Regioselective Preparation of 1,2,3-Triazoles for Bioactive Studies Based on Marine Bioprospecting

Ole Kudsk Hansen

Chemical Engineering and Biotechnology
Submission date: June 2015
Supervisor: Odd Reidar Gautun, IKJ
Co-supervisor: Thomas Aleksander Bakka, IKJ

Honour Pledge

I hereby declare that the work presented in this thesis has been conducted independently and in full accordance with the rules and regulations for the integrated Mas- ter's degree in Chemical Engineering and Biotechnology at the Norwegian University of Science and Technology.

Ole Kudsk Hansen

Preface

This Master's Thesis, titled "Regioselective Preparation of 1,2,3-Triazoles for Bioactive Studies Based on Marine Bioprospecting" is carried out in cooperation with my supervisor, Associate Professor Odd Reidar Gautun and co-supervisor, PhD Candidate Thomas Alexander Bakka, as the final part of the study program Chemical Engineering and Biotechnology at NTNU. The project is continuation and development of a project I carried out in the fall semester in 2014, also for Associate Professor Odd Reidar Gautun. It is a part of an overall project titled "Biology-Driven Synthesis - from Marine Natural Products to Commercial Leads" which is a collaborative effort from the Norwegian universities in Troms \varnothing, Bergen, Stavanger and Trondheim, together the biodiscovery center MabCent.

I would like to thank my supervisor for support and guidance during the project and also PhD Candidate Thomas Bakka for focusing my project and providing tips and tricks and great tunes in the lab. I would also like to thank Susana Villa Gonzalez for providing MS analyses. Finally I have to thank family and friends for support and back-up during my years at NTNU and also a special thanks to LA1K and JBS for providing me with social input between long sessions in the lab.

1 Sammendrag

Azidene 1d og 1c ble fremstilt ved å følge litteraturprosedyrer. Azidene blir brukt som startmaterialer i kobber- og ruthenium-katalyserte 1,3-dipolare sykloaddisjoner med de Nbeskyttede alkynene $\mathbf{2 a}$ og $\mathbf{2 b}$ for å lage henholdsvis 1,4 -disubstituerte $1 H$-1,2,3-triazoler og 1,5-disubstituerte 1H-1,2,3-triazoler. En nylig publisert fremgangsmåte for å fremstille $\mathbf{1 c}$ i ett steg fra aldehydet 5a ble testet, men reaksjonen ga ikke noe azidprodukt. Azidet 1c ble syntetisert i en mer tradisjonell fremgansgmåte, via alkoholet 6a (Scheme ??)

Scheme 1.1: Syntese of azid 1d

Scheme 1.2: Synteseveier for fremstilling av azid 1c. Den øverste fremgangsmåten ga ikke \varnothing nsket produkt.

Den nye 1,5 -disubstituerte 1 H -1,2,3-triazolen $\mathbf{3 a}$ ble syntetisert fra azidet $\mathbf{1 b}$ og N beskyttet alkyn (2a) i en ruthenium-katalysert 1,3-dipolar sykloaddisjon basert på en litteraturprosedyre. Etter kromatografisk opprensning 3a ble 3a oppnådd i et ytbytte på 47%.

Scheme 1.3: Ruthenium-katalysert syntese av den 1,5-disubstituerte 1 H -1,2,3-triazolen 3a

Scheme 1.4: Kobber-katalysert syntese av de 1,4-disubstituerte $1 H$-1,2,3-triazolene 3d og 3e

Scheme 1.5: Kobber-katalysert syntese av de 1,4-disubstituerte 1H-1,2,3-triazolene $\mathbf{3 b}$ og 3c

De nye 1,4-disubstituerte $1 H-1,2,3$-triazolene $\mathbf{3 b}-\mathbf{f}$ ble fremstilt i kobber-katalyserte 1,3-dipolare sykloaddisjoner mellom azidene $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}$ og de N-beskyttede alkynene $\mathbf{2 a}$ og 2b.

Produkt 3b ble fremstilt med et utbytte på 52% ulike opprensningsmetoder (kromatografisk opprensning og utfelling av produkt). Produkt 3c ble fremstilt med et råutbytte på 75%. Produkt 3d ble fremstilt med et råutbytte på 75%. Produkt 3e ble fremstilt med et råutbytte på 75%. Produkt 3 f ble fremstilt med et råutbytte på 75%.

Scheme 1.6: Kobber-katalysert syntese av den 1,4-disubstituerte $1 H-1,2,3$-triazolen $3 \mathbf{f}$

Den N-beskyttede triazolen $\mathbf{3 b}$ ble avbeskyttet til det respektive aminet $\mathbf{7 b}$ ved hydrazinolyse. Opparbeidelsen var utfordrende og førte til betydelige tap av produkt.

2 Abstract

The azides 1d and 1c were prepared using literature procedures. The azides serve as starting materials in copper- and ruthenium-catalyzed 1,3-dipolar dipolar cycloadditions to N-protected alkynes $\mathbf{2 a}$ and $\mathbf{2 b}$, to afford 1,4-disubstituted $1 H$-1,2,3-triazoles and 1,5disubstituted $1 H-1,2,3$-triazoles, respectively. A recently published procedure for preparing $\mathbf{1 c}$ in one step from the aldehyde $\mathbf{5 a}$ was tested, but no product was obtained. The azide was synthesized by a more traditional approach, via the alchohol 6a (Scheme 2.2).

Scheme 2.1: Synthesis of azide 1d

Scheme 2.2: Pathways for preparation of azide 1c. The upper, one-pot procedure did not produce the desired product.

The novel 1,5 -disubstituted $1 H$-1,2,3-triazole $\mathbf{3 a}$ was synthesized from azide $\mathbf{1 b}$ and N-protected alkyne 2a in a ruthenium-catalyzed 1,3-dipolar cycloaddition based on a literature procedure. 3a was obtained in a yield of 47%, after chromatographic purification.

Scheme 2.3: Ruthenium-catalysed synthesis of the 1,5-disubstituted 1H-1,2,3-triazole 3a

Scheme 2.4: Copper-catalysed synthesis of 1,4-disubstituted $1 H-1,2,3$-triazoles $\mathbf{3 d}$ and 3 e

Scheme 2.5: Copper-catalysed synthesis of 1,4-disubstituted $1 H-1,2,3$-triazoles $\mathbf{3 b}$ and 3c

The novel 1,4-disubstituted 1 H -1,2,3-triazoles $\mathbf{3} \mathbf{b}-\mathbf{f}$ were prepared in copper-catalyzed 1,3-dipolar cycloaddtions between azides $\mathbf{1 a}, \mathbf{1 b}, \mathbf{1 c}$ and the N -protected alkynes $\mathbf{2 a}$ and 2b.

Product $\mathbf{3 b}$ was obtained in a yield of 52% after trying different purification methods (chromatographic purification and precipitation of product). Product 3c was obtained in a crude yield of 75%. Product 3d was obtained in a crude yield of 88%. Product 3e was obtained in a crude yield of 49%. Product $\mathbf{3 f}$ was obtained in a crude yield of 71%.

Scheme 2.6: Copper-catalysed synthesis of the 1,4-disubstituted $1 H-1,2,3$-triazoles $\mathbf{3 f}$

The N-protected triazole $\mathbf{3 b}$ was deprotected to the corresponding amine $\mathbf{7 b}$ by hydrazinolysis. The product was $\mathbf{7 b}$ was identified using 1 D and $2 \mathrm{D}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR experiments. Work-up without significant loss of product proved challenging due to the 2,3 -dihydrophthalazine-1,4-dione byproduct.

Contents

Preface ii
1 Sammendrag iii
2 Abstract vi
3 List of acronyms and abbreviations xvi
I Introduction 1
4 Project scope 1
4.1 Overall project scope 1
4.2 Subproject scope 2
II Theory 5
5 Traditional antibiotics 5
6 Antibiotic resistance 5
7 Eusynstelamide 6
8 Triazoles 6
9 Huisgen cycloaddition 8
10 "Click" chemistry 8
11 Bioisosteres 11
III Results and discussion 13
12 Azidation of 3,5-bis(trifluoromethyl)benzyl alcohol 13
13 2-(2-(1-(3,5-Di-tert-butylbenzyl)-
1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a) 14
142-(3-(1-(Naphthalen-2-ylmethyl)
-1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3e) 14
15 2-(3-(1-(3,5-Di-tert-butylbenzyl)
-1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3c) 15
16 2-(2-(1-(Naphthalen-2-ylmethyl)
-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3d) 16
17 2-(2-(1-(3,5-Di-tert-butylbenzyl)
-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b) 16
18 Tert-butyl 3-formyl-1H-indole-1-carboxylate (5a) 17
19 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl)
-1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate (3f) 18
20 Attempted deprotection of N -protected 3a to amine 7a 18
21 Preparation of 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol- 4-yl)ethanamine 7b 19
22 Attempted one-pot azidation of Boc-protected indole carboxaldehyde to afford 1c 19
23 Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (6a) 20
24 Tert-butyl 3-(azidomethyl)-1H-indole-1-carboxylate (1c) 20
IV Spectroscopy 21
25 Starting materials 21
26 2-(2-(1-(3,5-Di-tert-butylbenzyl)-
1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a) 21
27 2-(3-(1-(Naphthalen-2-ylmethyl) -1H-1,2,3-triazol-4-yl) propyl)isoindoline-1,3-dione (3e) 23
28 2-(2-(1-(3,5-Di-tert-butylbenzyl)
-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b) 25
29 2-(3-(1-(3,5-Di-tert-butylbenzyl) -1H-1,2,3-triazol-4-yl)propyl) isoindoline-1,3-dione 3c 27
30 2-(2-(1-(Naphthalen-2-ylmethyl) -1H-1,2,3-triazol-4-yl)ethyl) isoindoline-1,3-dione (3d) 29
31 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl)
-1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate 3 f 30
32 Attempted one-pot azidation of Boc-protected indole carboxaldehyde (1c) 32
33 Attempted preparation 2-(1-(3,5-di-tert-butylbenzyl)
-1H-1,2,3-triazol- 5-yl)ethanamine (7a) 32
34 Preparation of 2-(1-(3,5-di-tert-butylbenzyl)
-1H-1,2,3-triazol- 4-yl)ethanamine (7b) 33
34.1 First parallel 33
34.2 Second parallel 33
35 Conclusion 35
V Experimental 36
36 General methods 36
36.1 Chemicals and solvents 36
36.2 Spectroscopy 36
36.3 Chromatography 37
36.4 Other equipment 37
37 Azidation of 3,5-bis(trifluoromethyl)benzyl alcohol 37
38 2-(2-(1-(3,5-Di-tert-butylbenzyl)-
1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a) 38
39 1,4-disubstituted $\mathbf{1 H}-1,2,3$-triazoles 39
39.1 2-(3-(1-(Naphthalen-2-ylmethyl) -1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3e) 39
39.2 2-(3-(1-(3,5-Di-tert-butylbenzyl)
-1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3c) 40
39.3 2-(2-(1-(Naphthalen-2-ylmethyl)
-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3d) 41
39.4 2-(2-(1-(3,5-Di-tert-butylbenzyl) -1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b) 42
39.5 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl) -1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate (3f) 43
40 Tert-butyl 3-formyl-1H-indole-1-carboxylate (5a) 44
41 Attempted deprotection of phthalimides to respective amines 45
41.1 Attempted preparation of 2-(1-(3,5-di-tert-butylbenzyl)-1H-1,2,3-triazol-5- yl)ethanamine (7a) 45
41.2 Preparation of 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol-4-yl)ethanamine (7b) 45
42 Attempted one-pot azidation of Boc-protected indole carboxaldehyde 46
43 Tert-butyl 3-(hydroxymethyl)
-1H-indole-1-carboxylate (6a) 47
44 Tert-butyl 3-(azidomethyl)
-1H-indole-1-carboxylate (1c) 48
A Spectra of 3a 54
A. $1{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}$ 54
A. $2{ }^{13} \mathrm{C}$ NMRspectrum of $\mathbf{3 a}$ 55
A. 3 HSQC spectrum of $\mathbf{3 a}$ 56
A. 4 HMBC spectrum of 3 a 57
A. 5 COSY spectrum of $\mathbf{3 a}$ 58
A. 6 IR spectrum of $\mathbf{3 a}$ 59
A. 7 MS spectrum of $\mathbf{3 a}$ 61
B Spectra of 3b 63
B. $1{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$ 63
B. $2{ }^{13} \mathrm{C}$ NMRspectrum of $\mathbf{3 b}$ 64
B. 3 HSQC spectrum of $\mathbf{3 b}$ 65
B. 4 HMBC spectrum of 3 b 66
B. 5 COSY spectrum of 3 b 67
B. 6 IR spectrum of $\mathbf{3 b}$ 68
B. 7 MS spectrum of $\mathbf{3 b}$ 70
C Spectra of 3c 72
C. $1{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$ 72
C. $2{ }^{13} \mathrm{C}$ NMRspectrum of 3c 73
C. 3 HSQC spectrum of $\mathbf{3 c}$ 74
C. 4 HMBC spectrum of $\mathbf{3 c}$ 75
C. 5 COSY spectrum of $\mathbf{3 c}$ 76
C. 6 IR spectrum of $\mathbf{3 c}$ 77
C. 7 MS spectrum of 3c 79
D Spectra of 3d 81
D. $1{ }^{1} \mathrm{H}$ NMR spectrum of 3 d 81
D. $2{ }^{13} \mathrm{C}$ NMRspectrum of 3 d 82
D. 3 HSQC spectrum of 3 d 83
D. 4 HMBC spectrum of $\mathbf{3 d}$ 84
D. 5 COSY spectrum of 3 d 85
D. 6 IR spectrum of 3 d 86
D. 7 MS spectrum of 3 d 88
E Spectra of 3e 90
E. $1{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$ 90
E. $2{ }^{13} \mathrm{C}$ NMRspectrum of $\mathbf{3 e}$ 91
E. 3 HSQC spectrum of $\mathbf{3 e}$ 92
E. 4 HMBC spectrum of 3 e 93
E. 5 COSY spectrum of 3 e 94
E. 6 IR spectrum of $\mathbf{3 e}$ 95
E. 7 MS spectrum of 3 e 97
F Spectra of 3f 99
F. $1{ }^{1} \mathrm{H}$ NMR spectrum of 3 f 99
F. $2{ }^{13}$ C NMRspectrum of $\mathbf{3 f}$ 100
F. 3 HSQC spectrum of $\mathbf{3 f}$ 101
F. 4 HMBC spectrum of $\mathbf{3 f}$ 102
F. 5 COSY spectrum of $\mathbf{3 f}$ 103
F. 6 IR spectrum of $\mathbf{3 f}$ 104
F. 7 MS spectrum of $\mathbf{3 f}$ 106
M Spectra of 1c 131
M. $1{ }^{1}$ H NMR spectrum of $\mathbf{1 c}$, first parallel 131
M. $2{ }^{1}$ H NMR spectrum of $\mathbf{1 c}$, second parallel 132
H Spectra of 5a 111
H. $1{ }^{1}$ H NMR spectrum of 5a, first parallel 111
H. $2{ }^{1} \mathrm{H}$ NMR spectrum of 5 a , second parallel 112
I Spectra of 6a 114
I. $\quad^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$, first parallel 114
I. $2{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6 a}$, second parallel 115
J Spectra of the residue obtained in an attempt to prepare 7 a 117
J. $1{ }^{1} \mathrm{H}$ NMR spectrum of the residue obtained in an attempt to prepare $7 \mathbf{a}$ 117
J. 2 IR spectrum the residue obtained in an attempt to prepare $7 \mathbf{a}$ 118
K Spectra of 7b 120
K. $1{ }^{1}$ H NMR spectrum of 7 b purified on a silica column 120
K. $2{ }^{1} \mathrm{H}$ NMR spectrum of 7 b filtered through celite 121
K. $3{ }^{13} \mathrm{C}$ NMRspectrum of 7 b 122
K. 4 HSQC spectrum of 7b 123
K. 5 HMBC spectrum of 7 b 124
K. 6 COSY spectrum of 7 b 125
K. 7 IR spectrum of 7 b 126
$L{ }^{1} \mathrm{H}$ NMR Spectra of the residues obtained in the attempted one-pot synthesis of 1c from $5 \mathbf{a}$ 128
L. $1{ }^{1} \mathrm{H}$ NMR spectrum of residue, first parallel 128
L. $2{ }^{1} \mathrm{H}$ NMR spectrum residue, second parallel 129
M Spectra of 1c 131
M. $1{ }^{1} \mathrm{H}$ NMR spectrum of 1c, first parallel 131
M. $2{ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 c}$, second parallel 132

3 List of acronyms and abbreviations

AIDS	Acquired Immune Deficiency Syndrome
Ar	Aryl
br.	Broad
COSY	Correlation Spestroscopy
Cp*	Pentamethylcyclopentadienyl
Cq	Quarternary carbon
d	Doublet
DBU	1,8-Diazobicycloundec-7ene
dd	Doublet of doublets
DCM	Dichloromethane
DMSO	Dimethyl sulfoxide
DPPA	Diphenyl phosphoryl azide
Eq.	Equivalents
h	Hours
HMBC	Heteronuclar Multiple Bond Correlation
HSQC	Heteronuclear Single Quantum Coherence
J	Coupling constant in NMR
Litt.	Litterature
MS	Mass Spectroscopy
M	Multiplisity

NMR	Nuclear Magnetic Resonnans
Phth	Phtalimide
ppm	Parts per million
quint	Quintet
RF	Retention Factor in chromatography
rt	Room temperature
s	Singlet
Substr.	Substrate
t	Triplet
td	Triplet of doublets
THF	Tetrahydrofuran
TLC	Thin Layer Chromatography
red.	Reducing

Part I

Introduction

Pathogenic resistance to conventional antibiotics is a growing concern worldwide. ${ }^{12}$ It affects a broad range of human infection diseases including tuberculosis, cholera, malaria and AIDS. A number of human pathogens are developing multidrug resistance to conventional antibiotics, including common strains of Gram-negative bacteria such as Escherichia coli. Introduction of new derivatives of conventional antibiotics is only a temporary solution, as resistance mechanisms quickly develop resistance towards the new derivatives. To combat this threat, new antimicrobial strategies are needed. Examples of novel antimicrobial strategies, are the inhibiton of enzymes responsible for decomposition of antibiotics in antibiotic resistant bacteria, inhibition of biofilm formation. ${ }^{3}$

4 Project scope

4.1 Overall project scope

The project is a part of a project at NTNU, which is part of an overall project aiming to develop novel antimicrobial agents based on marine bioactive compounds. ${ }^{2}$ The overall project is titled Biology-Driven Synthesis - from Marine Natural Products to Commercial Leads and is a multi-diciplinary collaboration of scientists from the Norwegian universities in Tromsø, Bergen, Stavanger and Trondheim (UoT, UoB, UoS and NTNU) together with the biodiscovery centre at UoT (MabCent ${ }^{4}$) - a Centre of Research Based Innovation (SF) on "Marine Bioactives and Drug Discovery" and the associated industrial partners. The main objective of the overall project is to develop bioactive natural compounds, isolated and charaterized by MabCent, into synthetic lead compounds attractive for the pharmaceutical and biotechnological industry.

The project at NTNU is led by Associate Professor Odd Reidar Gautun and PhD Canditate Thomas Alexander Bakka. The main focus of the project at NTNU is develop synthetic pathways for new antimicrobial agents based to meet a growing demand for such compounds. ${ }^{2}$

Figure 1: Eusynstelamides. Indole ligands are circled in green and alkylguanidine ligands are circled in blue.

MabCent has isolated a number of novel natural bioactive compounds. Out of these structures, the eusynstelamides (Figure 1) have been chosen as a main focus of the project group at NTNU. Due to the complex stereochemistry of the eusynstelamides, it has been concluded that the project should be based on a simpler scaffold. ${ }^{2} 1,2,3$-Triazoles have been found to be an attractive candidate for such a scaffold, due to their wide use in medicinal chemistry ${ }^{5}$ and the efficient and selective "click" syntheses available for of 1,5-disubstituted- and 1,4-disubstituted $1 H$-1,2,3-triazoles ${ }^{6} .{ }^{7}$ Essential ligands in eusynstelamides appear to be an indole and an alkylguanidine group (cf. Figure 1) which fulfill a pharmacophore model which can be described as a short cationic ligand (alkylguanidine) attached to a bulky group (indole). ${ }^{8}$ In the project at NTNU, a library of triazoles with bulky ligands like indole and charged ligands like alkylguanidine will be prepared.

4.2 Subproject scope

In an earlier project, the aryl methyl azides $\mathbf{1 a}$ and $\mathbf{1 b}$ (Figure 3) were prepared.
The aim of this subproject is to prepare the aryl methyl azides $1 \mathrm{c}-\mathrm{e}$ and use azides $1 \mathrm{a}-\mathrm{e}$ in copper-catalyzed 1,3-dipolar cycloaddition with alkynes, to afford N -protected 1,4-disubstituted $1 \boldsymbol{H}-1,2,3$-triazoles and rutheniumcatalyzed 1,3-dipolar cycloaddition with alkynes, to afford N-protected 1,5-
disubstituted $\mathbf{1 H} \boldsymbol{H}$, 2,3 -triazoles, shown in Schemes 4.1, 4.2 and 4.4. The 1,5disubstituted 1 H -1,2,3-triazole $\mathbf{3 g}$ (Figure 4.1 was synthesized in an earlier project using a ruthenium catalyst.

2a

2b

Figure 2: Alkynes.

Starting materials for the azides $\mathbf{1 d}, \mathbf{1 c}$ and $\mathbf{1 e}$ are the corresponding aryl methyl alcohol and aldehydes, respectively. The N-protected alkynes $\mathbf{2 a}$ and $\mathbf{2 b}$ (Figure 2) have been prepared by PhD Candidate Thomas Alexander Bakka. Reliable syntheses of the azides are to be established, based on literature procedures. A library of the triazoles 3a\mathbf{q}, most of which are novel, are to be synthesized based on "click" chemistry procedures by Sharpless et al. ${ }^{910},{ }^{6}$ Tornøe et al. ${ }^{11}$ and Rogers and Melander. ${ }^{7}$

1b

1d

Figure 3: Azides.

Scheme 4.1

Scheme 4.2

1d

Scheme 4.3

Scheme 4.4

Part II

Theory

5 Traditional antibiotics

Antimicrobial agents are compounds which either kill or inhibit growth of bacteria, ${ }^{12}$ respectively bactericidal and bacteristatic agents. Two main groups of antimicrobial agents are used to treat infectious bacterial disease: antibiotics and chemotherapeutic agents. Antibiotics are natural bactericidal or bacteristatic compounds produced by certain microorganisms while chemotherapeutic agents are synthetically made. The most important microbes producing antibiotics are the molds Penicillium and Cephalosporium, which produce β-lactam antibiotics; Actinomycetes, a group of spore-forming bacteria producing a range of non- β-lactam antibiotics; and certain Bacillus species, such as B. polymyxa and B. subtilis (producing polypeptide antibiotics) and B. cereus (producing zwittermicin). The main methods of action of common antibiotics are inhibition of bacterial cell wall synthesis, inhibition of translation, inhibition of nucleic acid synthesis and disruption of cell membrane structure. In addition, some compounds work in conjunction with other antibiotics by inhibiting enzymes which break down the main antibiotic. An example of this is clavulanic acid, which inhibits β-lactamase, an enzyme responsible for breakdown of β-lactam. ${ }^{13}$

6 Antibiotic resistance

With the ever growing use of antibiotics globally has followed a growing misuse in antibiotic treatment of both humans and animals, causing selection and spread of resistance in bacteria against important antibiotic compounds. ${ }^{1}$ As a consequence, antibacterial agents are becoming less effective. Common bacterial infections, which have been readily treatable since the discovery of Penicillin, are becoming increasingly difficult to treat as a result of resistance towards important antibiotic classes. Throughout the 20th century, new classes of antibacterial drugs were rapidly discovered in a race against resistant
bacteria. New classes of antibacterial drugs could be used to treat bacteria which were resistant to older classes of antibacterials. However, the last completely new classes of antibacterials were discovered in the 1980s and since then, emergence of multiple drug resistant microorganisms has been a growing concern. To avoid a "post-antibiotic age" it is essential to develop new antibacterial drugs with novel antimicrobial strategies. Such strategies can be developed from a target based approach, with modern biochemical techniques enabling very precise targeting at a molecular level. Examples of such novel targets for inhibition of bacterial metabolism include cell division, fatty acid biosynthesis, biosynthesis of aminoacyl-tRNAs, quorum sensing, bacterial two-component signal transduction, and proton motive force. ${ }^{14}$ Alternatively, a reversed-genomics approach can be utilized, in which a promising active antimicrobial compound is developed into a lead structure. ${ }^{15}$

7 Eusynstelamide

The approach in this project is a reversed-genomics one, in the sense that the lead compounds are triazoles designed to mimic the eusynstelamides, which are marine natural compounds known to possess bioactivity. ${ }^{16}$ The pharmacophore model of eusynstelamides consists of two cationic amino acid residues and two bulky residues. ${ }^{8}$ Hansen et al. ${ }^{17}$ have synthesized small cationic peptidomimetics which are highly potent against methicillinresistant Staphylococcus aureus (MRSA), methicillin-resistant Staphylococcus epidermidis (MRSE), and Staphylococcus aureus, confirming the pharmacophore model. As mentioned in section 4.1, the essential ligands in the eusynstelamides are indole and alkylguanidine, where indole provides the bulky, lipophilic characteristic and alkylguanidine provides the charged end of the compound.

8 Triazoles

The triazole ring is an important organic heterocycle, consisting of a five-membered diunsaturated ring structure of three nitrogen atoms and two carbon atoms. The heterocycle occurs in a $1,2,3$-isomer and a $1,2,4$-isomer, with respect to the location of nitrogen in
the ring. ${ }^{5}$ The two isomers of triazole are shown in Scheme 4.

1,2,3-triazole

1,2,4-triazole

Figure 4: Triazole isomers

As aromatic, electron rich systems, triazole derivatives are able to bind to various enzymes and receptors in biological systems via weak interactions such as hydrogen bonds, coordination bonds, ion-dipole, cation- $\pi, \pi-\pi$ stacking, hydrophobic effect or van der Waals forces, consequently displaying a broad spectrum of biological activities. ${ }^{18}$ The triazole ring can also be employed as a linker of other bioactive pharmacophore fragments to produce new drug molecules. These advantages have established triazoles as important pharmacological scaffolds for development of drugs with a broad range of biological activity, many of which are already on the market. Pharmacological activities include antimicrobial, antiviral, anticancer, antifungal, anti-inflammatory, antidepressant, antitubercular, antioxidant, local anaesthetic, antiobesity, antidiabetic, anti-Parkinson's, analgesic, antimalarial, antianxiety, antihistaminic, antiepileptic, antineoplastic, antihypertensive. ${ }^{5}$ Examples of commercial triazole drugs are the antifungals fluconazole, voriconazole and itraconazole (Figure 5).

Fluconazole

Voriconazole

Figure 5: Commercial triazole-based antifungals

Chemically, the triazoles are well suited for medicinal applications because they are stable to acid and base hydrolysis, reductive and oxidative conditions. The structure is also relatively resistant to metabolic degradation. ${ }^{19}$

9 Huisgen cycloaddition

1,3-Dipolar cycloadditions between azides and alkynes or alkenes, to yield disubstituted triazoles, are known as Huisgen dipolar cycloadditons, after the work of Huisgen in the 1960 's. ${ }^{20}$ These uncatalyzed reactions require substantial heating and long reaction times and give a mixture of 1,4 -disubstituted and 1,5 -disubstituted triazole products. ${ }^{10}$ An example of a Huisgen 1,3-dipolar cycloadditon is shown in Scheme 9.1.

Scheme 9.1: An example of a Huisgen 1,3-dipolar [3+2] cycloadditon.

10 "Click" chemistry

Sharpless et al. published an article on Huisgen cycloadditions and similar reactions in $2001,{ }^{9}$ describing these reactions as "spring loaded". The reactions follow examples in nature, where modular units are joined quickly. The term "click chemistry" was coined ${ }^{9}$ because the modules seem to "click" together. A set of criteria for click reactions was written: "The reaction must be modular, wide in scope, give very high yields, generate only inoffensive byproducts that can be removed by nonchromatographic methods, and be stereospecific (but not necessarily enantio-selective). The required process characteristics include simple reaction conditions (ideally, the process should be insensitive to oxygen and water), readily available starting materials and reagents, the use of no solvent or a solvent that is benign (such as water) or easily removed, and simple product isolation.". ${ }^{9}$ The groups of Sharpless et al. ${ }^{10}$ and Tornøe et al. ${ }^{11}$ reported independently that Huisgen 1,3-dipolar cycloadditions between alkynes and azides could be improved by using $\mathrm{Cu}(\mathrm{I})$ salts as catalysts (Scheme 10.1).

The copper-catalyzed reactions gave regiospecific 1,4-disubstituted $1,2,3$-triazoles at much shorter reaction times and at ambient temperatures. $\mathrm{Cu}(\mathrm{I})$ salts could be used directly, with acetonitrile as a co-solvent and a nitrogen source, to afford 1,4-disubstituted 1,2,3-triazoles, but these reactions gave undesired byproducts. It was found that a better alternative was the in situ generation of $\mathrm{Cu}(\mathrm{I})$ from $\mathrm{Cu}(\mathrm{II})$ salts and a weak reducing
agent. This reaction was very robust, working with different solvents such at tertbutyl alcohol, ethanol or water with no effort to exclude oxygen. High yields and purity were reported. Thus, the $\mathrm{Cu}(\mathrm{I})$-catalyzed cycloaddition fulfils the criteria for click chemistry.

Scheme 10.1: $\mathrm{Cu}(\mathrm{I})$-catalysed 1,3 dipolar cycloadditon of a benzyl azide and an alkyne, yielding the 1,4 -disubstituted $1,2,3$ triazole in good yields. The $\mathrm{Cu}(\mathrm{I})$ salt is generated in situ from $\mathrm{Cu}(\mathrm{II}) .{ }^{10}$

The catalytic cycle for cupper-catalyzed cycloadditions is proposed to proceed through a stepwise annealing sequence shown in Scheme 10.2 (BI-BII-BII) rather than the concerted cycloaddition (B-direct).

Scheme 10.2: The proposed catalytic cycle for cupper-catayzed cycloadditions. The pathway BI-BII-BIII is thermodynamically favored over the concerted cycloaddtion in pathway B-direct. ${ }^{10}$

The regioselective formation of 1,5-disubstituted 1,2,3-triazoles from alkynes and azides was accomplished in 2005 using a ruthenium-based catalyst. ${ }^{6}[\mathrm{Cp} * \mathrm{RuCl}]$-catalysts, such as $\mathrm{Cp} * \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}, \mathrm{Cp} * \mathrm{RuCl}(\mathrm{NBD})$ and $\mathrm{Cp} * \mathrm{RuCl}(\mathrm{COD})$ were found to be the most effective.

These catalysts gave complete conversion and only the 1,5 -regioisomer. Test reactions with benzyl azide and a range of different alkynes revealed that alkyne type did not influence the reaction much, while choice of azides proved more important. Primary aliphatic
azides gave excellent yields, tertiery azides gave low yields and required higher catalyst loading and extended reaction time. Reactions with aryl azides gave poor conversion and unwanted byproducts. Reactions were performed under nitrogen atmosphere in refluxing solvents, typically benzene, toluene or THF. Ru-catalyzed reactions can also form triazoles from internal alkynes. Schemes 10.3 and 10.4 show Ru-catalyzed 1,3-dipolar cycloadditons.

Scheme 10.3: $\mathrm{Ru}(\mathrm{II})$-catalysed 1,3 dipolar cycloadditon of benzyl azide and phenylacetylene yielding the 1,5 -disubstituted $1,2,3$ triazole ${ }^{6}$

Scheme 10.4: $\mathrm{Ru}(\mathrm{II})$-catalysed 1,3 dipolar cycloadditon of benzyl azide and an internal alkyne yielding the 1,4,5-trisubstituted $1,2,3$ triazole ${ }^{6}$

The catalytic cycle for ruthenium-catalyzed cycloadditions is proposed to go through a six-membered ruthenacycle (Scheme 10.5), by oxidative coupling of alkyne and azide on the ruthenium catalyst. ${ }^{6}$

Scheme 10.5: The proposed catalytic cycle for ruthenium-catayzed cycloadditions. Sharpless et al. find the A more likely than the B . The catalyst used here is a $[\mathrm{Cp} * \mathrm{RuCl}]$ catalyst. ${ }^{6}$

During drug discovery, the goal is often to synthesize a library of similar compounds, typically a common scaffold, with a range of different substituents, in order to identify lead compounds with desired biological function. In this application, click chemistry is
an excellent tool, as it enables the researcher to develop many compounds quickly and efficiently, with high yields, few steps and minimal purification. The discoveries of Cu - and Ru-catalyzed regioselective formation of 1,2,3-triazole have made the triazole moiety an attractive scaffold within medicinal chemistry, as triazoles can be prepared with a great variation of substituents, and the substituent attachment to the ring can be directed with the use of catalysts.

11 Bioisosteres

Bioisosteres are structurally distinct compounds which are recognized as similar structures by biological systems. ${ }^{21}$ Bioisosteres offer flexibility when working towards a target compound intended to be bioactive. If the target compound relies on a labile structural element, a bioisostere of the labile element can be found and used to mimic the labile element in the final compound. Classical bioisosteres are structurally simple groups which mimic each other, such as -NH and -OH, D and H, RSH and ROH. Non-classical bioisosteres are structurally distinct. They can have different number of atoms and exhibit different steric and electronic properties to the moiety they mimic.

Triazole containing compounds have shown a wide range of biological activity. ${ }^{19}$ As a bioisostere, triazole has been proposed to mimic an amide bond, as presented in Figure 11.1. The 1,4 -disubstituted triazole would mimic a Z-amide bond, where the lone pair on $\mathrm{N}(3)$ acts as the lone pair on carbonyl in the amide, the $\mathrm{C}(5) \mathrm{H}$ in triazole can act as an H-bond donor like the NH in amide, and the electrophilic C(4) resembles the carbonyl C in amide. Equivalently, the 1,5-disubstituted triazole would mimic an E-amide bond.

H-Bond acceptor

H-Bond acceptor

R_{1} to R_{2} Distance
$=2.4 \AA$

H-Bond acceptor

H-Bond acceptor

R_{1} to R_{2} Distance $=2.4 \AA$

Scheme 11.1: How 1,4- and 1,5-disubstituted triazoles theoretically act as bioisosteres of amides. Figure from Tron et al. ${ }^{19}$

Part III

Results and discussion

12 Azidation of 3,5-bis(trifluoromethyl)benzyl alcohol

Scheme 12.1

1-(Azidomethyl)-3,5-bis(trifluoromethyl)benzene (1d) was obtained from the alcohol 8, using DPPA for in situ generation of azide and DBU as a base, according to procedures by Melander and Rogers, ${ }^{7}$ for converting aryl methyl alcohols to aryl methyl azides. The procedure was first described by Thompson et al. ${ }^{22}$ The crude yield was 79% but the yield of the pure product 1d after column purification was very low (6\%). Melander and Rogers ${ }^{7}$ report yields of 95% after purification, while Thompson et al. report 94% yield. ${ }^{22}$ TLC analysis (15% EtOAc in Pentane) of the crude product revealed two spots, one with a low RF (0.6), believed to be unreacted alcohol and one with a higher RF (0.8), believed to be the azide product. In an optimal reaction, the only byproduct formed is the DBU salt of diphenyl phosphate, which is water soluble. ${ }^{22}$ The acid wash should remove any excess DBU and leave only the azide product, excess DPPA and unreacted alcohol. The two major components in the crude product are thought to be azide product 1d and unreacted alcohol. During purification the two components identified by TLC were separated. Due to the large difference in yield between the crude product and the purified azide product, it could be suspected that conversion was low in the reaction and a large amount of unreacted alcohol was present in the crude product. However, the combined fractions of byproducts from the column yielded the same low amount as the main product 1d. This indicates that a large amount of substance was lost on the
column. An optimization of eluent could improve yields.

13 2-(2-(1-(3,5-Di-tert-butylbenzyl)-

1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a)

Scheme 13.1

1,5-1 $\mathrm{H}-1,2,3$-triazoles have been prepared by the author in an earlier project, based on procedures by Sharpess et al. ${ }^{6}$ and Farooq. ${ }^{23}$ The 1,3-dipolar cycloaddition between 1b and 2a gave 0.114 g of $1,5-1 \mathrm{H}-1,2,3$-triazole $\mathbf{3 a}$ after chromatographic purification, which is a yield of 49%. The product 3a was identified by $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR, 2D NMR (COSY, HMBC, HSQC) and MS (Appendix A). The assigned shifts can be found in Table 1.

The yield is lower than expected from a click reaction, which is characterized by high yields. The product 3a eluted out in the last fractions from the column and thus, it is possible that the product did not elute completely. A gradient elution might have improved yields.

14 2-(3-(1-(Naphthalen-2-ylmethyl)

-1H-1,2,3-triazol-4-yl) propyl)isoindoline-1,3-dione
(3e)

Scheme 14.1
a) The cupper-catalyzed 1,3 -dipolar cycloaddition of $\mathbf{1 a}$ and $\mathbf{2 b}$ resulted in 0.376 g of 1,4 -disubstituted $1 H$-1,2,3-triazole $\mathbf{3 e}$, which is a yield of 49%. The low yield is mostly caused by loss of product when the reaction vessel tipped over during stirring overnight. The triazol $\mathbf{3}$ e was identified by comparing the ${ }^{1} \mathrm{H}$ NMR spectrum to previously recorded spectra of similar triazols in the project group. Based on the ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix ??), the product was deemed sufficiently pure without further purification. An important distinction between the cupper-catalyzed 1,4-disubstituted $1 H$-1,2,3-triazole reaction and the ruthenium-catalyzed 1,5 -disubstituted 1 H -1,2,3-triazole reaction is that the cupper-catalyzed products often can be used without further purification than simple aqueous work-up, while for the ruthenium-catalyzed reactions, the ruthenium catalyst must be removed by chromatographic purification.
b) The reaction was repeated to afford 0.317 g of $\mathbf{3 e}$, in an excellent yield of 95%. The reaction mixture was diluted to a concentration of 0.18 M of aryl methyl azide, compared to the first (a) parallel, which had a concentration of 0.78 M of aryl methyl azide. In the first parallel, it was observed that a semi-solid precipitate formed after stirring overnight, while in the more dilute parallel b, this precipitate remained suspended. Suspension of solids via dilution and vigorous stirring is believed to be important to drive the reaction to completion. The high yield (95\%) of $\mathbf{3 e}$ supports this thesis.

15 2-(3-(1-(3,5-Di-tert-butylbenzyl)
 -1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione

(3c)

Scheme 15.1

1,3-Cycloaddition of $\mathbf{1 b}$ to $\mathbf{2 b}$ afforded 0.552 g of $1,4-1 H-1,2,3$-triazole $\mathbf{3 c}$ in a yield of 75%. A small volume of the solvent was used, giving a concentration of 0.7 M of $\mathbf{1 b}$ in the reaction mixture. Dilution of the reaction mixture might have resulted in a higher yield. The product was obtained as a thick oil and did not solidify even after evaporating on high vacuum overnight. Residual solvents are probably responsible for the product not solidifying, considering the other similar triazoles prepared were solid at room temperature.

16 2-(2-(1-(Naphthalen-2-ylmethyl)

-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3d)

Scheme 16.1

The 1,4-1 H -1,2,3-triazole $\mathbf{3 d}$ was obtained in a good yield of 88%.

17

2-(2-(1-(3,5-Di-tert-butylbenzyl)
-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b)

Scheme 17.1

The $1,4-1 H-1,2,3$-triazole $\mathbf{3} \mathbf{b}$ was prepared in a yield of 52%, after purification. The crude product was attempted purified first by dissolving in DCM and then adding pentane, to
induce precipitation of $\mathbf{3} \mathbf{b}$, according to a genera method developed by PhD Candidate Thomas Alexander Bakka. A white precipitate was formed and filtered off on filter paper. ${ }^{1} \mathrm{H}$ NMR of the solid show that the precipitate did consist of pure $\mathbf{3} \mathbf{b}$, as expected, but due to the precipitate being very fine, a substantial amount of $\mathbf{3 b}$ passed through the paper filter. A new attempt of filtering was attempted, using celite as a filter. This yielded some product, also pure $\mathbf{3 f}$, but some $\mathbf{3 b}$ still passed through the celite. Lastly, a silica column was used to separate the remaining $\mathbf{3} \mathbf{b}$ from the contaminants. A considerable amount of $\mathbf{3 b}$ was obtained from the column. The precipitation and filtering purification method was tested in an attempt to simplify purification and avoid the loss in yield often associated with column chromatography. The method proved viable for obtaining a pure product, but the loss of product in the filtrate was large. Other methods of filtering, such as using Dowex as a filter medium, might improve yields.

18 Tert-butyl 3-formyl-1H-indole-1-carboxylate (5a)

Scheme 18.1

Indole carboxaldehyde (4a) was N-protected with boc anhydride to form 5a. The procedure for Boc-protection is well described in literature and a procedure for protection of 4a has been published by Giraud et al., ${ }^{24}$ amongst others. Excellent yields of 95% and 89% were obtained and, based on TLC and ${ }^{1} \mathrm{H}$ NMR spectra, the products were deemed sufficiently clean without further purification.

19 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl) -1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate (3f)

Scheme 19.1

A crude product of the $1,4-1 H-1,2,3$-triazole $\mathbf{3 f}$ was obtained in a yield of 71%. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMRspectra of the product revealed that the reaction had not gone to completion and a substantial amount of starting material (alkyne $\mathbf{2 a}$ and azide $\mathbf{1 c}$) was present in the crude product. Due to time concerns, the product could not be purified before characterization. Based on other triazoles prepared, purification by column chromatography, using a mixture of EtOAc and DCM as the eluent, could be a suitable purification method. Nevertheless, $\mathbf{3 f}$ was identified in the spectra (see Section 31 for a discussion on the NMR spectra). The triazole $\mathbf{3 f}$ was also detected in the HRMS analysis of the crude product.

20 Attempted deprotection of N -protected 3a to amine $7 a$

The N-protected 3a was attempted deprotected using hydrazinolysis. The residue obtained after 5 h revealed that the residue contained only the protected $\mathbf{3} \mathbf{a}$ and no amine, showing that no reaction had occurred. The procedure developed by PhD Candidate Thomas Bakka called for heating the reaction mixture to reflux, a step which was overlooked due to a misunderstanding. The lack of heating is believed to be the reason no deprotection was observed. A brief discussion of the ${ }^{1} \mathrm{H}$ NMR spectrum of the residue is given in Section ??.

21 Preparation of 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol- 4-yl)ethanamine 7 b

The N-protected 3b was deprotected by hydrazinolysis, using the correct procedure with reflux. A fluffy solid was obtained upon evaporation of the solvent. This crude product consists of the unprotected amine $\mathbf{7 b}$ mixed with the main byproduct 2,3 -dihydrophthalazine-1,4-dione ${ }^{25}$ from the freed phthalimide moiety. This byproduct forms an insoluble slurry in organic solvents of low polarity, such as DCM. Trying to extract the amine from the slurry by filtering causes loss of product. Attempts to purify the crude products on a silica column, using a strong eluent mixture resulted in very low or no yields, as the amine remained in the stationary phase. An alternative method of converting phthalimides to primary amines is the mild procedure developed by Osby et al., using $\mathrm{NaBH}_{4} / 2$-propanol followed by treatment with acetic acid. ${ }^{26}$ This method yields the lactone phthalide as the byproduct, which should be easily removed by a simple aqueous work-up.

22 Attempted one-pot azidation of Boc-protected indole carboxaldehyde to afford 1c

Scheme 22.1

A procedure by Pramanik and Ghorai ${ }^{27}$ was followed in an attempt to prepare the azide $\mathbf{1 c}$ from the corresponding aldehyde $\mathbf{5 a}$. Two attempts were made without locating the expected product in the obtained residues. In both attempts, only the unreacted aldehyde $5 \mathbf{a}$ was present in the crude product. The diazide intermediate (5a'cf. Scheme 22.1) was not found in the spectra, showing that the first azidation step of the reaction did not proceed. The reaction was followed on TLC in the first step to determine when all of the
aldehyde 5a was consumed to diazide $\mathbf{5 a}{ }^{\prime}$, but without a diazide standard this proved difficult. A ${ }^{1} \mathrm{H}$ NMR sample of the reaction mixture at this stage could have helped in determining if diazide $\mathbf{5 a}$ ' was present. It is possible that a larger excess of TMS $-\mathrm{N}_{3}$ and a longer reaction time for the first step would generate the desired diazde $\mathbf{5 a}$ '.

23 Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (6a)

The procedure for Boc-protection of the amine on $\mathbf{4 a}$ to $\mathbf{5 a}$, and the subsequent reduction of the aldehyde to the corresponding alcohol 6a, are well documented procedures and proceeded in excellent yields with no need for further purification before the azidation step. (It can be noted that the author has in an earlier project had several failed attempts to reduce the indole carboboxaldehyde to alcohol due to an unreactive batch of NaBH_{4}, so good reagents are needed.)

24 Tert-butyl 3-(azidomethyl)-1H-indole-1-carboxylate (1c)

The one-pot procedure to afford the azide $\mathbf{1 c}$ was abandoned for a more traditional approach of first reducing the aldehyde 5a to the corresponding alcohol $\mathbf{6 a}$ before converting the alcohol 6a to the azide 1c, using DPPA and DBU. The reaction is well documented in literature and a procedure by Suzuki et al. was followed. ${ }^{28}$ Triazol 1c was obtained in a yield of 53% after purification. The yield is low, but acceptable. Further optimization of the purification step could improve yields.

Part IV

Spectroscopy

Proton and carbon shifts were assigned using $1 \mathrm{D}{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMRand 2D NMR techniques (COSY, HSQC, HMBC). Some ${ }^{1}$ H NMR spectra contain solvent peaks from ethyl acetate at $\delta=1.26 \mathrm{ppm}$ and 2.05 (in CDCl_{3}), water at $\delta=1.56 \mathrm{ppm}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$, DCM at $5.30 \mathrm{ppm}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$, chloroform at $\delta=7.26 \mathrm{ppm}\left(\right.$ in $\left.\mathrm{CDCl}_{3}\right)$ and tert-butanol at $1.28 \mathrm{ppm}\left(\mathrm{in} \mathrm{CDCl}_{3}\right)$. Shifts of common solvents can be found in an article by Gottlieb et al. ${ }^{29}$

25 Starting materials

The N-protected alkyne 2a has the following shifts: ${ }^{1} \mathrm{H} \operatorname{NMR} \delta=2.00(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.7 \mathrm{~Hz}$, $\mathrm{CH}), 2.62(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.9(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH} 2), 7.68-7.80(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}), 7.80-7.91(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}) \mathrm{ppm}{ }^{13} \mathrm{C} \mathrm{NMR} \delta=18.2,36.5,70.2,80.2,123.3(2 \mathrm{C}), 131.9$ (2C), 133.9 (2C), 167.9 (2C) ppm^{30}

The N-protected alkyne $\mathbf{2 b}$ has the following shifts: ${ }^{1} \mathrm{H}$ NMR $\delta=1.78$ (2 H , quint, J $=7.1 \mathrm{~Hz}, \mathrm{CH} 2), 1.82(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.6 \mathrm{~Hz}, \mathrm{CH}), 2.12(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=7.1,2.6 \mathrm{~Hz}, \mathrm{CH} 2), 3.65$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz})$, 7.55-7.60 $(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}), 7.65-7.70(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}) \mathrm{ppm} .{ }^{13} \mathrm{C} \operatorname{NMR} \delta=$ $16.2,27.2,37.0,69.0,83.2,123.1$ (2C), 132.0 (2C), 133.8 (2C), 168.2 (2C) ppm. ${ }^{30}$

26 2-(2-(1-(3,5-Di-tert-butylbenzyl)-

1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a)

Table 1 shows assigned ${ }^{13} \mathrm{C}$ NMRand ${ }^{1} \mathrm{H}$ NMR shifts of the product $\mathbf{3 a}$, with splitting patterns and coupling constants, in correspondence to the numbering in Figure 6.

Figure 6

Table 1: Assigned shifts for 3a

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
1 a	Cq	-	-	131.8
1 b	7.83	dd	$3.1,5.3$	123.4
1 c	7.73	dd	$3.1,5.6$	134.2
2	Cq	-	-	167.8
3	3.84	t	7.5	35.9
4	2.96	t	7.5	22.4
5	Cq	-	-	131.1
6	7.56	s	-	52.6
7	5.59	s	-	52.6
8 a	Cq	-	-	133.9
8 b	7.05	s	-	121.7
8 c	Cq	-	-	151.7
8 d	7.35	t	1.7	122.3
9	Cq	-	-	34.9
10	1.26	s	-	31.4

The 2 H singlet at 5.59 ppm is characteristic of the triazole $\mathbf{3 a}$, with the corresponding
protons having a lower shift of 4.30 ppm in the azide. In the triazole product, the elecron density is drawn more to the triazole ring, thus deshielding the protons on carbon 7. The emergence of a 1 H singlet at 7.56 ppm is a clear indication of triazole product, as this shift can is not found in the alkyne nor the azide. The value and multiplisity of the 7.56 ppm shift is in agreement with expectations for the single proton in the triazole ring. The spectra for 3a are shown in Appendix A.

27 2-(3-(1-(Naphthalen-2-ylmethyl) -1H-1,2,3-triazol-4-yl)
 propyl)isoindoline-1,3-dione (3e)

Figure 7

The product 3 e was not purified and the spectra contain contaminants, prominently residual azide 1a. Certain shift are characteristic of triazole, suggesting that $\mathbf{3 e}$ is present in the product. In the ${ }^{1} \mathrm{H}$ NMR spectrum, the singlet peak at $5.63(2 \mathrm{H}) \mathrm{ppm}$ is from the protons on carbon 8 in the triazole $\mathbf{3 e}$. The shift of the corresponding protons in the azide is 4.50 ppm . The broad singlet at 7.36 ppm is believed to be the proton at carbon 7 in the triazole ring, as this shift is not present in the spectrum of the azide 1a. The two doublet of doublets at 7.70 and 7.68 ppm are from the protons in the phthalimide group.

In the ${ }^{13} \mathrm{C}$ NMRspectrum an important peak is 23.0 ppm from carbon 5. This is significantly higher than the corresponding shift in the alkyne $\mathbf{2 b}$ of $16.2 \mathrm{ppm},{ }^{30}$ indicating that the triazole $\mathbf{3 e}$ is present in the product. The shifts for carbon 6 could not be
assigned. It is expected to be around 130 ppm , but due to the unpure sample there are several peaks in this region. The non-quarternary naphthalene carbons have very similar shifts in the region 122-128 and the individual shifts were not assigned. Table 2 presents the shifts which were assigned for $\mathbf{3 e}$.

Table 2: Assigned shifts for $\mathbf{3 e}$

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
1 a	Cq	-	-	133.8
1 b	$7.70-7.68$	m	-	123.2
1 c	$7.70-7.68$	m	-	133.8
2	Cq	-	-	168.3
3	3.73	t	6.7	37.2
4	2.06	quint	7.8	28.1
5	2.76	t	7.4	23.0
7	$7.37-7.32$	m	-	121.1
8	5.65	s	-	54.1
9 a	Cq	-	-	132.2
9 c	Cq	-	-	130.0
9 h	Cq	-	-	132.2

The spectra for $\mathbf{3 e}$ are shown in Appendix ??.

Figure 8

Table 3 shows assigned ${ }^{13} \mathrm{C}$ NMRand ${ }^{1} \mathrm{H}$ NMR shifts of the product $\mathbf{3} \mathbf{b}$, with splitting patterns and coupling constants, in correspondence to the numbering in Figure 8.

One carbon peak could not be found in the ${ }^{13} \mathrm{C}$ NMRspectrum, while other carbon peaks were very small, due to a dilute sample. Carbon 1a and carbon 5 have very similar shifts, around 130 ppm . In product 3a, carbon 1a was assigned a shift of 131.8 ppm , while carbon 5 was assigned a shift of 131.1 ppm . By comparing spectra from $\mathbf{3 b}$ with spectra from $\mathbf{3 a}$ it is likely that the 132.1 ppm carbon shift in $\mathbf{3} \mathbf{b}$ belongs to carbon 1a, while carbon 5 is expected to have a shift slightly lower, around 131 ppm . Given that all other shifts are in agreement with expected values and shifts in previously prepared, similar compounds, it is believed that $\mathbf{3} \mathbf{b}$ is identified, but the carbon 5 peak is too weak to see in the spectrum. The HRMS analysis supports this conclusion.

The 2 H singlet at 5.46 ppm is characteristic of the protons binding to carbon 7 in the triazole $\mathbf{3} \mathbf{b}$, significantly higher than the corresponding protons of 4.30 in the azide, as was the case for $\mathbf{3 a}$. The alkyne has a proton shift at the terminal carbon on the chain of 1.96 ppm . This shift is not present in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$, indicating that the alkyne has been completely converted to triazole. The ${ }^{1} \mathrm{H}$ NMR shift at 3.12 ppm in the $\mathbf{3 b}$ spectrum belongs to the carbon 4 protons. The corresponding protons in the alkyne have significantly lower a shift of 2.62 ppm , again indicating that the alkyne has
been converted triazole.

Table 3: Assigned shifts for $\mathbf{3 b}$

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
1 a	Cq	-	-	132.1
1 b	7.81	dd	$3.0,5.5$	123.3
1 c	7.69	dd	$3.0,5.5$	133.8
2	Cq	-	-	167.9
3	3.99	t	7.6	37.5
4	3.12	t	7.3	24.9
5	Cq	-	-	$*$
6	7.33	s	-	121.1
7	5.46	s	-	54.7
8 a	Cq	-	-	133.9
8 b	7.09	d	2.0	122.4
8 c	Cq	-	-	151.8
8 d	7.41	t	2.0	122.7
9	Cq	-	-	34.9
10	1.29	s	-	31.4
*P	Se			

*Peak missing. See section 28 for discussion.

The spectra for $\mathbf{3 b}$ are shown in Appendix ?? 4-yl)propyl)

isoindoline-1,3-dione 3c

Figure 9

Table 4 shows assigned shifts of $\mathbf{3 c}$.

The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMRspectra of $\mathbf{3} \mathbf{c}$ are very similar to the spectra of $\mathbf{3} \mathbf{b}$, with the difference being that $\mathbf{3 c}$ has an extra carbon peak and a quintet from the protons on carbon 4. The ${ }^{1} \mathrm{H}$ NMR singlet at 5.46 ppm is from the protons on carbon 8 and shows that the triazole $\mathbf{3 c}$ was formed. Another sign of triazole formation is the ${ }^{13} \mathrm{C}$ NMRshift at 23.1 ppm from carbon 5 which is significantly higher than the corresponding shift of 16.2 ppm in the alkyne $\mathbf{2 b}$. ${ }^{30}$ The 121.1 ppm shift of carbon 7 could not be seen in the 1D ${ }^{13} \mathrm{C}$ NMRspectrum but was visible in the 2D HSQC spectrum, coupled to the singlet proton with a shift of 7.36 ppm . The peak of carbon 6 could not be found in any of the spectra, as was the case with $\mathbf{3 b}$.

Table 4: Assigned shifts for 3c

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
1 a	Cq	-	-	132.1
1 b	7.83	dd	$3.0,5.4$	123.2
1 c	7.71	dd	$3.1,5.5$	133.9
2	Cq	-	-	168.4
3	3.74	t	7.1	37.3
4	2.06	quint	7.3	28.2
5	2.75	t	$\mathrm{J}=7.7$	23.1
6	Cq	-	-	$*$
7	7.39	t	1.7	121.1
8	5.46	s	-	54.7
9 a	Cq	-	-	134.0
9 b	7.09	d	1.9	122.3
9 c	Cq	-	-	151.7
9 d	7.39	t	1.7	122.7
10	Cq	-	-	34.9
11	1.29	s	-	31.4

*Peak missing. See section 29 for discussion.

The spectra for $\mathbf{3 c}$ are shown in Appendix C.

30

2-(2-(1-(Naphthalen-2-ylmethyl) -1H-1,2,3-triazol-4-yl)ethyl) isoindoline-1,3-dione (3d)

Figure 10

Table 5 shows assigned shifts for $\mathbf{3 d}$. The shifts for carbons $8 \mathrm{c}-\mathrm{i}$ could not be assigned because the shifts are so similar. Like with the other triazoles prepared, the ${ }^{1} \mathrm{H}$ NMR shift at 5.64 ppm , belonging to the protons on carbon 7 , is a sign of the trizole $\mathbf{3 d}$. The ${ }^{13} \mathrm{C}$ NMRshift at 24.9 ppm , belonging to carbon 4 is also a sign of 3d. Unreacted alkyne 2a can be seen in the ${ }^{1} \mathrm{H}$ NMR spectrum by the peaks 3.89 and 2.62 ppm .

Table 5: Assigned shifts for 3d

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
1 b	7.74	dd	$3.0,5.5$	123.2
1 c	7.65	dd	$3.0,5.3$	133.9
2	Cq	-	-	168.1
3	3.98	t	7.1	37.4
4	3.13	t	7.5	24.9
6	7.34	br. s	-	121.2
7	5.64	dd	$3.3,6.3$	54.2
8 a	Cq	-	-	132.2
8 b	7.68	br. s	-	127.1
8 j	7.30	dd	$1.6,8.3$	125.9

The spectra for $\mathbf{3 d}$ are shown in Appendix D.

31 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl) -1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate 3f

Figure 11

The crude product of the triazole $\mathbf{3 f}$ was not purified. Consequently, the NMR spectra of the product contain a significant amount of contaminants, mainly from unreacted starting material. However, certain peaks in the spectra are characteristic of triazole, indicating that some $\mathbf{3 f}$ product was formed, even though the reaction did not go to completion. Table 6 shows the values of ${ }^{13} \mathrm{C}$ NMRand ${ }^{1} \mathrm{H}$ NMR shifts which could be identified from the spectra, in correspondence with the numbering in Figure 11.

The singlet at 5.67 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum is a clear sign of triazole formation, the peak belonging to the two protons on carbon number 7 in the triazole $\mathbf{3 f}$. The corresponding protons in the azide $\mathbf{1 c}$ have a shift of 4.47 ppm . This observation is consistent with the other triazoles prepared. The alkyne 2a has shifts $2.62(\mathrm{td}, \mathrm{J}=2.7$, 7.2 Hz) and $3.89(\mathrm{t}) \mathrm{ppm}$ in the non-aromatic region. These shifts can be found in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product of $\mathbf{3 f}$, revealing that unreacted alkyne is present. In the same region of the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$ are a triplet peak at 3.16 and a triplet peak at 3.98 ppm . These are believed to be from protons on carbon 4 and 3, respectively. These shifts are in agreement with corresponding shifts on the other triazoles prepared. In the aromatic region it is more challenging to distinguish which peaks are from unreacted
starting material and which are from the triazole 3f. Because the aromatic protons on the indole moiety and the phthalimide moiety are several bonds away from the triazole ring, the proton shifts are not expected to be significantly different from those in the starting materials. A broad singlet at 7.62 ppm is believed to be from the single proton at carbon 6 in the triazole ring.

The ${ }^{13} \mathrm{C}$ NMRspectrum of the crude sample of $\mathbf{3} \mathbf{f}$ contains shifts from both starting materials and the triazole. The peaks at 70.3 is a clear alkyne shift from 2a, belonging to the terminal carbon at the alkyne end. The peak at 46.2 ppm is from the azide 1c. A small peak at 24.8 ppm is believed to be from carbon 4 in the triazole, which is in agreement with the shift observed at corresponding carbons in the other triazoles prepared.

Table 6: Assigned shifts for $\mathbf{3 f}$

Carbon no.	$\delta \mathbf{H}[\mathbf{p p m}]$	\mathbf{M}	$\mathbf{J}[\mathbf{H z}]$	$\delta \mathbf{C}[\mathbf{p p m}]$
2	Cq	-	-	168.0
3	39.8	t	6.8	37.4
4	3.16	t	6.9	24.8
8 b	8.15	br. s	-	115.4
8 c	Cq	-	-	135.7
8 d	7.60	d	8.0	119.1
8 e	7.36	td	$6.2,8.3$	124.9
8 f	7.28	td	$0.9,7.6$	123.0
8 g	7.62	s	-	124.9
8 h	Cq	-	-	129.1
9	Cq	-	-	149.5
11	1.68	s	-	28.2

The spectra for $\mathbf{3 f}$ are shown in Appendix F.

32 Attempted one-pot azidation of Boc-protected indole carboxaldehyde (1c)

Figure 12

The one-pot azidation of $\mathbf{5 a}$ to the azide $\mathbf{1 c}$ was attempted twice using a procedure by Pramanik and Ghorai. ${ }^{27}$ In the ${ }^{1} \mathrm{H}$ NMR spectra both products of the two attempts all peaks coincide with those of the aldehyde $5 \mathbf{a}$. A 2 H singlet peak at 4.47 ppm was expected from the azide $\mathbf{1 c},{ }^{31}$ but no peaks were found in the interval $7.25-1.70 \mathrm{ppm}$. The reaction proceeds through a diazide intermediate $5 \mathbf{5}$ '. Various diazides prepared by Pramanik and Ghorai are reported to have a singlet peak in the interval $5.70-5.83 \mathrm{ppm}$, but no peaks were found near this interval. The spectra show that neither the diazide $5 \mathbf{a}{ }^{\prime}$ nor the target azide $\mathbf{1 c}$ were formed. The spectra for the residue are shown in Appendix ??.

33 Attempted preparation 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol- 5-yl)ethanamine

Figure 13

The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude product from the attempted deprotection of $\mathbf{3 a}$ to $\mathbf{7 a}$ contained only peaks belonging to the protected $\mathbf{3 a}$. The important peaks are $3.85(2 \mathrm{H}$,
$\mathrm{t}, \mathrm{J}=7.5 \mathrm{hz})$ and $2.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})$ which are identical to the peaks corresponding to carbon 3 and 4 in the protected $\mathbf{3 a}$, showing that $\mathbf{3 a}$ was not deprotected. In the deprotected amine 7a, these peaks are expected to be significantly lower. The spectra for 7a are shown in Appendix J.

34 Preparation of 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol- 4 -yl)ethanamine (7b)

Figure 14

34.1 First parallel

In the ${ }^{1} \mathrm{H}$ NMR spectrum of amine $\mathbf{7 b}$ the aromatic peak at $7.41 \mathrm{ppm}(1 \mathrm{H}$, deformed triplet) belongs to the proton on carbon 5d. The doublet at $7.09(2 \mathrm{H}) \mathrm{ppm}$ belongs to the protons on carbons 3 b . The proton on carbon 3 was expected to have a shift close to the shift of the corresponding proton in the protected $\mathbf{3 b}(7.33 \mathrm{ppm})$, but this shift was not found. The protons on carbon 2 have a shift of 2.86 ppm in a triplet and the protons on carbon 1 have a shift of 3.05 in a broad singlet. These shifts are significantly lower than in the protected $\mathbf{3 b}$, an indication that the phthalimide functionality has been removed.

34.2 Second parallel

As mentioned in the previous section, the proton on carbon 3 in $\mathbf{7 b}$ was expected to have a shift of $\sim 7.33 \mathrm{ppm}$, equal to the corresponding proton in the protected $\mathbf{3 b}$. This peak was very weak in the spectrum. A multiplet is present at $7.31-7.27 \mathrm{ppm}$ which integrates to 0.8 H . It is possible that this is the missing proton from carbon 3 and that the weak triplet at 7.33 ppm is the corresponding proton in a residue of protected $\mathbf{3} \mathbf{b}$.

Two aromatic peaks detected are $7.40(1 \mathrm{H}, \mathrm{t})$ and $7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.7 \mathrm{~Hz})$ belonging to the protons on carbon 5 d and 5 b , respectively.

Important peaks in the ${ }^{13} \mathrm{C}$ NMRspectrum of $\mathbf{7 b}$ are carbon 1 at 41.2 ppm and carbon 2 at 28.8 ppm . These peaks are higher than their corresponding peaks of 37.5 and 24.9 ppm in the protected $\mathbf{3 b}$, suggesting that the phthalimide protection has been removed. The spectra for $\mathbf{3 b}$ are shown in Appendix K.

35 Conclusion

Syntheses for preparation of azide $\mathbf{1 c}$ were studied. The recently published procedure for one-pot azidation of the aldehyde $\mathbf{5 a}$ to azide $\mathbf{1 c}$ did not prove successful. No reaction was observed using the reported conditions. The azide $\mathbf{1 c}$ was obtained through an older literature procedure, via the alcohol 6a. Azide 1c was used in a subsequent copper-catalyzed 1,3-dipolar cycloaddition to afford the novel 1,4-disubstituted $1 h-1,2,3$-triazole $\mathbf{3 f}$. The procedure was based on literature procedures for regioselective 1,3-dipolar cycloaddition.

The 1,5-disubstituted 1 h -1,2,3-triazole $\mathbf{3}$ a was synthesized using a ruthenium-catalyzed 1,3-dipolar cycloaddition.

The triazoles $\mathbf{3 b}$, $\mathbf{3 c}$, $\mathbf{3 d}$ and $\mathbf{3 e}$ were prepared using copper-catalysed 1,3-dipolar cycloadditions. Most were obtained in acceptable yields, but material was lost in purification steps. Further work is needed to improve purification procedures. Nevertheless, the procedure has proved viable for the regioselective preparation of a range of triazoles, fulfilling an important step of the project scope.

The N-protected triazole $\mathbf{3} \mathbf{b}$ was deprotected by hydrozinolysis to afford the corresponding amine $\mathbf{7 a}$. The obtained yields and purity were low, due to difficult work-up. Other methods of deprotection should be tested, such as $\mathrm{NaBH}_{4} / 2$-propanol followed by acetic acid.

The project set out to prepare a large library of triazoles, but it was not within the time frame to test them all. Further studies in the project group will be to prepare the remaining target triazoles $\mathbf{3 g}-\mathbf{q}$ and their derivatization via amines to the alkylguanidine ligands to fulfill the pharmacophore model of the eusynstelamides.

Part V

Experimental

36 General methods

36.1 Chemicals and solvents

Chemicals and solvents were supplied by Sigma-Aldrich, Fluka Chemica, Riedel de Haën, VWR and Fischer Scientific.

2-(But-3-yn-1-yl)isoindoline-1,3-dione (2a) ${ }^{32}$ and 2-(pent-4-yn-1-yl)isoindoline-1,3-dione (2b) ${ }^{33}$ were prepared by PhD Candidate Thomas Alexander Bakka.

3,5-Bis(trifluoromethyl)benzyl azide (1b) and 2-(Azidomethyl)-naphtalene (1a) were prepared by the author in an earlier project, based on procedures derived by Suzuki et al., ${ }^{28}$ Gallina et al. ${ }^{34}$ and Gassensmith et al. ${ }^{35}$

Dry THF was optained from a Braun MB SPS-800 Purification System.

36.2 Spectroscopy

NMR spectra were recorded using Bruker Advance DPX400 or 600 MHz Bruker Advance III instruments. Samples were dissolved in CDCl_{3} using TMS as internal standard. Spectroscopic data were analyzed using Bruker Topspin 3.1. Shifts are reported in ppm and were assigned using 1D ${ }^{1} \mathrm{H}$ NMR , 1D ${ }^{13} \mathrm{C}$ NMRand 2D HSQC, COSY, HMBC experiments. ChemBioDraw Ultra 12 was also used as an aid in assigning shifts.

IR spectra were recorded on a Thermo Nicolet Nexus FT-IR instrument.
High resolution mass spectra: Accurate mass determination in positive and negative mode was performed on a "Synapt G2-S" Q-TOF instrument from Waters ${ }^{\text {TM }}$. Samples were ionized by the use of ASAP probe (APCI). Calculated exact mass and spectra processing was done by Waters ${ }^{\text {TM }}$ Software (Masslynxs V4.1 SCN871).

36.3 Chromatography

Column chromatography was performed using silica gel from Fluka Chemica (40-63 $\mu \mathrm{m}$). TLC analyses were performed on silica gel $60 \mathrm{~F}_{254}$ from Merck. UV (312 nm) or 5% phosphomolybdic acid in EtOH were used for detection.

36.4 Other equipment

Melting points were measured on a Gallenkamp melting point apparatus.

37 Azidation of 3,5-bis(trifluoromethyl)benzyl alcohol

The procedure is based on the procedures reported by Thompson et al. ${ }^{22}$ and Melander and Rogers. ${ }^{7}$

3,5-Bis(trifluoromethyl)benzyl alcohol ($0.431,1.76 \mathrm{mmol}$)) was dissolved in toluene (10 mL) and diphenylphosphoryl azide ($439 \mu \mathrm{~L}, 2.04 \mathrm{mmol}$) was added at rt. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ before 1,8-diazobicycloundec-7-ene ($336 \mu \mathrm{~L}, 2.25 \mathrm{mmol}$) was added dropwise over 35 minutes. The solution was allowed to slowly reach rt and was stirred for 17 hours. The solution was washed with water ($3 \times 5 \mathrm{~mL}$) and $\mathrm{HCl}(1 \mathrm{M}, 7 \mathrm{~mL})$, dried over MgSO_{4}, filtered and evaporated under vacuum. After evaporation, a clear oil of low viscosity $(0.308 \mathrm{~g})$ was obtained. The crude product was purified on a silica column, using 15% by volume EtOAc in pentane as eluent. Product 1d was obtained as a clear oil $(0.027 \mathrm{~g}, 6 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.86(1 \mathrm{H}, \mathrm{s}), 7.79(2 \mathrm{H}, \mathrm{s}), 4.55(2 \mathrm{H}, \mathrm{s})$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix M) is consistent with data reported in litterature. ${ }^{36}$

38

 2-(2-(1-(3,5-Di-tert-butylbenzyl)-
1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a)

The procedure is based on procedures reported by Sharpless et al. ${ }^{6}$ and Farooq. ${ }^{23}$

3a
$\mathrm{Cp} * \mathrm{RuCl}\left(\mathrm{PPh}_{3}\right)_{2}(0.007 \mathrm{~g}, 0.01 \mathrm{mmol})$ was added to a round bottom flask under inert, dry conditions. 2-(But-3-yn-1-yl)isoindoline-1,3-dione (2a) ($0.109 \mathrm{~g}, 0.55 \mathrm{mmol}$) was added to a separate flask, flushed dry with nitrogen and dissolved in dry THF (2.5 mL). The alkyne solution (2a) was added to the reaction flask containing the ruthenium catalyst in one portion. 3,5-Bis(trifluoromethyl)benzyl azide (1b) ($0.141 \mathrm{~g}, 0.57 \mathrm{mmol}$) was added to a separate flask, flushed dry with nitrogen and dissolved in dry THF (2.5 mL). The azide solution (1b) was added to the reaction flask containing the ruthenium catalyst and alkyne in one portion. A total of 5 mL of solvent was used.

The resulting mixture was stirred at reflux for 13.5 hours. The solvent was evaporated under vacuum. A red-brown solid (0.217 g) was obtained. The crude product was purified on a silica column, using 1:3 EtOAc:DCM as eluent. Product 3a was obtained as a yellow, hard wax ($0.114 \mathrm{~g}, 47 \%$) Melting point: 118.1-119.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.83(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,5.3 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $3.1,5.6 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{s}), 7.35(1 \mathrm{H}, \mathrm{t}), 7.05(2 \mathrm{H}, \mathrm{d}), 5.59(2 \mathrm{H}, \mathrm{s}), 3.84(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5$ $\mathrm{Hz}), 2.96(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 1.26(18 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=22.4,31.4,34.4,35.9,52.6,121.7,123.4,131.8,133.1$, 133.2, 133.9, 134.2, 151.7, 167.8.

IR: 2961 (w), 1772 (w), 1720 (s), 1600 (w), 1460 (w), 1444 (w), 1425 (w), 1399 (m), 1369 (m), 1335 (w), 1246 (w), 1228 (w), 1188 (w), 1127 (w), 1087 (w), 990 (w), 981 (w), 891 (w), 880 (w), 842 (w), 792 (w), 752 (w), 715 (s), 621 (w), 607 (w).

MS: calculated mass for $[\mathrm{M}]^{*}$-ion: 444.2525 , found: 444.2520 The NMR, IR and MS spectra for 3a are shown in Appendix A.

39 1,4-disubstituted $1 \boldsymbol{H}-1,2,3$-triazoles

General procedure for preparation of 1,4-disubstituted $\mathbf{1 H - 1 , 2 , 3 - t r i a z o l e s ~ T h e ~}$ procedure is based on the procedure published by Melander and Rogers. ${ }^{7}$

The terminal alkyne (1 eq) was dissolved in a 1:2 mixture of tert-butanol and water. Benzoic acid (0.1 eq) was added, before addition of cupper sulfate pentahydrate (0.01 eq) and L-ascorbate (0.02 eq) as aqueous solutions (1 M). Lastly, the azide (1.05 eq) was added in one portion. The resulting mixture was stirred vigorously while monitored via TLC analysis (eluent: 1:3, EtOAc:DCM), reactions were generally stirred until completion (2$24 \mathrm{~h})$. The reaction mixture was extracted with dichloromethane and the extract washed with water and in some reactions with brine. The organic extract was dried over MgSO_{4}, filtered and the solvent evaporated under reduced pressure. Some products were purified by chromatography.

39.1 2-(3-(1-(Naphthalen-2-ylmethyl)
 -1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3e)

3e
a) 2-(Azidomethyl)-naphtalene (1a) ($0.355 \mathrm{~g}, 1.94 \mathrm{mmol}, 1.01 \mathrm{eq}), 2$-(pent-4-yn-1-yl)isoindoline-1,3-dione (2b) ($0.410 \mathrm{~g}, 1.92 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid ($0.024 \mathrm{~g}, 0.20 \mathrm{mmol}, 0.10 \mathrm{eq}$), cupper sulfate pentahydrate ($0.02 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate ($0.04 \mathrm{mmol}, 0.02 \mathrm{eq}$). Solvent, water:tert-butanol, 2:1 (2.5 mL); reaction time, 23 h ; brine wash; yield 0.376 g (49%), yellow-grey solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.85-7.79(5 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}$, s), 7.70-7.68 (2H, m), 7.52-7.49 (2H, m), 7.37-7.32 (2H, m), $5.65(2 H, s), 3.73(2 H, t, J=$ $6.7 \mathrm{~Hz}), 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.06(2 \mathrm{H}$, quint, $\mathrm{J}=7.2 \mathrm{~Hz})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is shown in Appendix E.
b) 2-(Azidomethyl)-naphtalene (1a) ($0.164 \mathrm{~g}, 0.89 \mathrm{mmol}, 1.06 \mathrm{eq}), 2$-(pent-4-yn-1-yl)isoindoline-1,3-dione (2b) ($0.1784 \mathrm{~g}, 0.84 \mathrm{mmol}, 1.00 \mathrm{eq})$, benzoic acid ($0.014 \mathrm{~g}, 0.12 \mathrm{mmol}, 0.14 \mathrm{eq})$, cupper sulfate pentahydrate ($0.01 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate ($0.02 \mathrm{mmol}, 0.02 \mathrm{eq}$). Solvent, water:tert-butanol, 2:1 (5 mL); reaction time, 22 h ; brine wash; yield $0.317 \mathrm{~g}(95 \%)$, off-white solid. Melting point: $69.0-71.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.82(4 \mathrm{H}, \mathrm{m}), 7.73(1 \mathrm{H}, \mathrm{s}), 7.69(2 \mathrm{H}, \mathrm{m}), 7.50(2 \mathrm{H}$, m), $7.36(1 \mathrm{H}, \mathrm{s}), 5.65(2 \mathrm{H}, \mathrm{s}), 3.73(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}), 2.76(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 2.06(2 \mathrm{H}$, quint, $\mathrm{J}=7.8,14.9 \mathrm{~Hz}$) ppm.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.3,133.8,133.2,130.0,123.2,121.1,54.1,37.2$, 28.1, 23.0 ppm .

IR: 3267 (w), 2937 (w), 2360 (w), 2097 (w), 1772 (w), 1700 (s), 1602 (w), 1509 (w), 1466 (w), 1439 (w), 1396 (m), 1363 (m), 1324 (w), 1270 (w), 1117 (w), 1088 (w), 1018 (m), $884(\mathrm{~m}), 818(\mathrm{~m}), 788(\mathrm{~m}), 761(\mathrm{~m}), 717(\mathrm{~s}), 688(\mathrm{~m})$.

MS: calculated mass for $[\mathrm{M}]^{*}$-ion: 396.1586, found: 396.1579. The NMR, IR and MS spectra for $\mathbf{3 e}$ are shown in Appendix E.

39.2 2-(3-(1-(3,5-Di-tert-butylbenzyl)
 -1H-1,2,3-triazol-4-yl)propyl)isoindoline-1,3-dione (3c)

3c

1-(Azidomethyl)-3,5-di-tert-butylbenzene (1b) ($0.413 \mathrm{~g}, 1.68 \mathrm{mmol}, 1.05 \mathrm{eq}$), 2-(pent-4-yn-1-yl)isoindoline-1,3-dione (2b) ($0.341 \mathrm{~g}, 1.60 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid (0.022 g , $0.18 \mathrm{mmol}, 0.11 \mathrm{eq}$), cupper sulfate pentahydrate ($0.02 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate (0.03 $\mathrm{mmol}, 0.02 \mathrm{eq})$. Solvent, water:tert-butanol, $2: 1(2.5 \mathrm{~mL})$; reaction time, 24 h ; brine wash; yield $0.552 \mathrm{~g}(75 \%)$, viscous green oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.83(2 \mathrm{H}$, dd, $\mathrm{J}=3.1,5.4 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,5.5 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=1.7), 7.34(1 \mathrm{H}, \mathrm{br}$.
s), $7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz}), 5.46(2 \mathrm{H}, \mathrm{s}), 3.74(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 2.75(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7$ Hz), $2.06(2 \mathrm{H}$, quint, $\mathrm{J}=7.3 \mathrm{~Hz}), 1.29(18 \mathrm{H}, \mathrm{s}) \mathrm{ppm}$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.4,151.7,134.0$ 133.9, 132.1, 123.2, 122.7, 122.3, 121.1, 54.7, $37.3,34.9,31.4,28.2,23.1 \mathrm{ppm}$.

IR: 2954 (w), 2866 (w), 2092 (w), 1770 (w), 1707 (s), 1601 (w), 1466 (w), 1436 (w), 1394 (m), 1362 (m), 1248 (w), 1201 (w), 1171 (w), 1107 (w), 1048 (w), 1024 (w), 883 (w), 789 (w), 718 (s), 653 (w), 621 (w).

MS: calculated mass for $[M]^{*}$-ion: 458.2682, found: 458.2677. The NMR, IR and MS spectra for 3c are shown in Appendix C.

39.3 2-(2-(1-(Naphthalen-2-ylmethyl)

-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3d)

3d

2-(Azidomethyl)-naphtalene (1a) ($0.532 \mathrm{~g}, 2.90 \mathrm{mmol}, 1.06 \mathrm{eq}$), 2-(but-3-yn-1-yl)isoindoline-1,3-dione (2a) ($0.549 \mathrm{~g}, 2.75 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid ($0.038 \mathrm{~g}, 0.31 \mathrm{mmol}, 0.11 \mathrm{eq}$), cupper sulfate pentahydrate ($0.03 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate ($0.06 \mathrm{mmol}, 0.02 \mathrm{eq}$). Solvent, water:tert-butanol, 2:1 (5 mL); reaction time, 8 h ; yield $0.929 \mathrm{~g}(88 \%)$, off-white, fluffy solid. Melting point: $167.3-168.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.87-7.80$ $(4 \mathrm{H}, \mathrm{m}), 7.74(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.5 \mathrm{~Hz}), 7.68(1 \mathrm{H}, \mathrm{br} . \mathrm{s}), 7.65(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.3 \mathrm{~Hz})$, $7.52(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.3,6.3 \mathrm{~Hz}), 7.34(1 \mathrm{H}$, br. s), $7.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.6,8.3 \mathrm{~Hz}), 5.64(2 \mathrm{H}$, s), $3.98(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}), 3.13(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.1,134.1,133.9,133.3,133.1,132.2,132.0,129.1$, 128.0, 127.8, 127.1, 126.7, 126.6, 126.4, 125.2, 123.4, 123.2, 54.2, 37.5, 24.9. IR: 1770 (w), 1716 (m), 1463 (w), 1439 (w), 1397 (w), 1370 (m), 1334 (w), 1239 (w), 1119 (w), 1004 (w), 992 (w), 868 (w), 818 (m), 739 (m), 717 (s).

HRMS (ASAP+): m/z calculated for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}]^{*}$: 382.1430, found: 382.1426. The ${ }^{1} \mathrm{H}$ NMR , ${ }^{13} \mathrm{C}$ NMR, IR and MS spectra for 3d are shown in Appendix D.

39.4 2-(2-(1-(3,5-Di-tert-butylbenzyl)

-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b)

3b
a) 1-(Azidomethyl)-3,5-di-tert-butylbenzene (1b) $(0.637 \mathrm{~g}, 2.60 \mathrm{mmol}, 1.05 \mathrm{eq}), 2$-(but3 -yn-1-yl)isoindoline-1,3-dione (2a) ($0.491 \mathrm{~g}, 2.47 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid (0.034 g , $0.28 \mathrm{mmol}, 0.11 \mathrm{eq}$), cupper sulfate pentahydrate ($0.03 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate (0.06 mmol, 0.02 eq). Solvent, water:tert-butanol, 2:1 (6 mL); reaction time, 24 h ; crude yield 1.647 g . The crude product was attempted purified first by dissolving the product in DCM $(3 \mathrm{~mL})$ and then diluting with pentane $(30 \mathrm{~mL})$, yielding a white suspension. The suspension was filtered through four layers of filter paper, yielding a white, crystalline solid $(0.262 \mathrm{~g})$. The paper filtrate was filtered through celite and the celite was subsequently extracted with DCM ($4 \times 40 \mathrm{~mL}$). The extract was evaporated under reduced pressure, yielding a white crystalline product $(0.1527 \mathrm{~g})$. The celite filtrate was purified on a silica column, using a 1:3 mixture of ethyl acetate and DCM. The column purification yielded a white, crystalline solid $(0.165 \mathrm{~g})$. The ${ }^{1} \mathrm{H}$ NMR spectra of the three purified products (filter paper residue, celite residue and column product) were identical. Combined, the three purified products yielded $0.579 \mathrm{~g}(52 \%)$ of $\mathbf{3 b}$. Melting point: $141.0-141.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.81(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.5 \mathrm{~Hz}), 7.69(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.0,5.5$ $\mathrm{Hz}), 7.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{s}), 7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 5.46(2 \mathrm{H}, \mathrm{s}), 3.99$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 3.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.29(18 \mathrm{H}, \mathrm{s})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 24.9,31.4,34.9,37.5,54.7,121.1,122.4,122.7,123.3$, 132.1, 133.8, 133.9, 151.8, 167.9.

IR: 2952 (w), 1775 (w). 1707 (m), 1434 (w), 1405 (w), 1248 (w), 1100 (w), 1055 (w), 992 (w), 869 (w), 713 (s).

HRMS (ASAP+): m/z calculated for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}]^{*}: 444.2525$, found: 444.2526 . The ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR and MS spectra for $\mathbf{3} \mathbf{b}$ are shown in Appendix B.

The experiment was repeated in a larger scale: b) 1-(Azidomethyl)-3,5-di-tert-butylbenzene (1b) ($1.793 \mathrm{~g}, 7.31 \mathrm{mmol}, 0.95 \mathrm{eq}$), 2-(but-3-yn-1-yl)isoindoline-1,3-dione (2a) (1.519 g, $7.62 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid ($0.102 \mathrm{~g}, 0.84 \mathrm{mmol}, 0.11 \mathrm{eq}$), cupper sulfate pentahydrate ($0.08 \mathrm{mmol}, 0.01 \mathrm{eq}$), L-ascorbate ($0.02 \mathrm{mmol}, 0.02 \mathrm{eq}$). Solvent, water:tert-butanol, 2:1 (20 mL); reaction time, 24 h ; crude yield 3.280 g (101%), yellowish-white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.81(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,5.5 \mathrm{~Hz}$), $7.69(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.1,5.5$ $\mathrm{Hz}), 7.41(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.0 \mathrm{~Hz}), 7.33(1 \mathrm{H}, \mathrm{s}), 7.09(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.0 \mathrm{~Hz}), 5.46(2 \mathrm{H}, \mathrm{s}), 3.99$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}), 3.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}), 1.29(18 \mathrm{H}, \mathrm{s})$. The ${ }^{1} \mathrm{H}$ NMR spectrum is shown in Appendix B.

39.5 Tert-butyl 3-((4-(3-(1,3-dioxoisoindolin-2-yl)propyl)
 -1H-1,2,3-triazol-1-yl)methyl)-1H-indole-1-carboxylate (3f)

Tert-butyl 3-(azidomethyl)-1H-indole-1-carboxylate (1c) ($0.190 \mathrm{~g}, 0.68 \mathrm{mmol}, 1.05 \mathrm{eq}$), 2-(but-3-yn-1-yl)isoindoline-1,3-dione (2a) ($0.129 \mathrm{~g}, 0.65 \mathrm{mmol}, 1.00 \mathrm{eq}$), benzoic acid ($0.001 \mathrm{~g}, 0.08 \mathrm{mmol}, 0.12 \mathrm{eq}$), cupper sulfate pentahydrate ($0.007 \mathrm{mmol}, 0.01 \mathrm{eq}$), Lascorbate ($0.007 \mathrm{mmol}, 0.02 \mathrm{eq}$). Solvent, water:tert-butanol, 2:1 (2 mL); reaction time, 24 h ; crude yield $0.223 \mathrm{~g}(71 \%)$, dark yellow solid. Melting point: 90.5-91.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.15(1 \mathrm{H}, \mathrm{br}$ s), $8.10(0.4 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.4,3.2 \mathrm{~Hz})$, 7.87-7.85 (2 H , m), 7.76-7.71 ($3 \mathrm{H}, \mathrm{m}$), $7.68-7.66(6.7 \mathrm{H}, \mathrm{m}), 7.62(1 \mathrm{H}, \mathrm{s}), 7.60(1.7 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.36$ $(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=6.2,8.3 \mathrm{~Hz}), 7.28(1.4 \mathrm{H}, \mathrm{td}, \mathrm{J}=0.9,7.6 \mathrm{~Hz}), 7.20(0.4 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz})$, $5.67(0.6 \mathrm{H}, \mathrm{s}), 4.47(2.8 \mathrm{H}, \mathrm{s}), 3.98(0.7 \mathrm{H}, \mathrm{t}, 6.8 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.16(0.7 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}), 2.62(2 \mathrm{H}, \mathrm{td}, \mathrm{J}=2.7,7.2 \mathrm{~Hz}), 1.96(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.68$ (12.6 H, s) ppm.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=168.1,149.5,135.7,129.1,124.9,123.0,115.4,119.1$, 37.4, 28.2 ppm .

IR: 3252 (w), 2358 (w), 2093 (w), 1766 (w), 1703 (s), 1450 (m), 1468 (w), 1429 (m), 1386 (m), 1369 (m), 1336 (m), 1307 (m), 1257 (m), 1153 (s), 1115 (w), 1087 (m), 1018 (w), 995 (w), 850 (w), 783 (m), 767 (s), 746 (s), 722 (s), 713 (s), 681 (w), 624 (w).

HRMS (ASAP+): m/z calculated for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{*}: 472.1985$, found 472.1985 . The ${ }^{1} \mathrm{H}$ NMR , ${ }^{13} \mathrm{C}$ NMR, IR and MS spectra for $3 \mathbf{f}$ are shown in Appendix F.

40 Tert-butyl 3-formyl-1H-indole-1-carboxylate (5a)

The procedure is based on the procedure published by Giraud et al. ${ }^{24}$

To a solution of indole carboxaldehyde (4a) ($0.247 \mathrm{~g}, 1.7 \mathrm{mmol}, 1 \mathrm{eq}$.) in acetonitrile (6 $\mathrm{ml})$ was added di-tert-butyl bicarbonate ($0.491 \mathrm{~g}, 2.25 \mathrm{mmol}, 1.3 \mathrm{eq}$) before addition of 4 -dimethylaminopyridine ($0.043 \mathrm{~g}, 0.35 \mathrm{mmol}, 0.2 \mathrm{eq}$). The mixture was stirred for 3 h . Water (20 mL) was added and the reaction mixture was extracted with DCM (3x15 mL). The extract was dried over MgSO_{4} and the solvent was removed under reduced pressure, yielding a crude product of 5 a as a white solid ($0.399 \mathrm{~g}, 96 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=10.11(1 \mathrm{H}, \mathrm{s}), 8.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}), 8.24(1 \mathrm{H}, \mathrm{s}), 8.15(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.3)$, $7.42(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.3,7.4 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.3,7.4 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{s}), 1.70(9 \mathrm{H}, \mathrm{s})$. The ${ }^{1} \mathrm{H}$ NMR shifts were consistent with literature. ${ }^{24}$ The ${ }^{1} \mathrm{H}$ NMR spectrum is shown in Appendix H.

The experiment was repeated yielding $3.524 \mathrm{~g}(89 \%)$ of $\mathbf{5 a}$.

41 Attempted deprotection of phthalimides to respective amines

The procedure for hydrazinolysis of phthalimide protected species is based on the IngManske procedure ${ }^{37}$ and procedures developed by PhD Candidate Thomas Alexander Bakka.

41.1 Attempted preparation of 2-(1-(3,5-di-tert-butylbenzyl)-1H-1,2,3-triazol-5-yl)ethanamine (7a)

2-(2-(1-(3,5-Di-tert-butylbenzyl)-1H-1,2,3-triazol-5-yl)ethyl)isoindoline-1,3-dione (3a) (0.074 g, $0.17 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in $\operatorname{EtOH}(96 \%, 8 \mathrm{~mL})$. Hydrazine hydrate ($50-60 \%$, $0.87 \mathrm{mmol}, 5 \mathrm{eq}$) was added in two portions over 1 h . The mixture was stirred for 5 h and evaporated. A white solid was obtained (0.044 g). No amine product could be detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the white solid (Appendix J). An IR spectrum of the solid is shown in Appendix J.

41.2 Preparation of 2-(1-(3,5-di-tert-butylbenzyl) -1H-1,2,3-triazol-4-yl)ethanamine (7b)

a) 2-(2-(1-(3,5-Di-tert-butylbenzyl)-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b) ($0.235 \mathrm{~g}, 0.53 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in EtOH (absolute, 25 mL). Hydrazine hydrate ($64-65 \%, 1.27 \mathrm{mmol}, 2.4 \mathrm{eq}$) was added in one portion and the mixture was heated at reflux for 4 h . The solvent was removed under reduced pressure, yielding a white solid $(0.266 \mathrm{~g})$. A portion of the crude product $(0.130 \mathrm{~g})$ was attempted purified on a silica column, using a 70:30:3 mixture of chloroform, MeOH and $\mathrm{NH}_{3}(\mathrm{aq})(25 \%)$ as eluent. An off-white solid containing product $\mathbf{7 b}(0.043 \mathrm{~g})$ was obtained from the column. The ${ }^{1} \mathrm{H}$ NMR spectrum of the solid is shown in Appendix K.
b) The experiment was repeated in a larger scale:

2-(2-(1-(3,5-Di-tert-butylbenzyl)-1H-1,2,3-triazol-4-yl)ethyl)isoindoline-1,3-dione (3b) ($0.954 \mathrm{~g}, 2.15 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in EtOH (absolute, 80 mL). Hydrazine hydrate $(50-60 \%, 17.7 \mathrm{mmol}, 8 \mathrm{eq})$ was added in one portion and the mixture was heated at reflux for 3 h . The solvent was removed under reduced pressure, yielding a fluffy, white solid $(0.986 \mathrm{~g})$. A portion of the crude product $(0.112 \mathrm{~g})$ was attempted purified on a silica column, using a 70:30:3 mixture of chloroform, MeOH and $\mathrm{NH}_{3}(\mathrm{aq}, 25 \%)$ as eluent. No material was obtained from the column. A portion of the crude product (0.604 g) was suspended in DCM (30 mL) and filtered through a celite plug. The filtrate was evaporated under reduced pressure, yielding $\mathbf{7 b}$ as a yellow oil (0.261 g). ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and IR spectra of the product are shown in Appendix K.

42 Attempted one-pot azidation of Boc-protected indole carboxaldehyde

Conversion of Boc-protected indole carboxaldehyde (5a) to azide (1c) was attempted using a procedure by Pramanik and Ghorai. ${ }^{27}$

a) Tert-butyl 3 -formyl-1 H-indole-1-carboxylate (5a) ($1.018 \mathrm{~g}, 4.15 \mathrm{mmol}, 1 \mathrm{eq})$ was dissolved in DCM (12 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Azidotrimethylsilane (1.5 $\mathrm{mL}, 11.6 \mathrm{mmol}, 2.8 \mathrm{eq}$) was added to the stirred solution, followed by addition of silver triflate ($0.110 \mathrm{~g}, 0.43 \mathrm{mmol}, 0.1 \mathrm{eq}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Triethylsilane ($1.3 \mathrm{~mL}, 8.3 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added dropwise over 45 min at $0^{\circ} \mathrm{C}$. The solution was allowed to reach ambient temperature and was stirred for 12 h . The reaction mixture
was extracted with DCM, washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, yielding an off-white solid (0.998 g). No azide product were detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the solid (Appendix ??).
b) Tert-butyl 3 -formyl-1H-indole-1-carboxylate (5a) ($0.218 \mathrm{~g}, 0.89 \mathrm{mmol}, 1 \mathrm{eq}$) was dissolved in DCM (2.5 mL) and the solution was cooled to $0{ }^{\circ} \mathrm{C}$. Azidotrimethylsilane (0.35 $\mathrm{mL}, 2.51 \mathrm{mmol}, 2.8 \mathrm{eq}$) was added to the stirred solution, followed by addition of silver triflate ($0.028 \mathrm{~g}, 0.11 \mathrm{mmol}, 0.1 \mathrm{eq}$). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h . Triethylsilane ($0.28 \mathrm{~mL}, 1.75 \mathrm{mmol}, 2.0 \mathrm{eq}$) was added dropwise over 30 min at $0^{\circ} \mathrm{C}$. The solution was allowed to reach ambient temperature and was stirred for 13 h . The reaction mixture was extracted with DCM, washed with brine and dried over MgSO_{4}. The solvent was removed under reduced pressure, yielding an off-white solid (0.2219 g). No azide product were detected in the ${ }^{1} \mathrm{H}$ NMR spectrum of the solid (Appendix L).

43 Tert-butyl 3-(hydroxymethyl) -1H-indole-1-carboxylate (6a)

Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (6a) was prepared based on a procedure by Silverstein et al. ${ }^{38}$

Tert-butyl 3-formyl-1H-indole-1-carboxylate (5a) ($0.124 \mathrm{~g}, 0.50 \mathrm{mmol}, 1 \mathrm{eq}$) was suspended in $\mathrm{MeOH}(5 \mathrm{~mL})$. Sodium borohydride ($0.072 \mathrm{~g}, 1.90 \mathrm{mmol}, 3.8 \mathrm{eq}$) was added in one portion. The resulting mixture was stirred for 1 h . Water $(10 \mathrm{~mL})$ was added an the aqueous phase was adjusted to pH 12 by addition of a saturated solution of $\mathrm{K}_{2} \mathrm{CO}_{3}$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x} 15 \mathrm{~mL})$ and dried over MgSO_{4}. The extract was concentrated under reduced pressure, yielding $\mathbf{6 a}$ as a white solid ($0.107 \mathrm{~g}, 86 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 7.66(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz})$,
$7.60(1 \mathrm{H}, \mathrm{s}), 7.34(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.4,7.8 \mathrm{~Hz}), 7.28-7.24(1 \mathrm{H}, \mathrm{m}), 4.85(2 \mathrm{H}, \mathrm{s}), 1.66(9 \mathrm{H}$, s). The ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix I) is consistent with data reported in litterature. ${ }^{39}$

The experiment was repeated in a 12.8 scale, yielding $\mathbf{6 a}$ yellowish white solid (1.345 g, 85%).

44 Tert-butyl 3-(azidomethyl)
 -1H-indole-1-carboxylate (1c)

Tert-butyl 3-(azidomethyl)-1H-indole-1-carboxylate (1c) was prepared based on a procedure by Suzuki et al. ${ }^{28}$

a) Tert-butyl 3-(hydroxymethyl)-1H-indole-1-carboxylate (6a) ($0.320 \mathrm{~g}, 1.29 \mathrm{mmol}$, 1.00 eq) was dissolved in toluene (15 mL). Diphenylphosphoryl azide ($0.300 \mathrm{~mL}, 1.40$ mmol, 1.09 eq) was added in one portion at rt. The resulting mixture was cooled to $0{ }^{\circ}$ Cand 1,8 -dizobicycloundec-7-ene ($0.210 \mathrm{~mL}, 1.40 \mathrm{mmol}, 1.09 \mathrm{eq}$) was added dropwise over 35 minutes. The mixture was allowed to temper to rt and was stirred for 20 h . The reaction mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x} 5 \mathrm{~mL})$ and washed with water $(15 \mathrm{~mL})$ and brine (15 mL). The extract was dried over MgSO_{4} and the solvent was removed under reduced pressure, yielding a waxy yellow solid $(0.3473 \mathrm{~g})$. The crude product was purified on a silica column, using a 1:3 mixture of pentane and ethyl acetate as eluent. Product 1c was obtained from the column as a white solid ($0.185 \mathrm{~g}, 53 \%$) . ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=8.16(1 \mathrm{H}, \mathrm{br}), 7.62(1 \mathrm{H}, \mathrm{br}), 7.60(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.36(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.1$, $8.1 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{td}, \mathrm{J}=1.0,7.3 \mathrm{~Hz}), 4.47(2 \mathrm{H}, \mathrm{s}), 1.68(9 \mathrm{H}, \mathrm{s})$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Appendix M) is consistent with data reported in litterature. ${ }^{31}$

The experiment was repeated in a 3.2 scale, yielding a crude product of $\mathbf{1 c}$ as a waxy yellow solid ($1.102 \mathrm{~g}, 89 \%$).

References

[1] World Health Organization and others, Antimicrobial resistance: global report on surveillance. 2014.
[2] Gautun, O. R. Synthesis of Novel Antibiotics Inspired by Marine Natural Products. 2013.
[3] Geske, G. D.; Wezeman, R. J.; Siegel, A. P.; Blackwell, H. E. J. Am. Chem. Soc. 2005, 127, 12762-12763.
[4] www.mabcent.no.
[5] Kharb, R.; Sharma, P. C.; Yar, M. S. J. Enzyme Inhib. Med. Chem. 2011, 26, 1-21.
[6] Zhang, L.; Chen, X.; Xue, P.; Sun, H. H.; Williams, I. D.; Sharpless, K. B.; Fokin, V. V.; Jia, G. J. Am. Chem. Soc.. 2005, 127, 15998-15999.
[7] Rogers, S. A.; Melander, C. Angew. Chem., Int. Ed. 2008, 47, 5229-5231.
[8] Strøm, M. B.; Haug, B. E.; Skar, M. L.; Stensen, W.; Stiberg, T.; Svendsen, J. S. J. Med. Chem. 2003, 46, 1567-1570.
[9] Kolb, H. C.; Finn, M.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004-2021.
[10] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem. 2002, 114, 2708-2711.
[11] Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002, 67, 3057-3064.
[12] Todar, K. Todar's Online Textbook of Bacteriology. 2008-2012; http:// textbookofbacteriology.net/antimicrobial.html.
[13] Townsend, C. A. Curr. Opin. Chem. Biol. 2002, 6, 583-589.
[14] Aminov, R. I. Front. Microbiol. 2010, 1.
[15] von Nussbaum, F.; Brands, M.; Hinzen, B.; Weigand, S.; Häbich, D. Angew. Chem., Int. Ed. 2006, 45, 5072-5129.
[16] Rocha-Santos, T.; Duarte, A. C. Analysis of Marine Samples in Search of Bioactive Compounds; Elsevier, 2014; Vol. 65; pp 5-12.
[17] Hansen, T.; Ausbacher, D.; Flaten, G. E.; Havelkova, M.; Strøm, M. B. J. Med. Chem. 2011, 54, 858-868.
[18] H Zhou, C.; Wang, Y. Curr. Med. Chem. 2012, 19, 239-280.
[19] Tron, G. C.; Pirali, T.; Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Med. Res. Rev. 2008, 28, 278-308.
[20] Huisgen, R. Angew. Chem., Int. Ed. 1963, 2, 633-645.
[21] Meanwell, N. A. J. Med. Chem. 2011, 54, 2529-2591.
[22] Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski, E. J. J. Org. Chem. 1993, 58, 5886-5888.
[23] Farooq, T. Synthesis of some nitrogen heterocycles of medicinal relevance. PhD thesis, UiB, 2012.
[24] Giraud, F.; Akué-Gédu, R.; Nauton, L.; Candelon, N.; Debiton, E.; Théry, V.; Anizon, F.; Moreau, P. Eur. J. Med. Chem. 2012, 56, 225-236.
[25] Khan, M. N. J. Org. Chem. 1996, 61, 8063-8068.
[26] Osby, J. O.; Martin, M. G.; Ganem, B. Tetrahedron Lett. 1984, 25, 2093-2096.
[27] Pramanik, S.; Ghorai, P. Org. Lett. 2014, 16, 2104-2107.
[28] Suzuki, T.; Ota, Y.; Kasuya, Y.; Mutsuga, M.; Kawamura, Y.; Tsumoto, H.; Nakagawa, H.; Finn, M.; Miyata, N. Angew. Chem., Int. Ed. 2010, 49, 6817-6820.
[29] Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. 1997, 62, 7512-7515.
[30] Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C.; Terlizzi, R. Eur. J. Org. Chem 2004, 2004, 3447-3458.
[31] Fuwa, H.; Sasaki, M. Organic EB Biomolecular Chemistry 2007, 5, 2214-2218.
[32] Wu, Y.; Raveendranath, P. Processes for the preparation of N-substituted phthalimides. 2007; US Patent 7,253,291.
[33] Li, Y.; Marks, T. J. J. Org. Chem. 1996, 118, 9295-9306.
[34] Gallina, M. E.; Baytekin, B.; Schalley, C.; Ceroni, P. Chem. Euro. J. 2012, 18, 1528-1535.
[35] Gassensmith, J. J.; Barr, L.; Baumes, J. M.; Paek, A.; Nguyen, A.; Smith, B. D. Org. Lett. 2008, 10, 3343-3346.
[36] Pardin, C.; Keillor, J. W.; Lubell, W. D. Cinnamoyl inhibitors of transglutaminase. 2013; US Patent App. 14/015,047.
[37] Ing, H. R.; Manske, R. H. F. J. Am. Chem. Soc. (Resumed) 1926, 129, 2348-2351.
[38] Silverstein, R. M.; Ryskiewicz, E. E.; Chaikin, S. W. J. Am. Chem. Soc. 1954, 76, 4485-4486.
[39] Kobayashi, S.; Miyamura, H.; Akiyama, R.; Ishida, T. J. Am. Chem. Soc. 2005, 127, 9251-9254.

私甾品				岂

A. 5 COSY spectrum of 3 a

A. 6 IR spectrum of 3a

Elemental Composition Report
Single Mass Analysis
Element prediction: Off
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Sinc: $\min =-1.5, \max =50.0$ - for

Monoisotopic Mass, Odd Electron Ions
1581 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass)
$\begin{array}{llll}\text { C: 1-500 } & \text { H: 0-1000 } & \text { N: 0-50 } & \text { O: 0-100 }\end{array}$
NT-MSLAB-Operator-SVG (Ar,35000.0,0.00,0.00); Cm (181:192)
NT-MSLAB-Operator-SVG
2015-201 192 (3.738) AM2
$\angle 00+\partial S \downarrow \nabla^{2} \varepsilon$
$+d \forall S \forall S W=O \perp: \tau$
1: TOF MSASAP $3.45 \mathrm{e}+007$

$\stackrel{-}{-}$
-1.5
50.0

넚 N్త゙స్

$\stackrel{\odot}{\circ}$

alc. Mass
44.2525
44.2512
44.2530
44.2517

Maximum:
Mass
444.2520

Current Data Parameters	
EXPNO	6
PROCNO	1
F2－Acquisition Parameters	
Date＿	20150408
Time	13.38
Instrum	spect
PROBHD	5 mm PADUL 13 C
PULPROG	zg30
TD	65536
SOLVENT	CDC13
NS	16
DS	2
SWH	8278.146 Hz
FIDRES	0.126314 Hz
AQ	3.9583745 sec
RG	912.3
DW	60.400 usec
DE	6.00 usec
TE	298.0
D1	1.00000000 sec
TDO	
$=======$NUC1	
P1	10.50 usec
PL1	$-6.00 \mathrm{~dB}$
SFO1	400.1324710 MHz
$\underset{\text { F2 }}{\text { SI }}$－Processing parameters	
SF	400.1300079 MH
WDW EM	
SSB	0 － 0.30
LB $\quad 0.30 \mathrm{~Hz}$	
$\begin{array}{lll}\text { GB } \\ \mathrm{PC} & 0 & 1.00\end{array}$	
	1.00

$$
86 て \cdot \tau-
$$

カガ0 $-\frac{0}{-\frac{\varepsilon 6^{\prime} Z}{\varepsilon L^{\prime} \varepsilon^{\prime}}}$
 －

4.03 .5 ppm

980°

82を
LOも
8 CE
LOも
G89．
589
$\varepsilon 69$
669.
$\angle 0 L^{\circ}$
O08．
$2 T 8$.
$218^{\circ} \mathrm{L}$
$818^{\circ} \mathrm{L}$
$978 \cdot{ }_{L}$ 」
 $\underbrace{}_{|l|}$
\qquad

）

1．．．．1．

$06 \cdot \angle 9 \tau$
$\varepsilon \tau \cdot 89 \tau$

B. 3 HSQC spectrum of 3 b

B. 6 IR spectrum of 3b

B. 7 MS spectrum of $\mathbf{3 b}$
Page 1

C
C. 1

C. 5 COSY spectrum of 3 c

C. 6 IR spectrum of 3c

T.	. 1	T	T	. 1	1	. 1	.	1	1	. 1	1	.	1	1		ppm
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	
				\mid				\|	(o)		-	ก				

D. 6 IR spectrum of 3d

Spectra of 3e

匞

19
主
E. 6 IR spectrum of 3 e

Spectra of 3 f

J£

F
F. 1

F. 6 IR spectrum of $3 f$

Spectra of 1c

G． $1{ }^{1} \mathrm{H}$ NMR spectrum of 1 c ，first parallel

てんも・ロー
G. $2{ }^{1} \mathrm{H}$ NMR spectrum of 1 c , second parallel

Spectra of 5a
 H

Spectra of 6a

I. $2{ }^{1} \mathrm{H}$ NMR spectrum of 6 a , second parallel
699° I
$\ulcorner=00 \cdot 6$
-

\square

7.8	7.6	7.4

.9 4.8 ppm

$\stackrel{\text { N }}{\sim}$
$-$
$\stackrel{\sim}{\circ}$
4.0
4.5
120°

18
-

온
N
\sim
\sim
$\begin{array}{r}78^{\circ} 0 \\ 88^{\circ} 1 \\ \hline 10^{\circ} 1 \\ \hline 98^{\circ} 0 \\ \hline 86^{\circ} 0 \\ \hline\end{array}$
∞
$-\quad 260$
${ }_{\infty}^{\infty}$

\qquad
\qquad

0
Spectra of the residue obtained in an attempt to prepare 7 a

J.

K. $3{ }^{13}$ C NMRspectrum of 7b

K. 4 HSQC spectrum of 7b

K. 5 HMBC spectrum of 7 b

K. 7 IR spectrum of 7b
(
${ }^{1} H$ NMR Spectra of the residues obtained in the attempted one-pot synthesis

of 1 c from 5 a

${ }^{1} \mathrm{H}$ NMR spectrum of residue, first parallel
L6て・G

LOT•OT_

Spectra of 1c

${ }^{1} \mathrm{H}$ NMR spectrum of 1 c , first parallel

M
M. 1

M. $2{ }^{1}$ H NMR spectrum of 1c, second parallel

