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Summary

The objective of this work was to analyze a mechanical analogue to a thermodynamic sys-
tem. The main goal was to investigate the temperature distribution in a vertical system of
oscillating magnets in a gravitational field and assess whether the system could be used as
a model of an atmosphere of an ideal gas. In order to answer this question it was necessary
to integrate the equations of motion over a long time interval. The reason for this is that
the thermodynamic interpretation reduced the mechanical phase space for each magnet to
a common statistical interpretation. The long time interval guaranteed that a truly thermo-
dynamic system of magnets would have enough time to occupy each state at least once.

Most of the work considered integration methods that ensured the integration remained
on the energy surface throughout the interval, known as symplectic integration methods.
A total of seven methods of different order and properties were derived, implemented and
compared. The low order methods were used to study general properties of symplectic
methods on the simple harmonic oscillator. It was shown that even though the symplec-
tic methods conserved the phase space trajectory they caused the Hamiltonian (i.e. the
total energy) to oscillate. Based on the simulations it was concluded that as long as the
Hamiltonian was conserved to the fifth decimal place the symplectic method reproduced
the analytical phase space trajectory. This was supported by the long-time simulations that
were performed using a linear system of interacting ODEs with oscillatory solutions to
compare the remaining six methods. It was found that the order of the numerical method
is significant when considering oscillatory systems, i.e. adding symplectic property to a
method will not compensate for the increased accuracy of a higher order method. The su-
perior method was a third order symplectic Runge-Kutta-Nyström method (STRKN) that
was designed to exactly integrate linear oscillatory systems. Furthermore, the method was
superior to a fourth order Runge-Kutta-Nyström method; this implies that fitting the nu-
merical method a-priori to the form of the solution of the system has a significant impact
on the accuracy of the integration.

The simulations of the magnets showed that the probability density concerning the dis-
placement of the velocity for all the magnets in the system could be described using the
same Maxwell-Boltzmann density function. From this result it was conclude that, ana-
logue to a thermodynamic system, the temperature was constant throughout. Additionally,
the results showed that the probability density concerning the position displacement of
each magnet around static equilibrium depends on the index of the magnet in the stack.
The width of the density function, which describes the amplitude of the oscillations, in-
creased towards the top of the stack. The thermodynamic analogue to this result is the
density, which consequently decreases along the height. Subsequent simulations of sys-
tems with equal initial conditions but different total energy showed that the force of the
system on the environment, analogue to the pressure, increased linearly. Based on the
statistical analysis of the thermodynamic analogue of the results it was concluded that the
system of magnets could be used as a model of an atmosphere of an ideal gas.
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Sammendrag
Formålet med dette arbeidet var å gjennomføre en analyse av hvordan et mekanisk

system tilsvarer et termodynamisk system. Hovedspørsmålet var å undersıke temperatur-
fordelingen i et vertikalt system av oscillerende magneter i gravitasjonsfeltet og vurdere
om modellen kunne brukes til å illustrere en atmosfœre bestående av en ideell gass. For å
svare på dette spørsmålet var det nødvendig å integrere bevegelsesligningene over et langt
tidsintervall, da den termodynamiske tolkningen reduserer det mekaniske tilstandsrom-
met for hver magnet til én statistisk fordeling som felles for alle magnetene. Intensjonen
med det lange tidsintervallet var å garantere at magnetene fikk nok tid til å besøke hele
tilstandsrommet minst minst én gang i løpet av integrasjonen dersom systemet var termo-
dynamisk.

Mesteparten av arbeidet i dette prosjektet bestod i å vurdere integrasjonsmetorder som
garanterer at de numeriske oppdateringene forblir på energimanifoldet gennom hele inte-
grasjonsintervallet, kjent som symplektiske integrasjonsmetoder. Syv forskjellige metoder
med forskjellige egenskaper og orden ble utledet, implementert og sammenlignet. Meto-
dene med lav orden ble brukt til å integrere en harmonisk oscillator for å vise karakteris-
tiske trekk symplektiske metoder. Det ble vist at selv om metodene bevarte det mekaniske
tilstandsrommet førte de til at verdien av Hamiltonfunksjonen (dvs. den totale energien)
begynte å oscillere. På bakrunn av simuleringene ble det konkludert med at den analytiske
løsningen ble tilnrmet nøyaktig reprodusert dersom verdien av Hamiltonfunksjonen var
knstant til femte desimal. Simuleringene over lange tidsintervall, som ble gjennomført
på et system bestende sammenhengende hamoniske oscillatorer, støttet også denne obser-
vasjonen. Disse simuleringene viste også at orden på den numeriske metoden spiller en
viktig rolle når man jobber med svingesystemer. Dette vil si at det å gjøre en metode sym-
plektisk vil ikke alene vœre nok til å kompensere for lavere numerisk orden. Den beste
metoden var en symplectisk Runge-Kutta-Nyström metode av orden tre (STRKN) som
var tilpasset slik at den integrerte et lineœrt oscillatorisk system eksakt. Denne metoden
var også bedre enn en fjerde orden Runge-Kuttas-Nyström-metode. Dette resultatet støttet
konklusjonen om at å a-priori tilpasse en numerisk metode til å integrere en basisfunksjon
med samme form som løsningen fører til betydelig økt nøyaktighet.

Simuleringene av magnetsystemet viste at sannsynlighetstettheten for hastighetene til
hver magnet kunne bli erstattet med én Maxwell-Boltzmann-funksjon. Fra dette resul-
tatet ble det konkludert at, sammenlignet med et termodynamisk system, var temperaturen
konstant. I tillegg viste resultatene at sannsynlighetstettheten for posisjonen til hver mag-
net var sentrert rundt den statiske likevektsposisjonen. Bredden på tetthetsfunksjonen,
som beskriver amplituden av svingningene, økte mot toppen av systemet. Den termody-
namiske analog til dette resultatet er tettheten, som dermed minsker langs høyden. Det ble
også gjenomført simuleringer med forskjellig total energi, men samme startbetingelser,
som viste at kraften på den øverste magneten økte lineœrt med energien i systemet. Den
termodynamiske analogien til kraften på den øverste magneten er trykk. Basert på resul-
tatene ble det konkludert med at systemet med magneter kan brukes som en modell for en
atmosfœre av en ideell gass.
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ẏ, ÿ time derivative dy
dt ,

d2y
dt2

det |A| determinant of a matrix

Matrices and vectors

A coefficient matrix
M symplectic matrix
T tridiagonal matrix
J anti-symmetric matrix
S eigenvector matrix
Λ eigenvalue matrix
η vector of canonical coordinates [qi . . . qn, pi . . . pn]T

ζ vector of transformed canonical coordinates [Qi . . . Qn, Pi . . . Pn]T

Θ′ numerical flow jacobian

xvi



List of Acronyms

ODE ordinary differential equation
RK Runge-Kutta
RKN Runge-KuttaNyström
ERKN exponential Runge-KuttaNyström
SRKN symplectic Runge-KuttaNyström
SERKN symplectic and exponential Runge-KuttaNyström

xvii



xviii



Chapter 1
Introduction

1.1 Background and motivation

The background of this work is a question that is asked in the article Coombes and
Laue (1985). It concerns the temperature a vertical column that is filled with in a gas and
isolated from its surroundings, i.e. it is an adiabatic system.
The question is as follows:

If a vertical column of air which is adiabatically enclosed is in ther-
mal equilibrium, is the temperature the same throughout the column or
is there a temperature gradient along the direction of the gravitational
field?

The article suggests this question as an interesting teaching exercise for statistical me-
chanics, however it can also be used in classical thermodynamics as well. While the ques-
tion may seem trivial at first, it creates an apparent paradox where two answers, which
each individually seem reasonable, contradict one another:

1. There is no temperature gradient because a system which is in
thermal equilibrium has the same temperature throughout.

2. The temperature decreases as one goes up the column for the
following reasons:

(a) Energy conservation implies that every molecule looses ki-
netic energy as it travels upward, so that the average kinetic
energy of all molecules decreases with height.

(b) Temperature is proportional to the average molecular kinetic
energy.

The answers both seem satisfactory but there is a fundamental assumption hidden in
answer (2a). At first glance this might seem to be the most convincing argument for as-
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suming that answer (2) is correct; what happens if the number of particles decreases along
the height of the column. In fact this is the essence of the answer that is given in Coombes
and Laue (1985), that the gravitational force does not decrease the kinetic energy of the
particles in the top of the column, but rather the number of particles. This way the mean
kinetic energy and consequently the temperature remains constant along the height of the
column.

While the answer was presented here as a simple logical argument, it can also be
treated rigorously as shown in Velasco et al. (1996) using statistical mechanics. In fact, the
logical argument is based on the assumption that the Boltzmann equation is valid such that
the Maxwell-Boltzmann probability distribution is valid for each particle in the column.
This statement has a much deeper impact than the sentence above implies and understand-
ing the fundamental theory requires insight beyond what most people are ever going to
need to learn. However, if this can be visualized it would be a wonderful tool to illustrate
the thermodynamic properties of the ideal gas.

Similar systems have been studied in the past, in the article Ibsen et al. (1997) a me-
chanical system of hard rods stacked vertically in the presence of a gravitational field.
This work will use a similar system of idealized dipole magnets which will naturally have
a static equilibrium distribution where the separation between the magnets will increase
along the height of the column. If the system shows ideal gas behavior the kinetic energy
of the top and bottom magnet should be equal. Moreover, the amplitude of the magnets
can be used to illustrate that the density of the system decreases along the height. This
would be a visual way of illustrating the temperature and density dependence of height of
an atmosphere of an ideal gas. A less visual but important property is the pressure depen-
dence with respect to energy, which will be the force exerted on the top of the stack.

This motivates the study to check wether the mechanical system can be used as a model
of a thermodynamic atmosphere of an ideal gas.
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1.2 Objective and scope of the work
The objective of this work is to perform a complete analysis of an analytical descrip-

tion of a simple mechanical analogue to a general thermodynamic system. Specifically, a
system of small permanent magnets oscillating in a gravitational field will be simulated.
The simulation incorporates several classical topics from physics such as: Dynamics of
oscillatory mechanical systems, symplectic numerical integration, and the statistical in-
terpretation of thermodynamic variables. The theoretical scope of this work is limited to
classical mechanics and symplectic integration whereas the statistical interpretation will
be considered using well known results from statistical mechanics without further theoret-
ical consideration.

As a fundamental approximation it is assumed that the behavior of the magnets is
comparable to that of ideal dipoles. This assumption results in a simple power law model
describing the potential energy of the magnets; being proportional to the inverse of the
distance between the dipoles. A linear description of the system is obtained by linearizing
the potential energy around the static equilibrium distribution of the magnets. The linear
model can subsequently be analyzed using eigenvalue / eigenvector decomposition of the
coupling matrix describing the system.

The numerical implementation is performed such that the integration steps are guar-
anteed to remain on the energy surface, i.e. symplectic integration. This part of the work
account for the largest work load of the thesis and several integration methods are derived
and tested in order to consider which method is best suited for the system of magnets.
The reason why it is desirable to use symplectic integration methods is that they prevent
numerical diffusion of potential energy to kinetic or gravitational energy. A special type
of integration meted that is of particular interest is fitted to linear oscillatory systems (i.e.
it exactly integrates systems whose solutions are trigonometric functions). The different
integration methods are tested in order to study the importance of the different properties
when applied to a linear system of oscillatory ODEs.

One important result of the simulation is the probability density concerning the dis-
placement and velocity of each magnet in the system. The ultimate question is whether
or not the probability density of the velocity depends on the absolute position of the mag-
net. The analogue to real thermodynamic systems is e.g. the question of whether the
temperature of the atmosphere is constant or varies with altitude.
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1.3 Structure of the thesis
The thesis is divided into four main chapters where the first two contains the major

theoretical work. The main goal of these chapters is to introduce physical mechanics and
symplectic integration on a level such that it is within the technical level of anyone with
a background from basic university level mathematics. Chapter (2) introduces the basic
theory of physical mechanics. The introduction starts at the Lagrangian formulation, in-
troduces the Hamiltonian representation through the Legendre transformation and ends up
at the canonically transformed representations of the Hamiltonian representation. The last
topic is particularly important in the context of this work since it is used as the basis for
understanding symplectic integration methods. This chapter is supported by appendix (B)
and (C), respectively, considering calculus of variations and a rigorously derived relation
which proves that the Hamiltonian for the systems in this work is equal to the total energy.

Researching, understanding, deriving and implementing numerical integration meth-
ods accounts for approximately half of the time spent working on this thesis. Chapter
(3) is therefore of considerable size and much time and effort has been spent trying to
tie the symplectic integration methods to the concept of canonical transformations from
chapter (2). The reason for the focus on integration methods is that temporal integration
of oscillatory systems is a challenge that requires special methods that guarantee that the
numerical trajectory remains on the energy manifold throughout. Additionally, the sta-
tistical interpretation of the results also render commercial multistep methods, such as
ode45, impractical compared with an explicit fixed step size methods. The literature study
revealed that the available articles are mathematically dense and hard to understand, there-
fore the derivation of all the methods is considered in detail in this work; however, the
methods themselves were originally proposed elsewhere. A straight forward implementa-
tion of the methods is shown in appendix (E). However, the methods were implemented
in MatLab and the implementation in the appendix is consequently computationally slow
compared with the speed implementation of the built in MathWorks methods. The version
of the methods that was used in this work is consequently scripted such that the speed was
increased. This implementation along with all the additional functions can be found in
Karolius (2014); however with respect to the integration methods, the clarity of the script
is compromised in the latter implementation.

A total of seven methods were derived and compared in this work. The numerical
experiments in chapter (4) compare the methods using the simple harmonic oscillator and
a chain of interacting oscillators, both of which are first order homogeneous ODEs. It is
undoubtable a drawback that the methods are not studied using a nonlinear system; how-
ever, lack of experience in the analysis of nonlinear dynamics made it necessary to limit
the experiments to the linear case. The comparison of the models was performed based on
the solution of the linear system using eigenvector/eigenfunction expansion in appendix
(D). This allowed the initial conditions to be estimated based on the numerical solution at
every numerical time step.

The model of a system consisting of seven vertically stacked magnets in a gravitational
field was introduced and simulated in chapter (5). The groundwork for the development of
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the nonlinear and linearized model was originally performed in Warberg (2013), however a
derivation that includes several intermediate steps and mathematical details was performed
in appendix (A). The model validation focused on validating the static equilibrium condi-
tions and the diffusion of kinetic energy for low total energy simulations where the model
logically could be assumed to be linear. The statistical interpretation of the simulations
was performed in the last sections of the chapter. The interpretations used the velocity
displacement probability distribution to consider the mean kinetic energy, analogous to
the thermodynamic temperature. The absolute force exerted on the top magnet was also
studied, analogous to the pressure, as a function of the total energy in the system. The
validity of the statistical interpretation was also considered by investigating the ergodic
behavior of the system.

The final two chapters (6) and (7) respectively discusses the results, suggests topics for
expanding this work and finally provides a brief and concise conclusion.
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Chapter 2
Classical Mechanics

This chapter introduces conventional terminology and concepts from classical mechan-
ics, which will be used throughout this work. The theory from the chapter is relevant in
order to understand the derivation of mechanical equations of motion and it also serves as
the foundation on which the understanding of symplectic integration is based.

The chapter is divided into sections that provides a brief introduction into the basic
concepts before an example applies the concept. The systems that are considered in the
examples are shown in figure (2.1).

y
x

k

F (h) = −ky

T =
1

2
mẏ2

m a)

y
x

mn

k

Fh = c− ky
Fg = −mg

T =
1

2
mẏ2

...

m1
c b)

1

m k

2

(. . .)

n− 1 n

c)

Figure 2.1: a) Harmonic oscillator b) Chain of harmonic oscillators in a gravitational field ,c) Chain
of harmonic oscillators
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2.1 Lagrangian Mechanics
This section defines a scalar function known as the Lagrangian as the origin of classical

mechanics. The purpose of this section is to serve as an introduction to Hamiltonian
mechanics in section (2.2).

2.1.1 The Lagrangian function
The Lagrangian (L) is a scalar function that is defined as the difference between the

kinetic (T) and potential (U) energy as shown in equation (2.1).

L(q, q̇) = T(q̇)−U(q) (2.1)

Where the q and q̇ represent the position and its time derivative, i.e. the velocity.

The systems in this work all have second order dependence with respect to velocity in
the kinetic energy; they can all be described using the following expression:

T =
∑
∀i

1

2
mq̇2

i

The analytic expression for the potential energy, however, is formulated from the force
fields as shown below.

U − Uo = −
∫ q

0

F(γ)dγ

Where the initial potential energy Uo can be chosen to present the results in an intuitive
way, e.g. using the static equilibrium values of the potential energy. The potential energy
for larger systems is found by summing up the contributions from all the elements in the
system as follows:

U − Uo =
∑
∀i

Ui − Uoi

The systems in this work can all be expressed based on the general form of the Lagrangian
shown in equation (2.2).

L =
∑
∀i

1

2
mq̇2

i −
∑
∀i

Ui (2.2)

The examples at the end of the section shows how the different force potentials in the sys-
tems in figure (2.1) is used to determine the potential energy and the Lagrangian functions
for the systems.

Another variable that is derived from the Lagrangian function is the momentum.

pi=̂
∂L
∂q̇i

= mq̇i (2.3)

All of the systems in this work have potential energy that is independent of the velocity;
this means that the form of the momentum in equation (2.3) is common for all of the
systems in this work.
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This example shows how the different force models for the systems systems in figure
(2.1) can be used to derive the potential energy and formulate the Lagrangian.

Harmonic oscillator
The simple harmonic oscillator in system a) in the figure and the potential energy becomes:

U = −
∫ y

0

−kγdγ =
1

2
ky2

The Lagrangian function can now be formulated from the definition.

L(q, q̇) =
1

2
mq̇2 − 1

2
kq2

Chain of harmonic oscillators
The total potential energy for the chain of harmonic oscillator (c) is formulated by sum-
ming the contributions from each mass point.

U (h) = −
n∑
i=0

1

2
k(xi+1 − xi)2

Note that the walls are included in the summation, however since they do not move they
must satisfy boundary conditions: ẋ0 = ẋn+1 = 0. The Lagrangian function becomes:

L (x, ẋ) =
1

2

n∑
j=1

mẋ2
j +

1

2

n∑
j=0

k(xj+1 − xj)2

Chain of harmonic oscillators in a gravitational field
The potential energy due to the spring takes the following form:

U (h) = −
∫ y

0

c− kγdγ = −cyi +
1

2
ky2
i =

n∑
i=0

k

2
(yi+1 − yi)2 − c(yi+1 − yi)

However, in contrast to the horizontal chain this system also includes the gravitational
potential.

U (g) =

n∑
i=0

migyi

The Lagrangian can finally be formulated as:

L (y, ẏ) =
1

2

n∑
i=1

mẏ2
i +

n∑
i=0

c(yi+1 − yi)−
1

2
k(yi+1 − yi)2 −mgyi

9



2.1.2 The Lagrange equations of motion
In order to derive the Lagrange equations of motion, a new quantity known as the

action (S) is needed. The action is defined as the integral of the Lagrangian over a path
from time a to b. While initially there is no limit to which path that is considered in the
action integral, the interesting path is the one that minimizes the action, i.e. obeys equation
(2.4).

min
qi(t)
S[q(t)] = min

qi(t)

∫ b

a

L(q, q̇, t)dt = 0 (2.4)

This path will be referred to as the trajectory and it represents the path of least resistance,
i.e. the natural path that the system will follow. The idea that the trajectory follows the
path of minimized action is known as Hamilton’s principle and since it is a fundamental
assumption, it must be obeyed by both the Lagrangian and Hamiltonian representations.

The mathematical formulation of Hamilton’s principle is shown in equation (2.5) and
it is a direct result of the minimization problem in equation (2.4). Appendix (B) considers
the minimization of simple functionals and shows how the Euler-Lagrange equations and
Hamilton’s principle as a general mathematical result.

δS
δq(t)

= 0 ; q = [q1 . . . qn]T (2.5)

The minimization does not result in an analytic expression for the trajectory of the system
but a requirement, known as the Euler-Lagrange equation, that the trajectory of the system
must fulfill in order to obey Hamilton’s principle. All the systems in this work have the
same form of the Lagrangian and the Euler-Lagrange equation (2.6) can therefore be used
in order to obtain the equations of motion for all the systems.

dL
dqi
− d

dt

[ ∂L
∂q̇i

]
= 0 ; i = [1 . . . n] (2.6)

There is one Euler-Lagrange equation for each displacement degree of freedom in the
system, i.e. a one-dimensional system of n elements also has n Euler-Lagrange equations.
The equations of motion are second order ODEs of the form shown in equation (2.7).

mq̈ + F = 0 ;F =
∂L
∂qi

(2.7)

There is one equation of motion per Euler-Lagrange equation because they are second
order and thus require twice as many initial conditions. The system of second order equa-
tions can also be written as a system of first order equations. This is considered in section
(2.2.2) where they are compared with the canonical Hamiltonian equations of motion.

The following example considers the derivation of the Lagrangian equations for the
systems whose Lagrangian function was derived in the example in the previous section.
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This example is concerned with obtaining the Lagrange equations of motion for the
systems from the example in section (2.1.1). The Euler-Lagrange equation (2.6) from this
section is used for all the cases.

Harmonic oscillator

q̈ = −ω2
0q ;ω0 =

√
k

m

Chain of harmonic oscillators
The chain of harmonic oscillators follows the same steps as the harmonic oscillator. The
differentiation below is performed in one step and results in n Euler-Lagrange equations.

ẍj =
k

m
(x2 − x1)− k

m
(x1 − x0)

ẍj =
k

m
(xj+1 − xj)−

k

m
(xj − xj−1) ; j = 2 . . . n− 1

ẍj =
k

m
(xn+1 − xn)− k

m
(xn − xn−1)

Note that one must use some care when performing the differentiation because of the
summation over the different oscillators in the chain. The resulting ODE for one oscillator
in the chain is shown below.

ẍ = −ω2
0Tx + ω2

0(x0e1 + xn+1en) ;ω0 =

√
k

m

e1 = [1 0 . . .]T en = [0 . . . 1]T y = [y1 . . . yn]T

Chain of harmonic oscillators in a gravitational field
The derivation of the Lagrangian equations of motion for the follows the same procedure
as the harmonic chain.

ÿ1 = −g − c

m
+
k

m
( y2 − y1 ) +

c

m
− k

m
(y1 − y0)

ÿj = −g − c

m
+
k

m
(yj+1 − yj) +

c

m
− k

m
(yj − yj−1) ; j = 2, . . . , n− 1

ÿn = −g − c

m
+
k

m
(yn+1 − yn) +

c

m
− k

m
(yn − yn−1)

In contrast to the harmonic chain this is not derived in deviation variables and further
analysis is necessary in order to remove the q0 and q1 terms.

ÿ = −ω2
0Ty + ω2

0(y0e1 + yn+1en)− ge ;ω0 =

√
k

m

e = [1 . . . 1]T e1 = [1 0 . . .]T en = [0 . . . 1]T y = [y1 . . . yn]T
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2.1.3 Determining the static equilibrium distribution
The systems in this work are all described by Lagrangian equations of motion of the

form shown in equation (2.7). This sections shows how the static equilibrium of the La-
grangian equations of motions can be used in order to determine the static equilibrium
positions for the systems in this work. Moreover it will be shown how the solution can
be used in order to turn the inhomogeneous second order ODEs from the example in the
previous section into a homogeneous system. Static equilibrium implies that the time
derivative in equation (2.7) is equal to zero, i.e. the forces balance exactly as shown in
equation (2.8).

F(x0) = 0 ;F =
∂L
∂qi

(2.8)

The section will use the horizontal harmonic chain, whose static equilibrium is shown
below, to outline the general strategy if determining the static equilibrium positions.

−Tx0 + x0
0e1 + x0

n+1en = 0⇔ x0 = x0T
−1e1 + xn+1T

−1en

Next the position of the system is defined to be 0 at the left wall and L at the right:

x0
0 = 0 x0

n+1 = L

The static equilibrium equations of motion can now be written in the following way:

Tx0 = LT−1en ; T =


2 −1
−1 2 −1

. . . . . . . . .
−1 2


The following explicit formulae for the inverse of a tridiagonal matrix with constant coef-
ficients was verified by performing numerical inversions.

T−1
ij =

{
1

N+1 (N + 1− i)j if i ≥ j
1

N+1 (N + 1− j)i otherwise

By multiplying the inverse matrix by unity vectors of different forms the following recur-
sive expressions was found:

T−1e1 =
i

N + 1
N ; e1 = [1 0 . . .]T

T−1e =
Ni+ i− i2

2
; e = [1 . . . 1]T (2.9)

T−1en =
i

N + 1
; en = [0 . . . 1]T

The bottom expression in equation (2.9) can be used in order to formulate an analytic
recursive expression for the static equilibrium positions shown in equation (2.10).

x0 = L
i

N + 1
; i = 1 . . . n (2.10)
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Note that the length of the chain must be chosen and the recursive relation will thereafter
distribute the mass points from left to right. The static equilibrium distribution can be
studied in order to determine if the behavior of the system is reasonable. In the case of the
horizontal harmonic chain, equation (2.10) suggests that the distance between the mass
points is equal. This is a reasonable result since each mass point is affected by the same
force throughout the length of the chain.

An even more useful property is to introduce a new variable based on the static dis-
tribution. The new variable describes the position relative to the equilibrium position, i.e.
the deviation from the static equilibrium.

q=̂y − y0

When the deviation variable (q) is in the equations of motion they take the following form:

q̈ = −ω2
0Tq + ω2

0T(x0T
−1e1 + xn+1T

−1en︸ ︷︷ ︸
x0

−x0)

The expressions in the parenthesis cancels and the equations of motion becomes homoge-
neous.

q̈ = −ω2
0Tq

This example considers the static equilibrium of the vertical chain of oscillators. The
goal is to show that the static equilibrium is dependent on the height and that when the
gravitational potential is used to determine the static equilibrium the equations of motion
are independent.
The solution of the static equations of motion of the vertical chain with becomes:

y0 = y0T
−1e1 + yn+1T

−1en −
g

ω2
0

T−1e

When the analytical expression fro the inverse of the tridiagonal matrix from equation
(2.9) is used and the position of the bottom and top of the chain is set respectively to 0 and
L the recursive analytical expression for the static equilibrium becomes:

y0
i = L

i

N + 1
− g

ω2
0

Ni+ i− i2

2
(2.11)

Introducing the deviation variable (q) into the equations of motion it can be shown that the
resulting second order ODE is homogeneous. From the recursive relation it can be seen
that the distance between the mass points varies along the height of the system. Moreover,
as shown below, introducing the deviation variable (q) into the equations of motion proves
that the equations of motion become insensitive to the gravitational constant.

q̈ = −ω2
0Tq + ω2

0T(y0T
−1e1 + yn+1T

−1en −
g

ω2
0

T−1e︸ ︷︷ ︸
y0

−y0)
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2.1.4 Cyclic Coordinates
A coordinate, qi, is said to be cyclic if the Lagrangian function does not depend ex-

plicitly on the coordinate itself but on the corresponding velocity. At first glance it is not
clear why this is useful, however it provides a nice transition to the section introducing
Hamiltonian mechanics and it can also be used to understand the canonical integration
techniques in section (3.1).

First, Imagine a Lagrangian that is only dependent on the velocity:

L = L(q̇1 . . . q̇n) (2.12)

The equations of motion are obtained using the Euler-Lagrange equation.

d

dt

∂L
∂q̇j
−
�
�
�7

0
∂L
∂qj

= 0

The differential equation describing the trajectory is second order. However, it becomes
first order if the canonical momentum from equation (2.3) is used.

d

dt

∂L
∂q̇j

=
dpj
dt

= 0

Integrating the first order equation that describes the momentum reveals that it is simply
equal to a constant (αj). The Hamiltonian representation for the Lagrangian in equation
(2.12) is only a function of the canonical momentum, which was just shown to be a con-
stant. The Hamiltonian function shown in equation (2.13) is therefore also a constant.

H = H(α1 . . . αn) (2.13)

This is difficult to see without knowing how the Hamiltonian function is generated, which
is introduced in section (2.2). The reason why this is introduced prematurely is that the
Hamilton equations of motion are first order and as shown below they will be particularly
useful for solving problems involving cyclic coordinates.

q̇j =
∂H

∂pj
=
∂H

∂αj
= ωj

ṗj = −∂H
∂qj

= 0

Section (2.2.2) shows that the system of first order ODEs known as the Hamilton equations
of motion are equivalent to the Lagrange equations. For the case of cyclic coordinates, it is
clear that the Hamilton equations are superior to the Lagrange. The reason for this is that
the differential equation describing the position is simply equal to the constant ωj . This
equation is separable and first order; the solution is shown in equation (2.14).

qj(t) = ωjt+ βj (2.14)

This illustrates why choosing a convenient set of generalized coordinates can significantly
simplify an otherwise complex problem. Furthermore, if the canonical equations of motion
are both equal to zero, the trajectory is equal to a constant.
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2.2 Hamiltonian Mechanics
Hamiltonian mechanics is a reformulation of the Lagrangian description. The term

reformulation implies that even though the Lagrangian is transformed to a new function,
the physics on which the Lagrangian remains unchanged. The ultimate goal of this section
is to introduce a more abstract representation of Hamiltonian mechanics using canonical
transformations. This concept and the terminology that goes along with it will become the
bedrock of chapter (3).

2.2.1 Generating the Hamiltonian
This section introduces the process of generating the Hamiltonian using the Legendre

transformation. The starting point is the total differential of the Lagrangian function in
equation (2.15).

dL =
∂L
∂qi

dqi +
∂L
∂q̇i

dq̇i (2.15)

Note that the summation over the subscript (i) is intentionally left out in order to show the
concepts more clearly throughout the section. The partial derivatives can be replaced by
introducing the canonical momentum from the definition in equation (2.3).

dL = ṗidqi + pidq̇i (2.16)

The goal is to derive a function with variables that are not related through differentiation
with respect to time. This can be accomplished using the following Legendre transform.
There are several Legendre transforms, as anyone with a background from thermodynam-
ics will know, but the transform in equation (2.17) defines the Hamiltonian function.

H(q,p, t)=̂q̇ipi − L(q, q̇) (2.17)

Differentiating the transformation equation and the variable q̇i cancels, as shown below.

dH = d(q̇ipi)− dL(q, q̇, t)

dH = q̇dpi +HHHpidq̇i −HHHpidq̇i − ṗdqi (2.18)

The result of the Legendre transform is a new representation of energy known as the
Hamiltonian function as shown in equation (2.19). The equivalency between equations
(2.19) and the total derivative of the Hamiltonian means that 2n relations must be defined.
These relations are the Hamilton equations of motion which will be discussed in section
(2.2.2).

dH = q̇idpi − ṗidqi (2.19)

The equations above show that the set of variables making up the Hamiltonian is q,p, i.e.
position and momentum.
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The systems in this work are simple enough such that the Hamiltonian can be formu-
lated directly as shown in equation (2.20).

H =
1

2m

∑
∀i

p2
i + U(q) (2.20)

In addition to this, appendix (C) shows that the Hamiltonian for the systems in this work
can be interpreted as the total energy of the system.

H = T (q̇) + U(q) (2.21)

This work will use this form form of the Hamiltonian shown in equation (2.21), however
the following example uses the formulation in equation (2.20) in order to be consistent
with theory.

This example derives the Hamiltonian for the systems that have been studied through-
out this chapter.

Harmonic oscillator
The Hamiltonian for the harmonic oscillator is obtained immediately as:

H =
1

2m
p2 +

1

2
kq2

Chain of harmonic oscillators
Just as the the Legendre transform yields:

H =

n∑
i=0

piq̇i −
1

2

[ n∑
i=0

mq̇2
i +

n∑
i=0

k(qi+1 − qi)2
]

The final expression for the hamiltonian is obtained just as easily as for the harmonic
oscillator.

H =
1

2m

n∑
i=0

p2
i +

k

2

n∑
i=0

(qi+1 − qi)2

Chain of harmonic oscillators in a gravitational field
Starting at the Lagrangian function:

L =
1

2

n∑
i=0

mẏ2
i − 2gmyi + 2c(yi+1 − yi) + k(yi+1 − yi)2

The Legendre transform is defined as: H = q̇p − L ; q̇i = mpi. From the Legendre
transfer it is found that this Hamiltonian also has the expected form.

H =
1

2m

n∑
i=1

p2
i +

n∑
i=0

c(yi − yi+1) +
k

2
(yi+1 − yi)2 +mgqi
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2.2.2 The Hamilton Equations of Motion
The Hamilton equations of motion are the relations connecting equation (2.19) and and

the total differential of the Hamiltonian function. They consists of a system of 2n ODEs
that can be expressed as shown in equation (2.22) for the systems in this work.

q̇ =
∂H
∂p

=
1

m
p

ṗ = −∂H
∂q

= −F(q) ;F =
∂L
∂q

(2.22)

The equivalency between the Hamiltonian equations of motion and the Lagrange can be
seen by expressing the Lagrangian equations of motion as the system of first order ODEs
in equation (2.23).

q̇ = v ; v = q̇

v̇ = − 1

m

∂L
∂q

; v̇ = q̈ (2.23)

The equivalency can be seen by using the definition of the canonical momentum and its
time derivative shown below.

p = mv ṗ = mv̇

The geometry of the canonical equations of motion is the property that is used in the
symplectic integration methods in section (3.2). The notation that is used in the derivation
of the symplectic requirements in section (2.2.4) is based on expressing the geometry of
the equations of motion using the anti-symmetric matrix matrix J as shown below.

η̇ = J
∂H

∂η
; J =

[
0n In
−In 0n

]
m

q̇1

q̇2

ṗ1

ṗ2

 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0



−ṗ1

−ṗ2

q̇1

q̇2


The symplectic property is a geometric property that characterizes a system of ODEs. This
means that even though the symplectic notation is expressed with respect to the canonical
variables it can also be used for the system in equation (2.23).

When this work refers to integration of Hamiltonian systems it consequently refers to
any system of ODEs that possess the geometric properties of a real Hamiltonian system.
The framework of canonical transformations that is developed in the final two subsections
in this section are designed to preserve the geometry of Hamiltonian systems.
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This example considers the derivation of the canonical equations of motion for the
Hamiltonian functions obtained in the example in section (2.2.1).
Harmonic oscillator
There are two canonical equations of motion for the harmonic oscillator. One describing
the trajectory and the other the canonical momentum.

q̇ =
∂H

∂p
=

1

m
p

ṗ = −∂H
∂q

= −kq

The equations of motion can be written using matrix notation as follows:[
q̇
ṗ

]
=

[
0 m−1

−km 0

] [
p
q

]

Chain of harmonic oscillators
The Hamiltonian has the following form when the deviation from the static equilibrium
positions:

H =
1

2m

n∑
i=1

p2
i +

n∑
i=0

k

2
(qi − qi+1)2 ; q=̂x− x0

The matrix representation of the canonical equations of motion leads to the following
system:

q̇ =
∂H
∂pj

= m−1p

ṗ = −∂H
∂qj

= −kT

Note that the deviation from the static equilibrium distribution from the example in section
(2.1.3) must be used for the ODEs describing the position.
Chain of harmonic oscillators in a gravitational field
The Hamiltonian for the chain of harmonic oscillator has the following form:

H =
1

2m

n∑
i=1

p2
i +

n∑
i=0

c(qi − qi+1) +
k

2
(qi − qi+1)2 +mgqi ; q=̂y − y0

The canonical equations of motions obtained from the Hamiltonian are as follows:

q̇ =
∂H
∂pj

=
1

m
pi

ṗ = −∂H
∂yj

= −kmTq− ge

Note that the deviation from the static equilibrium distribution from the example in section
(2.1.3) must be used in the ODEs describing the position.
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2.2.3 Canonical Transformations using generating functions
This section methodically goes through the process of how the canonical transforma-

tion is produced using generating functions. The goal is to create a new Hamiltonian
function H̃, which is equal to the original but where each new variable is now a function
of the original variables. The example at the end of this section is meant to show why this
is clever; however, the full power of this method becomes very clear in section (3.1).

The transformation is initiated by defining the new coordinates Q,P as functions of the
original. This is shown in equation (2.24) for one pair of transformed coordinates Qi, Pi.
The relations in this equation will later be referred to as the transformation equations.

Qi = Qi(q,p)

Pi = Pi(q,p) (2.24)

The idea is to use the transformed coordinates as the variables in a new Hamiltonian (H̃),
and thereafter use Hamilton’s principle to ensure that it is equal to the original Hamilto-
nian. This ensures that the structure of the canonical equations and the physics is conserved
in the transformation.

H̃ = H̃(Q,P) (2.25)

In order to ensure that the Hamiltonian functions represent the same physics, they must
both obey Hamilton’s principle. This can de done using the reverse Legendre transform in
equation (2.26) and (2.27).

δ

∫ t2

t1

[
PiQ̇i − H̃(Q,P)

]
dt = 0 (2.26)

δ

∫ t2

t1

[
piq̇i − H(q,p)

]
dt = 0 (2.27)

Once again it is important to bare in mind that the integrand are functionals and simply
demanding equivalency of the integrands is not a sufficient requirement. In Goldstein et al.
(2014) it can be found that equation (2.28) does just that. The reason for this must be un-
derstood based on calculus of variations in appendix (B).

First consider the action integral for some modified Lagrangian written as L̃ = λL +
F (t).

S̃ =

∫ t2

t1

L̃dτ = λ

∫ t2

t1

Ldτ +

∫ t2

t1

F (τ)dτ = λS +

∫ t2

t1

F (τ)dτ

It is clear that when this functional is minimized with respect to a generalized coordinate
qi the function F (t) will simply disappear t the end points of the integration. Any function
that is independent of the path can be added to the functional without changing the extrema
of the functional. However, if the function is chosen cleverly, i.e. ensuring that total
derivative with respect to time is independent of the path, the action integral of the modified
Lagrangian can also be written as shown below.

S̃ =

∫ t2

t1

L̃dτ = λ

∫ t2

t1

Ldτ +
dF

dt
= λS − dF

dt
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The function F can now be chosen in order to comply with the requirement that the func-
tion vanishes. The conclusion from this derivation is that the following relation will ensure
equivalency of equation (2.26) and (2.27).

λS = S̃ +
dF

dt

The final result in equation (2.28) can be found on page 370 in Goldstein et al. (2014),
and it can be obtained by substituting the inverse Legendre transforms into the derivation
above.

λ(piq̇i −H) = PiQ̇i − H̃+
dF

dt
(2.28)

A canonical transformation performed using equation (2.28) and λ 6= 1 is referred to
as an extended canonical transformation. The constant can, however, be split into two
contributions as shown in equation (2.29).

Q′i = µqi P ′i = νpi (2.29)

Note that the notationQ′i is simply used to state that it is a scaled version of the transformed
coordinate Qi, not the ”Newtonian” derivative notation that it will represent in the rest of
this work. Performing a canonical transformation that only scales the coordinates using
the Hamiltonian functions H̃(q′,P′) = µνH(q,p) is known as a restricted canonical
transformation. In this case, equation (2.28) will be reduced to the form shown in equation
(2.30).

µν(piq̇i −H) = P ′i Q̇i − H̃′ (2.30)

A third alternative is to set the constant λ = 1. This changes the full transformation in
equation (2.28) to the form shown in equation (2.31). This is known as a full canonical
transformation.

piq̇i −H = PiQ̇i − H̃+
dF

dt
(2.31)

This work will only consider full canonical transformations such as those shown in equa-
tion (2.31). It will also use the theorem of Pinocaré which states that the result of subse-
quent canonical transformations is also canonical.

This section will use the form F = F1(Q,P) from table (2.1) as an example to in-
troduce the idea behind performing canonical transformations using generating functions.
The strategy is to express this function partly in terms of the old and partly in terms of the
new variables. The equations (2.24) can be used in order to to express the original coor-
dinates as a function of the new coordinates using half of each set. This will be done by
inverting the equation (2.24) which from now on will be referred to as the transformation
equations. Using the inverted equations (qi(Q,P), pi(Q,P)) the original Hamiltonian can
be expressed entirely by a new set of variables. First, the total derivative of the generating
function with respect to time must be obtained.

F = F1(q,Q, t)⇒ dF

dt
=

(
∂F1

∂Q

)
Q̇ +

(
∂F1

∂q

)
q̇ +

(
∂F1

∂t

)
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The relation in equation (2.31) can now be used in order to generate a canonical transfor-
mation using equation (2.24).

piq̇i −H = PiQ̇i − H̃+
dF1

dt
= PiQ̇i − H̃+

∂F1

∂t
+
∂F1

∂qi
q̇i +

∂F1

∂Qi
Q̇i (2.32)

The set of variables must be chosen in order to remove all the dependencies on the old
and new variables in the expression of the Hamiltonian. This means that the terms piq̇i
and PiQ̇i in equation (2.32) must be combined in such a way that they vanish. Equation
(2.32) can therefore only be independent of the old and new variables if the requirements
in equation (2.33) and (2.34) are imposed on the momenta.

pi =
∂F1

∂qi
(2.33)

Pi = −∂F1

∂Qi
(2.34)

The requirement in equation (2.33) defines n relations describing the original momentum
pi as a function of q,Q and t; in other words pi = pi(q,Q, t). Half of the relations in
equation (2.24) can now be found by inverting the system of equations formed by equation
(2.33), thus generating the first half of the transformation equations. Using the same argu-
ment on equation (2.34), one can find n relations Pi(q,Q) and use the functions obtained
from equation (2.33) to generate the other half of the transformation equations, Pi(q,p).
Because of the clever choice of coordinates, the relation between the new and the old
Hamiltonian is obtained in equation (2.35).

H̃ = H+
∂F1

∂t
(2.35)

A specific function F1(q,Q, t) is not chosen here since the purpose of this section is to
show the methodology. Any continuous twice differentiable function can be chosen as
F1. This will be exploited in section (3.1) where the choice of generating function will
become very important. The canonical transformation is now complete and the functions
qi, pi(Q,P, t) can be inserted into the Hamiltonian and new equations of motion can be
found.

Table (2.1) show some fundamental generating functions from Goldstein et al. (2014).
The generating function F3(p,Q, t) will be used later in this work.

Table 2.1: Fundamental generating functions from Goldstein et al. (2014)

Generating Function Generating Function Derivatives

F = F1(q,Q, t) pi = ∂F1

∂pi
Pi = − ∂F1

∂Qi

F = F3(p,Q, t)− qipi qi = −∂F3

∂pi
Pi = − ∂F3

∂Qi
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2.2.4 Canonical Transformations from a symplectic perspective
This section considers restricted canonical transformations from a symplectic perspec-

tive. It will not become clear until the very end of the section what the term symplectic
actually implies and the section methodically performs the derivation which will ultimately
lead to the symplectic requirement for a canonical transformation in equation (2.50). Even
though the goal of the section is to perform a canonical transformation, it is completely in-
dependent from the generating function that was introduced in the previous section. How-
ever, the fundamental idea behind the symplectic and generating function approach is the
same: to express the new coordinates shown in equation (2.24) in terms of the old co-
ordinates. This means that the goal is to define the transformation equations (2.24) that
was introduced in the previous section. Equation (2.36) show the transformation equations
using the symplectic notation from section (2.2.2).

η =


q1

q2

p1

p2

 ζ =


Q1

Q2

P1

P2


ζ̇ = ζ(η) (2.36)

Now that the symplectic notation has been introduced, the rest of the transformation will
first be derived for a single pair of transformed coordinates (Qi, Pi) before it is generalized
using the symplectic matrix notation.

The equations of motion for the pair of transformed coordinates is expressed in terms
of the original coordinates as shown in equation (2.37) and (2.38). Remembering that the
new coordinate, i, is a function of all the original coordinates as shown in equation (2.24);
the summation over i is formally required even though not explicitly written.

Q̇i =
∂Qi
∂qj

q̇j +
∂Qi
∂pj

ṗj =
∂Qi
∂qj

∂H
∂pj
− ∂Qi
∂pj

∂H
∂qj

(2.37)

Ṗi =
∂Pi
∂qj

q̇j +
∂Pi
∂pj

ṗj =
∂Pi
∂qj

∂H
∂pj

− ∂Pi
∂pj

∂H
∂qj

(2.38)

The transformation equations (2.24) are inverted in equation (2.39) to express the original
coordinates as a function of the new.

qj = qj(Q,P)

pj = pj(Q,P) (2.39)

The idea is now to make sure that the equations of motion for the new coordinates have
the same symplectic property as the original. First the HamiltonianH(q,p) is considered
as a function of (Q,P) using the inverted transformation equations and by expanding the
partial derivatives.

∂H
∂Pi

=
∂H
∂pj

∂pj
∂Pi

+
∂H
∂qj

∂qj
∂Pi

(2.40)

− ∂H
∂Qi

= −∂H
∂pj

∂pj
∂Qi

− ∂H
∂qj

∂qj
∂Qi

(2.41)
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Now we demand that equation (2.42) and (2.43) must hold for a transformation to be
canonical.

Q̇i =
∂H
∂Pi

(2.42)

Ṗi = − ∂H
∂Qi

(2.43)

In order for equation (2.42) to hold we need to study equation (2.37) and (2.40).(∂Qi
∂qj

)
q,p

=
(∂pj
∂Pi

)
Q,P

(∂Qi
∂pj

)
q,p

= −
( ∂qj
∂Pi

)
Q,P

(2.44)

The same argument must be made for equation (2.43) and can be found by studying equa-
tion (2.38) and (2.41).(∂Pi

∂qj

)
q,p

= −
( ∂pj
∂Qi

)
Q,P

(∂Pi
∂pj

)
q,p

=
( ∂qj
∂Qi

)
Q,P

(2.45)

The time has now come to generalize this using the symplectic notation from equation
(2.36). First recall that in section (2.2.2), concerning the Hamilton equations of motion,
the symplectic shorthand was defined as shown below.

η̇ = J
∂H
∂η

In equation (2.37) and (2.38), the equations of motion for the transformed coordinates
are expressed in terms of the original coordinates. The summation over the term j was
not written due to notational clarity; however, in matrix notation the summation is easily
included as shown in the equation below. This equation is valid for each coordinate, Qi or
Pi.

ζ̇i =
∂ζi
∂ηj

η̇j ; i, j = 1, . . . , 2n

Here ∂ζi
∂ηj

is a row vector
[
∂ζi
∂η1

, . . . , ∂ζi
∂η2n

]
and η̇ is a column vector

[
η1, . . . , η2n

]T
. The

full matrix notation of all the coordinates is shown in equation (2.46).

ζ̇ = Mη̇ ;Mi,j =
∂ζi
∂ηj

m (2.46)

ζ̇ = MJ
∂H
∂η

Now we need to derive an expression for the equations of motion of the original Hamilto-
nian, H(η), as a function of the transformed variables ζ. Looking back at equation (2.40)
and (2.41) this can be achieved as shown below.

∂H
∂ηi

=
∂H
∂ζj

∂ζj
∂ηi
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We define yet a new matrix, MT, who’s elements are MT
i,j =

∂ζj
∂ηi

. We notice that this is
the transpose of the matrix M.

∂H
∂η

= MT ∂H
∂ζ

(2.47)

Finally, substituting equation (2.47) in equation (2.46) we end up with equation (2.48).

ζ̇ = MJMT ∂H
∂ζ

(2.48)

From equations (2.42) and (2.43) we formulate the demand that must be met in order for
the transformation to be canonical in equation (2.49).

ζ̇ = J
∂H
∂ζ

(2.49)

Equations (2.48) and (2.49) conclude that the relation equation (2.50) must hold for the
transformation to be canonical.

MJMT = J (2.50)

Equation (2.50) is known as the symplectic condition for a canonical transformation, and
any matrix M satisfying the symplectic condition is by extension a symplectic matrix.

An even n × n symplectic matrix has determinant equal to one as shown in equation
(2.51).

det |M| = 1 (2.51)

The proof is not considered in this work, however it can be seen on page 166 in Weyl
(1946) that the relation in equation (2.51) is a requirement for a symplectic transformation.
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Chapter 3
Integration of Hamiltonian Systems

The title of this chapter could have been any of the following; Symplectic Integration,
Geometric Integration, Self Preserving Integration or Canonical Integration. An obvious
reason for the abundance of terminology in the literature is that the subject can be stud-
ied from different perspectives. This was shown in the sections (2.2.3) and (2.2.4) where
both sections produced equal results from two unrelated approaches. Furthermore, the
algebraic structure of Hamiltonian systems has been studied for a long time. The term
symplectic, on the other hand, was proposed fairly recently by Hermann Weyl in the quote
shown below.

The name ”complex group” formerly advocated by me in allusion to line
complexes, as these are defined by the vanishing of antisymetric bilinear
forms, has become more and more embarrassing through collision with the
word ”complex” in the connotation of complex number. I therefore pro-
pose to replace it by the corresponding Greek adjective ”symplectic”. Dickson
calls the group the ”Abelian linear group” in homage to Abel who first studied it.

- Hermann Weyl, in Weyl (1946) on page 165.

This chapter is devoted to developing numerical integration algorithms that preserve
the structure of the system of equations from Hamiltonian functions of the form shown in
equation (3.1). Note that even though all the proposed algorithms have this property, they
will be classified into two categories based on how they are derived. The approaches to
deriving the algorithms will be related to section (2.2.3) and (2.2.4). Consequently, the
categories are respectively referred to as canonical integration and symplectic integration.
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3.1 Canonical integration methods
From now on this work will only consider Hamiltonian functions of the form shown in
equation (3.1).

H =
1

2m
p2 + U(q, t) (3.1)

Note that the title of the section is canonical integration algorithms. Canonical and sym-
plectic implies exactly the same properties; however, the algorithms that will be derived in
this section are solely derived using canonical transformations by generating functions.

The methodology employs the idea of generating functions from section (2.2.3) to cre-
ate new Hamiltonian functions that are identically equal to zero.

Even though this work does not add any new knowledge to the original paper it is a
good way of showing the underlying concepts of some simple and and easy to implement
integration algorithms. Furthermore it shows that the idea behind the generating function
is very applicable.

3.1.1 Canonical Euler Integration
The goal is to perform a canonical transformation which yields equations of motion of the
form shown in equation (3.2), whose solution is simply a constant which is determined by
the initial conditions.

Q̇ = 0

Ṗ = 0 (3.2)

The corresponding solutions for the equations of motion will be on the form:

P = p(q0,p0, t) ; Q = q(q0,p0, t) (3.3)

As proposed in Ruth (1983) a generating function of the form F3(Q,p, t)) from table (2.1)
is used to facilitate the canonical transformation. Following the framework developed
in section (2.2.3), the relation in equation (2.31) must hold for the transformation to be
canonical. This means that the equivalent of equation (2.32) must be derived for the chosen
generating function. This process is shown below with the result shown in equation (3.4).

piq̇i −H = PiQi − H̃+
dF

dt
;F = piqi + F3(Q,p, t)

piq̇i −H = PiQ̇i − H̃+
d(piqi)

dt
+
dF3

dt
;F3(Q,p, t) = −Qipi +G(Q,p, t)

−qiṗi −H = PiQ̇i − H̃+
∂F3

∂t
+
∂F3

∂Qi
Q̇i +

∂F3

∂pi
ṗi (3.4)

The function G(Q,p, t) will be determined in the end to ensure that the Hamiltonian is
identically equal to zero. The only demand on the unknown function is that it must have
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continuous second derivatives in order to be able to comply with the Euler-Lagrange equa-
tion.

The next step is to ensure that the generating function has no affect on the action. This
is done by studying the partial derivatives from equation (3.4) shown below.

∂F3

∂Qi
= −pi +

∂G

∂Qi
∂F3

∂pi
= −Qi +

∂G

∂pi

The goal is now to choose the coordinates such that the old and new Hamiltonian are
equal. This is done by ensuring that the relation in equation (2.35) is satisfied and takes
the form of equation (3.7). In order for this to happen it is necessary that the terms Qi and
pi vanish. Choosing the relationship between the coordinates as shown in equation (3.5)
and (3.6) ensures that this happens.

q = −∂F3

∂p
= Q−Gp (3.5)

P = −∂F3

∂Q
= p−GQ (3.6)

It can be confirmed that choosing the relations in equation (3.5) and (3.6) results in the
equation (3.7) by substituting them into equation (3.4).

H̃ = H+
∂F3

∂t
= H+Gt (3.7)

The transformation is now guaranteed to be canonical and the function G(p,Q, t) can be
chosen in order for the new Hamiltonian to be equal to zero. By looking at equation (3.1)
it is clear that choosing the function as shown in equation (3.8) will make this happen.

G(p,Q, t) = −
[1

2
p2 + U(Q, 0)

]
t (3.8)

The next step is to determine the relationship between the new and old coordinates. This
is done by substituting the function G(p,Q, t) from equation (3.8) into equation (3.5) and
(3.6). The result was called the transformation equations in section (2.2.3) and is shown in
equation (3.9) and (3.10).

q = Q + pt (3.9)

P = p−F(Q, 0)t ;F(Q, 0)=̂− ∂U(Q, 0)

∂Q
(3.10)

The transformation equations allows the old coordinates to be expressed as a function of
the new. Equation (3.9) and (3.10) is therefore simply a rewritten version of equation (3.9)
and (3.10).

p = P + F(Q, 0)t (3.11)

q = Q + t
[
P + F(Q, 0)t

]
(3.12)
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The time has finally come to express the new Hamiltonian function. It was previously
shown that the new function must satisfy equation (3.7). Next it was assumed that choosing
the function G(p,Q, t) in equation (3.8) was useful in order to have the new hamiltonian
equal to zero at t = 0. It can now be concluded that the new Hamiltonian can be found
from the expression below..

H̃ =
1

2
p2 + U(q, t)−

(1

2
p2 + U(Q, 0)

)
(3.13)

(3.14)

In order to express the function solely in terms of the new coordinates the transformation
equations from equation (3.9) and (3.10) is used. This results in the final expression for
the new Hamiltonian shown in equation (3.15).

H̃ = U
(
Q + t

[
P + F(Q, 0)t

]
, t
)
− U(Q, 0) (3.15)

Equation (3.15) clearly shows that the value of the new Hamiltonian is equal to zero at
t = 0. In order to study what happens in the domain around t = 0, the Hamiltonian is
expanded using a small parameter t. The expansion is shown below and is carried out
using a Taylor series which is cut off after the first term.

H̃ ≈
�
�
�>

0

H̃
∣∣∣
t=0

+
∂H̃
∂t

∣∣∣
t=0

(t− 0) +O(h2)

=
∂

∂t

{
U
(
Q + t

[
P + F(Q, 0)t

]
, t
)}∣∣∣∣∣

t=0

t− ∂

∂t

{
U(Q, 0)

}
t+O(h2)

= Ut(Q, 0)t− t ∂U
∂Q

∂Q

∂t
+O(h2)

= Ut(Q, 0)t−PF(Q, 0)t+O(h2)

= 0 +O(h2) (3.16)

Equation (3.16) shows that the Hamiltonian equal to zero plus an error O(h2) for any
t. This means that the equations of motion must also be equal to zero. The solution is
therefore equal to some constant as shown in equation (3.17) and (3.18).

Q̇ =
∂H̃
∂P

= 0 +O(h2) ⇒ Q = constant+O(h2) (3.17)

Ṗ = −∂H̃
∂Q

= 0 +O(h2) ⇒ P = constant+O(h2) (3.18)

Thus the conclusion is that as long as the new coordinates are used as the initial conditions,
the method will be of order one and canonical. The numerical algorithm can now be
formulated based on equation (3.11) and (3.12).

p(k+1) = pk + F(qk, 0)h

q(k+1) = qk + p(k+1)h

(3.19)
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The method in equation (3.19) is first order and often referred to as the symplectic Euler
method. This derivation was rigorous; however, figure (4.1) shows the advantage of apply-
ing the symplectic method to the harmonic oscillator. The following example derives the
numerical algorithm for the explicit and implicit Euler method for the harmonic oscillator
which is used in the figure.

The explicit, implicit Euler methods will be used to compare the symplectic methods
with standard integration methods. This example derives explicit versions of these meth-
ods specific for the harmonic oscillator using ω0 = 1.
Explicit Euler
The explicit Euler algorithm is obtained using a first order Taylor expansion as shown
below.

yk+1 = yk +
∂y

∂x

∣∣∣
k
h+O(h2) ; y = y(x)

Applying this directly to the Hamilton equations of motion yields the following first order
approximation of the trajectory.[

qk+1

pk+1

]
=

[
qk
pk

]
+
∂H
∂η

∣∣∣
k
h+O(h2)

Using the Hamiltonian for the harmonic oscillator the explicit Euler method can be written
as shown below. [

q
p

]
k+1

=

[
1 h
−h 1

] [
q
p

]
k

Implicit Euler
Just as the explicit algorithm from the example in section (3.1.1) the implicit Euler algo-
rithm is obtained using a first order taylor expansion as shown below.

yk+1 = yk +
∂y

∂x

∣∣∣
k+1

h+O(h2)

The next step of the algorithm must therefore be found implicitly by solving the equation.

yk+1 − yk −
∂y

∂x

∣∣∣
k+1

h = 0

In order to obtain an implicit algorithm for the harmonic oscillator the notation is changed
to a more familiar representation.[

qk+1

pk+1

]
=

[
qk
pk

]
+
∂H
∂η

∣∣∣
k+1

h+O(h2)

Now the implicit-euler algorithm can be found. As shown bellow, the implicit method for
the harmonic oscillator turns out to have an explicit representation.[

q
p

]
k+1

=
1

1 + h2

[
1 h
−h 1

] [
q
p

]
k
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3.1.2 Leapfrog
The Leapfrog method is a second order canonical method. Even though the symplectic
Euler method was tedious to derive, extending the method to second order is not a lot of
work. The reason for this is that the method can be built on the results from the previous
section which started by using the definition of the canonical transformation from equation
(2.31).

In order to obtain a second order method, perform a second canonical transforma-
tion based on the first order transformation that was done in the previous section. The
assumption that successive canonical transformations can be performed and that the re-
sulting function is still canonical is supported by theorem 2.8 in on page 187 in Hairer
et al. (2002).

The first canonical transformation is therefore based on the result from the previous
section, however as proposed in Ruth (1983) it will be scaled by the constants a and
b. The scaling constants have no effect on the form of the final generating function in
the previous section. The function used in equation (3.20) is therefore the same type of
generating function that was used earlier.

piq̇i −H = PiQi − H̃+
dF

dt
F (Q,p, t) = −Qp−

[
a

1

2
p2 + U(Q, bt)

]
t︸ ︷︷ ︸

F3

(3.20)

The total derivative of the generating function results in the following partial derivatives
with respect to the canonical variables of the function. This is done by following the steps
leading to equation (3.4) in the previous section. The corresponding partial derivatives for
the generating function in equation (3.20) are shown below.

∂F3

∂Qi
= −pi + tF(Q, bt) ;F=̂− ∂U

∂Q

∂F3

∂pi
= −Qi − atpi

Following the method from the previous section, the relations in equation (3.21) and (3.22)
are chosen in order to ensure that the relation between the old and new Hamiltonian func-
tion takes the form defined in equation (2.35).

q = −∂F3

∂pi
= Q + apt (3.21)

P = −∂F3

∂Qi
= p− tF(Q, bt) (3.22)

The result from this transformation is a scaled version of the result from the previous
section and in order to continue, a second generating function must be chosen for the
second transformation. This work will use the second generating function in equation
(3.23) based on the suggestion in Ruth (1983). Note that the double ”tilde” superscript
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that is used to differentiate the second set of transformed canonical variables from the
first.

PiQ̇i − H̃ = ˜̃Pi
˜̃Qi − ˜̃H+

dF

dt
; ˜̃F ( ˜̃Q,P, t) = − ˜̃QP− (1− a)t

2
P2︸ ︷︷ ︸

˜̃F3

(3.23)

As shown below, the same procedure as before is followed to choose the second set of
canonical variables.

Pi
˜̇̃
Qi − H̃ = ˜̃Pi

˜̃Qi − ˜̃H+
d(QiPi)

dt
+
∂ ˜̃F

∂t
+
∂ ˜̃F

∂ ˜̃Qi

˜̇̃
Qi +

∂ ˜̃F

∂Pi
Ṗi

−QiṖi − H̃ = ˜̃Pi
˜̃Qi − ˜̃H+

∂ ˜̃F3

∂t
+
∂ ˜̃F3

∂ ˜̃Qi

˜̇̃
Qi +

∂ ˜̃F3

∂Pi

˜̇̃
Pi

∂ ˜̃F3

∂ ˜̃Qi
= −Pi

∂ ˜̃F3

∂Pi
= − ˜̃Qi − (1− a)tPi

The relationship between the coordinates in equation (3.24) and (3.25) is chosen in order
to ensure that the transformation is canonical.

Q = ˜̃Q + t(1− a)P (3.24)

P = ˜̃P (3.25)

The choice of coordinates in equations above ensures that the second transformed Hamil-
tonian can be expressed as shown in equation (3.26).

˜̃H = H+
∂F3

∂t
+
∂ ˜̃F3

∂t
(3.26)

The result from the two transformation is four equations defining the mapping between
the three sets of coordinates. The summary below shows the transformation equations
between the sets.

P = ˜̃P

Q = ˜̃Q + t(1− a) ˜̃P

p = P + tF(Q, bt)

q = Q + at
[
P + tF(Q, bt)

]
Now that the transformation equations are known, the generating functions are put into
equation (3.26) resulting in the expression below.

˜̃H =
1

2
p2 +

1

2
U(q, t)︸ ︷︷ ︸
H

− ∂

∂t

{[
a

1

2
p2 + U(Q, bt)

]
t

}
︸ ︷︷ ︸

F3

− ∂

∂t

{
(1− a)t

2
P2

}
︸ ︷︷ ︸

˜̃F3
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The final expression for the Hamiltonian as a function of ˜̃Q, ˜̃P can be found using the
transformation equations. This is a long and messy expression; however, the Taylor ex-
pansion around t = 0 results in a much simpler form shown in equation (3.27).

˜̃H = t(1− 2a) ˜̃PF( ˜̃Q, 0) + t(1− 2b)Ut(
˜̃Q, 0) +O(t2) (3.27)

It is clear that choosing the values for a and b shown below will result in the Taylor expan-
sion being equal to zero.

a =
1

2
b =

1

2

Following the strategy from the previous section it is now easy to formulate the numeri-
cal method using the transformation equations. This reveals the classic two-step method
commonly referred to as ”Leapfrog”.

Pk+1 = pk Qk+1 = qk + Pk+1
h

2

pk+1 = Pk + tF(Qk, t0 +
h

2
) qk+1 = Qk + Pk+1

h

2
(3.28)

Even though only the first derivative was included in the Taylor expansion, Leapfrog is a
second order numerical method. Ruth (1983) argues that the reason for this is that the order
of the method is inherited from the order of the Hamiltonian mapping. Further more, it is
explained that because the method is based on a canonical transformation of a first order
map, the second Hamiltonian is second order.
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3.2 Symplectic integration algorithms
Deriving canonical methods of increasingly higher order becomes significantly more dif-
ficult. Instead of using the approach to the canonical transformation using generating
functions, this section will use the symplectic approach from the final section of chapter
(2).

The section considers Runge-Kutta-Nyström methods specifically intended for equa-
tions of motion derived from Hamiltonian functions on the form shown in equation (3.1).

3.2.1 Runge-Kutta-Nyström integration
This section introduces the general Runge-Kutta-Nyström method for second order ODEs
without dependence on a first derivative term. By the end of this section it should be clear
that it is a good idea to use a method intended for second order ODEs, even though the
canonical equations of motion are first order equations.

The general RKN discretization can be found in chapter one in Wu et al. (2013). When
the discretization is applied to the ODE in equation (3.29) it becomes significantly simpli-
fied and reduces to the form shown in equation (3.30). The connection between the RKN
method and the canonical equations of motion will be introduced after the general method
along with order conditions has been introduced.

ÿ = f(y) (3.29)
y(t0) = y0 ẏ(t0) = ẏ0

The result of discretizing the ODE is shown in equation (3.30). The derivation of the dis-
cretization will not be considered in this work; however, it can be found applying definition
1.9 in Wu et al. (2013) on equation (3.29).

yk+1 = yk + hẏk + h2
s∑
i=1

b̄iki

ẏk+1 = ẏk + h

s∑
i=1

biki (3.30)

ki = f
(
tk + cih, yk + cihẏk + h2

i−1∑
j=1

āijkj

)
; i = 1 . . . s

Equation (3.30) is known as a s-stage RKN method. The coefficients b̄i/bi, āij will respec-
tively be referred to as weights and inner weights, and ci are the nodes of the method. It is
conventional to display the coefficients graphically using a Butcher tableau. The tableau
shown in (3.31) is valid for any general, explicit s-stage RKN method.

For the purpose of this work however, the inner weights belonging to the first deriva-
tive terms (aij) are redundant. However, since the weights bi still must be used, the form
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0 0 0
c2 ā21 a21

c3 ā31 ā32 a31 a32

...
...

. . .
...

. . .
cs ās1 ās2 . . . ās,s−1 as1 as2 . . . as,s−1

b̄1 b̄2 . . . b̄s−1 b̄s b1 b1 . . . bs−1 bs

(3.31)

of the Buchner tableau (3.32), which was found on page 285 in Hairer et al. (1993), will
be used from now on.

0 0
c2 ā21

c3 ā31 ā32

...
...

. . .
cs ās1 ās2 . . . ās,s−1

b̄1 b̄2 . . . b̄s−1 b̄s

b1 b2 . . . bs−1 bs

(3.32)

The coefficients in the tableau are determined by imposing conditions on the method.
The conditions are represented by algebraic equations which are derived in order for the
method to have the desired properties. It is highly desirable to ensure that the method has a
guaranteed accuracy and the order conditions for RKN methods are therefore well known.
This work will not consider the derivation of the conditions; however the interested reader
is referred to theorem 14.12 on page 291 in Hairer et al. (1993) for a thorough mathemati-
cal discussion.

The conditions that are used in this work are shown in table (3.1), however a couple of
simplifying assumptions will be introduced first. The first assumption is shown in equa-
tion (3.33) and can be found as lemma 14.13 on page 293 in Hairer et al. (1993) and is
extensively used in the literature that was considered in this work.

b̄i = bi(1− ci) ; i = 1 . . . s (3.33)

The assumption reduces the number of order equations that are needed in order to ensure
the accuracy of the method. However, it does not reduce the number of equations that are
needed in order to determine the order of a method.

The second assumption is shown in equation (3.34). This assumption is not as fre-
quently used as the assumption in equation (3.33) and will only be used in the example
at the end of this section in this work. The assumption can be found as lemma 14.14 in
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Hairer et al. (1993).

s∑
j=1

āi,j =
c2i
2

; 1 ≤ i ≤ s (3.34)

Just as the previous assumption, this does not change the number of equations. In the ex-
ample in this section it is used to make the system of equations easier to solve. It becomes
apparent that this happens when the order conditions are studied closer.

The conditions needed in this work are listed in table (3.1) and where obtained using
tables and equations in (Hairer et al. (1993)). Methods with order higher than four require
a significant amount of order equations more than the seven that are listed in the table.
According to Table 1 in Sanz-Serna (1992) it is necessary to have 79 conditions to reach
order eight compared to the seven conditions required for fourth order.

Table 3.1: Order conditions for the coefficients in the RKN method. The table was made using
equations and relations from pages 291-292 in Hairer et al. (1993): equation (14.24), table (14.3)
and simplifying assumption in equation (14.26). The order conditions for the lower order must
also be used in the higher order methods (e.g. order three require that order conditions 1,2 and 3
are used). Constructing an explicit RKN method will additionally require the following constraint:
aij = 0 ; i ≤ j. The following assumption must be used in addition to the constraint equations:
b̄i = bi(1− ci) ; i = 1 . . . s.
The following assumption might simplify the system of equations that must be solved:
c2i
2

=
∑s

j=1 āij ; i = 1 . . . s , using this equation will make some order conditions redundant.

Order Conditions

1
∑
i bi = 1

2
∑
i bici = 1

2
3

∑
i bic

2
i = 1

3

∑
i bi
∑
j āij = 1

6

4
∑
i bic

3
i = 1

4

∑
i bici

∑
j āij = 1

8

∑
i bi
∑
j cj āij = 1

24

The example at the end of the section will use the order conditions from table (3.1)
to determine the coefficients in a three-stage, fourth order RKN method. The ability to
generate high order methods that have few stages for equations of the form shown in
equation (3.29) is, according to Hairer et al. (1993), the main attractive property of the
RKN method. On page 285 it is stated that a four-stage, fifth order method is possible to
construct using the RKN approach and that this would require at least six stages using RK
methods. This advantage was the main reason for choosing to consider RKN methods to
integrate the equations of motion in this work.
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This example considers the fourth order RKN method whose Buchner table is shown
on page 285 in Hairer et al. (1993). The derivation of the method is not shown in the
textbook; however, from the Buchner table it is clear that it is a three stage method. By
using the explicit discretization shown below and order conditions from this section, the
values for the coefficients in the textbook will be recreated.

yk+1 = yk + hẏk + h2
(
b̄1k1 + b̄2k2 + b̄3k3

)
ẏk+1 = ẏk + h

(
b1k1 + b2k2 + b3k3

)
k1 = f

(
tk + c1h, yk + c1hẏk

)
k2 = f

(
tk + c2h, yk + c2hẏk + h2ā21k1

)
k3 = f

(
tk + c3h, yk + c3hẏk + h2ā31k2 + h2ā32k2

)
Because the method is explicit one can immediately say that c1 = 0.
Next the table is used to set up all the equations for the coefficients. The order require-
ments are on the left, while the assumptions that are in the caption on the table are on the
right.

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b2c
3
2 + b3c

3
3 =

1

4

b3c2ā32 =
1

24

b̄1 = b1

b̄2 = b2(1− c2)

b̄3 = b3(1− c3)

c22
2

= ā21

c23
2

= ā31 + ā32

The degree of freedom should be used in a clever place. It is natural to consider the
three equations describing b2, c2, b3, c3. Choosing c2 = 1

2 the three equations determine
c3 = 1, b3 = 1

6 and b2 = 4
6 . Determining the rest of the coefficients is trivial and the

resulting Buchner tableau is shown below.

0 0
1
2

1
8

1 0 1
2

1
6

1
3 0

1
6

4
6

1
6

yk+1 = yk + hẏk +
h2

6
(k1 + 2k2)

ẏk+1 = ẏk +
h

6
(k1 + 4k2 + k3)

k1 = f (yk)

k2 = f

(
yk +

h

2
ẏk +

h2

8
k1

)
k3 = f

(
yk + hẏk +

h2

2
k2

)
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3.2.2 Symplectic Runge-Kutta-Nyström integration
This section will introduce symplectic RKN methods. A two-stage method will be consid-
ered in order to show that the requirement for a symplectic matrix in equation (2.50) can
be used. However, the symplectic requirement for the coefficients of RKN methods is well
known and can be found in (3.40). The example at the end of the section will therefore use
these equations in order to generate a three-stage, third order symplectic method.

An outline of the two-stage method can be found in Simos (2002) and Van de Vyver
(2005). Just as in the previous section, the system that is considered is described by the
second order ODE from equation (3.29). The previous section has already showed that the
canonical equations can be expressed using the RKN framework. However, for the sake of
generality the derivation is done by expressing the second order ODE as a system of first
order equations as shown in equation (3.35).

ÿ = f(y)⇔
[
ẏ
v̇

]
=

[
v

f(y)

]
; f(y) = − 1

m

∂L
∂y

(3.35)

Using the relations between the variables in equation (3.35) the RKN discretization equa-
tions can be expressed of the form shown in equation (3.36).

yk+1 = g1yk + hg2vk + h2
s∑
i=1

b̄iki

vk+1 = g3vk + h

s∑
i=1

biki (3.36)

ki = f(yk + hcivi + h2
i−1∑
j=1

āijkj) ; i = 1 . . . s

Now that the discretization equations have been established, the goal is to scale the nu-
merical flow such that it is symplectic. In order to do this, the strategy will be to introduce
scaling coefficients into the discretization. The introduction of the scaling coefficients
becomes more clear when the matrix representation of the discretization equations is used.[

y
v

]
k+1

= A

[
y
v

]
k

+

[
h2
∑s
i=1 b̄iki

h
∑s
i=1 biki

]

ki = f(yk + hcivi + h2
i−1∑
j=1

āijkj) ; i = 1 . . . s

It should now be clear that the matrix A is the coefficient matrix for the RKN discretiza-
tion. And that for the standard RKN method it has the form shown below.

A =

[
1 1
0 1

]
The RKN method can now be modified by introducing the scaling coefficients in the coef-
ficient matrix of the RKN method.

A =

[
g1 g2

0 g3

]
= M
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The result of this analysis is the starting point of the symplectic RKN methods in Simos
(2002) and Van de Vyver (2005).

The next step is to ensure that the Jacobian of the numerical flow is symplectic. The
symplecticity requirement for a matrix was defined in equation (2.51) and stated that the
determinant must be equal to one.

Θ′h(yk, xk) = M⇒ det

∣∣∣∣∣
[
∂yk+1

∂yk

∂yk+1

∂xk
∂xk+1

∂yk

∂xk+1

∂xk

]∣∣∣∣∣ = 1

Following the approach of Simos (2002) and Van de Vyver (2005), the two-stage RKN
method in equation (3.37) can now be considered using the symplectic requirement.

yk+1 = g1yk + g2hvk + h2
(
b̄1k1 + b̄2k2

)
vk+1 = g3vk + h

(
b1k1 + b2k2

)
(3.37)

k1 = f
(
yk

)
k2 = f

(
yk + c2hvk + h2ā21k1

)
The determinant of the numerical flow for the two-stage method is shown in equation
(3.38).

det
∣∣∣Φ′h(yk, xk)

∣∣∣ =g1g3 +
[
(g3b̄1 − g2b1)

∂f(k1)

∂k1
+ [g3b̄2 + (g1c2 − g2)b2]

∂f(k2)

∂k2

]
h2+[

b̄1b2c2 + b̄2ā21g3 − g2b2ā21 − b̄2c2b1
]∂f(k1)

∂k1

∂f(k2)

∂k2
h4

= 1 (3.38)

In order for the determinant to be equal to one, it can be concluded that the relations in
equation (3.39) must be satisfied. This is equivalent to the symplectic requirements in
Simos (2002) and Van de Vyver (2005).

g1g3 = 1

g3b̄1 − g2b1 = 0

g3b̄2 + (g1c2 − g2)b2 = 0 (3.39)
b̄1b2 − ā21g1b2 − b̄2b1 = 0

However, it was mentioned in the introduction of the section that the symplectic require-
ments for explicit RKN methods are well known. Theorem 16.11 on page 330 in Hairer
et al. (1993) states that the RKN method for a system that is described by a separable
Hamiltonian with square kinetic energy is symplectic if the coefficients satisfy the rela-
tions in equation (3.40).

b̄i = bi(1− ci)
aij = bi(ci − cj) ; i, j = 1 . . . s (3.40)
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The top requirement is recognized as the symmetry assumption from equation (3.33). The
second requirement in equation (3.40) has been modified from the original expression in
the textbook and can only be applied to explicit methods. The reason it was changed from
the original expression is that it allows the symplectic conditions to be nicely summarized
in the Butcher tableau for explicit RKN methods shown in (3.41).

c1 0
c2 b1(c2 − c1) 0
c3 b1(c3 − c1) b2(c3 − c2) 0
...

...
...

. . .
cs b1(cs − c1) b2(cs − c2) . . . bs−1(cs − cs−1) 0

b1(1− c1) b2(1− c2) . . . bs−1(1− cs−1) bs(1− cs)

b1 b2 . . . bs−1 bs

(3.41)

The following example considers the derivation of a third order explicit and symplectic
Runge-Kutta-Nyström method using the requirements in equation (3.40). The goal is to
reproduce a Buchner tableau found in Zhao and Zhu (1991).

The symplectic conditions are shown below in the Butcher tableau and the order con-
ditions are listed on the right. One coefficient may be chosen at random in order to close
the system of equations consisting of seven equations and eight unknown quantities.

0 0
c2 b1c2 0
c3 b1c3 b2(c3 − c2) 0

b1 b2(1− c2) b3(1− c3)
b1 b2 b3

b1 + b2 + b3 = 1

b2c2 + b3c3 =
1

2

b2c
2
2 + b3c

2
3 =

1

3

b2a21 + b3a31 + b3a32 =
1

6

Choosing c3 = 0 resulted in the Butcher table below, which is equal to the table from the
article mentioned in the beginning of the example.

0 0
2
3

7
36 0

0 0 − 1
2 0

7
24

1
4 − 1

24

7
24

3
4 − 1

24

qk+1 = qk + hvk + h2 7

24

(
k1 + 6k2 −

1

7
k3

)
vk+1 = vk + h

7

24

(
k1 + 28k2 −

1

7
k3

)
k1 = f (qk)

k2 = f

(
qk + h

2

3
vk + h2 7

36
k1

)
k3 = f

(
qk + h

2

3
vk −

h2

2
k2

)
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3.2.3 Exponentially fitted Runge-Kutta-Nyström integration

This section studies how the Runge Kutta Nyström method can be fitted to the exponential
function. The reason why this is desirable in this work is because the systems which are
studied have equations of motion which corresponds to oscillatory solutions. It is therefore
desirable to use this a priori knowledge to modify the numerical method such that it auto-
matically captures the dynamics of the solution in each iteration. The numerical method
will consequently exactly reproduce the analytical solution of a linear problem, whose
solution is a linear combination of exponential functions. The underlying mathematical
theory is quite rigorous and for this reason the choice was made to consider the subject
from a practical perspective. This means that the methods will be derived using definitions
and relations from books and papers without a further investigation into the background
of these relations. However, references will be made to relevant fundamental sources that
can be used in order to study the background more closely.

The starting point of the study of exponential fitting of RKN methods is the discretiza-
tion in equation (3.42). The notation of the weights and nodes has been changed from the
original expression in equation (3.30) to emphasize the dependence of the variable z.

yk+1 = yk + hẏk + h2
s∑
i=1

β̄if(tk + cih, Yi) ; β̄i = b̄i(z)

ẏk+1 = ẏk + h

s∑
i=1

βif(tk + cih, Yi) ;βi = bi(z) (3.42)

Y1 = yk + c1γ1hẏk ; γi = γi(z) αij = aij(z)

Yi = yk + ciγihẏk + h2
i−1∑
j=1

αijf(tk + cjh, Yj) ; i = 2 . . . s

The parameter γ is introduced in order to make it possible to fit the RKN method to
an exponential function. The first stage Y1 has the value γ1 = 1 for explicit methods
because c1 = 0 and the value of yn does therefore not have to be schooled in order to fit
an exponential function. This is thoroughly explained in (Berghe et al. (1999)) and this
work continues without further consideration of this parameter. Hoverer, it is clear that
in the limit z → 0 the value of γi should become one in order to reproduce the classical
RKN method. Note that the new variable λi is introduced in order to comply with the
notation that is used in Franco (2004), Van de Vyver (2005) and Simos (2002). According
to Van de Vyver (2005), the exponential method in his article ensures that the method
exactly integrates any ODE whose solution is any linear combination of the following
basis functions. {

1, t, . . . , tk, exp (±zt), . . . , tp exp (±zt)
}

(3.43)

In this work the particularly interesting case is the set {exp (zt), exp (−zt)} or equiva-
lently {sin (ωt), sin (ωt)} where z = iω. The systems in this work are purely oscillatory
and the solution will therefore be a linear combination of sine and cosine functions.
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The mathematical derivation of the exponential fitting conditions of numerical meth-
ods to the above set of functions can be found in Lyche (1972). This article is mathemati-
cally dense and the recent publication D’Ambrosio et al. (2014) presents a more practical
approach which is restricted to explicit RKN methods. The latter article states that the
are associated with the linear functional operators shown in equation (3.44) are associated
with the exponential fitting conditions for equation (3.42).

Ji[y(t);h;α] = y(t+ cih)− y(t)− ciγihẏ − h2
i−1∑
j=1

αij ÿ(t+ cjh) ; i = 1 . . . s

J [y(t);h; β̄] = y(t+ h)− y(t)− hẏ(t)− h2
s∑
i=1

b̄iÿ(t+ cih) (3.44)

J [y(t);h;β] = hẏ(t+ h)− hẏ(t)− h2
s∑
i=1

biÿ(t+ cih)

The top requirement concerns the internal stages of the method whereas the latter respec-
tively describes the first and final stage. When the operators in equation (3.44) is applied
to the set {exp (νt), exp (−νt)} the following expressions are found for the coefficients
of the RKN discretization.

exp [±ciz] = 1± z + cizγi + z2
i−1∑
j=1

αij exp (±cjz) ; i = 2 . . . s

exp [±z] = 1± z2
s∑
i=1

β̄i exp [±ciz] ; z = νh (3.45)

exp [±z] = 1± z
s∑
i=1

β exp [±z]

Note that the variable z has been defined during the derivation as the product z = νh,
which appears when the set of functions is differentiated. In order to obtain the final
expression for the coefficients in equation (3.45), the functional was demanded to vanish
at t = 0 as shown below.

J [e±νt|t=0;h; β̄] = 0 J [e±νt|t=0;h;β] = 0 J [e±νt|t=0;h;α] = 0

The argument that this is a sufficient requirement for obtaining the coefficients for the
method can be found in D’Ambrosio et al. (2014) and (Franco (2004)). The first article fo-
cuses on a more specialized method which is not considered in this work and consequently
does not show the same conditions which are presented here. However, (Franco (2004))
presents the same conditions for the coefficients in an ERKN method that are shown in
equation (3.45). This article also uses the following tableau for the exponentially fitted
method in (Franco (2004)) which was also proposed for Runge Kutta methods in (Berghe
et al. (1999)).
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0 1 0
c2 γ2 α21

c3 γ3 α31 a32

...
...

...
...

. . .
cs γs αs1 αs2 . . . αs,s−1

β̄1 β̄2 . . . β̄s−1 β̄s

β1 β2 . . . βs−1 βs

(3.46)

The expressions in equation (3.45) can be rewritten using the trigonometric relations for
hyperbolic functions.

cosh (z) =
1

2

(
ez + e−z

)
; sinh (z) =

1

2

(
ez − e−z

)
This leads to the system shown in equation (3.47) which can also be found in Franco
(2004).

i−1∑
j=1

αij cosh (cjz) =
1

z2

(
cosh (ciz)− 1

)
; i = 2 . . . s

i−1∑
j=1

αij sinh (cjz) =
1

z2

(
sinh (ciz)− cizγi

)
; i = 2 . . . s

s∑
i=1

β̄i cosh (ciz) =
1

z2

(
cosh (z)− 1

)
(3.47)

s∑
i=1

β̄i sinh (ciz) =
1

z2

(
sinh (z)− z

)
s∑
i=1

βi sinh (ciz) =
1

z

(
cosh (z)− 1

)
s∑
i=1

βi cosh (ciz) =
1

z
sinh (z)

The specific expressions for the exponential fitting conditions that are used in Simos
(2002), Van de Vyver (2005) and Franco (2004) can now be obtained using the system
in equation (3.47). The methods in the articles are two-stage methods, which reduces the
system in equation (3.47) to the form shown in equation (3.48).

α21 =
1

z2

(
cosh (c2z)− 1

)
γ2 =

1

c2z
sinh (c2z)

β̄1 =
1

z2

(
cosh (z)− 1

)
− β̄2 cosh (c2z) β̄2 =

sinh (z)− z
z2 sinh (c2z)

β2 =
cosh (z)− 1

z sinh (c2z)
β1 =

1

z
sinh (z)− β2 cosh (c2z)
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Note that there is still one degree of freedom (c2) left in this system of equations before
any other constraints are added. Simos (2002) and Van de Vyver (2005) both derive sym-
plectic methods that require the degree of freedom in order to ensure symplecticness of
the methods. Franco (2004) on the other hand solves the system along with the conditions
for third order RKN methods shown below.

0 1 0
c2 γ2 α21 0

β̄1 β̄2

β1 β2

β1 + β2 = 1

β2c2 =
1

2

β2c
2
2 =

1

3
(3.48)

β̄1 = β1

β̄2 = β2 + β2c2

The system of equations was solved in this work as well, arriving at the conclusion that
c2 = 2

3 will produce a third order method that is exponentially fitted when the equations
shown below are used for the remaining coefficients.

α21 =
1

z2

(
cosh (

2

3
z)− 1

)
γ2 =

1
2
3z

sinh (
2

3
z)

β̄1 =
1

z2

(
cosh (z)− 1

)
−

(sinh (z)− z) cosh ( 2
3z)

z2 sinh ( 2
3z)

β̄2 =
sinh (z)− z
z2 sinh ( 2

3z)

β1 =
1

z
sinh (z)−

(cosh (z)− 1) cosh ( 2
3z)

z sinh ( 2
3z)

β2 =
cosh (z)− 1

z sinh ( 2
3z)

The value of ν, which determines z = νh, is proposed in Van de Vyver (2005) to be set
equal to the step size h. All of the articles also states that for ”small” values of z the
expressions for the coefficients must be obtained using a Taylor expansion around t = 0.
Van de Vyver (2005) goes on to propose that the parameter can be assumed ”small” when
z ≤ 0.1. The following coefficients was found when the third order method was expanded
around t = 0.

The coefficients are shown on the next page and are equivalent to the set proposed in
(Franco (2004)). The final result is the third order explicit RKN method (ERKN) that can
be using the scheme shown in equation (3.49).

qk+1 = qk + hvk + h2
(
β̄1k1 + β̄2k2 + β̄3k3

)
vk+1 = vk + h (k1β1 + k2β2 + k3β3)

k1 = f (qk) ; f(y) = − 1

m

∂L
∂y

k2 = f

(
qk + γ2h

2

3
vk + h2α21k1

) (3.49)
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The following equations show the coefficients for the ERKN method that where found
based on a Taylor expansion of the trigonometric-hyperbolic constraint equations around
t=0.

α21 =
2

9
+

2

243
z2 +

4

32805
z4 +

2

2066715
z6 +

4

837019575
z8 +

4

248594813775
z10

+
8

203599152481725
z12 +

2

27485885585032875
z14 +O

(
z16
)

γ2 = 1 +
2

27
z2 +

2

1215
z4 +

4

229635
z6 +

2

18600435
z8 +

4

9207215325
z10

+
4

3231732579075
z12 +

8

3053987287225875
z14 +O

(
z16
)

β̄1 =
1

4
− 17

2160
z2 +

55

163296
z4 − 13231

881798400
z6 +

117673

174596083200
z8 − 780698467

25738954585344000
z10

+
34511669

25270973592883200
z12 − 1046191876349

17012419422728970240000
z14 +O

(
z16
)

β̄2 =
1

4
− 13

2160
z2 +

271

816480
z4 − 1877

125971200
z6 +

23497

34919216640
z8 − 780383783

25738954585344000
z10

+
379590131

277980709521715200
z12 − 95105958011

1546583583884451840000
z14 +O

(
z16
)

β1 =
1

4
− 1

144
z2 +

11

38880
z4 − 731

58786560
z6 +

589

1058158080
z8 − 471953

18856376985600
z10

+
14913991

13237176643891200
z12 − 307687339

6065033662291968000
z14 +O

(
z16
)

β2 =
3

4
+

1

144
z2 +

13

38880
z4 − 709

58786560
z6 +

587

1058158080
z8 − 471487

18856376985600
z10

+
14910353

13237176643891200
z12 − 3384354151

66715370285211648000
z14 +O

(
z16
)
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3.2.4 Symplectic, Exponentially fitted Runge-Kutta-Nyström integra-
tion

Symplectic and exponentially fitted integrators require the merging of the methods from
section (3.2.3) and (3.2.2). The main section considers the derivation of the symplectic
and exponentially fitted (SERKN) method from Van de Vyver (2005). The example at the
end of the section considers a symplectic and trigonometric fitted (STRKN) method from
Monovasilis et al. (2013).

The form of the RKN discretization shown in equation (3.50) uses notation from the
discretization in equation (3.42) and (??) which was respectively used for the exponential
and symplectic methods.

qk+1 = g1qk + g2hvk + h2
s∑
i=1

β̄if(Yi) ; β̄i = b̄i(z) (3.50)

vk+1 = g3vk + h

s∑
i=1

βif(Yi) ;βi = bi(z) αij = aij(z)

Y1 = qk + c1γ1hvk

Yi = qk + ciγihvk + h2
i−1∑
j=1

αijf(Yj) ; i = 2 . . . s

It is clear that this section requires the combined knowledge of chapter (2) and the previous
sections in this chapter in order to construct the method. The introduction mentioned that
the goal of this section is to reproduce the SERKN method which can be found in Van de
Vyver (2005). This article is based on the work presented in Simos and Aguiar (2003);
however, uses a more methodical approach. Because both methods are two-stage explicit
RKN methods the discretization equation (3.50) can be expressed as shown below.

qk+1 = g1qk + g2hvk + h2
(
β̄1k1 + β̄2k2

)
vk+1 = g3vk + h (β1k1 + β2k2)

k1 = f(qk)

k2 = f(qk + c2γ2hvk + h2α21)

The symplectic conditions will first be considered using the equivalent approach discussed
in section (3.2.2) by using the symplectic condition for a two stage method equivalent to
the expression in equation (3.38).

det
∣∣∣Φ′h(qk, pk)

∣∣∣ =g1g3 +
[
(g3b̄1 − g2b1)

∂k1

∂q
+ [g3b̄2 + (g1c2 − g2)b2]

∂k2

∂q

]
h2+[

b̄1b2c2γ2 + b̄2α21g3 − g2b2α21 − γ2b̄2c2b1

]∂k1

∂y

∂k2

∂y
h4

= 1 (3.51)
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The expression above leads to the following symplectic conditions for the coefficients of
the method.

g1g3 = 1

g3β̄1 − g2β1 = 0

g3β̄2 + (g1γ2c2 − g2)β2 = 0 (3.52)
β̄1β2 − α21g1β2 − β̄2β1 = 0

Exponential fitting was discussed in section (3.2.3), however for this method it is important
to include the new coefficients g1, g2, g3 in the requirement. This does not change the
general derivation that lead to the hyperbolic expressions in equation (3.47), however the
expressions themselves as shown in equation (3.53).

i−1∑
j=1

αij cosh (cjz) =
1

z2

(
cosh (ciz)− 1

)
i−1∑
j=1

αij sinh (cjz) =
1

z2

(
sinh (ciz)− cizγi

)
s∑
i=1

β̄i cosh (ciz) =
1

z2

(
cosh (z)− g1

)
(3.53)

s∑
i=1

β̄i sinh (ciz) =
1

z2

(
sinh (z)− zg2

)
s∑
i=1

βi sinh (ciz) =
1

z

(
cosh (z)− g3

)
s∑
i=1

βi cosh (ciz) =
1

z
sinh (z)

When the system of equations was expressed for a two-stage method the exponential fitting
conditions for the coefficients in equation (3.54) was obtained.

α21 =
1

z2

(
cosh (c2z)− 1

)
γ2 =

1

c2z
sinh (c2z)

β̄1 =
1

z2

(
cosh (z)− g1

)
− β̄2 cosh (c2z) β̄2 =

sinh (z)− zg2

z2 sinh (c2z)
(3.54)

β2 =
cosh (z)− g3

z sinh (c2z)
β1 =

1

z
sinh (z)− β2 cosh (c2z)

The article Van de Vyver (2005) suggests using the value c2 = 1 to solve the system of
equations defined by equations in (3.52) and (3.54). However, this means that there are
no degrees of freedom left to guarantee the order of the method. This can be avoided by
using theorem 2.2 in Franco (2004). The theorem states that an explicit ERKN method
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with 2 ≤ s that satisfies equation 3.55 has algebraic order 2 ≤ O.

β̄ ≈ β̄ + β̄′′h2 + β̄′′′′h4 + . . .

β ≈ β + β′′h2 + β′′′′h4 + . . .

γ ≈ 1 + γ′′h2 + γ′′′′h4 + . . . (3.55)

αij ≈ αij + α′′ijh
2 + α′′′′ij h

4 + . . .

Simultaneously solving the order conditions in (3.52) and exponential conditions in equa-
tion (3.54) using c2 = 1 result in the following expression for the coefficients of the
method:

β̄2 = 0 g1 = g3 = 1 g2 = γ2 β1 = β2 β̄1 = α21 (3.56)

γ2 =
sinh (z)

z
α21 =

cosh z − 1

z2
β2 =

cosh z − 1

z sinh (z)

It can now be assumed that z ≤ 0.1 and the coefficients are expanded using a Taylor series
around t = 0. This means that the method satisfies equation (3.54) and ensures the order
of the method is more than one.

β2 =
1

2
− 1

24
z2 +

1

240
z4 − 17

40320
z6 +

31

725760
z8 − 691

159667200
z10

+
5461

12454041600
z12 − 929569

20922789888000
z14 +O

(
z16
)

γ2 = 1 +
1

6
z2 +

1

120
z4 +

1

5040
z6 +

1

362880
z8 +

1

39916800
z10

+
1

6227020800
z12 +

1

1307674368000
z14 +O

(
z16
)

(3.57)

α21 =
1

2
+

1

24
z2 +

1

720
z4 +

1

40320
z6 +

1

3628800
z8 +

1

479001600
z10

+
1

87178291200
z12 +

1

20922789888000
z14 +O

(
z16
)

The Taylor expansion coincides exactly with the values that are given in Van de Vyver
(2005). This means that the coefficients can now be used in the discretization to form
the final expression for the symplectic and exponentially fitted RKN method as shown in
equation (3.58).

qk+1 = qk + g2hvk + h2
(
β̄1k1

)
vk+1 = vk + hβ2 (k1 + k2)

k1 = f (qk) ; f(y) = − 1

m

∂L
∂y

k2 = f
(
qk + γ2hvk + h2α21k1

) (3.58)
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The main section rigorously derived the symplectic and exponential fitting conditions.
This example considers the derivation of a third order RKN method that is symplectic and
fitted to trigonometric functions (STRKN). The derivation does not rigorously derive the
method, however uses well established symplectic requirements along with the trigono-
metric fitting retains in the derivation. The method was presented in in Monovasilis et al.
(2013).
The starting point is the three stage, symplectic method from the example in section
(3.2.2). This example used the tableau from equation (3.40) to define the symplectic condi-
tions method. The conditions from table (3.1) that are necessary to ensure that the method
is third order is shown below in addition to the tableau.

0 0
c2 β1c2 0
c3 β1c3 β2(c3 − c2) 0

β1 β2(1− c2) β3(1− c3)
β1 β2 β3

β1 + β2 + β3 = 1

β2c2 + β3c3 =
1

2

β2c
2
2 + β3c

2
3 =

1

3

β2α21 + β3α31 + β3α32 =
1

6

The strategy for the trigonometric fitting is to use the same procedure as in section (3.2.3),
however using the set {exp (ıνt), exp (−ıνt)}. This correspond to changing the variable
of the exponential fitting to z = ıω. The general conditions from equation (3.47) can now
be rewritten using:

cosh (ıx) = cos (x) and sinh (ıx) = ı sin (x)

This lead to the conditions for the trigonometric fitting conditions for explicit RKN meth-
ods shown bellow. The conditions an equivalent form of the conditions was found in
Paternoster (1998).

i−1∑
j=1

αij cos (cjω) =
1

ω2

(
1− cos (ciω)

)
i = 2 . . . n

i−1∑
j=1

αij sin (cjω) =
1

ω2

(
ciω − sin (ciω)

)
i = 2 . . . n

s∑
i=1

β̄i cos (ciω) =
1

ω2

(
1− cos (ω)

)
s∑
i=1

βi sin (ciω) =
1

ω

(
1− cos (ω)

)
s∑
i=1

β̄i sin (ciω) =
1

ω2

(
ω − sin (ω)

)
s∑
i=1

βi cos (ciω) =
1

ω
sin (ω)
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The approach in Monovasilis et al. (2013) is different however, and solving the system of
equations above does not lead to the coefficients presented in the mentioned article. How-
ever, the equations for the coefficients are related to the trigonometric fitting conditions in
this work and they can be expressed as follows:

cosω − 1 = −ω2β̄Te + ω4β̄TAe− ω6β̄TAAe

sinω

ω
= 1− ω2β̄TCe + ω4β̄TACe

cosω − 1 = −ω2βTCe + ω4βTACe

sinω

ω
= βTe− ω2βTAe + ω4βTAAe

The derivation of these conditions is related to the trigonometric conditions that was pre-
sented earlier and can be found in Kalogiratou and Simos (2002). The notation was not
presented in the article, however in order for the matrix notation to follow standard multi-
plication rules, the following vectors and matrices must be used:

β̄ =
[
β̄1 . . . β̄s

]T
β =

[
β1 . . . βs

]T
e =

[
1 . . . 1

]T

A =



0

α21
. . .

α31 α32
. . .

...
...

. . . . . .
αs1 αs2 . . . αs(s−1) 0


C =


0

c2
. . .

cs



When the equations are expanded and solved using the symplectic conditions from the
Butcher tableau in the beginning of the example the following expressions for the coeffi-
cients are obtained.

β2 =
−2 + 2 cos (ω)− β1 cos (ω)ω2 + (1 + β1)ω sin (ω)

pol

β3 = −
[
1− cos (ω) + β1c2 cos (ω)ω2 − c2ω sin (ω)

]2
pol

c3 =
c2ω −

[
1− c2 + c2β1ω

2
]

[ω cos (ω)− sin (ω)]

ω [1− cos (ω) + c2β1 cos (ω)ω2 − c2ω sin (ω)]

pol =
[
ω − β1(1− c2)c2ω

3
]
ω2 cos (ω)−

[
1− (1 + β1)c2ω

2 + c22ω
2
]
ω sin (ω)

There are two degrees of freedom in the system β1, c2 and these can be used to ensure
that the method is third order. The following values where also found in Monovasilis et al.
(2013) where it is pointed out that they satisfy several of the fourth order conditions as
well.

β1 = 0.55924973878536667

c2 = −0.18799161879915978201
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β2 = −0.18799161879915978201 + 0.014823031830119705447ω2

− 0.0006567635698988819674ω4 + 0.00005008999261903756659ω6

− 2.2837596032644413 · 10−6ω8 + 1.6950437269127458 · 10−7ω10

β3 = 0.635066644920623115− 0.01482303183011970545ω2

− 0.001438399281608581791ω4 + 0.0000827946627077300777ω6

− 1.4655145815655087 · 10−6ω8 + 2.9118114430067654 · 10−8ω10

c3 = 0.73166990421824007504− 0.01164255863026712775ω2

− 0.000354772795572808874ω4 − 0.0000250077938624870232ω6

− 5.568816130391094 · 10−7ω8 − 5.801982609741059 · 10−8ω10

The final version of the STRKN method can now be expressed as follows:

qk+1 = qk + hvk + h2
(
k1β̄1 + k2β̄2 + k3β̄3

)
vk+1 = vk + h (k1β1 + k2β2 + k3β3)

k1 = f (qk) ; f(y) = − 1

m

∂L
∂y

k2 = f
(
qk + c2hvk + h2α21

)
k3 = f

(
qk + c3hvk + h2[α31 + α32]

)
Note that the coefficients β̄ and α must be calculated using the relations in the Butcher
tableau.
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Chapter 4
Numerical experiments

This chapter presents numerical experiments performed using the algorithms that were
developed in chapter (3). The systems of ODEs that will be used for the experiments have
been derived in the examples throughout chapter (2). The ultimate goal of this chapter will
be to perform numerical experiments with the interest of choosing a numerical method
that is well suited for long time integration of Hamiltonian systems.

The MatLab implementation of the integration methods from chapter (3) can be seen
in appendix (E). Note that the introduction of the code clearly states how it can be used for
any system using a single function that defines the ODE in equation (4.1).

f(y) = v̇(y) = −∂L
∂q

(4.1)

The implementation in the appendix is specific to the chain of harmonic oscillators, all
plotting functionality has been left out for the sake of space and the script has also been
written with respect to esthetics rather than speed. Consequently, it can not be used directly
in order to reproduce the results in this section. However, the entire simulation library can
be found in Karolius (2014).

4.1 Characteristics of symplectic algorithms

The symplectic methods in this work all aim at conserving the geometry of Hamil-
tonian ODE systems. This section aims at investigating the basic properties of the sym-
plectic integration interval by comparing the first order algorithms (symplectic, implicit
and explicit Euler) from section (3.1). The algorithms are applied to the simple harmonic
oscillator using ω0 = 1, which results in the following Hamiltonian system of equations:

ÿ = −y ⇔
[
ẏ
v̇

]
=

[
0 −1
1 0

] [
y
v

]
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The results from the numerical simulation can be seen in figure (4.1), where the red circle
is the analytical solution from section (D.2).

-1

0

1

-1 0 1

p

q

symplectic
h=0.1

-1

0

1

-1 0 1
p

q

symplectic
h=0.01

-1

0

1

-1 0 1

p

q

explicit
h=0.01

-1

0

1

-1 0 1

p

q

implicit
h=0.01

Figure 4.1: The figure compares first order explicit, implicit and symplectic integration algorithms
with the analytical solution of the harmonic oscillator. The figures where created by integrating a
simple harmonic oscillator using ω0 = 1 and initial conditions q0 = 0.8, p0 = 0.9. This corre-
sponds to the total energyH0 = 0.7421168

From the figure it is clear that the explicit method is unstable and spirals outwards to infin-
ity from the initial conditions. The implicit method, on the other hand, spirals inward from
the initial conditions. If the integration interval is increased, it will eventually settle at the
centre of the circle; therefore, the method is numerically stable even though the solution
is obviously wrong. The symplectic algorithm follows the analytical solution quite well
when the smallest step size is used. However, when the figure is studied closely it is possi-
ble to see the red line representing the analytical solution around the entire circumference
of the phase space trajectory. The figure also shows that the symplectic method will break
down when the step size is increased, but the phase space trajectory is still close.
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In order to understand what happens with the explicit and implicit methods, it is useful
to study figure (4.2) which shows that the energy surface is a potential well. The implicit
method consequently overestimates the curvature of the manifold and creeps down before
it settles in the bottom of the well. The explicit method, on the other hand, underestimates
the curvature and diverges up the manifold to infinity.

-1
0

1 -1

0

1

H0

q
p

Figure 4.2: Illustration of how the phase space trajectory correlates with the Hamiltonian manifold
for the simple harmonic oscillator.

If the results from figure (4.1) alone were considered, it would be tempting to conclude
that the symplectic method is identical to the analytical solution. However, it was illus-
trated in figure (4.2) that the solution must also remain on the energy manifold throughout
the integration. This is a useful property to check in order to ensure that the implementa-
tion of the equations of motion and the symplectic method is correct. However, when the
value of the Hamiltonian is plotted throughout the integration interval, it becomes clear
that using the degrees of freedom to ensure that the method is symplectic has an effect on
the Hamiltonian. Figure (4.3) show that the Hamiltonian oscillates around a value close
to the initial value and that the amplitude of the oscillations is dependent on the step size
of the method. The results for the first order methods shows that symplectic methods are
useful for integration Hamiltonian systems. However, the first order method is not accu-
rate enough for integration of the systems of harmonic chains.

Figure (4.4) shows the result when second order methods are applied to the same prob-
lem that was considered in figure (4.1). The figure shows that the phase space trajectories

53



0.74

H0

0 100

time [s]
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h=0.01

h=0.1

Figure 4.3: Plot of the Hamiltonian agains time for the symplectic Euler methods from figure (4.1).
The blue line is the value calculated using the numerical states, whereas the red line is the Hamilto-
nian value of the analytical state.
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h=0.1

-1
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p

q

SERKN
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Figure 4.4: The figure compares the Leapfrog and SERKN integration methods from section (3.1.2)
and (3.2.2) respectively with the analytical solution of the harmonic oscillator. The parameters for
the integration are the same as presented in figure (4.1).

from the second order methods are indistinguishable from the analytical solution. Even
though it looks like the solutions are equal, the plot of the Hamiltonian for the time inter-
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val in figure (4.5) shows that this is not the case. Figure (4.5) shows that both the second

a

H0

b

10 50 100

time [s]

a

H0

b

10 50 100

time [s]

SERKN

Leapfrog

Figure 4.5: Plot of the Hamiltonian agains time for the Leapfrog and SERKN methods from figure
(4.4). The blue line is the value calculated using the numerical states, whereas the red line is the
Hamiltonian value of the analytical state. a = H0 −O(10−5), b = H0 +O(10−5)

order methods oscillates around the true hamiltonian value with an aptlitude in the order
of O(10−5). The phase of the oscillations is shifted π with respect to each other and the
point around which the solutions oscillate is clearly different. The SERKN method seems
to be centered around the analytical value, whereas the Leapfrog oscillates around a value
close to the true Hamiltonian value. This suggests that even though the exponential fitting
was not able to exactly reproduce the analytical solution, it has centered the oscillation of
the Hamiltonian around the true value.
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4.2 Long-time integration of linear oscillatory systems

The previous section showed the characteristics of symplectic integration methods.
For systems where the particles interact, the state space trajectory will not have the nice
property of the harmonic oscillator and close in each period. For this reason, and because
the integration interval is much longer, it is not practical to study the phase plot of the
individual mass points in the system in order to assess the quality of the integration.

This section will study the horizontal harmonic chain using the methods of order higher
than one that was derived in chapter (3). The properties of the methods along with the sec-
tion were the derivation can be found is shown in table (4.1). The goal of the section is

Table 4.1: This table summarizes the properties of the methods that was derived in chapter (3). It
also includes the number of the section where more information about the specific methods can be
found. O is the order of the method, Sym and Exp denotes wether the meted is symplectic or
exponentially fitted. nfeval is the number of function evaluations, i.e. number of times equation
(4.1) is evaluated in each numerical step as implemented in appendix (E).

Method Section Source O Sym Exp nfeval

Leapfrog (3.1.2) Ruth (1983) 2 X 2
RKN (3.2.1) Hairer et al. (1993) 4 3
SRKN (3.2.2) Zhao and Zhu (1991) 3 X 3
ERKN (3.2.3 ) Franco (2004) 3 X 2
SERKN (3.2.4) Van de Vyver (2005) 2 X X 1
STRKN (3.2.4) Monovasilis et al. (2013) 3 X X 3

to perform numerical simulations using the chain of interacting harmonic oscillators using
the methods in table (4.1). In order to assess the quality of the integration the numerical in-
tegration will be combated with the analytical solution of the systems of first order ODEs.
The solution is in both cases described by the linear system of second order ODEs shown
in equation (4.2).

q̈ = −ω2
0Tq ;ω0 =

√
k

m
(4.2)

The derivation of the equation of motion can be found in section (2.1.3). It involves rewrit-
ing the original equations of motion in deviation variables using the static distribution (x0)
from the recursive relation in equation (2.10). When the deviation from the static positions
(q=̂x− x0) are introduced into the equations of motion, the inhomogeneous terms cancel
and the system can be expressed as a homogeneous using the tridiagonal matrix (T) shown
below.

T =


2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2


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The linear system of second order ODEs can be expressed as a system of first order ODEs
as shown in section (3.2.2).[

q̇
v̇

]
= A

[
q
v

]
; A =

[
0 I

−ω2
0T 0

]
ω2

0 =

√
k

m
(4.3)

The next step is to use the analytical solution in order to estimate the error of the numerical
method. An obvious way to estimate the error is to compare the numerical method with the
analytical solution. The section (D.1) shows how a linear system such as the one shown
in equation (4.3) can be solved analytically. However, instead of directly comparing the
analytical and numerical solutions, the analytical expression can be rewritten as shown in
equation (4.4).

y0
∣∣∣
t=t

= S−1e−ΛtSy(t) (4.4)

This equation estimates the initial conditions that were used to start the simulation based
on the numerical solution at a given time. The numerical error (τ ) can now be defined as
the deviation between the actual initial conditions and the estimation based on equation
(4.4). This work considers the absolute value of the error as shown in equation (4.5).

τ =
∣∣y0|t=0 − y0|t=t

∣∣ (4.5)

Each iteration will necessarily have 2n error terms and it is assumed that the highest num-
ber can be used in order to describe the accuracy of the numerical method.

The analytical solution can also be used to ensure that the step size is sufficiently small
in order to describe the dynamics of the largest normal mode of the system. The normal
modes correspond to the eigenvalues of the coefficient matrix (A) in equation (4.3), which
are purely imaginary in the case of pure oscillations without damping. Equation (4.6)
shows how the maximum value of the numerical step size can be chosen with respect to
the dominating mode in the system.

h ≤ K

|λmax|
(4.6)

This work will use the parameter K in equation (4.6) in order to determine the step sizes
of the numerical method.

A similar approach can be used in order to determine when the sampling of data should
begin. When the simulation is started, it takes time before the dynamics of the system
is no longer affected by the initial perturbation. The slowest dynamic in the system is
represented by the smallest eigenvalue in the system. As shown in equation (4.7) this
work assumes that five times the slowest time constant of the system is sufficient in order
to avoid the initial transient period when the initial perturbation affects the system.

τs =
5

|λmin|
(4.7)
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Another important factor in the simulations is to choose initial conditions that repre-
sents as many cases as possible. This is important in order to validate the comparison of
the numerical methods for as many cases as practically possible. The strategy in this work
was to use different initial conditions for all of the simulations but scale them in order to
have the same initial value of the Hamiltonian.

The static equilibrium distribution will be used as the reference state for the Hamilto-
nian function as shown below.

H = H
∣∣∣
t
−H0 ;H0=̂H(x0, 0)

Note that when the system is started in the static equilibrium position the value of the rel-
ative hamiltonian is identically equal to zero.

The simulations considers two systems of different sizes. The system in table (4.2)
contains five mass points and the initial total energy was set to H = 3[J ] in all the sim-
ulations. However, the simulations use different types of initial conditions, i.e. the initial
state of the system is changed but scaled such that the total energy is the same in all the
simulations. The same strategy is applied to the system in table (4.3) which consists of 13
mass points and a total energy of H = 90[J ]. Moreover, the mass (m = 0.12 [kg]) and
spring constant (k = 16.12 [kgs−2]) are constant in all the simulations.

An example of the implementation can be seen in appendix (E); however, as mentioned
in the introduction the script will not automatically reproduce the results in the tables. The
full framework is available in Karolius (2014).

The simulations in table (4.2) are considered to be ”low-energy” simulations.

Table 4.2: The value of the step size is found form equation (4.6) using the eigenvalue λmax0.0045
and the parameter (K) listed in the table. The table has two rows for each step size, the top row is the
error τk from equation (4.5) and the bottom is the difference between the largest and smallest value
of the HamiltonianH. All the step sizes was integrated using 2 · 107 steps and the initial conditions
where changed for all the methods but scaled such that the initial value of the Hamiltonian was
H0 = 3[J ]. Note that a value of 0 implies that the value is less than 10−6 and an empty row means
that the error of the method is greater than one.

K STRKN SERKN ERKN SRKN RKN Leapfrog ode45

0.001
0 0 2 · 10−4 0 0 2 · 10−3 2 · 10−3

0 0 1 · 10−4 0 0 1 · 10−4 3 · 10−3

0.01
0 0.1 2 · 10−4 0 1 · 10−5 0.1 2 · 10−3

0 1 · 10−4 2 · 10−3 0 1 · 10−5 1 · 10−4 3 · 10−3

0.1
4 · 10−3 0.1 0.01 8 · 10−3 2 · 10−3

1 · 10−4 0.1 1 · 10−4 1 · 10−3 3 · 10−3
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The trend in the table clearly shows that the second order methods (SERKN and
Leapfrog) have problems with the coupled system. By comparing the results of the sym-
plectic and the symplectic-exponentially fitted methods of the same order, i.e. comparing
the SERKN with the Leapfrog and the STRKN with the SRKN, it is clear that the expo-
nential fitting is effective. The exponentially fitted methods consistently have lower error
for the total energy. Furthermore, the STRKN method is also superior compared with the
fourth order RKN method.

The results from ode45 are not sufficiently accurate and the accuracy of the integrator
was set to the maximum practical values using the odeset function and the following ab-
solute and relative error tolerances:AbsTol, RelTol = 10−10.

The ”high energy” simulations in table (4.3) shows the same trend as table (4.2). How-
ever, the increased energy has made all the methods consistently less accurate.

Table 4.3: The value of the step size is found form equation (4.6) using the eigenvalue λmax0.0045
and the parameter (K) listed in the table. The table has two rows for each step size, the top row is the
error τk from equation (4.5) and the bottom is the difference between the largest and smallest value
of the HamiltonianH. All the step sizes was integrated using 2 · 107 steps and the initial conditions
where changed for all the methods but scaled such that the initial value of the Hamiltonian was
H0 = 90[J ]. Note that a value of 0 implies that the value is less than 10−6 and an empty row means
that the error of the method is greater than one

K STRKN SERKN ERKN SRKN RKN Leapfrog ode45

0.001
0 1 · 10−5 1 · 10−4 0 0 1 · 10−4 2 · 10−3

0 0 1 · 10−3 0 0 0 0.3

0.01
0 0.03 2 · 10−3 0 1 · 10−5 0.03 2 · 10−3

1 · 10−5 0.01 0.01 1 · 10−5 1 · 10−5 0.01 0.3

0.1
1 · 10−3 4 · 10−3 2 · 10−3 2 · 10−3

0.01 0.1 0.1 0.3

Based on the results from the numerical experiments it is concluded that the STRKN
method is favorable. However, this method requires three function evaluations for each
step, whereas the SERKN can be implemented using only one. This work will use the
STRKN methods due to its increased accuracy for coupled systems, but for integrating a
simple system the SERKN will be much faster even though it requires a smaller step size.

59



60



Chapter 5
Model of a one-dimensional system
of magnets in a gravitational field

n+ 1

n

1

0

Figure 5.1: Illustration of a
vertically stacked system of n
magnets.

The system consists of n + 2 magnets where the
boundary conditions on the top and bottom magnets
prevents them from moving relative to the static equi-
librium position. A system of n magnets there-
fore refers to a system of n freely floating mag-
nets with the top and bottom magnets remaining sta-
tionary. The top magnet will simply ”float” on top
of the stack and it is expected that the distance be-
tween the magnets will decrease towards the bottom
of the stack due to the increasing number of mag-
nets whose weight must be supported. The repul-
sive force between the magnets that supports the weight
of the stack is assumed to be described by a force
law, which is inversely proportional with the distance
squared.

The chapter will introduce a mathematical model for
the stack of magnets based on the assumption that the only
forces in the system are the magnetic forces and grav-
ity. The model will subsequently be validated by perform-
ing numerical simulations using the STRKN integration
method. However, the ultimate goal of the chapter is to
study whether the system can be used as a mechanical ana-
logue to an atmosphere of an ideal gas.
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5.1 Equations of motion
The equations of motion for the system are derived using the basic mechanical theory

from chapter (2). The rigorous derivation follows the same lines as the examples from the
chapter and will therefore not be presented here. However, anything that is beyond the
scope of the examples of the harmonic chain is considered in appendix (A) and will be
referenced appropriately.

The difference between the system of magnets and the harmonic oscillators lies in the
nonlinearity of the force model that will be used to describe the magnets. This section will
introduce the complete (nonlinear) model for the system along with a linearized version.

5.1.1 Complete model
The introduction of the chapter stated that the force law that is assumed to apply for

the magnets is inversely proportional to the distance between the magnets squared. The
mathematical formulation of this assumption is shown in equation (5.1), where km is the
magnetic force constant.

Fi+1,i =
km

(yi+1 − yi)2 (5.1)

The following expression is found for the potential energy due to the magnetic force. It
can be described by integrating the force model and yields the following result:

U (m) =

n∑
i=0

km
(yi+1 − yi)

The Lagrangian function can now be expressed using the definition in equation (2.2).

L =
1

2
mẏT ẏ −mgeTy −

n∑
i=0

km
(yi+1 − yi)

(5.2)

e = [1 . . . 1]T y = [y1 . . . yn]T

The Lagrange equations of motion for the system is obtained using the Euler-Lagrange
equation from section (2.1.2). This results in a system of equations, one for each magnet,
each of the form shown in equation (5.3).

mÿi +mg +
km

(yi+1 − yi)2
− km

(yi − yi−1)2
= 0 (5.3)

As expected, the nonlinearity of the Lagrangian is also present in the equations of motion;
in addition, the force terms from equation (5.1) are also retrieved.

Section (2.2.1) showed that the canonical momentum for a Lagrangian of the form of
equation (5.3) becomes pi = ∂L

∂q̇i
= mq̇. The Hamiltonian is generated by inverting the
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expression for the momentum and using it in the Legendre transform H = q̇p − L. This
results in the expression in equation (5.4) for the system of magnets.

H =
1

2m
pTp +mgeTy +

n∑
i=0

km
(yi+1 − yi)

(5.4)

The canonical equations of motion consists of a system of 2n first order ODEs shown
below.

q̇i =
∂H
∂pi

=
1

m
pi

ṗi = −∂H
∂qi

= km

[
1

(yi − yi−1)2
− 1

(yi+1 − yi)2

]
−mg

However, it was shown in section (2.2.2) that the Lagrange equations of motion for the
systems in this work can also be expressed as a Hamiltonian set of ODEs. In order to use
the RKN methods from section (3), the Lagrange equations of motion are rewritten to the
following form:

q̇i = vi (5.5)

v̇i = ω2
0

[
1

(yi − yi−1)2
− 1

(yi+1 − yi)2

]
− g ;ω0 =

√
km
m

The reason that the equations of motion can be written in the form of equation (5.5) can be
understood by expressing the second order Lagrange equations of motion as a system of
first order equation. Alternatively they can be derived by using the result from appendix
(C) which proves the Hamiltonian is equal to the total energy, i.e. it can be expressed as
follows:

H =
1

2
mvTv +mgeTy +

n∑
i=0

km
(yi+1 − yi)

The implementation of the model in Karolius (2014) uses the latter form of the Hamilto-
nian function.
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5.1.2 Linearized model
The nonlinearity of the model is due to the force power law of the magnetic dipoles in

equation (5.1). The model can therefore be linearized by approximating the force field by
a linear relation that still bares relevance to the original model. This work considers the
linearization around the relaxed equilibrium state from section (5.2.1). The term ”relaxed”
implies that magnet n+ 1 only exerts a force equivalent to its own force of gravity on the
stack below.

The recursion relation in equation (5.9) describes the equilibrium distribution of the
magnets by choosing the position of the first magnet when the system is in the relaxed
state. When the relation is rewritten to the form shown below, it is clear that it represents
the denominator of the magnetic force in equation (5.1).

y0
i+1 − y0

i =
L

2n+ 1

√
1

1− αi
;α =

1

n+ 1

This relation can now be used in the definition of the force from equation (5.1) to formu-
late an explicit expression for the force which in turn can be linearized. The full derivation
of the linearized model is performed in section (A.4) of appendix (A).

The result of the linearization process is equation (5.6).

q̈ = −m−1Tq ; q=̂y − y0 (5.6)

Just as for the harmonic chain in the section (2.1.3) the coordinate q in equation (5.6) is
the deviation from the static equilibrium position. In contrast to the harmonic chain, the
elements of the tridiagonal matrix are no longer constant, but a function of the magnet
index. The resulting elements of the tridiagonal matrix are described by the following
relations:

ti,i = ki,i−1 + ki+1,i

ti,i+1 = ti+1,i = −ki+1,i

The elements are placed in the following tridiagonal matrix:

T =



t1,1 t1,2
t2,1 t2,2 t2,3

. . . . . . . . .
ti,i−1 ti,i ti,i+1

. . . . . . . . .
tn,n−1 tn,n ti,n+1


Finally the elements are calculated using the following expressions:

ci+1,i =
3km

y0
i+1 − y0

i

(5.7)

ki+1,i =

(
2km

y0
i+1 − y0

i

) 3
2
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5.2 Static equilibrium distribution
The strategy of solving the static Lagrangian equations of motion in order to obtain the

equilibrium distribution was introduced in section (2.1.3). However, the nonlinear equa-
tions of motion of the system of magnets makes the static equilibrium difficult to obtain
analytically. The strategy presented in this section was originally performed in Warberg
(2013) and is based on performing an analysis of the static state and obtaining an approx-
imate solution by imposing a-priori knowledge on the system.
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n
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]

number of freely floating magnets

Figure 5.2: Static equilibrium distribution for a
system of 5, 7 and 13 freely floating magnets.
Note that the total number of magnets in the
systems are n + 2, even though the system is
referred to as having n magnets

The state of the system is characterized by
the force exerted by the top (n+1) magnet on
the stack below. This work will consider two
different initial states for the system. One
in which the top magnet is simply floating
on top of the stack, only exerting the force
of gravity on the magnets below. This state
will be referred to as the ”relaxed” state of
the system and the distribution for some sys-
tems is shown in figure (5.2). In the second
state the top magnet is compressing the sys-
tem, e.g. by adding mass to the top of the
column. Consequently it will be referred to
as a ”compressed” state.

5.2.1 Relaxed state
The derivation of the relaxed state equi-

librium distribution can be found in its en-
tirety in appendix (A.2). From the derivation
it was found that the height of the column
can no longer be chosen, but will be deter-
mined by the position of the first magnet in
the stack.

L = y0
1

[
1 +

n∑
i=0

√
1

1− αi

]
;α =

1

n+ 1
(5.8)

The position of the first magnet can now be chosen to determine the height of the stack us-
ing equation (5.8). The distribution of the rest of the magnets can thereafter be determined
using the recursive relation in equation (5.9).

y0
i+1 = y0

i +
L

2(n+ 1)

√
1

1− αi
; i = 1 . . . n− 1 (5.9)

The equilibrium distribution from equation (5.9) is increasing with the height of the stack
due to the constant α. This is clearly seen in figure (5.2) which shows the equilibrium
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distribution for systems with a different number of magnets.

The parameter (α) in these equations was chosen such that it represents the maximum

value of α=̂
(
y01
y0eq

)2

. This is a measure of the ratio between the force of one magnet
floating on top of another and the force necessary in order to have the bottom magnet
at the chosen position y0

1 while supporting the weight of the stack. The parameter can
therefore be used to determine the magnetic force constant using equation (5.10).

km =
mg(y0

1)2

α
(5.10)

5.2.2 Compressed state
The compressed state of the system is based in the assumption that the value of α is

very small, but that the value of nα is still large. The first assumption can be understood
physically by imagining that the first magnet is compressed significantly, which in turns
makes the ratio

(
y01
y0eq

)
small. The second assumption is a mathematical assumption that

ensures the expression in the square root of the recursive relation in equation (5.8) still
exists. The result form the derivation in appendix (A.3) shows that the recursive relation
can be approximated directly as follows:

L = y0
1

[
1 +

n∑
i=0

√
1

1− αi

]
≈ y0

1

(
n+ 1 +

αn(n+ 1)

4

)
This leads to the following expression for the equilibrium position of the first magnet:

y0
1 =

L

n+ 1

The assumptions along with the position of the first magnet in the stack leads to the fol-
lowing distribution for all of the magnets in the system.

y0
i+1 = y0

i +
L

n+ 1
; i = 0 . . . n− 1
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5.3 Simulation parameters and model validation
This section will introduce model parameters and conventions that will be used in all

the simulations in this work. The simulations in the rest of this work will be performed
using the same parameters that are presented in this section, but changing the initial con-
ditions and consequently the total energy of the system. The validation of the model aims
at demonstrating that the canonical equations of motion and the static initial conditions
behaves physically reasonable.

5.3.1 Model and integrator parameters
In order to ensure that the value of the Hamiltonian in the simulations is more intuitive

it will be defined as the deviation from the value from the static case in section (5.2). This
means that the value of the Hamiltonian for the static case will become zero using the
following definition:

H=̂Htot −Hstatic
Where Htot refers to the actual value of the Hamiltonian obtained from equation (5.4).
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Figure 5.3: Illustration of large values of the
Hamiltonian for systems with a different num-
ber of magnets. vmax corresponds to the speed
that corresponds to the speed which one mag-
net must possess in order to have pure kinetic
energy equal to the value of the Hamiltonian.

The size of the Hamiltonian can be viewed
in relationship to the values in figure (5.3)
which exemplifies large values. The values
are regarded to be large because they were
calculated by assuming that all of the freely
floating magnets in the system were at their
respective terminal velocity using:

1

2
mv2 = mgy0

i

The constants that were used in the calcu-
lation of the maximum Hamiltonian as well
as parameters specific to the canonical equa-
tions of motion for all the simulations in this
work are:

m = 0.12 [kg]

g = 980.65 [cm s−2]

n = 7

y0
1 = 1 [cm]

⇒ α = 0.125

⇒ km = 941.4 [kg cm3 s−2]

⇒ L = 12.4 [cm]

Where the arrow implies that the value of the parameters has been calculated based on the
relaxed static equilibrium distribution in section (5.2.1).
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Even though the integration method is chosen specifically to mirror the dynamics of
the system it is necessary to choose the step size with care. As described in section (4.2),
one way of determining the appropriate step size is to use the eigenvalues of the system.
However, the nonlinear model is not described by a finite set of eigenfrequencies that can
be pre-calculated. The harmonic eigenvalues from the linearized model in section (5.1.2)
was therefore used instead. This leads to the following system of equations:

det |A− λI| = 0 ; A =

[
0 I
−T 0

]
The oscillatory nature of the equations of motion leads to purely imaginary eigenvalues.
By taking the absolute value the following minimum and maximum values were found:

|λmax| = 2.5

|λmin| = 0.3

Note that the minimum and maximum eigenvalues correspond to a linearized model of
seven magnets. There is therefore no guarantee that these will be the same if the size of the
system is changed. Moreover, the nonlinearity of the system will make the step size highly
dependent on the total energy of the system. The value shown below is consequently a
rough estimate and the actual value that was used for the simulations was chosen using
trial and error.

h ≤ 1

|λmax|
= 0.4 [s]

The criteria for choosing the step size in this work was based on the oscillation of the
value of the Hamiltonian, that as shown in section (4.1), characterizes symplectic inte-
gration methods. The requirement was therefore that the value was to remain constant
throughout the integration interval to the fourth decimal place. It was found that for low
values of the total energy the step size can be in the order of 10−3. However, for Hamilto-
nian values of the order of magnitude shown in figure (5.3) it must be lowered to 10−4.

The time to start the sampling of the results on the other hand was chosen directly
according to equation (4.7). The assumption is that the nonlinearity will ensure that the
dynamics of the system will settle faster than in the linear case and the time shown below
will be used for all initial conditions:

τs =
5

|λmin|
= 16 [s]

Even though the method waits 16 seconds before starting to sample the results, the long
integration intervals will lead to large amounts of data. The results in this work were
therefore sampled at 10, 000 randomly selected points in the integration interval.
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5.3.2 Validation of static initial conditions
A minimal requirement for the model is that the static equilibrium distribution from

section (5.2.1) leads to static trajectories. The initial conditions in table (5.1) were used
for the static equilibrium simulation and the result from the simulation is shown in figure
(5.4).

Table 5.1: Initial conditions for the static equilibrium simulation used to create figure (5.4). ”Static”
refers to the position calculated using equation (5.9 ).
The units of the table are: y[cm] v[cm s−1] H [J ].

Magnets y1 y2→n v1→n H step size
7 1 static 0 0 4 · 10−3
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Figure 5.4: The simulations shows the trajectory for a system of seven magnets when initiated at
the static equilibrium condition from section (5.2.1). The initial conditions for the simulation can be
found in table (5.1)

The figure shows the trajectory of the system throughout the integration interval and con-
firms that the static distribution from section (5.2.1) leads to stationary trajectories.

A more rigorous requirement is that the canonical equations of motion conserve the
static distribution when the system is initiated away from the static equilibrium. This was
checked by performing a simulation where all the positions where perturbed and the mo-
mentum was set to zero as shown in table (5.2). The trajectory of the system now becomes
difficult to interpret due to the long time interval combined with the highly oscillatory so-
lutions. The results from the simulation in figure (5.5) shows the probability density for
the position of each magnet.

69



Table 5.2: Initial conditions for the static equilibrium simulation used to generate the figures in
this section figure (5.5). The random initial conditions where chosen in the following way: y0i =
yeqi + (rand(seed) − 0.5). Using the ’twister’ random number generator in MatLab. The units in
the table are as follows: y[cm] v[cm s−1] H[J ] time [s].

Magnets y1→n v1→n H seed time step size
7 rand 0 1 39187 4012 4 · 10−4

0
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1
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2
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3
3.5

4
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ϕ
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)

q [cm]
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magnet 3
magnet 4
magnet 5
magnet 6
magnet 7

Figure 5.5: The figure shows the weighted probability density for each magnet occupying a given
position when initiated at a random perturbation from the static equilibrium. The probability curve
was obtained by sampling the results from the integrator and dividing the position for each magnet
into 53 bins. The initial conditions can be found in table (5.2).

The figure clearly shows that the position with the highest probability lies somewhere
around the static equilibrium position. The width of the density functions also suggests
that the amplitude of the top magnet (7) is much larger than the bottom magnet (1). This
is also a reasonable result since the space between the neighboring magnets will be much
smaller towards the bottom of the stack. The thermodynamic analogue can be thought of
as the density of an ensemble, which consequently decreases along the height of the stack.

It can also be seen that the density functions does not overlap, this is important since
the model do not account for collisions between magnets. By looking at equation (5.1), this
is also a reasonable result because the magnetic force model ensures that as the distance
between two magnets approaches zero, the force becomes infinity.
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5.3.3 Validating diffusion of kinetic energy
The kinetic energy must disperse correctly throughout the system. This means that an

initial perturbation of the top magnet should not be visible in the bottom magnet before it
has also been registered in the rest of the system. This was tested by initiating top magnet
using a small velocity as shown in table (5.3). The result from the simulation is shown in
figure (5.6) as the cumulative distribution of the momentum.

Table 5.3: Initial conditions for the static equilibrium simulation used to generate the figures in this
section figure (5.6). The term ”static” refers to the values that are calculated using equation (5.9).
The units of the table are: y[cm] v[cm s−1] H[J ] time[s].

Magnets y1 y2→n v1→n−1 vn H time step size
7 1 static 0 1 6 · 10−4 4012 4 · 10−3

0
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Figure 5.6: The figure shows the cumulative density curve of the system when initiated with the
magnets in their static equilibrium positions and giving the top magnet a small initial momentum.
More information about the initial conditions and simulation parameters can be found in table (5.3).

Figure (5.6) demonstrates that the probability of occupying the state with the highest
momentum increases towards the top of the stack. This result was expected as the ini-
tial condition only affected the top magnet. However, the simulation also shows that the
magnets have significantly different probabilities of occupying the same momentum. This
suggests that even if the velocity of the magnets follows the same probability distribution,
the shape of the function is dependent on the position of the magnet. The long integration
interval combined with the widely different cumulative probabilities for the magnets sug-
gests that something special is happening in the system. One possibility is that the single
source of the initial condition sends a wave through the system which when reflected at
the bottom of the stack results in sustained harmonic oscillations.
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This result motivated the simulation using the initial conditions in table (5.4). The in-
tention was to consider if changing the initial conditions without significantly increasing
the total energy of the system will change the results compared with the results in figure
(5.6). As shown in figure (5.7) the result using the initial conditions becomes significantly
different.

Table 5.4: Initial conditions for the static equilibrium simulation used to generate the figures in this
section figure (5.7). The static equilibrium positions for the rest of the magnets was calculated using
equation (5.9).
The units of the table are: y[cm] v[cm s−1] H[J ] time[s].

Magnets y1 y2→n v1 v2→n−1 vn H time step size
7 1 static 1 0 1 12 · 10−4 4012 4 · 10−3
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Figure 5.7: The figure shows the cumulative density curve of the system when initiated with the
magnets in their static equilibrium positions and giving the top and bottom magnet a small initial
momentum. It is clear that the probability of occupying a state with a given momentum is similar
for all the magnets. More details about the initial conditions can be found in table (5.3).

The result in figure (5.7) shows that different initial conditions can make a significant
difference to the simulation results even though the energy in the system is similar. The
linear model, on the other hand, did not show this behavior when the same initial condi-
tions were applied. It was not expected that the non linear term would cause the system to
approach a state of uniformly distributed kinetic energy even for the small Hamiltonian in
table (5.4). However, the cumulative probability still shows that the system does not reach
an equilibrium state during the simulation.
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5.4 Equilibrium simulations
The equilibrium distribution of kinetic energy can be used as an analogue to the tem-

perature of the system. It is well established that the velocity of the particles in an ideal
gas, at a given temperature, is described by the Maxwell-Boltzmann probability density
function. Translated to the system in this work, this means that all of the magnets in the
system must have the same probability of occupying any given velocity.

Looking back at the results in figure (5.6) this is not the case. However, the total en-
ergy of the system in the previous section was small and by increasing the energy it is
reasonable that the nonlinear interactions will dominate the dynamics of the system. As
shown in table (5.5), the initial conditions in the section corresponds to a higher value of
the total energy. The result in figure (5.8) shows the effect the increased value has on the
long time behavior of the system.

Table 5.5: Initial conditions for the static equilibrium simulation used to generate the figures in this
section figure (5.8). The random momentum was chosen as follows: p0 = K(rand(seed) − 0.5).
With K = 78√

2
, choosing K = 78 corresponds to the largest value of the Hamiltonian, according

to figure (5.3). The static equilibrium positions for the rest of the magnets was calculated using
equation (5.9).
The units of the table are: y[cm] v[cm s−1] H[J ] time[s].

Magnets y1 y2→n v1→n H time step size seed
7 1 static random 2 4012 4 · 10−4 581802
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Figure 5.8: The figure shows the cumulative density curve of the system where all the magnets have
approximately the same probability of being at any given state. The initial conditions in table (5.5)
show that the system is initiated with a large total energy.
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The cumulative distribution for all the magnets in figure (5.8) is very similar, which
suggests that they can be described using the same probability density function. The den-
sity functions were estimated by dividing the velocity range into 57 bins of equal width
and the results were collected in their respective bins. Figure (5.9) was obtained from the
same results that produced the cumulative distribution in figure (5.8).
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Figure 5.9: The figure shows the probability density curve for the magnets whose cumulative distri-
bution is shown in figure (5.8). The figure also shows that the Maxwell-Boltzmann density function
can be fitted to describe the density function for all the magnets.

Figure (5.9) shows that the density functions for the momentum are the same for all the
magnets and that the Maxwell-Boltzmann distribution function can be fitted reasonably
well. This suggests that the equipartition theorem can be applied.
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5.5 Equipartition
The equipartition theorem is a general formulae from classical statistical mechanics

which states that at the energy of a system at thermal equilibrium is shared equally within
the components of the system. The theorem relates the kinetic energy with the thermody-
namic energy as the following general formulae:

Ēk =
1

2
mv2

RMS =
3kB

2
T

Where Ēk is the average kinetic energy of all the components, T is the thermodynamic
temperature, kB is the Boltzmann constant and m is the mass of the system.

Based on the results presented in this work, the most likely candidate for equipartition
is the result from the simulations in figure (5.5) and (5.8), the latter was used to make
figure (5.10). The figure shows the average kinetic energy for each magnet in the system
that, according to the equipartition theorem, is uniform.
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Figure 5.10: Plot of the average kinetic energy for each magnet in the stack based on the results
from figure (5.8).

The trend from the figure shows that the average kinetic energy is constant throughout the
system. On the basis of equipartition it can therefore be concluded that the temperature
is uniform. However, the result in this section is obtained under the assumption that the
system is ergodic as shown in section (5.6).
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5.6 Ergodic hypothesis
The ergodic hypothesis states that the probability of a component in a system to be in

a microstate within the phase space region bounded by the total energy is uniform. The
ergodic was an embedded assumption in the conclusion based on the equipartition theo-
rem in section (5.5). It was assumed that by simulating the system over a long period of
time and taking the average of the mechanical state variable was the same as the statistical
ensemble.

An example of a system that is not ergodic is shown in figure (5.11). The figure shows
a phase plot of the microstates that was occupied throughout the simulation based on the
simulation result from figure (5.6). This system can therefore not be ergodic, since it is
only the states of magnet seven that can be found towards the edge of the phase space.
The trend in the figure is that there is a color shading from the center of the circle, i.e. the
high energy states towards the edge of the region bounded by the Hamiltonian can not be
reached by the magnets at the bottom of the stack.
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Figure 5.11: The figure shows randomly selected microstates that was occupied by each magnet in
the system from the simulation in figure (5.6).

The results from the simulation in figure (5.11) shows that the system is not ergodic, how-
ever, the microstates for each individual magnet can still be individually uniformly dis-
tributed. The reason for this is that the system obeys Liouville’s theorem.

Liouville’s theorem is related to the ergodic hypothesis. It states that the probability
density is uniform along the phase space trajectory of the system. That is, when the system
is in any given state, the neighboring states all have the same probability. The data analy-
sis in this work, as explained in section (5.3.1), was performed by choosing random states
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using a uniform distribution. The reason why this assumption was introduced was that the
initial conditions in table (5.5) were chosen from a uniformly distributed function, i.e. the
initial states was uniformly distributed. Consequently, they will according to Liouville’s
theorem remain uniformly distributed throughout the simulation interval.

The system from figure (5.8) was found to have constant kinetic energy in section
(5.10), consequently it should therefore be ergodic. Figure (5.12) shows the phase space
microstates that was occupied during the simulation.
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Figure 5.12: The figure shows randomly selected microstates that was occupied by each magnet in
the system from the simulation in figure (5.8).

The results in figure (5.12) shows a very different trend than figure (5.11). The microstates
towards the centre of the phase space are, as expected, most probable. However, by look-
ing at the ”cloud” of states it is clear that the microstates towards the edge of the region
bounded by the total energy can be populated by any of the magnets. The ergodic hypoth-
esis states that the phase space region should be completely covered. Even though this is
not the case in figure (5.12) the trend suggests this can be accomplished by running the
simulations longer. The conclusion is therefore that the system of magnet is ergodic and
Liouville if the initial energy is large enough and the time interval is sufficient.

77



5.7 Pressure dependence
The pressure dependence of the system is analyzed based on the fact that the top mag-

net only exerted the force of gravity on the stack, i.e. the magnetic force excerpted by
magnet n of the top magnet is in the static case equal to the weight. This means that any
force that is greater than the weight of the top magnet can be interpreted as the pressure of
the atmosphere.

From the ideal gas law it is clear that the pressure of an ideal gas is proportional to the
temperature (dT ) of the gas for a closed system (dN = 0) at a constant volume (dV = 0).

dp =
∂p

∂T
dT +

∂p

∂V
dV +

∂p

∂N
dN ;

∂p

∂T
=
NR

V

The result from section (5.5), stating that the temperature is proportional with the average
kinetic energy, was used in order to increase the thermodynamic temperature of the system
of magnets. The expression in equation (5.1) was subsequently used in order to calculate
the force on the top magnet, the average of this value was interpreted as the pressure. Note
that the statistical value of the state is assumed to be related to the thermodynamic pressure
under the ergodic assumption.

The simulations where carried out using the initial conditions from table (5.5) and
changing the parameter K in order to increase the total energy of the system without
changing the distribution of the initial state. The reason for this is that the same ”seed”
was used for the probability distribution that determined the initial velocities.
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Figure 5.13: Plot of pressure against the kinetic energy in the system

The figure shows that the magnetic force affecting the top magnet increases linearly with
respect to the total energy of the system. Analog to a thermodynamic system, the pressure
increases linearly with respect to the temperature.

78



Chapter 6
Discussion

The goal of this work was to study a mechanical system of vertically stacked magnets
as an analogy to an atmosphere of an ideal gas by studying the long time behavior of the
system. This discussion chapter is divided into three sections that are intended to discuss
the results in this work as well as suggesting topics for future work.

6.1 The symplectic integrators
Chapter (2) introduced the theory necessary to understand the background of the sym-

plectic integration methods in this work based on canonical transformations from classical
Hamiltonian mechanics. Special attention was given to the development of the integration
methods in chapter (3). Note that the methods in this work were chosen such that they
could be understood based on the theory that is presented in this work, but there are higher
order methods such as the sixth order method in Calvo et al. (2009) available. These meth-
ods are often based on the more mathematical approach of group theory and a different
name for a symplectic integration that is commonly used is ”geometric integration”.

The basic properties of the symplectic methods were shown in section (4.1) using low
order methods to integrate the simple harmonic oscillator. Figure (4.1) shows how the
explicit and implicit Euler methods both diverge from the analytical solution whereas the
symplectic method closes the phase space trajectory. Even though the symplectic Euler
method was able to close the phase space trajectory, it was consistently not exactly equal
to the analytical trajectory. When the second order methods Leapfrog and SERKN were
applied to the same problem, the result in figure (4.4) shows that the phase space trajec-
tory is equal to the analytical solution. However, the numerical solution is not equal to
the analytical solution, even though the phase space trajectory suggests this. According
to Sanz-Serna (1992) a characteristic feature of symplectic integrators is that the value of
the Hamiltonian oscillates. This is shown in figure (4.3) for the symplectic Euler method
and the Leapfrog and SERKN methods figure (4.5). The literature search did not reveal an
explicit explanation to why the symplectic integrators have this property. However, it was
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expected that the symplectic methods could not conserve the Hamiltonian and the phase
space structure of the ODEs simultaneously. Since the analytical solution has no degrees
of freedom, the numerical method will never be able to exactly reproduce all the proper-
ties of the solution. On the other hand, from the figures that show the Hamiltonian as a
function of time, it is clear that the amplitude of the oscillations depends on several factors.

In figure (4.3) it is clear that the amplitude of the oscillation is dependent on the step
size of the method. Since none of these methods in the figure resulted in phase space
trajectories exactly equal to the analytical solution, it can be concluded that the the am-
plitude of the Hamiltonian must be smaller than 10−3, which is the amplitude of the most
accurate method. When the order of the numerical methods is increased in figure (4.5),
the amplitude of the oscillations is significantly decreased. The amplitude is 10−5 for both
the Leapfrog and SERKN methods and they produce the same phase space trajectory even
though the solutions are not identical. By looking at the oscillation of the Hamiltonian,
it is clear that they oscillate around a different equilibrium point and the phase is shifted
π [rad] with respect to each other. The exponentially fitted and symplectic method seems
to oscillate around the true value of the Hamiltonian, but the symplectic oscillates around
a point close to the true value. From these figures it was concluded that the largest oscilla-
tion that should be allowed for the Hamiltonian was 10−5. Furthermore, it was concluded
that the order of the method or step size could be used in order to achieve the desired ac-
curacy.

The harmonic chain was chosen as the system of ODEs in section (4.2). Unlike the
harmonic oscillator, the ODEs in the harmonic chain interacts , which is similar to the
system of magnets. Both because of the nonlinearity of the stack of magnets and in order
to study the exponentially fitted techniques, it would be desirable to perform the numerical
experiments on a nonlinear system. However, due to lack of knowledge about the analy-
sis of nonlinear dynamics this was not considered in this work. and the linear system is
assumed to be sufficient. This is admittedly a drawback of this work because the stack of
magnets was represented by a highly nonlinear system of equations. On the other hand,
the equations of motion in this work are not stiff and the assumption is therefore that the
nonlinearity can be dealt with using exponential fitting techniques.

The results from the numerical experiments are shown in table (4.2) and (4.3). The
tables respectively show the results of three simulations using different step sizes for a
harmonic chain of five and thirteen mass points. In order to ensure the generality of the
results, the same initial conditions were never used twice. The system was instead initi-
ated in different configurations (e.g. zero velocity and random positions or equilibrium
positions and random velocity) and then scaled to have the same total energy. The simu-
lations clearly showed that the order of the method significantly influences the long time
accuracy of the integration. The ”ode45” method from MathWorks performed consistently
well, however this was because the error tolerance (AbsTol and RelTol) was set to 10−10

using the function odeset(). This was necessary in order to produce results even remotely
close to what the symplectic integrators could achieve using a step size in the order of
10−4. This made the integration very slow and combined with the low accuracy and and
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adaptive stepping it was therefore not considered for the system of magnets. The meth-
ods that where specifically derived for this work, however showed much better accuracy
and both of the tables mentioned in the beginning of the paragraph show that the order
of the method is a significant factor in this work. For instance it is clear that the fourth
order standard RKN method shows very similar results as the third order symplectic and
trigonometric RKN (STRKN) method. The regular RKN method is also consistently bet-
ter than the third order exponential RKN (ERKN) method. Even though the second order
Leapfrog and SERKN methods fall short compared with the higher order methods, they
show some interesting properties. The error of these methods is of the same order in all of
the simulations apart from one. However, the amplitude of the Hamiltonian is consistently
lower in the exponentially fitted SERKN method. The fourth order RKN and third order
STRKN shows a similar trend in both tables and the latter was ultimately preferred be-
cause it should perform better when applied to a nonlinear oscillatory system. The system
of magnets was therefore only considered using the STRKN method.

However, for a single second order ODE the SERKN should be considered. The rea-
son for this is that it only require one function evaluation, whereas all the other methods
require two or more. The SERKN method will consequently save a significant amount of
computational time.

6.2 Simulation of a model of a one dimensional system of
magnets oscillating in a gravitational field

The examples in chapter (2) showed the methodology for deriving the model of the
system of magnets in chapter (5). The only difference is that the assumption that the
magnets are ideal dipoles implies that the force field between the magnets is inversely
proportional with the squared distance between the magnets. This force model produced
nonlinear equations of motion and the static equilibrium distribution in section (5.2.1)
could consequently only be obtained explicitly through an approximation. The static initial
conditions required that the height of the first magnet must be set and the total height of the
column along with the force constant would then be determined by the number of magnets
in the system. Section (5.3.1) summarizes the parameters that were constant throughout all
the simulations in this work. It also shows how the linearized model from section (5.1.2)
could be used in order to determine the appropriate step size and when to start the sampling
as previously discussed.

6.2.1 Model validation

The simulations in section (5.3.2) were designed in order to validate the static equilib-
rium conditions. Figure (5.4) shows that the system remains static when the static distri-
bution is used as the initial conditions in the equations of motion. This confirms that the
distribution from (5.2.1) is the static equilibrium of the magnets. The second simulation
was designed to show that the magnets continue to oscillate around the static equilibrium
conditions when they are initiated away from equilibrium. Figure (5.5) shows that prob-
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ability density for the positions of all the magnets. The densities are centered around the
static equilibrium values and they do not overlap. Moreover, the width of the probability
density function varies along the height of the stack. This suggests that the amplitude of
the top magnets must be larger at the top than at the bottom. This can be interpreted as the
density of an atmosphere of a gas and the density is consequently highest at the bottom of
the atmosphere.

By looking at the force model of the magnets it is reasonable to assume that the mag-
nets will never occupy the same position because the force between the magnets will be-
come infinite in the limit where the distance becomes zero. The total energy of the system
in this simulation was also of the same order of magnitude that figure (5.3) defines as
the maximum value. It is therefore reasonable to assume that this result is valid for all
the simulations in this work. Even though the magnets do not overlap according tho the
mathematical model, it does not account for the size of the magnets. This is obviously
something which must be accounted for if the model is built.

The second part of the model validation is shown in section (5.3.3) and considers
the diffusion of kinetic energy. The first simulation in figure (5.6) shows how the kinetic
energy is shared between the magnets when only the top magnet is given an initial velocity.
However, the energy is so small that the system never reaches an equilibrium state. Instead,
it shows the same behavior as the linear model and is divided into eigenfrequencies whose
velocity displacement probability distribution is equal to that of the linearized force model.
The reason for this can be that the initial perturbation sends a wave through the system
which is simply absorbed by the other magnets in the system, and consequently leads to
harmonic oscillations.

6.2.2 Thermodynamic interpretation of statistic variables
The vertical stack of magnets is not a truly thermodynamic system, i.e. the number

of magnets is too small compared with a thermodynamic system which has an infinite
number of components. However, as shown in section (5.12) the system behaves thermo-
dynamically when the total energy of the system is large enough. The microstates of the
system are equally accessible; i.e. the system is ergodic, and the phase space distribution
around a specific state is uniformly distributed, i.e. the system obeys Liouville’s theorem.

The validity of the statistical interpretation of the state variables in this work is entirely
dependent on the argument that figure (5.12) implies that the system is ergodic. How-
ever, the system was also shown to not have ergodic properties in figure (5.11). A much
better argument could possibly be constructed on the basis of a statistical mechanic anal-
ysis of an ensemble of magnets. The ideal gas, on the other hand, is rigorously shown
in Volkovysskii and Sinai (1971) to be an ergodic system. Note that this work does not
suggest any direct connection between the ergodic property of the system of magnets and
the fact that the ideal gas is ergodic. Instead it is observed that the trend in the simulations
indicate that the model shows several properties which resemble that of an ideal gas, which
is ergodic.
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The average kinetic energy, analogue to the temperature, distribution in the system was
shown in figure (5.10) to be uniform. This is supported by the simulations in figure (5.9)
that show the probability density for the velocity displacement of all the magnets can be
approximated using a single Maxwell-Boltzmann density function. The article Velasco
et al. (1996) shows that this is the case for an atmosphere of an ideal gas using an analysis
based on statistical mechanics. Furthermore, the width of the probability density for the
position displacement was shown in figure (5.5) to increase along the height of the col-
umn. The latter result supports the first because it implies that the frequency of the bottom
magnets is higher than those towards the top of the stack. Analogue to an atmosphere of a
gas, this implies that the density of the gas is largest at the bottom.

This interpretation of the pressure of the system was adopted from a similar system
in Ibsen et al. (1997). It was interpreted as the absolute magnetic force excerpted on the
top magnet, i.e. the magnetic force that exceeds the necessary amount needed in order
to support the weight of the magnet. The interesting question was wether the pressure
dependence is linear with respect the total energy, analogous to the thermodynamic ideal
gas pressure dependence with respect to temperature. The results in figure (5.13) suggests
that this is the case for the system of magnets as well.

The results from the simulations indicate that the vertical stack of oscillating magnets
behaves similar to an ideal gas when using appropriate initial conditions, i.e. initial condi-
tions corresponding to a total energy that makes the nonlinear terms of the model interact.
However, the results in this work can not tell why this happens. Moreover, it is curious
that a system consisting of only seven elements can be used as a description of an infinite
thermodynamic ensemble. Moreover, as recently demonstrated in the discussion between
well known academics in Brenner et al. (2013) and Felderhof (2013), one should take care
when basing conclusions contradicting theoretical results based on simulations.

6.3 Suggestions for future work
The model that was presented in this work is somewhat of a ”sandbox”. It can be turned

inside out, upside down, linearized and analyzed. This work focused on the development
of symplectic numerical methods in order to obtain accurate results. The model was also
derived and the statistical interpretation from the simulations was used to determine the
thermodynamic properties of the system. There are several subjects that are interesting in
order to continue this work. The following two sections suggests future topics based on
continuing or extending this work.

6.3.1 Continuation of this work
The most obvious continuation is to build the model and verify the simulations by

measuring the root mean squared velocities as well as the force on the top magnet.

The validation of the model can also be performed using frequency analysis of the low-
energy simulations of the non-linear and the linearized model. The frequency analysis can
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then be used in order to study the transition from the non-linear to the linear domain of
the nonlinear model. This transition is of significant interest because if the model can be
studied analytically in the linear domain, whereas the numerical results will always be an
approximation.

6.3.2 Extension of this work
A powerful extension of this work would be to perform a rigorous statistical mechanic

analysis of the system. The results in this work were based on results from statistical me-
chanics, however the theory was at no point studied in detail.

Another interesting property which was not considered in this work is the entropy of
the system. The ideal gas has an analytic thermodynamic expression for the entropy and
Landsberg et al. (1994) considers the entropy of an ideal gas using a canonical ensemble
from statistical mechanics.
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Chapter 7
Conclusion

This work set out to answer whether a vertical system of magnets oscillating in a grav-
itational field could be used as a model of an atmosphere of an ideal gas.

In order to obtain accurate numerical results, this work also considered methods that
guaranteed that the simulation stayed on the energy surface, i.e. symplectic methods. In
chapter (4) it was found that using exponential fitting techniques in addition to the sym-
plectic requirement gave the best results. Moreover, it was found that choosing a step size
that reflects the dynamics of the system is important. Consequently, since high energy
simulations have fast oscillations the step size must be reduced, often significantly, in or-
der to capture the smallest frequencies. However, as long as the value of the Hamiltonian
was conserved to order O(10−5) all the frequencies were captured accurately by the inte-
gration methods.

The statistical interpretation of the mechanical state variables from the simulations
was considered in chapter (5). The simulations in section (5.7), that were analogous to
the pressure dependence with respect to temperature, showed that the pressure increases
linearly. Moreover, the average kinetic energies for the magnets in the system, analogue to
the thermodynamic temperature, was found to be constant in section (5.5). The analogy to
density also seems to be decreasing along the height of the column in section (5.3.2). The
validity of the statistical interpretation of the simulation results was supported by the fact
that the phase space microstates; shown in section (5.6), obeys the ergodic hypothesis.

The final conclusion is therefore that a model consisting of a finite system of seven
idealized dipole magnets stacked vertically in a gravitational field behaves thermodynam-
ically equivalent to an atmosphere of an ideal gas.
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Appendix A
Magnets equilibrium distribution

This appendix considers the equilibrium state of a one dimensional system of idealized
dipole magnets stacked vertically in a gravitational field. The goal of the appendix is to
derive analytical expressions for the vertical equilibrium distribution of the magnets (i.e.
the initial positions when the velocity is equal to zero).

A.1 Static equilibrium of a vertical system of magnets
This section derives the expression describing the equilibrium distribution for the system
of magnets. In order to give some background it will summarize the derivation of the
equations of motion.
The magnets are described by the Lagrangian in equation (A.1), where yi is the vertical
position of a magnet.

L =
1

2
mẏ2 −mgy +

n∑
i=0

km
(yi+1 − yi)

(A.1)

The equations of motion for the system is obtained by minimizing the action integral of
the Lagrangian. The minimization results in the following Euler-Lagrange equation. The
equation is a requirement that any trajectory which follows a path of minimized action
must satisfy.

∂L
∂y
− d

dt

∂L
∂ẏ

= 0

By applying the Euler-Lagrange equation to the Lagrangian in equation (A.1) the equations
(A.2) for the trajectory of the system is obtained:

mÿi = −mg +
km

(yi − yi−1)2
− km

(yi+1 − yi)2
(A.2)

There is one equation of motion for each magnet in the system.
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The equilibrium distribution of the magnets is found by setting the derivative equal to
zero. The equations shown below represent the first (bottom), all the inner and the last
(top) magnet in the system respectively.

1

(y1 − y0)2
− 1

(y2 − y1)2
=
mg

km
1

(yi − yi−1)2
− 1

(yi+1 − yi)2
=
mg

km
; i = 2 . . . n− 1 (A.3)

1

(yn − yn−1)2
− 1

(yn+1 − yn)2
=
mg

km

Bz = −z0e1 +
mg

km
e ; B =


−1
1 −1

. . . . . .
1 −1

 (A.4)

The following definition was used in equation (A.4).

z =
[

1
(y02−y01)2

1
(y03−y02)2

. . . 1
(y0n+1−y0n)2

]T
z0 =

1

(y0
1 − y0

0)2

When the matrix equation is solved for zi the following expression is obtained

zi = z0 − i
mg

km
; i = 1 . . . n (A.5)

The following expression is obtained when substituting back for y0
i in equation (A.5).

y0
i+1 − y0

i =

√
1

1
(y01−y00)2

− imgkm
; i = 1 . . . n (A.6)

It is necessary to find a suitable expression for the magnetic force field constant (km). This
constant will be to determined using the ratio (α), which is defined as the ratio between
the of the height of a single magnet hovering above a fixed ground state and the bottom
magnet in the stack. The bottom magnet will need to hold the entire weight of the stack
whereas the single magnet only needs to support its own weight. Either way, the force
balance must be satisfied and for the single magnet it is expressed as shown in equation
(A.7).

km
(y0
eq)

2
= mg (A.7)

By combining equation (A.6) and (A.7) and setting the position of the bottom magnet
y0

0 = 0 the following expression is obtained.

y0
i+1 − y0

i = y0
1

√
1

1− αi
;α=̂

(
y0

1

y0
eq

)2

; i = 1 . . . n (A.8)
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The equations are expanded below and the position of the top magnet is set to be the height
of the system (L) (i.e. yn+1 = L).

y0
2 − y0

1 = y0
1

√
1

1− α

y0
3 − y0

2 = y0
1

√
1

1− 2α
...

y0
n − y0

n−1 = y0
1

√
1

1− (n− 1)α

L− y0
n = y0

1

√
1

1− nα

These equations can be condensed into a single nonlinear equation in y0
1 as shown in

equation (A.9)

L− y0
1 = y0

1

n∑
i=1

√
1

1− iα
;α=̂

(
y0

1

y0
eq

)2

(A.9)

The equilibrium distribution of all the magnets can now be obtained using the recursive
relation in equation (A.8). However, the nonlinear equation (A.9) describing the position
of the first magnet must be solved first.

A.2 Equilibrium distribution
This section considers the case when all the magnets are of
equal mass. In this case, the top magnet will float on top
of the stack without exerting any extra force other than the
force of gravity. This is referred to as the relaxed state of
the system. An illustration of the expected equilibrium dis-
tribution is shown in the illustration. The sum in equation
(A.9) is approximated by the integral shown below in order
to obtain an approximated solution to the position of the
first magnet.∫

1
p
√
ax+ b

dx =
p

a(p− 1)
(ax+ b)1− 1

p + C ; p > 1

When this approximation is used on the sum in equation
(A.9) the following expression in obtained∫ n

1

√
1

1− αx
dx =

2

α

(√
1− α−

√
1− αn

)
In order to continue, it is necessary to introduce a couple of assumptions. First, the number
of magnets will always be greater than one and as a general statement it an be assumed
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n � 1. Furthermore, it can be stated that the force excerted by the top magnet is exactly
equal to the force of gravity. This means that magnet n + 1 does not exert any force on
magnet n other than the force of gravity and thereby simply floats on top of the stack of
magnets. The result of these assumptions simplifies the integral as shown below.∫ n

1

√
1

1− αx
dx ≈ 2

α

(√
1− α

)
≈ 2

α

(
1− α

2

)
= 2(n+1)−1 ;

√
1− x ≈ 1−x

2
+O(x2)

When this approximation is used in the original integral the expression in equation (A.10),
the position of the first magnet is obtained.

y0
1 ≈ L

[
1 +

n∑
i=0

√
1

1− αi

]−1

;α =
1

n+ 1
(A.10)

Now it is a trivial task to obtain the equilibrium positions for the rest of the magnets. This
is done by using the position of the first magnet in equation (A.8).

y0
i+1 ≈ y0

i +
L

2(n+ 1)

√
1

1− αi
; i = 0 . . . n (A.11)

The final solution is the static initial condition for the relaxed system of magnets. It is
clear that the distance between the magnets will increase with the height of the column.
The total height can also be estimated using the expression for the equilibrium position of
the first magnet in equation (A.10).

L ≈ 2y0
i (n+ 1)

It is expected that if the system is started using the relaxed equilibrium positions and zero
velocity, it will not move when integrated over time.

In order to solve the equations of motion, it is necessary to find an expression for the
force field constant. This can be obtained by combining equation (A.7) and (A.8). The
result is shown in equation (A.12).

km =
mg(y0

1)2

α
(A.12)

The static equilibrium of the system is now described by the ODEs in equation (A.2) and
the initial conditions in equation (A.10) with zero velocity.
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A.3 Compressed equilibrium distribution
This section considers the solution of equation (A.9),
which describes the position of the first magnet, when the
stack of magnets is compressed (e.g. by adding mass on
the top magnet). An illustration of this case is shown in the
illustration.

Assuming n � 1 and 1 � α while still 1 � nα. The
sum in equation (A.9) can now immediately be expressed
as shown below:

n∑
i=1

x =
n(n+ 1)

2

The square root can be approximated as follows:√
1

1 + αx
≈ 1 +

αx

2
+O(x2)

The approximation leads to the final expression for the
static equilibrium that is shown below.

L− y0
1 = y0

1

n∑
i=1

√
1

1− αi
≈ y0

1

n∑
i=1

(
1 +

αi

2

)
= y0

1

(
n+

αn(n+ 1)

4

)
(A.13)

The last term in the parentheses disappears because of the assumption 1 � nα. The fol-
lowing expression can therefore be found for the equilibrium position of the first magnet.

y0
1 =

L

n+ 1

This expression is linear and the position of all the magnets can therefore be obtained
directly from the recursive relation in equation (A.8 ).

y0
i+1 = y0

i +
L

n+ 1
; i = 0 . . . n

Note that the position of the bottom particle is defined to be zero (i.e. y0
0 = 0).
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A.4 Linearized relaxed model
The equilibrium state is characterized by the balancing of the forces between the mag-
nets. The force due to gravity is already linear; however, the magnetic force between the
magnets can be expressed as follows.

Fi+1,i =
km

(yi+1 − yi)2

Consider the recursion relationship for the equilibrium distribution of the relaxed model in
equation (A.11) in order to describe the distance between the magnets. The representation
of the recursion relation shown below was obtained using the definition of α.

y0
i+1 − y0

i =
L

2n+ 1

√
n+ 1

n+ 1− i

The formulae is an approximate relationship that is limited by the approximations in sec-
tion (A.1). However, it allows for an approximate relationship to be formulated for the
inverse squared equilibrium distance between the magnets.

1(
y0
i+1 − y0

i

)2 =
4(n+ 1)(n+ 1− i)

L2

The force can now be linearized around the static equilibrium using ∆yi+1,i=̂ (yi+1 − yi).

Fi+1,i ≈
km(

∆y0
i+1,i

)2 − 2km(
∆y0

i+1,i

)3 (∆yi+1,i −∆y0
i+1,i

)
+O(∆y2

i+1,i)

Fi+1,i ≈
3km(

∆y0
i+1,i

)2︸ ︷︷ ︸
ci+1,i

− 2km(
∆y0

i+1,i

)3︸ ︷︷ ︸
ki+1,i

∆yi+1,i

The force is now linearized by a straight line with slope ki+1,i and intercept ci+1,i. How-
ever, the force field constant is not known. Instead of trying to express the force constant
explicitly, the force terms can be viewed as a linear system of equations. For one magnet
i there will be two force terms. Because the system is linear, the ratio of the equations de-
scribing the forces can be considered instead of evaluating each equation separately. This
reveals a simple expression for the ratio of the intercepts.

ci+1,i

ci,i−1
=

(
∆y0

i,i−1

∆y0
i+1,i

)2

=
N + 1− i
N + 2− i

Furthermore, as shown below, the ratio between the intercepts can be used in order to
express the ratio of the slopes.

ki+1,i

ki,i−1
=

(
∆y0

i,i−1

∆y0
i+1,i

)3

=

(
ci+1,i

ci,i−1

) 3
2
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The Lagrangian for the linear model can now be formulated based on the standard expres-
sions for the gravitational potential energy and kinetic energy.

U (m) = ci,i−1(yi − yi−1)− ki,i−1

2
(yi − yi−1)2 ; i = 1 . . . n

The equations of motion are derived using the Euler-Lagrange equation from the beginning
of section (A.1). The equations of motion for the linearized Lagrangian are shown in
equation (A.14).

−mÿi −mg + c1,i−1 − ki,i−1(yi − yi−1)− ci+1,i + ki+1,i(yi+1 − yi) = 0 (A.14)

The following vector (c) and tridiagonal metric (T) are defined in order to write the equa-
tions of motion in matrix form.

c =
[
c2,1 − c1,0 . . . ci+1,i − ci,i−1 . . . cn+1 − cn

]T

T =



t1,1 t1,2
t2,1 t2,2 t2,3

. . . . . . . . .
ti,i−1 ti,i ti,i+1

. . . . . . . . .
tn,n−1 tn,n ti,n+1


The elements of the matrix are a function of the index i, however the matrix is still sym-
metric. The following equations can be used to determine the elements in the matrix.

ti,i = ki,i−1 + ki+1,i

ti,i+1 = ti+1,i = −ki+1,i

The matrix representation of the equations of motion can now be written in matrix form.

mÿ = −Ty + k1,0y0e1 + kn+1,nyn+1en − c−mge (A.15)

Where the following vectors have not yet been defined:
e1 = [1, 0, . . . , 0]

T ,en = [0, . . . , 1]
T ,e1 = [1, . . . , 1]

T .
Note that this equation is linear and that all the terms that are multiplied by a vector e are
constant.

The goal is to simplify the equation of motion even further by removing the constant
terms. In order to do this, the steady state solution of the equation of motion shown below
is used.

y0 =
kn+1,ny

0
n+1

m
T−1en −m−1T−1c− gT−1e

In order to simplify the equation of motion in equation (A.15), the steady state solution is
used to define a new variable (q).

q=̂y − y0

When this variable is introduced into the equation of motion, the constant terms cancel
and the final equation of motion is obtained.

q̈ = −m−1Tq (A.16)
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Appendix B
Euler-Lagrange equations from
calculus of variations

This appendix is intended to serve as a short refresher of the ideas behind calculus
of variations. In addition to providing a detailed derivation of the Lagrange equations of
motion, it provides a deeper insight into the properties of functionals.

The starting point for this derivation is the generic functional J [y(x)] shown in equa-
tion (B.1). By looking back at equation (2.4) it can bee seen that the functional has the
same form as the action functional in the previous chapter.

J [y(x)] =

∫ b

a

f(y, y′, x)dx ; y = y(x) y′ =
dy

dx
(B.1)

Figure (B.1) helps to visually introducee the idea behind the process. The left plot in the
figure shows the actual solution ȳ(x) over an integration interval a→ b. The second func-
tion shown is in the vicinity of the solution but is shifted from the actual solution by a
second function η(x) which in turn is scaled by a constant ε. However, the area beneath
the actual solution and the shifted solution is the same because the function η(x) is chosen
such that it vanishes at the endpoints of the integration interval. The strategy that is used as
illustrated in the left picture in figure(B.1) is that instead of considering the actual solution,
a special function in the vicinity of the solution will be considered. The actual solution
can now implicitly be obtained by considering the limit when the scaling constant ε goes
to zero, as shown in the right picture in the figure.

This must now be formulated mathematically. Equation (B.2) is the mathematical
representation of the left picture in figure (B.1). This equation defines the actual solution
as the solution to the minimization of the shifted functional.

d

dε
J [ȳ(x) + εη(x)]

∣∣∣
ε=0

= 0 (B.2)
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ba

ȳ + εη(x)

η(x)

ȳ(x)

ε

J [ȳ(x) + εη(x)]

(
dJ
dε

)
ε=0

Figure B.1: The figure illustrates the idea behind calculus of variations. The goal is to find the
function ȳ(x) that minimizes a functional J [y(x)] over the integration interval a → b. The left
figure shows that if the solution is shifted by a function η(x) and scaled by a constant ε the area
underneath the curved, hence the integral is the same. Instead of minimizing the functional directly
with respect to the actual solution, the shifted solution J [ȳ(x) + εη(x)] can alternatively be used
without changing the value of the functional. The right figure then suggests that the optimal solution,
representing the minimum of the functional, can implicitly be found by considering the limit of the
functional with respect to the shifted solution at the limit ε→ 0.

In order to continue, the expression for the functional from equation (B.1) must be used.
The representation in equation (B.3) was obtained using the shifted solution along with
the minimization requirement from equation (B.2).

d

dε
J [ȳ(x) + εη(x)]

∣∣∣
ε=0

=
d

dε

∫ b

a

f(ȳ + εη, ȳ′ + εη)dx = 0 (B.3)

The next steps are purely mathematical operations. Note that the dependence on the vari-
able x, will no longer be written for the y(x) or ȳ(x). The first step involves the differential
of the integral in equation (B.2 ).

∫ b

a

(∂f
∂y

dy

dε
+
∂f

∂y′
dy′

dε

)
dx ; y = ȳ + εη(x) y′ =

dy

dx
= 0

This expression can be expanded further by using the dependence on ε. And further by
integrating the resulting expression using integration by parts and the limits η(a) = η(b) =
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0 as the integration limits.

∫ b

a

(
η(x)

∂f

∂ȳ
+

v′︷ ︸︸ ︷
η′(x)

u︷︸︸︷
∂f

∂ȳ′

)
dx = 0

↓ Integration by parts∫ b

a

η(x)
{∂f
∂ȳ
− d

dx

∂f

∂ȳ′

}
dx+

��
��

�
��*0(

η(x)
∂f

∂ȳ′

)∣∣∣b
a

= 0

The final result is an integral that must be equal to zero over the integration interval.∫ b

a

η(x)
{∂f
∂ȳ
− d

dx

[ ∂f
∂ȳ′

]}
dx = 0

From this expression it can be concluded that in order to guarantee that the integral is equal
to zero, the function y(x) must satisfy the differential equation (B.4).

∂f

∂y
− d

dx

[ ∂f
∂y′

]
= 0 (B.4)

Even though this was a tedious derivation is is now clear that the Euler-Lagrange equation
can be applied to any functional.
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Appendix C
The Hamiltonian function as the
total energy

The Hamiltonian and Lagrangian functions represents two different representations
of the same mechanical problem. As illustrated below they are connected through the
Legendre transform:

L(q, q̇)
H=̂q̇p−L⇐====⇒ H(q,p) ; p=̂

∂L
∂q̇

However, even though the representations are equivalent with respect to describing the
physics of the system, they must obviously be interpreted differently. In order to study
what the Hamiltonian function represents this appendix considers a Hamiltonian function
which is generated from a general form of the kinetic as a homogeneous function with
respect to the velocity of degree zero, one and two as shown below.

T =
1

2
T (2)(q, t)q̇2 + T (1)(q, t)q̇ + T (0)(q, t) (C.1)

Note that the homogeneous properties of equation (C.1) is supported by Euler’s theorem
for homogeneous functions 1. If the kinetic energy only includes the second order term it
is equivalent to the systems that have been studied throughout the examples in this work.
Further more, it is assumed that if the kinetic energy can be described up to order two with
respect to velocity, the potential energy can equivalently be described as homogeneous of
order zero and one.

U = U (1)(q, t)q̇ + U (0)(q, t) (C.2)

1 If a function is homogeneous of degree ”k” with respect to the variables x it must satisfy the following
relation f(λx1, . . . , λxn, ξ1, . . . , ξn) = λkf(x1, . . . , xn, ξ1, . . . , ξn) Three relations is found by consider-
ing the total differential of the homogeneous function. In this work the interesting relation is the following:(

∂f
∂x

)
ξ
x = kf The relation support the claim that the kinetic energy is homogeneous with respect to the

degrees mentioned.
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The Lagrangian takes the form shown in equation (C.3) when the expressions for the ki-
netic and potential energy from equation (C.1) and (C.2) is used.

L =
1

2
T (2)(q, t)q̇2 + T (1)(q, t)q̇ + T (0)(q, t)− U (1)(q, t)q̇ − U (0)(q, t) (C.3)

The canonical momentum can now be derived obtaining the expression shown in equation
(C.4).

p =
∂L
∂q̇

= T (2)(q, t)q̇ + T (1)(q, t)− U (1)(q, t) (C.4)

As described in section (2.2.1) the expression for the momentum in equation (C.4) must
be inverted.

q̇ = [T (2)(q, t)]−1
(
p− T (1)(q, t) + U (1)(q, t)

)
(C.5)

The result of the inversion of the momentum shown in equation (C.5) can now be used in
order to derive the expression for the Hamiltonian.

H = pq̇ −
[

1

2
T (2)q̇2 + T (1)q̇ + T (0) − U (1)q̇ − U (0)

]
This expression has the same form as equation (C.6). The latter can be found on page 339
in Goldstein et al. (2014) in the context of an equivalent discussion on the interpretation of
the Hamiltonian. The subscripted numbers in the latter equation represents the homogene-
ity of the Lagrangian functions making up a total Lagrangian equivalent to the expression
in equation (C.3).

H = q̇ipi − L = q̇ipi −
[
L0(qi, t) + L1(qi, t)q̇j + L2(qi, t)q̇j q̇k

]
(C.6)

Confident that the derivation is consistent with literature the expression for the Hamilto-
nian is expanded as shown below. This reveals the expression in equation (C.7) as the
expression for the corresponding Hamiltonian for a Lagrangian function that is made up
by the general expressions for kinetic and potential energy in equation (C.1) and (C.2).

H =
1

2
[T (2)]−1

(
p− T (1) + U (1)

)(
p+ T (1) − U (1)

)
− T (0) + U (0) (C.7)

This work only considers Lagrangian functions that are homogeneous of second order
with respect to kinetic energy and zero with respect to potential energy. In this case, the
expression in equation (C.7) reduces to the expression in equation (C.8).

H =
1

2
[T (2)]−1p2 + U (0) ; p=̂T (2)q̇ (C.8)

The final expression for a general Hamiltonian function that describes the systems that are
being studied in this work can now be written as shown in equation (C.9).

H = T (q, t)q̇2 + U(q, t) (C.9)

The result of this derivation shows that the Hamiltonian functions for systems with respec-
tively second and first order dependence on velocity in the kinetic and potential energy is
equal to the total energy of the system.
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Appendix D
The harmonic oscillator

This appendix is aimed at providing a deeper insight into the derivation and solution
of the simple harmonic oscillator and the chain of interacting oscillators. Moreover, it
considers the analytical solution of linear, first order, homogeneous ODE systems.

D.1 Solving first order linear homogeneous ODE systems
using eigenvalue / eigenvector decomposition

This section considers the analytical solution of linear, homogeneous first order ODEs,
i.e. systems that can be written as follows:

ẏ = Ay (D.1)

The solution is obtained using the similarity transform which diagonalizes A using the
eigenvector (S) and eigenvalue matrix (Λ). A = SΛS−1

Λ=̂

λ1 0 0

0
. . . 0

0 0 λn

 S=̂

 νλ,1 . . . νλ,n


The first step is to decouple the equations. This corresponds diagonalizing the coefficient
matrix using the eigenvalue matrix, Λ, and eigenvector matrix, S, to express the coefficient
matrix as A = SΛS−1.

ẏ = SΛS−1y

Using, SS−1 = I, we obtain.
�SS−1ẏ = �SΛS−1y

Using the transformation, S−1y=̂χ, the variables are changed and the equations are now
decoupled.

χ̇ = Λχ
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Each equation now has the solution, χi(t) = eλitχ0,i, which can be expressed in matrix
notation using the matrix exponential, exp(Λt).

χ(t) = exp(Λt)χ0

However, the solution must be transformed back to the original variables.

S−1y(t) = exp(Λt)S−1y0

Multiplying both sides by S yields the actual solution

y(t) = S exp(Λt)S−1y0 (D.2)

This is a general solution that is valid for any homogeneous system of first order differen-
tial equations with constant coefficients and initial conditions y0.

D.2 The simple harmonic oscillator

k
F (h) = −ky

m

This section derives the solution of the harmonic oscil-
lator using the result from section (D.1). The Lagrangian
for the harmonic oscillator has the following form:

L=̂
1

2
mv2−U(y) =

1

2
mv2−1

2
ky2 ;U =

∫ y

0

kγdγ =
1

2
y2

The equations of motion are derived using the Euler-
Lagrange equation shown below.

d

dt

∂L(x, ẋ)

∂ẋ
− dL(x, ẋ)

dx
= 0

The result is a second order ODE that is immediately expressed as a system of first order
equations such that it can be put into the framework from section (D.1).

ÿ = −ω2
0y ⇔

[
ẏ
v̇

]
=

[
0 −1
ω2

0 0

] [
y
v

]
;ω0 =

√
k

m

x=̂

[
q
v

]
ẋ=̂

[
q̇
v̇

]
A=̂

[
0 1
−ω2

0 0

]
The eigenvalues for the system is found by solving the following eigenvalue problem:

det(A− λI) = 0⇔ det

[
−λ 1
−ω2

0 −λ

]
= 0

λ2 + ω2
0 = 0

λ = ±ıω0 (D.3)
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It was expected that the resulting eigenvalues in equation (D.3) would be purely imaginary
since the harmonic oscillator is a purely oscillatory system.

The matrix exponential of the eigenvalue matrix can now be expressed as follows:

exp(Λt) =

[
eλ1t 0

0 eλ2t

]
=

[
eiω0t 0

0 e−iω0t

]
There is one eigenvector (νi) for each eigenvalue (λi). This means that each eigenvalue
must satisfy the following equation:

Aνi = λiνi ⇔
[

0 1
−ω2

0 0

]
νi = λiνi

The results are the two eigenvectors shown below.

v1 =

[
ı
−ω0

]
;λ1 = ıω0

v2 =

[
−ı
−ω0

]
;λ2 = −ıω0

The eigenvector matrix (S) and the inverse can now be found:

S =

[
ı −ı
−ω0 −ω0

]
S−1 =

1

2

[
−ı − 1

ω0

ı − 1
ω0

]
The eigenvector and eigenvalues can now be used in the general solution from equation
(D.2) and the solution is obtained in terms of exponential functions.

x(t) =

[
ı −ı
−ω0 −ω0

] [
eıω0t 0

0 e−ıω0t

] [
− ı

2 − 1
2ω0

ı
2 − 1

2ω0

]
x0

x(t) =
1

2

[
eıω0t + e−ıω0t − ı

ω0
(eıω0t − e−ıω0t)

ıω0(eıω0t − e−ıω0t) eıω0t + e−ıω0t

]
x0

In order to obtain a more familiar formulation, the solution can be rewritten using the
following trigonometric relations:

2 cos(x) = eıx + e−ıx 2ı sin(x) = eıx − e−ıx

The final result is the classic solution of the harmonic oscillator shown below.

x(t) =

[
cos(ω0t)

1
ω0

sin(ω0t)

−ω0 sin(ω0t) cos(ω0t)

]
x0

m[
q(t)
v(t)

]
=

[
qo cos(ω0t) + vo 1

ω0
sin(ω0t)

vo cos(ω0t)− qoω0 sin(ω0t)

]
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D.3 Horizontal chain of n-coupled oscillators
This section considers a chain of coupled harmonic oscillators as shown in the figure

below.

1

m k

2

(. . .)

n− 1 n

In order to obtain the analytical solution to this system, however, it is necessary to perform
an analysis on the equations of motion. Subsection (D.3.1) expresses the equations of
motion for the system as a homogeneous system of second order ODEs. This system can
be solved using the strategy from section (D.1), however, since the eigenvalue problem
involves solving a polynomial equation the system quickly turns into a numerical problem.
On the other hand, as shown in subsection (D.3.2) the solution of the second order ODE
can be obtained analytically for systems of any size by assuming small angles.

D.3.1 Rewriting a non-homogeneous system as a homogeneous sys-
tem using the static equilibrium

The potent energy that is stored in each spring, which makes the total potential energy
take the form of a sum and the Lagrangian is formulated as shown below.

L =
1

2
mẋT ẋ−

n∑
i=0

k
1

2
(xi+1 − xi)2 ;U =

∫ xi+1

xi

kξdξ =

n∑
i=0

k
1

2
(xi+1 − xi)2

Note that the left and right wall are included in the summation, such that when the Euler-
Lagrange equations are applied they must be treated separately from the internal mass
points. The result is the following system of n second order ODEss:

ẍj =
k

m
(x2 − x1)− k

m
(x1 − x0)

ẍj =
k

m
(xj+1 − xj)−

k

m
(xj − xj−1) ; j = 2 . . . n− 1

ẍj =
k

m
(xn+1 − xn)− k

m
(xn − xn−1)

By using the tridiagonal matrix defined below, the system can be expressed in matrix
notation shown in equation (D.4).

T =


2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2


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ẍ = −ω2
0Tx + ω2

0(x0e1 + xn+1en) ;ω0 =

√
k

m
(D.4)

e1 = [1 0 . . .]T en = [0 . . . 1]T y = [y1 . . . yn]T

This system in equation (D.4) is not homogeneous, however by considering the static
equilibrium (ẍ = 0) shown below it can be rewritten as a homogeneous system.

x0 = x0T
−1e1 + xn+1T

−1en

The system is set to have length L = x0
n+1 and consequently the position of the left wall

becomes: x0
0 = 0. The static solution now becomes:

x0 = xn+1T
−1en ; T−1en =

j

N + 1

The recursive relation above defines the elements of the inverted tridiagonal matrix and it
leads to the following analytical expression for the static equilibrium distribution of the
mass points:

x0 = L
j

N + 1
; j = 1 . . . n (D.5)

From the recursive expression in equation (D.5) is s clear that the distance between the
mass points are equal throughout.

In order to express the system in equation (D.4) as a homogeneous ODE system it is
expressed using the deviation from the equilibrium, i.e. the following variable is intro-
duced:

q=̂x− x0

The equation below shows what happens when the deviation variable is introduced in the
non homogeneous system in equation (D.4).

q̈ = −ω2
0Tq + ω2

0T(x0T
−1e1 + xn+1T

−1en︸ ︷︷ ︸
x0

−x0)

The final expression in equation (D.6) is the homogeneous version of the equations of
motion for the harmonic chain.

q̈ = −ω2
0Tq (D.6)

Note that it is a requirement that the walls are stationary, i.e. v0 = vn+1 = 0. This
assumption was introduced very silently when the equations of motion were derived from
the Lagrangian.

109



D.3.2 Analytical solution of the harmonic chain for small angles
Equation (D.6) is a system of n-coupled, linear, homogeneous, ordinary differential

equations. The solution for one oscillator was derived in section (D.3). The basis for the
solution of the coupled system is that the colluded system can be approximated as the
harmonic solution with the eigenvalue (ωp).

qj = Aje
ıωpt ; j = 1 . . . n (D.7)

If the elements of the tridiagonal matrix are stratified, the solution the relationship between
the harmonic and the coupled solution must be expressed as a linear combination shown
below for one equation.

− ω2
pAj = ω2

0(Aj−1 − 2Aj +Aj+1) (D.8)

At the boundary, i.e. the left wall q0 = 0, a solution satisfying the equation for the
coefficients is the following:

Aj = aj sin(jθ) ; j = 0, . . . , n+ 1

The solution can be adapted to obey the second boundary as well by determining θ such
that the function is equal to zero when j = n+ 1.

sin([n+ 1]θ) = 0

⇓
[n+ 1]θ = pπ ; p = 1, . . . , n

θ =
pπ

n+ 1

The harmonic coefficient (ωp) can now be found using equation (D.7) and the assumed
solution as shown below.

qj = aj sin(jθ)eıωpt : q̈j = ω2
0

(
qj+1 + qj−1 − 2qj

)
By differentiating the solution the following expression is obtained:

−ω2
pajsin(jθ) = ω2

0

{
aj sin([j − 1]θ − 2aj sin(jθ)) + aj sin([j + 1]θ)

}
This expression can be rewritten with the result shown below by successively using the
trigonometric relations before demanding that the harmonic coefficient must be positive.

ωp = 2ω0|sin
(θ

2

)
| ;

sin(x±y)=sin(x) cos(y)±sin(y) cos(x)

2 sin2(x)=1−cos(2x)

The reason why the harmonic coefficient must be positive can be understood from the
eigenvalue problem of the harmonic oscillator. In order to ensure that the eigenvalues are
always imaginary, the coefficient in the eigenvalue problem must be positive.
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The final expression for the harmonic coefficient is simply found by inserting the re-
quirement that satisfied the solution right boundary, i.e. θ = pπ

n+1 .

ωp = 2ω0|sin
( pπ

2(n+ 1)

)
| ; p = 1, . . . , n (D.9)

The expression for ωp in equation (D.9) is known as a harmonic series. This means that
the solution is a series of super positioned harmonic waves, i.e. a linear combination of so-
lutions of the harmonic oscillator. The number of harmonic frequencies p are conveniently
chosen to be the same number as the number of oscillators on the chain. This leads to the
following preliminary solution satisfying the boundaries q0 = qn+1 = 0.

q
(p)
j = a

(p)
j sin(j

pπ

n+ 1
)eıωpt ; p = 1 . . . n ; j = 0, . . . , n+ 1

In order to ensure that the solution is real, the coefficients a(p)
j and eıωpt are expressed as

trigonometric functions.

a
(p)
j = ā

(p)
j (cos(α(p)) + i sin(α(p)))

eıωpt = cos(ωpt) + ı sin(ωpt)

The real part of the coefficients can now be extracted according to R(x+ ıy) = 1
2 (x+ ıy+

x−ıy). Finally, the general form of the solution is obtained using yet another trigonometric
relation:

cos(a± b) = cos(a) cos(b)∓ sin(a) sin(b)

q
(p)
j = ā

(p)
j sin

(
j
pπ

n+ 1

)
cos(ωpt+ α(p)) ; p = 1, . . . , n

The solution has two degrees of freedom ā
(p)
j and α(p), corresponding respectively to

amplitude and phase shift. To summarize the solution for the j-th term of the series with
the corresponding eigenfrequency are:

q
(p)
j =

n∑
p=1

ā
(p)
j sin

(
j
pπ

n+ 1

)
cos(ωpt+ α(p))

ωp = 2ω0|sin
( pπ

2(n+ 1)

)
| ; p = 1, . . . , n

(D.10)

111



112



Appendix E
MatLab: Symplectic Integrators

1 function SymplecticIntegration
2

3 % /| m k |\
4 % /|----O----O----O----(...)----O----O----O-----|\
5 % /| 1 n |\
6 %
7 %% Summary:
8 % Slow function simulating a horisontal chain of
9 % harmonic oscillators using various integration techniques.

10 % Integration algoritm is selected "on/off" using "Integration"
11 %
12 % Note that the form of this script has no output function.
13 % This script serves as an example of the implementation of
14 % symplectic methods, however they are functional and can be
15 % used by following the intstruction under ’NOTE’.
16 %
17 % The following url contains a complete and faster implementation
18 % http://folk.ntnu.no/sigveka/Master_Thesis/MatLab/Magnets/
19 %
20 %% Author: Sigve Karolius
21 %% Organization: Department of Chemical Engineering, NTNU, Norway
22 %% Contact: sigveka@stud.ntnu.no
23 %% license: GPLv3
24 %% requires: MatLab R2013a or higher
25 %% since: June 2014
26 %% NOTE:
27 % The integration methods can be used on other problems using
28 % ’CTRL+c’ the desired method -> ’CTRL+v’ in your script
29 %
30 % The input to the integrators must be the following:
31 % int : t_max maximum integration
32 % scalar : h step size
33 % scalar : nu=h
34 % c-vector: y_0 initial conditions
35 %
36 % However, the problem MUST be Hamiltonian and on the form:
37 % dot(y) = v
38 % dot(v) = f(y) ;where f(y) = dv = - dLdy
39 %
40 % The only ODE that the integrator can then be formulated as:
41 % function [dvdt] = dv(y)
42 % dvdt = *some-function*
43 % end
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44

45 Integration = struct( ... % Turn integration algoritms on or off
46 ’SymplecticTrigonometricRKN’, ’off’, ... % 3.rd order
47 ’SymplecticExponentialRKN’, ’off’, ... % 2.nd order
48 ’ExponentialRKN’ , ’off’, ... % 3.rd order
49 ’SymplecticRKN’ , ’off’, ... % 3.rd order
50 ’StandardRKN’ , ’off’, ... % 4.th order
51 ’Leapfrog’ , ’off’, ... % 2.nd order
52 ’Ruth’ , ’off’ ... % 3.rd order
53 );
54

55 t_max = 1000; % time
56 m = 0.12; % mass
57 k = 16.25; % ’Spring’ constant
58 K = 0.1 ; % scale step size (h = K * 1/lambda_min)
59 N = 7; % Number of oscillators
60 L = 1; % Langth
61

62 %-------------------Static equilibrium -------------------------%
63 y_eq = zeros(N,1);
64 for i = 1 : N
65 y_eq(i) = L * ( i/(N+1) );
66 end
67 w = sqrt(k/m); % Ratio used in the equations of motion
68 %...............................................................%
69

70 %------------------- Linear system -------------------------%
71 dHdp = eye(N);
72 dHdq = wˆ2*(2*diag(ones(1,N))...
73 -diag(ones(1,N-1),-1) ...
74 -diag(ones(1,N-1),1));
75 z = zeros(N);
76 A = [z,dHdp;-dHdq,z];
77 [S,D] = eig(A);
78 s = inv(S);
79 eigen = D*ones(2*N,1);
80 %...............................................................%
81

82 %------------------ Integration Interval -----------------------%
83 h = K/max(abs(eigen));% step size: 1% of maximum frequency
84 t_samp = 5/min(abs(eigen));% start sampling
85 Nstep = t_max/h;
86 t_span = [0 t_max]; % Demanded by ode15s and ode45
87 nu = h; % exponential approximation
88 %...............................................................%
89

90 %------------------ Initial conditions -------------------------%
91 levels = linspace(0,L,N+2)’;
92 % equilibrium positions & zero velocities
93 %y_0 = [y_eq(1:end); zeros(N,1)]
94 % equidistant positions & random velocities
95 %y_0 = [levels(2:N+1); 0.5*(rand(N,1)-0.5)];
96 % random positions & random velocities
97 %y_0 = [sort(L*rand(N,1)); 0.5*(10.5*rand(N,1)-0.5)] %H=3
98 % random positions & zero velocities
99 %y_0 = [sort(L*8*rand(N,1)); zeros(N,1)]

100 %y_0 = [sort(L*32*rand(N,1)); zeros(N,1)]
101 % equilibrium positions & random velocities
102 y_0 = [y_eq;rand(N,1)]
103 %...............................................................%
104

105 %---- ODE and function describing the change wrt. position -----%
106 function [ dvdt ] = dv(q) % dv = - dHdq
107 dHdq = -wˆ2*( diff([0;q;L]));
108 dvdt = dHdq(1:end-1) - dHdq(2:end);
109 end
110 %...............................................................%
111
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112 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
113 % Integrators %
114 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
115 % In all algorithms:
116 %
117 % q1 ... qn | p1 ... pn
118 % ___________|___________
119 % t1|
120 % t2|
121 % y = . |
122 % . |
123 % . |
124 % tn|
125 %
126 % q_temp,v_temp: c-vector [Nx1] overwritten in integration step
127 % t : c-vector [length(t_span) x 1]
128 % count : counter
129 %
130 %---------------------------------------------------------------%
131 %% Symplectic Trigonometric RKN (Third order)
132 if strcmpi(Integration.SymplecticTrigonometricRKN, ’on’)
133 y = zeros(length(h:h:t_max),2*N);
134 t = zeros(length(h:h:t_max), 1 );
135 % Coefficients
136 bb2 = [-0.18799161879915978201; ...
137 0.014823031830119705447; ...
138 -0.0006567635698988819674; ...
139 0.00005008999261903756659;...
140 -2.2837596032644413e-6; ...
141 1.6950437269127458e-7];
142 bb3 = [ 0.635066644920623115; ...
143 -0.01482303183011970545; ...
144 -0.001438399281608581791; ...
145 0.0000827946627077300777; ...
146 -1.4655145815655087e-6; ...
147 2.9118114430067654e-8];
148 cc3 = [ 0.73166990421824007504; ...
149 -0.01164255863026712775; ...
150 -0.000354772795572808874; ...
151 -0.0000250077938624870232; ...
152 -5.568816130391094e-7; ...
153 -5.801982609741059e-8];
154 c3=0;
155 b2=0;
156 b3=0;
157 c = 1; % counter to access element in coefficient vector
158 for u = 0 : 2 : 10
159 z = (nu*h)ˆu;
160 b2 = b2 + bb2(c)*z ;
161 b3 = b3 + bb3(c)*z ;
162 c3 = c3 + cc3(c)*z ;
163 c = c+1;
164 end
165 c1 = 0;
166 c2 = -0.18799161879915978201;
167 b1 = 0.552924973878536667 ;
168 B1 = b1;
169 B2 = b2*(1-c2);
170 B3 = b3*(1-c3);
171 a21 = b1*c2;
172 a31 = b1*c3;
173 a32 = b2*(c3-c2);
174 % Preparing Integration
175 count = 1;
176 y(count,:) = y_0;
177 q_temp = y_0(1:N);
178 v_temp = y_0(N+1:2*N);
179 % Integrate
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180 for T = h : h : t_max;
181 % Determine coefficients
182 k1 = dv(q_temp);
183 k2 = dv(q_temp + h*c2*v_temp+ hˆ2*a21*k1);
184 k3 = dv(q_temp + h*c3*v_temp+ hˆ2*(a31*k1+a32*k2));
185 % Perform numerical step
186 q_temp = q_temp + h*v_temp + hˆ2*(B1*k1 + B2*k2 + B3*k3);
187 v_temp = v_temp + h* (b1*k1 + b2*k2 + b3*k3);
188 % Save
189 t(count) = T ;
190 y(count,:) = [q_temp’,v_temp’];
191 count = count + 1;
192 end
193 Analyze(y_0,y,t,’SymplecticTrigonometric_RKN’);
194 % Free memory
195 clear t qp Y1 Y2 B1 B2 b1 b2 c2 alpha32 alpha31 alpha21 ...
196 k1 k2 k3 q_temp v_temp c3 B3 b3
197 end
198 %
199 %...............................................................%
200 %---------------------------------------------------------------%
201 %% Symplectic and Exponential RKN
202 if strcmpi(Integration.SymplecticExponentialRKN, ’on’)
203 y = zeros(length(h:h:t_max),2*N);
204 t = zeros(length(h:h:t_max), 1 );
205 % coefficients
206 if abs(nu*h) <= 0.1
207 Alpha = [1/2; ...
208 1/24; ...
209 1/720; ...
210 1/40320; ...
211 1/3628800; ...
212 1/479001600; ...
213 1/87178291200; ...
214 1/20922789888000];
215 Gamma = [1; ...
216 1/6; ...
217 1/120; ...
218 1/5040; ...
219 1/362880; ...
220 1/39916800; ...
221 1/6227020800; ...
222 1/1307674368000];
223 bb2 = [1/2; ...
224 -1/24; ...
225 1/240; ...
226 -17/40320; ...
227 31/725760; ...
228 -691/159667200; ...
229 5461/12454041600; ...
230 -929569/20922789888000];
231 gamma = 0 ;
232 b2 = 0 ;
233 alpha = 0 ;
234 c = 1; % counter to access element in coefficient vector
235 for u = 0 : 2 : 14
236 z = (nu*h)ˆu ;
237 gamma = gamma + Gamma(c)*z;
238 b2 = b2 + bb2(c)*z ;
239 alpha = alpha + Alpha(c)*z ;
240 c = c+1 ;
241 end
242 else
243 gamma = sinh(nu*h)/(nu*h) ;
244 b2 = sinh(nu*h)/(nu*h*(cosh(nu*h)+1));
245 alpha = (cosh(nu*h)-1)/(nu*nu*h*h) ;
246 end
247 B1 = alpha;
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248 B2 = 0 ;
249 g1 = 1 ;
250 g2 = gamma;
251 g3 = 1 ;
252 c2 = 1 ;
253 b1 = b2 ;
254 % Variables used by the integrator
255 count = 1;
256 q_temp = y_0(1:N);
257 v_temp = y_0(N+1:2*N);
258 k2 = dv(0,q_temp);
259 for T = h : h : t_max;
260 % Evaluate coefficients
261 k1 = k2; % FSAL assumption
262 k2 = dv(q_temp+c2*gamma*h*v_temp+hˆ2*alpha*k1);
263 % Perform numerical step
264 q_temp = g1*q_temp +g2*h*v_temp + hˆ2*(B1*k1+B2*k2);
265 v_temp = g3*v_temp +h*(b1*k1+b2*k2);
266 % Save current step
267 t(count) = T ;
268 y(count,:) = [q_temp’,v_temp’];
269 count = count + 1 ;
270 end
271 Analyze(y_0,y,t,’Symplectic_Exponential_RKN’);
272 % Free memory
273 clear t qp Y1 Y2 g1 g2 g3 B1 B2 b1 b2 c2 alpha Alpha ...
274 q_temp v_temp Gamma gamma BB2
275 end
276 %
277 %...............................................................%
278 %---------------------------------------------------------------%
279 %% Exponential RKN (Third order)
280 if strcmpi(Integration.ExponentialRKN, ’on’)
281 y = zeros(length(h:h:t_max),2*N);
282 t = zeros(length(h:h:t_max), 1 );
283 c2 = 2/3;
284 % Coefficients
285 Alpha = [2/9; ...
286 2/243; ...
287 4/32805; ...
288 2/2066715; ...
289 4/837019575; ...
290 4/248594813775; ...
291 8/203599152481725; ...
292 2/27485885585032875];
293 Gamma = [1; ...
294 2/27; ...
295 2/1215; ...
296 4/229635; ...
297 2/18600435; ...
298 4/9207215325; ...
299 4/3231732579075; ...
300 8/3053987287225875];
301 bb1 = [1/4; ...
302 -1/144; ...
303 11/38880; ...
304 -731/58786560; ...
305 589/1058158080; ...
306 -471953/18856376985600; ...
307 14913991/13237176643891200; ...
308 -307687339/6065033662291968000];
309 bb2 = [3/4; ...
310 1/144;13/38880; ...
311 -709/58786560; ...
312 587/1058158080; ...
313 -471487/18856376985600; ...
314 14910353/13237176643891200; ...
315 -3384354151/66715370285211648000];
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316 BB1 = [1/4; ...
317 -17/2160; ...
318 55/163296; ...
319 -13231/881798400; ...
320 117673/174596083200; ...
321 -780698467/25738954585344000;...
322 34511669/25270973592883200; ...
323 -1046191876349/17012419422728970240000];
324 BB2 = [1/4; ...
325 -13/2160; ...
326 271/816480; ...
327 -1877/125971200; ...
328 23497/34919216640; ...
329 -780383783/25738954585344000; ...
330 379590131/277980709521715200;...
331 -95105958011/1546583583884451840000];
332 gamma =0;
333 b1 =0;
334 b2 =0;
335 B1 =0;
336 B2 =0;
337 alpha =0;
338 c = 1; % counter to access element in coefficient vector
339 for u = 0 : 2 : 14
340 z = (nu*h)ˆu;
341 gamma = gamma + Gamma(c)*z;
342 b1 = b1 + bb1(c)*z ;
343 b2 = b2 + bb2(c)*z ;
344 B1 = B1 + BB1(c)*z ;
345 B2 = B2 + BB2(c)*z ;
346 alpha = alpha + Alpha(c)*z ;
347 c = c+1;
348 end
349

350 % Variables used by the integrator
351 count = 1;
352 y(count,:) = y_0;
353 % Integration
354 q_temp = y_0(1:N);
355 v_temp = y_0(N+1:2*N);
356 for T = h : h : t_max;
357 % evaluate coefficients
358 k1 = dv(T,q_temp);
359 k2 = dv(T,q_temp+h*gamma*c2*v_temp+h*h*alpha*k1);
360 % perform numerical step
361 q_temp = q_temp + h * v_temp + h*h*( B1 * k1 + B2 * k2 );
362 v_temp = v_temp + h* ( b1 * k1 + b2 * k2 );
363 % Save step
364 t(count) = T ;
365 y(count,:) = [q_temp’,v_temp’];
366 count = count + 1;
367 end
368 Analyze(y_0,y,t,’Exponential_RKN’);
369 % Free memory
370 clear t Y1 Y2 g1 g2 g3 B1 B2 b1 b2 alpha Alpha Gamma ...
371 BB1 BB2 c z c2 q_temp v_temp y gamma bb1
372 end
373 %
374 %...............................................................%
375 %---------------------------------------------------------------%
376 %% Third order symplectic RKN (Third order)
377 if strcmpi(Integration.SymplecticRKN, ’on’)
378 y = zeros(length(h:h:t_max),2*N);
379 t = zeros(length(h:h:t_max), 1 );
380 c2 = 2/3;
381 c3 = 0;
382 b1 = 7/24;
383 b2 = 3/4;
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384 b3 =-1/24;
385 B1 = 7/24;
386 B2 = 1/4;
387 B3 =-1/24;
388 a21= 7/36;
389 a31= 0;
390 a32=-1/2;
391 count = 1;
392 y(count,:) = y_0;
393 q_temp = y_0(1:N);
394 v_temp = y_0(N+1:2*N);
395 for T = h : h : t_max;
396 % Determine coefficients
397 k1 = dv(T,q_temp);
398 k2 = dv(T+c2*h,q_temp+ h*c2*v_temp+ hˆ2*a21*k1);
399 k3 = dv(T+c3*h,q_temp+ h*c3*v_temp+ hˆ2*(a31*k1+a32*k2));
400 % Perform numerical step
401 q_temp = q_temp + h*v_temp + hˆ2*(B1*k1 + B2*k2 + B3*k3);
402 v_temp = v_temp + h* (b1*k1 + b2*k2 + b3*k3);
403 % Save
404 t(count) = T;
405 y(count,:) = [q_temp’,v_temp’];
406 count = count + 1;
407 end
408 Analyze(y_0,y,t,’SymplecticTrigonometric_RKN’);
409 % Free memory
410 clear t qp Y1 Y2 B1 B2 b1 b2 c2 alpha32 alpha31 alpha21 ...
411 k1 k2 k3 q_temp v_temp c3 B3 b3
412 end
413 %
414 %...............................................................%
415 %---------------------------------------------------------------%
416 %% Standard RKN (fourth order)
417 if strcmpi(Integration.StandardRKN, ’on’)
418 % Create solution vectors
419 y = zeros(length(h:h:t_max),2*N);
420 t = zeros(length(h:h:t_max), 1 );
421 % Coefficients
422 c2 = 0.5;
423 c3 = 1;
424 alpha21= 1/8;
425 alpha31= 0;
426 alpha32=1/2;
427 B1 = 1/6;
428 B2 = 1/3;
429 B3 = 0 ;
430 b1 = 1/6;
431 b2 = 4/6;
432 b3 = 1/6;
433 % Initiate integration
434 count = 1;
435 q_temp = y_0(1:N);
436 v_temp = y_0(N+1:2*N);
437 for T = h : h : t_max;
438 %Determine coefficients
439 k1 = dv(T,q_temp);
440 k2 = dv(T+c2*h,q_temp+h*c2*v_temp+hˆ2*alpha21*k1);
441 k3 = dv(T+c3*h,q_temp+h*c3*v_temp+hˆ2*(alpha32*k2));
442 % Perform numerical increment
443 q_temp = q_temp + h * v_temp + h *h* (B1*k1+B2*k2+B3*k3);
444 v_temp = v_temp + h * ( b1*k1 + b2*k2 +b3*k3);
445 % Save
446 t(count) = T ;
447 y(count,:) = [q_temp’,v_temp’];
448 count = count + 1;
449 end
450 Analyze(y_0,y,t,’Standard_RKN’);
451 % Free memory
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452 clear t qp Y1 Y2 B1 B2 b1 b2 c2 alpha32 alpha31 alpha21 ...
453 k1 k2 k3 q_temp v_temp c3 B3 b3
454 end
455 %
456 %...............................................................%
457 %---------------------------------------------------------------%
458 %% Leapfrog
459 if strcmpi(Integration.Leapfrog, ’on’)
460 y = zeros(length(h:h:t_max),2*N) ;
461 t = zeros(length(h:h:t_max), 1 );
462 count = 1 ;
463 y(count,:) = y_0 ;
464 q_temp = y_0(1:N) ;
465 v_temp = y_0(N+1:2*N) ;
466 for T = h : h : t_max ;
467 % Integration
468 q_temp = q_temp + h *0.5 * v_temp ;
469 v_temp = v_temp + h * dv(q_temp) ;
470 q_temp = q_temp + h *0.5 * v_temp ;
471 % Saving the calculation and preparing for next itteration
472 t(count,1) = T ;
473 y(count,:) = [q_temp’,v_temp’];
474 end
475 Analyze(y_0,y,t,’Leapfrog’);
476 % Free memory
477 clear T count y v_temp q_temp t
478 end
479 %
480 %...............................................................%
481 %---------------------------------------------------------------%
482 %% Ruth
483 if strcmpi(Integration.Ruth, ’on’)
484 y = zeros(length(h:h:t_max),2*N);
485 t = zeros(length(h:h:t_max), 1 );
486 c1 = 7/24;
487 c2 = 3/4 ;
488 c3 =-1/24;
489 d1 = 2/3 ;
490 d2 =-2/3 ;
491 d3 = 1 ;
492 count = 1;
493 y(count,:) = y_0;
494 q_temp = y_0(1:N) ;
495 v_temp = y_0(N+1:2*N);
496 for T = h : h : t_max;
497 % Intermediate variables
498 P1 = v_temp + c1 * h * dv(q_temp);
499 Q1 = q_temp + d1 * h * P1 ;
500 P2 = P1 + c2 * h * dv(Q1) ;
501 Q2 = Q1 + d2 * h * P2 ;
502 % Algoritm calculating next step
503 v_temp = P2 + c3 * h * dv(Q2) ;
504 q_temp = Q2 + d3 * h * v_temp ;
505 % Saving the calculation and preparing for next itteration
506 t(count,1) = T ;
507 y(count,:) = [q_temp’,v_temp’] ;
508 count = count + 1;
509 end
510 Analyze(y_0,y,t,’Ruth’);
511 % Free memory
512 clear T count y v_temp q_temp t c1 c2 c3 d1 d2 d3 P1 P2 Q1 Q2
513 end
514 %...............................................................%
515

516 end

120


	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	List of symbols
	Latin symbols
	Greek symbols
	Mathematical symbols
	Matrices and vectors

	Acronyms
	Introduction
	Background and motivation
	Objective and scope of the work
	Structure of the thesis
	Classical Mechanics
	Lagrangian Mechanics
	The Lagrangian function
	The Lagrange equations of motion
	Determining the static equilibrium distribution
	Cyclic Coordinates

	Hamiltonian Mechanics
	Generating the Hamiltonian
	The Hamilton Equations of Motion
	Canonical Transformations using generating functions
	Canonical Transformations from a symplectic perspective


	Integration of Hamiltonian Systems
	Canonical integration methods
	Canonical Euler Integration
	Leapfrog

	Symplectic integration algorithms
	Runge-Kutta-Nyström integration
	Symplectic Runge-Kutta-Nyström integration
	Exponentially fitted Runge-Kutta-Nyström integration
	Symplectic, Exponentially fitted Runge-Kutta-Nyström integration


	Numerical experiments
	Characteristics of symplectic algorithms
	Long-time integration of linear oscillatory systems
	Model of a one-dimensional system of magnets in a gravitational field
	Equations of motion
	Complete model
	Linearized model

	Static equilibrium distribution
	Relaxed state
	Compressed state

	Simulation parameters and model validation
	Model and integrator parameters
	Validation of static initial conditions
	Validating diffusion of kinetic energy

	Equilibrium simulations
	Equipartition
	Ergodic hypothesis
	Pressure dependence

	Discussion
	The symplectic integrators
	Simulation of a model of a one dimensional system of magnets oscillating in a gravitational field
	Model validation
	Thermodynamic interpretation of statistic variables

	Suggestions for future work
	Continuation of this work
	Extension of this work


	Conclusion

	Bibliography

	Magnets equilibrium distribution
	Static equilibrium of a vertical system of magnets
	Equilibrium distribution
	Compressed equilibrium distribution
	Linearized relaxed model
	Euler-Lagrange equations from calculus of variations
	The Hamiltonian function as the total energy
	The harmonic oscillator
	Solving first order linear homogeneous ODE systems using eigenvalue / eigenvector decomposition
	The simple harmonic oscillator
	Horizontal chain of n-coupled oscillators
	Rewriting a non-homogeneous system as a homogeneous system using the static equilibrium
	Analytical solution of the harmonic chain for small angles

	MatLab: Symplectic Integrators









