becomes a Dirichlet boundary condition. At the limit α → infty, the concentrations
along the boundary has to be in equilibrium with the bubble in order for not have an
infinite flux between the phases. At as α becomes large, the concentrations along the
boundary will have to be near the equilibrium concentration Caq ≈ HCb in order for the
fluxes to be of reasonable values. Therefore the calculated concentration profiles will be
independent of α, and is determined only by the imposed influx, j0. And thus the steady
state solution is the concentration profile that yields a zero net flux across the boundary,
which is the imposed flux that yields that the concentration along the bubble is close to
the weighted concentration in the bubble. Some values for the concentration is shown in
figure 38.
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Figure 38: The concentration of dissolved hydrogen along the boundary of the bubble for
large α, α = 103 and 104.

From equation [73], it is clear that Dirichlet term of Robin boundary condition for
the bubble is proportional to α∆x/D ≈ α, and the Neumann boundary contrition is of
O(1). When α becomes small, α < 10−2, the Dirichlet term becomes negligible. In the
other extreme where α becomes large, α > 102 the Dirichlet term of the Robin boundary
condition becomes negligible. The concentrations of dissolved gas along the surface has to
be in chemical equilibrium with the gaseous phase. From equation 1, it is clear that the
flux is proportional to the concentration gradient. At the limit where α becomes large,
the concentrations along the bubble will be almost constant.

It can also be observed that the range of which the boundary condition along the
surface of the bubble is dependent on the diffusion constant D. And by varying the
diffusion constant the area of which the evaporation rate constant affects the solution
would shift. This effect is shown in figures 39 - 40.

Figure 39: The flux j0 as a function of the common logarithm of α for a stable nanobubble
with θ = 20 deg and radii of 50 nm with diffusion constant 0.1D.
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Figure 40: The flux j0 as a function of the common logarithm of α for a stable nanobubble
with θ = 20 deg and radii of 50 nm with diffusion constant 10D. The regimes of which
where the flux becomes independent is shifted to the right

The observed effect is as expected, when the diffusion constant is change by an order
of 10, the domain of which the evaporation rate constant affects the system is increased
by an order of 10. Similar if the diffusion constant is reduced by an order of 10, the
area of which the evaporation rate constant affects the system is decreased by an order of
10. As diffusion constant is the proportionality constant between the molar flux due to
molecular diffusion and the gradient in the concentration, it is expected that the influx
will have to be increased for high values of D, and decreased for low values of D. This
effect is seen in figures 39 - 41.
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Figure 41: The common logarithm of the flux j0 as a function of the logarithm α for a
stable nanobubble with θ = 20 deg and radii of 50 nm with various diffusion constants.
The flux scales proportional to the diffusion constant.

The value of α can be estimated from the paper by Brenner and Lohse [3] [figure [2]],
where the volume flux between a bubble and the liquid is found to be of an order of 3·10−16

m3/s. By applying typical values for the concentrations in this two dimensional domain,
an estimation of α can be found by applying equation [10]. In this model the difference of
typical weighted concentration for the bubble, HCb, and hydrogen concentrations in the
liquid will be of O(1) mol/m3. To approximate the volume flux, the flux has to be divided
by the area of the surface of the spherical cap, S = 2πRh. By comparing this estimate
with the results from Brenner and Lohse, α is found to be of an order of O(10−1)m/s.

4.4 Simple model of bulk nanobubble

As derived in equation [84] the dissolution-time of a bulk nanobubble in the limit α→ 0
can be calculated. The radii of the bubble can be calculated as a function of the time,
and is shown in figure 42.
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Figure 42: The radii of a bulk nanobubble as a function of the time for α in the range
100−10−2. The characteristic time scale of the dissolution-time is observed to be of order
ms.

From [84] and [83] it is observed that for for small α, the characteristic time scale for
the dissolution is inversely proportional to α, τ ∝ 1/(Hα). For typical values the expected
dissolution-time will the be of order ms, as shown in 42. With this simple model it is then
shown that the dissolution time will depend on α, and if the evaporation rate constant
is small, the dissolution time will increase by several orders of magnitude compared to
classical diffusion theory. [3]

The dissolution-time of a bulk nanobubble in the limit α → ∞, can be calculated
using [89], and the radii as a function of time is shown in 43.
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Figure 43: The radii of a bulk nanobubble as a function of time for the limit α → ∞.
The observed characteristic time scale of the dissolution-time is observed to be of order
ps.

From equations [89] and [88] it is observed that for large α the characteristic time scale
for dissolution is proportional to the diffusion constant, τ ∝ HD, and thus the dissolution
time would for typical values be of order ps. As the concentration near the surface of the
bubble will be in constant chemical equilibrium with the vapour, and as the concentration
inside the bubble is inversely proportional to the radii R.

Page 47 of 55



5 OUTLOOK

5 Outlook

5.1 Flat bubble approximation

The flat bubble approximation is a crude model to of which is only valid for bubbles with
very low contact angle. When the contact angle becomes to large the assumptions made
becomes to inaccurate. The surface integral does not account for the fact that the surface
is longer than the radii of the bubble by a factor of sin(θ), and the imposed boundary
conditions will not account for the fact that the boundary is closer to some points, or
even inside when the bubble height is larger than the grid size, as in the model for the
curved boundary model. However as demonstrated in 35 the boundary condition of no
flux along the surface of the boundary is appropriate for a low alpha.

5.2 Three dimensional model

There are some problem regarding mass conservation in two dimensions, as the solution of
the steady state diffusion equation in two dimensions will depend on the size of the domain
considered. If the domain considered were to be increased, with the same boundary
condition, the concentrations at the flux boundary condition would have to increase in
order to not achieve a nonzero concentration at the other boundary.

To use a finite difference scheme in three dimensions can be justified, however to
implement a curved boundary condition with finite difference in three dimensions is
extremely cumbersome. And would probably be more work and less accurate than to
apply a finite elements or finite volume scheme. There would also be needed a greatly
larger amount of points to span the bubble surface and therefore also an even greater
increase the execution time. The number of calculations needed to solve the problem will
be greatly increased. If the size of the problem were to be expanded with a new dimension
with equal size, the number of equations and unknown will then be increased by a factor
of n. The matrix for the problem will increase from a n2 × n2 in two dimensions, to
n3 × n3 in three dimensions. And is well known that the inversion algorithm of a matrix
of size m ×m, will have an complexity O(m3), e.g Gauss-Jordan elimination (there are
however some methods that reduces the complexity of the inversion). The execution time
will therefore be greatly increased, O(n6)→ O(n9).

5.3 Error estimations

The finite difference scheme will for all points, except points involving the curved boundary,
be second order accurate. To analyse the truncation error for the points involving curved
boundary is not straightforward, but it should be noted that the truncation error may
not tend to zero regardless of the definition of the mesh [9, Chapter 3.4, p77]

These methods for approximating the curved boundary lead to truncation
errors of lower order than those at ordinary internal points, especially where
normal derivatives are involved. Just as we found in the one-dimensional case
in Section 2.13, the truncation error may not tend to zero at these points when
the mesh is refined. It is difficult to produce higher order approximations with
the desirable properties. For example, we have used the simplest approximation
to the normal derivative, incorporating just the two points UB and UZ . Now
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suppose we extend the normal at B to the point R in Fig. 3.8, where ZR =
(q/α)∆y. Then a higher order approximation to the derivative is

gb =
∂u

∂n
≈ (1 + 2α)uB + α2uR − (1 + α)2uZ

(1 + α)q∆y

It will now be more awkward to interpolate for the value uR, and moreover
the coefficients of uZ and uR have opposite signs. The resulting scheme will not
satisfy a maximum principle. It seems likely that such a higher order scheme
will be unsatisfactory in practice unless further restrictions are imposed.

5.4 Thermodynamical consistent model

Even a better numerical scheme with an higher order of accuracy may not explain the
longevity of the surface nanobubbles, an a thermodynamical consistent model may have
to be applied. The system is assumed to be isothermal, and the electric potential of the
ions is not taken into account. The system is neither model for a high pressure, which is
often the case in electrolysis. [4], [8].

In this model it is model assumed that the bubble only consist of one gaseous phase,
when there is really no reason this should be the case. Most of the theoretical work
regarding nanobubbles that has been published makes the same assumption. There have
however been some work done on a multiphase model[15]. Where a thermodynamical
approach is used to study the nucleation of weak solutions of gas dissolved in a liquid,
and how the pressure affects the nucleation. Their work on nucleation theory and the
critical radii - the radii a nucleus must reach for a nucleus/bubble must exceed for it to
be stable/grow, can be exploited. As there have not been much work on nanobubble
assuming multiple phases in the gaseous domain, there is obviously great potential for
breakthroughs.

The hydrogen vapour in the bubble is assumed to be well mixed, and the ideal gas law
is used to calculate the concentration inside the bubble. It is well known that the ideal
gas law neglects both molecular size and intermolecular attractions, and thus for a low
temperatures or high pressures it becomes less accurate. The gas inside the bubble will
also be of Knudsen type, when the mean free path for the molecules is less than the height
of the bubble. Therefore collisions occur at the solid substrate or the gas/liquid interface,
rather than with other molecules. The gas molecules inside the bubble will therefore have
a preferred direction, upwards from the substrate, as some of the molecules would be
dissolved at the liquid/gas interface but all of the molecules that collide with the solid
substrate will be reflected. [13]

5.5 Moving boundary for bubble dissolution

The model for the three dimensional bulk bubble dissolution assumes that the speed of
which the bubble surface move is negligible, this is not necessary true, as the concentration
will change as the radii decrease. The general problem is known as a free boundary value
problem or a Stefan problem, and will have to be solved by continuously tracking the
surface. It can be solved by non implementing a set of dimensionless equations, and
evolve the system for a time-series where the radii is mapped back to the dimensionless
equations for each timestep. This is however beyond the scope of this thesis.
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5.6 Bubble formation

Nanobubbles are also observed in a cluster formation [16]. This would obviously have an
effect on the dissolution time, as the diffusive gas from each bubble is restricted by the
outflux from other bubbles. The diffusion then becomes essentially one-dimensional, and
therefore greatly increase the longevity of the bubbles.

Page 50 of 55



6 CONCLUSION

6 Conclusion

The steady state approach indicates that a single nanobubble which partially covers an
electrode of a 100 nm can be stable, as long as the electrogeneration of hydrogen is
sufficient to balance the dissolution of hydrogen at near the cap of the bubble. The effect
is experimentally observed by Luo and White [6].

The results indicate that the evaporation rate constant only affects the needed influx
of hydrogen when it is in the range of 0.01-1m/s, for values outside this range the influx of
hydrogen converges. This effect is explained from the fact that the steady state solution
becomes independent of α outside this range. The needed production of hydrogen is found
to have depend more on the geometry of the bubble, than the evaporation rate constant,
as for the net flux between the vapour and liquid to be zero it the concentration cannot
vary

A simple model for the dissolution of a bulk nanobubble, where the outflux is assumed
proportional to the evaporation rate constant, shows that the dissolution time is proportional
to αH for small values of the evaporation constant. The evaporation rate is estimated to
be of order O(0.1), which yields an approximated dissolution time of order ms.
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7.1 Lagrange interpolating polynomial

The Lagrange interpolating polynomial, pn, is the polynomial of degree ≤ n − 1 that
passes trough the n-points (xi, yi), where yi = f(xi) ∀i ∈ [1, n], it is given by

pn(x) =
n∑
j=1

Lj(x)yj, (90)

Lj =
n∏

k=0,k 6=j

x− xk
xj − xk

. (91)

A polynomial is trivial to integrate, and an approximation for the integral of the
function f(x) can be easily obtained

∫ b

a

f(x)dx ≈
∫ b

a

pn(x)dx (92)

It can also be useful to define so called quadrature weights wk, k = 0, 1, ..., n

wk =

∫ b

a

Lk(x)dx (93)

⇒
∫ b

a

f(x)dx ≈
n∑
k=0

wkf(xk). (94)

7.2 Error estimation of trapezoidal rule

The trapezoidal rule (between two points a, b (linear estimation)) would be the same
as estimating the integral with a Lagrange interpolating polynomial of degree 1. The
trapezoidal can then be obtained as,

p1(x) = L0(x)f(a) + L1(x)f(b), (95)∫ b

a

f(x)dx ≈
∫ b

a

p1(x)dx =
b− a

2
(f(a)− f(b)) (96)

The error of this is defined by

En(f) =

∫ b

a

f(x)dx−
n∑
k=0

wkf(xk) (97)

There exists is a theorem [14, p204, theorem 7.1] that states: Let n ≥ 1 and f be a
continuous real-valued, function defined on the interval [a, b], and let f (n+1) be defined.
Then
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|En(f)| ≤ Mn+1

(n+ 1)!

∫ b

a

|πn+1|dx, (98)

Where Mn+1 = max
ζ∈[a,b]

|f (n+1)(ζ)| and πn+1 = (x− x0)...(x− xn). (99)

By applying this theorem to the trapezoidal rule, in where n = 1 and π = (x−a)(x−b),
we find,

|E1(f)| ≤ M2

2

∫ b

a

|(x− a)(x− b)|dx =
(b− a)3

12
M2. (100)

By applying the same approach in the composite case, one can estimate the error in
each step of the trapezoidal rule and summarize,

E =

∫ b

a

f(x)dx− h [f(x0)/2 + f(x1) + ...+ f(xN−1) + f(xN)/2] (101)

=
N∑
i=1

[∫ xi

xi−1

f(x)dx− h[f(xi−1 + f(xi)]/2

]
. (102)

Then, by applying the theorem to each step in the summation, this yields

|E| ≤ h3

12

N∑
i=1

[
max

ζ∈[xi−1,xi]
|f ′′(ζ)|

]
(103)

≤ (b− a)3

12N2
M2. (104)
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