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Abstract

Process models are used in many model-based computational engineering
activities, including process design, optimization, process control and sim-
ulation. The construction of mathematical models is generally regarded as
difficult and time consuming, and is therefore often handled by modelling
experts. If a tool were available that provided a systematic and safe ap-
proach for handling model complexity, consistent and correct models could
be created and would eliminate the need for the expert. This project is part
of an effort to further advance such tools.

This thesis presents an information structure from which mathematical
models can be extracted. The hypothesis is that the information structure
will facilitate the development of a structured modelling procedure that can
be used in our computer-aided modelling tool. The information structure
is in this thesis defined as the model ontology. The ontology is based on
a hierarchical decomposition of processes into model objects that can be
described individually. The first hierarchical level is a directed graph that
consists of nodes and arcs. Nodes represent capacities that contain the fun-
damental extensive quantities such as mass, energy and information. Arcs
represent the transfer of extensive quantities between the nodes. The model
objects are increasingly refined for each level in the hierarchical structure
based on different characteristics such as phase and time scales. The mod-
elling tool utilising the modelling ontology will then extract building blocks
from the hierarchical structure used for generating specific process models.

The rules for generating the structure are implemented in a graphical
editor, called the "Ontology Editor". The "Ontology Editor" is designed for
constructing consistent ontologies for representation of mathematical mod-
els. The results gained from a case study are promising. The ontology allow
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for extraction of building blocks and variables that can be implemented in a
our modelling tool that provide a systematic and safe approach for creating
consistent and correct mathematical models.



Sammendrag

Prosessmodeller brukes i mange modelbaserte ingeniøraktiviteter som for
eksempel prosessutforming, optimalisering, prosessregulering og simulering.
Det å konstruere en prosessmodell er generelt ansett for å være både vanske-
lig og tidkrevende, og håndteres derfor ofte av modelleringseksperter. Et
modelleringsverktøy som gav struktur til modelleringsprosessen og håndterte
kompleksitet i modellen på en oversiktelig måte kunne ha eliminert behovet
for modelleringseksperten. Denne avhandlingen er en del av arbeid mot å
utvikle et slikt verktøy.

Denne avhandlingen presenterer en strategi for å strukturere informasjon
til bruk for representasjon av matematiske modeller. Hypotesen er at denne
strategien vil føre til en forenklet modelleringsprosedyre for å modellere
prosesser og vil samtidig legge til rette for enklere gjenbruk av modellen.
Strategien for å strukturere informasjon er i denne avhandlingen betegnet
som en ontologi.

Ontologien er basert på en hierarkisk dekomponering av prosesser til
modellobjekter, som kan beskrives individuelt. Det første nivået i hierarkiet
er en rettet graf bestående av noder og kanter. Noder representerer kap-
asiteter som kan inneholde de fundamentale ekstensive mengdene slik som
masse, energi og informasjon. Kanter representerer overføringen av disse
mengdene mellom nodene. Modellobjektene blir videre sortert for hvert
nivå i ontologien basert på ulike karakteristikker av systemer, slik som faser
eller tidsskalaer.

Reglene for å generere denne informasjonsstrukturen ble implementert i
en grafisk verktøy som er kalt "The Ontology Editor". Verktøyet er utviklet
for å hjelpe en modelldesigner i å lage konsistente ontologier for å represen-
tere matematiske modeller. Resultatene fra implementeringen av ontologien
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er lovende, og muliggjør for definisjon av konsistente prosessmodeller. On-
tologien tillater for ekstraksjon av modellobjekter som kan implementeres i
modelleringsverktøyet vårt og pålegger en systematisk og trygg metode for
å konstruere matematiske modeller.
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Chapter 1

Introduction

This study has been conducted at the Department of Chemical Engineering
at Norwegian University of Science and Technology, as a master thesis for
the degree of Master of Science from October 2014 until February 2015. The
thesis has been carried out with professor Heinz A Preisig as supervisor.

1.1 Motivation and goals

Amodel of a process is a system of mathematical equations. The solutions to
these equations reflect the behaviour of the process, which is to be modelled
(Aris 1978). The effort of modelling a physical-chemical-biological (PCB)
system remains high, due to the large variations of chemical process units,
The effort required is also increased by modelling of physical phenomena
as well as increasing level of complexity that will have to be met by the
mathematical models. Furthermore, a family of models, with varying degree
of detail, is required in order to support the application of model-based
techniques during the whole process life cycle. The purpose of these models
is to provide information on the behaviour, which is required for operations
such as analysis, control, design, optimization and simulation.

The representation of a PCB process in form of a mathematical model is
the key for solving many engineering problems. This has been formulated by
many researches, among others (Ogunnaike & Ray 1994), (Cellier 1991) and
(Hangos & Cameron 2001). Modelling of chemical processes requires the use
of all the basic principles of chemical engineering, including: thermodynam-
ics, reaction kinetics and transport phenomena. The modelling procedure

1



2 Introduction

should therefore be approached with care and thoughtfulness (Stephanopou-
los 1984).

The objective of this work is to formulate ontologies to be used in con-
junction with a computer aided modelling tool. This modelling tool has
been an ongoing project for professor Preisig for a long time. An ontol-
ogy in it simplest form can be said to be structure of information. The
idea is to design ontologies that allow for model extraction and storage and
still facilitate for the principles introduced above to be apprehended. The
secondary objective is to assist professor Preisig in the implementation of
these ontologies into his modelling tool, which goes under the name "Process
Modeller".

The focus of this work is on modelling and model formulation, not prob-
lem solving. Most of the currently available modelling tools and simulation
packages focus on model manipulation, specification, analysis and solution.
Many of them even leave out the modelling part. It is generally assumed
that the mathematical model of the process under investigation is known or
easily accessible. The construction of process models is, however, slow and
time consuming. A modelling tool focusing on the modelling part is there-
fore of great importance and could potentially reduce the time consumption
and the amount of errors done in the modelling procedure dramatically.

1.2 Overview of related work

The concept of a modelling tool that focuses on modelling development is
not new. Research groups have been working on developing modelling tools
and languages for a long time. Stephanopulous and his co-workers presented
the MODEL.LA environment (Stephanopoulos et al. 1990). MODEL.LA
was the first modelling tool implementing a modelling language specific for
the domain of chemical engineering. The reimplementation of MODEL.LA
following Bieszczad’s thesis (Bieszczad 2000) provided a physical-chemical
modelling language for representing chemical process models and a mod-
elling logic of construction the underlying model. ASCEND is an equation-
based environment for solving small to very large mathematical models
(Piela et al. 1991). In more recent time the development of modelling
tool has been focusing on code generation of symbolic expression. This
is a primary focus in the development of Mobatec (Westerweele & Lau-
rens 2008), Modeller (Westerweele 2003) and MOSAIC (Kuntsche et al.
2011). The first modelling tool based on the principles of ontologies was
MODKIT (Bogusch et al. 2001) and (Yang & Marquardt 2004), which
was implemented using OntoCAPE (Marquardt et al. 2010).
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1.3 Outline of this thesis
The thesis it built up by three parts.

The first part of this thesis evolves on the theoretical principles of model,
ontologies and modelling. It presents design principles of ontologies that
are used in the construction of the ontologies presented later in this thesis.
Moreover, it also elaborates on the principles of modelling and models, the
terms and ideas that are essential for this work.

The second part focuses on the constructed ontologies and the imple-
mentation of them. The first chapter in this part presents the basic idea of
the ontology and provide an introduction to the implementations. The next
chapter presents the ontologies developed. The ontologies are presented in
detail, both the internal design, and how they build on each other. The
next chapter, chapter 5, describe the implementation of the ontologies and
the user interface developed to control the model implementation. The last
chapter of this part provide a case study, which describes procedure the
extraction of a model for a flash tank from the ontologies and the definition
of variables and equations.

In the last part, the implementation and the ontologies will be discussed.
The final chapter contains the main conclusions, summarizes the main con-
tributions and gives some suggestions for further research.
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Scientific background
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Chapter 2

Models, modelling and
ontologies

This chapter will present the scientific background related to the construc-
tion of ontologies, the modelling procedure and models in general as defined
in this thesis.

2.1 Ontology

Originally, Ontology is a philosophical discipline concerning the study of
what exists, what the existing things are and their relations. The term
"Ontology" originates from Greek and can be translated to "The study of
being"1. Greek philosophers, such as Parmenides of Elea and Aristotle,
introduced the philosophical discipline of ontology during the 4th century
BC (Austin 1986).

2.1.1 Ontologies in computer science

In the last decades, computer scientists have borrowed the term ontology,
firstly in the field of artificial intelligence (AI). Within computer scientists,
the term is used with a more specific context, compared to philosophy, where
it denotes an explicit specification of a conceptualization (Gruber 1993). A

1(Ontos), the genitive of (On), means "of being"; the suffix - (-logica) denotes a science,
study, or theory. So originally, the word signifies "theory of being"

7
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conceptualization is an abstract, simplified view of the world that we wish
to represent for some purpose.

According to (Gruber 1995) there are two usages of ontology in computer
science.

• The first type of usage is when an ontology serves as a library of
information to efficiently build intelligent systems. To this aim, the
generic ontology is to be transformed (i.e., extended and customized)
into a knowledge base according to the requirements of the respective
application. This type of ontology is illustrated in figure 2.1 (a).

• The second type of usage is as a shared vocabulary for communication
between interacting human and/or software agents. According to their
respective functions, the communicating agents may have different
knowledge bases, but all the knowledge bases must be consistent with
the ontology. This type of ontology is illustrated in figure 2.1 (b).

Table 2.1 – Explanations for figure 2.1

Number Explanation
1 First software ask for a procedure
2 A translator passes the call for a procedure on to an

ontology
3 The ontology returns the procedure as a process
4 The procedure translator sends the process to the

translator for the method library
5 Process is sent to the ontology
6 The ontology returns the call for which method
7 The translator asks the method library for method of the

process
8 The method is returned
9 The process method is returned to the first program
10 The procedure with all required information is returned
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Ontology

Information Information

BA C D

(a) this figure illustrates the first kind of ontologies, namely an on-
tology used as a knowledge-base. Information groups are stored in a
tree.

procedure translator ontology translator method
1
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2

3

5

6

7

8

9

4

(b) This figure illustrates the second type of ontologies, when an ontology is used
as an integrator between different software tools. The term produce, used by one
tool is translated into the term method used by another tool via the ontology. For
explanations see table 2.1.

Figure 2.1 – This figure illustrates the two different types of ontologies used in
computer science described by (Marquardt et al. 2010) and (Gruber
1993).

2.1.2 What an ontology is

The term ontology is more and more being used in an inflationary manner.
It denotes all types of structures used for representation of information
and knowledge. It is difficult to put a precise definition to the word. In
thesis, ontologies are primarily seen as means to efficiently build and store
information in a structure.

2.1.3 Constructing an ontology

There have been written many articles on how to properly construct on-
tologies and the procedure. In Grubers article from 1993 (Gruber 1993)
he described a guideline on how to build ontologies. These design princi-
ples were later reused and slightly modified by (Uschold & Gruninger 1996)
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and (Marquardt et al. 2010). Their principles are extracted and can be
summarized in the following points:

Clarity

An ontology should effectively communicate the intended meaning of de-
fined terms. This means to state exact and unambiguous definitions for
all ontological terms in order to effectively communicate the intended se-
mantics. The definitions should be objective and independent of context,
meaning that the definitions should not be explicitly dependent on social or
computational context.

Coherence

An ontology should be coherent. That is, terms used in the ontology should
have one and only one meaning and must be coherent to the real world.

Extendibility

An ontology should be designed to anticipate the uses of the shared vocab-
ulary. It should offer a conceptual foundation for a range of anticipated
tasks, and the representation should be crafted so that one can extend and
specialize the ontology monotonously. That is one should be able to define
new terms for special uses based on the existing terms in a way that does
not require a revision of the existing definitions.

Customizability

During the lifetime of an ontology, new applications for the usage is likely
to appear, which were not anticipated during ontology development. Since
different applications often imply different views on the world (Noy & Klein
2004), the applications will have demands on the ontology and will therefore
require different conceptualizations. This means that an ontology must be
able to new application requirements.

Minimal encoding and ontological commitments

An ontology should be as small as possible both in terms of size and the
information required to use an ontology. For the sake of reuse of an ontology
it is important to keep the amount of keywords as small as possible
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2.2 Models
The terms model and modelling are used in a wide variety of interpreta-
tion and applications. The applications of models span from natural and
social sciences, engineering, economics, and arts. Even in process systems
engineering the terms are used to denote different concepts and methods.

2.2.1 Mathematical model - behaviour

A mathematical model is described by (Polderman & Willems 1998) as:
A mathematical model is a pair (U,B) with U a set, called the universum-

its elements are called outcomes-and B a subset of U, called the behaviour

In other words, a mathematical model is a system of mathematical equa-
tions that represent the nature of biological, physical, and/or chemical pro-
cess, or even processes that occur in other science or non-science discipline.
The equations involves variables that are restricted by equations and rela-
tions.

2.3 Modelling
"Models are constructed for a purpose, a specific application" (Preisig 2010).
When varying the application, the model varies and may result in many
different models for the same physical object. A complete model description
requires three basic steps. These steps are shown in figure 2.2.

Figure 2.2 illustrates the four main components in a model and indicates
the sequence in which they are established. The variables denote

• N is the stoichiometric matrix for all nodes

• F is the flow matrix for all species in a graph

• x̂ denote the transport between nodes

• ξ̃ denote the internal changes to a system.

• ẋ is the state time differential form flows and transpositions

• x denotes the new time integrated system.

The modelling procedure is initiated with making a directed basic graph
that represent the capacities and how they interact. In this thesis a basic
graph will be used to visualize the aspects of a model. Each process is
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Figure 2.2 – This figure illustrates the grand scheme of modelling presented in
(Preisig 2010). The first step is the balance equations, the sec-
ond step is transport equations and reactions. The last step is the
state variable transportations. This version of the grand scheme was
printed in (Preisig 2013).

seen as a set of control volumes (nodes) and the communication between
the control volumes are denoted as arcs. A node is visualized as a round
circle and an arc is visualized as a line between two communicating nodes.
A small example of a basic graph with nodes and arcs is provided in figure
2.3. The decisions taken when the control volumes are defined are critical,
because the structure chosen is determining the application and contents of
the model. What is not considered when structuring the basic graph will
not be considered later and not captured by the model.

Figure 2.3 – Illustration of a simple basic graph

The basic graph gives rise to the first step, namely the balance equations.
For a mass system the balance equations would have the form as described
in equation 2.1.

ṅs = Fn
s n̂s + NT

s ñs (2.1)
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For this equation the time differential (ṅs) is equal to the sum of flows (Fn
s n̂s)

and the transposition of species in the system itself (NT
s ñs). Fn

s is the
directionality matrix for the species in the graph, NT

s is the stoichiometric
matrix.

The next step is determining the flow rates (n̂s) and the transposition
rates (ñs). They are dependent on variables from the energy function, such
as temperature (T ), pressure (p) and chemical potential (µ).

The variables being introduced by the flow rates and the transposi-
tion rates are all functions of state (Haug-Warberg 2006). The last step in
the procedure of making a complete model description is to provide these
links between the primary states in the energy functions and the secondary
state variables that are the variables derived from the transfer- and reaction
rates. The primary state variables are often referred to in literature as in-
ternal state variables. The internal state variables are the smallest possible
subset of system variables that can represent the entire state of the sys-
tem at any given time (Nise 2013). In other words the minimal state space
representation required to compute the future given the current input.

2.3.1 Tokens

The basic graph is established on the background on what each node and
connection represents in the sense of what a node contains and what it
transfers. The model is an abstraction of the model universe as a network
and what is moving around is referred to as tokens. A token is minimal
state representation that describes the extensive quantity that is held and
transported within a unit. The network is the description and illustration
of how tokens are being accumulated, transferred and modified. There are
four main tokens, namely Mass, Energy, Species and Information. Every
connection transfer a token, and since a token is being transferred from one
node to another, each node also got tokens.

Each token have some dependencies. If a system contains mass, there
should be a mass balance over the system. Since mass is able to carry both
energy and momentum, these tokens could also be present. Mass could
carry heat and momentum and could potentially then also receive energy
token and momentum token if energy and momentum are to be considered
in the model scope. Each token gives a differential equation for one of the
primary states. A mass token gives a differential equation in component
mass and an energy token gives a differential equation for internal energy.
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2.3.2 The token mass

A mass token in a node represents the phase and species in that node.
Different species and phases have different abilities and attributes.

In terms of transportation, the token mass could be diffusion. Some of
the principle methodologies for mass transportation are (Welty et al. 1976):

• Mass can be transferred due to pressure difference and pressure gra-
dients (pressure diffusion)

• Forced diffusion by external forces

• Mass can be transferred to even temperature distribution in a system.
(Thermal diffusion)

• Diffusion can occur due to difference in chemical potential.

2.3.3 The token energy

Energy token in a node represents internal energy. In transport processes
the token energy can represent convection, conduction, radiation, work or
moving electrons when transporting electricity. Transportation of internal
energy is mass transport, and is therefore not mentioned in this section.
When transporting energy from one node to another the energy will have to
undergo two transformations. First, the token energy would be represented
as internal energy, then it would have another form in the connection and
later go back to internal energy again in the other node. In order to set up
the energy balances for each node one need to include all heat streams, work
streams and also mass streams. Mass carries internal energy. Movement
of mass adds kinetic energy. Potential energy may also be considered if
the plant is exposed to a gravitational field. Movement of mass across
boundaries also adds volumetric work to the balance. Since mass induces
energy, it is possible to have mass balances in isolation, but it is not possible
to have isolated energy balances in a system that exchange mass. The energy
balance of a system can be described by equation (2.2) (Preisig 2013).

dE

dt
= FmÊm + Fq q̂q + Fwŵw (2.2)

2.3.4 The token information

There are many definitions of signals. A popular definition is "A signal is a
function that conveys information about the behaviour or attributes of some
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phenomenon" (Priemer 1991). Signals can occur naturally or they can be
manually injected. Generally the signal is handled as a flow of information,
for example the output of a pH-meter or the temperature in a column.
These samples are electrical and are typical for what it the regular way to
think of signals. A perfect modelling tool also needs to be able to handle
non-electrical signals like an acoustic wave or an electromagnetic wave, a
mass pulse throughout a pipe. These signals are also information.

When handling signals in terms of tokens it is important to be aware
of that token information is not physical. What distinguishes information
from the other tokens is that it is not a conserved quantity, meaning that
its not necessary to do any calculations to check the validity of the signal
and there are no balance equations for them. The signals can be handled
at a different layer. It is not depended on steady state calculations simply
just on the event-dynamic part.

2.3.5 Attributes

Nodes and arcs are elements in a directed graph. A directed graph itself does
not give any meaning except for giving a network structure. In order to use
the network structure it is important to assign attributes to nodes and arcs.
The attributes give context to the nodes and arcs. The Oxford dictionary
(Hawkins 1986) define attributes as "quality ascribed to or characteristic of
a person or a thing".

When setting up the structure that holds the attributes there are two
main goals. First of all, it needs to give sufficient information about the
nodes and arcs in the model. Secondly, the structure of attribute combi-
nations should be reasonable to what combinations it should reflect. For
example, an arc is not constant, dynamic or event-dynamic. It does not
need to specify that attribute. A node is not able to transport anything
and does not need to structure attributes for transport. In order to solve
the second goal it is possible split the attributes and specify them separately
for nodes and arcs. The node attributes are displayed in table 2.2 and the
connection attributes are displayed in table 2.3.

2.4 Physical topology

The first step in a modelling procedure is to break down the process who is
to be modelled into a set of subprocesses. These subprocesses may again be
broken down into subprocesses, and so on. In the end, a process consists of
may subprocesses where each are small enough to be handled individually,
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Table 2.2 – Attributes in nodes

Set Attributes
Nature Physical , Information
Dynamics Constant , Dynamic , Event
Morphology Distributed , Lumped
Token Mass , Energy, Species , Information
Phase Gas , Liquid , Solid
Dimensionality 0-D, 1-D, 2-D, 3-D

Table 2.3 – Attributes in arcs

Set Attributes
Nature Physical , Information
Token Mass , Energy , Information
Directionality Uni-directional , Bi-directional
Mechanisms Heat , Work , Electric
Phase Gas, liquid, Solid

meaning that the process is divided into a network of connected volume
elements. The network of these subprocesses describes the physical structure
of the process and shall in this report be referred to as the physical topology.

2.4.1 The building blocks

The two basic building blocks in a physical topology are, as mentioned,
nodes and arcs. The nodes are able to contain token, while the arcs de-
scribe the transportation of token between two nodes. By introducing dif-
ferent time scales, and sizes to the node, it is possible divide the nodes into
three different dynamic behaviours, namely constant, dynamic and event-
dynamic. In figure 2.4 the node classification based on time-scale is illus-
trated.

Event-dynamic Dynamic Constant

t

Small Large

Figure 2.4 – Illustration on possible separation of nodes based on time
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The nodes that represent systems with constant dynamic behaviour will
from here on be referred to as reservoirs. A reservoir is defined as a node
that has constant state, in other words, it has no dynamics. (Preisig 2013)
define the reservoir as: "Reservoirs is an infinity large source of extensive
quantity with constant intensive properties". Nodes that are event-dynamic
have no capacity, so there is no accumulation of token in such a node. This
reduces the differential algebraic equation (DAE) into an algebraic equation
because the differences in primary states are constant in and out of the node.
Presig define the event-dynamic systems as "surfaces with no capacity, thus
exhibiting event dynamics" (Preisig 2013). Nodes that are representing
systems of dynamic behaviour can be divided into two groups depending
on the distribution of intensive properties within the system. A dynamic
lumped system is a system where uniform intensive properties within the
boundaries of the node, are assumed. A dynamic distributed system does
not enforce uniform intensive properties within the system.

Arcs represent the interactions between two nodes. An arc describes the
exchange of token from one system to another systems across a boundary
separating the two systems. Therefore, an arc cannot exist without being
connected to nodes in both ends. This definition also imposes that the arcs
are directed. The actual flow of token across a boundary is caused by a
difference in states for the two systems. For example the driving force in
heat flow is temperature difference. In some cases the transfer of token
happens in some other medium. This medium might also have capacities.
To capture these capacities transport systems are introduced. The transport
system can for example be used to model heat flow through a solid mass
wall.

Once the building blocks are established, it is possible to start building
topologies.
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Example: Physical topology of heat exchanger

Hot product Steam

Condenstate Cold product

Figure 2.5 – Illustration of a shell and tube heat exchanger

Figure 2.5 illustrates a general shell and tube heat exchanger with high
pressure steam which condensate as cooling medium. This heat exchanger
could be a part of a larger plant. The heat exchange could be separated
into three parts, namely the condensation of steam, the heat transfer in the
wall and the heating of the product. At this stage only the topology is of
concern, the actual contents of the heat exchanger and the volumes are not
to be considered at this first stage of model construction. This topology
will form the basis of the rest of the modelling process. A possible topology
for this heat exchanger is illustrated in figure 2.6.

HP SS CP

TGHS TL CO

Figure 2.6 – This is a illustration of a possible topology for the heat exchanger
illustrated in figure 2.5.

The half circles represents reservoirs, the ellipses represents distributed
systems, and the phase-transition of the steam is represented with a black
circle which is the boundary with no capacities. The steam is injected to
the reservoir at bottom left corner of the topology. This steam is then
transferred to the distributed system in the tube side in gas phase (TG).
Heat (red arrow) is transferred from the gas phase shell side of the heat
exchanger (SS). The vapour, condensates as the heat is transferred still at
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the tube side but in liquid phase (TL). This liquid has a high temperature
and can transfer heat to the shell side, and some mass leaves the tube
side to the condensate drain (CO). The cold product (CP) enters the shell
side at the right top corner in the topology and is then transferred to the
distributed shell (SS) side. Here it is heated and the heated product (HP)
leaves the shell side.

2.4.2 Decomposition of a process

As defined earlier a physical topology is an abstract representation of a
physical process based on the physical connections of the process. This pro-
cess is initiated by breaking the process up into subprocesses. The decisions
made during the process of defining subprocesses are largely based on the
phase. A node can only consist of one phase in order to exhibit uniform
and distributed properties. This was also illustrated in figure 2.6 where a
phase transition occurred, the two phases were represented by two separate
nodes. A second decision that has to be considered is the size of the system
the node should represent. The systems that the nodes is going to represent
must be small enough to have uniform quantities. The third decision is
connection based and on how one defines the systems.

Example: Decomposition of a distillation process

In figure 2.7 a comic for a possible decomposition of a distillation column is
illustrated. A distillation column is a multi-staged column where chemical
components are separated due to differences in vapour pressure. A feed
stream comes in and two product streams come out. This splitting of feed
stream is illustrated in figure 2.7(a). Most distillation columns consists of
a column and a reboiler to supply the necessary energy to vaporize, and a
condenser to remove the energy at the top so the vapour can condensate.
This is illustrated in figure 2.7(b) were the reboiler and the condenser now
two separate nodes from the rest of the column. If there is a mid placed feed
entry, the middle section would behave a bit different from the rest of the
column. To capture this case with feed stream it could be a good idea to
separate this into one node (figure 2.7(c)). Each tray in the column would
have different abilities and properties from each other. If the objective of
the modelling is to capture an effect at a certain tray, each tray should be
decomposed. The decomposition of each tray is illustrated in figure 2.7(d).
If one is to model the amount of fluid in tray 2, one needs to capture the
behaviour of fluid in tray 2. It is then possible to split each tray into two
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Figure 2.7 – Stepwise decomposition of a distillation column
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phases with a boundary between them. A suggested splitting of each tray
is illustrated in figure 2.7(e).

Entire figure 2.7 shows a possible way to decompose the distillation
process. This finally leads out to a flat topology of the process (figure 2.7(e)),
which consists of simple nodes and arcs. The following assumptions have
been made during the construction of the physical topology as represented.

For the construction of the physical topology as represented the following
assumptions have been made.

• Each tray is assumed to consist of two homogeneous phases, liquid and
vapour. Between the two phases there is a boundary that separates
the two homogeneous systems.

• The condenser and the reboiler can be decomposed into two homoge-
neous phases with a boundary between them.

• Heat loss to surrounding environment is assumend to be negligible

• The momentum balances are neglected
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Chapter 3

Overview of the
implementation

Having established the scientific background of ontology engineering and
modelling it is now time to present the ontology-based modelling tool that
goes under the name "Process Modeller".

The "Process Modeller"is a complete modelling tool that professor Preisig
has been working on for many years. Integrated in "Process Modeller" is a
framework for constructing ontologies. This framework is called the "On-
tology Editor" and is the focus of this thesis. "Ontology Editor" consists of
several independent sub-ontologies, which will be presented in the chapter 4,
and a user interface that allow for construction of ontologies for variable rep-
resentation to be used in mathematical models. The constructed ontologies
resulting from the "Ontology Editor" is denoted as variable spaces. The on-
tology describing the break-down of the universe into small building blocks
will be refereed to as the model ontology.

This parts starts with describing the architecture of the model ontology
from which the models are extracted. The model ontologies are based on a
top down procedure first describing the basic building block and then start
refining the building blocks and from the refinement extract types of build-
ing blocks. This chapter also describe the architecture of a variable space
and include the presentation of a modelling language, which is designed for
construction variable spaces with equations.

The next chapter present how the all ontologies are included in the "On-
tology Editor" and present the rules that are included to guide the user to
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construct consistent variable spaces. This involves presentation and expla-
nation of the user interface, how it functions and what it is able to do. The
implementation of the modelling language is also described in this chap-
ter. The operators and how units and index structures are inherited over
operations is also included in the modelling language implementation.

Finally, the implementation and construction of variable space, which
form the basis of a mathematical model, is presented by a case study. This
case study is a modelling example of a dynamic flash tank. This involves
both implementation of the physical model to describe the physics and
chemistry behind and the implementation of a signal space to control the
physical model. This chapter describe how the "Ontology Editor" can be
used for constructing a variable space and how building blocks can be ex-
tracted from model ontologies. The example is only intended as a prototype
on how a variable space could be defined. The solving of the model and the
production of executable computer code is at the present state not included.

3.1 Implementation detail
This part describes how the implementation works and not how it was im-
plemented. Although the actual implementation required a lot of work and
was far from trivial, the implementation details was not considered to be an
important contribution to this thesis. Some of the most important details
are worth spending some time on, especially the basic language and soft-
ware used for the implementation, since these form the basis for the entire
program.

The implementation of the modelling tool is done in Python1. Professor
Preisig selected this programming language, since it provides the foundation
for creativity during programming and is a flexible language. Since the
main challenge with the modelling tool is organisation, and not speed of the
calculations, it was considered to be a good language for implementation.

The construction of the graphical user interface was done using PyQt.
PyQt is a Python binding of the cross-platform GUI toolkit Qt. PyQt
contains a library of construction of GUI and provides translation of a GUI
design done using Qt-designer into python code.

1Web page of the Python software foundation: https://www.python.org/

https://www.python.org/


Chapter 4

Architecture of the
ontologies

The principles on which one could design an ontology was first introduced
by Gruber (Gruber 1995), as presented in chapter 2 and used as inspiration
for these ontologies. Although the idea of ontologies and design of ontologies
was presented with Gruber, the idea of making an ontology of ontologies
has nothing to do with Gruber’s definition. The objective is to construct an
ontology from which physical-chemical-biological models can be extracted.

4.1 The basic structure

The ontologies presented in this thesis are dependent on each other in a
layered structure, which forms a lower-trigonal structure 1. The first ontol-
ogy defines the basic set of definitions. The following ontologies are defined
by systematically adding information to the first definitions by branching
and specializing and then finally, recursively defining the overall ontology.
This ontology construction approach is highly structural and forms a mini-
mal representation, but differs from the attempts of ontology construction
previously presented by other research groups. An illustration of the entire
ontology is shown in figure 4.1.

As explained in chapter 3, the ontologies have inherited elements and
also share a syntax. As a consequence, the definitions are expanded to

1Lower -trigonal structure means that an element in the structure build on previously
defined elements. The elements are inherited from one defined element to the next
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Universe Frame &
Containment Interaction

Physical

Information

Types
& Rules

Building blocks

Figure 4.1 – This figure illustrates the model ontology, and how the universe
is broken down in a hierarchical structure. The first layer in the
structure is the frame and containment. The next layer separates on
the nature of the universe. The universe consist of physical objects
and information and interaction between the physical objects and
information. Types are combinations of the hierarchical structure
and are extracted out of the model ontology as building blocks.

capture the necessary attributes connected to a behaviour. This ensures
that the ontologies are kept to a minimum, but still compatible with each
other.

There are four key terms within each model ontology.
Definitions in structure are building blocks. A second term is behaviour.

The behaviour term reflect to the behaviour of the variables and the signals
sent between the variable space and the ontologies. Actions are descriptions
on what is possible to do with the defined objects and finally, typing is used
for specialisation of building blocks.

4.1.1 File format

The implementation of the all ontologies uses one of the simplest file formats,
namely the INI file format for configuration files. The language itself is
called the INI-language. In the ontology definition, it is used for specifying
configurations of tasks. Meaning that it fits the purpose of the ontologies as
a base structure. The language itself is build up by three objects. The first
object is the section, which is a keyword enclosed by rectangular brackets.

[<section>]

The sections are used to group properties that consist of a property name
and property value

<property name> = <property value>
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An example on an ontology file is provided in definition 4.1.

Definition 4.1 – INI file format used for configuration files
[<section_1>]

<property name_1.2> = <property value_1.2>
<property name_1.2> = <property value_1.2>
<property name_1.3> = <property value_1.3>

; Comments are initiated with a colon ;

[<section_2>]
<property name_2.2> = <property value_2.2>
<property name_2.2> = <property value_2.2>
<property name_2.3> = <property value_2.3>

This file format is essentially representing a dictionary 2. All the ontologies
are represented using this file format. The ontologies are initialized by
defining the frame, the containment and the tokens. Next a special purpose
editor imposes rules for the construction of variables end equations.

4.2 Frame & containment
The frame introduces a concept of a coordinate system, which serves as a
frame of reference for the observation of system properties. The frame is
the anchoring point to the real world and is used for definition in the model.

Information is processed by control systems. The information is gained
from measurements in the process and can then be translated by the control
system. Since the processing of information is independent of the geomet-
rical space, information is considered to be dependent on only time. Mass
and energy are, on the other hand, conserved quantities, which not neces-
sary have uniform quantities in space and that can convert over time. This
imposes that physical properties is dependent on both time and geometri-
cal space. The frame can then be considered to be context dependent in a
geometrical space, while time is shared by both physical and information
networks.

The containment is where systems are represented. The containment
must be generic since it represents potentially large systems that contain
tokens, and where the tokens communicate by physical connections or sig-
nals. The containment in the ontologies is represented using a directed
graph, which is denoted in the ontologies as graph. The connection be-
tween the containment and a mathematical representation is denoted as the
behaviour. The behaviour provides the link to the variables and equations

2For example: Python uses an ordered dictionary when loading and saving these file
formats
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used as the mathematical representation captured in the model ontology.
The first layer in the model ontology to be defined is the related to the
containment:

[structure] ; building blocks
graph = ['node', 'arc']
frame = ['time']

The mathematical representation of the graph is in the form of an incidence
matrix:

[behaviour] ; link to mathematical description
graph = ['incidence_matrix']

The building blocks are specialised more by adding typing. The typing
imposes specialising on the different objects of the building blocks. This
specialisation is closely related to the attributes described in the scientific
background. The graph consist of both nodes and arcs. The specialization
to the graph applies to both nodes and arcs while specialization to node or
arc only applies to that object. The specific typing to frame and containment
is:

[typing] ; specialisation of building block
graph = [ 'physical', 'information']
node = ['event','dynamic', 'constant']
arc = ['uni-directional', 'bi-directional']

Possible actions are dependent on the building block and is therefore sepa-
rated into node actions and actions possible for arcs:

[action] ; enabled actions for building blocks
node = ['add', 'delete']
arc = [ 'connect', 're-connect']

The first layer in the model ontology for representation of frame and con-
tainment is defined in definition 4.2.

Definition 4.2 – Frame & Containment
[structure] ; building blocks

graph = ['node', 'arc']
frame = ['time']

[behaviour] ; link to mathematical description
graph = ['incidence_matrix']

[typing] ; specialisation of building block
graph = [ 'physical', 'information']
node = ['event','dynamic', 'constant']
arc = ['uni-directional', 'bi-directional']

[action] ; enabled actions for building blocks
node = ['add', 'delete']
arc = [ 'connect', 're-connect']
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4.3 Token
The next layer in the model ontology is context dependent, with the context
defined and inherited from the first layer described in definition 4.2. The
second layer in the model ontology for tokens is branched into three separate
parts. One part for the physical representation, one part for representation
of information and the last part for describing the interactions between
information and physical properties.

4.3.1 Physical model ontology

In the physical ontology, the extensive quantities are defined as the to-
kens, and the frame on definition 4.2 is extended by the ability to represent
properties in a geometrical space. This geometrical space can represent
different dimensions in a coordinate system. This coordinate system may
vary according to the objective of the definition. The structure definition is
therefore adding token as an attribute and extend the frame definition:

[structure]
token = ["mass","energy","species"]
frame = ["geometrical_space"]

The behaviour for a physical token is extended by defining specific sets
of signals applicable to define the mathematical representation of physical
systems. Some of the behaviours are specific to nodes and some a specific
to arcs and parameters can exist for both nodes and arcs:

[behaviour]
node = ['state', 'secondary_state', 'transposition', 'parameter']
arc = ['transport', 'parameter']

The structures used for representation of the physical tokens are separated
into different phases, and the frame can have different dimensions for rep-
resenting a coordinate system:

[typing]
graph = ['liquid', 'solid','gas']
geometrical_space = ['0D', '1D', '2D','3D']

Implementation of these tokens require actions that can be taken for the
different objects. For the physical ontology the actions defined are:

[actions]
token := [inject, add, delete, convert]
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The complete physical ontology is described by definition 4.3.

Definition 4.3 – Physical ontology
[structure]

token = ["mass","energy","species"]
frame = ["geometrical_space"]

[behaviour]
node = ['state', 'secondary_state', 'transposition', 'parameter']
arc = ['transport', 'parameter']

[typing]
graph = ['liquid', 'solid','gas']
geometrical_space = ['0D', '1D', '2D','3D']

[action]
token = ['inject', 'transfer', 'convert', 'delete']

4.3.2 Information model ontology

The ontology part designed for information is similar to the physical on-
tology, but has a simpler form since there is fewer alternatives in token
definition. For an information system, only one token is added to the struc-
ture and signals communicate in a signal space. The structure definition
then becomes:

[structure]
token = ["information"]
frame = ['signal_space']

The mathematical representation of information extends the possible be-
haviours applicable to information. Also in information there are specific
attributes related to nodes and to arcs:

[behaviour]
node = ['state']
arc = ['input', 'output']

The typing of information relates to the type of the signal:
[typing]

graph = ['sampled', 'continuous','event']

In order to use the information objects later some actions need to be avail-
able. For information token these actions are:

[action]
token = ['add', 'delete']

The entire information token ontology is written out in form described in
definition 4.4.
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Definition 4.4 – Information ontology
[structure]

token = ["information"]
frame = ['signal_space']

[behaviour]
node = ['state']
arc = ['input', 'output']

[typing]
graph = ['sampled', 'continuous','event']

[action]
token = ['add', 'delete']

4.3.3 Interaction model ontology for tokens

In order to have communication between the two networks of tokens, an
interaction ontology must be defined for allowing parings over the different
networks. This ontology is essentially the union of the two ontologies defined
in definition 4.4 and in definition 4.3, since it must represent both informa-
tion and physical attributes. This ontology is used for measurements of
physical properties in nodes and the manipulation of the physical flows. In
connection to the behaviour term, physical properties are mathematically
represented using secondary states, and manipulation of flows are repre-
sented with parameters. Therefore only the most essential parts of the two
ontologies were extracted from the information ontology and the physical
ontology to form the interaction ontology, which is included in definition 4.5.

Definition 4.5 – Interaction ontology for tokens
[structure]

token := ["information", "mass", "species", "energy"]
frame := ['signal space', 'geometrical space']

[behaviour]
node := ['parameter', 'secondary state']
arc := ['input', 'output']

Since this ontology only is used for interaction between physical token and
information token, all the types and actions are defined in the other ontolo-
gies.

4.4 Types & rules

The next layer introduces types, which are used to control the definitions
and the combinations of the definitions. Types of nodes and types of arcs
are introduced. These types are combinations of the parts already defined in



34 Architecture of the ontologies

the model ontology that are used in a modelling environment. The types are
context dependent, and will therefore add an additional layer to the model
ontology. The includes types for a physical system are given in definition 4.6.

Definition 4.6 – Type combinations for physical modelling interaction
[node]

lumped = [dynamic] + [0D]
distributed_1 = [dynamic] + [1D]
distributed_2 = [dynamic] + [2D]
distributed_3 = [dynamic] + [3D]
reservoir = [constant]
boundary = [event]

[arc]
energy_transfer = [energy]
mass_transfer = [mass]
species_transfer = [species]

For the information systems, the type definitions are listed in definition 4.7.

Definition 4.7 – Type combinations for information modelling interaction
[node]

control system = [event] + [information state]
[arc]

signal = [input, output] + [uni-directional]

For interactions between physical token and information the following types
are defined in definition 4.8.

Definition 4.8 – Type combinations for information modelling interaction
[node]

measurement = [event] + [secondary state, input]
manipulator = [event] + [parameter, output]

4.5 Colors & domains

In order to enable the specification of the context dependences in more
detail, attributes are introduced to several objects, in particular to graph,
node, arc and token. The term colour have been chosen is this context since
the attributes add descriptive properties to the objects which can be related
to colours. The attributes provide the specification of the objects and the
attributes provide the context in which variables and equations are defined
in the network. The colour distribution in the containment is calculated by
a set of rules, such as tokens persist, which implies that defining an arc that
transfer tokens implies that the same token must exist in both connected
nodes. In the ontology the colours are added as attributes to the graph,
tokens and the tokens attributes:
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colours = ["physical","information", "mass","energy", "species", "
liquid","solid","gas"]

The intention is to implement the colours into the graphical user interface.
The colours can there be used to visualize where in the graph the coloured
attributes are present or communicated.

4.6 Index structures
The index structures are used to determine the size and shape of the objects
in the variable space. An index structure only makes sense in connection
to the other objects. For example: The structure of a model could be given
by the number of chemical species defined for each node and arc and must
therefore be reflected in the dimension of the objects. The index structures
associate the equations to the objects, nodes and/or arcs, and will therefore
contain a running index. The index structure could also be indexed with
connected with a token. This token determine the dimensionality of the
running index. The incidence matrix is defined by nodes and arcs so the
index combination ’nodes&arcs’ is added. The different index structures
included in "Ontology Editor" are listed in definition 4.9.

Definition 4.9 – Index structure definitions

[index structures]
base = [nodes, arcs, nodes&arcs]
nodes = [nodes&mass, nodes&energy, nodes&species]
arcs = [arcs&mass, arcs&energy, arcs&species]

The introduction of an index structure also imposes a control of con-
struction of a consistent variable space. When writing an equation using
the operators, the index structures have to match with the used operator.

4.7 The variables and equations
Since the equations and variables form a bipartite graph, the overall math-
ematical representation is a super bipartite graph. In order to keep track
of the mathematical representation, variable objects are introduced, which
are separable into an ontology called the variable space.

4.7.1 Completeness

A complete variable space consists of a properly defined set of equations
and variables. Equation and variables are defined using a set of differential
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equations and these differential equations are supported and defined by a
set of algebraic equations. The completeness of the variable space is checked
by looking at the variable space as a simulation problem. The variable is
properly specified if the equation set has no degrees of freedom given initial
conditions, boundary conditions and parameters.

As already mentioned, a rule is imposed stating that the equations must
be defined in a lower-triangular manner. That is, any new equation or
variable must be defined using already defined variables. For example if a
variable is dependent on two other variables as illustrated in equation (4.1).

ẋ = Ax (4.1)

In order to define the new variable ẋ, A and x must be defined.
Since the equations and variables are defined strictly in a lower-triangular

manner, the variable and equation combination is strictly diagonal. By stat-
ing that the relationship between variable and equation are strictly diagonal,
it is implied that for each dependent variable there exists a corresponding
equation. This makes it possible to guarantee for the completeness of any
model that is extracted from the variable spaces.

4.7.2 Behaviour - The variable types

Mathematical system theory defines behaviour as a subset of all possible
events in the defined signal space (Willems 2007). This definition is used as
foundation for making a set of signals to connect the types from the model
ontology to the variable space. The variable type represent the context the
variable primarily is intended and is the variable’s connection to the building
blocks defined in the model ontology. Since the variable types operate in two
different networks they are separated in physical and informational variable
types. The physical variable types are explained in table 4.1.

Information is also represented with variables. The variable framework
for information is designed for signal processing. The informational variable
types are explained in table 4.2.

4.7.3 The variable objects

The variable object is used to form variables together with operators, expres-
sions and equations. The variable object has a number of default attributes:

• symbol: Unique ID, The symbol within the variable environment has
to be unique.

3relative to the other capacities
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Table 4.1 – Physical variable types explanation

Variable type Description
Frame Frame variable type represent the geometrical space

or a time space.
Graph Variable type for representing the graph objects
State Conserved quantity associated with the respective

token, for a physical space this represent either
mass or energy

Secondary state State dependent quantities such as intensive
quantities, conjugates of potentials, volume or

geometrical quantities
Transport Represent the behaviour of flow of extensive

properties between nodes. A time-scale assumption
of high conductivity of the respective token has

been made 3. This variable type can only be related
to arcs

Transposition Represent kinetic behaviour internally in nodes.
Reactions and phase transitions are also included

here
Parameter Model characteristic constants. Also included here

are numerical constants to be used for example in
context to geometrical shapes.

• doc: documentation string, written a documentation of the variable

• units: representation of physical units

• index_structs: list of index structures

• type: Variable type

• equations: list of rhs expressions for the variable together with a
unique equation name and equation number

An example of a variable definition is shown in definition 4.10. This partic-
ular example is an example of time.
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Table 4.2 – Informational variable types explained

Variable type Description
Frame Informational frame variables represent time. Time

is common for physical and informational space.
Does not include geometrical space

State Represent the conserved quantity. Related to the
informational token, namely information

Input Represent the formation of information which is
measured

Output Represent the retrieval of signals

Definition 4.10 – Variable space example
[t]
var_type = frame
index_structures = ['nil']
equations = [('time', '_empty_', 'Eq000')]
units = [1, 0, 0, 0, 0, 0, 0, 0]
doc = time

An equation is defined for a specific variable, but each variable can
have more than one equation describing the variable. A good example of
alternative equation is equations if state for thermodynamic models.

p = nRT

V
(4.2a)

p = nRT

V −Nb
− n2a

V 2 (4.2b)

As can be observed in equation (4.2a) and in equation (4.2b), there are
two alternative state equations expressed for pressure, ideal gas and van der
Waals equation respectively. Both these equations have the same description
and the same units, and is therefore two alternatives for expressing the same
quantity.

The equation is represented as a string. The rules for the expression are
captured in the definition of a small language for which the definition is to
attached to the variable space to facilitate compilation into different target
languages.

The string is read by a parser implementing the language definition,
and build an abstract syntax tree for each of the expressions. This abstract
syntax tree can then be used to generate different target code using the
templates for the target language.
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4.8 Language definition
In the process of finding a minimal representation, the main challenge is to
find the optimal structure of the ontology. This also extends to the language
used to represent the mathematical expressions. At current state, "Ontology
Editor" is designed for creating variable spaces for capturing macroscopic
models. The language shown in definition 4.11 is designed for represent-
ing the macroscopic mathematical models. The language is defined using
regular expressions and is written in Extended Backus Naur form 4.

Definition 4.11 – Language definition of the language design for representation
of mathematical expressions in EBNF

token UFunc : '\b(sqrt|exp|log|ln|sin|cos|tan|asin|acos|atan)\b';
token Root : '\b(root)\b';
token VarID : '\w[\w]*'; #matches first word charfollowed by word
token IndID : '\|.*\|'

expr ::= term { ( "+" | "-" ) term }
term ::= fact { ( "." index "." | "*" | "\ " ) fact }
fact ::= atom "^" ( "+" | "-" ) VarID
atom ::= func | "(" expr ")"| VarID
func ::= unitary_func "(" expr ")"

| root "(" expr ")"
| integral "(" VarID "," VarID "," VarID "," VarID ")"
| differential "(" VarID "," VarID ")"

The unitary_func items are the standard unitary functions which all
are without units, except the sqrt in which the argument can have units.
The root keyword is used to represent implicit equations. Integrals are rep-
resented using the integral keyword. An integral also includes arguments
denoting the different inputs to the function. The integral is used in the
form described below:

integral(derivative,integration variable, initial condition, upper
limit)

The differential keyword represent differentials, the two arguments
include the function and the variable, respectively.

The variable definition, VarID is composed of characters and numbers.
The IndID represent index structures. In order to separate an index struc-
ture from a variable, the index structures have to be framed by square brack-
ets. There are one operation dependent on the index structure, namely the
product, .|IndID|. . The syntax is including the index structure over
which the operator is reducing. The Khatri-Rao product is represented us-
ing a * notation. Since the Khatri-Rao product, in contrast to the regular

4Extended Backaus Naur Form (EBNF) is a family of metasyntax notation design to
express context-free grammar
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product, is expanding the index structure, no index structure have to be
included.

All of the definitions above will trigger an action which generates a new
variable in the implementation. This new variable is a result of the operation
keeping track of the variables, and that applies the rules of the units and the
index structures. For the addition, the result is an object which is the sum
of two variables being added. In order to add two variables, both the units
and the index structures must be equal for the two variables. These rules
of both index structures and unit operations will be thoroughly presented
in chapter 5.

By following this procedure, one build an abstract syntax tree. This
abstract syntax tree can be evaluated for any output language. In order to
evaluate the tree one only need a given a set of templates one for each of
the actions and operators.



Chapter 5

Implementation of the
"Ontology Editor"

When the ontological system has been defined, the "Ontology Editor" can be
more closely introduced. This chapter will describe how the ontologies where
implemented and how the "Ontology Editor" facilitates for the creation of
variable space that can be used for creation of mathematical models.

5.1 Networks

Networks are defined for physical related variables and for information vari-
ables. As defined in the model ontology, a physical network type has a
different refinement than an information network. Some of the refinements
are shared, for example they operate over the same time frame, but most
of the refinements are unique to only one of the networks. Both networks
usually have to co-exist in a model. Since both networks are present and
dependent on each other, there will be an interaction between the networks.
This connection is called interconnection.

Each network is divided into more sub-networks. The physical network
is divided into sub-networks based on phases. The information network
is divided into sub-networks based on the signal type. There will also be
communication between the different sub-networks, for example if a species
is transformed from one phase to another. The communication between the
sub-networks is called intraconnections. An overview of this structure is
illustrated in figure 5.1.
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Intraconnection Intraconnection

Figure 5.1 – Figure illustrates two network types and the internal interconnection

The different networks are in the modelling tool handled completely sep-
arately. This means that a variable space needs to be constructed for each
of the networks (physical and information) and another variable space for
the interconnection. The interconnection variable space will include equa-
tions and variables for the measurements, the dynamics of the measurement
device and the translation of the measurement to a signal. The physical vari-
able space will include physical variables, and will also include equations to
describe the intraconnections. An example of such an equation is a chem-
ical reaction involving a phase transition. The information variable space
includes the control equations and the equations for translation between
sampled, continuous and event time signals (Preisig 1996).

5.2 Rules

Rules control the process of model construction. The rules are separated
based on the function they have during the construction of the models.
Some rules are based on units and how the units are calculated. These
rules are presented in section 5.2.2. These rules explain how the units
for different mathematical operates are calculated. Some of the rules are
based on mathematics. These mathematical rules are closely related to
the structure of the indices. The last and most important rules are based
on the modelling procedure for extraction of models from the ontologies.
These rules are closely related to model definition and how we define the
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containment, token and the realization of making a dynamic model. These
rules are based on the model ontology and will be presented first.

5.2.1 Rules based on the model ontology

In a modelling environment some behaviours cannot be described by equa-
tions. Rules are used to define the actions possible for an object.

• Tokens are persistent. If a token is propagated in an arc, both con-
nected nodes must contain the transferred token.

• Physical tokens can be added, deleted, converted or injected.

• Information tokens can be added or deleted.

• Variables can be defined, deleted or modified.

• Every variable must have units, index sets, a unique symbol and a
type that represents the behaviour.

These rules are controlled and executed by the ontologies and in the user
interface. The implementation of the rules is described in section 5.3.

5.2.2 Units and consistency check

All programming elements, including variables, parameters and expressions
have physical units defined. This was declared in the rules based on the
model ontology. When initiating a new variable space, the user have to as-
sign scientific units to the basic elements. The basic elements of the variable
space are considered to be the state and frame variables, the parameters and
the system matrix - which is extracted from the graph editor in the "Process
Modeller". For all the variables defined by expressions and equations within
the "Ontology Editor" , the units are calculated based on the units of the
elements and operators within the equations. The units of the equations
are checked every time a new variable, equation or alternative equation is
created, and an error is raised if something is found to be inconsistent. It
is impossible to check if the basic elements are given the correct units, but
since these elements, and the other variables defined by them, are used
throughout the entire variable space, it is practically impossible to create a
consistent variable space with the wrong units defined in the state variables.
There are rules for calculating the units for most of the operations, but ex-
ception is the implicit equations. At the present state of the "Ontology
Editor", the user must assign physical units to the implicit equations.
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The units are checked for consistency by a set of rules, which applies for
different mathematical operations.

• The basic elements must have user defined units.

• Summation operations require that both sides of the operator have
identical units.

• Multiplication operations, which include product, Khatri-Rao product
and integral operations, forms a new object. The units of the new
object are the union of the units of the two objects that the operation
handles.

• Division operations include differential operations when calculating
units. The new units are calculated by subtracting the units of the
variable that the function is divided by from the variable that repre-
sent the function. This is the opposite operation form the multiplica-
tion operation.

• Power operations cannot have units in the exponent.

• Square root unitary functions can have units.

• All other unitary functions cannot have units in the object.

• The user must assign units to the implicit variables

• When adding alternative equations, the units of the alternative equa-
tion must match the units already assigned to the variable

The units are represented using the base SI-units1. In the variable space,
the seven base SI-units is represented in a list, which have eight slots. One
slot assigned for each of the seven base units and one slot for assigning no
units. An example of the unit representation and an explanation to the
units is provided in definition 5.1.

Definition 5.1 – Unit definition
[units]

vector.numbers = [0, 0, 0, 0, 0, 0, 0, 0]
vector.letters = [s, m, mol, kg, K, A, cd, nil]
s = time
m = length
mol = amount
kg = mass

1SI is originally a French system and stand for "Le Système International d’Unités"
which can be translated into "International system for units"
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K = temperature
A = current
cd = light
nil = no units

When defining the units for the basic elements a dialogue window ap-
pears. A screen shot of this user dialogue is included in figure 5.2. For these
particular units, energy [J ] is written out as base SI-units.

Figure 5.2 – This figure is a screen shot of user dialogue used for definition of
units. In this example the base SI-units are used to express energy
which is measured in joule

[
kgm2

s2

]
.

It was considered sufficient to only allow for definition of units based
on whole integers. In other words, it is not possible to create units with
decimal numbers.

5.2.3 Index structure realization

Index structures are, as explained in section 4.6, used to describe the dimen-
sionality of the variable. All elements have index structure for determining
which building blocks the variable is defined for. For example the chemical
potential is internal energy. This means that since the chemical potential
is directly representing mass and species, it must be present in nodes. In
the nodes there are species. Each of the species in the node has a chemi-
cal potential. This imposes that the chemical potential can be indexed in
nodes & species. To get the total chemical potential in a node the chemical
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potential is multiplied with the amount of species in the particular node as
illustrated in equation (5.1).

µtot = µ× n (5.1)

Here the amount vector is also indexed with nodes & species. The multi-
plication reduces over species, that is the matrix product reduces the di-
mensionality of the final product over species. As a result of this vector
multiplication, the total chemical potential is indexed in nodes.

The different operators have different indexing rules and requirements.

• The basic elements in a model must be given index structures.

• Summation operations requires the equal index structure on both sides
of the operator.

• The inner product will impose a reduction in the index structure. The
user must give the reducing index.

• The outer product, or Khatri-Rao product, will expand the index
structure by making combination of the index structure of the objects.
There are no mathematical restrictions to the expansion of the Khatri-
Rao product, but for practical reasons expansion of the index structure
to more than two dimensions was considered unnecessary.

• In a differential operation, the index structure of the new object will
be inherited from the variable representing the function.

• In implicit equations, the variable inherit the index structure of the
variable that is the basis of the implicit equation.

• Power functions return the index structure of the left hand side vari-
able.

• Unitary functions return the index structure of the argument.

• When adding an alternative equation, the index structure of the al-
ternative must be identical to the index structure already assigned to
the variable.

The index structures of the basic elements are selected using a separate
index selecting window. A screen shot of this user dialogue is included in
figure 5.3.

Each variable can have more than one index structure and the user
dialogue provide the possibility to select more than one index structure.
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Figure 5.3 – This is a screen shot of the dialogue used for index selection.

5.2.4 Operators

Included in the "Ontology Editor" are ten operators. These operators are
used to write equations. The operators are explained in table 5.1. The pro-
gram code written in Python for construction of operator objects is included
in appendix A.

5.3 The user interface

The user interface of the "Ontology Editor" is used to control and capture
all the information provided by the user. The user provides input manually,
either by writing a simple text sting into assigned text fields or by pressing
buttons in the graphical user interface. The user interface is used to trans-
late the manual inputs into objects, which are stored using the INI-format.

5.3.1 The parser implementation

The parser is the compiler of the grammar described in definition 4.11.
It translates the strings given by the user in the text box into an equation
written out in the INI-format. For this project the "Toy Generator Parser"3,
which will be denoted by TGP, was chosen to create the parser. The TGP
was chosen for several reasons. Among the reasons are: provides a simple
way of implementing self made parsers, it is free and written in Python.

2Khatri-Rao product is a block-by-block Kronecker product. For more information
see (Khatri & Rao 1968)

3Web page of the Toy generator parser: http://cdsoft.fr/tpg/

http://cdsoft.fr/tpg/
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Table 5.1 – Possible operators for equation definition in "Ontology Editor"

Name Sym. Use Description
Plus + A+B Adding variables

together.

Minus − A-B Subtracting one variable
from another.

Dot . A.|index|.B Multiplication of two
variables with index

reduction as normally
used in matrix inner
product. The index,

which is being reduced, is
written between the bars.

Star ∗ A*B Multiplication of two
variables with the

Khatri-Rao 2 product.

Power ˆ AˆB Power function. A to the
power of B.

Total
differen-
tial

tot dif Diff{A,B} Total differential of A
with respect to B, ∂A∂B .

Partial
differen-
tial

par dif diff{A,B} Partial differential of A
with respect to B, dAdB .

Integral int int{dA::dt in [t0,t]} Integral of A from initial
time to time,

∫ t
t0A dt.

Inverse inv inv{A} The inverse of A,
equivalent to A−1.

Root root root(A) Implicit version defined
from root expression of

variable.

Before the parser designed for the "Ontology Editor" can be presented
some key expressions and operators of the TGP must be introduced. These
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key expressions and operators are presented in table 5.2.

Table 5.2 – Toy generator parser language definitions

Match Description
START Represent the start of the created object
token Describes the matching of the keywords in the defined language
() Parentheses are used for gropings. If something is enclosed by

parenthesis, the parser starts a new syntax tree
| The bar represent alternatives
-> Points to the next object in the sequence
* The star after an object recognizes zero or more of the object.

This is an inherited attribute from regular expressions.
+ The plus after an object recognizes one or more of the object.

This is an inherited attribute from regular expressions.
? The question mark after an object recognizes zero or one of the

object. This is an inherited attribute from regular expressions.
$ The dollar sign construct objects. The objects are constructed

using python code and are the objects assigned to the
operators described in previous section.

The first step in implementing the parser is to define the keywords de-
fined by tokens in TGP. These tokens must be unique and is used to match
different operators in the equations. The token keyword is also defined for
variable definition and the index structures. For definition of the tokens,
regular expressions were used. The parser as implemented in the "Ontology
Editor" is included in definition 5.2.

Definition 5.2 – Parser code example
class Expression(tpg.VerboseParser):
r'''
token UFunc : '\b(sqrt|exp|log|ln|sin|cos|tan|asin|acos|atan)\b';
token Root : '\b(root)\b';
separator spaces: '\s+' ;
token VarID : '\w[\w]*';
token IndID : '\|.*\|';
token sum : '[+-]';
token star : '\*';
token power : '\^';
token dot : '\.';
token ddot : ':';
START/e -> EXPR/e
;
EXPR/e -> TERM/e( sum/op TERM/t $e=Add(op,e,t,1, self.space)

)*
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;
TERM/t -> FACT/t (

dot/op IndID/k dot FACT/f $t=ReduceProduct(op,k,t,f,2, self.space)
|star/op FACT/f $t=KhatriRao(op,t,f,2, self.space)

)*
;
FACT/f -> ssATOM/f ( power/op ssATOM/e $f=Power('^',f,e,3, self.space)

)?
;
ssATOM/ss -> sum/zz ATOM/a $ss = a

| ATOM/a $ss = a
;
ATOM/a -> Func/fu $a = fu

| '\(' EXPR/a '\)'
| VarID/s $a=self.space.getPhysicalVariable(s)

;
Func/fu -> UFunc/s '\(' EXPR/a '\)' $fu=UFunc(s,a, self.space)

| Root/s '\(' EXPR/a '\)' $fu=Implicit(s,a, self.space)
| 'integral'/f
'\{' TERM/dx '::'

TERM/s 'in' '\['VarID/ll ',' VarID/ul '\]'
'\}' $fu=Integral(dx,s,ll,ul, self.space)

| 'Diff'/f
'\{' EXPR/x ',' EXPR/y '\}' $fu=TotDifferential(x,y, self.space)

| 'diff'/f
'\{' EXPR/x ',' EXPR/y '\}' $fu=ParDifferential(x,y, self.space)

;
'''

verbose = 0

def __init__(self, space):
self.space = space
tpg.VerboseParser.__init__(self)
self.space.eq_variable_incidence_list = []

In the "Ontology Editor" , this parser is used to translate a string into an
abstract syntax tree that consists of objects. When a user first has written
an equation, the entire string is sent to the starting point and creates an
object. This object is then run into the parser that looks for matches in the
string with the tokens defined in the parser. When the parser recognises
a match, it creates an object and splits the string in two. Both of these
strings are then run through the parser starting at the entry point, START.
The parser works on the string from left to right and searches the entire
string for each operator in the sequence defined. The sequence, and the
grammar explanation of the parser, is explained in table 5.3.

Having established the key terms and operators in the parser, the parser
can be explained in more detail towards what it does in the "Ontology Ed-
itor" . This is done by examples. For example look at the string ’A*B+C’.
First, the parser recognises the + sign which is matched by the token sum.
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Table 5.3 – Toy generator parser language definitions. The sequence of the parser
follows the order in which the expressions are explained.

Match Description
START Is the entry point. After the entry point the parser searches for

an expression
EXPR An expression is a term eventually followed with a + or a - sign
TERM A term is a factor followed by a * or a .|IndID|. sign
FACT A factor is a ssATOM followed by an optional power function
ssATOM Is an ATOM with or without an optional sign matched by the

token sum
ATOM An ATOM is either a Func, an EXPR or a variables matched

by the token VarID
Func A function is either a unitary function, a root expression, an

integral or one of the two differential operators

The parser creates an add object which then splits the string into two sep-
arate parts. The first part is ’A*B’ and the second part is simply ’C’. The
first part cannot find any matches to the token sum, but the parser match
on the star operator. A Khatri-Rao object is then created, and the string
is again split into two smaller strings, namely ’A’ and ’B’. There are now
three separate small stings consisting of only one single character. All these
strings matches on the ATOM keyword in the variable identification. When
the variable is matched, the variable object itself is returned. The match-
ing of the variable ID does not have a following sequence in the parser.
This means that the parsing of that string object is terminated and will
stand alone as an object. The abstract syntax tree of this small example is
illustrated in figure 5.4.

As can be observed in the provided example, the sequence in the parser
is important for the correct translation of the string. The idea is to use
the sequence of parsing to create the correct expressions instead of making
specific rules. If the sequence of the expression and the term definition
changed places in the parser, the star operator would be matched first and
then the add operator. In the provided example, ’A*B+C’, the parser would
translate the sting into an abstract syntax tree as illustrated in figure 5.5.
The result of this translation would not be allowed since the units of the
object would not be equal. This is the tree that the string ’A*(B+C)’ would
translate into and this string does not have the same meaning as ’A*B+C’.

The parser, in the correct sequence, has been thoroughly tested. A test
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+

* C

A B

Figure 5.4 – The figure illustrates the abstract syntax tree and how it is con-
structed by the parser for the example string ’A*B+C’

*

A +

B C

Figure 5.5 – The figure illustrates the abstract syntax tree and how it would
be constructed by the parser for the example string ’A*B+C’ if the
sequence in the parser changed

example was the variable displayed in equation (5.2).

V ar = A×B + sin (C ×D)(−2) + ∂ (E × (F −G))
∂H

(5.2)

The expression from equation (5.2) would have this form as a string:

’A*B+sin(C*D)ˆ (-2)+diff{E*(F-G),H}’

The abstract syntax tree of this example string is illustrated in figure 5.6. As
can be observed in figure 5.6, the parser provides the correct translation of
the example string into an abstract syntax tree. All the variables are at the
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+

^ diff

*

C D

*

(-) E

F G

+

*

A B

sin (-2) H

Figure 5.6 – This figure illustrates the abstract syntax tree constructed by the
parser for equation (5.2)

.

leaf nodes and above the leave nodes the operator-objects are located. The
correct operators are placed next to each other and the grouping operators
create groups that are handled individually. The groupings done with the
parenthesis initiate a new syntax tree. Worth noticing is the ’(-2)’ node
located under the power operator. The minus sign is not matched by the
token sum since the expression requires an object on both sides of the token.
-2 therefore matches first the ssATOM with the optional token sum match.
The sum token is in this case included in the variable.

5.3.2 The equation dialog

The equation dialogue is where the user controls the operations around
the different variables for creating a variable space. A screen shot of the
equation editor is included in figure 5.7.
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Figure 5.7 – Screen shot of equation dialogue.

The selection of variables in the equation editor is done using four com-
boboxes4. The first combobox selects the network. This select which vari-
able space the equation will be written for. The next combobox is used for
selecting the variable type. The third combobox is used to select the variable
of the already selected network and variable type, and the last combobox is
used to select alternative equation.

In order to create and manipulate the variables, six variable actions are
included. These variable actions are explained below and include:

• New variable

• Change symbol

• Delete variable

• Alternative equation

• Edit equation
4A combobox is a selecting box in the graphical user interface
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• Delete equation

New Variable

This action is used when defining a completely new variable. This variable
type is available after a variable type is selected. When defining a new
variable, the first thing to do is to give the variable a unique symbol within
the network. An equation is then written into a textbox. This equation
is written using the already defined variables and operator definitions al-
ready described in table 5.1. Templates for writing the operators according
to the language definition are included in the user interface and available
through buttons in the graphical user interface as illustrated in the screen
shot included in figure 5.8.

Figure 5.8 – This figure exhibit a screen shot of the user interface for the operator
buttons. If one of these buttons is activated, a template for the
operator appears in the textbox where the equations are written.

Then the equation and the symbol will be checked by the user interface.
The equation is checked for correct definition of the abstract syntax tree, all
variables used are defined and the rules for both units and index structures
are being adhered. The symbol is checked for the uniqueness of the name.
If the symbol and the equation are accepted, the equation must be given
a unique name. This unique equation name is used for identifying that
equation in the combobox. A screen shot of the new variable definition is
included in figure 5.9.

If the name of the equation is accepted, the variable can be accepted,
and will then be included to the variable space. If any of the tests fails, an
error message appears explaining what is wrong with the definition of the
variable and which test that failed.
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Figure 5.9 – This figure exhibit a screen shot of the section where a new variable
is defined.

Change symbol

If the symbol of the variable is misleading or the documentation of the
variable is unsatisfactory, the change symbol action is used. This action
becomes available when a variable is selected. If the action is selected, a
new window will open that allow for change of symbol, and redefinition of
the variable documentation. A screen shot of the change symbol dialogue
is included in figure 5.10.

Figure 5.10 – This figure exhibit a screen shot of the dialogue that appears when
the change symbol action is triggered.

If the new variable symbol is unique, the new symbol and documentation
is updated in the variable space. The update of the symbol will also change
the symbol in every equation dependent on that variable.

Delete variable

The deletion of a variable is a complex operation. When a variable is re-
moved, all the dependent variables of the deleted are undefined in the syntax
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tree. The same happens to the variables that are dependent on the depen-
dent variables. When this option is selected a new version of the variable
definition appears. This version has a delete button included. If the delete
button is pressed, the variable is removed from the variable space and then
the program reloads the variable space without the newly deleted variable.
If a variable cannot be reproduced due to the removed variable, this variable
will not be included in the new variable space.

Alternative equation

This action is used if there exist more than one alternative equation as-
signed to the same variable, as described in section 4.7.3. The variable
editing section now opens with the variable symbol locked. The new alter-
native equation is written in the same manner as for a new variable. When
this new variable is checked for correct definition of the abstract syntax
tree, all variables used are defined, and the rules for both units and index
structures are being adhered. The new equation must also have the same
units and index structure as the one already defined in the variable. If the
new equation fails in one of these tests an error is raised explaining what is
wrong.

Edit equation

This action is available if an equation is selected, and allow for editing of
that equation. Editing of an already existing equation is dangerous. As
a rule, the newly written equation must have the same units and index
structure as the equation already defined. If the equation has wrong units
or wrong index structure, the only option is to make a new variable, and
then delete the old variable.

Delete equation

This action is only available if there is more than one alternative equation.
When deleting an alternative equation, the alternative equation is simply
removed from the variable definition.





Chapter 6

Case study

In order to verify the ontology representation from which a model is ex-
tracted a case study have been provided. The intention behind this case
study is not to solve the model itself, but to show that it is possible to
extracted models from the ontologies. At the present state there are still
issues that need to be solved in the modelling tool. The intention behind
this case study is not to create solvable models but to provide an example
for how the "Process Modeller" can be used for defining equations, and how
the equations will be represented in the variables space.

6.1 Study on the dynamic flash tank

6.1.1 Description

The layout for the flash tank is illustrated in figure 6.1. The tank has a
liquid feed illustrated with reference F in the topology. The liquid and gas
phase in the tank is denoted by L and G, and the boundary between the
liquid and the gas phase is denoted by B. The liquid drain and outlet of gas
outflow is denoted by D and O, respectively. Assumed is uniform properties
within the tank, meaning that the model operates only in the time frame.
The primary states are set to component mass and internal energy as shown
in table 6.1.

Species in system is denoted by the A,B,C and c. C and c are the same
species in liquid and gaseous phase respectively. Species A and B enters the
tank from reservoir F and reacts to C which can exist in both liquid and
gaseous phase.

59
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(a) Illustration of flash tank,

F L D

B

G O

(b) Topology for flash tank,

Figure 6.1 – Illustration of a flash tank and corresponding topology

Table 6.1 – Primary states and frame definitions

Symbol Documentations Function
n Component mass vector Primary state
U Internal energy Primary state
t Time Frame

6.1.2 Mathematical system description

The graph gives raise to the following incidence matrix:

F |L L|D L|B B|G G|O
F −1 0 0 0 0
L 1 −1 −1 0 0
B 0 0 1 −1 0
G 0 0 0 1 −1
D 0 1 0 0 0
O 0 0 0 0 1

By removing the reservoirs is reduced:

F |L L|D L|B B|G G|O
L 1 −1 −1 0 0
B 0 0 1 −1 0
G 0 0 0 1 −1
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In simple matrix form the incidence matrix would have the form described
in equation (6.1).

F =


1 −1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1

 (6.1)

The entire system have four possible species that can propagate throughout
the model. The species vector for the flash tank have the form described by
equation (6.2).

Ss =
[
A B C c

]
=
[
1 1 1 1

]
(6.2)

The vector for the species available in the liquid phase is described by equa-
tion (6.3).

SL =
[
1 1 1 0

]
(6.3)

Possible species transferred from the feed reservoir to the liquid phase are
described by equation (6.4).

SF |L =
[
1 1 0 0

]
(6.4)

The minimal species flow matrix over connection can be found by diagonalize
the species vectors and take the inner product as described by equation (6.5).

S
F,L|F =


1 0 0 0
0 1 0 0
0 0 1 0




1 0
0 1
0 0
0 0

 =


1 0
0 1
0 0

 (6.5)

The same procedure are repeated for every connection and node. All species
flow matrix products are:

S
L,F |L =

1 0
0 1
0 0

 S
L,L|D =

1 0 0
0 1 0
0 0 1

 S
L,L|B =

0
0
1

 S
L,L|G =

0
0
0

 S
L,L|O =

0
0
0


S

B,L|B =
[
0 0
0 0

]
S

B,B|D =
[
0 0 1
0 0 0

]
S

B,B|B =
[
1
0

]
S

B,B|G =
[
0
1

]
S

B,B|O =
[
0
1

]

S
G,G|B =

[
0 0
]

S
G,G|D =

[
0 0 0

]
S

G,G|B =
[
0
]

S
G,G|G =

[
1
]

S
G,G|O =

[
1
]
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All the diagonalized species matrices are inserted into the system species
matrix S:

S =



1 0
0 1
0 0

1 0 0
0 1 0
0 0 1

0
0
1

0
0
0

0
0
0

0 0
0 0

0 0 1
0 0 0

1
0

0
1

0
1

0 0 0 0 0 0 1 1



The final species flow matrix can be found taking the block-by-block
Kronecker also called the Khatri-Rao product of S and F, which is described
by equation (6.6).

F
S

= S ∗ F (6.6)

F
S

=



1 0
0 1
0 0

1 0 0
0 1 0
0 0 1

0
0
1

0
0
0

0
0
0

0 0
0 0

0 0 1
0 0 0

1
0

0
1

0
1

0 0 0 0 0 0 1 1


∗


1 −1 −1 0 0
0 0 1 −1 0
0 0 0 1 −1



F
S

=



1 0
0 1
0 0

−1 0 0
0 −1 0
0 0 −1

0
0
−1

0
0
0

0
0
0

0 0
0 0

0 0 1
0 0 0

1
0

0
−1

0
1

0 0 0 0 0 0 1 −1



The generated species flow matrix is used in the balance equations of
mass and energy.
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6.1.3 Balance equations

The mass balance equations: The following mass balance can be written
out as described in equations (6.7a) to (6.7d).

ṅL = n̂F |L − n̂L|D − n̂L|B + VRNT ñL (6.7a)
ṅB = n̂L|B − n̂B|G + VRNT ñB (6.7b)
ṅG = n̂B|G − n̂G|O (6.7c)
ṅi|j = 0 ∀(i, j) (6.7d)

The energy balances can be written as described in equations (6.8a)
to (6.8d) by assuming that all nodes are static.

U̇L = ĤF |L − ĤL|D − ĤL|B − q̂L|B − ŵL|B (6.8a)
U̇B = ĤL|B − ĤB|G + q̂L|B + ŵL|B − q̂B|G − ŵB|G (6.8b)
U̇G = ĤB|G − ĤG|O + q̂B|G + ŵB|G (6.8c)
U̇i|j = 0 ∀(i, j) (6.8d)

6.1.4 Transport

Mass transport

For the flash tank there are diffusive transport between liquid phase and
boundary, and between boundary and gas phase. This is described by equa-
tions (6.9a) and (6.9b).

n̂L|B = −DL|B
(
µ
B
− µ

L

)
(6.9a)

n̂B|G = −DB|G
(
µ
G
− µ

B

)
(6.9b)

For the reservoirs the mass transport is assumed to be of a convective
nature as described in equations (6.10a) to (6.10c).

n̂F |L = cF |LV̂F |L = cF |L

(
−βF |Lsgn (pL − pF )

√
|pL − pF |

)
(6.10a)

n̂L|D = cL|DV̂L|D = cL|D

(
−βL|Dsgn (pD − pL)

√
|pD − pL|

)
(6.10b)

n̂G|O = cG|OV̂G|O = cG|O

(
−βG|Osgn (pO − pG)

√
|pG − pO|

)
(6.10c)
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Energy transport

The transportation of energy follows the flow of mass and including the
heat transformation in the phase transition as described in equations (6.11a)
to (6.11h).

q̂L|B = −kL|B (TB − TL) (6.11a)
q̂B|G = −kB|G (TG − TB) (6.11b)
ĤF |L = hF n̂F |L (6.11c)
ĤL|B = hLn̂L|B (6.11d)
ĤL|D = hLn̂L|D (6.11e)
ĤB|G = hBn̂B|G (6.11f)
ĤG|O = hGn̂G|O (6.11g)
hi = h0 + cP (Ti − Tref) (6.11h)

6.1.5 Transposition

Phase transposition

The boundary has no capacity meaning that the boundary itself does not
contain mass or energy as described in equations (6.12a) and (6.12b).

nB = 0 (6.12a)
UB = 0 (6.12b)

And the concentations of species is equal up to the boundary as described
in equations (6.12c) to (6.12d).

cCL
= cCB

(6.12c)
ccB = ccG (6.12d)

6.1.6 Secondary states

The secondary state variables are listed in table 6.2.
To calculate the chemical potential at the boundary the two species, C

which is in liquid phase and c which is in gaseous phase, must be treated as
the same species. The chemical potential can be calculated from the steady
state assumptions at the boundary as described in 6.13a–??.

ṅB = n̂L|B − n̂B|G = 0 (6.13a)
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Table 6.2 – Secondary states

Symbol Equation Description

A U − TS Helmholtz energy

µ ∂U
∂n Chemical potential

T ∂U
∂S Temperature

p
i

niRT
V Partial pressure

p eT p
i

Total pressure

V ∂U
∂p ,

ntot
ρtot

Volumne

c
ns
Vs

Concentration

h no + cP (T − Tref ) Molar enthalpy

h V
A Height

S −
(
∂A
∂T

)
V,n

Entropy

cP
(
∂H
∂T

)
p

Heat capacity

From equation (6.9a) and equation (6.9b) :

−DL|B
(
µ
B
− µ

L

)
−
(
−DL|B

(
µ
B
− µ

L

))
= 0 (6.13b)

µ
B

= −
DL|BµL −DB|GµB
DL|B +DB|G

(6.13c)

The chemical reactions for this system is described by equations (6.14)
and (6.15).

A + B→ C (6.14)
C↔ c (6.15)

The matrix representation this reaction system can be defined by equa-
tion (6.16).

N =


−1 −1 1 0
0 0 −1 1
0 0 0 0

 (6.16)
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The reaction in the liquid phase is defined by equation (6.17).

rL = kABCACB − kCCC (6.17)

In B defined by the diffusion of C into the boundary as described in equa-
tion (6.18).

rB = n̂L|B = −DL|B
(
µ
B
− µ

L

)
(6.18)

The rection vector is the defined by equation (6.19).

r =


kABCACB − kCCC
−DL|B

(
µ
B
− µ

L

)
0

 (6.19)

The total mass balance can then be written out as described in equa-
tion (6.20)

ṅ = F
S
n̂+ NT r (6.20)
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6.2 Dynamic flash implementation

Having done the theoretical background on the flash it would be interesting
looking at the implementation in the modelling tool. All definitions are
done using the user interface of the "Ontology Editor" .

6.2.1 The building blocks

The types of physical building blocks are described by definition 4.6, which
is repeated below:

[node]
lumped = [dynamic] + [0D]
distributed_1 = [dynamic] + [1D]
distributed_2 = [dynamic] + [2D]
distributed_3 = [dynamic] + [3D]
reservoir = [constant]
boundary = [event]

[arc]
energy_transfer = [energy]
mass_transfer = [mass]
species_transfer = [species]

The reservoirs F,D and O are represented using the type reservoir. The
gas and liquid, G and L, phase are represented using the type lumped.
The boundary is represented by the type boundary, which is used to de-
scribe event-dynamic behaviour. The arcs are all species_transfer and en-
ergy_transfer.

6.2.2 Frame

Frame for a physical network is time, t, and geometrical space, x. The
following variables are then defined:

[t]
var_type = frame
doc = time
index_structures = ['nil']
equations = [('time', '_empty_', 'Eq000')]
units = [1, 0, 0, 0, 0, 0, 0, 0]

[geometrical space]
var_type = frame
doc = geometrical space
index_structures = ['nil']
equations = [('geometrical space', '_empty_', 'Eq001')]
units = [0, 1, 0, 0, 0, 0, 0, 0]
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6.2.3 State equations

State equations are implemented by default. In our definition we use species,
n, and energy, U . We choose to use internal energy as energy basis. Also
included, by default is the mass definition. The following variables are
included:

[m]
var_type = physical_state
doc = mass
index_structures = ['nodes & mass']
equations = [('mass', '_empty_', 'Eq002')]
units = [0, 0, 0, 1, 0, 0, 0, 0]

[n]
var_type = physical_state
doc = species
index_structures = ['nodes & species']
equations = [('species', '_empty_', 'Eq003')]
units = [0, 0, 1, 0, 0, 0, 0, 0]

[U]
var_type = physical_state
doc = Internal energy
index_structures = ['nodes & energy']
equations = [('Internal energy', '_empty_', 'Eq004')]
units = [-2, 2, 0, 1, 0, 0, 0, 0]

6.2.4 Incidence matrix

The incidence matrix represent the systems and the networks in the model.
In the present state the modelling tool is not able to extract the incidence
matrix from the graph editor. For now we introduce the incidence matrix
manually in the same matter as it will be by the modelling tool. The
incidence matrix take the following form in the variable space. The entire
physical variable space is included in

[F]
var_type = incidence_matrix
doc = Incidence matrix for physical system
index_structures = ['nodes','arcs']
equations = [('Incidence matrix', '_empty_', 'Eq006')]
units = [0, 0, 0, 0, 0, 0, 0, 0]

The same applies also to the block species matrix which will be extracted
from the graph editor and will have the following form as a variable:

[S]
var_type = incidence_matrix
doc = Species matrix for the system
index_structures = ['nodes & species','arcs & species']
equations = [('Incidence matrix', '_empty_', 'Eq006')]
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units = [0, 0, 0, 0, 0, 0, 0, 0]

Now it is possible construct the species flow matrix:
[F_S]
var_type = None
doc = F * S
index_structures = ['nodes & species', 'arcs & species']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Species block by block matrix', 'F*S', 'Eq027')]

Also matrices for energy and work transport can be extracted from "Pro-
cess Modeller".

[F_e]
doc = Incidence matrix for energy physical system
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Incidence matrix for energy physical system', '_empty_',

'Eq005')]
var_type = incidence_matrix
index_structures = ['nodes', 'arcs']

[F_w]
doc = Incidence matrix for work physical system
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Incidence matrix for work physical system', '_empty_', '

Eq006')]
var_type = incidence_matrix
index_structures = ['nodes', 'arcs']

6.2.5 Reactions and reaction systems

Reactions and reaction systems are not implemented. Ideally the reaction
systems should be extracted from a database containing possible reactions
for the available species. The modelling tool will have to calculate the
reaction matrix, it would then have the form described below:

[N]
var_type = incidence_matrix
doc = Reaction matrix
index_structures = ['nodes & species', 'nodes']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Reaction matrix', '_empty_', 'Eq018')]

[r]
var_type = incidence_matrix
doc = kinetics
index_structures = ['nodes & species', 'nodes']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('kinetics', '_empty_', 'Eq019')]
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6.2.6 Parameters

A lot of parameters need to be defined in order to produce the current
equations. The valve constant have units that are impossible to create
using the modelling tool. Therefore, the squared beta was defined.

[Beta2]
doc = Squared valve constant
units = [0, 7, 0, -1, 0, 0, 0, 0]
equations = [('Squared valve constant', '_new_', 'Eq023')]
var_type = physical_parameter
index_structures = ['arcs', 'nodes']

Taking the square root of this parameter will produce de correct units:
[Beta]
doc = sqrt(Squared valve constant)
units = [0.0, 3.5, 0.0, -0.5, 0.0, 0.0, 0.0, 0]
equations = [('Valve constant', 'sqrt(Beta2)', 'Eq024')]
var_type = physical_secondary state
index_structures = ['arcs', 'nodes']

The rest of the parameters were produced without any problems:
[R]
doc = Gas constant
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('Gas constant', '_new_', 'Eq010')]
var_type = physical_parameter
index_structures = ['nil']

[Cp]
doc = Heat capacity, constant pressure
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('Heat capacity, constant pressure', '_new_', 'Eq011')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[D]
doc = Diffusivity Liquid to boundary
units = [1, -2, 2, -1, 0, 0, 0, 0]
equations = [('Diffusivity constant', '_new_', 'Eq012')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[T_0]
doc = Standard temperature
units = [0, 0, 0, 0, 1, 0, 0, 0]
equations = [('Standard temperature', '_new_', 'Eq013')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[k]
doc = Heat diffusion constant
units = [-1, 0, 1, 0, 0, 0, 0, 0]
equations = [('Heat diffusion constant', '_new_', 'Eq015')]
var_type = physical_parameter
index_structures = ['nodes','arcs']
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[deltah_0]
doc = Enthalpy STP
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Enthalpy STP', '_new_', 'Eq016')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[s_0]
doc = entropy STP
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('entropy STP', '_new_', 'Eq017')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[1]
doc = 1 numerical constant
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('-1 numerical constant', '_new_', 'Eq018')]
var_type = physical_parameter
index_structures = ['nil']

6.2.7 Secondary state equations

The secondary state variables are those represent the derivatives of the state
equations. The secondary state equations defined for this system include:

[mu]
doc = Chemical potential
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Chemical Potential', 'diff{U,n}', 'Eq009')]
var_type = physical_secondary state
index_structures = ['nodes']

[T]
doc = root
units = [0, 0, 0, 0, 1, 0, 0, 0]
equations = [('Temperature', 'root(U)', 'Eq014')]
var_type = physical_secondary state
index_structures = ['nodes']

[p]
doc = root
units = [-2, -1, 0, 1, 0, 0, 0, 0]
equations = [('Pressure', 'root(U)', 'Eq025')]
var_type = physical_secondary state
index_structures = ['nodes']

[n_dot]
doc = F_S . r
units = [-1, 0, 1, 0, 0, 0, 0, 0]
equations = [('Mass balance', 'F_S.|arcs|.n_hat+N.|arcs|.r', 'Eq028')]
var_type = physical_secondary state
index_structures = ['nodes']

[V]
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doc = root
units = [0, 3, 0, 0, 0, 0, 0, 0]
equations = [('Volume', 'root(U)', 'Eq029')]
var_type = physical_secondary state
index_structures = ['nodes']

[h]
doc = deltah_0 + _V1
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Enhalpi', 'deltah_0+Cp.|arcs|.(T-T_0)', 'Eq030')]
var_type = physical_secondary state
index_structures = ['nodes']

[U_dot]
doc = F . q_hat
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Energy balance', 'F.|arcs|.H_hat+F_e.|arcs|.q_hat', '

Eq032')]
var_type = physical_secondary state
index_structures = ['nodes']

[c]
doc = root
equations = [('consentration, volumentric', 'root(n)', 'Eq055')]
units = [0, 0, 1, 0, 0, 0, 0, 0]
var_type = physical_secondary state
index_structures = ['nodes']

6.2.8 Transport equations

For species flow there exist more than one alternative equation. One for
diffusion and one for advection.

[n_hat]
doc = D . _V0
equations = [('Mass diffusion', 'D.|nodes|.(mu-mu)', 'Eq022'),('Mass

advection', 'c.|nodes|.V_hat', 'Eq040')]
units = [-1, 0, 1, 0, 0, 0, 0, 0]
var_type = physical_transport
index_structures = ['arcs']

The rest of the transport equations are written out using equations:
[V_hat]
doc = Beta . _V1
units = [-1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
equations = [('Volumentric flow, advection', '-Beta.|nodes|.sqrt(p-p)',

'Eq026')]
var_type = physical_transport
index_structures = ['arcs']

[q_hat]
doc = k . _V0
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Heat transport diffusion', 'k.|nodes|.(mu-mu)', 'Eq027')]
var_type = physical_transport
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index_structures = ['arcs']

[H_hat]
doc = h . n_hat
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Energy trasport', 'h.|nodes|.n_hat', 'Eq031')]
var_type = physical_transport
index_structures = ['arcs']

6.3 Adding control
In order to have stable operation of the flash tank control must be added.
The pressure in the tank must be kept constant and a liquid level in the
tank must also be held constant. The flow of gas is chosen to control the
pressure in the tank and the liquid level is controlled by the liquid flow out
of the tank. Required for this control structure is a measurement of the
pressure in the gas phase, a measurement of the liquid level in the liquid
phase, two controllers and two manipulators to manipulate the flows out of
the tank. This control structure is illustrated in figure 6.2.

F L DV

B

G C O

PC

LC

Figure 6.2 – This is an illustration of the topology of the flash tank with control
structure added

The control equations are not included in this case study.

6.3.1 The building blocks

The building blocks for the control system are extracted from the types
defined interactions between the physical and information listed in defini-
tion 4.8 and the types defined internal representation in the information
network listed in definition 4.7. These types are repeated below:

[node]
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control system = [event] + [information state]
[arc]

signal = [input, output] + [uni-directional]

For interactions between physical token and information the following types
are defined:

[node]
measurement = [event] + [secondary state, input]
manipulator = [event] + [parameter, output]

The pressure controller, PC, and the level controller, LC, is represented
by the type name control system. The measurements of the level in L and
the pressure in G are represented by the type measurements. The valves
V and C are represented by the type manipulator. The arcs connected
to the control systems are all classified as signals. These signals are all
uni-directional.

6.3.2 The interaction variable space

Measurements are of the secondary state. In G, the measurement is of
pressure. This is already described in the the physical variable space. The
measurement of the level can be derived from the volume of the liquid phase
provided the area. This can be described by equation (6.21).

l = V

A
(6.21)

A parameter must be given to the interaction variable space for the area
before the equation can be written.

[p]
doc = root
units = [-2, -1, 0, 1, 0, 0, 0, 0]
equations = [('Pressure', 'root(U)', 'Eq040')]
var_type = physical_secondary state
index_structures = ['nodes']

[V]
doc = root
units = [0, 3, 0, 0, 0, 0, 0, 0]
equations = [('Volume', 'root(U)', 'Eq041')]
var_type = physical_secondary state
index_structures = ['nodes']

[A]
doc = Area of liquid phase
units = [0, 2, 0, 0, 0, 0, 0, 0]
equations = [('Area', 'root(U)', 'Eq042')]
var_type = parameter
index_structures = ['nodes']
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[l]
doc = root
units = [0, 1, 0, 0, 0, 0, 0, 0]
equations = [('level', 'root(V)', 'Eq043')]
var_type = physical_secondary state
index_structures = ['nodes']

The manipulators, C and V , are controlled using the valve constant β.
[Beta]
doc = sqrt(Squared valve constant)
units = [0.0, 3.5, 0.0, -0.5, 0.0, 0.0, 0.0, 0]
equations = [('Valve constant', 'sqrt(Beta2)', 'Eq024')]
var_type = physical_secondary state
index_structures = ['arcs', 'nodes']

The entire interaction variable space is printed in appendix C.
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Discussion and conclusion
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Chapter 7

Discussion and unresolved
issues

This chapter will present some unresolved issues that have to be imple-
mented before the "Ontology Editor" can be used for generating variable
spaces. Also included in this chapter is the discussion on the formulated
ontologies, the structure of the ontologies, the implementation problems and
the results form the case study.

7.1 Unresolved issues
There are still issues to be resolved before the "Ontology Editor" can be in-
tegrated as a fully operating part of the "Process Modeller". These problems
are important to fix, but was considered not to be urgent and considered to
be solvable. Included in this section is suggestions for possible solutions to
these unresolved issues.

7.1.1 Construction of dependent equation set

If one have two equations defined and dependent on each other as in the
form:

y1 = f1 (x, y1, y2) (7.1)
y2 = f2 (x, y1, y2) (7.2)

At the present state the equation generator checks the variables used to
express the new variable. The variables used in an expression must be
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already defined. Because of this the two equations above can not be defined.
A possible solution to this problem is to allow for block equations as shown
under in equation (7.3).

(y1, y2) = [f1 (x, y1, y2) , f2 (x, y1, y2)] (7.3)

Alternatively one could allow for vector blocks as shown in equation (7.4):

y =
[
y1

y2

]
=
[
f1 (x, y1, y2)
f2 (x, y1, y2)

]
(7.4)

7.1.2 Construction of artificial units

When defining the units only by usage of integers, some of the parame-
ters used in classical modelling becomes impossible to define. For example,
pressure driven convection volume flow from A to B is usually driven by the
following equation which involves a valve constant:

V̂A|B = βA|B sgn (pB − pA)
√
|pB − pA| (7.5)

The units for the valve constant becomes somewhat artificial:

β

[
m3.5

kg0.5

]
(7.6)

In reality, the valve constant, β is certainly not constant as the valve changes
the cross section when manipulating the flow.

A fix to this problem is to define the parameter as a squared version
of the wanted parameter, and then use it with as the square root of the
parameter.

ζ

[
m7

kg

]
=
(
β

[
m3.5

kg0.5

])2

(7.7)

The unit dialogue would then look as shown in figure 5.2 and the unit list
would take the following shape:

units = [ 0, 7, 0, -1, 0, 0, 0, 0]

Equation (7.5) would then be written as:

V̂A|B =
√
ζA|B sgn (pB − pA)

√
|pB − pA| (7.8)
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7.2 Discussion

7.2.1 Results of the case study

The case study described the procedure that a modeller would have to
undergo for construction of a variable space. Not all details of the "Ontology
Editor" are at the present state implemented and resolved. Despite of this,
the case study provide an indication on the effort and complexity behind
creating a variable space. And the fact that the modelling tool is incomplete
help to illustrate one of the main benefits by using an ontology for variable
space, namely the ability for reuse an ontology in another application than
what it was designed for.

Reuse

The variables and equations that were impossible to construct, were loaded
directly into the variable space. A user could also do the same. If a variable
is defined in another model, the variable could be loaded in to the new
model as long as all the other equations are defined. Reuse of the variables
and models is one of the most important benefits by using this modelling
procedure.

Parameters

In the case study a lot of parameters had to be defined. The parameters that
were included as flow determination are essential to control and definition of
the transport equations. These parameters vary from model to model and
from modeller to modeller, and must be defined every time. On the other
hand, the numerical constants, such as π and numbers, are fixed. These
parameters would not change meaning during from model to model. It is
possible to argue that one could include numbers as constants recognized
by the parser. These constants would then have to be a part of the abstract
syntax tree and created as separate objects.

7.2.2 User interface

The user interface of the "Ontology Editor" is designed for construction a
variable space. The functionality needs to be improved before the software
can be released. For example it is not possible to look at the equations
already written. just the name of the equation, the symbol of the variable,
units and indices are shown. Being able to look at the actual equations
would improve the functionality.



82 Discussion and unresolved issues

Actions

The actions available for generating of variables are: ’New Variable’, ’Change
Symbol’, ’Delete Variable’, ’Alternative Equation’, ’Edit Equation’ and
’Delete Equation’. These actions were sufficient for creating a variable space.
Six different actions are not too many, but some of the actions could per-
haps be combined. For example one could combine change symbol and
delete variable into one action named edit variable, and delete equation
could be a part of edit equation. The actions could then be reduced to the
following:

• New Variable, initiate a new variable

• Edit Variable, edit the symbol and documentation of an already de-
fined variable and allow for deletion of the variable.

• Alternative Equation, construct an alternative equation to an already
defined variable.

• Edit equation, edit the selected equations related to the variable, or
delete the entire equation if more than one alternative is defined.

By reducing the amount of available actions from six to four one could
consider making buttons instead of combo-boxes for selecting actions.

7.2.3 Ontologies

The basic structure of the entire ontology was presented in chapter 4. On-
tology design will require making trade-offs among the criteria defined in
chapter 2. In this ontology the most important design criterion was consid-
ered to be minimal representation. This minimal representation criterion
was complied by allowing for extendibility, which is another of the design
criterion. Since the ontologies defined allow for extendibility, the criterion
of minimal ontological commitment is contradicted. When allowing for ex-
tendibility the ontologies requires more defined keywords. This make the
ontologies more committed to each-other and requires a shared vocabulary.
This conflict between the extendibility and the minimal ontological commit-
ment has been discussed before among others in (Aitken 1998) and in (Gru-
ber 1993). Gruber refer to the conflict between the criterion of extendibility
and the criterion of minimal ontological representation as a trade-off.
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7.2.4 Implementations

This subsection includes discussion on the most important features of the
implementation of the ontologies into the modelling tool.

The equations and variables

Variables in the variable space are represented by the format exemplified in
definition 7.1.

Definition 7.1 – example of variable representation
[q_hat]
doc = k . _V0
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Heat transport diffusion', 'k.|nodes|.(mu-mu)', 'Eq027')]
var_type = physical_transport
index_structures = ['nodes & species']

This representation of a variable is compact, but still clear and readable.
The user is not required to give documentation to the variables that are
created. If the user does not include documentation on the variable, the
first objects in the abstract syntax tree is assigned as documentation. For
the example given in definition 7.1 the documentation is generated using
an object stored in the syntax tree. The last object, ’_V0’ is an object
created inside the abstract syntax tree. These objects are given temporary
names in the structure, and are not intendant for a user to see. A solution
to this problem would be to require the user to provide documentation to
the variable. This would impose more work for a user, but would result in
an even more readable variable space.

The representation of the units in form of a list with eight numbers
is unreadable for a human, but easily readable for a computer provided
that the sequence of the numbers and how they should be interpreted is
provided. In the implementation of the units many other alternatives for
storage was considered. Among others expanding each slot in the list to a
tuple containing unit identification and number. The example provided in
definition 7.1 would then have the form illustrated below:

[q_hat]
doc = k . _V0
units = [('s',-3), ('m',2), ('mol',0), ('kg',1), ('K',0), ('A',0), ('cd'

,0), ('nil',0)]
equations = [('Heat transport diffusion', 'k.|nodes|.(mu-mu)', 'Eq027')]
var_type = physical_transport
index_structures = ['nodes & species']

Despite this alternative way of formulation the variable format being much
more readable for a human, the other alternative was preferred because of
simplicity of the other format.
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Also worth mentioning is the eighth and last slot in the representation
of the units. The intention behind this slot was the representation of no
units. This is never used, instead no units are represented by only zeros
in the other slots representing the base units. The eight slot could then be
removed.

Index structure rules and implementation

The rules for the implementation of the index structure are under develop-
ment. Especially, since it is difficult to have control over the index structures
of every single object. The index structures need to be implemented at the
state variables. That happens at the initiation of the modelling procedure.
When doing detailed modelling with equations, it is difficult at all time to
have control over the index structure. A presently unclear situation is the
index structure of transport variables. Transport variables are only rep-
resented in arcs, but are directly dependent on variables valid for nodes.
The inheritance of index structures from the node defined variables added
together and multiplied with parameter need more thinking.

The operators that changes the index structure is the inner product
(matrix multiplication product) and the Khatri-Rao product. The inner
product is in reality more used, but more complex to use correctly in the
definition of an equation. The Khatri-Rao product is used for expanding
the index structure. This is rarely done in the modelling equations, and
the only example found is when expanding the incidence matrix, which is
indexed with nodes and arcs with the species vector, which is indexed with
nodes&species and arcs&species. Notation for the Khatri-Rao product is
a star,*, while the notation for inner product is, .|index|.. The star
operator is often used for inner products in other programming languages1.
In order to reduce the amount of overuse of the Khatri-Rao product, a
possible solution could be to change the notation. For example one could
consider writing the Khatri- Rao product as KRp{A,B} were A and B denote
the objects being multiplied.

Another issue that have to be discussed is the rules of what have to be
index. At the moment, indexing happens over containment and token. One
should also index over the intraconnections in the network. For the physical
network one would have to expand the defined index structures with phase.
Within the information network one would then also index over the signal
type.

1For example: MATLAB
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7.3 Further work
The use of this ontology facilitate for a modelling procedure described in
(Preisig 2010). The most important challenge for a modelling tool using
this modelling procedure is to get the modelling procedure known and ac-
cepted. The best way getting this modelling procedure known is to create a
modelling tool with a structured and safe modelling methodology for con-
struction of good process models.





Chapter 8

Conclusion

In this study, ontologies intended for structuring information of physical-
chemical-biological processes has been presented. The ontologies was im-
plemented in a tool, called the "Ontology Editor", that facilitate for con-
struction of another ontology for representation of a variable space. The
implementation of the ontology was presented and a case study using the
"Ontology Editor" was carried out for the purpose of being an illustration
of concept.

The ontology presented provide structure to the classification of physical-
chemical-biological systems. The entire classification consist of only three
files. A file that classify nodes and arcs and two files from refining the nodes
and arcs in a physical and informational nature. Each of these files con-
sist of keywords with associated lists. The entire classification of physical-
chemical-biological systems are done in 33 lines of code. The model objects
extracted from this ontology as types can be used as building blocks of a
model and the variable spaces created using the "Ontology Editor" can be
used for representation of mathematical models. and the "Ontology Editor"
provide a variable space that mathematical models can be extracted from.
This provided structure could be the bases of a more structured modelling
procedure that provide a safe approach for handling model complexity.
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Appendix A

Operator definitions code
examples

A.1 Add

class Add(PhysicalVariable):
def __init__(self, op, a, b, prec, space):

'''
Binary operator
operator:
+ | - :: units must fit, index structures must fit

@param op: string:: the operator
@param a: variable:: left one
@param b: variable:: right one
@param prec: precedence
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.op = op
self.a = a
self.b = b
self.prec = prec

self.doc = TEMPLATES[op] % (a.symbol, b.symbol)
self.units = a.units + b.units
#
# rule for index structures
if a.index_structures == b.index_structures:

self.index_structures = a.index_structures
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else:
raise IndexStructureError('add incompatible index structures %s'

% self.doc)

def __str__(self):
language = self.space.language

# if not TempVarID.match(self.symbol): return self.symbol

if self.a.prec < self.prec: self.a = "((%s))" % self.a
if self.b.prec < self.prec: self.b = "((%s))" % self.b
LOGGER.info('language %s' % language)
# if str(self.a) in self.space.equation_alternatives and str(self.b)

in self.space.equation_alternatives:
# print('hei')

# print(self.a+'+'+self.b)
s = CODE[language]['binary'] % (self.a, self.op, self.b)
return s

A.2 Khatri-Rao product

class KhatriRao(PhysicalVariable):
# KhatriRao(op,t,f,2, self.space)
def __init__(self, op, a, b, prec, space):

'''
Binary operator
operator:
+ | - :: units must fit, index structures must fit
* :: Khatri-Rao product
# .index. :: matrix product reducing over the index

@param op: string:: the operator
@param a: variable:: left one
@param b: variable:: right one
@param prec: precedence

This is not a universal Khatri-Rao product. This version is limited
to be on practical form

and to be usable in current indices
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)
self.op = op
self.a = a
self.b = b
print ('self.a = ',self.a)
self.prec = prec
self.doc = TEMPLATES['*'] % (a.symbol, b.symbol)
self.units = a.units * b.units

indexa = [IS.split(' & ') for IS in a.index_structures]
indexb = [IS.split(' & ') for IS in b.index_structures]

# HERE ADD HEINZ EXCEPTION PROBLEM
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chinda,chindb = [t[0] for t in indexa],[t[0] for t in indexb]
if len(chinda) == 1 and len(chinda) == 1 and chinda != chindb:

self.index_structures = a.index_structures+b.index_structures
else:

for ind in chinda:
if ind not in chindb:

raise IndexStructureError('KhatriRao - index %s in %s not
in or not compatible too %s'

% (ind, a.symbol, b.symbol))
self.index_structures = []
for aind in indexa:

for bind in indexb:
if aind[0] == bind[0] and len(aind) == len(bind) and aind

!= bind:
# Crash if types are nodes & species and nodes &

energy tries to mix
raise IndexStructureError('KhatriRao - index %s in %s

not in or not found in %s'
% (aind[0], a.symbol, b.symbol ))

if aind[0] == bind[0] and len(aind) > len(bind):
self.index_structures.append(str(aind[0]+' & '+aind

[1]))
bind = 'used'

elif aind[0] == bind[0] and len(aind) == 1 and len(bind)
== 1: # If objects of same type and 1D

self.index_structures.append(str(bind[0]))
bind = 'used'

elif aind[0] == bind[0]:
self.index_structures.append(str(bind[0]+' & '+bind

[1]))
bind = 'used'

def __str__(self):
language = self.space.language
print ('language = ',language)
if self.a.prec < self.prec: self.a = "((%s))" % self.a
if self.b.prec < self.prec: self.b = "((%s))" % self.b

s = CODE[language]['khatriraho'].format(self.a, self.index, self.b)
return s

A.3 Matrix product

class ReduceProduct(PhysicalVariable):
def __init__(self, op, index, a, b, prec, space):

'''
Binary operator
operator:
.index. :: matrix product reducing over the index

@param op: string:: the operator
@param a: variable:: left one
@param b: variable:: right one
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@param prec: precedence
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.op = op
self.index = index
self.a = a
self.b = b
self.prec = prec

self.doc = TEMPLATES['.'] % (a.symbol, b.symbol)
self.units = a.units * b.units
index = index.strip('|')
print(a.index_structures, b.index_structures)

i_a = a.index_structures.index(index) # first occurance
i_b = b.index_structures.index(index) # first occurance

if i_a < 0:
raise IndexStructureError('index structure %s not in the list of

%s'
% (index, a.doc))

if i_b < 0:
raise IndexStructureError('index structure %s not in the list of

%s'
% (index, b.doc))

self.index_structures = []
for i in range(len(a.index_structures)):

if i != i_a :
self.index_structures.append(a.index_structures[i])

for i in range(len(b.index_structures)):
if i != i_b :

self.index_structures.append(b.index_structures[i])

def __str__(self):
language = self.space.language

if self.a.prec < self.prec: self.a = "((%s))" % self.a
if self.b.prec < self.prec: self.b = "((%s))" % self.b

s = CODE[language]['reducedproduct'].format(self.a, self.index, self
.b)

return s

A.4 Exponential expressions

class Power(PhysicalVariable):
def __init__(self, op, a, b, prec, space):

'''
Binary operator
operator:
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^ :: the exponent,b , must have no units

@param op: string:: the operator
@param a: variable:: left one
@param b: variable:: right one
@param prec: precedence
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.op = op
self.a = a
self.b = b
self.prec = prec

self.doc = TEMPLATES[op] % (a.symbol, b.symbol)

# units of the exponent, b, must be zero
if not b.units.isZero():

raise UnitError('units of the exponent must be zero', a.units, b.
units)

self.units = a.units

# rule for index structures
self.index_structures = a.index_structures

def __str__(self):
language = self.space.language
if self.a.prec < self.prec: self.a = "((%s))" % self.a
if self.b.prec < self.prec: self.b = "((%s))" % self.b
s = str(self.a) + CODE[language]['^'] + str(self.b)
return s

A.5 Implicit equations

class Implicit(PhysicalVariable):
def __init__(self, fct, arg, space):

# TODO: implement implicit equation this is sqrt.

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.space = space
self.args = arg
self.prec = 99
self.fct = fct

self.doc = fct

# get variable defined as lhs - must appear on the rhs
# if variable exists -- no worries
# if not then things are difficult x = ax for example:
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# what should be the units ? no hands on them neither the indexing.

self.units = arg.units
if fct == 'sqrt':

self.units = copy.copy(arg.units)
self.units.__pow__(0.5)
self.doc = 'sqrt(%s)' % arg.doc

elif fct in UNITARY_NO_UNITS:
for i in arg.units.asVector():

if i != 0:
raise UnitError('%s expression must have no units'

% fct, arg, '-')

self.index_structures = arg.index_structures

def __str__(self):
return "%s(%s)" % (self.fct, self.args)

A.6 Unitary functions

class UFunc(PhysicalVariable):
def __init__(self, fct, arg, space):

'''
Unitary functions such as sin cos etc.
arguments may be an expression, but must have no units
@param symbol: symbol representing
@param fct: function name
TODO: needs some work here such as variable name generated etc
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.space = space
self.args = arg
self.prec = 99
self.fct = fct

self.doc = fct # __add__ returns doc string if succ

self.units = arg.units
if fct == 'sqrt':

self.units = copy.copy(arg.units)
self.units.__pow__(0.5)
self.doc = 'sqrt(%s)' % arg.doc

elif fct in UNITARY_NO_UNITS:
for i in arg.units.asVector():

if i != 0:
raise UnitError('%s expression must have no units'

% fct, arg, '-')

self.index_structures = arg.index_structures
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def __str__(self):
return "%s(%s)" % (self.fct, self.args)

def getPy(self):
return self.__str__()

A.7 Integral

class Integral(PhysicalVariable):
def __init__(self, y, x, xl, xu, space):

'''
implements an integral definition
@param y: derivative
@param x: integration variable
@param xl: lower limit of integration variable
@param xu: upper limit of integration variable
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)
# why like this: physical units is the problem.
self.y = y
self.x = x
self.xl = xl
self.xu = xu
self.space = space
self.prec = 99

xunits = Units.asVector(x.units)
yunits = Units.asVector(y.units)
units = [xunits[i]+yunits[i] for i in range(len(yunits))]
self.units = units

# self.symbol = self.space.newAutoVar()

def __str__(self):
language = self.space.language
LOGGER.info('language %s, variables y,x,xl,xu:%s, %s, %s, %s'

% (language, self.y, self.x, self.xl, self.xu))
t_y = self.space.translate(self.y, language)
t_x = self.space.translate(self.x, language)
t_xl = self.space.translate(self.xl, language)
t_xu = self.space.translate(self.xu, language)
LOGGER.info('language %s, variables y,x,xl,xu:%s, %s, %s, %s'

% (language, t_y, t_x, t_xl, t_xu))

y = CODE[language]['var'] % t_y
x = CODE[language]['var'] % t_x
xl = CODE[language]['var'] % t_xl
xu = CODE[language]['var'] % t_xu

s = CODE[self.space.language]['integral'].format(y, x, xl, xu)
# (self.y, self.x, self.xl, self.xu)
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return s

A.8 Total differential

class TotDifferential(PhysicalVariable):
def __init__(self, x, y, space):

'''
implements total differential definition
@param x: dx
@param y: dy
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)
self.x = x
self.y = y
self.space = space
self.prec = 99

# self.symbol = self.space.newAutoVar()
xunits = Units.asVector(x.units)
yunits = Units.asVector(y.units)
units = [xunits[i]-yunits[i] for i in range(len(yunits))]
self.units = units

def __str__(self):
language = self.space.language
x = CODE[language]['var'] % self.space.translate(self.x, language)
y = CODE[language]['var'] % self.space.translate(self.y, language)
return CODE[self.space.language]['Diff'] % (x, y)

# return CODE[self.space.language]['Diff'] % (self.x, self.y)

A.9 Inverse

class Inverse(PhysicalVariable):
def __init__(self, x, space):

'''
implements inverse matrix representation
@param x: 1/x
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)
self.x = x
self.space = space
self.prec = 99

# self.symbol = self.space.newAutoVar()
xunits = Units.asVector(x.units)
units = [-1*xunits[i] for i in range(len(xunits))]
self.units = units

def __str__(self):
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language = self.space.language
x = CODE[language]['var'] % self.space.translate(self.x, language)
return CODE[self.space.language]['Inv'] % (x)

A.10 Partial differential

class ParDifferential(PhysicalVariable):
def __init__(self, x, y, space):

'''
implements partial differential definition
@param x: dx
@param y: dy
'''

symbol = space.newTempPhysicalVariableName()
PhysicalVariable.__init__(self, space, symbol, equation_rhs=EMPTY_EQ

)

self.x = x
self.y = y
self.space = space
self.prec = 99

xunits = Units.asVector(x.units)
yunits = Units.asVector(y.units)
units = [xunits[i]-yunits[i] for i in range(len(yunits))]
self.units = units

# self.symbol = self.space.newAutoVar()

def __str__(self):
language = self.space.language
x = CODE[language]['var'] % self.space.translate(self.x, language)
y = CODE[language]['var'] % self.space.translate(self.y, language)
return CODE[self.space.language]['diff'] % (x, y)

# return CODE[self.space.language]['diff'] % (self.x, self.y)





Appendix B

Physical variable space

Included in this appendix is the entire variable space for the case study
presented in chapter 6.

Definition B.1 – Physical variable space

[t]
var_type = frame
doc = time
index_structures = ['nil']
equations = [('time', '_empty_', 'Eq000')]
units = [1, 0, 0, 0, 0, 0, 0, 0]

[geometrical space]
var_type = frame
doc = geometrical space
index_structures = ['nil']
equations = [('geometrical space', '_empty_', 'Eq001')]
units = [0, 1, 0, 0, 0, 0, 0, 0]

[m]
var_type = physical_state
doc = mass
index_structures = ['nodes & mass']
equations = [('mass', '_empty_', 'Eq002')]
units = [0, 0, 0, 1, 0, 0, 0, 0]

[n]
var_type = physical_state
doc = species
index_structures = ['nodes & species']
equations = [('species', '_empty_', 'Eq003')]
units = [0, 0, 1, 0, 0, 0, 0, 0]

[U]
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var_type = physical_state
doc = Internal energy
index_structures = ['nodes & energy']
equations = [('Internal energy', '_empty_', 'Eq004')]
units = [-2, 2, 0, 1, 0, 0, 0, 0]

[F]
var_type = incidence_matrix
doc = Incidence matrix for physical system
index_structures = ['nodes','arcs']
equations = [('Incidence matrix', '_empty_', 'Eq006')]
units = [0, 0, 0, 0, 0, 0, 0, 0]

[S]
var_type = incidence_matrix
doc = Species matrix for the system
index_structures = ['nodes & species','arcs & species']
equations = [('Incidence matrix', '_empty_', 'Eq006')]
units = [0, 0, 0, 0, 0, 0, 0, 0]

[F_S]
var_type = None
doc = F * S
index_structures = ['nodes & species', 'arcs & species']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Species block by block matrix', 'F*S', 'Eq027')]

[F_e]
doc = Incidence matrix for energy physical system
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Incidence matrix for energy physical system', '_empty_',

'Eq005')]
var_type = incidence_matrix
index_structures = ['nodes', 'arcs']

[F_w]
doc = Incidence matrix for work physical system
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Incidence matrix for work physical system', '_empty_', '

Eq006')]
var_type = incidence_matrix
index_structures = ['nodes', 'arcs']

[N]
var_type = incidence_matrix
doc = Reaction matrix
index_structures = ['nodes & species', 'nodes']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('Reaction matrix', '_empty_', 'Eq018')]

[r]
var_type = incidence_matrix
doc = kinetics
index_structures = ['nodes & species', 'nodes']
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('kinetics', '_empty_', 'Eq019')]
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[Beta2]
doc = Squared valve constant
units = [0, 7, 0, -1, 0, 0, 0, 0]
equations = [('Squared valve constant', '_new_', 'Eq023')]
var_type = physical_parameter
index_structures = ['arcs', 'nodes']

[Beta]
doc = sqrt(Squared valve constant)
units = [0.0, 3.5, 0.0, -0.5, 0.0, 0.0, 0.0, 0]
equations = [('Valve constant', 'sqrt(Beta2)', 'Eq024')]
var_type = physical_secondary state
index_structures = ['arcs', 'nodes']

[R]
doc = Gas constant
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('Gas constant', '_new_', 'Eq010')]
var_type = physical_parameter
index_structures = ['nil']

[Cp]
doc = Heat capacity, constant pressure
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('Heat capacity, constant pressure', '_new_', 'Eq011')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[D]
doc = Diffusivity Liquid to boundary
units = [1, -2, 2, -1, 0, 0, 0, 0]
equations = [('Diffusivity constant', '_new_', 'Eq012')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[T_0]
doc = Standard temperature
units = [0, 0, 0, 0, 1, 0, 0, 0]
equations = [('Standard temperature', '_new_', 'Eq013')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[k]
doc = Heat diffusion constant
units = [-1, 0, 1, 0, 0, 0, 0, 0]
equations = [('Heat diffusion constant', '_new_', 'Eq015')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[deltah_0]
doc = Enthalpy STP
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Enthalpy STP', '_new_', 'Eq016')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[s_0]
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doc = entropy STP
units = [-2, 2, -1, 1, -1, 0, 0, 0]
equations = [('entropy STP', '_new_', 'Eq017')]
var_type = physical_parameter
index_structures = ['nodes','arcs']

[1]
doc = 1 numerical constant
units = [0, 0, 0, 0, 0, 0, 0, 0]
equations = [('-1 numerical constant', '_new_', 'Eq018')]
var_type = physical_parameter
index_structures = ['nil']

[mu]
doc = Chemical potential
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Chemical Potential', 'diff{U,n}', 'Eq009')]
var_type = physical_secondary state
index_structures = ['nodes']

[T]
doc = root
units = [0, 0, 0, 0, 1, 0, 0, 0]
equations = [('Temperature', 'root(U)', 'Eq014')]
var_type = physical_secondary state
index_structures = ['nodes']

[p]
doc = root
units = [-2, -1, 0, 1, 0, 0, 0, 0]
equations = [('Pressure', 'root(U)', 'Eq025')]
var_type = physical_secondary state
index_structures = ['nodes']

[n_dot]
doc = F_S . r
units = [-1, 0, 1, 0, 0, 0, 0, 0]
equations = [('Mass balance', 'F_S.|arcs|.n_hat+N.|arcs|.r', 'Eq028')]
var_type = physical_secondary state
index_structures = ['nodes']

[V]
doc = root
units = [0, 3, 0, 0, 0, 0, 0, 0]
equations = [('Volume', 'root(U)', 'Eq029')]
var_type = physical_secondary state
index_structures = ['nodes']

[h]
doc = deltah_0 + _V1
units = [-2, 2, -1, 1, 0, 0, 0, 0]
equations = [('Enhalpi', 'deltah_0+Cp.|arcs|.(T-T_0)', 'Eq030')]
var_type = physical_secondary state
index_structures = ['nodes']

[U_dot]
doc = F . q_hat
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units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Energy balance', 'F.|arcs|.H_hat+F_e.|arcs|.q_hat', '

Eq032')]
var_type = physical_secondary state
index_structures = ['nodes']

[c]
doc = root
equations = [('consentration, volumentric', 'root(n)', 'Eq055')]
units = [0, 0, 1, 0, 0, 0, 0, 0]
var_type = physical_secondary state
index_structures = ['nodes']

[n_hat]
doc = D . _V0
equations = [('Mass diffusion', 'D.|nodes|.(mu-mu)', 'Eq022'),('Mass

advection', 'c.|nodes|.V_hat', 'Eq040')]
units = [-1, 0, 1, 0, 0, 0, 0, 0]
var_type = physical_transport
index_structures = ['arcs']

[V_hat]
doc = Beta . _V1
units = [-1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0]
equations = [('Volumentric flow, advection', '-Beta.|nodes|.sqrt(p-p)',

'Eq026')]
var_type = physical_transport
index_structures = ['arcs']

[q_hat]
doc = k . _V0
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Heat transport diffusion', 'k.|nodes|.(mu-mu)', 'Eq027')]
var_type = physical_transport
index_structures = ['arcs']

[H_hat]
doc = h . n_hat
units = [-3, 2, 0, 1, 0, 0, 0, 0]
equations = [('Energy trasport', 'h.|nodes|.n_hat', 'Eq031')]
var_type = physical_transport
index_structures = ['arcs']
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Interaction variable space

Included in this appendix is the entire interaction variable space for the case
study presented in chapter 6.

Definition C.1 – Interaction variable space

[p]
doc = root
units = [-2, -1, 0, 1, 0, 0, 0, 0]
equations = [('Pressure', 'root(U)', 'Eq040')]
var_type = physical_secondary state
index_structures = ['nodes']

[V]
doc = root
units = [0, 3, 0, 0, 0, 0, 0, 0]
equations = [('Volume', 'root(U)', 'Eq041')]
var_type = physical_secondary state
index_structures = ['nodes']

[A]
doc = Area of liquid phase
units = [0, 2, 0, 0, 0, 0, 0, 0]
equations = [('Area', 'root(U)', 'Eq042')]
var_type = parameter
index_structures = ['nodes']

[l]
doc = root
units = [0, 1, 0, 0, 0, 0, 0, 0]
equations = [('level', 'root(V)', 'Eq043')]
var_type = physical_secondary state
index_structures = ['nodes']

[Beta]
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doc = sqrt(Squared valve constant)
units = [0.0, 3.5, 0.0, -0.5, 0.0, 0.0, 0.0, 0]
equations = [('Valve constant', 'sqrt(Beta2)', 'Eq024')]
var_type = physical_secondary state
index_structures = ['arcs', 'nodes']
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