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Abstract

In this study a search for an equation of state (EOS) that accurately predicts solids
behaviour at both high pressure and temperature has been performed. Firstly, several
two-parameter isothermal EOSs for solids under high pressure were investigated. The
EOSs evaluated were the Murnaghan, Birch-Murnaghan, Vinet and pseudo-spinodal. The
input parameters needed were found through parameter fitting of experimental data. The
parameter fitting was done through a second order Murnaghan equation on implicit form.
This equation was found through an integration of a Taylor expansion in pressure of the
bulk modulus. The parameters obtained were the isothermal bulk modulus, and its first

and second pressure derivative for each solid in question.

The solids investigated were the low pressure forms of MgO (periclase), CaO (lime),
Al,O3 (corundum), SiO, (a-quartz), NaCl (halite) and MgCO;3; (magnesite). The names
given in parenthesis are the names of the minerals found naturally on Earth. The
experimental data found in the literature is from measurements on synthetically produced

solids, but the data is often used to represent the natural mineral as well.

In order to test the two-parameter EOSs against each other, the standard deviations for
the parameters were needed. The standard deviation was found through bootstrapping
and maximum likelihood, i.e. two different statistical methods. These two methods gave
comparable results for the standard deviation of the parameters (£5 — 65%) except for
MgO, which was found to reject the null hypothesis of normal distribution based on a
x’-test. Thus, the optimal parameters were reported using the bootstrap method, which is
distribution independent. The optimal parameters obtained, including their uncertainties,
were then used to test which of the two-parameter EOSs give the best fit to experimental
data.

Based on the analysis completed in this study, all the EOSs tested, except the first order
Murnaghan were close to the standard deviation for all the different solids investigated at



high pressure. Thus, a general conclusion on which EOS that gave the best fit for all the
solids examined could not be drawn. Nevertheless, the pseudo-spinodal EOS has some
promising features when it comes to high temperature and high pressure predictions, and

was therefore used to model the complete pressure-volume-temperature surface.

Predictions of the heat capacities, thermal expansion and the isothermal bulk modulus
at high pressure and temperature for NaCl and MgO were done based on the pseudo-
spinodal EOS. The thermal expansion and the complete pressure-volume-temperature
surface predicted were also compared with available experimental data. The predictions
give good fit to the data. However, from this analysis it may seem that the pseudo-spinodal
EOS gives better fit for alkali halides than for oxides due to the difference in thermal
dependency of the Griineisen parameter for these two substance groups. For alkali halides,
e.g. NaCl, the Griineisen parameter generally decreases with temperature. For oxides on
the other hand, e.g. MgO, the Griineisen parameter increases with temperature. This
opposite temperature effect on the Griineisen parameter for oxides and alkali halides has

implications on the model predictions within the framework of the pseudo-spinodal EOS.

The major finding in this report was that an inconsistency in the pseudo-spinodal EOS was
found at high pressure. This EOS predicts negative heat capacity at very high pressures
and low temperatures. It is recommended in further work to search for a consistent way
of including internal energy. This will provide an EOS of great value in the prediction of

high pressure and high temperature effects on solids.
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Sammendrag

I denne studien ble et sgk etter en tilstandsligning som presist predikerer faste stoffers
oppfersel ved bade hgyt trykk og hgy temperatur utfgrt. Forst ble flere to-parameter
isoterme tilstandsligninger for faste stoffer under hgyt trykk undersgkt. Tilstandslignin-
gene som ble undersgkt var Murnaghan, Birch—-Murnaghan, Vinet og pseudo-spinodal.
Parameterne som trengtes for tilstandsligningene ble funnet gjennom parametertilpasning
av eksperimentelle data. Parametertilpasningen ble gjort ved hjelp av en andreordens Mur-
naghan ligning pa implisitt form. Denne ligningen ble funnet ved integrasjon av en Taylor
rekkeutvikling i trykk av bulk modulus. Parameterne som ble funnet var den isoterme
bulk modulus, og dens fgrste og andre deriverte med hensyn pa trykk for hvert av de faste
stoffene som ble undersgkt.

De faste stoffene som ble undersgkt var lavtrykksformene av MgO (periclase), CaO
(lime), Al,O3; (corundum), SiO, (a-quartz), NaCl (halite) and MgCO; (magnesite).
Navnene i parentes er navnene til mineralene slik de blir funnet naturlig pa jorden.
De eksperimentelle dataene som er funnet i litteraturen er fra malinger pa syntetisk
fremstilte faste stoffer, men disse dataene blir ogsa ofte brukt til a representere de naturlige

mineralene.

For 4 ha muligheten til & teste de to-parameter tilstandsligningene mot hverandre
trengtes standardavviket for parametrene. Dette ble funnet ved hjelp av bootstrap og
maximum likelihood, det vil si to forskjellige statistiske metoder. Disse to metodene
gav sammenlignbare resultater for standardavviket for parametrene (+5 — 65%) utenom
for MgO som avviste nullhypotesen for normalfordeling basert pi en y*-test. De
optimale parametrene ble derfor rapportert ved bruk av bootstrap metoden som er
fordelingsuavhengig. Optimal parametrene som ble funnet, inkludert deres usikkerheter,
ble deretter brukt til & finne hvilken av de to-parameter tilstandsligningene som gav den
beste tilpasningen til eksperimentelle data.
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Basert pa analysen utfgrt i denne studien var alle tilstandsligningene som ble testet, utenom
forsteordens Murnaghan, nerme standardavviket for alle de undersgkte faste stoffene ved
hgye trykk. En generell konklusjon for hvilken tilstandsligning som gav best tilpasning
kunne derfor ikke bli trukket. Den pseudo-spinodale tilstandsligningen har likevel noen
lovende attributter nar det kommer til prediksjoner ved hgy temperatur og trykk. Denne

ligningen ble derfor brukt til & modellere hele trykk-volum-temperatur flaten.

Prediksjoner av varmekapasitet, termisk ekspansjon og den isoterme bulk modulusen ved
hgyt trykk og temperatur for NaCl og MgO ble gjort basert pa den pseudo-spinodale
tilstandsligningen. Prediksjonene av termisk ekspansjon og den totale trykk-volum-
temperatur flaten ble ogsda sammenlignet med eksperimentelle data. Prediksjonene
gav god tilpasning til dataene. Det kan fra denne analysen imidlertid se ut som
den pseudo-spinodale tilstandsligningen gir bedre tilpasning for alkali halider enn for
oksider pa grunn av ulik termisk avhengighet for Griineisen parameteren for disse to
stoffgruppene. For alkali halider, for eksempel NaCl, Griineisen parameteren generelt
synker nar temperaturen synker. For oksider derimot, for eksempel MgO, Griineisen
parameteren gker nar temperaturen synker. Denne motsatte temperatureffekten for
Griineisen parameteren for disse to stoffgruppene gir ulik tilpasningspresisjon innenfor

rammeverket til den pseudo-spinodale tilstandsligningen.

Den viktigste oppdagelsen i denne rapporten var en inkonsistens i den pseudo-spinodale
tilstandsligningen. Denne tilstandsligningen predikerte negativ varmekapasitet ved hgye
trykk og lave temperaturer. Det er anbefalt i videre arbeid & lete etter en konsistent mate
for & inkludere indre energi. Dette vil gi en tilstandsligning av stor verdi for prediksjoner

av hgye trykk og hgy temperatur effekter pa faste stoffer.
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Chapter 1

Introduction

In order to find solutions to a variety of problems in earth science and condensed phase
physics, an equation of state (EOS) that accurately predicts solids behaviour at high
pressure and temperature is required. A well defined EOS provides the opportunity to

calculate a number of thermodynamic properties with the use of limited experimental data.

The most famous EOSs for solids are the Murnaghan and the Birch—-Murnaghan equations.
Murnaghan presented in 1944 an EOS that was based on the principle of conservation
of mass, Hooke’s law for infinitesimal variations of stress and an assumption that the
bulk modulus was linear with respect to pressure (Murnaghan 1944). This assumption
has been proven accurate at low compression by comparison with experimental data
(Wedepohl 1976). Murnaghan’s EOS is still used today and has also been further
developed by extending the approximation for the bulk modulus to higher order Taylor
expansion with pressure (Fuchizaki 2006). The second order form has been referred to
as the modified Murnaghan equation (Birch 1986). The higher order approximations give
more complicated calculations. In addition, it is difficult to experimentally determine the
higher order derivatives of the bulk modulus. Today, the second derivative of the bulk
modulus define the experimental edge of the penumbra (Anderson 1995). Thus, the most
common form is still truncation at the linear term. However, for parameter fitting the

modified/second order Murnaghan equation is still useful, as shown in this report.

A derivation based on finite strain theory, which in a simpler way takes into account the
variation of the bulk modulus with respect to pressure, was made by Birch (Birch 1947).
This equation is populary refered to as the Birch-Murnaghan EOS.
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2 Introduction

Both the Murnaghan and the Birch—-Murnaghan are isothermal equations, i.e. they are not
temperature dependent. To find the temperature dependency of a solid, isobaric EOSs has
often been used (Plymate & Stout 1989). The simplest one is just the definition of the
thermal expansion:
_ _y-l(av
a=-V (ﬁ)p (1.0.1)

The compression of a solid is for most materials much more dependent on pressure than
temperature. Thus, the approach to find the EOS that gives good fit at both high pressure
and temperature has been to use a isothermal EOS, and then add a thermal expansion

correction (Anderson 1995).

In addition to Murnaghan and Birch—-Murnaghan there is a large number of other EOSs
which are made for the isothermal description of solids under strong compression. Many
of them are similar, and can consequently be lumped into classes which describes the
foundation that they are built upon. For instance the Bardeen, Ullman-Pan’kov and
Thomsen EOS are all based on the same foundation as the Birch—-Murnaghan, i.e. finite
strain theory (Anderson 1995). In this report the isothermal EOSs are divided into four

main classes given as follows:

1)
2)
3)
4) The pseudo-spinodal hypothesis.

Based on solid mechanics definition of finite strain.
Empirical model for certain state properties, e.g. bulk modulus, K.

Based on interatomic potential.

For each of the four classes an isothermal EOS has been chosen to represent that specific
class. The choice of EOS has been based on earlier documentation of their success to fit
experimental data. The selected isothermal EOS are given with the same numbering as the

class they represent, and are as follows:

1
2
3
4

Birch—Murnaghan
Murnaghan
Vinet

~— — ~— —

Pseudo-spinodal

This report will focus on the aforementioned isothermal EOSs as well as a suggestion to a
complete EOS. Here, the complete EOS is built up from two contributions. The isothermal
EOS that gives the best fit to experimental data, and a temperature dependency which is
incorporated into that equation.



Chapter 2

Theory

This chapter outlines the background for and the derivation of the EOSs used in this thesis.
Also, the basis for a thermodynamic state description has been outlined, i.e. to establish a
complete set of equation of states in the Gibbs and Helmholtz framework. The differential

of Gibbs potential at constant temperature and pressure is as follows:

(dG)r,p = 3 midN; 2.0.1)

The differential of Helmholtz potential at constant temperature is as follows:

(dA)r = —pdV + " wdN; 2.0.2)

To be able to integrate Equations and it is necessary to know the functions
ui(T,p,n), or p(T,V,n) and w;(T,V,n) respectively. Note the different free variables for the
Gibbs and the Helmholtz potentials. Section [2.5|describes how the chemical potential can
be found based on integration of V(p) and p(V).

2.1 Physical properties and thermoelastic parameters

Table 2.1.1] gives an overview of the different experimental physical properties, and the
thermoelastic parameters that are used in the field of high pressure condensed phase
thermodynamics. The parameter names, symbols and meanings in terms of differentials

3



4 Theory

are stated. The symbols used for the different parameters are chosen in accordance to the
IUPAP standard (Mills, Cvitas, Homann, Kallay & Kuchitsu 1993), and alternative names

found in the literature are also given in parenthesis.

Table 2.1.1: Overview of thermodynamic state properties with interest to condensed phase
high pressure physics and their meaning in terms of differentials. Symbols in paranthesis
are alternative names found in litterature.

Parameter name Symbol Derivative Equivalence
Thermal expansion o' v (%)p
Isothermal bulk modulus K, (Kr,Br,B) —V(%)T
Isothermal compressibility K, (B) -yl (B—Z)T
3 b)

Nameless parameter akK (ﬁ)v - (%)F (%) .
Isochoric heat capacity Cy T (%)V
Isobaric heat capacity c, T (%)p
Pressure derivative of bulk K ( P K)
modulus /T
Temperature derivative of ( P K) ( P) K)
bulk modulus ar’p arlp
Anderson—Griineisen 8, (67) - (%K (Z—'T()p

. 3
Griineisen ¥, (Y%, Yimg) v(55), oar
Isentropic bulk modulus Ks -V (Z—i) s
Intrinsic temperature oK oK oK oK
derivative of K (ﬁ)v (ﬁ) v (‘TT)” rak (E)T

The differentials in Table [2.1.1] are rewritten in terms of Helmholtz and Gibbs potentials
in Table 2.1.2] This is done to represent these parameters as functions of energies. No
equivalent setup as the one given in Table [2.1.2]is found in the literature, but some of the
energy derivatives are derived in the book by Anderson (1995).
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Table 2.1.2: State properties given as energy function derivatives. Gibbs energy is

explicit in temperature and pressure, whilst Helmholtz energy is explicit in temperature
and volume.

Symbol Gibbs energy Helmholtz energy
1 1 Ayr
@ vGor V Ayy
K -V VAyy
PP
1 1 1
K vGrp V Ay
Gy
aK - -Ayr
Gpp ,
Gr
CV —T(GTT + G]W ) —TATT
Abr
Cp —TGTT T(—ATT + Avy
’ _ GpopGp _ Avyy
K (1+ & ) (1+VAW)
0K GprGpp=GpprGp _ Ayyy
(OT)p G%}p VAVVT Avr(l +V Avy )
G,Gppr 1 GpGppp Avyr Ayvy
- -1+ AL _ (] 4 VALY
6 GpTGpp [2,,, V AVT ( V AVV )
y v Gpr VAyr
T (GTTGFF"'GIZ)T) T ATT
2 2
_ Vv Gor AT
Ks ATV VAyy - VA2
0K _GpprGy
(aT) 1% Gz, VAvyr



6 Theory

2.2 Isothermal equations of state

The four different EOSs studied in this report, i.e. Murnaghan, Birch—Murnaghan, Vinet
and the pseudo-spinodal equation, can be classified into either an integral or a derivative

form. Birch—-Murnaghan and Vinet are both based on the derivative of the internal energy:

== (2.2.1)
Whilst the Murnaghan and Pseudo-spinodal EOS are based on the pressure integral form:

% rd
~ —exp _ar

_ 222
Vo n K(p) (2:22)

The isothermal EOSs which are used throughout this report are shown in Table [2.2.1] for
the pressure explicit form and in Table 2.2.2] for the volume explicit form. The pseudo-
spinodal and Murnaghan EOS can be expressed explicitly in both pressure and volume.
EOSs which have this feature have been referred to as invertible EOSs (Chauhan, Lal &
Singh 2011). In contrast, the Vinet and Birch-Murnaghan EOS are non-invertible and can

only be given in pressure.

Table 2.2.1: Isothermal EOSs, pressure explicit

Equation of state Explicit in pressure

Murnaghan (1st order) | p(V) = %[(%)K{) -1]
0

Birch-Murnaghan p(V) = %KO(VLO)’%(I - (Vlo)%)[l +2(K) - 4)((‘%)*% -1)
(3rd order)

. S s vyl
Vinet p(V) =3K, —exp[5(Kp - 1)(1-(5)%)]

()

Pseudo-spinodal p(V)=[In (VL)@] = + Psp
=
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Table 2.2.2: Isothermal EOSs, volume explicit

Equation of state Explicit in volume
’ _ L
_ K0+K0p K’
Murnaghan V(p) =Volg; K(;po) 0

Birch—-Murnaghan (3rd order) | Not invertible

Vinet Not invertible

Pseudo-spinodal V(p) = Vipexp (- 15;* (p- psp)(l—y*))

A fundamental constraint required by any EOS is that when the volume approaches

zero, the pressure must increase towards infinity (Chauhan et al. 2011). By inserting

v
Vo

here p - co when the volume decreases towards zero. Thus, all the equations exhibit

— 0 in the equations in Table [2.2.1|it can be seen that for all the EOSs investigated

correct high compression asymptotes. However, for the Birch—-Murnaghan EOS there is
an additional constraint on the parameters for which the potential is physically realistic
(Hofmeister 1993). The Birch-Murnaghan is mathematically unstable for K| < 4.
Below this value the bulk modulus will become negative given sufficient compression.
This is obvious from the Birch-Murnaghan EOS given in Table 2.2.1] However, the
potential is not physically unrealistic before K| < 3.8. This is due to the prevention
of collapse in the potential, which is a result of the big values for the maxima as K
approaches 4 (Hofmeister 1993). For the Birch—-Murnaghan EOS, the mathematically
stable and physically realistic potential region for ionic solid or soft solids (e.g. NaCl)
is 4 < K| $ 8 (Hofmeister 1993). For neutral or hard solids (e.g. MgO), the region is
4 < K|, $ 6 (Hofmeister 1993). Most solids lie within this range, and the EOS is therefore
usable for solids. For liquids on the other hand, where K, > 7, the Birch-Murnaghan EOS

is unreliable.

Specially designed isothermal EOSs are possible to derive for each substance in question
through so-called first principle calculations developed from quantum mechanics. These
calculations give more accurate descriptions of the solid, but are very time-consuming as
they have to be computed individually for a number of volumes and for each substance
class. On the other hand, if a suitable analytical form of the EOS is found, the high
pressure and high temperature properties for a variety of substances can be predicted by

determining a few parameters by fitting to experimental data.
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2.3 Derivations of the isothermal EOSs

The derivations of the isothermal EOSs are shown in the following section.

2.3.1 Murnaghan

Murnaghan’s EOS can be derived from the definition of the bulk modulus (see Table[2.1.T)
and the assumption made by Murnaghan that the bulk modulus is linear with respect to
pressure (Murnaghan 1944):

K(p) =Ko+ KyP (2.3.1)

By insertion of Equation[2.3.1]into the pressure integral in Equation 2.2.2)and carrying out
the integration, the following equation is obtained:
1% K, -+
“Y=(1+=2 Ko 2.3.2
()= 1+ p) 232)
This basic form is the so-called Murnaghan EOS. However, as is widely known in the
literature the Murnaghan equation is not valid at large compressions. It starts to break
down at compressions below approximately (0.85 — 0.90) VLO for most solids (Plymate
& Stout 1989) and at even larger compressions Murnaghan’s equation starts to deviate

significantly from experimental data (Fuchizaki 2006).

2.3.2 Vinet

The Vinet EOS is based on a relationship between the binding energies and the interatomic

spacing, given the closed form (Vinet & Ferrante 1987):
E(a*) =AE[E*(a")] (2.3.3)
The interatomic separation a* is defined as:

a* — (rws - rwxe)

1 (2.3.4)

Here, E(a*) is the binding energy and AE is the zero pressure value. r,; is the Wigner—
Seitz radius, r,. is the Wigner—Seitz radius at equilibrium and [ is a scaling length. The
Wigner—Seitz radius is the radius of a sphere, whose volume is the average volume per



2.3. Derivations of the isothermal EOSs 9

atom in the system under consideration. At zero temperature the pressure can be found
from (Vinet & Ferrante 1987):

AE 1 .
_ 0A OE _ * *
p=- (W)T—o - (W)T:Q - 47T(la " +rws)2 j (a ) (2.3.5)
The force relation can then be written as:
-AE
F(a*) = 4nr P(a*) = 7 —ZZEY (a*) (2.3.6)

By employing Hooke’s law near equilibrium and the approximation for solids that £ + (a*)

is approximated by —(1 + a*) exp (a¢*) the final result can be written as:

p(V) =3Ko ;vo)i

3, ., v%
WGXP[E(KO—U(I—(VO) )] (2.3.7)

See Vinet & Ferrante (1987) for details.

2.3.3 Birch-Murnaghan

The Birch—Murnaghan EOS is developed from the internal potential energy in a solid, and
as explained earlier based on finite strain theory. The energy of a solid can be expressed by

the Helmholtz energy which for most solids has three main contributions (Anderson 1995):
A=Eg+Avip+Ey (2.3.8)

Here, A is the Helmholtz energy, E; is the potential of the static lattice at absolute zero
temperature, Ay, is the vibrational energy due to the atoms motion around a lattice point
and E,; is the potential due to free electrons. There also exists other contributions, e.g.
magnetization, but they may be assumed small compared to the other contributions for
most solids. For non-conducting materials E,; may also be assumed negligible. This theory
states that the strain energy of a solid can be found based on a Taylor series expansion of
energy with respect to Eulerian strain, which is defined as follows:

f= ;[(“//‘))2 -1] (2.3.9)

At zero temperature and assuming negligible E,;, the energy function can be written as
A ~ E. The Helmholtz energy can now be expressed as a Taylor series expansion of the



10 Theory

Eulerian strain:
A=a+bf+cfr+df>+... (2.3.10)

Truncating Equation [2.3.10|after the second order term and acknowledging that the energy
is zero at zero strain, the following is obtained:

A=bf +cf? (2.3.11)

The pressure can then be found from the definition:

p=-(5),=-(%) ) (23.12)

Differentiating the two differentials separately and inserting them in Equation[2.3.12]gives:
5 5
1+2f)F 1+2f)3
popLF20 7 o (12f) (2.3.13)
3Vy 3Vo

At zero strain the pressure is also zero, which gives b = 0. By using the definition of the
bulk modulus (see Table[2.1.T)) the last unknown coefficient, ¢, can be found.

K=-v(Z2), = %(1 +21)[S5F(1+2F)7 + (1+2f)3] (2.3.14)

From evaluation of the bulk modulus at zero strain the following equation for pressure is
obtained:
p=3Kof(1+2f)? (2.3.15)

By inserting the definition of the Eulerian strain from Equation [2.3.9] the second order
Birch—-Murnaghan EOS is found:

p:,Ko((i)*z_(VKO)*%) (2.3.16)

A similar derivation as the one given above, but now truncating after the third order term
in Equation[2.3.T0] will give the third order Birch—-Murnaghan EOS as shown in Equation

(Anderson 1995).

P 3Kol(5) = (G D+ (K =4)((5) - 1] (23.17)
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2.3.4 Pseudo-spinodal

The pseudo-spinodal EOS is based on the assumption that the bulk modulus, K, follows a

power law of the form (Baonza, Alonso & Nunez 1994):

1 «
K=—(p=ps) (2.3.18)

Here, p;,, is the spinodal pressure, * is an amplitude and y* is the pseudocritical exponent
which characterize the pressure behaviour of the bulk modulus. The spinodal pressure can
be considered as the negative hydrostatic pressure at which the solid ruptures (Taravillo,
Baonza, Rubio, Nunez & Caceres 2001). The pseudocritical exponent is assumed to be
approximately 0.85 for solids (Taravillo et al. 2001). This assumption derives from an
analysis, which showed that the Helmholtz energy could be expressed as a Taylor series
expansion in V - V,,(T) (Speedy 1982). Here, V;, is the volume of the substance at
the cross-section between the isotherm and the spinodal curve. The requirement is that
the Helmholtz energy must be analytically near the spinodal. Through this analysis the

following was obtained along any isotherm:
Koca™ o Coloc (Ip - pop(T))) (2.3.19)

Combining the definition of K as given in Table 2.1.1) and Equation [2.3.T§] the following

can be found: .

K

\%4
dlnV=-

—p) " 1d (2.3.20)
v pwl_y*[(p psp) 7 1dp

Integration of Equation[2.3.20] the following equation is found:

*

K s
V(p) =Vypexp[ - ——=(p-psp)' ] (2.3.21)
(1-v%)
where,
-Y* Ko
Py= g (2.3.22)
_ '
Ll (2.3.23)
Ko
Yo Cexpl—L (2.3.24)
VO p[(l_,yx-)K(l)]

Equation [2.3.21] is the so-called pseudo-spinodal EOS. It may seem like there is a unit
inconsistency since the pressure difference (p — py,) has a non integer power. However, by
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rewriting Equation [2.3.21]it is evident that the dimensions are consistent:

(1=2)" (py -~ p)
V(p) = Vypexp| IEA{—Y*)K: ] (23.25)

2.4 Incorporation of thermal effects

In order to find a complete EOS with both pressure and temperature dependency the total

differential of pressure can be used.

dp(V.T) = (), dV + (%), dT (2.4.1)

Inserting the definition of @K (see Table[2.1.T)) in Equation[2.4.|the following is obtained:
dp(V.T) = ($), dV + aKdT (2.4.2)

Assuming that the volume term is independent of temperature and the temperature term is

independent of volume, the equation can be integrated as follows:

|4 T
p(V,T):f (j—g)waf oKdT + p(Vo, To) (2.4.3)
V(] TO

If @K is assumed to be constant with respect to temperature, which is shown to be
approximately true for a variety of substances above the Debye temperature, the following
EOS is obtained:

14
p(V.T) = fv (%2, 4V +aK(T - To) + p(Vo, To) (2.4.4)
0
By carrying out the integration of Equation the final equation can be written as:
p(V.T) = p(V,To) + aK(T - Ty) (2.4.5)

Here, p(V, Ty) can be replaced by any one of the isothermal equations given in Table

This procedure of including pressure and temperature effects separately was used by

Anderson (1995). In his work a general EOS was defined as follows:

p(V,T) =p(V,To) + pu(V,T) (2.4.6)
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Here, p(V,Ty) is the isothermal contribution at Ty and py;, is the thermal pressure. The
thermal pressure can be found through the Mie—Griineisen approximation (Anderson
1995):

7mg

P = 7Ezh 2.4.7)

Here, v,,, is the Mie—Griineisen parameter, an approximation of the Griineisen parameter
(y, see Table[2.1.1), and E,, is the thermal energy.

The thermal energy in solids can be viewed as an analog to the internal energy in gases.

The internal energy of a perfect gas can be written as:
Uu=cC,T (2.4.8)

From ideal gas law the following can be obtained:

r_»r (2.4.9)
vV NR

By combining Equation [2.4.8|and Equation [2.4.9]the following relation can be found:

. RU
pe¢=—— (2.4.10)

CyV
A comparison of Equation[2.4.10|with Equation shows that they are analogous except
for the proportional constant, which is different. Also, the thermal pressure in a solid
is only a part of the total pressure, whilst for gases the kinetic pressure equals the total

pressure.

The thermal energy, E,, in Equation can be found from either Einstein’s or Debye’s
model. Einstein’s model assume that all the particles in the lattice vibrates with the same
frequency. Debye’s model takes into account that the frequency can be different for each
individual particle (Haug-Warberg 2006).

Another method of including the temperature effect is due to Vinet et al. (1986).
They included the temperature effect into their EOS by modelling the variation of bulk
modulus with temperature (Vinet, Smith, Ferrante & Rose 1986). To include this
effect experimental values of the thermal expansion, Vj, Kj and K(’) are needed at zero
pressure and at a single reference temperature. In this EOS the thermal pressure was
assumed independent of volume and linear with temperature above the Debye temperature
(T > 6). Thus, the Vinet EOS is only applicable above the Debye temperature (Taravillo
et al. 2001), while the pseudo-spinodal theory is also valid at lower temperatures.
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A third alternative was proposed by Taravillo et al. (2001). They used the same Mie—
Griineisen approximation as in Equation [2.4.7] but in a slightly different manner. Instead
of using the Mie—Griineisen approximation to find the thermal pressure, they used it to

find the pseudo-spinodal pressure (Taravillo et al. 2001):
psp(T) = pY, + %Eth(T) (2.4.11)
0

As described above both Einstein’s and Debye’s model can be used to find E;,. In the
pseudo-spinodal EOS the Einstein model was chosen since no significant improvement
was found by using the Debye model (Baonza, Taravillo, Caceres & Nunez 1995).
Besides, the Debye Cy can not be integrated analytically. This gives:

1 1

po(T) =, + %3]\!/@,9,;[7 +
0

_ 2.4.12
2 exp % - 1] ( )

Here, the pgp is given as the rupture pressure at O K. This pressure can be viewed as an

offset on the left side of Equation It is calculated from Equation if psp(T)
is found at a reference temperature (typically ambient temperature) and the rest of the
parameters in the equation is known. The p;,(T,.r) is calculated from Equation
with the parameters found at that particular reference temperature (Baonza 2012). Then
p(;p is the only unknown in Equation and can therefore be solved for:

0 Yo 1 1
= por(Tror) — LO3NKy O = + — 2413
Psp = Psp(Trer) v, Nk el5 oxp 2L — (2.4.13)

ref

By using the latter approach to introduce the thermal effects some of the problems
concerning the volume dependency of the ratio % can be avoided (Taravillo et al. 2001).
A lengthy discussion on how this ratio varies with pressure has been done by other authors
(Anderson 1995). Nonetheless, there are some problems with an inconsistency in the
pseudo-spinodal EOS which will be addressed in Chapter [5.3]

2.5 Derivation of chemical potential

The following section will outline the chemical potential of the aforementioned EOSs. In
order to find the chemical potential, a differential based on either Gibbs or Helmholtz
variables can be integrated. With Gibbs canonical variables the differential must be
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expressed as follows:
(du)rn = vdp (2.5.1)

In Helmholtz variables the differential is as follows:

(du)rn = pdv (2.5.2)

Which set of canonical variables one should use depends on what form the EOS can be
represented analytically (see Tables [2.2.T]and[2.2.2)), either as p(V) or V(p) functions. The
chemical potentials from the different EOSs are shown in Table [2.5.1]
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Table 2.5.1: Chemical potential for the different EOSs

EOS Chemical potential
Murnaghan wMer (T, p) = u(T, po)+
Kot
(Gibbs) Vo( Sk (ki) i) )
Murnaghan wMr (T, V) = u(T, Vo) +
(Helmholtz) V() + Ky(V - Vo) - V)/(1 - Kp)
0

Birch—-Murnaghan

Vinet

Pseudo-spinodal

(Gibbs)

Pseudo-spinodal

(Helmholtz)

pEM(T, V) = u(T. Vo)~
3KoVol 5 (Kg _4)(1)_2 +(5 -

(23K ()77 + (33 - 2K0)]

©"(T,V) = (T, Vo)

+9KoVol - 51

_4
KD ()

exp [3(Kj - 1)(1-(5))](1 - (%)%)

+oremye exp [3(KG -~ D (1= (3)9)] -

u* (T, p) = u(T, po)+

Vil (p _Pcp(%(p—p )(1*)’*))(ﬁ))] .

C(#=(p=psp) "7, 122)

pP (T, V) = u(T, Vo) +
Vip —In(3-)"

DPspV

1(7—11

T'(X, a) is the incomplete gamma function (Rottmann 2006)

v (- In (). 1=

e

’1'}/
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2.6 Statistics

In order to find the standard deviation for the parameters, two different statistical methods
have been employed in this study. The first is a statistical method called bootstrapping.
This method was developed by Bradley Efron and Robert Tibshirani in the early 1980s
(Efron & Tibshirani 1993). This method uses a large number of so-called bootstrap
samples to find the accuracy of sample estimates, e.g. in this case, the standard deviation of
the parameters. A bootstrap sample is made by taking random samples with replacement
from the original data set. It is important that the size of the samples are equal to the size of
the original. The covariance matrix can then be obtained through an analysis of the optimal
parameters obtained from nonlinear regression of each bootstrap sample. Each element in
the covariance matrix can be calculated from (Walpole, Myers, Myers & Ye 2007):

cov(6:,0;) = E[(6; - E(6:))(6; - E(6;))] = E[(6; - 6:)(6; - 6))] (2.6.1)

The other method utilized is based on maximum likelihood. The covariance matrix is then
calculated from the inverse of the Hessian matrix of the implicit parameter fitting equation
(Golder n.d.). The Hessian is found by second order differentiation of the likelihood
function. This differentiation can be done analytically or numerically. For systems with
many unknown parameters and complicated analytical differentials it can be beneficial to

do the differentiation numerically.

From the covariance matrix found from either of these statistical methods it is possible
to find the variance and consequently the standard deviation of the parameters. If the
parameters are correlated it is possible to decorrelate them by changing the coordinate
system so that the variance of the parameters are orthogonal on each other. Decorrelation
is taken to mean that the variables are scaled and rotated such that the contours becomes

concentric circles.

Schematic overviews of how the bootstrap and the maximum likelihood method can be

used to find the standard deviation for the parameters are illustrated in Figures [2.6.1] and

[2.6.2]respectively.
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Bootstrap —
Covariance matrix —
Diagonalization —
Variance —

Standard deviation

Figure 2.6.1: Schematic overview of the bootstrap method for finding the standard
deviation of the parameters

Maximum likelihood —
Hessian —
Covariance matrix —
Diagonalization —
Variance -

Standard deviation

Figure 2.6.2: Schematic overview of the maximum likelihood method for finding the
standard deviation of the parameters



Chapter 3

Literature study

In order to find optimal parameters for the isothermal EOSs and other characteristic
properties, a search for experimental data was required. Pressure-volume relations at
constant temperature have been measured for all the substances evaluated in this report
to greater or lesser extent. The search tools utilized were Google Scholar, ISI web of

knowledge and the library resources available at NTNU.

Isothermal data has been the primary objective, and therefore the available shock data has
not been evaluated and used in a systematic way here. One large shock hugoniot database
(Marsh 1980) has been used for some of the substances, but the data has subsequently been
adjusted to the specific heat ratio. This is only an approximation and it does not give large
differences in the parameter fitting if this dataset is left out. It is only used to represent the
high pressure range for some of the solids evaluated. The experimental data used in this

report has been reprinted in Appendix [A]

For MgO a lot of different sources of experimental data were available. Six different
sources of data were used containing a total of 218 data points. A lot of low pressure
data which matched each other well and some high pressure data that deviated from each
other was found for MgO. This gave a high confidence in the low pressure data and low
confidence in the high pressure data for this solid. This affected the distribution function

as will be discussed in Section[3.4]

Experimental data for CaO was found through five different sources at a total of 58 data

points. The experimental measurements for CaO were found to give very similar results

19
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compared to each other as can be seen by comparing the different measurements at similar

pressure.

Al,Os3 had a lot of experimental data available for a wide range of compression. From six
different sources a total of 100 experimental measurements were found. The maximum

pressure for which measurements were found was at 144.8 GPa.

SiO, was a solid for which it was difficult to obtain experimental data. Only 36 data
points were found from four different sources. There are a lot more measurements on

Si0; available, but then for other phases than the one studied here, i.e. @-quartz.

Experimental data for NaCl was found through five different sources. This gave a total
of 113 data points. The maximum pressure for which measurements were found was at
33.27 GPa. Since NaCl is a quite soft solid compared to many of the others studied here
this pressure gave a compression of VXO = 0.62. Thus, the pressure is measured high enough
to give good data for parameter fitting even though the pressure is not as high as for many
of the others.

For MgCOs3; only two references for experimental isothermal compression data were
found. Nonetheless, one of the databases (Fiquet & Reynard 1999) was extensive enough

to provide a total of 66 data points for this solid.



Chapter 4

Results

In this chapter, the results of the model fitting will be outlined. Matlab was used to conduct
the calculations and make the plots. A selection of scripts are listed in Appendix [B] while
the rest can be found in the attached zip file. The selection is done such that scripts with
identical functionality, and which differ only in what solids they handle, are listed just

once.

4.1 Parameter fitting

In order to find the parameters for the isothermal EOSs, i.e. Kj, K('), Ké’, a second order
Murnaghan EOS on implicit form was used. This equation was used since it is a extension
of the Taylor series expansion utilized to calculate the first order Murnaghan EOS.

1" order
—_— "

K
K:K0+K6p+70p2+(9(p3) (4.1.1)
—————
2ndorder
Since K{ is at the limit of what is experimentally measurable there is no reason for
extending the Taylor series expansion in Equation .1.1] higher than second order. Also,
there is found no evidence that this equation is not good enough to fit experimental
data. The fact that the equation is written on implicit form means that it is written as
f(p, Vlo, 6) = 0, where p is the pressure, (VLO) is the compression and @ is a vector consisting
of the unknown parameters. The equation was derived by integrating the second order bulk

21
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modulus analogous to the derivation of the first order Murnaghan as given in Section[2.3.1]

The equation can be written as:

\% (1+ap)
1o () + - 412
¢ () B =5 8 (T3 bp) “4.1.2
where,
K (1-4K"Ko)
LT AU
0 0
and X
b=-2_gq
Ko

The equation is nonlinear in the parameters, and consequently nonlinear regression had to
be used to find the optimum. The experimental data for the pressure and the compression
were found in the literature (see Appendix [A). In Table f.1.T] the parameters found from
the nonlinear regression for the different substances investigated are shown together with
their standard deviation. In this table, 8 is a vector consisting of the optimal isothermal
bulk modulus values found from the parameter fitting, i.e. Ko, K and K. The Ag; vectors
are the uncertainty vectors found from the bootstrap method after diagonalization of the

covariance matrix. This is explained in Section [2.6]



4.1. Parameter fitting

Table 4.1.1: Nonlinear regression values for the parameters and their uncertainties as given
by the bootstrap method. There are three different uncertainty vectors since it is calculated
from a covariance matrix.

Substance [ +AG, +Ad, +Ad, Units
MgO 160 0.000001 | 0.008561 | -2.421412 | GPa
3.9 0.000021 | 0.076362 | 0.371368 | -
-0.003 | 0.000802 | -0.002009 | -0.003795 | GPa™!
CaO 109.4 | -4.898921 | 0.026185 | 0.000002 | GPa
4.9 0.702416 | 0.182513 | 0.000030 | -
-0.028 | -0.013587 | -0.005618 | 0.000988 | GPa~!
Al,O3 (corundum) 270 1E-9 0.009872 | -9.097483 | GPa
4.4 0.000012 | 0.154277 | 0.582079 | -
-0.013 | 0.000784 | -0.002390 | -0.005196 | GPa™!
Si0; (a-quartz) 39 0.000913 | 0.214945 | -2.995555 | GPa
6.0 0.003420 | 0.376384 | 1.685451 | -
-0.2 0.021745 | -0.068223 | -0.139257 | GPa™!
NaCl 24.4 0.000025 | 0.035737 | -0.896211 | GPa
5.0 0.000157 | 0.086438 | 0.369168 | -
-0.05 | 0.002096 | -0.006905 | -0.017092 | GPa™!
MgCOs3 112 0.000043 | 0.115360 | -3.049675 | GPa
4.8 0.000440 | 0.429741 | 0.816764 | -
-0.02 | 0.007388 | -0.026252 | -0.030929 | GPa™!

The parameters given in Table[d.1.1]are strongly correlated. This can be seen from contour
plots made for the different variables. In Figure [4.1.1] a contour plot for MgO is used
to show the relation between K and K{ at fixed Ko as an example of the parameters
correlation. It is just an illustration. The skewness of the ellipses can of course be changed

by simply rescaling the axis. The point is that the ellipses are skewed and that they are not

circles.




24 Results
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Figure 4.1.1: Contour plot for K|, versus Kj with K, constant for MgO

Because of this correlation the covariance matrix between the variables had to be found
and evaluated. From diagonalization of the covariance matrix based on an eigenvalue

analysis, as described in Section [2.6] the uncorrelated uncertainty vectors were found and
given in Table d.1.1]

4.2 Deviation plots

In order to test the validation of the isothermal EOSs, the bulk modulus for each of them

op
Fi%

model

was calculated as —V( ) Expressions for bulk modulus for the different EOSs are

shown in Table &.2.11
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Table 4.2.1: Bulk modulus for the different EOSs

Equation of state

K

Murnaghan

Birch—Murnaghan

Vinet

Pseudo-spinodal

Ko(y;) 7%

SKo(T(3) 75 =5()7%)
+%K0(K(’)—4)(9(VLU)—§ - 14(V10 -1 +5(VLU)_%)

Ko()3(1+ G(Ky - ()5 + D(1- (X))

rexp (3(Kp - (1= (55)))

* Koy * v
—7—Ko(1=y") In (5~ *
Y X! o(1-y") (VU) (liy*)

K
(7*,72)7*

o
Ko N *
(r* K(,J )

A deviation plot from the first order Murnaghan bulk modulus was then plotted for each of

the EOSs bulk modulus with the parameter values found from the nonlinear regression

explained in Section 4.1 The first order Murnaghan equation serves as a reference

equation giving zero deviation. The second order Murnaghan was also plotted with its

standard deviation to compare the accuracy of the different EOSs.

It is important to

emphasize that the shaded area in the deviation plots represent the total uncertainty based

on the three different uncertainty vectors given in Table[d.T.T] after being patched together.

The plot of the deviation of bulk modulus versus pressure for MgO is shown in Figure
@.2.1] Then follows CaO, Al;O3, SiO,, NaCl and MgCOs in Figures [4.2.3] through [4.2.6]

respectively.
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Figure 4.2.1: Deviation plot of bulk modulus for MgO for different EOSs
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Figure 4.2.2: Deviation plot of bulk modulus for CaO for different EOSs
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Figure 4.2.3: Deviation plot of bulk modulus for Al,O; for different EOSs

SiO,(quartz)

:l Second order Murnaghan with uncertainty
Murnaghan

Birch

Vinet

Pseudo-spinodal

— — — Maximum experimental pressure

0 20 40 60 80 100 120 140 160 180 200

Pressure [GPa]

Figure 4.2.4: Deviation plot of bulk modulus for SiO, for different EOSs
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Figure 4.2.5: Deviation plot of bulk modulus for NaCl for different EOSs
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Figure 4.2.6: Deviation plot of bulk modulus for MgCOj for different EOSs
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4.3 Predictions at high temperature and pressure

There is a limited number of substances that have been tested experimentally at both high
pressure and temperature. Sodium chloride (NaCl) and magnesium oxide (MgO) are two
examples for which data at these conditions can be found. Since the two substances differ
from each other significantly when subjected to high pressure, due to the large difference in
the value for the bulk modulus (see Table[d.1.1]), a wider range of applicability is possible
to test than if they had the same properties. However, for a complete understanding of all
classes of solids (Silica minerals, oxides, carbonates, halides etc.), an evaluation of a much
larger number of substances is required. At least one solid for each class of solid should

be tested. This can be done by the methods used here if experimental data is available.

The evaluation of the isothermal equations in Section [2.2] did not provide unambiguous
results for which EOS to be used as a complete EOS. A complete EOS is defined here as an
isothermal EOS with a temperature dependency incorporated into it. Thus, the choice of a
complete EOS was based on the different equations properties as discussed in Section[5.2]
The complete EOS used in this evaluation for high pressure and temperature predictions is
therefore the isothermal pseudo-spinodal EOS expanded with a thermal contribution. The
thermal contribution is based on the Mie—Griineisen approximation (see Equation [2.4.7).

The parameters needed for the evaluation of the complete pseudo-spinodal EOS are Kj
and K/, from the present evaluation, and Vj, 6p and y, from the literature. Ky and K| have
been found through the parameter fitting procedure and are given in Table as well
as reprinted in Table d.3.1] In Table d.3.1] the extra data from the literature necessary to
compute the complete EOS are also given. All the input data must be evaluated at the same

reference temperature.

Table 4.3.1: Input parameters for the complete pseudo-spinodal EOS, references are given
as superscript

Solid | Tyef[K]  yo[-] Vo[2=] 6p[K] Ko[-] Kj[GPa’]

mol

NaCl | 298 159! 270! 241! 160° 3953
MgO | 298 1522 11253 7434 2445 503

! (Taravillo et al. 2001)

2 (Kushwah & Sharma 2012)

3 (Mao & Bell 1979)

4 (Barron, Berg & Morrison 1959)
5 This study
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The pseudo-spinodal EOS was used to predict the high pressure and high temperature
behaviour of three important physical parameters, i.e. the isobaric heat capacity (C)),
the thermal expansion («) and the isothermal compressibility (K). These properties were
chosen due to their familiarity with physical chemistry (i.e. in Bridgman tables). The

isobaric heat capacity as a function of temperature and pressure for MgO are shown in

Figures [.3.Ta] and [4.3.1b| respectively.
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Figure 4.3.1: Heat capacity, C), as a function of temperature (a) and pressure (b) for MgO.
Below 298.15 K the curves are based on standard heat capacity from experimental data
points (Barron et al. 1959). Above, they are based on a curve fitted function (Chase 1998)

The thermal expansion was calculated based on the pseudo-spinodal EOS as «(T,p) =

1 dps, (T : :
RGN0 ( iy )). The thermal expansion as a function of temperature and pressure for

MgO are shown in Figures and [4.3.2b| respectively.
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Figure 4.3.2: Thermal expansion, «, as a function of temperature (a) and pressure (b) for
MgO



4.3. Predictions at high temperature and pressure 31

The isothermal bulk modulus as a function of temperature and pressure for MgO are shown
in Figures [4.3.3a and [£.3.3b] respectively. The bulk modulus are calculated from Equation

R3.18
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Figure 4.3.3: Bulk modulus, K, as a function of temperature (a) and pressure (b) for MgO

The isobaric heat capacity as a function of temperature and pressure for NaCl are shown

in Figures [4.3.4a) and [4.3.4b] respectively.
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Figure 4.3.4: Heat capacity, C), as a function of temperature (a) and pressure (b) for NaCl.
Below 298.15 K the curves are based on standard heat capacity from experimental data
points (Barron et al. 1964). Above, they are based on a curve fitted function (Chase 1998)

The thermal expansion as a function of temperature and pressure for NaCl are shown in

Figures [#.3.5a) and [.3.5b] respectively.
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Figure 4.3.5: Thermal expansion, «, as a function of temperature (a) and pressure (b) for
NaCl

The isothermal bulk modulus as a function of temperature and pressure for NaCl are shown

in Figures [4.3.6a and [4.3.6b| respectively.
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Figure 4.3.6: Bulk modulus, K, as a function of temperature (a) and pressure (b) for NaCl

The heat capacity for the solids was calculated based on a second order differentiation
of the chemical potential with respect to temperature (Cp = —-T (227‘1) see Table .
The chemical potential was found from the pseudo-spinodal EOS as shown in Table[2.5.1]
The heat capacity at standard conditions is reported as curve fitted functions based on
experimental data for temperatures above 298.15 K (Chase 1998). Below 298.15 K
the standard heat capacity is given as from experimental data points for MgO (Barron
et al. 1959) and NaCl (Barron et al. 1964). Thus, the plots of heat capacity are constructed
from points below 298.15 K and continues lines above 298.15 K. The plots show the
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sum of the standard heat capacity and the calculated heat capacity contribution from the
pseudo-spinodal EOS:
Cy(T.p) = CO(T, po) + AC,(T. p) (4.3.1)
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Chapter 5

Discussion

In this chapter, the results obtained in Chapter ] are compared to studies performed by
other authors and with experimental data. The findings in this study are also discussed.

5.1 Parameter fit compared with literature values

The bulk modulus and its pressure derivatives found from the least square evaluation (see
Table .1.T) have also been obtained by others, e.g. Holland & Powell (2011). The
parameter values found from their evaluation are shown in Table[5.1.1}

Table 5.1.1: Values obtained by Holland & Powell (2011) and from this study

Holland & Powell This study
Substance Ko K} K{ Ko K} K{
MgO 161.6 395 -0.024 | 160 3.9 -0.003
CaO 113 3.87 -0.034 | 1094 4.9 -0.028

Al O3(corundum) | 254 434 -0.017 | 270 44 -0.013
Si0y(a-quartz) 73 6.00 -0.082 39 60 -02
NaCl 238 500 -021 | 244 50 -0.05
MgCO; 102.8 541 -0.053 | 112 48 -0.02
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By comparing Table[d.T.T|and Table[5.1.T]it can be seen that for the parameter Kj the solids
Al 03, SiO, and MgCOs lies outside the uncertainty boundaries in Table[d.T.1] Al,O3 and
MgCOj3 do not lie far from the uncertainty boundaries, but they are still not within. The
most interesting deviation for the bulk modulus is still for SiO,. The value of K in the
current evaluation is just one half from the one obtained by Holland & Powell (2011).
This value has therefore been compared to other studies which confirm the findings here.
The bulk modulus for SiO, was found by other authors to be 37.2 GPa (Liu 1993) , 39.7
GPa (Newton, O’Keeffe & Gibbs 1980) and 36.2 GPa (Meng, Bernazzani, a O’Connell,
McKenna & Simon 2009). Based on this it seem to be a misprint in Holland & Powell
(2011) for that particular solid.

For the K, all the values except for CaO lie within the standard deviation for the parameters
found by regression. The values for CaO are very close to the uncertainty boundary, but
not within. No evidence is found in this study as to why this value should not conform to

our fit.

By comparing the K/ values found through this study with Holland & Powell’s study

larger deviations can be found. This can be explained by the fact that in Holland & Powell
K

_72_

Thus, a direct comparison between the values obtained here, and the ones found in their

(2011), a heuristic model for the K{ value was used. The heuristic model was K =

paper will give large deviations. This is due to the fact that Holland & Powell’s study
is only a regression on two parameters, i.e. Ky and K, while this study does regression
on all three parameters directly. Independent of this difference there exists a fundamental
criterion that must be satisfied for all substances, (‘3;7]2() < 0 (Stacey 2004). In the parameter
fitting procedure presented here, this criterion has been fulfilled for all solids investigated

(see Table[d.T.T).

5.2 Isothermal EOSs and uncertainty vectors

As seen from Figures [d.2.1] through F.2.6]it is difficult to determine which two-parameter

EOS gives the best fit when the uncertainty in the parameters are taken into consideration.
The Birch-Murnaghan, Vinet and pseudo-spinodal EOS all seem to give reasonable results
depending on the solid considered. A general conclusion about which EOS gives the best
fit for all substances based only on the deviation plots can therefore not be drawn. Other
elements were therefore needed to be taken into considerations before choosing a two-
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parameter complete EOS to use for later predictions of substances at high pressure and
high temperature. The pseudo-spinodal has an advantage over the Birch-Murnaghan and
Vinet EOS because of its ability to be inverted (see Section[2.2)). It also feature a promising
way of including thermal effects.

The shaded area of the plots given in Figures[4.2.1|through[4.2.6]are as described in Section
A2 made from three decorrelated eigenvectors of the covariance matrix. In this context,
decorrelation means that the variables has been scaled and rotated such that they no longer
depend on each other. The same decorrelation has been used for both the bootstrap and
the maximum likelihood method. It is based on the eigenvectors and eigenvalues of the

covariance matrix. The parameter uncertainties (Af;) are calculated as follows:
A = Q(VA) e (5.2.1)

Here, Q is the eigenvector matrix and A are the eigenvalues of the covariance matrix.
The ¢; is the i’th unit vector. The same contour lines as shown in Figure 1.1 have been

replotted with comparative axes in Figure[5.2.1]
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Figure 5.2.1: Contour plot for k, versus k3 with «x; constant for MgO in the scaled and
rotated coordinates

From Figure [5.2.1] it can be seen that the contours are more like concentric circles
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compared to Figure f.T.T] The deviation from the circular shape away from optimum
is due to nonlinearity of the objective function given in Equation [#.1.2] For a quadratic

function the contours would have been truly concentric over the scale.

The maximum difference in the uncertainty vectors calculated from the bootstrap and the
maximum likelihood method was found to be +5 — 65% for all the solids investigated
except for MgO. For MgO the ratio between the methods was at the most a factor of 2.1.
This can be explained by the rejection of the null hypothesis as shown in Section [5.4]
The fact that the results are similar for two statistical methods gives no guarantee that the
calculation of the variance is correct, but it gives an indication that the statistics have been

used correctly.

5.3 The complete EOS and comparison with experimen-
tal data

To test the predictions made for the thermodynamic functions in Section[4.3]some of them
are compared to experimental data. Experimental data for the thermal expansion as a
function of temperature at ambient pressure was found for NaCl (Anderson 1995) and
MgO (Anderson & Zou 1989). These data were plotted against the ambient pressure
predictions made from the pseudo-spinodal and the first order Murnaghan EOS expanded

with an Einstein temperature dependency.
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Figure 5.3.1: Thermal expansion, «, as a function of temperature for NaCl at ambient
pressure
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From Figure [5.3.1]it can be seen that for NaCl the prediction of thermal expansion from
the pseudo-spinodal EOS provides a good fit to the experimental data. The first order
Murnaghan equation has been plotted for comparison. At low temperatures the two EOS
has the same behaviour due to the same Einstein function, but at higher temperatures the
pseudo-spinodal follows the experimental data much better. The reason for the better fit

comes from the incorporation of thermal effects into the pseudo-spinodal pressure(p),).
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Figure 5.3.2: Thermal expansion, a, as a function of temperature for MgO at ambient
pressure

From Figure[5.3.2]it can be seen that for MgO the prediction of thermal expansion from the
pseudo-spinodal EOS gives an accurate fit to the experimental data up to approximately
1500 K. Beyond this temperature the pseudo-spinodal EOS overestimate the thermal
expansion for MgO. This can be explained by the fact that ;’/—Z is assumed constant in

the pseudo-spinodal EOS whilst it actually varies slightly with temperature.

The reason why the thermal expansion for NaCl fits better to the experimental data than
for MgO can be explained from the temperature behaviour of the Griineisen parameter
(y). For alkali halides, e.g. NaCl, the Griineisen parameter generally decreases with
temperature. For oxides on the other hand, e.g. MgO, the Griineisen parameter increases
with temperature (Anderson 1995). This opposite temperature effect on the Griineisen
parameter for oxides and alkali halides has implications on the model predictions within
the framework of the pseudo-spinodal EOS and how good they fit to experimental data.
This can be seen by comparing Figure [5.3.1] and Figure [5.3.2] From the results obtained
here it is natural to assume that the pseudo-spinodal EOS gives better predictions for alkali



40 Discussion

halides than for oxides. To test this assumption completely it is recommended in further

work to test for other alkali halides and oxides.

For NaCl, experimental data as a function of pressure at ambient temperature were also
found in the literature (Boehler & Kennedy 1980). These data have been plotted against
the predictions from the pseudo-spinodal EOS, and are shown in Figure[5.3.3]
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Figure 5.3.3: Thermal expansion, «, as a function of pressure for NaCl

From Figure [5.3.3] it can be seen that both the first order Murnaghan and the pseudo-
spinodal EOS give accurate fit to the data. This is due to the low pressure that the thermal
expansion has been measured at. However, it may seem like the experimental data follow

the curve from the pseudo-spinodal better if they are extrapolated to higher pressures.

Measurements of compression at both high pressure and high temperature were found for
NaCl (Boehler & Kennedy 1980) and MgO (Fei 1999). For NaCl pressure-volume data
was found at several different temperatures, whilst for MgO it was found at 298 and 1100
K. This data has been plotted together with the pressure-volume-temperature predictions
from the pseudo-spinodal EOS in Figures[5.3.4and [5.3.5|respectively.
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Figure 5.3.4: Compression as a function of pressure at different temperatures for NaCl
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Figure 5.3.5: Compression as a function of pressure at two different temperatures for MgO

From Figures [5.3.4 and [5.3.3]it is evident that the predictions are in excellent agreement
with the experimental data. This confirms that the pseudo-spinodal EOS can predict the
pressure-volume-temperature surface reliably for the solids in question. The only issue is
that the pressures for which experimental data are available at high temperatures are quite
low. Thus, it does not give a significant difference between which of the isothermal EOSs

in this study that is used as long as the same temperature dependency is introduced (see
Figures F-2.T|and F.2.3).

From the aforementioned discussion of the predicted thermodynamic functions and their
conformation to experimental data it may seem that the pseudo-spinodal EOS is a good
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foundation for a general EOS. However, it turns out to be an inconsistency in the
implementation of the Einstein model as a description of the internal energy. At very high
pressures the heat capacity becomes negative at low temperatures. This effect is difficult to
discover at the pressure range used in Figures[.3.4aland[#.3.Ta] By comparing the isobaric
heat capacity at ambient pressure and at 1000 GPa the inconsistency becomes evident. In
Figure[5.3.6|the isobaric heat capacity has been plotted at ambient and 1000 GPa.
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Figure 5.3.6: Heat capacity, C,, as a function of temperature at ambient pressure for NaCl
By testing the prediction of heat capacity at high pressure for MgO as well as NaCl it can
be seen the same effect at low temperatures as can be seen in Figure[5.3.7]
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Figure 5.3.7: Heat capacity, C,,, as a function of temperature at ambient pressure for MgO

This inconsistency in the pseudo-spinodal EOS has not been discussed in any previous
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papers known to the author. The problem discovered here imposes serious limitations
on the use of the pseudo-spinodal EOS. Even though the effect of negative isobaric heat
capacity only appears at high pressures, it still violates one of the thermodynamic stability
criterion. The two stability criterion which must be fulfilled for a stable thermodynamic
system given in Helmholtz potential are as follows (Callen 1985):

(<0 ()0 @3

By rewriting the stability criterion in Equation [5.3.1]into the thermodynamic quantities it

can be seen that:
C,>20 K2>0 (5.3.2)

Thus, both the isobaric heat capacity and the isothermal bulk modulus must be positive for
a stable system. From Figures [4.3.3a] and [4.3.3b] it can be seen that the bulk modulus is
always positive in the range of pressures tested for MgO, but the heat capacity becomes
negative in a certain range of temperatures at high pressure. Thus, the thermodynamic
stability criterion from Equation [5.3.2] is violated. The discussion on thermodynamic
stability is a field of its own and lies outside the scope of this thesis, but is still important
for further evaluation.

The inconsistency in the EOS can also be shown through an evaluation of the total
differential for entropy as given in Equation[5.3.3]

a5 = (0,47 + (), 4V 539

If the differential in Equation [5.3.3]is a total differential the following relation must be
true:

3 3
(aT%TAaV)T = (ar%\éar)v (5.34)

When the Einstein model is used to predict the heat capacity the heat capacity is only
a function of temperature, whilst the calculated heat capacity is a function of both
temperature and pressure. The left hand side of Equation [5.3.4] can be calculated as
follows:

—Cy(T,V)
00—

(6T(§?6V)T =( v )T =g(T.V) (5.3.5)

The right hand side of Equation [5.3.4] can be written as follows:

PA _ ‘(%
(aravar)v - ( oT

)V)V = f(T) (5.3.6)
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By comparing Equation [5.3.5] and Equation [5.3.6] it can be seen that there exists an
inconsistency since the latter equation is only a function of T, whilst the first is a function

of both T and V. Thus, an inconsistency in the EOS is present.

In further work it is recommended to search for a consistent way to include the internal
energy or the heat capacity in the pseudo-spinodal EOS. Together with the high accuracy
of predictions for the pseudo-spinodal EOS, a consistent model will be a valuable asset in

the prediction of high pressure and high temperature effects on solids.

5.4 Chi-square goodness of fit test

The pressure-volume data that are used for the testing of the isothermal EOSs have been
assumed to have a normal distribution. This assumption was used to find the standard
deviations for the parameters given in Table {.1.T} To test if the population actually is
normally distributed a y? goodness of fit test can be utilized. This method is based how
good a fit there is between the frequency of observations in the observed sample and the
expected frequencies obtained from the hypothesized distribution (Walpole et al. 2007).
In this case, the hypothesized distribution is the normal distribution. The quantity tested is
the y? value given in Equation m

k 2
O,-E;
= G/ (5.4.1)
i Ei
The x? is a random variable whose sampling distribution is very close to the chi-squared
distribution with k£ — 1 degrees of freedom. O; and E; are the observed and expected

frequencies for bin number i.

The null hypothesis used in our test case is that the observed samples come from a
normal distribution. With a 0.05 significance level the critical region for rejecting the
null hypothesis, Ho, is x> > x{ o5. This decision criterion require that each of the expected
frequencies are at least 5 or above to be valid (Walpole et al. 2007). If the expected
frequencies are lower than 5 the adjacent bins should be merged, and as a result the degrees
of freedom reduces accordingly. Thus, the degrees of freedom become "number of bins"
minus one. The pressure-volume datasets for the different substances were all tested in
this manner and the results of the hypothesis tests are shown in Table[5.4.1]
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Table 5.4.1: y* test for normal distribution

Substance | x? (calculated) | degrees of freedom | X3 s Hy
MgO 76.6688 8 15.507 Rejected
CaO 1.3713 3 7.815 | Not rejected
Al,O3 2.6255 5 11.070 | Not rejected
Si0O, 1.9394 3 7.815 | Not rejected
NaCl 5.4016 5 11.070 | Not rejected
MgCO; 9.5658 5 11.070 | Not rejected

From Table [5.4.1] it can be seen that for all solids except MgO the hypothesis of normal
distribution cannot be rejected. This affects the maximum likelihood method since this

method assumes normally distributed data. The bootstrap has the advantage over the

maximum likelihood method that it is distribution independent. Thus, the uncertainty

vectors in Table were calculated using the bootstrap method. The normal cumulative

distribution function has been plotted together with the standarized experimental data for
CaO and MgO in Figures[5.4.Taland [5.4.Tb|respectively. These two has been shown since
they give the best and worse fit to the normal distribution, as can be seen in Table[5.4.1]

(a) CaO

(b) MgO

Figure 5.4.1: The normal cumulative distribution function plotted together with the
standarized experimental data



46

Discussion




Chapter 6

Conclusion

In this thesis, different two-parameter EOSs were tested for different solids. A second
order Murnaghan EOS was used for parameter fitting. The standard deviation of the
parameters was found based on diagonalization of the covariance matrix found from either
the maximum likelihood or the bootstrap method. These two methods gave comparable
results for the standard deviation for the parameters(+5 — 65%) except for MgO which was
found to reject the null hypothesis of normal distribution. Since the maximum likelihood
method is based on an assumption of normal distribution, whilst the bootstrap method is

not, the results obtained from the bootstrap were reported.

This evaluation showed that none of the isothermal EOSs were found to provide better
fit, compared to the other EOSs, for all the solids when uncertainty in the parameters
was taken into account. Regardless of this fact, the isothermal pseudo-spinodal EOS
was chosen as the basis for a complete EOS. This was done due to the pseudo-spinodal
EOS ability to be inverted and to predict high temperature properties with only room

temperature data as input.

The heat capacity, thermal expansion and the isothermal bulk modulus were predicted
at high pressure and temperature for NaCl and MgO. The thermal expansion and
the complete pressure-volume-temperature surface predicted were also compared with
available experimental data. The predictions gave good fit to the data. From this analysis
it may seem that the pseudo-spinodal EOS gives better fit for alkali halides than for oxides
due to the difference in thermal dependency of the Griineisen parameter for these two

substance groups.
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The major finding in this report was that an inconsistency in the pseudo-spinodal EOS was
found at high pressure. The EOS predicted negative heat capacity at very high pressures
and low temperature. It is recommended in further work to search for a consistent way
of including internal energy. This will provide an EOS of great value in the prediction of

high pressure and high temperature effects on solids.
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Appendix A

Pressure-volume data for the

isothermal curve fitting

In this appendix the experimental pressure-volume data that is used for the isothermal
curve fitting is given in the following tables. The tables show the data and the references

from were the data is found.

Table A.1: Experimental pressure-volume data for MgO at T = 300 K

no. | Pressure (Vlo) Ref | no. | Pressure (V%) Ref

1 0.8 0.9964 1 2 1.3 0.9909 1
3 3.1 0.9807 1 4 4.5 0.9724 1
5 5.7 0.9659 1 6 6.6 0.9601 1
7 7.6 0.9548 1 8 8.3 0.9524 1
9 9.5 0.9467 1 10 10.0 0.9463 1

11 5.7 0.9662 1 12 8.7 0.9532 1
13 10.6 0.9431 1 14 12.5 0.9349 1
15 16.0 0.9198 1 16 18.1 0.9093 1
17 20.1 0.9032 1 18 21.9 0.8973 1
19 24.0 0.8887 1 20 26.4 0.8814 1

Continued on next page
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Pressure-volume data for the isothermal curve fitting

Table A.1 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
21 29.1 0.8718 1 22 31.2 0.865 1
23 332 0.8593 1 24 35.2 0.8537 1
25 37.1 0.848 1 26 394 0.8417 1
27 41.7 0.8351 1 28 433 0.8297 1
29 46.8 0.8212 1 30 48.3 0.8172 1
31 50.4 0.8115 1 32 52.2 0.8071 1
33 43.7 0.836 2 34 53.8 0.814 2
35 56.1 0.812 2 36 734 0.78 2
37 74.5 0.779 2 38 82.9 0.764 2
39 86.3 0.77 2 40 94.1 0.748 2
41 2.5 0.987 3 42 5.0 0.974 3
43 7.5 0.963 3 44 10.0 0.951 3
45 15.0 0.93 3 46 20.0 0.91 3
47 25.0 0.893 3 48 30.0 0.877 3
49 35.0 0.862 3 50 1.7 0.99 4
51 3.78 0.978 4 52 5.17 0.97 4
53 6.23 0.962 4 54 8.29 0.954 4
55 8.89 0.952 4 56 10.95 0.942 4
57 8.96 0.951 4 58 8.42 0.954 4
59 7.47 0.959 4 60 6.54 0.963 4
61 5.63 0.968 4 62 5.73 0.968 4
63 3.86 0.978 4 64 5.24 0.97 4
65 3.05 0.982 4 66 2.29 0.987 4
67 8.5 0.953 4 68 12.4 0.9346 4
69 15.7 0.9205 4 70 18.5 0.9091 4

Continued on next page
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Table A.1 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
71 23.6 0.89 4 72 28.3 0.8739 4
73 30.3 0.8677 4 74 35.5 0.8518 4
75 39.1 0.8418 4 76 42.0 0.8339 4
77 44.8 0.8266 4 78 48.7 0.817 4
79 52.1 0.8089 4 80 55.1 0.8023 4
81 58.1 0.7956 4 82 61.7 0.7881 4
83 65.3 0.7809 4 84 68.2 0.7754 4
85 71.3 0.7695 4 86 6.6 0.9625 4
87 8.6 0.9528 4 88 11.7 0.938 4
89 13.5 0.93 4 90 18.9 0.9076 4
91 23.0 0.8923 4 92 27.8 0.8756 4
93 4.4 0.9744 4 94 8.4 0.9536 4
95 12.1 0.9359 4 96 18.3 0.91 4
97 24.4 0.8872 4 98 31.5 0.8639 4
99 37.6 0.8458 4 100 41.4 0.8355 4
101 45.9 0.824 4 102 48.7 0.817 4
103 53.2 0.8066 4 104 57.1 0.7978 4
105 60.3 0.791 4 106 65.3 0.781 4
107 69.4 0.773 4 108 72.8 0.7667 4
109 78.9 0.756 4 110 84.0 0.7475 4
111 90.1 0.7378 4 112 94.4 0.7313 4
113 102.9 0.7191 4 114 106.4 0.7144 4
115 109.4 0.7104 4 116 113.8 0.7047 4
117 118.1 0.6993 4 118 8.5 0.953 4
119 12.2 0.9346 4 120 15.3 0.9205 4

Continued on next page



58

Pressure-volume data for the isothermal curve fitting

Table A.1 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
121 18.2 0.9091 4 122 234 0.89 4
123 28.1 0.8739 4 124 29.9 0.8677 4
125 34.5 0.8518 4 126 37.6 0.8418 4
127 40.4 0.8339 4 128 42.9 0.8266 4
129 46.9 0.817 4 130 49.7 0.8089 4
131 53.0 0.8023 4 132 56.1 0.7956 4
133 59.5 0.7881 4 134 62.8 0.7809 4
135 65.6 0.7754 4 136 68.3 0.7695 4
137 6.5 0.9625 4 138 8.4 0.9528 4
139 11.5 0.938 4 140 13.3 0.93 4
141 18.6 0.9076 4 142 22.6 0.8923 4
143 27.4 0.8756 4 144 4.3 0.9744 4
145 7.9 0.9536 4 146 11.6 0.9359 4
147 17.8 0.91 4 148 23.9 0.8872 4
149 30.6 0.8639 4 150 36.5 0.8458 4
151 40.1 0.8355 4 152 43.7 0.824 4
153 46.8 0.817 4 154 51.0 0.8066 4
155 55.3 0.7978 4 156 58.4 0.791 4
157 62.9 0.781 4 158 66.5 0.773 4
159 69.6 0.7667 4 160 74.6 0.756 4
161 80.0 0.7475 4 162 85.0 0.7378 4
163 89.0 0.7313 4 164 96.2 0.7191 4
165 99.6 0.7144 4 166 102.4 0.7104 4
167 106.3 0.7047 4 168 111.0 0.6993 4
169 3.6 0.9786 5 170 7.4 0.9611 5

Continued on next page
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Table A.1 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
171 10.6 0.9452 5 172 13.5 0.932 5
173 16.2 0.9196 5 174 18.9 0.9084 5
175 22.8 0.8949 5 176 26.9 0.8807 5
177 31.1 0.8666 5 178 36.6 0.8507 5
179 414 0.8377 5 180 49.1 0.8201 5
181 52.2 0.8127 5 182 53.5 0.8098 5
183 559 0.8041 5 184 58.1 0.7981 5
185 61.1 0.7933 5 186 63.5 0.7876 5
187 65.9 0.783 5 188 68.7 0.7798 5
189 71.2 0.7729 5 190 73.9 0.7676 5
191 76.2 0.7646 5 192 80.1 0.7578 5
193 83.5 0.7511 5 194 86.6 0.7469 5
195 18.87 0.9068 6 196 19.76 0.8997 6
197 20.06 0.9007 6 198 20.04 0.8997 6
199 26.92 0.8764 6 200 28.83 0.8733 6
201 31.05 0.8642 6 202 46.26 0.8319 6
203 44.71 0.8227 6 204 49.88 0.8238 6
205 50.64 0.8187 6 206 59.15 0.7985 6
207 65.7 0.7863 6 208 75.12 0.7722 6
209 82.54 0.757 6 210 85.3 0.7581 6
211 87.27 0.753 6 212 88.16 0.75 6
213 91.71 0.7439 6 214 94.66 0.7429 6
215 106.6 0.7237 6 216 110.1 0.7197 6
217 120.4 0.7066 6 218 121.8 0.7055 6




Pressure-volume data for the isothermal curve fitting

1 (Speziale, Zha, Dufty, Hemley & Mao 2001)

2 (Mao & Bell 1979)

3 (Perezalbuerne & Drickamer 1965)

4 (Li, Wood & Kung 2006)

5 (Jacobsen, Holl, Adams, Fischer, Martin, Bina, Lin, Prakapenka, Kubo & Dera 2008)
6 (Marsh 1980)

Table A.2: Experimental pressure-volume data for CaO at T = 300 K

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref

1 2.5 0.979 1 2 5.0 0.96 1
3 7.5 0.942 1 4 10.0 0.925 1
5 15.0 0.895 1 6 20.0 0.877 1
7 25.0 0.861 1 8 5.6 0.9471 2
9 8.1 09236 | 2 10 14.3 0.9064 | 2
11 17.9 0.8794 | 2 12 22.1 0.8659 | 2
13 26.5 0.8451 | 2 14 36.6 0.8139 | 2
15 40.1 0.7988 | 2 16 49.7 0.7794 | 2
17 57.8 0.7562 | 2 18 65.2 0.7344 | 2
19 0.9 0.99 3 20 59 0.964 3
21 9.0 0.936 3 22 9.1 0.934 3
23 10.9 0.927 3 24 13.2 0.907 3

25 15.8 0.892 3 26 18.7 0.875 3
27 18.8 0.882 3 28 21.0 0.868 3
29 21.5 0.866 3 30 26.0 0.859 3
31 29.3 0.836 3 32 344 0.83 3
33 36.9 0.813 34 41.0 0.798
35 46.1 0.779 36 51.0 0.771
37 54.5 0.763 38 60.3 0.751

39 62.8 0.743 40 64.1 0.741

A W W W W
A W W W W

41 4.5 0.9682 42 10.1 0.9327

Continued on next page



Table A.2 — Continued from previous page

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref

43 14.5 0.9058 44 19.3 0.8808

45 25.5 0.8554 46 31.8 0.8319
47 36.9 0.8172 48 42.7 0.7939
49 48.0 0.7813 50 52.2 0.7693
51 56.2 0.7572 52 59.2 0.7501
53 61.2 0.7461 54 8.0 0.937

55 21.9 0.869 56 42.0 0.788

(U RS S O N N O O
(U N SV S O O O O

57 54.3 0.757 58 60.0 0.744

! (Perezalbuerne & Drickamer 1965)
2 (Speziale, Shieh & Duffy 2006)

3 (Mammone, Mao & Bell 1981)

4 (Yamanaka, Kittaka & Nagai 2002)
3 (Richet, Mao & Bell 1988)

Table A.3: Experimental pressure-volume data for Al,O; at T = 300 K

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref

1 1.24 0.9948 1 2.24 0.9914 1

3 2.63 0.9891 1 4.35 0.9822 1

5.05 0.9799 1 6.69 0.9724 1

o AN B~ DN

7.34 0.9704 1 7.61 0.9686 1

NoREEES Y

8.47 0.9655 1 10 8.88 0.964 1
11 9.13 0.9628 1 12 10.85 0.9571 1
13 12.08 0.9517 1 14 0.0001 1.0

2
15 0.88 0.9969 | 2 16 1.71 0.9929 | 2
17 2.5 0.989 2 18 3.25 09863 | 2

Continued on next page
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Pressure-volume data for the isothermal curve fitting

Table A.3 — Continued from previous page

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref
19 3.95 0.9835 2 20 5.24 0.9772 2
21 6.8 0.9721 2 22 0.0001 1.0 2
23 1.09 0.9965 2 24 2.06 0.9914 2
25 3.33 0.9847 2 26 4.36 0.9792 2
27 5.36 0.9764 2 28 6.3 0.98 3
29 12.8 0.96 3 30 19.2 0.94 3
31 25.6 0.92 3 32 28.8 0.91 3
33 30.4 0.905 3 34 2.8 0.991 4
35 4.2 0.983 4 36 6.0 0.979 4
37 7.4 0.973 4 38 8.1 0.971 4
39 9.0 0.967 4 40 9.0 0.9651 5
41 15.6 0.9504 5 42 21.6 0.937 5
43 26.3 0.9166 5 44 32.6 0.9085 5
45 33.7 0.9024 5 46 41.3 0.8902 5
47 45.6 0.878 5 48 49.3 0.8714 5
49 21.29 0.9416 6 50 21.3 0.9416 6
51 23.22 0.9366 6 52 23.04 0.9346 6
53 22.47 0.9316 6 54 30.54 0.9125 6
55 31.83 0.9145 6 56 31.71 0.9135 6
57 35.52 0.9054 6 58 35.49 0.9054 6
59 47.54 0.8783 6 60 48.8 0.8763 6
61 49.32 0.8712 6 62 50.68 0.8702 6
63 50.63 0.8692 6 64 54.2 0.8612 6
65 55.72 0.8622 6 66 58.85 0.8511 6
67 59.67 0.8531 6 68 60.77 0.8511 6

Continued on next page




63

Table A.3 — Continued from previous page

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref
69 66.63 0.8431 6 70 66.14 0.8391 6
71 66.15 0.837 6 72 66.14 0.837 6
73 72.93 0.831 6 74 72.92 0.831 6
75 76.46 0.825 6 76 76.11 0.822 6
77 77.84 0.82 6 78 78.77 0.8189 6
79 78.78 0.82 6 80 84.01 0.821 6
81 94.51 0.8029 6 82 97.2 0.8019 6
83 98.17 0.7978 6 84 98.42 0.7898 6
85 109.3 0.7767 6 86 106.1 0.7707 6
87 108.6 0.7737 6 88 112.5 0.7767 6
89 119.2 0.7627 6 90 118.8 0.7607 6
91 118.6 0.7576 6 92 119.7 0.7587 6
93 126.8 0.7637 6 94 127.4 0.7617 6
95 133.6 0.7486 6 96 133.3 0.7466 6
97 132.6 0.7376 6 98 136.4 0.7426 6
99 144.8 0.7416 6 100 143.5 0.7376 6

I (Sato & Akimoto 1979)
2 (Grevel, Burchard, Fasshauer & Peun 2000)
3 (Hart & Drickamer 1965)
4 (d’amour, Schiferl, Denner, Schulz & Holzapfel 1978)
3 (Richet, Xu & Mao 1988)

6 (Marsh 1980)



Pressure-volume data for the isothermal curve fitting

Table A.4: Experimental pressure-volume data for SiO,(a-quartz) at T = 300 K

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref

1 2.0 0.945 1 2 5.1 0.8902 1
3 8.0 0.8548 1 4 9.5 0.8404 1
5 12.5 0.8145 1 6 15.3 0.7881 1
7 3.38 0.9309 8 4.88 0.9076
9 4.99 0.9083 10 5.92 0.8912

11 6.61 0.8829 12 6.65 0.8844

13 7.55 0.8765 14 8.36 0.8646
15 9.12 0.8586 16 9.69 0.8526
17 9.69 0.8517 18 10.18 0.8459
19 10.21 0.846 20 11.09 0.8378
21 12.07 0.832 22 4.54 0.922
23 5.58 0.905 24 8.56 0.857
25 9.43 0.845 26 9.57 0.842
27 9.68 0.839 28 9.8 0.836
29 10.2 0.829 30 9.91 0.836
31 2.07 0.9568 32 3.1 0.9304

33 3.76 0.9247 34 4.86 0.9075

A B B W LW LW WYY NN NN
A b, A W W W W WYY NN N

35 5.58 0.8991 36 6.14 0.8897

1 (Hazen, Finger, Hemley & Mao 1989)
2 (Olinger & Halleck 1976)

3 (Wackerle 1962)

4 (Levien, Prewitt & Weidner 1980)
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Table A.5: Experimental pressure-volume data for NaCl at T = 300 K

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref
1 3.0 0.904 1 2 12.0 0.76 1
3 20.0 0.702 1 4 20.0 0.699 1
5 22.0 0.697 1 6 25.0 0.675 1
7 29.0 0.658 1 8 34.0 0.636 1
9 37.0 0.628 1 10 2.5 0.918 2
11 5.0 0.864 2 12 7.5 0.823 2
13 10.0 0.792 2 14 15.0 0.742 2
15 20.0 0.702 2 16 25.0 0.67 2
17 3.35 0.8982 | 3 18 3.85 0.8879 | 3
19 4.55 0.8732 | 3 20 5.7 0.8515 | 3
21 8.95 0.8028 | 3 22 13.1 0.7564 | 3
23 134 0.7538 | 3 24 17.25 0.7208 | 3
25 23.1 0.6809 | 3 26 25.7 0.6662 | 3
27 26.5 0.6621 3 28 29.15 0.6492 | 3
29 30.0 0.6452 | 3 30 30.6 0.642 3
31 30.85 0.6409 | 3 32 324 0.6339 | 3
33 35.0 0.6241 | 3 34 1.0 0.9627 | 4
35 2.0 09324 | 4 36 3.0 0.9067 | 4
37 4.0 0.8845 | 4 38 5.0 0.8649 | 4
39 10.0 0.791 4 40 15.0 0.7397 | 4
41 20.0 0.7004 | 4 42 25.0 0.6685 | 4
43 30.0 0.6416 | 4 44 2.895 0.918 5
45 3.541 0.903 5 46 3.843 0.901 5
47 3.934 0.893 5 48 5.451 0.878 5
49 5.431 0.865 5 50 5.656 0.862 5

Continued on next page
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Pressure-volume data for the isothermal curve fitting

Table A.5 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
51 5.866 0.851 5 52 5.991 0.849 5
53 5.981 0.848 5 54 7.461 0.83 5
55 7.438 0.829 5 56 7.837 0.828 5
57 7.662 0.824 5 58 8.017 0.824 5
59 8.871 0.82 5 60 11.09 0.791 5
61 10.98 0.787 5 62 11.55 0.786 5
63 11.7 0.782 5 64 11.77 0.773 5
65 11.85 0.775 5 66 12.05 0.776 5
67 12.15 0.776 5 68 12.09 0.774 5
69 12.21 0.775 5 70 12.19 0.769 5
71 13.13 0.757 5 72 13.11 0.757 5
73 13.07 0.755 5 74 16.87 0.734 5
75 17.21 0.738 5 76 16.94 0.734 5
77 17.15 0.735 5 78 18.45 0.727 5
79 18.03 0.717 5 80 17.99 0.716 5
81 19.25 0.723 5 82 21.46 0.709 5
83 22.46 0.705 5 84 22.54 0.696 5
85 22.8 0.692 5 86 234 0.693 5
87 23.66 0.692 5 88 25.36 0.686 5
89 25.38 0.687 5 90 25.89 0.683 5
91 25.87 0.683 5 92 26.01 0.68 5
93 26.05 0.679 5 94 26.38 0.683 5
95 26.8 0.677 5 96 26.74 0.675 5
97 26.79 0.675 5 98 26.98 0.674 5
99 27.57 0.673 5 100 27.67 0.668 5

Continued on next page




Table A.5 — Continued from previous page

no. | Pressure (VLO) Ref | no. | Pressure (Vlo) Ref

101 27.59 0.666 102 28.12 0.666

103 28.26 0.668 104 28.22 0.667
105 28.78 0.659 106 29.52 0.66
107 29.32 0.655 108 29.3 0.651

109 30.57 0.654 110 30.18 0.646

LN L L W e D

111 30.64 0.645 112 32.9 0.63

LN L L e e e WD

113 33.27 0.62

1 (Sato-Sorensen 1983)

2 (Perezalbuerne & Drickamer 1965)
3 (Liu & Basset 1973)

4 (Birch 1986)

5 (Marsh 1980)

Table A.6: Experimental pressure-volume data for MgCOj3 at T = 300 K

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref

1 0.3 0.9985 1 2 0.74 0.9945 1
3 1.39 0.9888 1 4 1.75 0.9858 1
5 1.93 0.9838 1 6 2.26 0.9818 1
7 2.34 0.9807 1 8 271 0.9778 1
9 3.09 0.9751 1 10 3.34 0.9728 1

11 3.7 0.9699 1 12 4.02 0.9677 1
13 4.16 0.9675 1 14 4.77 0.9629 1
15 5.61 0.9556 1 16 6.05 0.9521 1
17 6.42 0.95 1 18 6.88 0.9464 1

19 1.9 09846 | 2 20 3.0 09734 | 2

Continued on next page
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Pressure-volume data for the isothermal curve fitting

Table A.6 — Continued from previous page

no. | Pressure (Vlo) Ref | no. | Pressure (Vlo) Ref
21 4.2 0.9633 2 22 6.1 0.9517 2
23 7.7 0.9382 2 24 9.1 0.9271 2
25 9.9 0.9252 2 26 10.8 0.9208 2
27 12.3 0.9132 2 28 14.0 0.9033 2
29 16.0 0.8909 2 30 17.8 0.8832 2
31 19.0 0.8779 2 32 21.0 0.8687 2
33 23.3 0.8617 2 34 25.6 0.8539 2
35 27.1 0.8479 2 36 154 0.8965 2
37 19.9 0.8753 2 38 28.3 0.8423 2
39 33.0 0.8253 2 40 39.7 0.8063 2
41 0.14 1.001 2 42 0.78 0.9942 2
43 2.0 0.9832 2 44 33 0.9735 2
45 5.0 0.9622 2 46 7.2 0.9502 2
47 9.34 0.9351 2 48 9.6 0.9354 2
49 10.8 0.9303 2 50 14.0 0.9135 2
51 16.8 0.8966 2 52 19.9 0.8878 2
53 15.9 0.9039 2 54 13.0 0.9223 2
55 0.81 0.9937 2 56 0.41 0.9967 2
57 1.28 0.9855 2 58 2.05 0.9801 2
59 3.74 0.9664 2 60 5.6 0.9586 2
61 7.03 0.9424 2 62 9.0 0.931 2
63 11.7 0.9179 2 64 14.7 0.8963 2
65 18.9 0.8846 2 66 25.1 0.8528 2
! (Ross 1997)

2 (Fiquet & Reynard 1999)




Appendix B

Matlab code

In this appendix some selected Matlab scripts for the calculations performed has been
given. The selection is done such that scripts with identical functionality, and which differ
only in what solids they handle, are listed just once. The complete set of Matlab scripts
for all the solids has been attached as a zip file. Where there is individual scripts for each

solid MgO has been chosen as an example.

B.1 Data management

The following script shows how the data is prepared for use in the forthcoming calculations
for MgO.

% Transforming the data into a coloumn vector consisting of V/VO and

% pressure p, i.e. [VdivV0’,p,]’ . It also returns the length of each

3 % dataset

5 h7

function [p, VdivV0, len] = pvdata_mgo ()

hl load (’ Speziale_Zha_etal_2001.txt");

h2 load (*Mao_Bell _1979 . txt’);

h3 =load (’PerezAlbuerne_Drickamer_1965.txt’);
h4 =load (’Li_Woody_etal_2006.txt");

h5 =load(’Jacobsen_Holl_etal_2008a.txt’);

h6 =load(’Jacobsen_Holl_etal_2008b.txt’");
load (’Jacobsen_Holl_etal_2008c.txt’);

h8 = load ("LASL. txt’);
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numDatasets = 8;

% Transforming into V/V0O since the data is given in V in some papers

%

VdivV02 = zeros(length(hl(:,3)),1);

for i = l:1:length(hl(:,3))

Vdivv02(i,l) = hl1(i,3)/74.71; % 74.71 where given as VO in Speziale ..
end

VdivV03 = zeros(length(h5(:,3)),1);
for i = 1:1:1length(h5(:,3))
Vdivv03(i,l) = h5(i,3)/74.698;

end

VdivV04 = zeros(length(h6(:,3)),1);
for i = 1:1:length(h6(:,3))
Vdivv04(i,l1) = h6(i,3)/74.698;

end

VdivV05 = zeros(length(h7(:,3)),1);
for i = 1:1:1length(h7(:,3))
Vdivv05(i,1) = h7(i,3)/74.698;

end

Yo—

% Combining into two vectors of p and VdivV0

p = [h1(:,2),h2(:,2),h3(:,2) ,h4(:,2)", h5(:,2) ...

h6 (:,2) 7 h7(:,2) ", h8(:,2) 7]

3 gamma = 0.928/0.915;

h8 (:,3)=h8(:,3) .Agamma;
VdivV0 = [VdivV02’, h2(:,3)  ,h3(:,3) ,h4(:,3) ",
Vdivv03’, Vdivv04’,VdivV05’, h8(:,3) ’]";

%

% Making a vector which contains the length of the different datasets

len = zeros(l,numDatasets);
len (1) = length(hl(:,2));
3 len(2) = length(h2(:,2));
len (3) = length(h3(:,2));
s len (4) = length (h4(:,2))+length(h5(:,2))+length(h6(:,2));
len(5) = length (h7(:,2));
len (6) = length (h8(:,2));

%
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B.2 Implementation of the second order Murnaghan on

implicit form

The implementation of the implicit second order Murnaghan equation of state is given in

the following script.

% Nonlinear least squares for a fitting curve on the form
% log (V/V0) + 1/(KOlx(a-b))=«log((1+axp)/(1+bxp)) = 0

3 % Here, x vector is [KOl; KO02; KO03]

S

% xdata is the reduced volume and pressure

% param is the extra input as a struct, accessed by param(l).XxXxX
function [F, means] = newcurve_res_mgo(x, xdata, param)

KOl = x(1);

K02 = x(2);

K03 = x(3);

n = length(xdata)/2;

m = length(xdata);

a = K02/(2+KO01)*(1+sqrt(1-4+K03+K01/(K0272)));

b = K02/KO0l-a;

F = log(xdata(l:n))+ 1/(KOlx(a-b))xlog((l+axxdata(n+1:m))./(1+bxxdata(n+1:
m)));

% Finding the mean for each experimental series

means = zeros(1l,length (param.len)-1);

% Making the final matrix to be returned
F = [F;zeros(size(F))];

B.3 Parameter fitting

The following script shows how the nonlinear regression has been used to find the optimal

parameters. MgO has been chosen as an example.

% Nonlinear least squares with use of matlab’s Isqcurvefit

% ydata is here zeros and xdata is the V/VO and p

function K = Isq_mgo ()
clear all
clec

close all
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x0 = [160 4 -0.02]; % Guesses

[p, VdivV0O,len] = pvdata_mgo();
xdata = [VdivV0’, p’]7;
ydata = zeros(size(xdata));

s n = length(xdata)/2;

m = length(xdata);
%

% Making a vector, len2, which contains the number of measuring points in
% each series
len2 = zeros(l, length(len)+1);
for i = 2:length(len2)
len2 (i) = sum(len(l:i-1));
end

3 % Gives the extra option parameters, param, through a struct array

param = struct(’len’, len2);

s f = @(x, xdata)newcurve_res_mgo (x, xdata , param) ;

% Calling the function lsqcurvefit
[x,error] = lsqcurvefit(f,x0,xdata,ydata);
disp(error)

fprintf (KOl =%g:;\n’, x(1));

fprintf (K02 =%g;\n’, x(2));

fprintf (KO3 =%g:;\n’, x(3));

3 K = x;

%
% Plotting the residual plot and getting the mean for each series

[F, mean] = newcurve_res_mgo(x, xdata,6 param);
subplot(2,1,1)

% Plotting all the experimental series

marker = [,*,’ apa, 7077 ’+a’ ’X,, ’S’, !da’ 3V7],;

> hold on

for i = 1l:length(len2)-1

plot(xdata(n+l+len2(i):n+len2(i+1)), F(l+len2(i):len2(i+1)), marker(i))
end

hold off

% Making a contour plot for K02 and KO3 to find if a minimum exists , and
if

% so where it exists

KOl = x(1);

> KO2 = linspace(-1.3305,7.2901,500);
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; KO3 = linspace(-0.022,0.0408,500);

Y = zeros(length(K02), length (KO03));

s for i = l:length(K02)

for j = 1:length (KO03)
k02 = KO02(i);
k03 = KO03(j);
a = k02/(2%KO01)%(1+sqrt(1-4%xk03xK01/(k0272)));
b = k02/KO0l-a;

y = (log(xdata(l:n)) + 1/(KOlx(a-b))=xlog((1+axxdata(n+1:m))./(1+bx

xdata(n+1:m))));
Y(i,j) = sqrt(y’=y);
end

end

5 Y(Y>3xmin(min(Y))) = NaN;

7 % Plotting the contour plot

figure (2)

vector2 = 0:0.002:0.01;

contour (K03,K02,Y-min(min(Y)),vector2)
% title (’Contour plot for MgO’)

xlabel (’K_0""""")

3 ylabel ("K_ 0" ")

figure (3)
plot(p, VdivV0, ’x=7);
%%

B.4 The bootstrap method

The bootstrap method for finding standard deviation is shown in the following script.

% Bootstrapping of data
cle

clear all

close all

% Getting the data for the solids, choose the path that is wanted
% and change the names for Isq and pvdata accordingly

% addpath (*Al203")

addpath ( 'MgO’)

% addpath (’NaCl’)

% addpath(’SiO2")

% addpath (’CaO’)

% addpath (*MgCO3")
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% The optimal values calculated from Isq

theta_opts = Isq_mgo();
close all

x0 = theta_opts; % Guesses for

[p, VdivV0, len] = pvdata_mgo();

xdata = [VdivV0’; p’]7;

% xdata = [[VdivV0’,VdivVO’ ' ];[p’,p 11 ;

xdata2 = [VdivV0’ ,p’]’;

nl = length(xdata)/2;
m = length(xdata);
%

% Making a vector, len2, which contains

% each series
len2 = zeros(l, length(len)+1);
for i = 2:length(len2)

len2 (i) = sum(len(l:i-1));

s end

% Gives the extra option parameters ,

param = struct(’len’, len2);
%

the number of measuring points

through a struct array

n = length(xdata);
nReps = 2000; %number of data

%size of each data

experiments

set

>

% myStat = @mean; % function handle which gives mean

3 id = randi(n,n,nReps);

bootstrapData = zeros(n,2,nReps); % size 220, 2, 2000

s for i = 1:nReps

bootstrapData (:,:,i) = xdata(id(:,i) ,:); % Gives all the different

end

xdata_new = zeros(2xn,1);

ydata = zeros(size (xdata_new));

> x = zeros(nReps,length(x0));
; for i = 1:nReps
xdata_new = bootstrapData(:,:

Jobootstrapdata

xdata_f = [xdata_new (:,1) ’,xdata_new (:,2) ']’; % Rearranging

f = @(x,xdata)residual (x, xdata , param) ;

% to getting

x(i,:) = lsqcurvefit(f,x0,xdata_f ,ydata); % the correct form

end
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for i = l:length(x)
if imag(x(i,:))~= 0
x(i,l)=theta_opts(1l);
x(i,2)=theta_opts(2);
x(i,3)=theta_opts(3);
end

end

7 theta_opt = zeros(nReps, length(x0));

for i = 1:nReps
theta_opt(i,:)=theta_opts;
end
% cov(theta)=E[(theta—theta_opt)(theta—theta_opt) ]

> covtheta = zeros(3,3);

5 covtheta(l,1) = mean((x(:,1)—theta_opt(:,1)).x((x(:,1)—theta_opt(
covtheta(1,2) = mean((x(:,1)—theta_opt(:,1)).x((x(:,2)—theta_opt(:
s covtheta(l,3) = mean((x(:,1)—theta_opt(:,1)).x((x(:,3)—theta_opt(:
covtheta(2,1) = mean((x(:,2)—theta_opt(:,2)).%((x(:,1)—theta_opt(:
7 covtheta(2,2) = mean((x(:,2)—theta_opt(:,2)).x((x(:,2)—theta_opt(:
covtheta(2,3) = mean((x(:,2)—theta_opt(:,2)).x((x(:,3)—theta_opt(:
covtheta(3,1) = mean((x(:,3)—theta_opt(:,3)).x((x(:,1)—theta_opt(:
covtheta(3,2) = mean((x(:,3)—theta_opt(:,3)).x((x(:,2)—theta_opt(:
covtheta(3,3) = mean((x(:,3)—theta_opt(:,3)).x((x(:,3)—theta_opt(:

3 [Q2,L2] = eig(covtheta);

F = returnf(x0, xdata2);

s s2 = 1/((length(F)-length(x0)))=*(F’«F); % Residual sum of squares

7 B = Q2xsqrt(L2);

Imat = inv(B)*Q2xL2xQ2’xinv (B) ’;

k = x%(Q2xdiag (1./(sqrt(diag(L2)))));

> k_opt = theta_opt=(Q2xdiag (1./(sqrt(diag(L2)))));

: covkappa = zeros(3,3);

covkappa(l,1) = mean((k(:,1)-k_opt(:,1)).x((k(:,1)=k_opt(:,1))));

s covkappa(1l,2) = mean((k(:,1)-k_opt(:,1)).x((k(:,2)-k_opt(:,2))));
» covkappa(1,3) = mean((k(:,1)-k_opt(:,1)).x((k(:,3)-k_opt(:,3))));
7 covkappa(2,1) = mean((k(:,2)-k_opt(:,2)).=((k(:,1)-k_opt(:,1))));

covkappa(2,2) = mean((k(:,2)-k_opt(:,2)).x((k(:,2)-k_opt(:,2))));
covkappa(2,3) = mean((k(:,2)-k_opt(:,2)).x((k(:,3)-k_opt(:,3))));
covkappa(3,1) = mean((k(:,3)-k_opt(:,3)).x((k(:,1)-k_opt(:,1))));
covkappa(3,2) = mean((k(:,3)-k_opt(:,3)).x((k(:,2)-k_opt(:,2))));
covkappa(3,3) = mean((k(:,3)-k_opt(:,3)).x((k(:,3)-k_opt(:,3))));

% disp (covkappa);

1))
22))))s
23))))
1))
22))))s
23))))
21))))
22))))s
23))))
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dtheta = zeros(3,3);
dtheta (:,1)=Bx(k_opt(1,:)+[1 0 0])’—theta_opt(l,:)’;

; dtheta (:,2)=Bx(k_opt(1,:)+[0 1 0])’—theta_opt(1l,:)’;

dtheta (:,3)=Bx(k_opt(1,:)+[0 O 1])’—theta_opt(l,:)’;

fprintf (’stdl = [%f; %f; %f];\n’,dtheta(1,1),dtheta(2,1) , dtheta(3.,1))
fprintf (’ std2 [%f; %f; %f];\n’,dtheta(1,2),dtheta(2,2) , dtheta(3,2))
fprintf (’std3 = [%f; %f; %f];\n’,dtheta(1,3),dtheta(2,3) , dtheta(3.,3))

% Making a contour plot for K02 and KO3 to find if a minimum exists , and
if

; % so where it exists

KO1 k_opt(1);
K02 = linspace(145,400,100);
K03 = linspace(-25,-150,100);
Y = zeros(length(K02), length (K03));
for i = l:length(KO02)
for j = 1:length (KO03)
k01 = B(1,:)=[KOl;K02(i);K03(j)]1;
k02 B(2,:)«[KO1;K02(i);K03(j)];
k03 = B(3,:)«[KOI1;K02(i);K03(j)];
a = k02/(2%k01)x(1+sqrt(1-4%xk03xk01/(k0272)));
b = k02/k01-a;
y = (log(Vdivv0) + 1/(kOlx(a=b))=xlog((l+axp)./(1+bxp)));
Y(i,j) = sqrt(y’=y);

end

> end
5 Y(Y>3+min(min(Y))) = NaN;

% Plotting the contour plot

% subplot(2,1,2)

figure (4)

vector2 = 0:0.02:0.1;

contour (K03,K02,Y-min(min(Y)),vector2)
% title (’Contour plot for MgO’)
xlabel (" \kappa{}_3")

> ylabel ("\kappaf{}_2")

B.5 Deviation plots

The calculation and plotting of the deviation plots are shown in the following script.

% Test of bulk modulus for the four different isothermal EOS
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% versus the second order Murnaghan with uncertainty

clc
clear all
close all

V_VO = 0.1:0.0001:1;

X = (V_V0) .7 (1/3);

scale = linspace(-3,3,1000);
Nsolids = 6;

3 % Values given for MgCO3 from lsq and firstdiff

t1="MgCO_3";
K1(1) =112.436;
K2(1) =4.76634;

7 K3(1) =-0.0270562;

stdl (1,:) [0.000043; 0.000440; 0.007388];
std2 (1,:) [0.115360; 0.429741; -0.026252];
std3 (1,:) = [-3.049675; 0.816764; -0.030929];
pmaxi(1l,:) = 39.7xones(1,length(scale));

3 % Values given for NaCl from Isq and firstdiff

t2 = ’NaCl’;

K1(2) =24.3804;

K2(2) =4.99712;

K3(2) =-0.0486765;

std1 (2,:) = [0.000025; 0.000157; 0.002096];

std2(2,:) [0.035737; 0.086438; -0.006905];
std3(2,:) = [-0.896211; 0.369168; -0.017092];
pmaxi(2,:) = 37xones(l,length(scale));

% Values given for SiO2 from lsq

t3 = 'Si0_2";

KI1(3) =38.5545;

K2(3) =5.44556;

K3(3) =-0.155289;

stdl (3 ,:) [0.000913; 0.003420; 0.021745];

std2 (3 ,:) [0.214945; 0.376384; -0.068223];
std3(3,:) = [-2.995555; 1.685451; -0.139257];

> pmaxi(3,:) = 15.3xones(1,length(scale));

% Values given for CaO from lsq
t4 = ’CaO’;
K1(4) =109.401;

7 K2(4) =4.92936;
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K3(4) =-0.0276964;

stdl (4,:) [0.000002; 0.000030; 0.000988];
std2(4,:) = [0.026185; 0.182513; -0.005618];
std3(4,:) = [-4.898921; 0.702416; -0.013587];
pmaxi(4,:) = 65.2xones(1,length(scale));

% Values given for AlI203 from Isq

s t5 = "AIL20.3";

K1(5) =269.773;

K2(5) =4.35411;

K3(5) =-0.0130543;

std1(5,:) = [0.000000; 0.000012; 0.000784];

std2 (5,:) = [0.009872; 0.154277; -0.002390];
std3(5,:) = [-9.097483; 0.582079; -0.005196];

> pmaxi(5,:)=144.7670«ones (1,length(scale));

% Values given for MgO from lsq

s t6 = MO’ ;

K1(6) =160.123;

1 K2(6) =3.93044;

K3(6) =-0.00269764;

std1 (6,:) [0.000001; 0.000021; 0.000802];
std2 (6,:) = [0.008561; 0.076362; -0.002009];
std3(6,:) = [-2.421412; 0.371368; -0.003795];

3 pmaxi(6,:) = 121.752xo0nes(1,length(scale));

%

% Calculating the parameters with standard deviation

titles = {tl, t2, t3, t4, t5, t6};

for i = 1:Nsolids
figure (i)
std = [stdl(i,:);std2(i,:);std3(i,:)];

3 % std = abs(std);

K01 = K1(i);

K02 = K2(i);

K03 = K3(i);

pmax = pmaxi(i,:);
title (titles (i));
Yo~

9%Murnaghan

> K Mur = KO1+X.A(-3%KO02);
: p_Mur = KO01/K02x(X.A(-3xK02)-1);
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5 %Birch —Murnaghan

K_Bir = 0.5%KO01#(7+X.A(=7)-5+X."(-5))+3/8xK01 % (K02-4) % (9xX.A"(-9) —14%X
A(=T7)+5+X.~(=5)); %Checked
p_Bir = 3/2xKO01%(X.A(=7)-X.A(=5)) .%(1+3/4%(K02-4) «(X.A"(-2)-1));

%Vinet

K_Vin = KO1#X.A(=2).%(1+(3/2%(K02-1)+X + 1).x(1-X)).xexp(3/2x(K02-1)x=(1-X)
)

p_Vin = 3xKO0lx(1-X)./(X.72).xexp(3/2%(K02-1)x(1-X));

3 %Pseudo—Spinodal

beta = 0.85;
A = betaxKO01/KO02;
B = KOlx(l-beta);

7 C = AMbeta;

D = 1/(1-beta);
p_Spi = (((A-log(V_V0)=B)/C)."(D))-A;

kappa = (A"beta)/KO1;

> E = beta/((1-beta)xK02);
3 F = kappa/(1-beta);

pspi = (((E-log(V_V0))/F).AD) - A:

s K_Spi = 1/kappax(pspi+A).~beta;

7 % Our equation

a

K02/(2+K01)#(1+sqrt(1-4xK03xK01/(K0272)));
K02/K01-a;

¢ = KOlx(a-b);

p_Our = 0:1:500;

» K_Our = KOl + KO02xp_Our + KO03/2x%p_Our."2;
: Y_Our = ((K_Our - KO02xp_Our)/KO01) ’;

5 % Making residuals

Y_Mur = (K_Mur - KO02%p_Mur)/KO0I%1.0000000000001;% Remove roughness

7 Y_Bir = (K_Bir — KO02xp_Bir)/KO01;

Y_Vin
Y_Spi

(K_Vin - K02xp_Vin)/KO01;
(K_Spi — K02xp_Spi)/KO01;

% Plotting

2 colors = [([0.75 0.75 0.75]);([0.8 0.8 0.8]);([0.65 0.65 0.65]) ];
» location = [([.4,.7,.4,.2]):([.47,.48,.4,.2]):([.47,.48,.4,.2])

3([-43,.7,.4,.2])5([.17,.15,.4,.2]);([.165,.15,.4,.2]) 1; %([left,
bottom , width , height])

axis ([0 200 -3 3])

xlabel (" Pressure [GPa]’)
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ylabel (7 (K = (K_0""p)) /KOl [-]")
hold on

for j = 1l:length(std)
stdKOl=std (j,1);

stdK02=std (j,2);
stdK03=std (j ,3);

> KOI_u = KOl + stdKO1;
» KO2_u = K02 + stdKO02;

K03 _u

K03 + stdKO03;

s KOI_1 = KOl - stdKO1;

KO02_1 = K02 - stdK02;
KO03_1 = K03 - stdKO03;

¢ K_Our_u = KOI_u + KO2_usxp_Our + KO3_u/2%p_Our."2;

K_Our_1 = KO1_1 + KO2_l«p_Our + KO03_1/2%p_Our."2;
Y_Our_u = ((K_Our_u - KO02xp_Our)/KO01) ’;
Y_Our_1 = ((K_Our_l - KO02xp_Our)/KO01) ’;

> Y_Our_p = max(Y_Our_u,Y_Our_l);
3 Y_Our_m = min(Y_Our_u,Y_Our_l);

hl =jbfill (p_Our,Y_Our_p’,Y Our_m’,[0.6 0.8 0.8]);

5 end

7 hold on

axis ([0 200 -2 2])

h3 = plot(p_Mur,Y_Mur, ’color’,[0,0.8,0], LineWidth’ ,1.5);
h4 = plot(p_Bir,Y_Bir, ’b’,’LineWidth’ ,1.5);
h5 = plot(p_Vin,Y_Vin, ’r’,’LineWidth’ ,1.5);

: h6 = plot(p_Spi,Y_Spi, “magenta’,’LineWidth’ ,1.5);

h7 = plot(pmax,scale, ’'——black’);
h_legend = legend ([hl, h3, h4, h5, h6, h7],...
{’Second order Murnaghan with uncertainty ’,”Murnaghan’, ’Birch’, ~’
Vinet’, ’Pseudo-spinodal’, 'Maximum experimental pressure’});

set(h_legend ,’ FontSize  ,8, Position’,location(i,:));
filename=sprintf ( bulk%g.svg’,i);
plot2svg (filename)

hold off

> end

B.6 Isobaric heat capacity as a function of temperature

The prediction of isobaric heat capacity as a function of temperature for MgO has been

shown in the following script.
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% MgO heat capacity as a function of temperature
clear all

3 close all

clc

% MgO

KOl =160.123e9; % Pa = J/m"3
K02 =3.93;

VO = 11.25e-6; % m”3/mol
gamma0 = 1.49; % Speziale 2001
theta = 743x0.75;

N = 2%6.023x10"-23;

3 Tref = 298;
Mw = 40.31;
beta = 0.85;

kb = 1.38e23;
[0.0001 5 10 20 30]«1079;

pres

%

% Data from JANAF

> A = 47.25995;

B 5.681621;

C = -0.872665;

D = 0.104300;

E = -1.053955;

TIA = (298:1:3050);

TJ = TJA/1000;

CpJanaf = A + B+TJ + C«(TJ.~2) + Dx(TJ.*"3) + E./(TJ]."2);
%

% Experimental heat capacity
addpath (cd(’..\"));

33 hl = load(’barron_and_berg_etal _1959 _cp.txt’);

cpl = h1(:,3)x4.184;
Texp = hl1(:,2);

Cpexp = cpl;

%

T = [Texp;TIA’];

colors = char(’blue’,’r’, cyan’, green’, magenta’);
marker = char(’d’);

> for i = l:length(pres)
5 p = pres(i);

psp298 = —K01/K02%0.85;

5 psp0 = psp298 — (gammaO/VO0x3x«Nxkbxtheta x(0.5+1./(exp(theta./Tref)-1)));

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)));



82 Matlab code

ha = (gammaO/VO0#3x«Nxkbxtheta «x(0.5+1./(exp(theta./T)-1)));
psp = psp0 + ha;
kappa = ((—pspTref).~beta)/KOl; % Utregna ved Tref, independent of T

K_spi (1./kappa).*x(p—psp)."beta; % Bulk modulus

K_spi2 = (beta./kappa).x(p—-psp).~(beta—1); % pressure deriv, bulk modulus

a = (gammal./(VO0.x K_spi)*3«N«kb.x((theta./T)."2)).xexp(theta./T)./((exp(
theta ./T)-1).22); % Kr—1

s Cpps = (3%Nsxkb.x((theta./T).~2)).xexp(theta./T)./((exp(theta./T)-1)."2)

.#(1+T.xa.+xgamma0) ;

7 Vsp = VO.xexp(beta./((1 —beta)=xK02)); % Vsp is evaluated at reference state

V01 = Vspsexp(—kappa/(l—-beta).x(—psp).*(1-beta)); % V(p=0)
V = Vsp.xexp(—kappa/(1-beta)*(p—psp).~(1—-beta));

% Chemical potential

> k = kappa;
3 a2 = —-k/(1 —Dbeta);

b = psp;

s ¢ = l-beta;

p0 = 0;
myl = (b-p).#(—a2.(p-b).Ac).A(~1/c):

¢ myg = (gammainc(—-a2.x(p-b).*c,1/c, upper’)).xgamma(l/c);

my = Vsp.xmyl.xmyg./c;

mylO0 = (b-p0).x(—a2=(p0-b).~c).~"(-1/c);
myg0 = (gammainc(-a2«(p0-b).~c,1/c, upper’))*xgamma(l/c);

3 my0 = Vsp.xmylO.xmyg0./c;

mytot = my-my0O; % J/mol
mym = mysMw; % J/g

mytotm = mytot:Mw;%J] /g

dl central_diff (mytot,T);
d2 = central_diff(dl,T);

%
% Plotting

;s hp = figure(1);

hold on

xlabel (" Temperature [K]’,  fontsize’ ,10)
ylabel ("C_p [J/(K, mol)]’, fontsize ,10)
Cpcalcl = —Texp.xd2(1:length (Texp))+Cpexp;

; Cpcalc2 = -TJA’.xd2(length(Texp)+1:end)+Cplanaf ’;

h1(i)=plot(Texp,Cpcalcl, marker);
h2(i)=plot(TJA’ ,Cpcalc2);
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set(hl(i), color’, colors(i), "MarkerSize’, 4)
set(h2(i), ’color’, colors(i), ’Linewidth’, 1.5)

;s hAnnotation = get(hl(i),’  Annotation’);

5

hLegendEntry = get(hAnnotation’,’LegendInformation’);
set (hLegendEntry , "IconDisplayStyle’, off ")

end

axis ([0 3000 -20 60])

leg = legend(’0.0001 GPa’,’1000 GPa’, 10 GPa’,’20 GPa’,’ 30 GPa’);
set(leg,’ Location’,  SouthEast’,’ fontsize  ,10)

set (hp, ”WindowStyle ', docked ")

set(gca,’ fontsize’,10)

set (hp, *PaperpositionMode *, "auto )

% saveas (1, C:\Users\Stig—-Erik \NINU\ Master\Latex \MgO_Cpexp’, epsc ’)

B.7 Isobaric heat capacity as a function of pressure

The prediction of isobaric heat capacity as a function of pressure for MgO has been shown
in the following script.

% MgO heat capacity as a function of pressure

clear all

3 close all

clc

% MgO

K01 =160.123e9; % Pa = J/m"3
K02 =3.93;

o

5 A

VO = 11.25e-6; % m”"3/mol
gamma0 = 1.49; % Speziale 2001
theta = 743x0.75;

N = 2%6.023%10"-23;

3 Tref = 298;
Mw = 40.31;
beta = 0.85;

kb = 1.38e23;
% T = (0:1:3000);
pres = [0.0001:5:220]%1079;

Y-
% Data from JANAF
= 47.25995;

B = 5.681621;
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C = -0.872665;
D 0.104300;

» E = -1.053955;

TJA = (298:1:3050);

TJ] = TIA/1000;

Cplanaf = A + BxTJ + Cx«(TJ.~2) + D«(TJ.~3) + E./(TJ.*2);
%

% Experimental heat capacity

33 addpath(cd(’..\));

hl = load(’barron_and_berg_etal 1959 _cp.txt’);
cpl = hl1(:,3)%4.184;
Texp = hl1(:,2);

37 Cpexp = cpl;

39 Y-

w0 T = [Texp:;TIA’];

i colors = char(’blue’,’r’, cyan’,’green’, magenta’);
2 marker = char(’d’);

56

3 for i = l:length(pres)

p = pres(i);

5 psp298 = —-K01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)));
pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)));
ha = (gamma0/VO0+3«Nxkbxtheta x(0.5+1./(exp(theta./T)-1)));

psp = psp0 + ha;

kappa = ((—pspTref).~beta)/KOl; % Utregna ved Tref, independent of T

K_spi

(1./kappa).«(p—psp)."beta; % Bulk modulus

3 K_spi2 = (beta./kappa).x(p—psp).~(beta—-1); % pressure deriv, bulk modulus

5 a = (gammal./(VO0.x K_spi)«3«Nx«kb.«((theta./T)."2)).xexp(theta./T)./((exp(

theta ./T)-1).22); % Kr—1
Cpps = (3%Nxkb.x((theta./T).”2)).xexp(theta./T)./((exp(theta./T)-1).22)
c#(14+T.+xa.xgamma0) ;

Vsp = VO.xexp(beta./((1 —beta)xK02)); % Vsp is evaluated at reference state
V01 = Vspxexp(—kappa/(l—-beta).x(—psp).~(1-beta)); % V(p=0)
V = Vsp.xexp(—kappa/(1l-beta)x(p—psp).~(1—-beta));

% Chemical potential

s k = kappa;

a2 = -k/(1-beta);

s b = psp;

¢ = l-beta;

7 p0 = 0;

myl = (b-p).x(—a2.x(p-b)."c)."(-1/c);
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myg = (gammainc(—a2.x(p-b)."c,1/c, upper’)).xgamma(l/c);
my = Vsp.xmyl.xmyg./c;

myl0 = (b—p0).x(—a2x(p0-b).Ac).A(=1/c);

3 myg0 = (gammainc(—a2x*(p0-b)."c,1/c, upper’))xgamma(l/c);

my0 = Vsp.xmylO.xmyg0./c;

mytot = my-myO; % J/mol
mym = myzMw; % J/g

mytotm = mytot«Mw;%J] /g

dl central_diff (mytot,T);
d2 = central_diff(dl,T);

%

3 Cpcalcl = —Texp.xd2(1:1length(Texp))+Cpexp;

Cpcalc2 = -TJA’.xd2(length (Texp)+1:end)+Cplanaf ’;

s Cppl(i) = Cpcalc2(find (TJA==298));

Cpp2(i) = Cpcalc2(find (TJA==500));
Cpp3(i) = Cpcalc2(find (TJA==1000)) ;

s Cpp4(i) = Cpcalc2(find (TJA==2000));

Cpp5(i) = Cpcalc2(find (TJA==3000));

end

% Plotting

hp = figure(1);

hold on

xlabel (’Pressure [GPa]’,’ fontsize’  ,12)

ylabel ("C_p [J/(K, mol)]’,  fontsize  ,12)

axis ([0 200 20 80])
plot(pres/1079,Cppl,colors (1), linewidth’ ,1.5)
plot(pres/1079,Cpp2, colors(2), linewidth’ ,1.5)
plot(pres/1079,Cpp3,colors(3), linewidth’ ,1.5)
plot(pres/1079,Cpp4, colors(4), linewidth’ ,1.5)
plot(pres/1079,Cpp5,colors(5), linewidth’ ,1.5)
leg = legend(’298.15 K’,’500 K’,”1000 K’,’2000 K’,*3000 K*);
set(leg,’ Location’, NorthEast’,’ fontsize  ,10)
set (hp, ’WindowStyle’, " docked ")

set(gca, fontsize’ ,12)

set (hp, PaperpositionMode *, "auto ")

s % saveas (1,’C:\Users\Stig—Erik \NINU\ Master \ Latex \CpP_MgO’ , ’epsc *)



)
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B.8 Bulk modulus as a function of temperature

The prediction of the bulk modulus as a function of temperature for MgO has been shown

in the following script.

% Pseudo-Spinodal equation

% Predictions for bulk modulus as a function of temperature for MgO

clear all
close all

clc

% MgO

KO0l =160.123;

K02 =3.93;

VO = 11.25; % cm”3/mol

gamma0 = 1.49; % Speziale 2001

3 theta = 743x%0.75;

N = 2%6.023x10"-23;
Tref 298;

beta = 0.85;
A = betaxK01/KO02;

B = KOlx(1-beta);
C = A’beta;
D = 1/(1-beta);

kb = 1.38x10723;

» T = (0:1:3000) 73

pres = [0,5,10,20,30];

colors = char(’blue’,’r’, cyan’, green’, magenta’);

for i = 1:length(pres)

p = pres(i):

psp298 = -KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNsxkbxtheta x(0.5+1./(exp(theta ./ Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0#3«Nxkbxtheta x(0.5+1./(exp(theta./T)-1)))/1000;

33 psp = psp0 + ha;

£

kappa = ((—pspTref).~beta)/KO0l; % Calculated at Tref, independent of T
K_spi = (1./kappa).x(p-psp)."beta; % Bulk modulus
K_spi2 = (beta./kappa).=(p—-psp).~(beta—-1); % Pressure derivative of

% bulk modulus

Vsp = VO.xexp(beta./((1 —beta)=K02));
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V01 = Vspsexp(—kappa/(l-beta).x(p—psp).~(1-beta));

VOT = Vspxexp(—kappa/(l —-beta).x(—psp).~(1l-beta));

VOref = Vspxexp(—kappa/(1l—-beta).x(—pspTref).~(1—-Dbeta));
V = Vsp.xexp(—kappa/(l —beta)«(p—psp).~(1l —beta));

VdivV0T = V/VO0T;

s a = (gamma0./(VO0.xK_spi)*3«Nxkb.x((theta./T).~2)).xexp(theta./T)./((exp(

theta ./T)—-1).22)/1000; % K~r-1
%
% Experimental data for alpha
hl = load(’anderson_and_zou_1989.txt’");

> Texp = hl(:,2);
3 alpha= hl1(:,3)%10"-6;

% Murnaghan

Kmur = KO01+K02xp;

aMur = (gamma0./(VO0.+Kmur)+3+Nxkb.x((theta./T).”2)).xexp(theta./T)./((exp(
theta ./T)-1).722)/1000;

% Calculating the isentropic bulk moduls

Ks = K_spi.x(l+a.xgamma0.xT);

3 % Plotting

size = 12;

s hp = figure(1);

hold on

plot(T,K_spi,colors(i),’ linewidth’ ,1.5)

xlabel (" Temperature [K]’, FontSize’ ,size)

ylabel ('K [GPa]’,’ FontSize’ ,size)

end

leg = legend(’0.0001 GPa’,’5 GPa’,’10 GPa’,’20 GPa’,’30 GPa’);
set(leg, Location’, SouthWest’,’FontSize  ,10)

set (hp, ’WindowStyle’, " docked )

set(gca,’ fontsize’,12)

set (hp, "PaperpositionMode *, "auto ")

% saveas (1, C:\Users\Stig—Erik \NINU\ Master\Latex \bulkT_MgO ", epsc’)



)

$

w
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B.9 Bulk modulus as a function of pressure

The prediction of the bulk modulus as a function of pressure for MgO has been shown in

the following script.
% Pseudo-Spinodal equation

% Predictions for bulk modulus as a function of pressure for MgO

clear all

close all

clc

% MgO

KOl =160.123;
K02 =3.93;

VO = 11.25; % cm”3/mol
gamma0 = 1.49; % Speziale 2001

3 theta = 743x%0.75;

N = 2%6.023x10"-23;
Tref 298;

beta = 0.85;
A = betaxK01/KO02;

B = KOlx(1-beta);
C = A’beta;
D = 1/(1-beta);

kb = 1.38x10723;

» p = (0:1:200)

Temp = [298.15,500,1000,2000,3000];

EE

colors = char(’blue’,’r’, cyan’, green’, magenta’);

for i = l:length(Temp)

T = Temp(i);

psp298 = -KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNsxkbxtheta x(0.5+1./(exp(theta ./ Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0#3«Nxkbxtheta x(0.5+1./(exp(theta./T)-1)))/1000;

33 psp = psp0 + ha;

£

kappa = ((—pspTref).~beta)/KO0l; % Calculated at Tref, independent of T
K_spi = (1./kappa).x(p-psp)."beta; % Bulk modulus
K_spi2 = (beta./kappa).=(p—-psp).~(beta—-1); % Pressure derivative of

% bulk modulus

Vsp = VO.xexp(beta./((1 —beta)=K02));
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V01 = Vspsexp(—kappa/(l-beta).x(p—psp).~(1-beta));
VOT = Vspxexp(—kappa/(l —-beta).x(—psp).~(1l-beta));

> VOref = Vspxexp(—kappa/(1—-beta).x(—pspTref).~(1—-Dbeta));

V = Vsp.xexp(—kappa/(1-beta)*(p—psp).~(1—-beta));

VdivV0T = V/VO0T;

a = (gammal./(VO0.x K_spi)*3xNxkb.x((theta./T).~2)).xexp(theta./T)./((exp(
theta ./T)-1).72)/1000; % Kr—1

%

% Experimental data for alpha

hl = load(’anderson_and_zou_1989.txt’");

> Texp = hl(:,2);
3 alpha= hl1(:,3)%10"-6;

% Murnaghan

Kmur = KO01+K02xp;

aMur = (gamma0./(VO0.+Kmur)+3+Nxkb.x((theta./T).”2)).xexp(theta./T)./((exp(
theta ./T)-1).722)/1000;

% Calculating the isentropic bulk moduls

Ks = K_spi.x(1+a.+gamma0.xT);

3 % Plotting

size = 12;

s hp = figure(1);

hold on

plot(p,K_spi,colors(i),’ linewidth’,1.5);

% title (’Isothermal bulk modulus as a function of temperature for MgO’)
xlabel (" Pressure [GPa]’,’FontSize’ ,size)

ylabel ('K [GPa]’,’  fontsize ,12)

end

leg = legend(’298.15 K’, 500 K’,*1000 K*, 2000 K’,’ 3000 K*);
set(leg,’ Location’,  SouthEast’,’FontSize  ,10)

set (hp, ’WindowStyle’, " docked ")

set(gca, fontsize’ ,12)

set (hp, PaperpositionMode *, "auto ")

% saveas (1, C:\Users\Stig—Erik \NINU\ Master\Latex \bulkP_MgO ", epsc’)



)
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B.10 Thermal expansion as a function of temperature

The prediction of the thermal expansion as a function of temperature for MgO has been

shown in the following script.

% Pseudo-Spinodal equation

% Prediction of alpha as a unction of temperature for MgO

clear all
close all

clc

% MgO

KO0l =160.123;

K02 =3.93;

VO = 11.25; % cm”3/mol

gamma0 = 1.49; % Speziale 2001

3 theta = 743x%0.75;

N = 2%6.023x10"-23;
Tref 298;

beta = 0.85;
A = betaxK01/KO02;

B = KOlx(1-beta);
C = A’beta;
D = 1/(1-beta);

kb = 1.38x10723;

T = (0:1:3000) ’;

pres = [0,5,10,20,30];

colors = char(’blue’,’r’, cyan’,’ green’, magenta’);

for i = 1:length(pres)

p = pres(i):

psp298 = -KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNsxkbxtheta x(0.5+1./(exp(theta ./ Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0#3«Nxkbxtheta x(0.5+1./(exp(theta./T)-1)))/1000;

33 psp = psp0 + ha;

£

kappa = ((—pspTref).~beta)/KO0l; % Calculated at Tref, independent of T
K_spi = (1./kappa).x(p-psp)."beta; % Bulk modulus
K_spi2 = (beta./kappa).=(p—-psp).~(beta—-1); % Pressure derivative of

% bulk modulus

Vsp = VO.xexp(beta./((1 —beta)=K02));
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V01 = Vspsexp(—kappa/(l-beta).x(p—psp).~(1-beta));

VOT = Vspxexp(—kappa/(l —-beta).x(—psp).~(1l-beta));

VOref = Vspzexp(—kappa/(l-beta).«(—pspTref). (1 -beta));
V = Vsp.xexp(—kappa/(l —beta)«(p—psp).~(1l —beta));

VdivV0T = V/VO0T;

a = (gammal./(VO0.x K_spi)*3xNxkb.x((theta./T).~2)).xexp(theta./T)./((exp(
theta ./T)-1).22)/1000; % K~-1

%

% Calculating the isentropic bulk moduls

Ks = K_spi.x(l+a.xgamma0.=T);

% Plotting

5 hold on

size = 12;

hp = figure(1l);

ss % title (’Thermal expansion coeffisient versus temperature for MgO’)

S

xlabel (" Temperature [K]’,  FontSize’ ,size)

ylabel (*\alpha [KA{-1}]", FontSize’ ,6size)

plot(T,a,colors(i),’ linewidth’ ,1.5)

> hold off

3 end

leg = legend(’0.0001 GPa’,’5 GPa’, 10 GPa’,’20 GPa’, 30 GPa’);
set(leg, Location’, NorthWest’,’FontSize  ,10)

set(gca, fontsize’ ,12)

set (hp, ’WindowStyle’, " docked ")

set (hp, *PaperpositionMode *, "auto )

% saveas (1, C:\Users\Stig—-Erik \NINU\ Master\Latex \alphaT_MgO’, epsc )

B.11 Thermal expansion as a function of pressure

The prediction of the thermal expansion as a function of pressure for MgO has been shown

in the following script.

% Pseudo—-Spinodal equation

% Prediction of alpha as a function of pressure for MgO

clear all

s close all

clc
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% MgO
KOl =160.123;
K02 =3.93;

VO = 11.25; % cm”3/mol

> gamma0 = 1.49; % Speziale 2001
;3 theta = 743%0.75;

N = 2%6.023x10"-23;
Tref = 298;

beta = 0.85;
A = betaxKO01/KO02;

B = KOl«(1-beta);
C = A’beta;
D = 1/(1-beta);

kb = 1.38+10723;

p = (0:1:200);

Temp = [298.15,500,1000,2000,3000];

colors = char(’blue’,’r’, cyan’,’ green’, magenta’);

for i = 1:length (Temp)

T = Temp(i);

psp298 = -KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta «(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0x3+Nxkbxtheta x(0.5+1./(exp(theta./T)-1)))/1000;

5 psp = pSpO + ha;

kappa = ((—pspTref).~beta)/KOl; % Calculated at Tref, independent of T
K_spi = (1./kappa).=(p—-psp).~beta; % Bulk modulus
K_spi2 = (beta./kappa).=(p—-psp).~(beta—-1); % Pressure derivative of
% bulk modulus
Vsp = VO.xexp(beta./((1 - beta)=xK02));

Vo1 Vspxexp(—kappa/(l —beta) .« (p—psp).~(1 —beta));
VOT = Vspxexp(—kappa/(l—-beta).x(—psp).~(1l—-beta));
VOref = Vspzexp(—kappa/(l-beta).«(—pspTref). (1 -beta));

V = Vsp.xexp(—kappa/(l —beta)«(p—psp).~(1l -beta));

VdivV0T = V/VO0T;

a = (gammal./(VO0.x K_spi)*3xNxkb.x((theta./T).~2)).xexp(theta./T)./((exp(
theta ./T)-1).22)/1000; % K~-1

%
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% Calculating the isentropic bulk moduls
Ks = K_spi.*(l+a.xgamma0.xT);

% Plotting

hold on

hp = figure(1);

% title (’ Thermal expansion coeffisient versus pressure for MgO’)
xlabel (" Pressure [GPa]’,’ FontSize’ ,12);

ylabel (*\alpha [K*{-1}]",  FontSize’,12);

plot(p,a,colors(i),’ linewidth’ ,1.5)

end

> leg = legend(’298.15 K’,’500 K*,’ 1000 K*,’ 2000 K’, 3000 K");

set(leg, Location’, NorthEast’,’FontSize  ,10)
set(gca, fontsize’ ,12)

set (hp, *WindowStyle’, docked ")

set (hp, *PaperpositionMode *, "auto )

7 % saveas (1, C:\Users\Stig —Erik \NINU\ Master\Latex \alphaP_MgO’, epsc ')

B.12 Comparison of the thermal expansion with experi-
mental data

Comparsion of the thermal expansion as a function of temperature with experimental data
for MgO has been shown in the following script.

% Pseudo—-Spinodal EoS, predictions of alpha

3 clear all

close all

clc

% MgO

KOl =160.123;
K02 =3.93;

VO = 11.25; % cm”3/mol
gamma0 = 1.49; % Speziale 2001

> theta = 743x0.75;
3 N = 2%6.023%107-23;

Tref = 298;

beta = 0.85;
A = betaxK01/KO02;
B KOlx(1-beta);
C = A’beta;
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D = 1/(1-beta);
kb = 1.38x10723;

T = (0:1:3000) ’;
= 0;
% T = 2000;
% p = (0:0.5:200) ’;

psp298 = —-KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3«Nxkbxtheta «(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0x3«Nxkbxtheta =(0.5+1./(exp(theta./T)-1)))/1000;

psp = psp0 + ha;

kappa = ((—pspTref).2beta)/KOl; % Calculated at Tref, independent of T

(1./kappa) .=(p—psp)."beta; % Bulk modulus
K_spi2 = (beta./kappa).=(p-psp).~(beta—1); % Pressure derivative of
% bulk modulus

Vsp

VO.xexp(beta./((1 —beta)=xK02));

Vo1 Vspxexp(—kappa/(l —beta).«(p—psp).~(1 —beta));
VOT = Vspxexp(—kappa/(l —-beta).x(—psp).~(1-beta));
VOref = Vspxexp(—kappa/(1l—-beta).x(—pspTref).~(1—-Dbeta));

> V = Vsp.xexp(—kappa/(l—beta) «(p—psp).~(1l —beta));

VdivV0T = V/V0T;

a = (gammal./(V0.x K_spi)*3xNxkb.x((theta./T).~2)).xexp(theta./T)./((exp(
theta./T)-1).72)/1000; % Kr—1

%

% Experimental data for alpha

hl = load(’anderson_and_zou_1989.txt");

Texp = hl1(:,2);

alpha= h1(:,3)%10"-6;

% Murnaghan

5 Kmur = KOI+KO02xp;

aMur = (gamma0./(VO0.xKmur)+3+Nxkb.x((theta./T).*2)).xexp(theta./T)./((exp(
theta ./T)-1).722)/1000;

% Calculating the isentropic bulk moduls

Ks = K_spi.*(l+a.xgamma0.xT);

% Plotting
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> hold on
3 hp = figure(1);

axis ([0 3000 0 0.00008])
xlabel (" Temperature [K]™)
ylabel ("\alpha(T)_{p_0}")

7 plot(T,a,’ ’linewidth’ ,1.5)

plot(T,aMur, ’r’, linewidth’ ,1.5)
plot(Texp,alpha, =)
hold off

set (hp, ”WindowStyle’, docked )
set (hp, "PaperpositionMode *, "auto ")

3 leg = legend(’Pseudo—spinodal’,’ First order Murnaghan’, ’Exp. data’);

set(leg,’ Location’, ’SouthEast’)
saveas (1, C:\ Users\Stig—Erik \NINU\ Master\Latex \alphaTexp_MgO . pdf ")

B.13 Comparison of the p-V-T surface with experimental
data for MgO

Comparsion of the pressure-volume-temperature surface with experimental data for MgO

has been shown in the following script.

% Comparison of the p-s EoS versus experimental data

3 clear all

. close all

clc

KO0l =160.123;

K02 =3.93;

VO = 11.25; % cm”3/mol

gamma0 = 1.49; % Speziale 2001
theta = 743x0.75;

> N = 2%6.023%107-23;
3 kb = 1.38x10723;
. Tref = 298;

beta = 0.85;

% T = (0:5:1200) ’;

% p = 0;

Temp = [298,1100];

p = (0:0.5:220) °;

colors = char(’blue’,’r’, cyan’, green’, yellow’, magenta’);
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for i = l:length (Temp)
T Temp(i);

psp298 = -KO01/K02x0.85;

psp0 = psp298 — (gammaO/VO0x3xNx«kbxtheta «(0.5+1./(exp(theta./Tref)-1)))
/1000;

pspTref = psp0 + (gammaO/VO0x3xNxkbxtheta x(0.5+1./(exp(theta./Tref)-1)))
/1000;

ha = (gammaO/VO0x3«Nxkbxtheta x(0.5+1./(exp(theta./T)-1)))/1000;

psp = psp0 + ha;

kappa = ((—-pspTref).~beta)/KOl; % Calculated at Tref, independent of T

K_spi = (1./kappa).«(p—psp).~beta; % Bulk modulus

K_spi2 = (beta./kappa).x(p—-psp).~(beta—-1); % Pressure derivative of
% bulk modulus

Vsp = VO.xexp(beta./((1 —beta)=xK02));
V01 = Vspxexp(—kappa/(l—-beta).x(p—psp).~(l—-beta));
VOT = Vspxexp(—kappa/(l —beta).«(—psp).~(l—beta));

VOref = Vspxexp(—kappa/(1l—-beta).x(—pspTref).~(1-Dbeta));

V = Vsp.xexp(—kappa/(1-beta)*(p—psp).~(1—-beta));

> VdivV0 = V/VOref;

a = (gamma0l./(VO0.xK_spi)*3+«Nxkb.+((theta./T)."2)).xexp(theta./T)./((exp(
theta./T)-1).72)/1000; % K"-1

% Murnaghan

KMur = KO1+K02xp;

aMur = (gamma0./(VO0.+KMur) +3+«Nxkb.x((theta./T).*2)).xexp(theta./T)./((exp(
theta ./T)-1).72)/1000;

aKT =—aMur.«KMur; % GPaK"(-1)

Pth = aKT.x(T-Tref);

p0 = 0.0001;

pmur = p+Pth;

i VdivVOMur = ((KO0I1+K02xpmur) ./( KOI+K02xp0)).A( —1/K02) ;

%

s % Experimental data for alpha

hl = load(’Speziale_and_Zha_etal_2001.txt");
pexp = hl1(:,3);

VdivVOexp= hl(:,4);

h2 = load(’fei_1999.txt");

pexp2 = h2(:,3);

VdivVO0exp2 = h2(:,4)/h2(1.,4);

% Plotting
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axis ([0 25 0.85 1.1])
hp = figure(1l);
hold on
xlab = xlabel(’p [GPa]’);
ylabel ("V/V_0")
plot(p,VdivV0, colors (i), ’linewidth’, 1.5)
end
plot (pexp2,VdivVOexp2, =)

3 legend (7298 K’ , 1100 K’ , Exp. data’);
i % set(gca, FontSize’ ,10)

set (hp, ”WindowStyle ', docked ")
set (hp, PaperpositionMode *, "auto ")
saveas (1,’C:\ Users\Stig —Erik \NINU\ Master\Latex \pvt_MgO’ , epsc’)

B.14 Calculation of the Chi-square value for MgO

Comparsion of the pressure-volume-temperature surface with experimental data for MgO
has been shown in the following script.

% Test of MgO data

3 clear all

. close all

)

°

clc

addpath (cd(’..\"));

K01 =160.123;

K02 =3.93044;

K03 =-0.00269764;

[p, VdivV0] = pvdata_mgo () ;

> x4 = [KOI K02 KO03];
s xdata4 = [VdivV0’, p’]’;
. param = struct(’len’, 0);

F4 = newcurve_res_mgo (x4, xdata4 ,param) ;
F4 = F4(1:1length(F4)/2);

% Standarizing the data

stdav = sqrt(var(F4));

my = mean(F4);

Fsort4 = sort ((F4-my)/stdav);

y4 = (l:length(F4))/length (F4);

> hold on
3 % title (’Cumulative plot MgO’)

2 plot(Fsort4 ,y4, '+7)

25

clear path



98 Matlab code

26 % Plot the cumulative normal distribution
7 normdist = -3:0.1:3;

% pl = cdf(’Normal’ ,normdist ,0,1);

0 axis([-3 3 0 1])

o ylabel (*\Phi(x)’, fontsize’ ,14)

31 xlabel(’x’, fontsize’ ,14)

2 plot(normdist,pl)

13 bins2 = -2:0.5:2;
32 bins = [bins2 ,6];
35 cumE = 0;

6 cumO = 0;

37 0 = zeros(10,1);

38 E = zeros (10,1);

v for 1 = 1:10

20 O(i) = length(find (Fsort4 <bins(i)))—cumO;

21 cumO = cumO+0(1);

o E(i) = (pl(max(find (normdist<=bins(i))))—cumE);
43 cumE = cumE+E(i);

44 end

s E = Ex(length (Fsort4d)-5);
4 Exp zeros (length(E) ,1);
47 Obs = zeros(length(O),1);
4 for i = 1l:length(E)/2

19 if E(i)<5

50 Exp(i+1)=Exp(i)+E(i);
51 Obs(i+1)=0bs(i)+0(i);
52 Exp(i)=0;

53 Obs(i)=0;

54 else

55 Exp(i)=Exp(i)+E(i);

56 Obs(i)=0bs(i)+0(1i);

57 end

ss end

o for i = length(E)/2+1:1length(E)

61 if E(i)<5

62 Exp(i)=0;

63 Obs (i) =0;

64 else

65 Exp(i)=Exp(i)+E(i);
66 Obs (i)=0bs(i)+0(i);
67 end

6s end

o Exp(9)=E(10)+E(9);
0 Obs(9)=0(10)+0(9);
71 for i = l:length (Exp)
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if Exp(i)>0
chi(i) = (Obs(i)-Exp(i))"2/(Exp(i));
end
s end
76 sumchi = sum(chi);
disp (sumchi)
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