
Hazard and Operability Study by Utilizing
Hybrid Automata

Bjørn Tore Mathisen

Chemical Engineering and Biotechnology

Supervisor: Heinz A. Preisig, IKP

Department of Chemical Engineering

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

The following thesis is the end of a five year master program at the Norwe-
gian University of Science and Technology, as part of the process eng. group
at the institute of chemical engineering. Supervisor for the thesis has been
professor Heinz Preisig, who also contributes directly as the thesis revolves
around an algorithm developed during P. Philips Phd research period [1] in
2001, with Preisig as a supervisor. In addition his graphical approach to
modelling of continuous systems has also served as a large inspiration in this
thesis. His continuous support, encouragement and open door policy has
been greatly appreciated.

This thesis utilizes the hybrid automaton modelling procedure. A modelling
technique designed for dealing with hybrid systems. Hybrid systems are
systems with mixed discrete and continuous dynamics. A description fit-
ting a large number of systems, i.e. a digital signal affecting a system with
continuous natural behavior. This makes the technique highly applicable in
chemical engineering. All modelling of process systems is affected by the
person responsible, in term of assumptions and simplifications. In this thesis
a three tank system is modelled as a hybrid automaton by discretizing the
continuous state space into a set of hypercubes. By doing so a large number
of possible state trajectories can be evaluated crudely by considering the
predetermined directionality of the transition between hypercubes.

By utilizing the algorithm developed by Phillips [1] a hybrid automaton with
a table of possible state transitions is returned. The transition tables dis-
plays the directionality of the state in question in regard to a dependable
state. By defining a hazardous boundary, i.e. highest allowed temperature,
any state reaching a hazardous value can be identified by a transition direc-
tion to the hazardous region. Two hypothesis was suggested and evaluated
by implementing the algorithm in a case study. The hypothesis was tested
by comparing the hazards identified by searching the transition tables to a
conventional structurized hazard and operability study. The two hypothe-
sises were:

Hypothesis 1: Any guideword/parameter combination in a conventional
hazard and operability study can be swapped with an evaluation of the hybrid
automaton transition table

Hypothesis 2: If the automaton is generated over the boundaries spanning
the safe operation domain. Any operational hazards must be visible in the

transition table as a possible transition out of the domain

The case study was a three tank hot and cold liquid mixing plant. The sys-
tem has a total of 6 states, leading to 6 transition tables. A search algorithm
was developed to identify possible hazards. The algorithm successfully iden-
tified hazardous transitions for the case study, and the hazards match the
results form manual evaluation.

After a comparison between the conventional hazard and operability study
and the hybrid automaton approach the hypothesis still stands. However,
there is some uncertainty whether the discrete input used by the hybrid
automaton, e.g., flow rates being set to max or min, is sufficient for more
complex systems. For example, it is well-known that maximum temperature
out of exothermic reactors may occur at flow-rates between max and min
due to non-linear effects.

In order to apply the algorithm on industrial plants, capabilities to detect
and handle completely independent states must be improved. A state vari-
able transfer from enthalpy to temperature resulted in a software crash due
to independent states. Such independency will be normal in real plants. Dis-
regarding independent states completely is not beneficial since other states
may depend on said state, and this makes it vital to include in the hybrid
automaton.

ii

Declaration of Compliance

I declare that this is an independent
work according to the exam regula-
tions of the Norwegian University of
Science and Technology (NTNU).

Bjørn Tore Mathisen, Trondheim, June 20, 2014

iii

Contents

Abstract i

1 Introduction 1
1.1 Motivation . 1

2 Theoretic Background 3
2.1 Modelling of continuous systems 3

2.1.1 The modelling process 3
2.1.2 Defining lumped and distributed systems 4
2.1.3 The impact of time scales 4

2.2 Graph theory . 6
2.2.1 Continous systems . 7
2.2.2 Hybrid systems . 7

3 Hybrid Systems 8
3.1 Hybrid Automata . 8

3.1.1 Example discrete dynamics: The Bouncing Ball 9
3.1.2 Example discrete state approach to control: Stabiliz-

ing an inverted pendulum 12
3.1.3 Summary of hybrid automaton applications so far . . . 22

4 Hazard and operability study - HAZOP 23
4.1 The procedure . 24

5 Case Study- Modelling and Automaton generation 27
5.1 2 Tank Isothermic model . 27

5.1.1 Modelling . 28
5.1.2 Defined system . 28
5.1.3 State Space representation 29
5.1.4 Continuous model simulations 30
5.1.5 The hybrid automaton for the two tank system 31
5.1.6 DEDS -Algorithm completing the automaton with tran-

sition tables . 38
5.1.7 Evaluating the results; the two tank automaton tran-

sition tables . 42
5.2 3 Tank hot and cold liquid mixing 43

5.2.1 Modelling . 44
5.2.2 Defined system . 48
5.2.3 Aquiring the Jacobi incidence matrix 50
5.2.4 Dealing with negative flow rates in the enthalpy balances 50
5.2.5 Utilizing Heinz Preisig Non-linear Hybrid Automaton

generator . 51

iv

6 Case Study: Comparison between a traditional approach and
utilizing the automaton model 55
6.1 Traditional hzop analysis of the 3 tank system 55

6.1.1 Node selection and purpose identification 55
6.1.2 Selection of guidewords and process parameters 56
6.1.3 Combining parameters and guidewords. Evaluating a

possible deviations and a causes 57
6.1.4 Summary of proposed actions by utilizing the Hazop

procedure . 62
6.2 Hazop analysis utilizing the 3 tank automaton 63

6.2.1 Evaluating the hybrid automaton for tank H 63
6.2.2 Hybrid automaton hazop performance 66
6.2.3 Hybrid automaton script limitations 68

7 Discussion 69
7.1 Hybrid automaton modelling script nlinauto.m 69
7.2 Hybrid automaton approach versus traditional hazop 70
7.3 The developed search algorithm for hazardous transitions . . 71
7.4 Handling state variable transformation 71
7.5 Further work before plant study 72

8 Conclusion 73

9 Suggested further development 74

10 Variable List 76
10.1 Indexes and special nomenclature 76
10.2 Variables . 76

A Automaton Transition tables 77
A.1 3 Tank Mass Balances . 77

A.1.1 xs = x1 (Tank H) . 77
A.1.2 xs = x2 (Tank C) . 77
A.1.3 xs = x3 (Tank M) . 78

A.2 3 Tank Energy Balances . 79
A.2.1 xs = x4 (Tank H) . 79
A.2.2 xs = x5 (Tank C) . 80
A.2.3 xs = x6 (Tank M) . 80

B Hazop 82
B.1 Traditional Hazop procedure 82

B.1.1 Tank H . 82
B.1.2 Tank C . 86
B.1.3 Tank M . 90

B.2 Automaton Hazop procedure 94

v

B.2.1 Mass balance Tank H 94
B.2.2 Mass balance Tank C 96
B.2.3 Mass balance Tank M 97
B.2.4 Energy balance Tank H 98
B.2.5 Energy balance Tank C 100
B.2.6 Energy balance Tank M 103

C MATLAB Scripts 104
C.1 Bouncing ball . 104

C.1.1 With zero cross detection Runball.m 104
C.1.2 Without zero cross detection Runnonball.m 105

C.2 The inverted pendulum . 106
C.2.1 Run script Runpendu.m 106
C.2.2 Dynamics inversependu.m 107
C.2.3 Controller controller.m 107

C.3 2 tank system . 108
C.3.1 2D linear automaton by Heinz Preisig linauto2d.m . . 108
C.3.2 Continouos model simulation 110
C.3.3 Automaton model visualization 112

C.4 3 tank system . 120
C.4.1 Modified non-linear automaton by H. Preisig and B.

T. Mathisen nlinauto.m 120
C.4.2 Input file for nlinauto.m 125

C.5 Linearization . 128
C.6 Hazard finder autohaz.m . 131

D Additional tests 132
D.1 State variable transformation 132
D.2 Utilizing linear automaton . 133

D.2.1 Steady State Calculation 135
D.2.2 Linear state space representation 135

vi

1 Introduction

The subject of this thesis revolves around trying to automate the hazardous
operability (hazop) study frequently performed in chemical processes. This
will be done by modeling the system as a hybrid automaton. A hybrid au-
tomaton is a modelling frame for systems with both discreet and dynamic
behaviour, hybrid systems. The thesis will provide an in dept introduc-
tion to the hybrid automaton technique later on, as well as argue that any
system may fit under the hybrid system label. The subject of hybrid automa-
ton modelling in chemical process industry is a still undeveloped. Previous
master thesis [2] have experienced large difficulties with implementing the
technique to complicated systems. This thesis therefore has a large focus on
the ground work. Supported with examples that hopefully will awaken inter-
est for the subject as well as displaying key elements. The thesis emphasis a
thorough explanation of the hybrid automata, with the hope that the next
generation of master students will find the subject less overwhelming, and
might wish to continue the development. The subject is recommended to
all students who share the authors interest for modelling process systems.
And hopefully this thesis will shorten the time needed for research, so that
the procedure can be further developed in to handling increasingly complex
systems.

The result is two overlapping objectives for the thesis

Objective 1 Develop an thorough, from the ground up, introduction that
may work as a learning tool for future students.

Objective 2 Explore the possibility of using the hybrid automaton modelling
technique to automate the Hazop procedure

1.1 Motivation

Personal previous experience in the process industry includes a particular
event that motivated the following study. A closed of tank had a leak from
it’s internal steam coils, transferring energy into the remaining liquid reced-
ing in the tank. After enough time had passed the energy which accumulated
in the tank, was enough to induce a chemical reaction in an explosive fash-
ion. The plant had been running for decades without a similar experience
when the incident took place. A valuable lesson was thought that day. Com-
plex system have an infinite number of possible state trajectories. Trying to
predict them all in a conventional modelling fashion is just not viable. No
model used for design purposes includes "leak streams" or "hole in the tank

1

streams". And even if they are included the initial states have a huge impact
on how the trajectory develops. If the previously mentioned tank was filled,
then the energy transfer from the steam coil leak would reach a steady state
with the transfer of energy from the tank to the environment. This means
that the only simulation that would portray the hazard, would have to be
performed with an initial level close to zero. This is all information that
is available after a hazardous incident is investigated. And therefor easily
overlooked in the modelling procedure. It can be hard to predict exactly
which initial states and disturbances that can lead to a dangerous situation.
Therefor a cruder modelling procedure, able to evaluate the net direction of
the state trajectory, and therefor cover a larger scale of state trajectories in
the state space, is needed.

2

2 Theoretic Background

2.1 Modelling of continuous systems

2.1.1 The modelling process

The task of establishing a working and sufficient mathematical model is in
Preisig [3] divided in to three primary steps:

• Primary mapping

The first step of modelling a real-world system is to describe the system
mathematically. So if solved, the mathematical model will portray the de-
velopment of the states of interest over time. To establish such a model
requires theoretic knowledge. Of which discipline depends on the timescale,
the actual scale of the system and the nature of the system. The established
model will in any case be a set of differential equations with a set of ac-
companying algebraic equations. The differential equations can (depending
on the system and performed model simplifications) be partial differential
equations or ordinary differential equations. In Preisig [3] a set of ordinary
differential equations are labeled as lumps and partial differential equations
as distributed. The chosen use and connection of lumps and/or distributed
systems tells how the system is assumed to behave and it’s important to be
aware of the consequences that follows from the chosen differential equations.

• Model simplifications

Further simplifications are usually made when the established model is solved
for a chosen timescale. A common simplification is linearizing the model in
way that simplifies integrating the differential equations. While simplifica-
tions that have a direct impact on the algebraic equations, i.e.the chosen
equation of state is at this point already established. The selection of such
algebraic simplifications belongs under the primary mapping tab. Other
model simplifications may be numerical simplifications connected to the cho-
sen solver.

• Model fitting

The final primary step is model fitting. This step is dedicated to match
the states predicted from the solver with the measured values from the real
system. An objective function is established which compares error between
measured and calculated values, such that it can be used for adjusting a
model parameter. Hence the step is sometimes referred to as parameter
identification

What at this point may have become apparent is that a model is subject to
individual preferences and procedures. The road to a sufficient model will
be largely influenced by the person responsible for the modelling.

3

2.1.2 Defining lumped and distributed systems

When modelling system which evaluates algebraic and/or differentials by use
of intensive quantities, i.e species concentration, it may often be transparent
that the intensive variable experience variation even within a given boundary.
E.g. a frying pan is heated from the bottom, where a steak resting on it’s
surface may be burned on the bottom side, while the top of the steak remains
quite cold. The intensive quantity temperature varies greatly throughout the
steak, which has a large significance on the process performance as the steak
may be burned on one side and therefore not meet the quality requirement for
serving. Control of the intensive quantity is in this case of great importance.
A casserole how ever, which main goal is to boil water, only needs a sufficient
amount of energy transfer in to the liquid phase. Any difference in the
intensive quantity will in the end be negated by the turbulence of the boiling
liquid anyway. This is an example where to similar systems (home cooking)
should be modelled different based how relevant the intensive quantities is.
As mentioned in section 2.1.1the lumped system is defined as:

Lumped System: A spatial domain where the intensive quantities don’t
change with the position, i.e. boiling water.

Distributed System: A spatial domain where the intensive quantities do
change with the position,i.e.cooking a steak in a frying pan.

When a need for a distributed description is transparent, the next task is
to seek simplifications in the spatial coordinate system. Going back to the
steak it can be argued that the only coordinate of interest is the vertical z
coordinate, where the energy is transmitted from the frying pan and in to
the steak, and then assume that the change in x and y direction is negligible.
This assumption should be reasonable provided that the state close to the
edges is not the main intrest. In another case maybe the steak is rather a
perfectly round meatball, where spherical coordinates can provide symmetric
simplifications reducing work load and computational time. Adapting the
spatial coordinates to your system have a direct impact on the complexity
of the differentials and is therefor a very important modelling step.

2.1.3 The impact of time scales

Selection of timescales is a modelling issue which can a times be overlooked.
Where some systems, or part of them, are classified as steady state without
any additional reflection is added in the modelling process. In a real system
it’s easily arguable that nothing is ever constant. At least not at a molec-
ular level, where the somewhat random motion of electrons may induce a
sudden dipole in the molecule and therefore work attractive or repulsive at

4

it’s surroundings, i.e. the London dispersion force, one of the classified Van
der Waals forces. These changes can happen in a timescale so small that for
any system working with rates such as per second, minute, hour, the changes
can not be observed. Therefore the selection of the timescales is not just a
question of convenience. It’s an important assessments one performs which
will reflect time scale assumptions. What is the objective of the model? Is
it a real time control issue in a plant, where hourly rates are of common
use? Is it a model for estimating the need of delivery of raw materials to
the plant, where the quantities are monthly delivers with ships? Something
that appear event like in one timescale may appear dynamic when looking
at a larger scale. And something that look dynamic in one scale may be
simplified to steady state in an even larger timescale. Preisig [3] sums up
how the timescale affect the appearance of the system with the following
figure:

Figure 1: How observing a system under different timescales affect how the
system appears

Example highly reactive intermediates
A very good example of time scale assumptions is the theory of highly re-
active intermediates. A commonly used simplification for determining the
reaction rate of a series of reactions. Here the presence of fast intermediates
is used for simplifying the differential equations in to a set of differential
equations and algebraic equations. A generic representation of such a reac-
tion is presented in Preisig [3]:

A
k1−⇀↽− B k2=⇒ C

k3=⇒ D

Modelling the reaction with the intensive quantity concentration, in a CSTR,

5

yields the following equations:

ċA = −k1cA (1)
ċB = k1cA − k2cB (2)
ċC = k2cB − k3cC (3)
ċD = k3cC (4)

Or in matrix form by introducing the stoichiometric matrix N :
cA
cB
cC
cD

 =

−1 0 0
1 −1 0
0 1 −1
0 0 1

k1cA
k2cB
k3cC
k4cD

 (5)

This is where using figure 1 timescale graph comes in handy. The concen-
tration of interest is the final product. Substance D. And this is where the
focus of the timescale lies. The dynamic development of concentration D
will be the main output of the model. The intermediates have a dynamic
far faster than the dynamics of the starting reactant and the end product.
When observing the intermediates they will at all time appear to have a
reaction rate always matching the rate of the slow reactions.

k1cA = k2cB = k3cC (6)

This is where the textbooks like H.S. Fogler [4] refers to a pseudo steady state
system, setting the time differentials of species C and D to zero, i.e. saying
that the concentrations don’t change with time. But in fact the concentration
of the intermediate evolves with the concentration of the reactant as can be
seen in equation 6. Therefore this thesis suggests that it is much more
consistent to refer to this behaviour as having discrete dynamics:

ċA = −k1cA (7)
0 = k1cA − k2cB (8)
0 = k2cB − k3cC (9)
ċD = k3cC (10)

Where the concept of steady state, which in effect is a description of a stable
long timescale, is removed from vocabulary when dealing with extremely
fast dynamics. And that equations 7 to 10 is more appropriately labeled
as a hybrid system. The use of the discrete dynamics concept should be a
strength, not a limitation as this thesis will work towards showing.

2.2 Graph theory

When developing a model for continuous systems, and especially when deal-
ing with hybrid systems, a graph representation can be a highly powerful tool

6

when developing the model. The use of the term graph in this context de-
scribe a visualization of a network consisting of a set of nodes and displayed
transitions between them, in the form of arc’s and arrows. Two different
definitions is used in this thesis, both have great modelling importance.

2.2.1 Continous systems

The graph used for continuous systems has a purpose of visualizing the
system components important for the modelling issue. In general this means
keeping control of conserved quantities. The capacities that store them,
the direction they are transported and alteration they experience. When
done correctly the mathematical description becomes directly linked to the
graphical representation. Making it easier to do the actual write up. The
chosen elements for presenting the system in a graph is taken from Preisig
[3]. Below follows the elements used in this thesis.

Figure 2: Graph elements for continous systems

2.2.2 Hybrid systems

Hybrid systems will be presented in a shape that visualize the hybrid au-
tomaton modelling technique. The technique is presented in 3.1 and for now
it’s should be sufficient to say that:

Figure 3: Graph elements for hybrid systems systems

7

3 Hybrid Systems

The short description of a hybrid system is a system with mixed continuous
and discrete behaviour. Where the continuous and event dynamics are in-
teracting and directly effect each other. [5] proposes three sub groups with
hybrid behaviour.

• Phased Operation

The Bouncing ball - where the continuous trajectory of the velocity of a
falling ball is changed directly each time the ball hits the ground.

• Continuous systems controlled by discrete logic

Chemical processes - where discrete manipulating interacts with continuous
systems.

• Coordinating Process

Transportation systems - systems where multiple agents interact and where
the automaton can be used i.e. for resolving conflict between the sub-
systems.

The term hybrid is highly nonrestrictive, as almost any system may be
stretched to fit the description. Especially this holds true for the process
industry, as a computer operated system is at some level bound to have a
discrete nature because of how a computer actually operates. This wide and
inconclusive definition turns defining a system as hybrid as a mere starting
point. Since it is necessary to restrict the system much further to reach a
model suitable for the purpose.

The subject of hybrid systems is also affected by the communities currently
contributing to the field. In computer science the main focus may be placed
on modelling how discrete computer signals interacts with analog systems,
while people working on control theory may explore the possibility of discrete
switching of control strategies. These two exampled portray how modelling
is an important part of working with hybrid systems. As there is no set of
rules that decides exactly what a discrete event is or what is continuous. Ma-
nipulating the model to a given purpose may unlock a new set of possibilities
as will be seen in the examples in section 3.1.

3.1 Hybrid Automata

A hybrid automata is a model of a hybrid system defined in respect to what
the model includes:

8

• Discrete states : Labeled as q where the single state q ∈ q

• Continuous states : Labeled as x where the single state x ∈ x and
x ∈ Rn where n is the number of continuous states.

• Discrete inputs : Labeled as σ where the single state σ ∈ σ

• Continuous inputs : Labeled as u where the single state u ∈ u

• Initial states : q(0) = q0 and x(0) ∈ Rn

• Continuous dynamics : ẋ = f(q, x, u)

• Invariant : E.g. Inv ⊆ x ∈ Rn The outer boundaries for which the
model is valid.

• Discrete dynamics : R Where a guard (or event detector) initate a
discrete change in q

When combining the procedure with a graphical representation, the result is
a organized and well defined system that may cast a new light at issues that
may occur when implementing the model in a solver. In the following sections
some different approaches is presented. Where the hybrid automaton is
used to better handle issues that may be somewhat concealed and lead to
difficulties during implementation. The purpose of the coming examples is
also to provide a good understanding of hybrid automaton modelling before
entering the case study sections.

3.1.1 Example discrete dynamics: The Bouncing Ball

Modelling a bouncing ball is not a straight forward task if one is lacking
experience with event detection. Even though a simplified version of the
continuous states, from a momentum balance in a 1-D positional space, seems
easily solveable:

ma = −mg (11)

Rewritten as two first order differential equations with position as the state
x, and therefore the acceleration as the second derivative ˙̇x:

ẋ1 = x2 (12)
ẋ2 = −g (13)

From the equations, starting with the constant acceleration (due to the grav-
itational force) it’s evident that the position x1 has second order characteris-
tics, while the velocity x2 has linear characteristics. Making the total system

9

not very complex. However the complication arises when the ball hits the
ground. As the velocity vector readily change from a negative direction to
a positive direction. Resulting in a jump in the velocity, in contrast to the
continuous linear development experienced while the ball is falling. This
event can be modelled as:

x2 := −kx2 (14)

Where k is the coefficient of restitution of the ball. The expected behaviour
of the states is a jump in x2 each time the ball hits the ground. This
behavior can be seen below in figure 4 where the system has been simulated
in MATLAB (see section C.1.1):

0 2 4 6 8 10
0

2

4

6

8

10

Bouncing ball example:

P
o

s
it
io

n
 [
m

]

time [s]

0 2 4 6 8 10
−15

−10

−5

0

5

10

15

V
e
lo

c
it
y
 [
m

/s
]

time [s]

Figure 4: Bouncing ball expected behaviour

By looking at the velocity development it becomes evident that the sys-
tem has mixed continuous and discrete dynamics, and it may therefor be
suitable to model the system as a hybrid automata. Following the formula
from top the bottom:

• Discrete states : q0
After each event the system returns in to following the continuous
dynamics proposed in 13. No discrete state change is therefor observed.

• Continuous states : x = [x1 x2]
T ∈ <2

• Discrete inputs : None

• Continuous inputs : None

10

• Initial states : q0 and x ∈ <2 : x1 ≤ 0
All real numbers where the position of the ball is above the ground is
valid as an initial state.

• Continuous dynamics : ẋ = [x2 − g]T

• Invariant : Inv : q0 and x ∈ <2 : x1 ≥ 0
As previously mentioned, the discrete state stays invariant and the
postion will naturally be above ground at all times.

• Discrete dynamics : R(q0, {x : x1 = 0 ∧ x2 ≤ 0} = (q0, (x1,−kx2))
When postioned in q0 and x is defined as x1 = 0 ∧ x2 ≤ 0 (notice the
negative velocity requirement) the function returns the system to q0
with x1 unchanged and x2 damped with a changed direction

The system is best visualized in it’s corresponding graph:

Figure 5: Bouncing ball hybrid automaton

Reading directly from the graph it may seem like it is possible to solve
the system by using a logic operator in the form off:

1 if x(1) >= 0 && x(2) <= 0
2 x(2) = −k*x(2);
3 end

Most differential solvers iterates with the notation that the states are con-
tinuous at all time. With some solvers able to handle some types of discrete
events. In this case, with a simple logic, the results are a very poor per-
formance at the point where the discrete dynamics interfere with the states.
Simulating a model in MATLAB (C.1.2) with the simple discrete logic results
in:

11

Figure 6: Bouncing ball hybrid automaton

The correct method for solving such systems is using solvers with zero
crossing detection. These solvers obviously enough detects when a state
crosses. In the bouncing ball example, when the position reaches zero, the
whole differential solver is stopped. The output signal (the state at the stop-
ping time) is manipulated according to the discrete dynamics and then used
as the initial state, before restarting the differential solver. Utilizing the hy-
brid automaton modelling technique does not in it self solve the problem, as
knowledge of zero crossing detection is required. But the hybrid automaton
provides an overview of the system, letting the user know that when an event
(hitting the ground) is detected, a discrete dynamic interfere with the states.
Such behaviours may cause problems when utilizing a generic solver.

3.1.2 Example discrete state approach to control: Stabilizing an
inverted pendulum

The following example displays how a qualitative modelling approach, to-
gether with the hybrid automaton modelling technique, unlocks new possi-
bilities for system control. Introducing controller switching. An introduction
to qualitative modelling is included in the following section as experienced
based qualitative modelling also is an important aspect of the hazard and

12

operability procedure, elaborate at a later stage.
Qualitative modellling

In chemical engineering quantitative modelling has become the main tool
for describing dynamic systems. Differential equations are established for
given capacities and integrated for the desired time horizon. However, in
some cases such a model may be considered overly extensive for it’s purpose.
If the system in question is a water tank with no drain, a single in flow
will eventually fill the tank making it overflow. A quantitative model will
provide detailed information about the level for every time step taken. A
qualitative model can with this example be considered as common sense. A
capacity with zero outflow and a non zero inflow is going to overflow. And
the question is; will the detailed and computational more expensive quan-
titative model provide anything more than the common sense approach for
it’s given purpose?

Every model is incorrect, some are just suitable for it’s given purpose, is a
common expression when discussing qualitative models. Considering the fill-
ing tank system previously mentioned. Are the volume described correctly?
Have the manufacturer actually accomplished the impossible and made a
perfect cylinder, making the volume description correct? Or is the volume
actually f.ex 40.034m3 and not 40.000m3? In comparison, the simplified
quantitative model only establish the fact that the volume will increase until
it at some point overflows. And without specifying the volume relation, this
can be described as:

V olume = M+(Level) (15)

M+(Level) describes a positive function of level. When the level rises the
volume rises, which unlike the quantitative function holds true for every
capacity of any given size and shape. Quantitative modelling stands and
falls on it’s parameters and simplifications. And increasingly complicated
systems is often trimmed by scaling factors and parameter fitting based on
experiments. Acquiring these parameters can be time consuming, expensive
and down right difficult. At this point an abstraction of such quantitative
descriptions, in to a simple increasing function M+, may seem a bit limited
in terms of share usefulness. But when the required models purpose isn’t fine
real time optimization, but rather of use in a Hazop procedure (see section
4), the feedback of a qualitative model is sufficient for it’s purpose, and this
saves time and resources for the people involved.

Qualitative approach to hybrid automaton modelling. The in-
verted pendulum
The inverted pendulum is an often revisited control problem and in the re-
search period for this thesis a specific paper by Kuipers and Ramamoorthy

13

[6] was found specifically interesting as it involved a qualitative approach
to a hybrid system. Together with the learning learning tools published by
Professor Claire Tomlin at Stanford University [5] a hybrid automaton ap-
proach to the inverted pendulum was performed. The inverted pendulum
consists of a moving cart with an attached pendulum connected with a stiff
axle. See figure 7.

Figure 7: Sketch of the pendulum control problem

Where:

γ = θ − π (16)

The inflicting forces is that of the moving cart (the continuous input - u),
(−gsin(θ)) and the small amount of damping friction f(θ̇)

Damped harmonic oscillators
The inverted pendulum is chosen as an example for it’s close resemblance
to the damped spring system, commonly used as an entry point to second
order differential equations. The damped spring system consists of a mass
connected vertically to a spring that establishes an equilibrium with the
gravitational forces. Below the spring is a plate submerged in liquid, where
the viscosity decides the level of damping. See figure 8.

14

Figure 8: Sketch of a damped harmonic oscillator

The model is simplified by setting the equilibrium point to x = 0 and
balancing the gravitational force with the spring resistance. Where the spring
resistance is modelled by using Hook’s law. The momentum balance then
becomes:

mẍ = −bẋ− cx (17)
mẍ+ bẋ+ cx = 0 (18)

Now, the point of this section is to show the benefit of some times taking
a qualitative modelling procedure. Equation 18 is used for entry level 2.
order differential equations because of how it is easily solvable analytically.
In other words, integrating the system can be done by ease. But instead
of doing that the same system will instead be observed with a qualitative
approach. Retaining the full complexity of the system. This is done by
describing the damping and spring resistance with unspecified monotonic
functions instead of the previous linear dependence:

ẍ+ f(ẋ) + g(x) = 0 (19)

In the qualitative modelling section (section 3.1.2) the modelling technique
was linked to reasoning. This very much still applies for the damped spring
system. If the functions f and g where to be unlimited, it would not be
possible to proceed and the model would remain generic and uninformative.
To limit the functions reason is used . At x = 0 the damped harmonic

15

oscillator is set at equilibrium. This means that any displacement should
experience a driving force towards the equilibrium, towards x = 0 . In the
model the restoring force working from the spring is defined moving upwards
in the positive x direction. If the mass is displaced to x = −1 the spring will
"restore" the system forcing acceleration in the positive direction. With this
reasoning it’s possible to determine that sign(x) = sign(g(x)) by studying
equation 18. Similar reasoning can be made with f , at max velocity the
damping is working against further acceleration. Since the state x and it’s
time derivatives contains direction information, if f ′ changes from positive
to negative f changes from being a damping force to a amplifier. Therefore
in the system in figure 8; f ′ > 0. In addition, as previously defined, the
equilibrium is set at x = 0. Thie means that the only valuable set of f
functions are the ones that includes f(0) = 0. In Kuipers and Ramamoorthy
[6] the functions are defined in a similar fashion. Below follows a rewritten
version with emphasis on what is regarded the most important for this thesis.

• Definition 1: Only allowing the damping to be a continuous,
smooth function over the valid range of x
Let the closed interval [a, b] describe the velocity of the mass, which is
a subset of <; [a, b] ⊆= <. Then f extends the subset f : [a, b] → <.
The function is a reasonable description of the system if:

1. f is continuous on [a, b]

2. f is differentiable on [a, b]

3. f has only a finite number of critical points in any bounded in-
terval

4. The one sided limits, approaching from inside the set, limx→ a+

and limx→ b− exist

• Definition 2: Making sure f always remain and damping force
and is inactive at the equilibrium point
f ′ > 0 for any f : [ab] and f(0) = 0

• Definition 3: Making sure g always remain a restoring force
and is inactive at the equilibrium point
sign(g(x)) = sign(x). This also implies that g′(0) > 0.

• Lemma 1 The qualitative DE

ẍ+ f(ẋ) + g(x) = 0 (20)

With the defined f and g any trajectory within the bounded region will
behave such that:

lim∞(x(t), ẋ(t)) = (0, 0) (21)

16

• Proof 1

A familiar procedure to determining whether a system is stable, is by eval-
uating the eigenvalues. If these have negative real parts, Szidarovszky and
Bahill [7] validates that the system is asymptotically stable. The question
then arises, how to determine the eigenvalues with a qualitative model ap-
proach? The first step is to do a familiar rewrite of equation 34:

ẋ1 = x2 (22)
ẋ2 = −f(x2)− g(x1) (23)

The system state space representation

∆ẋ = A∆x+B∆u (24)

For a non input system:

∆ẋ = A∆x (25)

To acquire the A matrix a Taylor approximation is used. As f(0) = 0 and
g(0) = 0 has been defined at x = 0 it seems like an appropriate reference
point for the Taylor approximation

f(x) ≈ f(x(0)) +
∂f(x

∂xT

∣∣∣∣
x(0)

(x− x(0)) (26)

(27)

Calculating the jacobian:

J
A

=

[
∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ2
∂x1

∂ẋ2
∂x2

]
(28)

J
A

=

[
0 1

0− g′(0) −f ′(0)− 0

]
(29)

The A matrix can than be used for evaluating the eigenvalues:

det(λI −A) = det(

[
λ 0
0 λ

]
−
[

0 1
−g′(0) −f ′(0)

]
) (30)

= (λ)(λ+ f ′(0)) + g′(0) (31)

= λ2 + λf ′(0) + g′(0) (32)

Which yields for the eigenvalues:

λ =
−f ′(0)±

√
f ′(0)2 − 4g′(0)

2
(33)

17

Since f ′(0) > 0 the eigenvalues have negative real parts and the system is
asymptotically stable towards (0.0) for any of the previously defined f ’s.

Connecting the damped harmonic oscillator with the inverted pen-
dulum
Introducing negative damping, i.e. amplifing the oscillations:

• Lemma 2 The qualitative DE with negative damping:

ẍ+ f(ẋ) + g(x) = 0 (34)

Using a similar approach as in proof 1 yields:

λ =
f ′(0)±

√
f ′(0)2 − 4g′(0)

2
(35)

This is an unstable system, which in turn means that in time the states will
leave the defined area.

Using the Lemmas to define different control strategies for the in-
verted pendulum

• q2

The following procedure show how a hybrid automaton approach with the
help of the two Lemmas can be used to control the inverted pendulum.
This means taking the generic differential equation and tweak it so that it
describes the inverted pendulum instead. First it’s the positional resistance.
As long as the pendulum don’t hang in a position vertically straight down
θ = 0 the gravitational force will pull on the ball attached to the pendulum.
But at the exact point of θ = π it rests on the pendulum axle.

ẍ+ f(ẋ) + g(x) = 0 (36)
g(x) : ksin(π) (37)

Where the k is used for differentiating between the function g and the grav-
itational acelleration k. Adding a controller action from the moving cart
yields:

θ̈ + f(θ̇) + ksin(π) + u(θ, θ̇) = 0 (38)

Lemma 1 proves that this is stable at (0.0) when u = 0. However, the
objective is to stabilize the system at θ = −π, meaning that the current
objective is to destabilize the system. Therefore using the knowledge of
lemma 2 and modelling the input as a negative damping force:

u(θ, θ̇) = −h(θ̇) (39)

18

To instabilize the system this damping force have to override the natural
damping of f(θ̇) so that the net damping force is negative:

f(θ̇)− h(θ̇) < 0 (40)

This is where the hybrid automaton approach comes in to play. It is easy to
see that it’s beneficial to push the system out of the stable point by using an
input force. But instability is not going to help when one want to stabilize
at θ = π. Therefore setting the approach above in to a discrete state which
can be moved in and out of may be effective. Naming this region for the
discrete state q2 and setting the issue of stabilizing at θ = π as the discrete
state q1.

• q1

By studying the lemmas it’s quick to acknowledge that any input that leads
to an unstable system is out of the question. It is therefore much more
interesting to explore the possibility of mimicking lemma 1. To do this θ is
first substituted with φ so that the stability region is the same as in lemma 1
(0.0). The damping is merely an effect of the angular velocity, e.g. air drag,
regardless if the objective is to stabilize at θ or φ. This leads to the approach
of trying to combine ksinφ and u(φ̇, φ) in to fitting the above definitions of
g(x):

sign(g(x)) = sign(x) (41)

sign(−ksinφ+ u(φ̇, φ)) = sign(φ) (42)

In other words; the control action has to surpass the negative force in
effect from the gravitational field in addition to adding something extra.
E.g sign(φ) > 0, this means that u(φ̇, φ) > ksin(φ). In addition faster
convergence can be acquired by adding a control action based on the rotation
velocity (φ̇) augmenting the natural damping of the system.

• q3

Since the control action is likely to be limited it is a probability that the
system can enter a situation where the pendulum spins faster than it’s able
to control. A system purely amplifying the natural damping is the last
discrete state:

sign(g(x)) = sign(x) (43)

u(θ̇, θ)) = f2(θ̇) (44)

Establishing the discrete dynamics At this point three different discrete
states have been established. Each of them has it’s own unique control ac-
tion. The last objective, following the model definition in 3.1, is to establish

19

the discrete dynamics bounding the region. The first boundary is set by the
maximum velocity φ̇max the controller can handle. Kuipers and Ramamoor-
thy [6] propose a maximum conversion to potential energy to kinetic energy
approach:

φ2

φ2max
+

φ̇2

φ̇2max
≤ 1 (45)

Equation 45 is therefore applicable as the guard leading in t th discrete state
that will balance the pendulum in the upright position; q1. For anything
outside equation 45 a switch between the system that spins too fast and the
system that is almost at rest in the downward position is needed. Kuipers
and Ramamoorthy [6] propose a simple kinetic + potential energy compar-
ison. If the total energy is less than the potential energy the system has
when the pendulum is balanced at the upright position, there is a need for
the state q2, the pump state. The total energy of the system per mass is in
the stable θ̇ = 0 upright position is:

KS + PS =
1

2
θ̇2 +

∫ θ

0
ksinθ dθ = 2k (46)

The observer to deterimine if the total energy per mass is lower than 2k may
then be:

s(θ, θ̇) =
1

2
θ̇2 − k(1 + cos(θ)) (47)

If equation 47 is below 0 the total energy of the pendulum is not enough to
reach the upright position. q2 pump controller is needed. If the total energy
is above 0 the pendulum will spin past the upright position, extra damping
form state q3 is needed. But note that this test is secondary as the balance
region q1 has priority and may overlap.

The Inverted Pendulum Hybrid Automaton
By assigning each of the different control actions to different discrete states
the hybrid autamaton becomes:

• Discrete states : q1, q2, q3
Each state has a individual input performance

• Continuous states : x = [θ θ̇]T ∈ [0 2π]

• Discrete inputs : None

• Continuous inputs :q1 : u = (c11 + k)(θ − π) + c12θ̇, q2 : u =
−(c+ c3)(θ),q3 : u = −c2θ

• Initial states : q2 and θ ∈ [0 2π] and θ̇ ∈ <

20

• Continuous dynamics : ˙̇
θ + cθ + ksinθ + u(˙θ, θ) = 0

• Invariant : Inv : Q = {q1, q2, q3} and θ̇ ∈ < and θ ∈ [02π]
3 discrete states

• Discrete dynamics : R(q1, { φ2

φmax2
+ φ̇2

φ̇max2
> 1∩ 1

2 θ̇
2−k(1+cos(θ)) <

0} = (q2, (θ, θ̇)) and R(q1, { φ2

φmax2
+ φ̇2

φ̇max2
> 1∩ 1

2 θ̇
2− k(1 + cos(θ)) >

0} = (q3, (θ, θ̇))

As usual the automaton is best visualized in a graph:

Figure 9: The inverted pendulum hybrid automaton

The automaton was then simulated using MATLAB, see appendix C.2.1
for code. Below follows the development of the continuous and discrete
states:

21

Figure 10: The inverted pendulum hybrid automaton simulation. Displaying
the pendulum getting pumped up to the upright position while using different
control strategies (discrete states).

3.1.3 Summary of hybrid automaton applications so far

The example of the bouncing ball and the inverted pendulum shows how
a hybrid automaton approach may be used for solving modelling issues for
vastly different hybrid systems. In the bouncing ball example it was clear
that the continuous state development had an abrupt stop each time the ball
hit the ground and a discrete dynamic had to be implemented. Leading to
alteration of traditional solvers. In the inverted pendulum one control strat-
egy was not optimal for the entire range the state variables where defined
in. Establishing a discrete state for each control strategy resulted in efficient
switching between the controllers. In the case study another implementation
of the hybrid automaton will be presented. Here the continuous states will
be transformed in to a set of discrete states, and this paves the way for what
will hopefully be more optimized hazard identification.

22

4 Hazard and operability study - HAZOP

A Hazard and operability study (hazop) is method for systematically iden-
tifying and evaluating risk scenarios for a given system [8]. Be that risk
for personnel operating on the system, equipment in the process or the sur-
rounding environment. Even process efficiency deviations may be caught by
use of hazop. Originally it was used within the chemical process industry,
but has since seen application in several other systems. The method is a
qualitative approach to risk assessment structured by a set of given guide
words and should be carried out by a team consisting of competent personnel
within several different disciplines.

In short the hazop method can be summarized as reversing the procedure
where the cause of an incident is investigated, e.g. why did we experience
dangerously high temperature in our reactor today? And instead ask what
may happen if the cooling water flow stops? This makes sense since the
whole objective of hazard study is to avoid said hazards or "effect" before
they actually happen. But while a hazardous incident that already happened
can leave evidence of a specific cause, like how the e.g. flow rate history can
tell if the cooling water flow failed. Trying to operate in a reverse matter,
where you try the imagine every hazard at a large system, a large number
of scenarios may be plausible. Overlooking something with small or large
consequences is certainly not impossible. To make sure a system can be
operated in complete safety, even if the system is neglected for a while, a
systematic and structured approach is called for to make sure that every
possiblr scenario is extensively covered, so that a hazardous outcome is out
of the question.

To make sure that all possible hazards are extensively covered a set of haz-
ard causes are proposed in the hazop procedure. Or more correctly a set
of guide-words is used to help the team define a cause (or more specific a
process deviation). An example of a guide word may be "lower". Putting
this word in an example where a team studies temperature in a reactor may
set a scenario with a low reaction rate for the system. The team then assess
whether such a scenario is logical, could this happen if the cooling fluid valve
would become stuck in fully opened mode? If such a scenario seem logical
the current existing safeguards is evaluated to determine if it is necessary
to take action to improve the current situation. The use of guide-words are
the most essential part of the hazop method, as the lay the foundation for
systematical and structured evaluation of the system. Negating the possi-
bilities of some hazardous scenarios being overlooked. The most common
guide-words used in most analysis are:

• No (none, not)

23

• Higher (more)

• Lower (less)

• As well as (as well as additional activity)

• Part of

• Reverse

• Other than

In the industry a hazop is usually conducted in the design state after the
proposed design has a working process simulation and flowsheets. In other
words, it’s performed in stage where a change in the design to eliminate risk
still is a low cost issue. But hazop is also conducted at existing plants as
possible hazardous scenarios may change over time with change in procedures
and installation/change in existing equipment and personnel.

4.1 The procedure

Before getting started a information gathering phase is of the utmost im-
portance. This includes, but is not limited to, gathering of: process models,
design specifications, material safety data sheets, material properties, flow-
sheets, lists of essential personnel with additional expertise, process and in-
strumentation diagrams (P& ID’s, both for existing equipment and planned)
and operating procedures. An overview of each section of the system should
also include a detailed explanation of the main purpose of the section. In-
cluding a specified operation range for the states.

Already at this point it’s evident that the validity of the hazop is largely
dependent on having qualified personnel and a sufficient documentation of
high quality. This sets the bar for process engineers and manufacturers at
the design state. Moving on to the procedure it self it can be summed up in
the following steps:

• Divide the system in to sections

• Select a node to study

• Describe the design intentions

• Select a process parameter

• Apply a HAZOP guide word

• Determine the cause in respect to the guide word

• Recommend actions

24

In Crawleys et al. [8] a very handy flow diagram is supplied for ensuring a
systematic approach throughout the whole process:

Figure 11: From Crawleys et al. [8] a Hazop procedure flow sheet

Going trough each step should be done with an emphasis on precise and
comprehensive documentation. During this thesis the following categories
will be listed in a table to make sure no steps are forgotten or undocumented:

• Unit number

• Parameter

• Guideword

25

• Deviation

• Cause

• Effect

• Existing protective system

• Action

The Hazop procedure is finished when every unit have been examined by
utilizing every guideword and any hazards not covered by the existing safety
system, has been evaluated and an action to improve the security has been
proposed.

26

5 Case Study- Modelling and Automaton genera-
tion

In the case study the hybrid automaton is utilized in a more unconventional
way. Until now the modelling procedure has been used to describe switching
behavior, exemplified in section 3.1.1, where the direction of the falling ball
is switched by use of event dynamics and also in section ?? where different
control strategies is rapidly switched. In the case study a completely dif-
ferent approach is utilized. With reference to the procedure in section 3.1
the continuous dynamics are transferred in to discrete dynamics, i.e. the
continuous states are now transferred in to being discrete states. At first
glance this might seem counter intuitive. As the model will be less accurate
in terms of state predictions and feedback. But later on the resulting hy-
brid automata will be utilized in a Hazop procedure and the usefulness of
this approach will at the time hopefully be more transparent. For now an
thorough explanation of the procedure and the resulting system is in order.

5.1 2 Tank Isothermic model

To clarify important concepts when it comes to establishing an hybrid au-
tomata of a continuous system, a 2D model is very useful. The system
consists of two tanks which is connected to each other and an inlet pipe. See
figure 12

Figure 12: A simplified flowsheet displaying a simple 2 tank flow system

The system is the same system utilized in the paper by Preisig et al.
[9]. The system inlet has no changing intensive quantities at any point in
time. By defining the initial temperatures in the reservoir to be equal to the
initial temperature in both tanks, as well as neglecting any heat loss to the
environment, the system is isothermal over it’s entirety. Thus any energy
assessment may be disregarded and the complexity of the system is reduced
to one mass balance for each capacity. The system topology is portrayed
below:

27

Figure 13: The topology for the 2 tank model

Where the size of the system is:

ẋ = f(t, x, u, d) x ∈ <2 (48)

5.1.1 Modelling

Mass Balance
Conservation of mass is ensured when all capacities and every connecting
flow are accounted for:

dMT1

dt
= m̂R|T1 + m̂T1|T2 (49)

dMT2

dt
= −m̂T1|T2 (50)

A very general expression for the flow rates is used. Here the transfer
rate is only dependent on the resistance in the pipes. In addition two dis-
turbances are added for simulating pipe clogging or inlet valve malfunction.
The conserved quantity will be set as the state:

x̂R|T1 = (1− d2)u1Θ2 (51)

x̂T1|T2 = (1− d1)Θ1(x2 − x1) (52)

5.1.2 Defined system

After modelling the initial conditions and the system validity is decided the
resulting simulation is based on:

• Initial Conditions:

x(0) =

[
xT1(0)
xT2(0)

]
=

[
0
2

]
(53)

x(0) ∈ <2 xn[=]kg (54)

28

• Default Input:

u =

u1d1
d2

 =

1
0
0

 (55)

un[=]on/off = 1/0 for n = 1, 2, 3 (56)

• Parameters and constants:

Θ =
[
Θ1

]
=
[
.01
]

(57)

• Invariant:

0 ≤ xn ≤ 4 (58)

System overflow at xn = 4

• State equations:

dx1
dt

= (1− d2)u1Θ2 + (1− d1)Θ1(x2 − x1) (59)

dx2
dt

= −(1− d1)Θ1(x2 − x1) (60)

(61)

5.1.3 State Space representation

Presenting the system in standard state space representation is necessary
for later utilization of Heinz Preisig’s 2-dimensional linear automaton script
written in MATLAB(section C.3.1). The script is chosen because it’s an eas-
ier to follow algorithm, while still retaining key elements needed for solving
more complex systems. The script is limited to handling only a single input
system. The disturbances is therefore neglected below.

ẋ = Ax+Bu (62)

[
ẋ1
ẋ2

]
=

[
−Θ1 Θ1

Θ1 −Θ1

] [
x1
x2

]
+

[
Θ2

0

] [
u1
]

(63)

29

5.1.4 Continuous model simulations

To be able to compare the hybrid automaton representation with a conven-
tional model, the system was simulated with continuous states as well. The
differentials are solved by use of MATLAB and the script are portrayed in
section C.3.2. Simulation of a filling process, with the default initial condi-
tons x(0) = [0 2] and input u = [1 0 0], yields the following development of
the states:

Figure 14: Simulating the mass content in the two tanks

Figure 14 is the standard way of portraying state development in a sim-
ulation. At t = 0 the half full tank 2 starts flowing in to tank 1 and at the
same time it is getting filled. Then at approximately t = 10 the flow be-
tween the tanks changes direction and a equilibrium between the two tanks
is established. The continued increase in level is due to the continued filling.
Tank 2 "lag" behind tank 1 at the equilibrium line. The reason for this be-
havior is the added resistance due to the friction in the connection pipe. But
the interesting part of the two tank system is not how it behaves. As it is
not very complex. The reason it’s used as an example for hybrid automaton
modelling, is how a two state system can be easily visualized. To prepare the
reader on the hybrid automaton representation the states are first presented
in a state plot:

30

Figure 15: Simulating the mass content in the two tanks in a phase plot

In the phase plot the equilibrium between the two tanks are much more
visible. Also it is easy to spot how the equilibrium is shifted towards T1
as T1 is on the y-axis. Below follows the creation of the hybrid automaton
whitch will be compared to the phase plot.

5.1.5 The hybrid automaton for the two tank system

By following the procedure in section 3.1 it’s easy to jump ahead and model
the system straight forward. With one discrete states and two continuous
states. But as previously mentioned, the objective now is to model the
states discreetly. To do this a set of boundaries are introduced and are in
accordance with Preisig et al. [9] defined as:

Bi := {β1i , · · · , β
ai
i , · · · , β

ni
i } (64)

Here the state in question is labeled with subscript i and the total number of
boundaries for that specific state is labeled with n. Setting up a simple set
used for the following automaton, visualized by utilizing MATLAB (script
in C.3.3):

n1 = n2 = 4 (65)
B1 = B2 = {0, 1.333, 2.666, 4} (66)

31

In a 2-dimensional a phase plot the boundaries will span a set of quadrants:

Figure 16: A two states, 4 equal boundaries hybrid automaton.

In figure 16 the discrete states have been defined as a quadrant in the
automata spanned by the boundaries. For a 3-dimensional system the dis-
crete states would form cubes and for any system above a set of hypercubes.
In other words, the boundaries are mapping the continuous states in to it’s
respective discrete state. What is also clear is that mapping utilizing the
boundaries in rising order, like figure 16, no transfer may happen be-
tween discrete states if they are not adjacent, i.e. share at least
one boundary plane. Defining the hybrid automaton in accordance to the
procedure in 3.1 yields:

• Discrete states : qk ∈ Q = [q1, · · · , q9]
Each quadrant inside the set of boundaries are assigned to a discrete
state

• Continuous states : x = [x1 x2]
T ∈ <2

• Discrete inputs : u = [u1 d1 d2]
T

• Continuous inputs : None

32

• Initial states : qk ∈ Q given by x and x ∈ <2 : 0 ≤ xn ≤ 4

• Continuous dynamics : ẋ = Ax+Bu

• Invariant : Inv : qk ∈ Q and x ∈ <2 : 0 ≤ xn ≤ 4 The invariant
is defined by how the system will overflow at 4kg and must have non
negative content.

• Discrete dynamics : R(q1, x) = (q2, x) if x2 ≥ β22 and x1 ≤ β21 .
The continuous is under not influence by discrete dynamics. Only the
discrete state change, with a similar rule set for the other states.

When tracking the previous continouos simulation, with the same initial con-
ditions and inputs as in figure 14 and 15. The simulations hybrid automaton
representation will start in the discrete state q2, in accordance with the rules
set by the boundaries, i.e. x = [0 2] is mapped to the discrete state q2. A
script which continuously maps the development of the discrete states and
present them visually was developed in section C.3.3.

Figure 17: The hybrid automaton representation at t = 0

At t = 7 boundary β21 is breached and the automaton moves from q2 →
q5, which can be verified by looking at figure 15.

33

Figure 18: The hybrid automaton representation at t = 7

Further on the observed development until the invariant is breached is:

34

Figure 19: The hybrid automaton development before going out of bounds
a t = 51

At this point the hybrid automaton does not provide any significant
amount of information. In some cases it may be adequate, but for the current
situation e.g. if one knows that the system is in q5, it’s still equally probable
that tank 1 contains 1.4kg as 2.6kg. The power of the tool is first visible when
one consider the automaton in respect to the continuous system. As one
extra look at 15 reveals that the path of the automaton was predetermined.
The system would seek equilibrium and then follow the "equilibrium line".
Meaning that it was only a set of discrete dynamics allowed by the continuous
dynamics. The transfer from q5 → q2 could at no circumstance happen.
This leads to the some what obvious realization that based on the input and
differential equations the state trajectory is predetermined.

As discussed in the section 2.1 a simulated state trajectory rarely (and at
a small enough scale never) fits a real system trajectory. This is where the
crudeness to the hybrid automaton actually becomes it’s strength. E.g. say
that tank 1 is empty and tank 2 is full and the pipe connecting them is open.
The rate of transfer can easily be incorrectly modelled as maybe the pipe
surface is more crude than anticipated. But one thing remains undeniable
true. The water will flow from the full tank to the empty tank. This portrays

35

how an automaton is at the extreme points less dependent of rates. What is
of interest is the direction of the discrete transfers.

In Preisig et al. [9] and by evaluating the continuous development it’s possible
to understand that for any quadrant completely below and out of contact
of the equilibrium, i.e q3 the time derivative of x2 is negative as liquid flows
from this tank and in to tank one to equalize the hydrostatic pressure. For
the direction of transfer to change sign the trajectory of the state x2 must
go through the continuous state:

ẋ1 = fi(t, x, u) = 0 (67)

For a system with an open pipe and inflow as previously modelled (u =
[1 0 0]) the equilibrium surfaces for the two states are:

dx1
dt

= 0 = Θ2 −Θ1(x2 − x1) (68)

x1 = x2 +
Θ2

Θ1
(69)

dx2
dt

= 0 = Θ1(x2 − x1) (70)

x2 = x1 (71)

Therefore the theory is that for each single discrete state it should be possible
to assign each continuous state with either +,− or 0 to mark the possible
transition. Where a plus would mean that in the current discrete state (or
hypercube), this continuous state will look to increase it’s value towards the
equilibrium line and therefore cross it’s discrete boundary. E.g. considering
the 2 dimensional two tank system. With the same specifications as the
simulated system the continuous x1 state would be assign a plus in the
discrete state q2. Which allows for the system to transition over the boundary
β21 , see figure 20

36

Figure 20: Marking the possible transition form q2 for the state x1. +1
represent that any transition as an effect of movement in x1 happens in the
positive direction for x1

As mentioned before, the objective of the thesis is to streamline the
hazop procedure using the technique displayed by hand above. Being able
to predict every possible transition for every possible input and quickly at
that. The effect of a manual cooling valve being left open in a large factory
depends on the current states. If the reactor is "firing on all cylinders" then
maybe all that happens is that the automated cooling system adjusts it self.
But if this happened at the start up sequence then maybe the added cooling
water would make it close to impossible to surpass the activation energy
for the reactions. The point is, for a given input an unlimited amount of
state trajectory is possible and trying to simulated a large number of them
involves a great computational cost. This is where Phillips [1] the DEDS
algorithm comes in to play. As a complete automaton with transition tables
quickly can provide an overview of large number of state trajectories.

37

5.1.6 DEDS -Algorithm completing the automaton with transi-
tion tables

In this section the script linauto2d.m by Heinz preisig is utilized. Following
this paragraph is a walkthrough of the algorithm that returns a full automa-
ton, with transition tables for a two dimensional single input system.

Tuple representation of the hypercubes
Until this point qk has been used as a notation for the discrete states. But for
hybrid automaton models that discreetize continuous states the notation just
don’t provide sufficient information. When dealing with several states with
several state boundaries the number of discreet states quickly rises. Keeping
track of the discrete states in a multidimensional state space becomes to dif-
ficult. Therefore the boundaries are used for identifying the discrete states.
In the two dimensional case the quadrant q1 spanned by B11,B12,B22,B22 is
named as the ordered list (1, 1), or a tuple. The notation is easily expanded
for larger dimensions, i.e. the first quadrant in a 3-D system is labeled as
(1, 1, 1) and so on. The entire two tank hybrid automaton is labeled as a
tuple in 21 .

The Algorithm in pseudo code
Below follows a pseudo code of linauto2d.m. Different segments are labeled
alphabetically and further explained below.

38

2 Dimensional linear automaton linauto2d.m

B| Establish a tuple representation of the automaton
C| FOR all continuous states

FIND next other state (xj) impacting the current state (xi)
Acquire the jacobi sign pattern of state xj impacting state xi
D| FOR all internal boundaries of the current state (Bin)

EVALUATE state xj at the cross over between the current and the
equilibrium line
Pull result slightly apart in the direction of xj to dxmin and dxmax
FIND all boundaries less than the dxmin
E|EVALUATE xi direction impact at boundary
F|IF xi is moving to a lower boundary (Bl−1i), then:

FOR all internal boundaries from dxmin to the last boundary of state
j (Bqj)
Evaluate the transition table at the quadrant (Bqj), (Bl−1i) by using the
jacobi direction.

FIND all boundaries larger than the dxmax value
G|EVALUATE xi direction impact at boundary
H|IF xi remains inside it’s current boundary (Bli)

FOR all internal boundaries up to dxmax (Bqj)
Evaluate the transition table at (Bqm), (Bln) by using the jacobi direction.

Stepwise explanation of the algorithm:

• A|Supplying the appropriate arguments

First a system fitting the requirements, with two states and a single discrete
input, is transformed in to the standard state space notation. The A and
B matrix and the value for u are the first three arguments for linauto2d.m.
The next argument is a set of boundaries defining the automaton represen-
tation, where row i contains the boundaries for state i. The total number of
boundaries in each row is the last required input.

• B|Establishing the automaton

The amount of quadrants, or discrete states, are the number of boundaries for
state i−1 times the number of boundaries for state j−1. The returned matrix
is tuple representation of the automaton, where each row is one tuple/one
discrete state.

• C|Primary FOR loop (i)

For all the states (which is two in this case) search for the next nondiagonal,
nonzero element in the A matrix. Which translate in to finding the next
dependable state (not it self). For example purposes the first iteration result

39

will be used as further reference. After iteration one two indexes is stored;
i = 1 and j = 2, representing x1 and x2 respectively. Before moving in to
the secondary for loop an importent calcualtion is made. The sign of A(i, j)
is evaluated and the direction of impact xj has on xi is identified.

• D|Secondary FOR loop (l)

For all the internal boundaries l of state i. Evaluate xj at the cross-over
between the boundary l and the equilibrium line. For the first iteration this
translates in to evaluating:

ẋ1 = A(1, 1)x1 +A(1, 2)x2 +B(1, 1)u (72)

x2 =
−A(1, 1)B21 +A(1, 2) +B(1, 1)u

A(1, 2)
(73)

Pull the results slightly apart in the direction of xj and save the results as
dxmin and dxmax.

• E|Moving in the default negative direction

From the boundary l apply the impact xj has on xi in the negative direction.
E.g. for the first iteration, i = 1, j = 2, l = 2 and sign(A(i, j)) = 1. Applying
the impact xj has on xi in the negative direction leads to a movement from
2 to 1 when the sign of A(i, j) is positive. See figure 21.

40

Figure 21: The result of evaluating l− (direct+ 1)/2 at the first iteration of
linauto2d.m

Meaning that the current hypercube being evaluated has a tuple repre-
sentation starting with 1. The second digit is undefined at this point in the
algorithm.

• F|Tertiary FOR loop (default negative direction (q))

If the system still is inside it’s defined outer boundaries or the sign of
sign(A(i, j)) is positive, the tertiary for loop is initiated. The loop starts
from dxmin and takes the value of all larger internal boundaries for xj . The
positions tuple representation is identified and the transition for xi is filled
with the "adjusted" direction value. Where 0 is no change, 1 negative direc-
tion change, 2 positive direction. After the tertiary FOR loop has concluded,
all hypercubes starting with 1 is assigned with the transition variable of xi

• G|Moving in the default positive direction

This section performs the opposite of section E. Evaluating the expression
l −−(direct+ 1)/2. For the first iteration the result is 2, meaning that the
hypercubes under evaluation has a tuple representation starting with 2.

• H|Tertiary FOR loop (default positive direction (q))

41

If the system remains inside it’s defined outer boundaries or the sign of
sign(A(i, j)) is negative q loops from 1 : dxmax. For the first iteration this
section only evaluates (2, 1).

5.1.7 Evaluating the results; the two tank automaton transition
tables

The full transition table returned from linauto2d.m:

x1 x2
(1, 1) 2 0
(1, 2) 2 1
(1, 3) 2 1
(2, 1) 1 2
(2, 2) 2 0
(2, 3) 2 1
(3, 1) 1 2
(3, 2) 1 2
(3, 3) 0 0

(74)

To check it’s viability and further improve understanding the following figure
was created:

42

Figure 22: The transition table for x1 for the two tank system represented
by arrows

In figure 22 the transition table for x1 is visualized, which is why every
transition is vertical. As can be seen, the evaluation of the equilibrium line is
very important for calculating the transition tables. As the transition values
clearly show x1 moving towards the equilibrium. Every transition of x1 is
towards the equilibrium line, validating the calculations.

5.2 3 Tank hot and cold liquid mixing

The 3 tank system has been chosen purposely for being able to clearly dis-
play the principles of using an automaton model in a Hazop analysis. As the
modelling procedure is highly unprecedented, the complexity of the system
is kept somewhat low. This is to ensure that that gradual improvements/bug
fixes on the algorithm is possible within the given time frame. The system
is also chosen so that objective 2 in the introduction may be fulfilled. Pro-
viding a solid foundation for future work expanding the utilization of hybrid
automaton theory.

The system contains three tanks where one is filled with hot water, one with
cold water and a third with a mixture of the previously mentioned tanks.

43

Meaning that the process unit is a direct heat exchanger. From this point
and onwards the tanks will be specified as follows: hot water tank H, cold
water tank C and mixing tankM . The initial temperatures of the tanks are:

TH(0) = 80◦C TM (0) = 40◦C TC(0) = 20◦C (75)

For each tank there is an internal mixing unit keeping the temperatures
uniform. Below follows a simplified flowsheet displaying the flow patterns in
the system.

Figure 23: A simplified flowsheet displaying the 3 tank mixing system

5.2.1 Modelling

Modelling the tank is done accordingly to the technique displayed in section
2.1 as referenced in Preisig [3]. The three main tanks are described by
lumps which indicates that they are assumed to have uniform properties
throughout a given capacity, i.e. the CSTR simplification. Three reservoirs
has been included in the model, portrayed as a half circle. From a modelling
point of view they represent uniform intensive quantities, as well as endless
capacity. Yielding no differentials. One reservoir supplies the system with
hot water, another with cold and the last reservoir is the system environment
that receives the outflow. The total system topology is therefore:

44

Figure 24: The topology for the 3 tank model

With a single species present and three capacities the model will include
three mass balances and three energy balances

ẋ = f(t, x, u, d) (76)

Mass Balance
Conservation of mass is ensured when all capacities and every connecting
flow are accounted for:

dMH

dt
= m̂RH |H − m̂H|M (77)

dMC

dt
= m̂RC |C − m̂C|M (78)

dMM

dt
= m̂H|M + m̂C|M − m̂M |D (79)

A conventional method of describing liquid streams is by state conversion to
volume flow and subsequently use of pressure difference as the driving force
e.g:

m̂k = ρH2OV̂l|k (80)

Modelling the volume flow as dependent on the square of the pressure dif-
ference, multiplied with a factor dependent on the valve characteristic, is an
equally conventional method of modelling the volume flow rate:

m̂k = ρH2O(−c
√
|pk − pl|) · sign(pk − pl) (81)

45

Where the sign function is used for allowing change in the flow direction
(negative pressure difference) without having to deal with complex numbers.
The reason this procedure is included is to show how easy it is to take a
misstep when modelling systems where high accuracy is required, e.g. in a
temperature sensitive environment. While mass is a consistent quantity, by
using simple conversation like the ones previously showed the consistency can
no longer be guaranteed. Is it sufficient to allow the density to be constant
in the operating area of the system? Can the safety assessment be performed
with confidence? Or will maybe one single control question in an upcoming
hazop analysis be answered differently by use of the model? What can such
a mistake lead to?

The model is kept in mass, i.e. the mass is the chosen state, and the flow
rate is modeled readily as:

x̂RH |H = u1Θ1 (82)

x̂RC |C = u2Θ2 (83)

x̂H|M = u3(xH − xM) (84)

x̂C|M = u4(xC − xM) (85)

For the last flow, the drain from the mixing tank, several options for con-
trolled and uncontrolled flow is applicable . A simple proportional controller
may look like

x̂M |D = p1(xM − xMsp) (86)

Resulting in:

dxH
dt

= u1Θ1 − u3(xH − xM) (87)

dxC
dt

= u2Θ2 − u4(xC − xM) (88)

dxM
dt

= u3(xH − xM) + u4(xC − xM)− p1u5(xM − xMsp) (89)

Energy Balance
The energy balanced is modeled based on the topology as well. Resulting in
three energy balances. To ensure consistency the model is constructed from
the system total energy. Below follows some simplifications that applies to
all three capacities:

ES = US +KS + PS (90)

Here the total energi (E), the conserved quantity, is separated in to internal
energi (U), kinetic energy (K) and potential energy (P). The subscript S

46

is just as a notation for a temporary example system. Since the capacities
in the 3 tank system is fixed in space over any reasonable time front, the
change of potential and kinetic energy with time is zero. This simplifies the
time derivatives to:

dES
dt

=
dUS
dt

(91)

For illustration purposes any energy flow to the surroundings is neglected.
The resulting energy balances are:

dUH
dt

= ÛRH |H − ÛH|M + ŵRH |H − ŵH|M (92)

dUC
dt

= ÛRC |C − ÛC|M + ŵRC |C − ŵC|M (93)

dUM
dt

= ÛH|M + ÛC|M − ÛM |D + ŵH|M + ŵH|C − ŵM |D (94)

(95)

To simplify the balances further the enthalpy is introduced:

H = U + pV (96)

An open tank system can reasonably be assumed as having constant pressure.
The time derivatives the develops as follows:

dHS

dt
=
dUS
dt

+ VS
dpS
dt

+ pS
dVS
dt

(97)

dHS

dt
=
dUS
dt

+ pS
dVS
dt

(98)

(99)

The work terms in the energy balances are defined as:

ŵS|E = pS
dVS
dt

(100)

Which are work done on the environment when the volume changes. In-
troducing the enthalpy as the state function therefore eliminates the work
segments in the energy balance:

dHH

dt
= ĤRH |H − ĤH|M (101)

dHC

dt
= ĤRC |C − ĤC|M (102)

dHM

dt
= ĤH|M + ĤC|M − ĤM |D (103)

(104)

47

The enthalpy transportation terms depends on the mass flow rate and the
specific enthalpy of the substance. For a one species system this is defined
as:

ĤS =
∂HS

n̂S|E
n̂S|E (105)

ĤS = hS(TS)n̂S|E (106)

The specific enthalpy is denoted h and is in turn dependent on the current
temperature and the heat capacity of the substance. The heat capacity may
also be dependent on the temperature in the current operating region. Thus
resulting in the following definition:

ĤS =

∫ TS

Tref

∂

∂TS

(
∂HS

∂n̂S|E

)
dT n̂S|E (107)

ĤS =

∫ TS

Tref

cp(T)dT n̂S|E (108)

(109)

For initial testing a constant heat capacity may be sufficient. Equation 109
may then be further simplified to:

ĤS = cp(TS − TRef)n̂S|E (110)

To keep the system consistent the quite common state variable transforma-
tion H → T wil not be performed, i.e enthalpy is the chosen state. But the
expression in equation 110 is used for the calculation of the initial enthalpy
of the system. The reverse function is used for producing graphs which
follows the temperature development. In the latter case the flow rates are
substituted with the total mass of the capacity in question

TS =
HS

cpNS
+ TRef (111)

5.2.2 Defined system

The structured results after modelling in accordance with Preisig [3] dis-
played in section 2.1.1 is the following system:

• Initial Conditions:

x(0) =

xH(0)
xC(0)
xM (0)

 =

1
1
1

 T (0)[=]◦C =

TH(0)
TC(0)
TM (0)

 =

20
80
25

 (112)

x(0) ∈ <6 xn[=]kg for n = 1, 2, 3 xn[=]J for n = 4, 5, 6 (113)

48

• Default Input:

u =

u1
u2
u3
u4
u5

 =

1
1
1
1
1

 (114)

un[=]on/off = 1/0 for n = 1, 2, 3, 4 u5[=]kg (115)

• Parameters and constants:

Θ =

Θ1

Θ2

Θ3

Θ4

Θ5

 =

1
1
1
1
10

 γ =

[
γ1
γ2

]
=

[
hH = cp(TH − TRef)
hC = cp(TC − TRef)

]
(116)

• Algebraic equations:

TRef = 20◦C (117)
HS = cp(TS − TRef)NS (118)
hS = cp(TS − TRef) (119)

• State equations:

dx1
dt

= u1Θ1 − u3Θ3(x1 − x3) (120)

dx2
dt

= u2Θ2 − u4Θ4(x2 − x3) (121)

dx3
dt

= u3Θ3(x1 − x3) + u4Θ4(x2 − x3)−Θ5(x3 − u5) (122)

dx4
dt

= γ1u1Θ1 −
x4
x1
u3Θ3(x1 − x3) (123)

dx5
dt

= γ2u2Θ2 −
x5
x2
u4Θ4(x2 − x3) (124)

dx6
dt

=
x4
x1
u3Θ3(x1 − x3) +

x5
x2
u4Θ4(x2 − x3)−

x6
x3
u5Θ5(x3 − 2) (125)

49

5.2.3 Aquiring the Jacobi incidence matrix

One of the necessary arguments for calling the script nlinauto, as well as
being an essential part of calculating the transition tables, is the sign of the
jacobian; sign(J

A
). Where the jacobian is the matrix:

J
A

=

∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ1
∂x3

∂ẋ1
∂x4

∂ẋ1
∂x5

∂ẋ1
∂x6

∂ẋ2
∂x1

∂ẋ2
∂x2

∂ẋ2
∂x3

∂ẋ2
∂x4

∂ẋ2
∂x5

∂ẋ2
∂x6

∂ẋ3
∂x1

∂ẋ3
∂x2

∂ẋ3
∂x3

∂ẋ3
∂x4

∂ẋ3
∂x5

∂ẋ3
∂x6

∂ẋ4
∂x1

∂ẋ4
∂x2

∂ẋ4
∂x3

∂ẋ4
∂x4

∂ẋ4
∂x5

∂ẋ4
∂x6

∂ẋ5
∂x1

∂ẋ5
∂x2

∂ẋ5
∂x3

∂ẋ5
∂x4

∂ẋ5
∂x5

∂ẋ5
∂x6

∂ẋ6
∂x1

∂ẋ6
∂x2

∂ẋ6
∂x3

∂ẋ6
∂x4

∂ẋ6
∂x5

∂ẋ6
∂x6

(126)

For the 3 tank system the jacobian with respect to the states is:

J
A

=

−u3Θ3 0 +u3Θ3 · · ·
0 −u4Θ4 +u4Θ4 · · ·

u3Θ3 u4Θ4 −u3Θ3 − u4Θ4 −Θ5 · · ·
−x4
x21
x3u3Θ3 0 x4

x1
u3Θ3 · · ·

0 −x5
x22
x3u4Θ4

x5
x2
u4Θ4 · · ·

x4
x21
x3u3Θ3

x5
x22
x3u4 −x4

x1
u3Θ3 − x5

x2
u4Θ4 − x6

x23
u5Θ5 · · ·

· · · 0 0 0
· · · 0 0 0
· · · 0 0 0
· · · − 1

x1
u3Θ3(x1 − x3) 0 0

· · · 0 − 1
x2
u4Θ4(x2 − x3) 0

· · · 1
x1
u3Θ3(x1 − x3) 1

x2
u4Θ4(x2 − x3) − 1

x3
Θ5(x3 − u5)

(127)

The result of the sign function:

sign(J
A

) =

−1 0 +1 0 0 0
0 −1 +1 0 0 0
1 1 −1 0 0 0
−1 0 +1 −1 0 0
0 −1 +1 0 −1 0
1 1 −1 1 1 −1

 (128)

5.2.4 Dealing with negative flow rates in the enthalpy balances

The current model needs to be adjusted for negative flow rate situations
that will occur in the transition table calculations. Currently the specific
enthalpy of tank M and H is calculated and then multiplied to the flow rate.
In the case of negative flow rate the specific enthalpy needs to be calculated

50

for tank M instead. Resulting in different continuous dynamics for different
discrete states, i.e the discrete state (1, 1, 3, x, x, x) has a different energy
balance than i.e the discrete state (3, 3, 1, x, x, x). Where the latter is the
default model. A logic statement shifting between the continous dynamics
is therefore included in the differential. See section C.4.1.

5.2.5 Utilizing Heinz Preisig Non-linear Hybrid Automaton gen-
erator

To generate the automaton transition tables for the nonlinear 6 states sys-
tem, a modified version of Heinz Preisig nlinauto.m script was utilized. The
modified version contains various bug fixes by the author and is presented
in Appendix B section C.4.1.

Main algorithm differences from the script linauto2d.m
The script is not easily recognizable compared to the linear 2-D case. But
the main concepts stays the same. Listed below are some key differences

• Reducing the current state space

When nlinauto.m intitate a search for a state that state xi is dependent on it
creates a minimized state space containing only the dependable states. This
ensures that the problem of state explosion does not occur large system. If
the algorithm did not do this then all the calculations would be performed
for every independent state as well. And with the algorithm features three
nested loops the number of calculations would increase exponentially. By
searching for only the dependable states the algorithm will have a high per-
formance even for large systems

• Reducing the current input space

Same strategies as reducing the state space. Calculations on inputs with no
impact on the current state is wasted computational time.

Initializing nlinauto.m
The automaton generator requires 5 inputs, two which is normally supplied
in the run file and three separate files supplying model information. See
Appendix B section C.4.2 for the specific input files. Below follows a general
explanation of the required input files:

• Run script

Specify automaton boundaries in cell arrays corresponding to the state, i.e.
x1 boundaries are located in a vector in Boundaries{1}. In addition specify
the number of inputs and their possible values ([0 1] for discrete input). Read
the system model, jacobian sign pattern and input pattern (See explanations
below):

51

• System model

Insert the state equations in a single column vector. A single differential
equation in each row. Alle states should be presented in vector form so that
x(1) calls state one and so on. All inputs should in a similar fashion be
presented as u(1).

• Jacobian sign pattern

The Jacobian matrix for the system needs to be evaluated and the sign
pattern identified; sign(JA(n,m)) = JsignA(n,m). This is because the script
works with direction impacts. A positive, i.e +1 sign at (n,m) means that
increasing the state m increases state n.

• Input sign pattern

A sign matrix for which states are impacted by which input. The direction
of impact is ,as previously mentioned, carried in the jacobian sign pattern
and all sign are therefore +1 in this matrix. +1 sign at (n,m) means that
input 1 has an effect on the change of state m.

Reading the results
Below follows a example of an automaton table generated by calling nlin-
auto.m. NB! The transition table holds no value other than being an example
for reading the output. The algorithm searches for all states dependable on
the current state called xs. In the example below x1 depends only on x3.
The generated automaton with basis in x1 is therefore two dimensional. The
following output is received x1, x3:

52

Figure 25: Automaton generated with H. Presig nlinauto.m for the 3 tank
model

• Top right corner (Teal)

The top right 5x2 corner is marked as undefined. This is merely a place
holder to align the matrix data.

• Top left corner (Orange)

The top left 5x4 is all combinations of the active set of inputs. Where the
columns represents the current configuration. The inputs interfering with
state x1 is u1 (top row, representing inlet stream to tank h) and u3 (third
row, representing the pipe connecting tank H and M).

• Row 6 (Green)

Row 6 is a marker, or a column labeler. E.g. (6, 2) = 3 means that all data
below row 6 in column 3 is the tuple representation for state 3 := x3.

• Row 6 (Pink)

53

The dependent state and subject for the current equilibrium calculation.

• Bottom right corner (Purple)

The bottom right 9x2 corner is a tuple representation of the current hyper-
cube.

• Bottom left corner (Red)

The transition table for state x1 in the x1, x3 two dimensional automaton.
Where 1 is the negative direction, 2 positive and 3 either(±).

Referring to appendix B for all 6 transition tables for the 3 tank system.

54

6 Case Study: Comparison between a traditional
approach and utilizing the automaton model

6.1 Traditional hzop analysis of the 3 tank system

As mentioned in the introduction, the main purpose of this thesis is to take a
hybrid automaton approach to the hazop procedure. This section is therefore
devoted to a traditional hazop to be used as a reference for the automaton
method later on.

6.1.1 Node selection and purpose identification

The primary step, as according to the flowsheet in figure 11, is to get an over
view of the system and split it into appropriate nodes, to be examined by
use of the guidewords (see section 4).

55

Node Area description Purpose
1 Hot water tank (NH)

including on/off inlet valve
for stream n̂RH |H and
on/off outlet valve for
stream n̂H|M

A local, on site buffer for
supplying hot water to the
mixing tank. Done so that
the process may be contin-
ued in the case of short
supply problems. Trans-
fer rate and direction be-
tween the hot tank and the
mixing tank is in effect de-
cided by the difference in
hydrostatic pressure. De-
fault flow direction is to
the mixing tank. Intended
temperature is 80·C

2 Cold water tank (NC)
including on/off inlet valve
for stream n̂RC |C and
on/off outlet valve for
stream n̂C|M

A local, on site buffer for
supplying cold water to the
mixing tank. Done so that
the process may be contin-
ued in the case of short
supply problems. Trans-
fer rate and direction be-
tween the cold tank and the
mixing tank is in effect de-
cided by the difference in
hydrostatic pressure. De-
fault flow direction is to
the mixing tank. Intended
temperature is 20·C

3 Water mixing tank (NM)
including level control con-
nected to outlet stream
n̂M |D

Mixing a supply of hot and
cold water to a controlled
temperature decided by the
"customer". Intended to
work in the range of 20·C
to 80·C

6.1.2 Selection of guidewords and process parameters

The guidewords below are selected for fitting a liquid flow setting where
temperature control is important

• Higher than

• Lower than

• Reverse

56

The states and the transfer rates, as well as the pressure is selected as process
parameters. As these parameters are the only one with a realistic impact
on the system. The system is not pressurized (open to the environment) so
any pressure difference should be due to difference in hydrostatic pressure.
Any hazardous incidents regarding pressure should therefore be covered by
the level parameter.

• Flow rate

• Level

• Temperature

• Phase

6.1.3 Combining parameters and guidewords. Evaluating a pos-
sible deviations and a causes

Below is the Hazop form for tank H, the other Hazop forms are presented in
appendix B.2

57

Nr Parameter Guideword Deviation Cause
1 Flow rate in Higher than Visable as a

resulting high
hot water flow
in to mixer
if the inlet
stream is sup-
posed to be
closed.

Malfunction on/off
valve at the inlet
(leaking). When sig-
nal is "on" there is
no visable deviation

2 Flow rate in Lower than Visable as a re-
sulting low hot
water flow in
to mixer. Tem-
perature fall in
the mixer.

Pipe clogged at the
inlet. When signal is
off there is no devia-
tion

3 Flow rate in Reverse Negative flow
rate in inlet
stream. Tem-
perature drop
in hot water
tank, flow
through tank
H.

Mixer outlet clogged
pipe. Higher pres-
sure at the cold water
side of the system.

4 Flow rate out Higher than High hot water
flow in to
mixer, low
level in tank M

Malfunction level
controller in mixer.
Valve almost fully
open

5 Flow rate out Lower than Low hot wa-
ter flow in to
mixer

Pipe clogged be-
tween mixer and
hot water tank.
Or clogged pipe/-
malfunction level
controller giving
high evel in mixer.

6 Flow rate out Reverse Negative flow
rate in the
stream be-
tween mixer
and hot water
tank

Higher level in mixer.
Level controller fail-
ing and possible
clogged pipe. filling
hot water tank.

58

Nr Consequence Protection Action
1 Overflowing if

system is sup-
posed to be of-
fline.

No protection
against leaking.

Implement a high
alarm on tank H.

2 Low tem-
perature in
mixer. Mixer
not working
according to
intention

No protection
against low flowrate.

Implement a low
alarm on tank
temperature tank M

3 Overflow cold
water tank

No protection
against negative
flowrate.

Covered by action in
number one

4 Potentially no
consequence
other than
temperature
shift in tank
M.

No protection. Deviation alarm
temperature mixer
M

5 Overflow hot
water tank

No protection Coverd by action in
number one

6 Low temper-
ature in hot
water tank.
Failed level
control in
mixer.

No protection
against negative
flowrate.

Implement a high
alarm on level tank
M

59

Nr Parameter Guideword Deviation Cause
7 Level Higher than High level in

hot water tank
Clogged outlet/mal-
function level con-
troller in mixer lead-
ing to high level
mixer

8 Level Lower than Low level in
hot water tank

Clogged inlet or mal-
function level con-
troller in mixer lead-
ing to low level mixer

9 Temperature Higher than Higher tem-
perature in
hot water tank
than normal
operation/in-
tention

deviation in inlet
stream

10 Temperature Lower than Lower temper-
ature in hot
water tank
than normal
operation/in-
tention

Deviation in inlet
stream or reverse
flow rate

11 Phase Higher than Level drop and
flow rate drops

Fire in the plant

12 Phase Lower than Flow rate drop Outside temperature
significantly below
freezing

60

Nr Consequence Protection Action
7 Possibility of

overflowing
No protection. Implement a high

alarm on tank H.
8 Possibility of

emptying
No protection. Implement a low

level alarm
9 Operation

deviation.
Stream from
mixer not
meeting re-
quirements.

No protection. High temperature
alarm tank H.
Or temperature
controller

10 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

No protection. Low temperature
alarm tank H.
Or temperature
controller

11 Damage to
equipment
plant. Out-
let stream
not meeting
requirements

Fire safet is as-
sumed to be accord-
ing to local law.

No action

12 Overflowing.
Damage to
equipment.
Outlet stream
blocked

No protection
against negative
flowrate.

If outside, isolate

Summary of recommended actions for mass based parameters
tank H (flow, level):

1. Low alarm tank H

2. High alarm tank H

3. High alarm tank M

4. Low alarm tank M

5. Temperature deviation alarm tank M

61

6.1.4 Summary of proposed actions by utilizing the Hazop pro-
cedure

After hazop evaluation of all three tanks the following actions are recom-
mended for the entire system:

Tank H

1. Low level alarm tank H

2. High level alarm tank H

3. Low temperature alarm tank H

4. High temperature alarm tank H

Tank C

1. High level alarm tank C

2. Low level alarm tank C

3. Low temperature alarm tank C

4. High temperature alarm tank C

Tank M

1. Low level alarm tank M

2. High level alarm tank M

3. Deviation alarm tank M

4. Low temperature alarm tank M

5. High temperature alarm tank M

Flows

1. Deviation alarm m̂RH |H

2. Deviation alarm m̂RC |C

3. Deviation alarm m̂M |D

62

6.2 Hazop analysis utilizing the 3 tank automaton

This section is in reality a test of the hypoteses:

Hypothesis 1: Any guideword/parameter combination can be swapped with
an evaluation of the hybrid automaton transition table

Following hypothesis 1 is a hypothesis regarding how to locate which tran-
sitions in the transition tables that leads to a potential hazard.

Hypothesis 2: If the automaton is generated over the boundaries spanning
the safe operation domain. Any operational hazards must be visible in the
transition table as a possible transition out of the domain

A implication of hypothesis 2 is that all possible deviations must be pre-
sented in the inputs. I.e the vector containing all inputs u must also contain
all disturbances d. The other result of hypothesis 2 is that for the 2-D
3x3 automaton as seen in section 16, the only discrete states of interest are
the one spanning the frame a long the outer boundaries (1, 1) → (3, 1) →
(3, 3)→ (1, 3)→ (1, 1) i.e. the (2, 2) quadrant is not of interest. Where the
"hazardous transitions" depends on the pathway a long the frame. In other
words, a potential hazard is connected to a situation where the tank overfills
or empties. For the path (3, 1) → (3, 3) the outer boundary that may be
crossed is B41, the capacity limit of tank 1. And any crossing out of the outer
constraint must therfore be in the positive direction. Meaning that if the
transition table for x1 at any (3, k), where k is the sequence: 1, · · · , nBis 2 a
potential hazard is identified.

6.2.1 Evaluating the hybrid automaton for tank H

As this is an explanatory thesis with an emphasis on being easy to follow
the hybrid automaton transition table for tank H is displayed below. For the
other tables see appendix B.

63

undefined undefined 0 0 1 1
undefined undefined 0 0 0 0
undefined undefined 0 1 0 1
undefined undefined 0 0 0 0
undefined undefined 0 0 0 0

1 3 3 3 3 3
1 1 0 3 2 3
1 2 0 2 2 2
1 3 0 2 2 2
2 1 0 1 2 3
2 2 0 3 2 3
2 3 0 2 2 2
3 1 0 1 2 1
3 2 0 1 2 3
3 3 0 3 2 3

(129)

State x1 outer boundaries can possibly be crossed at (1, x) and (3, x). In
(1, x) negative transition is searched for, i.e emptying tank H. For (x, 3) a
positive transition is searched for, or a situation where tank H overflows.

64

Nr Input pat-
tern

Tuple Hazardous transi-
tion

Action

1 [0 0 1 0 0]T (1,1) 3: Possibility of emp-
tying tank H. Reflect
what happens if in-
let flow m̂RH |H fails
to open.

Low alarm
tank H/low
flow alarm
m̂RH |H

2 [0 0 1 0 0]T (3,3) 3: Possibility of over-
filling tank H, an
effect of overfilling
tank M. Reflect what
happens if outlet flow
m̂M |Dfails to open.

High alarm
tank H/High
alarm tank M
or low flow
alarm m̂M |D

3 [1 0 0 0 0]T (3,x) 2: Trajectory in the
direction of overfill-
ing tank H. Reflect
what happens if flow
m̂H|M fails to open.

High alarm
tank H or low
flow alarm
m̂H|M

4 [1 0 1 0 0]T (3,2)
(3,3)

3: Trajectory in the
direction of overfill-
ing tank H. Depends
on level in tank M

High alarm
tank M

5 [1 0 1 0 0]T (1,1) 3: Possibility of emp-
tying tank H. Depen-
dent on tank M Level

Low alarm
tank M

From this point the automaton models grows in size. And manual evaluation
is at best as time consuming as regular Hazop. A search script to automat-
ically catch dangerous transitions have therefore been written, see section
C.6. The output of the script can be verified as the matrix below contains
the same information as the manual version above:

0 0 1 0 0 1 1 3
0 0 1 0 0 3 3 3
1 0 0 0 0 3 1 2
1 0 0 0 0 3 2 2
1 0 0 0 0 3 3 2
1 0 1 0 0 1 1 3
1 0 1 0 0 3 2 3
1 0 1 0 0 3 3 3

(130)

Each row in matrix represented an identified hazardous transition. The first
data represent the system input, followed by the tuple representation and
the transition variable in the last column.

Summary of total recommended actions: The following list displays

65

the total recommended actions. This is fairly automated. If x1 can transition
out of the outer constraint then a high and low level

1. Low level alarm tank H

2. High level alarm tank H

3. Low temperature alarm tank H

4. High temperature alarm tank H

Tank C

1. High level alarm tank C

2. Low level alarm tank C

3. Low temperature alarm tank C

4. High temperature alarm tank C

Tank M

1. Low level alarm tank M

2. High level alarm tank M

3. Low temperature alarm tank M

4. High temperature alarm tank M

6.2.2 Hybrid automaton hazop performance

For the tank H hybrid automaton several 3’s are identified as hazardous
transition. However, those values follows a specific pattern. Every "3" is
completely dependent on how the level in tank M evolves. And in effect,
if tank M operates safely (level is regulated to match the set point) then a
high level in tank M will be reduced. This will in effect also reduce the level
in tank H.

A number of transitions are similar. In the case of the flow m̂H|M is closed
the state of tank M does not impact the transition table at all. The (3, x)
results are therefore a single potential hazard. For larger systems the number
of hazardous transitions can become quite large, this is due to the possible
number of temporary independent states, i.e. states that are disconnected
due to the current input configuration. At the bottom of C.6 a contractor
is written. The reduced transition matrix ignores the other states and only
accounts for unique hazardous transition for the state in question. The
reduced result returns the following information:

Mass balances

66

Tank Nr. of unique haz-
ardous transitions

H 5
C 5
M 10

Energy balances

Tank Nr. of unique haz-
ardous transitions

H 5
C 4
M 15

At first glance the results seems reasonable. The first indication lies
within the number of unique hazards in the mass balances for tank H and
tank C. Their respective mass balances are completely equal, something that
is reflected in the number of unique hazards. At the same time the number
for tank C is less than the number for tank H when it comes to the energy
balances. This also makes sense since the input to tank C has a considerably
lower specific enthalpy, making it impossible to cross the highest boundary
without the possibility of negative flowrate from tank M to tank C. This
is verified be comparing the output for unique hazardous transitions when
utilizing script autohaz.m:

Unique hazardous transitions energy balance tank H
0 0 1 0 0 1 3
0 0 1 0 0 3 3
1 0 0 0 0 3 2
1 0 1 0 0 1 3
1 0 1 0 0 3 3

 (131)

Unique hazardous transitions energy balance tank C
0 0 0 1 0 1 3
0 0 0 1 0 3 3
0 1 0 1 0 1 3
0 1 0 1 0 3 3

 (132)

Separating the unique transition is the pure input configuration for tank H.
Here the outer boundary for enthalpy will be crossed. The same configuration
will not be considered hazardous in terms of enthalpy for the cold water
tank. An overfill will be spotted by the mass balance transition table. But
the temperature is not high enough to result in a violation of the enthalpy
boundary as well.

67

6.2.3 Hybrid automaton script limitations

To further test the nlinauto.m script some additional models were tested.
One of those was a state variable transformation from enthalpy to tempera-
ture. See section D.1 for further elaboration. If the script is to be viable for
a test study on a real plant, the possibility of successfully perform a state
variable transfer might be important for a successfull hazop study. Since the
total enthalpy is a function of the total mass, the enthalpy transition table
may not catch some temperature specific hazards. Since high enthalpy can
be both a full cold tank, as well as a hot low level tank. Certain process have
internal and outer hazard boundaries for temperature , yielding a need for
temperature specific transition tables. Performing a state transfer to tem-
perature in the three tank system reveals a sever script limitation:

State variable transfer from enthalpy to temperature reduces the number of
dependable states

Since temperature is an intensive quantity, it is not directly dependent of
any outflows. This reduces the number of dependable states, leading to a
situation where the transition tables for both tank H and tank C, becomes
1-Dimensional. The current version of nlinauto.m have been found to not
being able to handle these kind of differentials. In it self this is not a huge
issue, since 1 dimensional transitions are easy to calculate after locating the
equilibrium point. Manual evaluation is therefore a possibility. However, 1-
D transitions is not uncommon in the process industry. The level in a buffer
tank is usually only dependent on it self by utilizing a controller. And there
is seldom cases like the three tank system, where tanks are situated on the
same horizontal level. Allowing for reverse flow rates. If the script crashes
for every 1-D transition table it comes across the complications will simply
outweigh the benefits of automating the hazop procedure.

68

7 Discussion

7.1 Hybrid automaton modelling script nlinauto.m

Over the course of this thesis the hybrid automaton modelling approach has
been introduced in different settings. Where the main focus lies within dis-
cretizing the state space in to a set of hypercubes. This allows for crude
evaluation of net state trajectories for the entire invariant state space. Leav-
ing the outer constraint of the state space is often synonymous with hazard.
As an outer constraint may be the volume of a capacity or the temperature
where side reaction may start to be significant. By searching along the outer
constraints, plausible hazards have been showed to be identified fast for a
wide number of configurations.

The non linear script for estimating hybrid automaton transition tables have
proven to work quite fast. As a series of nested FOR loops, each additional
state increases the number of calculation exponentially. And therefore a
large number of states could potentially result in a very high computational
cost. By continually evaluating each transition table only for the dependable
state xd the number of calculation always stays under control. Remember
that the algorithm is absolutely oblivious to the state development for it’s
adjecent hypercubes which do not lie in the direction of the dependable state
xd, since it in fact calculates the impact the dependable state has on the state
in question xs between every boundary of the dependable state. In the three
tank system this means that for tank M, the influence tank H have is calcu-
lated for a high, medium and low level in the tank.

Some bug fixes was needed to make the non linear automaton script to
properly work. Such alteration always posseses a risk of resulting in new
additional bugs. By evaluating the set of transition tables in B the results
seems very reasonable for the mass balances. The first indicator is the purely
positive transition for the single inflow, no outflow, for tank H and C. This
is obviously a reasonable result, as filling a tank without removing anything
from it will at some point lead to a situation where the tank overflows. The
second indicator is the single outflow configuration. Here the dependence
on the level of tank M is clearly visible. At low tank M levels the level of
tank H/C falls and when tank M has a high level it rises. While it can go
either way when the levels are the same. In addition the transition table
for tank M clearly shows movement towards the setpoint which lies in tuple
(−,−, 2). With the stable results from expanding the state space in this the-
sis, it would be very interesting to take the procedure to an existing plant.
Where historic data would be available to compare results.

69

7.2 Hybrid automaton approach versus traditional hazop

The generic hazop procedure is well documented as an excellent tool for
structured risk elimination. By reviewing the sources Crawleys et al. [8] it
is also clear that the procedure is significantly time consuming. Not only
in the actual hazop process, but also in the planning stage. Where a lot
of personnel must be included to ensure a complete overview of the system.
When it comes to the planning stage, it is hard to argue that the hybrid
automaton approach is any less time consuming. The automaton still needs
a good model, which should/may also include plausible site dependent situ-
ations. An example of such a situation was described in 1, where the usage
of internal steam coils to heat a tank results in a plausible leakage situa-
tion. Another example could be potential hazards due to outer forces, e.g. a
loading truck, crashing in to the system causing a leak. Such scenarios will
not appear in a system design model but must in some cases be included
in the hybrid automaton model, if they seem likely. Knowledge about the
behaviour of the system is also very important when mapping the safe op-
erating region. Especially in cases where a large number of internal regions
posses danger, i.e. a reactor with a high number of reactions where the se-
lectivity is important.

Using crossing of the outer boundaries as a synonym for a potential hazard
makes sense in the 3-tank system. Crossing of the outer boundaries means
to overfill or empty the tanks. This is obviously a situation that results in
the tanks not functioning according to their purpose and in the least results
in a product quality hazard. With the added possibility of defining inter-
nal hazardous regions (requires simple rewrite of the search algorithm), the
transition table show great promise in catching all potential hazards. The
keyword being all. A hazard identification tool that only achieve a "catch
rate" of 98% is in it self a potential hazard. In the case study all potential
hazards involving operating the system is detected. But only for discrete
inputs. Shifting the flow rates may lead to additional hazardous transitions,
but for the three tank system they will be detected if the system is secured
according to the identified unique hazardous transitions. The current script
evaluates "best and worst" situations, or discrete input models. A real sys-
tem will have continuous inputs. Since the flow rates affects the equilibrium
calculation it is very possible that evaluating max flow and no flow is insuffi-
cient for catching all hazards in a more complex system. A real plant study
should emphasis whether additional simulations with change in flow rates
yields different number of hazardous transitions

70

7.3 The developed search algorithm for hazardous transi-
tions

The search algorithm successfully locates both unique hazardous transitions
as well as the complete set. Comparison with the manual determination of
hazards for tank H confirms that the algorithm works well for the three tank
system. This is also further established when analysing the development of
unique hazardous transitions for the energy balances for the cold tank in
section 6.2.2. The cold tank has the fewest hazardous transitions, which
reflects the low specific enthalpy for it’s corresponding input flow. Since the
search algorithm identifies all hazards in the three tank system it is deemed
ready for a real plant test study.

7.4 Handling state variable transformation

An issue with the case study is how each hazard is connected to the outer
constraints. For more complex systems internal hypercubes can possess po-
tential hazards. A reactor may have a certain ph, or temperature range
which shifts the reaction selectivity towards products who possess hazard
to the product quality or the plant safety in itself. Being able to produce
transition tables for both extensive and intensive quantities and searching
for outer and inner boundaries is therefore of importance.

The state variable transformation from enthalpy to temperature reduces the
number of dependable states. The outflow of the capacity have no direct
impact on the temperature, in contrast to the enthalpy balance. This re-
duces the number of dependable states, leading to 1-dimensional transition
table for tank H and C. The current version of the algorithm does not sup-
port 1-dimensional differentials, resulting in a script crash. To remove and
manually evaluate such transition tables every time the script crashes can
be tedious work if the system is complex with a large number of states. The
script needs an addition that catches 1-dimensional problems and evaluates
them seperately.

The search algorithm should be valid no matter which state transfer one
performs. When it comes to temperature internal hazardous regions might
be of interest. The search algorithm only needs boundaries around the haz-
ardous temperature range, and can easily be rewritten to search for internal
boundary transitions by utilizing the tuple representation. Since boundary
setting is purely a user input, adding additional safety limits to account for
the possibility of inaccurate results after state transformation is also just a

71

user input matter.

7.5 Further work before plant study

In some aspect the natural next step is to test the procedure on a real system.
Doing so will provide a significant measure of "hazard catch rate" and script
robustness. But before reaching that point, the inability to calculate transi-
tions for 1-dimensional problems needs to be addressed. The 1-dimensional
differentials may not be of great importance in it self. But the inability to
include 1-D transitions seriously hurt the evaluation of the other states. One
state might not be dependent on any other, but other states might depend
on it.

72

8 Conclusion

The hybrid automaton transition tables (section B) can be used to correctly
identify potential hazards for the mass and energy balances in the three tank
system. Fulfilling both hypothesis 1;

Hypothesis 1: Any guideword/parameter combination can be swapped with
an evaluation of the hybrid automaton transition table

and hypothesis 2;
Hypothesis 2: If the automaton is generated over the boundaries spanning
the safe operation domain. Any operational hazards must be visible in the
transition table as a possible transition out of the domain

The potential hazards detected with the hybrid automaton approach reflects
the hazards detected in the conventional hazop procedure.

The developed search algorithm successfully automate the procedure of ex-
tracting hazardous transition. Corresponding with a manual approach.

State variable transformation form enthalpy to temperature is not doable as
it decreases the number of dependable states. Resulting in a 1-dimensional
transition table. This is due to outflows not directly affecting intensive quan-
tities. Before a real plant test of the algorithm an addition must be must
be made. So that states only dependant on it self can be evaluated without
causing a software crash.

73

9 Suggested further development

1. Modify algorithm to handle 1-D transition tables.

2. Implement the hybrid automaton procedure on a real system

3. Test the hazard search algorithm on the real system

4. Validate the transition tables by comparing with continouos state tra-
jectory

5. Evaluate the hazard "catch rate"

74

References

[1] P. Phillips. Chapter 12: Stability Analysis. PhD thesis, Technische Uni-
versiteit Eindhoven, 2001.

[2] M. Cicciotti. Model based safety and operability verification.

[3] H. Preisig. The abc of process modelling, 2013.

[4] L. Stryer H.S. Fogler, J.L. Tymoczko. Elements of Chemical Engineering,
4th Edition. Pearson Education, 2010.

[5] Claire Tomlin. Course aa278a at stanford u. lecture notes. http://www.
stanford.edu/class/aa278a/, 2014. [Online; accessed 31-May-2014].

[6] B. Kuipers and S. Ramamoorthy. Qualitative modeling and heteroge-
neous control of global system behavior. Texas, 2002.

[7] F. Szidarovszky and A.T. Bahill. Chapter 12: Stability analy-
sis. http://www.sie.arizona.edu/sysengr/publishedPapers/
SzidarStability.pdf/, 2014. [Online; accessed 31-May-2014].

[8] Frank Crawleys, M. Preston, and B.Tyler. Hazop guide to best practice.
http://paulthorn.co.uk/healthandsafety/Risk%20Management/
HAZOP-%20Guide%20to%20best%20practice-%20.pdf/, 2014. [Online;
accessed 01-June-2014].

[9] H. Preisig, Yun Xia Xi, and Khiang Wee Lim. Tailoring automata for
fault diagnosability, 2003.

75

http://www.stanford.edu/class/aa278a/
http://www.stanford.edu/class/aa278a/
http://www.sie.arizona.edu/sysengr/publishedPapers/SzidarStability.pdf/
http://www.sie.arizona.edu/sysengr/publishedPapers/SzidarStability.pdf/
http://paulthorn.co.uk/healthandsafety/Risk%20Management/HAZOP-%20Guide%20to%20best%20practice-%20.pdf/
http://paulthorn.co.uk/healthandsafety/Risk%20Management/HAZOP-%20Guide%20to%20best%20practice-%20.pdf/

10 Variable List

10.1 Indexes and special nomenclature

Index Description
α phase index
i Species index
j capacity index
x̂ Rate of state x
ẋ Time deferential of state x
∆ Net change in unit

10.2 Variables
Variable Units Description
c mol/l concentration
cp J/kg◦C Specific heat coefficient
g m/s2 Gravitational acceleration
Hα
i J/kg Enthalpy

hαi J/kg Specific enthalpy
K J Kinetic energy
k - Reaction rate coeficient
Mj kg Mass
m̂j−1|j kg/s Rate mass transport, from j-1 to j
P J Potential energy
p Pa Pressure
q - Discrete state
R - Guard - event detector
Tαj C Temperature
t s time
U J/kg Internal energy
R - Reservoir
x - Continous statee

76

A Automaton Transition tables

A.1 3 Tank Mass Balances

The automaton is generated by use of nlinauto.m through MATLAB, see
section NEED REF

A.1.1 xs = x1 (Tank H)

undefined undefined 0 0 1 1
undefined undefined 0 0 0 0
undefined undefined 0 1 0 1
undefined undefined 0 0 0 0
undefined undefined 0 0 0 0

1 3 3 3 3 3
1 1 0 3 2 3
1 2 0 2 2 2
1 3 0 2 2 2
2 1 0 1 2 3
2 2 0 3 2 3
2 3 0 2 2 2
3 1 0 1 2 1
3 2 0 1 2 3
3 3 0 3 2 3

(133)

Displays the transition tables for x3 in a 2-D x1, x3 automaton for all
relevant inputs. The system is described in NEED REF

A.1.2 xs = x2 (Tank C)

undefined undefined 0 0 0 0
undefined undefined 0 0 1 1
undefined undefined 0 0 0 0
undefined undefined 0 1 0 1
undefined undefined 0 0 0 0

2 3 3 3 3 3
1 1 0 3 2 3
1 2 0 2 2 2
1 3 0 2 2 2
2 1 0 1 2 3
2 2 0 3 2 3
2 3 0 2 2 2
3 1 0 1 2 1
3 2 0 1 2 3
3 3 0 3 2 3

(134)

77

Displays the transition tables for x3 in a 2-D x2, x3 automaton for all
relevant inputs. The system is described in NEED REF

A.1.3 xs = x3 (Tank M)

undefined undefined undefined 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
undefined undefined undefined 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
undefined undefined undefined 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 2 3 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 1 0 0 3 3 2 2 2 2 3 3 3 3 3 3 3 3
1 2 2 0 0 1 1 3 3 3 3 1 1 1 1 3 3 3 3
1 2 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 3 1 0 0 3 3 2 2 2 2 3 3 3 3 2 2 2 2
1 3 2 0 0 1 1 2 2 3 3 1 1 1 1 3 3 3 3
1 3 3 0 0 1 1 3 3 1 1 1 1 1 1 3 3 1 1
2 1 1 0 0 3 3 3 3 3 3 2 2 2 2 3 3 3 3
2 1 2 0 0 1 1 1 1 1 1 3 3 3 3 3 3 3 3
2 1 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 1 0 0 3 3 2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 0 0 1 1 3 3 3 3 3 3 3 3 3 3 3 3
2 2 3 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3 1 0 0 3 3 2 2 2 2 2 2 2 2 2 2 2 2
2 3 2 0 0 1 1 2 2 3 3 3 3 3 3 3 3 3 3
2 3 3 0 0 1 1 3 3 1 1 1 1 1 1 3 3 1 1
3 1 1 0 0 3 3 3 3 3 3 2 2 2 2 2 2 2 2
3 1 2 0 0 1 1 1 1 1 1 2 2 3 3 3 3 3 3
3 1 3 0 0 1 1 1 1 1 1 3 3 1 1 3 3 1 1
3 2 1 0 0 3 3 2 2 2 2 2 2 2 2 2 2 2 2
3 2 2 0 0 1 1 3 3 3 3 2 2 3 3 3 3 3 3
3 2 3 0 0 1 1 1 1 1 1 3 3 1 1 3 3 1 1
3 3 1 0 0 3 3 2 2 2 2 2 2 2 2 2 2 2 2
3 3 2 0 0 1 1 2 2 3 3 2 2 3 3 2 2 3 3
3 3 3 0 0 1 1 3 3 1 1 3 3 1 1 3 3 1 1

(135)

Displays the transition tables for x3 in a 3-D x1, x2, x3 automaton for all
relevant inputs. The system is described in NEED REF

78

A.2 3 Tank Energy Balances

The automaton is generated by use of nlinauto.m through MATLAB, see
section NEED REF

A.2.1 xs = x4 (Tank H)

undefined undefined undefined 0 0 0 0 1 1 1 1
undefined undefined undefined 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 1 1 0 0 1 1
undefined undefined undefined 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 0 0 0 0 0 0

1 3 4 1 3 1 3 1 3 1 3
1 1 1 0 0 3 3 2 2 3 3
1 1 2 0 0 3 3 2 2 3 3
1 1 3 0 0 3 3 2 2 3 3
1 2 1 0 0 3 3 2 2 3 3
1 2 2 0 0 3 3 2 2 3 3
1 2 3 0 0 3 3 2 2 3 3
1 3 1 0 0 3 3 2 2 3 3
1 3 2 0 0 3 3 2 2 3 3
1 3 3 0 0 3 3 2 2 3 3
2 1 1 0 0 3 3 2 2 2 2
2 1 2 0 0 3 3 2 2 3 3
2 1 3 0 0 3 3 2 2 3 3
2 2 1 0 0 3 3 2 2 2 2
2 2 2 0 0 3 3 2 2 3 3
2 2 3 0 0 3 3 2 2 3 3
2 3 1 0 0 3 3 2 2 2 2
2 3 2 0 0 3 3 2 2 3 3
2 3 3 0 0 3 3 2 2 3 3
3 1 1 0 0 3 3 2 2 2 2
3 1 2 0 0 3 3 2 2 2 2
3 1 3 0 0 3 3 2 2 3 3
3 2 1 0 0 3 3 2 2 2 2
3 2 2 0 0 3 3 2 2 2 2
3 2 3 0 0 3 3 2 2 3 3
3 3 1 0 0 3 3 2 2 2 2
3 3 2 0 0 3 3 2 2 2 2
3 3 3 0 0 3 3 2 2 3 3

(136)

Displays the transition tables for x4 in a 3-D x1, x3, x4 automaton for all
relevant inputs. The system is described in NEED REF

79

A.2.2 xs = x5 (Tank C)

undefined undefined undefined 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 0 0 1 1 1 1
undefined undefined undefined 0 0 0 0 0 0 0 0
undefined undefined undefined 0 0 1 1 0 0 1 1
undefined undefined undefined 0 0 0 0 0 0 0 0

2 3 5 2 3 2 3 2 3 2 3
1 1 1 0 0 3 3 0 0 3 3
1 1 2 0 0 3 3 0 0 3 3
1 1 3 0 0 3 3 0 0 3 3
1 2 1 0 0 3 3 0 0 3 3
1 2 2 0 0 3 3 0 0 3 3
1 2 3 0 0 3 3 0 0 3 3
1 3 1 0 0 3 3 0 0 3 3
1 3 2 0 0 3 3 0 0 3 3
1 3 3 0 0 3 3 0 0 3 3
2 1 1 0 0 3 3 0 0 3 3
2 1 2 0 0 3 3 0 0 3 3
2 1 3 0 0 3 3 0 0 3 3
2 2 1 0 0 3 3 0 0 3 3
2 2 2 0 0 3 3 0 0 3 3
2 2 3 0 0 3 3 0 0 3 3
2 3 1 0 0 3 3 0 0 3 3
2 3 2 0 0 3 3 0 0 3 3
2 3 3 0 0 3 3 0 0 3 3
3 1 1 0 0 3 3 0 0 3 3
3 1 2 0 0 3 3 0 0 3 3
3 1 3 0 0 3 3 0 0 3 3
3 2 1 0 0 3 3 0 0 3 3
3 2 2 0 0 3 3 0 0 3 3
3 2 3 0 0 3 3 0 0 3 3
3 3 1 0 0 3 3 0 0 3 3
3 3 2 0 0 3 3 0 0 3 3
3 3 3 0 0 3 3 0 0 3 3

(137)

Displays the transition tables for x5 in a 3-D x2, x3, x5 automaton for all
relevant inputs. The system is described in NEED REF

A.2.3 xs = x6 (Tank M)

The Automaton has dimensions 736x46 which means that any presentation
in paper form is meaningless because of the share size of the matrix. Since
it’s imperative that the columns is aligned, splitting the matrix in to several

80

pages does not seem like a valid solution either. An electronic copy can be
attained be contacting the author at:

bjorntma@stud.ntnu.no.

81

B Hazop

B.1 Traditional Hazop procedure

B.1.1 Tank H

The filled hazop form for tank H:

82

Nr Parameter Guideword Deviation Cause
1 Flow rate in Higher than Visable as a

resulting high
hot water flow
in to mixer
if the inlet
stream is sup-
posed to be
closed.

Malfunction on/off
valve at the inlet
(leaking). When sig-
nal is "on" there is
no deviation visable
deviation

2 Flow rate in Lower than Visable as a
resulting low
hot water flow
in to mixer.
Temperature
fall the in
mixer.

Pipe clogged at the
inlet. When signal is
off there is no devia-
tion

3 Flow rate in Reverse Negative flow
rate in inlet
stream. Tem-
perature drop
in hot water
tank, flow
through tank
H.

Mixer outlet clogged
pipe. Higher pres-
sure at the cold water
side of the system.

4 Flow rate out Higher than High hot water
flow in to
mixer, low
level in tank M

Malfunction level
controller in mixer.
Valve almost fully
open

5 Flow rate out Lower than Low hot wa-
ter flow in to
mixer

Pipe clogged be-
tween mixer and
hot water tank.
Or clogged pipe/-
malfunction level
controller giving
high evel in mixer.

6 Flow rate out Reverse Negative flow
rate in the
stream be-
tween mixer
and hot water
tank

Higher level in mixer.
Level controller fail-
ing and possible
clogged pipe. filling
hot water tank.

83

Nr Consequence Protection Action
1 Overflowing if

system is sup-
posed to be of-
fline.

No protection
against leaking.

Implement a high
alarm on tank H.

2 Low tem-
perature in
mixer. Mixer
not working
according to
intention

No protection
against low flowrate.

Implement a low
alarm on tank
temperature tank M

3 Overflow cold
water tank

No protection
against negative
flowrate.

Covered by action in
number one

4 Potentially no
consequence
other than
temperature
shift in tank
M.

No protection. Deviation alarm
temperature mixer
M

5 Overflow hot
water tank

No protection Coverd by action in
number one

6 Low temper-
ature in hot
water tank.
Failed level
control in
mixer.

No protection
against negative
flowrate.

Implement a high
alarm on level tank
M

84

Nr Parameter Guideword Deviation Cause
7 Level Higher than High level in

hot water tank
Clogged outlet/mal-
function level con-
troller in mixer lead-
ing to high level
mixer

8 Level Lower than Low level in
hot water tank

Clogged inlet or mal-
function level con-
troller in mixer lead-
ing to low level mixer

9 Temperature Higher than Higher tem-
perature in
hot water tank
than normal
operation/in-
tention

deviation in inlet
stream

10 Temperature Lower than Lower temper-
ature in hot
water tank
than normal
operation/in-
tention

Deviation in inlet
stream or reverse
flow rate

11 Phase Higher than Level drop and
flow rate drops

Fire in the plant

12 Phase Lower than Flow rate drop Outside temperature
significantly below
freezing

85

Nr Consequence Protection Action
7 Possibility of

overflowing
No protection. Implement a high

alarm on tank H.
8 Possibility of

emptying
No protection
against emptying

Implement a low
level alarm

9 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

High temperature
alarm tank H.
Or temperature
controller

10 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

Low temperature
alarm tank H.
Or temperature
controller

11 Damage to
equipment
plant. Out-
let stream
not meeting
requirements

Fire safet is as-
sumed to be accord-
ing to local law.

No action

12 Overflowing.
Damage to
equipment.
Outlet stream
blocked

No protection
against negative
flowrate.

If outside, isolate

B.1.2 Tank C

The Hazop form for tank C:

86

Nr Parameter Guideword Deviation Cause
1 Flow rate in Higher than Visable as a

resulting high
cold water
flow in to
mixer if the
inlet stream is
supposed to be
closed.

Malfunction on/off
valve at the inlet
(leaking). When sig-
nal is "on" there is
no deviation visable
deviation

2 Flow rate in Lower than Visable as a
resulting low
cold water flow
in to mixer.
Temperature
rise in mixer.

Pipe clogged at the
inlet. When signal is
off there is no devia-
tion

3 Flow rate in Reverse Negative flow
rate in inlet
stream

Mixer outlet clogged
pipe. Higher pres-
sure at the hot water
side of the system.

4 Flow rate out Higher than High cold
water flow in
to mixer, low
level in tank
M or devation
in inlet stream

Low level in mixer.
Malfunction level
controller in mixer

5 Flow rate out Lower than Low cold wa-
ter flow in to
mixer

Pipe clogged be-
tween mixer and
cold water tank.
Or clogged pipe/-
malfunction level
controller giving
high evel in mixer.

6 Flow rate out Reverse Negative flow
rate in the
stream be-
tween mixer
and cold water
tank

Higher level in mixer.
Level controller first
emptying the system
than the filling of
cold water tank fails.

87

Nr Consequence Safeguards/ProtectionAction
1 Overflowing if

system is sup-
posed to be of-
fline.

No protec-
tion against
leaking.

Implement a
high alarm on
tank C.

2 High tem-
perature in
mixer. Mixer
not working
according to
intention

No protection
against low
flowrate.

Implement a
high alarm
on tank tem-
perature tank
M

3 Oveflow cold
water tank

No protection
against nega-
tive flowrate.

Covered by ac-
tion in number
one

4 Potentially no
consequence.
Dependent on
any neighbour-
ing system

No protection. No action

5 Overflow cold
water tank

No protection Coverd by ac-
tion in number
one

6 High tem-
perature in
cold water
tank. Failed
level control in
mixer.

No protection
against nega-
tive flowrate.

Implement a
high alarm on
level tank M

88

Nr Parameter Guideword Deviation Cause
7 Level Higher than High level in

cold water
tank

Clogged outlet/-
malfunction level
controller in mixer.
High level mixer

8 Level Lower than Low level in
cold water
tank

Malfunction level
controller in mixer.
Low level mixer

9 Temperature Higher than Higher tem-
perature in
cold water
tank than
normal opera-
tion/intention

Negative flow rate
from mixer (see nr 6)
or deviation in inlet
stream

10 Temperature Lower than Lower temper-
ature in cold
water tank
than normal
operation/in-
tention

Deviation in inlet
stream

11 Phase Higher than Level drop and
flow rate drops

Fire in the plant

12 Phase Lower than Flow rate drop Outside temperature
significantly below
freezing

89

Nr Consequence Protection Action
7 Possibility of

overflowing
No protection. Implement a high

alarm on tank C.
8 Possibility of

emptying
No protection
against emptying

Implement a low
level alarm on tank
C

9 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

High temperature
alarm tank C.
Or temperature
controller

10 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

Low temperature
alarm tank C.
Or temperature
controller

11 Damage to
equipment
plant. Out-
let stream
not meeting
requirements

Fire safety is as-
sumed to be accord-
ing to local law.

No action

12 Overflowing.
Damage to
equipment.
Outlet stream
blocked

No protection
against negative
flowrate.

If outside, isolate

B.1.3 Tank M

The Hazop form for tank M:

90

Nr Parameter Guideword Deviation Cause
1 Flow rate in Higher than If not bal-

anced, tem-
perature
devations in
mixer. Higher
flow rate out
from mixer

System inlet streams
higher than normal

1 Flow rate in Lower than If not bal-
anced, tem-
perature
devations in
mixer. Lower
flow rate out
from mixer

System inlet streams
lower than normal

3 Flow rate in Reverse Negative flow
rate in both in-
let streams at
the same time
not likely/pos-
sible

None

4 Flow rate out Higher than Possible high
flow rates
in to mixer
as well. If
not balanced,
temperature
deviations in
mixer.

Malfunction level
controller in mixer
or high flow in to
mixer

5 Flow rate out Lower than Possible low
flow rates
in to mixer
as well. If
not balanced,
temperature
deviations in
mixer

Malfunction level
controller in mixer
or high flow in to
mixer

6 Flow rate out Reverse Negative flow
rate in the
stream be-
tween mixer
and cold water
tank

Higher level in mixer.
Level controller first
emptying the system
than the filling of
cold water tank fails.

91

Nr Consequence Safeguards/ProtectionAction
1 Overflowing if

system is sup-
posed to be of-
fline.

No protec-
tion against
leaking.

Implement a
high alarm on
tank C.

2 High tem-
perature in
mixer. Mixer
not working
according to
intention

No protection
against low
flowrate.

Implement a
high alarm
on tank tem-
perature tank
M

3 Oveflow cold
water tank

No protection
against nega-
tive flowrate.

Covered by ac-
tion in number
one

4 Potentially no
consequence.
Dependent on
any neighbour-
ing system

No protection. No action

5 Overflow cold
water tank

No protection Coverd by ac-
tion in number
one

6 High tem-
perature in
cold water
tank. Failed
level control in
mixer.

No protection
against nega-
tive flowrate.

Implement a
high alarm on
level tank M

92

Nr Parameter Guideword Deviation Cause
7 Level Higher than High level in

cold water
tank

Clogged outlet/-
malfunction level
controller in mixer.
High level mixer

8 Level Lower than Low level in
cold water
tank

Malfunction level
controller in mixer.
Low level mixer

9 Temperature Higher than Higher tem-
perature in
cold water
tank than
normal opera-
tion/intention

Negative flow rate
from mixer (see nr 6)
or deviation in inlet
stream

10 Temperature Lower than Lower temper-
ature in cold
water tank
than normal
operation/in-
tention

Deviation in inlet
stream

11 Phase Higher than Level drop and
flow rate drops

Fire in the plant

12 Phase Lower than Flow rate drop Outside temperature
significantly below
freezing

93

Nr Consequence Protection Action
7 Possibility of

overflowing
No protection. Implement a high

alarm on tank C.
8 Possibility of

emptying
No protection
against emptying

Implement a low
level alarm on tank
C

9 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

High temperature
alarm tank C.
Or temperature
controller

10 Operation
deviation.
Stream from
mixer not
meeting re-
quirements.

Low temperature
alarm tank C.
Or temperature
controller

11 Damage to
equipment
plant. Out-
let stream
not meeting
requirements

Fire safety is as-
sumed to be accord-
ing to local law.

No action

12 Overflowing.
Damage to
equipment.
Outlet stream
blocked

No protection
against negative
flowrate.

If outside, isolate

B.2 Automaton Hazop procedure

See appendix A.1 for referenced transition tables.

B.2.1 Mass balance Tank H

State x1 outer boundaries can be crossed at (1, x) and (3, x). In (1, x) neg-
ative transition is searched for, i.e emptying tank H. For (x, 3) a positive
transition is searched for, or a situation where tank H overflows.

94

Nr Input pat-
tern

Tuple Hazardous transi-
tion

Action

1 [0 0 1 0 0]T (1,1) 3: Possibility of emp-
tying tank H. Reflect
what happens if in-
let flow m̂RH |H fails
to open.

Low alarm
tank H/low
flow alarm
m̂RH |H

2 [0 0 1 0 0]T (3,3) 3: Possibility of over-
filling tank H, an
effect of overfilling
tank M. Reflect what
happens if outlet flow
m̂M |Dfails to open.

High alarm
tank H/High
alarm tank M
or low flow
alarm m̂M |D

3 [1 0 0 0 0]T (3,x) 2: Trajectory in the
direction of overfill-
ing tank H. Reflect
what happens if flow
m̂H|M fails to open.

High alarm
tank H or low
flow alarm
m̂H|M

4 [1 0 1 0 0]T (3,2)
(3,3)

3: Trajectory in the
direction of overfill-
ing tank C. Possible
display of low gain
level controller tank
M

High alarm
tank M or gain
increase flow
m̂M |D

5 [1 0 1 0 0]T (1,1) 3: Possibility of emp-
tying tank H. Depen-
dent on tank M Level

Low alarm
tank M

6 [1 0 1 0 0]T (3,3) 3: Possibility of over-
filling tank H. De-
pendent on tank M
Level

High alarm
tank M

By utilizing autohaz.m (section C.6):

0 0 1 0 0 1 1 3
0 0 1 0 0 3 3 3
1 0 0 0 0 3 1 2
1 0 0 0 0 3 2 2
1 0 0 0 0 3 3 2
1 0 1 0 0 1 1 3
1 0 1 0 0 3 2 3
1 0 1 0 0 3 3 3

(138)

95

B.2.2 Mass balance Tank C

State x2 outer boundaries can be crossed at (1, x) and (3, x). In (1, x) neg-
ative transition is searched for, i.e emptying tank C. For (x, 3) a positive
transition is searched for, or a situation where tank C overflows.

Nr Input pat-
tern

Tuple Hazardous transi-
tion

Action

1 [0 0 0 1 0]T (1,1) 3: Possibility of emp-
tying tank C. Reflect
what happens if in-
let flow m̂RC |C fails to
open.

Low alarm
tank C/low
flow alarm
m̂RC |C

2 [0 0 0 1 0]T (3,3) 3: Possibility of over-
filling tank C, an
effect of overfilling
tank M. Reflect what
happens if outlet flow
m̂M |Dfails to open.

High alarm
tank C/High
alarm tank M
or low flow
alarm m̂M |D

3 [0 1 0 0 0]T (3,x) 2: Trajectory in the
direction of overfill-
ing tank C. Reflect
what happens if flow
m̂C|M fails to open.

High alarm
tank C or low
flow alarm
m̂C|M

4 [0 1 0 1 0]T (3,2)
(3,3)

3: Trajectory in the
direction of overfill-
ing tank C. Possible
display of low gain
level controller tank
M

High alarm
tank M or gain
increase flow
m̂M |D

5 [0 1 0 1 0]T (1,1)
(3,3)

3: Possibility of emp-
tying tank C. Pos-
sible display of low
gain level controller
tank M

High alarm
tank M or gain
increase flow
m̂M |D

96

By utilizing autohaz.m (section C.6):

0 0 0 1 0 1 1 3
0 0 0 1 0 3 3 3
0 1 0 0 0 3 1 2
0 1 0 0 0 3 2 2
0 1 0 0 0 3 3 2
0 1 0 1 0 1 1 3
0 1 0 1 0 3 2 3
0 1 0 1 0 3 3 3

(139)

B.2.3 Mass balance Tank M

State x3 outer boundaries can be crossed at (x, x, 1) and (x, x, 3). In (x, x, 1)
negative transition is searched for, i.e emptying tank M. For (x, x, 3) a posi-
tive transition is searched for, or a situation where tank M overflows.

By utilizing autohaz.m (section C.6):

0 0 0 1 0 1 1 1 3
0 0 0 1 0 1 3 3 3
0 0 0 1 0 2 1 1 3
0 0 0 1 0 2 3 3 3
0 0 0 1 0 3 1 1 3
0 0 0 1 0 3 3 3 3
0 0 0 1 0 1 1 1 3
0 0 0 1 0 1 3 3 3
0 0 0 1 0 2 1 1 3
0 0 0 1 0 2 3 3 3
0 0 0 1 0 3 1 1 3
0 0 0 1 0 3 3 3 3
0 0 1 0 0 1 1 1 3
0 0 1 0 0 1 2 1 3
0 0 1 0 0 1 3 1 3
0 0 1 0 0 3 1 3 3
0 0 1 0 0 3 2 3 3
0 0 1 0 0 3 3 3 3
0 0 1 0 0 1 1 1 3

(140)

97

0 0 1 0 0 1 2 1 3
0 0 1 0 0 1 3 1 3
0 0 1 0 0 3 1 3 3
0 0 1 0 0 3 2 3 3
0 0 1 0 0 3 3 3 3
0 0 1 1 0 1 1 1 3
0 0 1 1 0 1 2 1 3
0 0 1 1 0 1 3 3 3
0 0 1 1 0 2 1 1 3
0 0 1 1 0 2 3 3 3
0 0 1 1 0 3 1 3 3
0 0 1 1 0 3 2 3 3
0 0 1 1 0 3 3 3 3
0 0 1 1 0 1 1 1 3
0 0 1 1 0 1 2 1 3
0 0 1 1 0 1 3 3 3
0 0 1 1 0 2 1 1 3
0 0 1 1 0 2 3 3 3
0 0 1 1 0 3 1 3 3
0 0 1 1 0 3 2 3 3
0 0 1 1 0 3 3 3 3

(141)

B.2.4 Energy balance Tank H

State x4 outer boundaries can be crossed at (x, x, 1) and (x, x, 3). In (x, x, 1)
a negative transition is searched for, i.e emptying tank M. For (x, x, 3) a
positive transition is searched for, or a situation where tank M overflows or
the outer energy boundary is broken.

By utilizing autohaz.m (section C.6):

98

0 0 1 0 0 1 1 1 3
0 0 1 0 0 1 1 3 3
0 0 1 0 0 1 2 1 3
0 0 1 0 0 1 2 3 3
0 0 1 0 0 1 3 1 3
0 0 1 0 0 1 3 3 3
0 0 1 0 0 2 1 1 3
0 0 1 0 0 2 1 3 3
0 0 1 0 0 2 2 1 3
0 0 1 0 0 2 2 3 3
0 0 1 0 0 2 3 1 3
0 0 1 0 0 2 3 3 3
0 0 1 0 0 3 1 1 3
0 0 1 0 0 3 1 3 3
0 0 1 0 0 3 2 1 3
0 0 1 0 0 3 2 3 3
0 0 1 0 0 3 3 1 3
0 0 1 0 0 3 3 3 3
0 0 1 0 0 1 1 1 3
0 0 1 0 0 1 1 3 3
0 0 1 0 0 1 2 1 3
0 0 1 0 0 1 2 3 3
0 0 1 0 0 1 3 1 3
0 0 1 0 0 1 3 3 3
0 0 1 0 0 2 1 1 3
0 0 1 0 0 2 1 3 3
0 0 1 0 0 2 2 1 3
0 0 1 0 0 2 2 3 3
0 0 1 0 0 2 3 1 3
0 0 1 0 0 2 3 3 3
0 0 1 0 0 3 1 1 3
0 0 1 0 0 3 1 3 3
0 0 1 0 0 3 2 1 3
0 0 1 0 0 3 2 3 3
0 0 1 0 0 3 3 1 3
0 0 1 0 0 3 3 3 3
1 0 0 0 0 1 1 3 2
1 0 0 0 0 1 2 3 2
1 0 0 0 0 1 3 3 2
1 0 0 0 0 2 1 3 2

(142)

99

1 0 0 0 0 2 2 3 2
1 0 0 0 0 2 3 3 2
1 0 0 0 0 3 1 3 2
1 0 0 0 0 3 2 3 2
1 0 0 0 0 3 3 3 2
1 0 0 0 0 1 1 3 2
1 0 0 0 0 1 2 3 2
1 0 0 0 0 1 3 3 2
1 0 0 0 0 2 1 3 2
1 0 0 0 0 2 2 3 2
1 0 0 0 0 2 3 3 2
1 0 0 0 0 3 1 3 2
1 0 0 0 0 3 2 3 2
1 0 0 0 0 3 3 3 2
1 0 1 0 0 1 1 1 3
1 0 1 0 0 1 1 3 3
1 0 1 0 0 1 2 1 3
1 0 1 0 0 1 2 3 3
1 0 1 0 0 1 3 1 3
1 0 1 0 0 1 3 3 3
1 0 1 0 0 2 1 3 3
1 0 1 0 0 2 2 3 3
1 0 1 0 0 2 3 3 3
1 0 1 0 0 3 1 3 3
1 0 1 0 0 3 2 3 3
1 0 1 0 0 3 3 3 3
1 0 1 0 0 1 1 1 3
1 0 1 0 0 1 1 3 3
1 0 1 0 0 1 2 1 3
1 0 1 0 0 1 2 3 3
1 0 1 0 0 1 3 1 3
1 0 1 0 0 1 3 3 3
1 0 1 0 0 2 1 3 3
1 0 1 0 0 2 2 3 3
1 0 1 0 0 2 3 3 3
1 0 1 0 0 3 1 3 3
1 0 1 0 0 3 2 3 3
1 0 1 0 0 3 3 3 3

(143)

B.2.5 Energy balance Tank C

State x5 outer boundaries can be crossed at (x, x, 1) and (x, x, 3). In (x, x, 1)
a negative transition is searched for, i.e emptying tank M. For (x, x, 3) a
positive transition is searched for, or a situation where tank M overflows or

100

the outer energy boundary is broken.

By utilizing autohaz.m (section C.6):

101

0 0 0 1 0 1 1 1 3
0 0 0 1 0 1 1 3 3
0 0 0 1 0 1 2 1 3
0 0 0 1 0 1 2 3 3
0 0 0 1 0 1 3 1 3
0 0 0 1 0 1 3 3 3
0 0 0 1 0 2 1 1 3
0 0 0 1 0 2 1 3 3
0 0 0 1 0 2 2 1 3
0 0 0 1 0 2 2 3 3
0 0 0 1 0 2 3 1 3
0 0 0 1 0 2 3 3 3
0 0 0 1 0 3 1 1 3
0 0 0 1 0 3 1 3 3
0 0 0 1 0 3 2 1 3
0 0 0 1 0 3 2 3 3
0 0 0 1 0 3 3 1 3
0 0 0 1 0 3 3 3 3
0 0 0 1 0 1 1 1 3
0 0 0 1 0 1 1 3 3
0 0 0 1 0 1 2 1 3
0 0 0 1 0 1 2 3 3
0 0 0 1 0 1 3 1 3
0 0 0 1 0 1 3 3 3
0 0 0 1 0 2 1 1 3
0 0 0 1 0 2 1 3 3
0 0 0 1 0 2 2 1 3
0 0 0 1 0 2 2 3 3
0 0 0 1 0 2 3 1 3
0 0 0 1 0 2 3 3 3
0 0 0 1 0 3 1 1 3
0 0 0 1 0 3 1 3 3
0 0 0 1 0 3 2 1 3
0 0 0 1 0 3 2 3 3
0 0 0 1 0 3 3 1 3
0 0 0 1 0 3 3 3 3
0 1 0 1 0 1 1 1 3
0 1 0 1 0 1 1 3 3
0 1 0 1 0 1 2 1 3
0 1 0 1 0 1 2 3 3

(144)

102

0 1 0 1 0 1 3 1 3
0 1 0 1 0 1 3 3 3
0 1 0 1 0 2 1 1 3
0 1 0 1 0 2 1 3 3
0 1 0 1 0 2 2 1 3
0 1 0 1 0 2 2 3 3
0 1 0 1 0 2 3 1 3
0 1 0 1 0 2 3 3 3
0 1 0 1 0 3 1 1 3
0 1 0 1 0 3 1 3 3
0 1 0 1 0 3 2 1 3
0 1 0 1 0 3 2 3 3
0 1 0 1 0 3 3 1 3
0 1 0 1 0 3 3 3 3
0 1 0 1 0 1 1 1 3
0 1 0 1 0 1 1 3 3
0 1 0 1 0 1 2 1 3
0 1 0 1 0 1 2 3 3
0 1 0 1 0 1 3 1 3
0 1 0 1 0 1 3 3 3
0 1 0 1 0 2 1 1 3
0 1 0 1 0 2 1 3 3
0 1 0 1 0 2 2 1 3
0 1 0 1 0 2 2 3 3
0 1 0 1 0 2 3 1 3
0 1 0 1 0 2 3 3 3
0 1 0 1 0 3 1 1 3
0 1 0 1 0 3 1 3 3
0 1 0 1 0 3 2 1 3
0 1 0 1 0 3 2 3 3
0 1 0 1 0 3 3 1 3
0 1 0 1 0 3 3 3 3

(145)

B.2.6 Energy balance Tank M

State x6 outer boundaries can be crossed at (x, x, x, x, x, 1) and (x, x, x, x, x, 3).
In (x, x, x, x, x, 1) a negative transition is searched for, i.e emptying tank M.
For (x, x, x, x, x, 3) a positive transition is searched for, or a situation where
tank M overflows or the outer energy boundary is broken.

The matrix contains a large number of rows which means that any presen-
tation in paper form is meaningless because of the share size of the matrix.
Since it’s imperative that the columns is aligned, splitting the matrix in to
several pages does not seem like a valid solution either. An electronic copy

103

can be attained be contacting the author at:

bjorntma@stud.ntnu.no.

C MATLAB Scripts

C.1 Bouncing ball

C.1.1 With zero cross detection Runball.m

Simulates the bouncing ball:

1 clear all
2 close all
3 clc
4 clf
5

6 global i
7

8 %Initial values
9 i.x1 = 10;

10 i.x2 = 0;
11

12 %Parameters
13 p.g = 9.81;
14 p.k = 0.8;
15

16 sim('Bouncing.mdl')
17

18 figure(1)
19 title('Bouncing ball example:')
20

21 subplot(2,1,1)
22 title('Bouncing ball example:')
23 hold on
24 axis([0 10 0 11])
25 plot(t,x(:,1),'b')
26 ylabel('Position [m]')
27 xlabel('time [s]')
28

29 subplot(2,1,2)
30 hold on
31 plot(t,x(:,2),'g')
32 axis([0 10 −15 15])
33 ylabel('Velocity [m/s]')
34 xlabel('time [s]')
35 plot([0 10],[0 0],'k−−')
36

37 print(1,'−djpeg','−r450','bballfail')

Simulink model:

104

Figure 26: Simulink file for the bouncing ball model

C.1.2 Without zero cross detection Runnonball.m

Simulates the bouncing ball without zero cross detection:

1 clear all
2 close all
3 clc
4 clf
5

6 global i
7

8 %Initial values
9 i.x1 = 10;

10 i.x2 = 0;
11

12 %Parameters
13 p.g = 9.81;
14 p.k = 0.8;
15

16 sim('Bouncing.mdl')
17

18 figure(1)
19 title('Bouncing ball example:')
20

21 subplot(2,1,1)
22 title('Bouncing ball example:')
23 hold on
24 axis([0 10 0 11])
25 plot(t,x(:,1),'b')
26 ylabel('Position [m]')
27 xlabel('time [s]')
28

29 subplot(2,1,2)
30 hold on
31 plot(t,x(:,2),'g')
32 axis([0 10 −15 15])

105

33 ylabel('Velocity [m/s]')
34 xlabel('time [s]')
35 plot([0 10],[0 0],'k−−')
36

37 print(1,'−djpeg','−r450','bballfail')

C.2 The inverted pendulum

C.2.1 Run script Runpendu.m

1 %Run script inverted pendulum − bjorntma@stud.ntnu.no
2 %Algorithm B.kuipers
3

4 clc
5 clf
6 clear all
7

8 global k c umax c11 c12 c2 c3 phimax dphimax
9

10 k = 10;
11 c = 0.01;
12 umax = 5;
13 c11 = 0.4;
14 c12 = 0.3;
15 c2 = 0.5;
16 c3 = 0.5;
17 phimax = 0.4;
18 dphimax = 0.3;
19

20 % Initial conditions
21 x0 = [0 −1]; %x1 Angle, x2 angular velocity
22

23 % Time span
24 tspan = [0 20];
25

26 [t,x] = ode45(@inversependu,tspan,x0);
27

28 for i = 1:length(t)
29 [u(i),q(i)]= controller(x(i,:));
30 end
31

32 figure(1)
33 subplot(3,1,1)
34 hold on
35 plot(t,x(:,1),'b')
36 plot(t,x(:,2),'g')
37 ylabel('Radians')
38 legend('Angle','Angular Velocity')
39

40 subplot(3,1,2)
41 hold on

106

42 plot(t,q,'r')
43 ylabel('q')
44 legend('Discrete State')
45 axis([0 20 0.5 3.5])
46

47 subplot(3,1,3)
48 plot(t,u,'c')
49 ylabel('Radians/s')
50 legend('Input')
51 xlabel('time [s]')
52

53 print(1,'−djpeg','−r450','pendures')

C.2.2 Dynamics inversependu.m

1 function dxdt = inversependu(t,x)
2

3 global k c
4

5 u = controller(x);
6

7 dxdt(1) = x(2);
8 dxdt(2) = −c*x(2)−k*sin(x(1))−u;
9

10 dxdt = dxdt';

C.2.3 Controller controller.m

1 function [uend,qend] = controller(x)
2

3 global k c umax c11 c12 c2 c3 phimax dphimax
4

5 % x1 counter clockwise,x2 angular velocity
6 % angle from vertically down
7

8 alfa = (x(1)−pi)^2/phimax^2+(x(2)^2)/dphimax^2;
9 s = 0.5*x(2)^2−k*(1+cos(x(1)));

10

11 if alfa <= 1
12 u = (c11 + k)*(x(1)−pi)+c12*(x(2));
13 q = 1;
14 elseif s < 0
15 u = −(c+c3)*x(2);
16 q = 2;
17 else
18 u = c2*x(2);
19 q = 3;
20 end

107

21

22 if abs(u) > umax % saturated input
23 u = umax * sign(u);
24 end
25

26 uend=u;
27 qend=q;

C.3 2 tank system

C.3.1 2D linear automaton by Heinz Preisig linauto2d.m

1 % −− LinAutom2 ::
2 % function [X,LinAutomat] = linauto2d(A,B,u,Boundaries,n_Boundaries)
3 %
4 % ..
5 % Computes the automaton for the continuous 2−dim plant {A,B} for the
6 % discrete input u and the domain observer definition Boundaries.
7 % ..
8 % This version cannot deal with completely decoupled states.
9 % ..

10 %
11 % arguments :
12 % A :: state propagation matrix, continuous plant
13 % B :: input gain matrix, continous plant
14 % Boundaries :: ragged matrix of boundaries, the domain observer
15 % n_Boundaries :: number of boundaries in each dimension
16 %
17 % results :
18 % X :: matrix of discrete states associated with
19 % LinAutomat :: matrix of discrete changes (binary coded)
20 % 0 :: no change
21 % 1 := −1
22 % 2 := +1
23 % 3 := {−1,+1}
24 % −−
25

26 % 12:08PM 02−12−1994 H.A. Preisig
27 % 14−01−1995 11:09 AM lots of fixes
28 % 20/01/95 16:45 derive this reduced procedure from linauto
29 % 2010−10−06 change name
30 % −−−
31 function [X,LinAutomat] = linauto2d(A,B,u,Boundaries,n_Boundaries)
32 % −−−
33

34 % error checks ========================= nothing done as yet
35 [na,ma] = size(A);
36 [nb,mb] = size(B);
37 [nu,mu] = size(u);
38 [nB,mB] = size(Boundaries);
39 % error checks ========================= nothing done as yet

108

40

41

42 % generate event−discrete state space
43 X = combin(n_Boundaries−ones(size(n_Boundaries)))
44 X = fliplr(X);
45 nw = length(X(:,1));
46

47 % generate empty automaton table
48 LinAutomat = zeros(nw,na);
49

50 I = ones(length(X(:,1)),1);
51

52 for i = 1:na % loop through all states
53 j = 1;
54 while A(i,j)==0 | j == i % find nondiagonal, nonzero element
55 j = j+1;
56 if j > na
57 disp('LinAutom :: error this state is independent')
58 return
59 end%if
60 end
61 direct = sign(A(i,j)); % direction is given by this element
62

63

64 for l = 2:n_Boundaries(i)−1 % all internal boundaries of state i
65 disp('Boundaries(i,l)')
66 disp(Boundaries(i,l))
67 disp('−(A(i,i)')
68 disp(−(A(i,i)))
69 disp('A(i,j)')
70 disp(A(i,j))
71 disp('B(i,:)*u')
72 disp(B(i,:)*u)
73 x_int = −(A(i,i)*Boundaries(i,l) + B(i,:)*u)/A(i,j);
74 disp('CHECK')
75 disp(x_int*(1+eps*direct))
76 disp(Boundaries(j,:))
77 dxmin = do(x_int*(1+eps*direct),Boundaries(j,:)); % pull slightly
78 dxmax = do(x_int*(1−eps*direct),Boundaries(j,:)); % appart
79

80 x(i) =l−(direct+1)/2;
81 if (x(i) < n_Boundaries(i)−1) | (direct < 0) % outer constraint
82 for q = dxmin:n_Boundaries(j)−1
83 x(j) = q;
84 w_ = find(all((X−I*x)'==0)==1);
85 LinAutomat(w_,i) = LinAutomat(w_,i)+(direct+3)/2;
86 end%for q
87 end% if (l
88

89 x(i) = l−(−direct+1)/2;
90 if (x(i) > 1) | (−direct > 0) % outer constraint
91 for q = 1:dxmax
92 x(j) = q;
93 w_ = find(all((X−I*x)'==0)==1);

109

94 LinAutomat(w_,i) = LinAutomat(w_,i)+(−direct+3)/2;
95 end%for q
96 end%if(l
97 end%for l
98 end%for i
99

100 % −− LinAuto2.

C.3.2 Continouos model simulation

1 clc
2 clf
3 clear all
4

5 global p i
6 % Process parameters
7

8 p.p1 = .1 %Pipe flow resistance
9 p.p2 = .1 %Pump delivery rate

10

11 % Control and disturbancs
12

13 u = 1;
14 d = [0 0]';
15

16 % Initial conditions
17 i.x = [0 2]';
18

19 sim('Tank.mdl')
20

21 figure(1)
22 hold on
23 plot(x(:,2),x(:,1))
24 ylabel('Mass T1 [kg]')
25 xlabel('Mass T2 [kg]')
26 annotation('arrow',[0.75 0.75],[0.8 0.9])
27 text(3.2,3,'Overflow T1')
28 axis([0 4 0 4])
29 axis('square')
30

31 print(1,'−djpeg','−r450','twotanksim')
32

33 figure(2)
34

35 subplot(2,1,1)
36 hold on
37 title('T1')
38 plot(t,x(:,1))
39 ylabel('Mass [kg]')
40 xlabel('Time [s]')
41 axis([0 100 0 4])

110

42 annotation('arrow',[0.56 0.56],[0.8 0.9])
43 text(48,2,'Overflow T1')
44

45 subplot(2,1,2)
46 hold on
47 title('T2')
48 plot(t,x(:,2))
49 ylabel('Mass [kg]')
50 xlabel('Time [s]')
51 axis([0 100 0 4])
52 annotation('arrow',[0.635 0.635],[0.33 0.43])
53 text(58,2,'Overflow T2')
54

55 print(2,'−djpeg','−r450','twotankphase')
56

57 figure(3)
58 hold on
59 plot(x(:,2),x(:,1))
60 ylabel('Mass T1 [kg]')
61 xlabel('Mass T2 [kg]')
62 plot([3.5 3.5],[3 4],'k')
63 text(3.55,3,'O T1')
64 plot([1.333 1.333],[0 3],'k')
65 plot([0 3],[1.333 1.333],'k')
66 plot([2.666 2.666],[0 3],'k')
67 plot([0 3],[2.666 2.666],'k')
68 annotation('arrow', [0.5 0.5], [0.4 0.6])
69 text(2.03,1.42,'x_1 transition −> +1')
70 legend('Continous trajectory from x(0) = [0 2] with u=[1])')
71 axis([1 3 0 3])
72 axis('square')
73

74 print(3,'−djpeg','−r450','xonetrans')

1 function [sys,x0,str,ts] = sf_2Tank(t,x,u,flag)
2

3 global p i
4 switch flag
5

6 case 0 %Initialize
7 sys = [2, % number of continuous states
8 0, % number of discrete states
9 2, % number of outputs

10 3, % number of inputs
11 0, % reserved must be zero
12 0, % direct feedthrough flag
13 1]; % number of sample times
14

15 x0 = [i.x];
16 str = [];
17 ts = [0 0]; % sample time: [period, offset]
18

111

19 case 1 %Derivatives
20

21

22 % State equations:
23 dxdt(1) = (1−u(2))*p.p1*(x(2)−x(1))+(1−u(3))*u(1)*p.p2;
24 dxdt(2) = −(1−u(2))*p.p1*(x(2)−x(1));
25 dxdt = dxdt(:);
26 sys = dxdt;
27

28 case 2 % Discrete state udate
29

30 sys = []; %There is none
31

32 case 3 % Outputs
33

34 sys = [x(1) x(2)]';
35

36 case 9 % Terminate
37

38 sys = [];
39

40 otherwise
41 error(['unhandled flag = ',num2str(flag)]);
42

43 end

C.3.3 Automaton model visualization

1 % ============ Two tank automaton visualizer ==============================
2

3 %
4 % 2014−05−30 B.T. Mathisen
5 % −−−
6 clear all
7 clf
8 clc
9

10 figure(1)
11 hold on
12 plot([2 2], [1 4],'k')
13 plot([3 3], [1 4],'k')
14 plot([1 4],[2 2],'k')
15 plot([1 4],[3 3],'k')
16 % set(Figure1,'defaulttextinterpreter','latex')
17 axis([1 4 1 4])
18 axis('square')
19 % 1 = text('Interpeter','latex','String','β_2^1')
20 set(gca,'xtickLabel',{'\beta_{2}^{1}','\beta_2^2','\beta_2^3','\beta_2^4'})
21 set(gca,'XTick',1:4,'xtickLabel',{[]})
22 set(gca,'YTick',1:4,'YTickLabel',{[]})
23 text(0.8,1,'\beta_1^1')

112

24 text(0.8,2,'\beta_1^2')
25 text(0.8,3,'\beta_1^3')
26 text(0.8,4,'\beta_1^4')
27

28 text(1,0.8,'\beta_2^1')
29 text(2,0.8,'\beta_2^2')
30 text(3,0.8,'\beta_2^3')
31 text(4,0.8,'\beta_2^4')
32

33 text(1.5,1.5,'q_1')
34 text(1.5,2.5,'q_4')
35 text(1.5,3.5,'q_7')
36 text(2.5,1.5,'q_2')
37 text(2.5,2.5,'q_5')
38 text(2.5,3.5,'q_8')
39 text(3.5,1.5,'q_3')
40 text(3.5,2.5,'q_6')
41 text(3.5,3.5,'q_9')
42 drawnow
43

44 print(1,'−djpeg','−r450','havisualize')

1 % clc
2 % clf
3 clear all
4 close all
5 figure(2)
6

7 dt = 1%
8 n = 4%
9 tmax = 100% Timerange

10

11 global p i
12 % Process parameters
13

14 p.p1 = .1 %Pipe flow resistance
15 p.p2 = .1 %Pump delivery rate
16

17 % Control and disturbancs
18

19 u = 1;
20 d = [0 0]';
21

22 % Initial conditions
23 x = [0 2]';
24

25 %Plant
26 dxdt(1) = (1−d(1))*p.p1*(x(2)−x(1))+(1−d(2))*u(1)*p.p2
27 dxdt(2) = −(1−d(1))*p.p1*(x(2)−x(1))
28

29 % Automata tracker
30 %x(1) is tracked in y direction, x(2) the x direction

113

31 %Split in a 3x3 squares. 4 boundaries
32

33 %With given initial conditions (First row, bottom row in figure)
34 %Ingores last column last row
35 A = zeros(4,4);
36 x1mark = 1;
37 x2mark = 2;
38 A(x1mark,x2mark) = 1
39

40 flag = false
41 pause on
42 t = 0
43 while flag == false
44

45 A = zeros(4,4);
46 A(x1mark,x2mark) = 1;
47

48 pcolor(A)
49 axis('square')
50 title(num2str(t))
51 shading flat
52 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
53 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
54 drawnow
55 pause(0.25)
56

57 if t==0
58 figure(2)
59 subplot(2,2,1)
60 A = zeros(4,4);
61 A(x1mark,x2mark) = 1;
62

63 pcolor(A)
64 axis('square')
65 title(num2str(t))
66 shading flat
67 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
68 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
69 drawnow
70

71 figure(1)
72 A = zeros(4,4);
73 A(x1mark,x2mark) = 1;
74

75 pcolor(A)
76 axis('square')
77 title(num2str(t))
78 shading flat
79 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
80 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
81 drawnow
82 print(1,'−djpeg','−r450','hat1')
83 end
84 if t==7

114

85 figure(2)
86 subplot(2,2,2)
87 A = zeros(4,4);
88 A(x1mark,x2mark) = 1;
89

90 pcolor(A)
91 axis('square')
92 title(num2str(t))
93 shading flat
94 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
95 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
96 drawnow
97

98 figure(3)
99 A = zeros(4,4);

100 A(x1mark,x2mark) = 1;
101

102 pcolor(A)
103 axis('square')
104 title(num2str(t))
105 shading flat
106 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
107 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
108 drawnow
109 print(3,'−djpeg','−r450','hat7')
110 end
111 if t==27
112 figure(2)
113 subplot(2,2,3)
114 A = zeros(4,4);
115 A(x1mark,x2mark) = 1;
116

117 pcolor(A)
118 axis('square')
119 title(num2str(t))
120 shading flat
121 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
122 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
123 drawnow
124 end
125 if t==35
126 figure(2)
127 subplot(2,2,4)
128 A = zeros(4,4);
129 A(x1mark,x2mark) = 1;
130

131 pcolor(A)
132 axis('square')
133 title(num2str(t))
134 shading flat
135 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
136 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
137 drawnow
138 end

115

139 figure(1)
140 x(1) = x(1) +(1−d(1))*p.p1*(x(2)−x(1))+(1−d(2))*u(1)*p.p2;
141 x(2) = x(2)− (1−d(1))*p.p1*(x(2)−x(1))
142

143 if x(1)>= 0
144 if x(1)> 4/3
145 if x(1)> (4/3)*2
146 if x(1)> 4
147 A = zeros(4,4);
148 pcolor(A)
149 axis('square')
150 title(['Out of bounds at: ',num2str(t)])
151 shading flat
152 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
153 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
154 drawnow
155 flag = true
156 else
157 x1mark = 3
158 end
159 else
160 x1mark = 2
161 end
162 else
163 x1mark = 1
164 end
165 else
166 A = zeroes(4,4);
167 title('Out of bounds at: ',num2str(t))
168 flag = true
169 end
170

171 if x(2)>= 0
172 if x(2)> 4/3
173 if x(2)> (4/3)*2
174 if x(2)> 4
175 A = zeros(4,4);
176 pcolor(A)
177 axis('square')
178 title(['Out of bounds at: ',num2str(t)])
179 shading flat
180 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
181 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
182 drawnow
183 flag = true
184 else
185 x2mark = 3
186 end
187 else
188 x2mark = 2
189 end
190 else
191 x2mark = 1
192 end

116

193 else
194 A = zeros(4,4);
195 title('Out of bounds at: ',num2str(t))
196

197 shading flat
198 set(gca,'XTick',1:4,'XTickLabel',[0:1.3333333:4])
199 set(gca,'YTick',1:4,'YTickLabel',[0:1.3333333:4])
200 drawnow
201 flag = true
202 end
203 t=t+1
204 if t == tmax+1
205 flag = true
206 A = zeros(4,4);
207 A(x1mark,x2mark) = 1;
208 end
209 end
210

211 print(2,'−djpeg','−r450','hatall')

1 % ============ Tuple visualizer ==============================
2

3 %
4 % 2014−05−30 B.T. Mathisen
5 % −−−
6 clear all
7 clf
8 clc
9

10 figure(1)
11 hold on
12 plot([2 2], [1 4],'k')
13 plot([3 3], [1 4],'k')
14 plot([1 4],[2 2],'k')
15 plot([1 4],[3 3],'k')
16 % set(Figure1,'defaulttextinterpreter','latex')
17 axis([1 4 1 4])
18 axis('square')
19 % 1 = text('Interpeter','latex','String','β_2^1')
20 set(gca,'xtickLabel',{'\beta_{2}^{1}','\beta_2^2','\beta_2^3','\beta_2^4'})
21 set(gca,'XTick',1:4,'xtickLabel',{[]})
22 set(gca,'YTick',1:4,'YTickLabel',{[]})
23 text(0.8,1,'\beta_1^1')
24 text(0.7,2,'l = 2')
25 text(0.8,3,'\beta_1^3')
26 text(0.8,4,'\beta_1^4')
27 annotation('arrow',[0.222 0.222],[0.45 0.30])
28 text(1.1,1.85,'1 =l−(direct+1)/2')
29

30 text(1,0.8,'\beta_2^1')
31 text(2,0.8,'\beta_2^2')
32 text(3,0.8,'\beta_2^3')

117

33 text(4,0.8,'\beta_2^4')
34

35 text(1.4,1.5,'(1,1)')
36 text(1.4,2.5,'(2,1)')
37 text(1.4,3.5,'(3,1)')
38 text(2.4,1.5,'(1,2)')
39 text(2.4,2.5,'(2,2)')
40 text(2.4,3.5,'(3,2)')
41 text(3.4,1.5,'(1,3)')
42 text(3.4,2.5,'(2,3)')
43 text(3.4,3.5,'(3,3)')
44 drawnow
45

46 print(1,'−djpeg','−r450','algvisual')

1 % ============ Tuple visualizer ==============================
2

3 %
4 % 2014−05−30 B.T. Mathisen
5 % −−−
6 clear all
7 clf
8 clc
9

10 figure(1)
11 hold on
12 plot([2 2], [1 4],'k')
13 plot([3 3], [1 4],'k')
14 plot([1 4],[2 2],'k')
15 plot([1 4],[3 3],'k')
16 % set(Figure1,'defaulttextinterpreter','latex')
17 axis([1 4 1 4])
18 axis('square')
19 % 1 = text('Interpeter','latex','String','β_2^1')
20 set(gca,'xtickLabel',{'\beta_{2}^{1}','\beta_2^2','\beta_2^3','\beta_2^4'})
21 set(gca,'XTick',1:4,'xtickLabel',{[]})
22 set(gca,'YTick',1:4,'YTickLabel',{[]})
23 text(0.8,1,'\beta_1^1')
24 text(0.8,2,'\beta_1^2')
25 text(0.8,3,'\beta_1^3')
26 text(0.8,4,'\beta_1^4')
27

28 text(1,0.8,'\beta_2^1')
29 text(2,0.8,'\beta_2^2')
30 text(3,0.8,'\beta_2^3')
31 text(4,0.8,'\beta_2^4')
32

33 text(1.4,1.5,'(1,1)')
34 text(1.4,2.5,'(2,1)')
35 text(1.4,3.5,'(3,1)')
36 text(2.4,1.5,'(1,2)')
37 text(2.4,2.5,'(2,2)')

118

38 text(2.4,3.5,'(3,2)')
39 text(3.4,1.5,'(1,3)')
40 text(3.4,2.5,'(2,3)')
41 text(3.4,3.5,'(3,3)')
42 drawnow
43

44 print(1,'−djpeg','−r450','tuplevisual')

1 % ============ Two tank visualizer ==============================
2

3 %
4 % 2014−05−30 B.T. Mathisen
5 % −−−
6 clear all
7 clf
8 clc
9

10 figure(1)
11 hold on
12

13 % Equlibrium line
14 x2eq(1) = (0.1*0 − 0.1)/0.1;
15 x2eq(2) = (0.1*4 − 0.1)/0.1;
16 x1eq(1) = 0;
17 x1eq(2) = 4;
18

19 x1eq(3) = 0;
20 x1eq(4) = 4;
21 x2eq(3) = 0;
22 x2eq(4) = 4 ;
23

24 plot([x2eq(1) x2eq(2)], [x1eq(1) x1eq(2)],'g')
25 legend('x_1 Equilibrium line')
26 plot([1.33 1.33], [0 4],'k')
27 plot([2.66 2.66], [0 4],'k')
28 plot([0 4],[1.33 1.33],'k')
29 plot([0 4],[2.66 2.66],'k')
30 % set(Figure1,'defaulttextinterpreter','latex')
31 axis([0 4 0 4])
32 axis('square')
33

34 annotation('arrow',[0.35 0.35],[0.32 0.42])
35 text(0.95,1.1,'2')
36 annotation('arrow',[0.51 0.51],[0.32 0.42])
37 text(2,1.1,'2')
38 annotation('arrow',[0.72 0.72],[0.32 0.42])
39 text(3.4,1.1,'2')
40 annotation('arrow',[0.72 0.72],[0.60 0.70])
41 text(3.4,2.48,'2')
42 annotation('arrow',[0.56 0.56],[0.60 0.70])
43 text(2.35,2.48,'2')
44 annotation('arrow',[0.25 0.25],[0.42 0.32])

119

45 text(0.31,1.45,'1')
46 annotation('arrow',[0.31 0.31],[0.70 0.60])
47 text(0.7,2.8,'1')
48 annotation('arrow',[0.46 0.46],[0.70 0.60])
49 text(1.65,2.8,'1')
50

51 text(3.4,3.5,'0')
52

53 text(0.65,0.65,'(1,1)')
54 text(0.65,1.99,'(2,1)')
55 text(0.65,3.2,'(3,1)')
56 text(1.99,0.65,'(1,2)')
57 text(1.99,1.99,'(2,2)')
58 text(1.99,3.2,'(3,2)')
59 text(3.1,0.65,'(1,3)')
60 text(3.1,1.99,'(2,3)')
61 text(3.1,3.2,'(3,3)')
62 drawnow
63

64 print(1,'−djpeg','−r450','resvisual')

C.4 3 tank system

C.4.1 Modified non-linear automaton by H. Preisig and B. T.
Mathisen nlinauto.m

1 % == NLinAutom ::
2 % function [X,SH,SU,M,Int] = nlinauto(model,jacob,u_pattern,Us,B);
3 % ...
4 % Computes the automaton for the nonlinear continuous plant
5 % dx = d(x,u)
6 % with the discrete input u
7 % and the domain observer defined by a set of boundaries.
8 %
9 % ...

10 % arguments :
11 % model :: f(x,u)
12 % jacob :: name of function with
13 % sign pattern of jacobian of f(.,.) with respect to x
14 % u_pattern :: name of function with
15 % pattern of u's in state equations
16 % x :: state
17 % u :: input (discrete event)
18 % B :: set of vectors with boundaries: the domain observer
19 %
20 % results :
21 % X :: set of matrices of discrete states associated with
22 % SH :: set of coupled states
23 % SU :: set of active inputs
24 % Automat :: set of matrices of discrete changes (binary coded)
25 % 0 :: no change

120

26 % 1 := −1
27 % 2 := +1
28 % 3 := {−1,+1}
29 % Int :: intersection information
30 % −−−
31

32 % 2000−12−17 H A Preisig
33 % −−−
34 function [X,SH,U,SU,M,Int] = nlinauto(model,jacob,u_pattern,Us,B);
35 % −−−
36

37 % error checks == nothing done as yet
38 % error checks == nothing done as yet
39

40 df_pattern = feval(jacob); % jacob returns sign pattern
41 patt_u = feval(u_pattern); % gives pattern of u's in the state eq's
42

43 card_S = length(B); % number of state variables in the plant
44 card_B = cellfun('length',B);
45 card_Us = cellfun('length',Us);
46 card_U = length(card_Us);
47

48 for s = 1:card_S % all state variables
49 % this procedure cannot handle systems where the s state variable is not in the
50 % active set.
51 if df_pattern(s,s) == 0;
52 disp('s not active, cannot handle this case yet');
53 return
54 end
55 direct = df_pattern(s,s);
56

57 % sets of active components with respect to system s
58 e_s = zeros(1,card_S);
59 e_s(s) = 1;
60 ne_s = ~e_s;
61 A = find(df_pattern(s,:) ~=0); % active states
62 H = find((ne_s .* df_pattern(s,:)) ~=0); % active but nut current
63 H_plus = find((ne_s .* df_pattern(s,:)) >0); % active, ~s & pos grad
64 H_min = find((ne_s .* df_pattern(s,:)) <0); % active, ~s & neg grad
65

66 card_H_plus= length(H_plus);
67 card_H_min = length(H_min);
68 card_H = length(H);
69 card_A = length(A);
70 ord_s_A = find(A==s);
71

72 % some additional variables
73 range_s = B{s}([1,card_B(s)]); % validity range of state s
74 rh = 1:card_H; % index vector for H
75 direc = df_pattern(s,s); % direction of change
76

77 % generate reduced event−discrete state space
78 % Note 1: that active co−ordinates are re−numbered
79 % Note 2: the state identifiers are ordinal numbers

121

80 rX = combin(card_B(A) − ones(size(card_B(A))));
81 card_rD = length(rX(:,1)); % number of discrete states
82 rrX = combin(card_B(H) − ones(size(card_B(H))));
83 card_rrD = length(rrX(:,1));
84

85 SU{s} = find(patt_u(s,:) == 1);
86 card_SU = length(SU{s});
87 rU = combin(card_Us(SU{s}));
88 card_rU = length(rU(:,1));
89

90 for nu = 1:card_rU
91 % pick current input
92 u = zeros(card_U,1);
93 u(SU{s}) = cellvec2vec(Us,SU{s},rU(nu,:));
94

95 % generate empty automaton table
96 M{s,nu} = zeros(card_rD,card_H);
97 Int{s,nu} = zeros(card_rrD,4);
98

99 for drr = 1:card_rrD % allUs discrete states
100 l_h = rrX(drr,:);
101 dummy = zeros(1,card_A);
102 % disp(dummy);
103 dummy(H) = l_h;
104 % disp(rX);
105 % disp(ones(card_rD,1));
106 % disp(ones(card_rD,1)*dummy);
107 % disp(card_rD)
108

109 intermediate = ones(card_rD,1);
110 intermediate2 = intermediate*dummy;
111 % disp(length(intermediate2(1,:)))
112 % disp(length(dummy(1,:)))
113 if length(intermediate2(1,:))>length(rX(1,:))
114 % disp('test')
115 intermediate2(:,1) = [];
116 dummy(:,1) = [];
117 end
118 dummy2 = rX − intermediate2;
119 dummy3 = diag(dummy ~=0);
120 dummy4 = dummy2*dummy3;
121 p_s = find(all((dummy2)*dummy3==0 , 2));
122 x = zeros(card_S,1); % start with zero vector
123 x(s) = (range_s(2)+range_s(1))/2; % for x_s it's its val range
124

125 % min crossing
126 if ~isempty(H_plus)
127 x(H_plus) = cellvec2vec(B,H_plus,l_h);
128 end
129 if ~isempty(H_min)
130 x(H_min) = cellvec2vec(B,H_min,l_h+1);
131 end
132

133 if any(abs(x) == inf)

122

134 disp('not yet done');
135 else
136 [x_int_min,mdir] = get_zero(range_s,model,x,u,s);
137 end %if
138

139 % max crossing
140 if ~isempty(H_plus)
141 x(H_plus) = cellvec2vec(B,H_plus,l_h+1);
142 end
143 if ~isempty(H_min)
144 x(H_min) = cellvec2vec(B,H_min,l_h);
145 end
146 if any(abs(x) == inf)
147 disp('not yet done');
148 else
149 [x_int_max,mdir] = get_zero(range_s,model,x,u,s);
150 end
151

152 if x_int_min > x_int_max
153 disp('linauto >> min > max ??? ')
154 end
155

156 % fill−in automaton table for state s
157 ex_x_min = ~isempty(x_int_min);
158 ex_x_max = ~isempty(x_int_max);
159

160 if ex_x_max | ex_x_min,
161 if ex_x_min
162 dx_int_min = do(x_int_min*(1+2*eps),B{s}); % pull slightly
163 else
164 x_int_min = NaN;
165 dx_int_min = B{s}(1);
166 end
167 if ex_x_max
168 dx_int_max = do(x_int_max*(1−2*eps),B{s}); % appart
169 else
170 x_int_max = NaN;
171 dx_int_max = B{s}(card_B(s));
172 end
173 rd_plus = p_s(find(rX(p_s,ord_s_A) >= dx_int_min));
174 rd_min = p_s(find(rX(p_s,ord_s_A) <= dx_int_max));
175 M{s,nu}(rd_plus,rh)= M{s,nu}(rd_plus,rh)+ ...
176 ones(size(M{s,nu}(rd_plus,rh)))*dir_code(direct);
177 M{s,nu}(rd_min ,rh)= M{s,nu}(rd_min ,rh)+ ...
178 ones(size(M{s,nu}(rd_min ,rh)))*dir_code(−direct);
179 else
180 M{s,nu}(p_s,rh) = M{s,nu}(p_s ,rh)+ ...
181 ones(size(M{s,nu}(p_s ,rh)))*dir_code(

mdir);
182 x_int_max = NaN;
183 x_int_min = NaN;
184 dx_int_max = NaN;
185 dx_int_min = NaN;
186 end

123

187 Int{s,nu}(drr,1:4) = [x_int_min,x_int_max,dx_int_min,dx_int_max];
188 end % for rrd
189 U{s}(:,nu) = u;
190 end % nu
191 X{s} = rX;
192 SH{s} = H;
193 end %for s
194 % === NLinAutom .
195 % === cellvex2vec::
196 % function M = cellvec2vec(Cv,r,c)
197 % −−−
198 % Cv :: "matrix" rows are cells, columns are vectors
199 % thus a set of vectors
200 % r :: vector of row indices
201 % c :: vector of column indices
202 % must both be of the same lenght
203 %
204 % 2000−12−18 H A Preisig
205 % −−−
206 function M = cellvec2vec(Cv,r,c)
207

208 j = 0;
209 for i = r
210 j = j+1;
211 M(j,:) = Cv{i}(c(j));
212 end
213 % === cellvex2vec .
214 % === get_zero ::
215 function [zero,f] = get_zero(range_s,model,x,u,s)
216

217 dx1 = model_eq(range_s(1),model,x,u,s)
218 dx2 = model_eq(range_s(2),model,x,u,s)
219 op = optimset('Display','off');
220 if sign(dx1)==sign(dx2)
221 zero = []
222 f = sign(dx1)
223 elseif isnan(dx1)
224

225 zero = []
226 f = 0
227 else
228 [zero,f] = fzero('model_eq',range_s,op,model,x,u,s)
229 end
230 % === get_zero

.
231 % === dir_code ::
232 function d = dir_code(direct)
233

234 if direct == 0
235 d = 0;
236 else
237 d = (direct+3)/2;
238 end

124

239 % === get_code
.

C.4.2 Input file for nlinauto.m

1 % ============ three−tanks model script ================================== three_tanks_script ::
2 %
3 % 2000−11−30 H.A. Preisig
4 % 2010−10−06 adapting to new names
5 % −−
6

7 clear all
8

9 Boundaries{1} = [0,1.33,2.66,4];
10 Boundaries{2} = [0,1.33,2.66,4];
11 Boundaries{3} = [0,1.33,2.66,4];
12 temp=([20,40,60,80]−ones(1,4)*20).*4187.*4;
13

14 Boundaries{4} = temp;
15 Boundaries{5} = temp;
16 Boundaries{6} = temp;
17

18 for iu = 1:5
19 Us{iu} = [0 1];
20 end
21

22 model = 'three_tanks_diff';
23 jacob = 'three_tanks_jacob';
24 u_patt = 'three_tanks_u_pattern';
25

26 [X,SH,U,SU,Automat,Int] = nlinauto(model,jacob,u_patt,Us,Boundaries);
27

28

29 for s = 1:6
30 headx = sort([s,SH{s}]);
31 dummy1 = NaN*ones(length(U{s}(:,1)),length(headx));
32 Aut{s} = [dummy1;headx;X{s}]
33

34 for nu = 1:length(U{s}(1,:))
35 dummy = U{s}(:,nu)*ones(size(SH{s}));
36 Aut{s} = [Aut{s},[dummy;SH{s};Automat{s,nu}]];
37 if nu == 1
38 INT{s} = Int{s,nu}
39 else
40 INT{s} = [INT{s},Int{s,nu}];
41 end
42 end
43 end
44

45 for s = 1:6
46 fn = ['Auto',num2str(s),'.txt'];

125

47 A = Aut{s};
48 save(fn,'−ascii','−tabs','A')
49 fn = ['Int',num2str(s),'.txt'];
50 A = INT{s};
51 save(fn,'−ascii','−tabs','A')
52 end

1 % ========= 3 Tanks water mixing plant ====================================
2 %
3 % function dx = three_tank_diff(x,u);
4 %
5 % Differentials for the 3 Tank system with energy mixing
6 % LHS calculates the stats (3 mass states followed by 3 energy states)
7 % x :: states
8 % u :: settings of valves and controllers
9 % u(1) :: Inflow tank H)

10 % u(2) :: Inflow tank C
11 % u(3) :: Flow between tank H & M
12 % u(4) :: Flow between tank C & M
13 % u(5) :: Flow from tank M to (D)rain
14 %
15 % −−−
16 % uses three_tank_para
17 % −−−
18 % 2014−13−05 B.T. Mathisen − Adapted to fit the script by H.A. Preisig
19 % −−−
20

21 function dxdt = three_tanks_diff(x,u)
22

23 % Initialize parameter script
24 three_tanks_para
25

26 % Flows
27 n_RH_H = u(1)*p.p1;
28 n_RC_C = u(2)*p.p2;
29 n_H_M = u(3)*p.p3*(x(1)−x(3));
30 n_C_M = u(4)*p.p4*(x(2)−x(3));
31 if x(3)>2
32 n_M_D = u(5)*p.p5*(x(3)−2);
33 else
34 n_M_D = 0;
35 end
36

37 % State equations
38 dxdt(1) = n_RH_H − n_H_M;
39 dxdt(2) = n_RC_C − n_C_M;
40 dxdt(3) = n_H_M + n_C_M − n_M_D;
41 if x(1)>x(3) & x(2)>x(3)
42 dxdt(4) = p.h4*n_RH_H − (x(4)/x(1))*n_H_M;
43 dxdt(5) = p.h5*n_RC_C − (x(5)/x(2))*n_C_M;
44 dxdt(6) = (x(4)/x(1))*n_H_M + (x(5)/x(2))*n_C_M...
45 − (x(6)/x(3))*n_M_D;

126

46 elseif x(1)>x(3)
47 dxdt(4) = p.h4*n_RH_H − (x(4)/x(1))*n_H_M;
48 dxdt(5) = p.h5*n_RC_C − (x(6)/x(3))*n_C_M;
49 dxdt(6) = (x(4)/x(1))*n_H_M + (x(6)/x(3))*n_C_M...
50 − (x(6)/x(3))*n_M_D;
51 elseif x(2)>x(3)
52 dxdt(4) = p.h4*n_RH_H − (x(6)/x(3))*n_H_M;
53 dxdt(5) = p.h5*n_RC_C − (x(5)/x(2))*n_C_M;
54 dxdt(6) = (x(6)/x(3))*n_H_M + (x(5)/x(2))*n_C_M...
55 − (x(6)/x(3))*n_M_D;
56 else
57 dxdt(4) = p.h4*n_RH_H − (x(6)/x(3))*n_H_M;
58 dxdt(5) = p.h5*n_RC_C − (x(6)/x(3))*n_C_M;
59 dxdt(6) = (x(6)/x(3))*n_H_M + (x(6)/x(3))*n_C_M...
60 − (x(6)/x(3))*n_M_D;
61 end
62

63

64 dxdt = dxdt';

1 % ========= 3 tanks plant Jacobian sign pattern ===========================
2 %
3 % function ddx = three_tanks_jacob;
4 % sign pattern of component equilibrium surfaces
5 %
6 % −−−
7 %
8 % −−−
9 % 2014−05−13 B.T Mathisen rewrite of H.A Preisig veirson

10 % −−−
11

12 function ddx = three_tanks_jacob;
13

14

15 % sign pattern of equilibrium surface:
16 ddx(1,:) = [−1 0 1 0 0 0];
17 ddx(2,:) = [0 −1 1 0 0 0];
18 ddx(3,:) = [1 1 −1 0 0 0];
19 ddx(4,:) = [−1 0 1 −1 0 0];
20 ddx(5,:) = [0 −1 1 0 −1 0];
21 ddx(6,:) = [1 1 −1 1 1 −1];

1 % ========= 3 Tanks water mixing plant parameters =========================
2 %
3 % Parameters
4 % −−−
5 % for use in three_tank_diff
6 % −−−
7 % 2014−13−05 B.T. Mathisen − Adapted to fit the script by H.A. Preisig
8 % −−−

127

9

10

11 p.p1 = 1; %Hot Pump delivery rate
12 p.p2 = 1; %Cold Pump delivery rate
13 p.p3 = 1; % H−M pipe resistance
14 p.p4 = 1; % C−M pipe resistance
15 p.p5 = 10; % Gain M−D control
16 p.cp = 4187; % cp H2O J/kgK
17

18 % Initial conditions for reservoir specific enthalpy
19 i.x = [20 20 10]';
20 i.T = [80 20 50]';
21 i.T_RH = 80;
22 i.T_RC = 20;
23 i.H = p.cp*(i.T−20).*i.x;
24 i.x = [i.x; i.H];
25

26 p.h4 = p.cp*(i.T_RH−20);
27 p.h5 = p.cp*(i.T_RC−20);

1 % ============ 3 Tanks_u_pattern ====================================::
2 % function patt_u = three_tanks_u_pattern;
3 % −−−
4 % Returns pattern of u's in the state variables
5 % −−−
6

7 % 2014−05−13 B.T. Mathisen
8 % −−−
9 function patt_u = three_tanks_u_pattern;

10 % −−−
11

12 % 1 2 3 4 5
13 patt_u(1,:) = [1 0 1 0 0];
14 patt_u(2,:) = [0 1 0 1 0];
15 patt_u(3,:) = [0 0 1 1 1];
16 patt_u(4,:) = [1 0 1 0 0];
17 patt_u(5,:) = [0 1 0 1 0];
18 patt_u(6,:) = [0 0 1 1 1];
19 %−−

C.5 Linearization

1 % Initialize parameter script
2 three_tanks_para
3

4 % Linearization
5 p.p1 = 1; %Hot Pump delivery rate
6 p.p2 = 1; %Cold Pump delivery rate
7 p.p3 = 1; % H−M pipe resistance

128

8 p.p4 = 1; % C−M pipe resistance
9 p.p5 = 10; % Gain M−D control

10 p.cp = 4187; % cp H2O J/kgK
11

12 % Input
13 u(1) = 1; % On/off Hot pump
14 u(2) = 1; % On/off Cold pump
15 u(3) = 1; % On/off H−M valve
16 u(4) = 1; % On/off C−M valve
17 u(5) = 1;% Sp kg tank M
18

19 % Initial conditions (Tref = 20)
20 i.x = [0 0 0]';
21 i.T = [40 40 40]';
22 i.T_RH = 80;
23 i.T_RC = 20;
24 i.H = p.cp*(i.T−20).*i.x;
25 i.x = [i.x; i.H];
26

27 i.h(4) = p.cp*(i.T_RH−20);
28 i.h(5) = p.cp*(i.T_RC−20);
29

30 syms x_1 x_2 x_3 x_4 x_5 x_6
31

32 %Differentials
33 dx_1dt = u(1)*p.p1−u(3)*p.p3*(x_1−x_3);
34 dx_2dt = u(2)*p.p2−u(4)*p.p4*(x_2−x_3);
35 dx_3dt = u(3)*p.p3*(x_1−x_3)+u(4)*p.p4*(x_2−x_3)−p.p5*u(5)*(x_3−2);
36 dx_4dt = 1/(x_1)*((80−x_4)*u(1)*p.p1);
37 dx_5dt = 1/(x_2)*((20−x_5)*u(2)*p.p2);
38 dx_6dt = 1/(x_3)*((x_4−x_6)*u(3)*p.p3*(x_1−x_3)+...
39 (x_5−x_6)*u(4)*p.p4*(x_2−x_3));
40

41 %Steady State Calculation
42 %Mass Balance
43 v = [x_1 x_2 x_3];
44 f = [dx_1dt;dx_2dt;dx_3dt];
45 df = jacobian(f,v);
46 s = [0; 0; 0];
47 k=2;
48 res(1) = inf;
49

50 format long
51 %Newton solver
52 while abs(res(1)) > 0.00010;
53 dxdt = subs(f, [x_1 x_2 x_3],[s(1,k−1),s(2,k−1)...
54 s(3,k−1)]);
55 d2xdt2 = subs(df, [x_1 x_2 x_3],[s(1,k−1),s(2,k−1)...
56 s(3,k−1)]);
57

58 G = dxdt;
59 H = d2xdt2;
60 s(:,k) = s(:,k−1)−H^(−1)*G; %Where k denotes newton iteration not time
61 res = −sqrt(s(1,k)^2+s(2,k)^2+s(3,k)^2)...

129

62 +sqrt(s(1,k−1)^2+s(2,k−1)^2+s(3,k)^2);
63 k = k+1;
64 end
65 xmbfinal = s(:,end);
66

67 %Enthalpy balance
68

69 v = [x_4 x_5 x_6];
70 f = [dx_4dt;dx_5dt;dx_6dt];
71 df = jacobian(f,v);
72 l = i.H;
73 k=2;
74 res(1) = inf;
75

76 format long
77 while abs(res(1)) > 0.0010;
78 dxdt = subs(f, [x_1 x_2 x_3 x_4 x_5 x_6],[xmbfinal(1),xmbfinal(2),...
79 xmbfinal(3),l(1,k−1),l(2,k−1),l(3,k−1)]);
80 d2xdt2 = subs(df, [x_1 x_2 x_3 x_4 x_5 x_6],[xmbfinal(1),xmbfinal(2),...
81 xmbfinal(3),l(1,k−1),l(2,k−1),l(3,k−1)]);
82

83 G = dxdt;
84 H = d2xdt2;
85

86 l(:,k) = l(:,k−1)−H^(−1)*G; %Where k denotes newton iteration not time
87 res = −sqrt(l(1,k)^2+l(2,k)^2+l(3,k)^2)...
88 +sqrt(l(1,k−1)^2+l(2,k−1)^2+l(3,k)^2);
89 k = k+1;
90 end
91 xebfinal = l(:,end);
92 x= [xmbfinal; xebfinal];
93

94 T(1) = x(4)/(x(1)*p.cp)+20;
95 T(2) = x(5)/(x(2)*p.cp)+20;
96 T(3) = x(6)/(x(3)*p.cp)+20;
97

98 %State space dotX=Adx + Bdu, calculating A and B. Evaluating the jacobians
99 %with SS calculation

100

101 syms x_1 x_2 x_3 x_4 x_5 x_6
102 v = [x_1 x_2 x_3 x_4 x_5 x_6];
103 f = [dx_1dt;dx_2dt;dx_3dt;dx_4dt;dx_5dt;dx_6dt];
104 df = jacobian(f,v);
105 A = subs(df, [x_1 x_2 x_3 x_4 x_5 x_6],[x(1),x(2),...
106 x(3),x(4),x(5),x(6)]);
107

108

109 syms u_1 u_2 u_3 u_4 u_5
110 dx_1dt = u_1*p.p1−u_3*p.p3*(x(1)−x(3));
111 dx_2dt = u_2*p.p2−u_4*p.p4*(x(2)−x(3));
112 dx_3dt = u_3*p.p3*(x(1)−x(3))+u_4*p.p4*(x(2)−x(3))−p.p5*u_5*(x(3)−2);
113 dx_4dt = 1/(x(1))*((80−x(4))*u_1*p.p1);
114 dx_5dt = 1/(x(2))*((20−x(5))*u_2*p.p2);
115 dx_6dt = 1/(x(3))*((x(4)−x(6))*u_3*p.p3*(x(1)−x(3))+...

130

116 (x(5)−x(6))*u_4*p.p4*(x(2)−x(3)));
117

118

119 v = [u_1 u_2 u_3 u_4 u_5];
120 f = [dx_1dt;dx_2dt;dx_3dt;dx_4dt;dx_5dt;dx_6dt];
121 df = jacobian(f,v);
122 B = subs(df, [x_1 x_2 x_3 x_4 x_5 x_6],[x(1),x(2),...
123 x(3),x(4),x(5),x(6)]);

C.6 Hazard finder autohaz.m

This function locates hazardous transitions. Can not deal with ragged
boundaries

1 % ============ 3 Tanks Automated Hazop ====================================::
2 % function [Uhaz,Xhaz,Transhaz,Aligned] = autohaz(xs,bnr,xnr,unr,Aut)
3 % −−−
4 % Returns all possible hazardous transitions (transitions out of the outer
5 % boundary
6 % −−−
7 % 2014−05−30 B.T. Mathisen
8 % −−−
9 function [Uhaz,Xhaz,Transhaz,Aligned] = autohaz(xs,bnr,xnr,unr,Aut)

10 % −−−
11 [m,n] = size(Aut)
12

13 hazcount = 1
14 for j=(xnr+1):1:n
15 for i=(unr+2):1:m
16 if Aut(i,xs) == 1 & (Aut(i,j) == 3 | Aut(i,j) == 1)
17 Uhaz(hazcount,1:unr) = Aut(1:unr,j)';
18 Xhaz(hazcount,1:xnr) = Aut(i,1:xnr);
19 Transhaz(hazcount) = Aut(i,j);
20 hazcount = hazcount +1;
21 elseif Aut(i,xs) == 3 & (Aut(i,j) == 3 | Aut(i,j) == 2)
22 disp('FOUND')
23 Uhaz(hazcount,1:unr) = Aut(1:unr,j)';
24 Xhaz(hazcount,1:xnr) = Aut(i,1:xnr);
25 Transhaz(hazcount) = Aut(i,j);
26 hazcount = hazcount +1;
27 end
28 end
29 end
30 Transhaz = Transhaz' ;
31 [um,un] = size(Uhaz);
32 [xm,xn] = size(Xhaz);
33 [tm,tn] = size(Transhaz);
34 Aligned = Uhaz;
35 Aligned(1:xm,un+1:xn+un) = Xhaz;
36 Aligned(1:xm,xn+un+1:xn+un+tn) = Transhaz;

131

D Additional tests

D.1 State variable transformation

The product stream of the three tank system is now put under a tighter
quality constraint. A temperature controller is induced with a set point of
50·C. If the temperature differs with more than 10·C the product can not
by utilized by the "customer". Product quality constraints appear in any
production plant. The needed changes to the hybrid automaton plant is a
state variable transformation. An unwritten goal of this thesis is that the
hybrid automaton hazop procedure will be deemed ready for testing on a
real plant. For that to be a reality the hybrid automaton also needs to be
able to identify trajectories away from internal safe regions. Not only the
outer constraints. This means that if the system has an initial temperature
of 40·C will it move towards the safe region and stabilize? Or will it stay
outside of the safe region. Not all hazards are connected to overfilling of
capacities and the hybrid automaton approach needs to be able to handle
these kind of systems as well.

The firs step is to set a new set of boundaries in the temperature domain
that encircles the safe operating region:

B4 = {0, 20, 40} (146)
B5 = {60, 80, 100} (147)

B6 = B5 = B4 = {0, 20, 40, 60, 80, 100} (148)

Where the safe region for the product stream (which have the same intensive
quantities as tank M):

40◦C − 60◦C (149)

State transformation:
dHM

dt
= ĤH|M + ĤC|M − ĤM |D (150)

dHM

dt
= cp(TH − TRef)n̂H|M + cp(TC − TRef) + n̂H|M − cp(TM − TRef)n̂M |D

(151)

Enthalpy is a function of pressuere, temperature and the species composition:

H = (T, p,m) (152)

For constant pressure and an assumed constant heat cpacity this yeilds:
dHM (TM ,mM)

dt
= mMcp

dTM
dt

+ h(TM)
dmM

dt
(153)

dHM (TM ,mM)

dt
= mMcp

dTM
dt

+ h(TM)
dmM

dt
(154)

(155)

132

Inserting in 151:

dTM
dt

=
1

mMcp
(cp(TH − TRef)n̂H|M + cp(TC − TRef)n̂C|M − cp(TM − TRef)n̂M |D

− cp(TM − TRef)(n̂H|M + n̂H|M − n̂M |D)) (156)
dTM
dt

=
1

mMcp
(cp(TH − TM)n̂H|M + cp(TC − TM)n̂C|M (157)

Setting temperature as the state:

dx6
dt

=
1

x3
((x4 − x6)u3Θ3(x1 − x3) + (x5 − x6)u4Θ4(x2 − x3) (158)

Implementation in nlinauto2d.m leads to several problems. If a energy bal-
ance is conducted for tank H, and C. The script fails to compute due to no
dependent variables for normal stream direction. Testing a system where the
tank H and C are omitted and used as inputs, leads to trouble in the root
solver.

D.2 Utilizing linear automaton

Disregarded as it requires all states to be dependend, i.e. no zero entries in
the A matrix

f(x, u) ≈ f(x(0), u(0)) +
∂f(x, u)

∂xT

∣∣∣∣
x(0),u(0)

(x− x(0))

+
∂f(x, u)

∂uT

∣∣∣∣
x(0),u(0)

(u− u(0)) (159)

The Taylor expansion may than be used to transform the state equations in
to standard state space representation:

∆ẋ = A∆x+B∆u (160)

This will partly be utilized when calculating the sign of the jacobian. As
evaluating the A matrices is necessary for some of the more complex sign
evaluations which is not directly readable from J

A
. The A and B matrices

are both retrieved calculating the Jacobian J with respect to a given set of
states and input:

J
A

=

∂ẋ1
∂x1

∂ẋ1
∂x2

∂ẋ1
∂x3

∂ẋ1
∂x4

∂ẋ1
∂x5

∂ẋ1
∂x6

∂ẋ2
∂x1

∂ẋ2
∂x2

∂ẋ2
∂x3

∂ẋ2
∂x4

∂ẋ2
∂x5

∂ẋ2
∂x6

∂ẋ3
∂x1

∂ẋ3
∂x2

∂ẋ3
∂x3

∂ẋ3
∂x4

∂ẋ3
∂x5

∂ẋ3
∂x6

∂ẋ4
∂x1

∂ẋ4
∂x2

∂ẋ4
∂x3

∂ẋ4
∂x4

∂ẋ4
∂x5

∂ẋ4
∂x6

∂ẋ5
∂x1

∂ẋ5
∂x2

∂ẋ5
∂x3

∂ẋ5
∂x4

∂ẋ5
∂x5

∂ẋ5
∂x6

∂ẋ6
∂x1

∂ẋ6
∂x2

∂ẋ6
∂x3

∂ẋ6
∂x4

∂ẋ6
∂x5

∂ẋ6
∂x6

(161)

133

J
A

=

−u3Θ3 0 +u3Θ3 · · ·
0 −u4Θ4 +u4Θ4 · · ·

u3Θ3 u4Θ4 −u3Θ3 − u4Θ4 −Θ5 · · ·
−x4
x21
x3u3Θ3 0 x4

x1
u3Θ3 · · ·

0 −x5
x22
x3u4Θ4

x5
x2
u4Θ4 · · ·

x4
x21
x3u3Θ3

x5
x22
x3u4 −x4

x1
u3Θ3 − x5

x2
u4Θ4 − x6

x23
u5Θ5 · · ·

· · · 0 0 0
· · · 0 0 0
· · · 0 0 0
· · · − 1

x1
u3Θ3(x1 − x3) 0 0

· · · 0 − 1
x2
u4Θ4(x2 − x3) 0

· · · 1
x1
u3Θ3(x1 − x3) 1

x2
u4Θ4(x2 − x3) − 1

x3
Θ5(x3 − u5)

(162)

J
B

=

∂ẋ1
∂u1

∂ẋ1
∂u2

∂ẋ1
∂u3

∂ẋ1
∂u4

∂ẋ1
∂u5

∂ẋ2
∂u1

∂ẋ2
∂u2

∂ẋ2
∂u3

∂ẋ2
∂u4

∂ẋ2
∂u5

∂ẋ3
∂u1

∂ẋ3
∂u2

∂ẋ3
∂u3

∂ẋ3
∂u4

∂ẋ3
∂u5

∂ẋ4
∂u1

∂ẋ4
∂u2

∂ẋ4
∂u3

∂ẋ4
∂u4

∂ẋ4
∂u5

∂ẋ5
∂u1

∂ẋ5
∂u2

∂ẋ5
∂u3

∂ẋ5
∂u4

∂ẋ5
∂u5

∂ẋ6
∂u1

∂ẋ6
∂u2

∂ẋ6
∂u3

∂ẋ6
∂u4

∂ẋ6
∂u5

(163)

J
B

=

Θ1 0 −Θ3(x1 − x3) 0 0
0 Θ2 0 −Θ4(x2 − x3) 0
0 0 Θ3(x1 − x3) Θ4(x2 − x3) Θ5

γ1Θ1 0 −x4
x1

Θ3(x1 − x3) 0 0

0 γ2Θ2 0 −x5
x2

Θ4(x2 − x3) 0

0 0 x4
x1

Θ3(x1 − x3) x5
x2

Θ4(x2 − x3) x6
x3

Θ5

(164)

To avoid any typing errors while deriving the functions the Jacobians was
also calculated by use of Matlab. See Appendix (NEED REF) To finalize
the system in a linear state space format a steady state calculation is quite
handy. When using steady state data to fill in the jacobian the state space
expression simplifies:

∆ẋ = A∆x+B∆u (165)

ẋ− ẋ
∣∣
SS

= A∆x+B∆u (166)

ẋ = A∆x+B∆u (167)

(168)

Moving on a steady state calculation is used to finalize the linearized state
space representation.

134

D.2.1 Steady State Calculation

A system is at steady state when the states are constant over the current
time horizon. Resulting in:

0 = f(t, x, u, d) (169)

Since the Jacobian already is calculated and the problem requires a root
solver a Newton solver should be sufficient. The general expression for the
Newton method is seen below:

xn+1 = xn − J−1(xn)f(xn) (170)

In this special case the subscript denotes the iteration sequence number.
The above procedure is looped until the difference between xn+1 − xn is
sufficiently small, i.e.f(xn) = 0. By use of the Newton solver the problem
was solved for the default input and initial conditions, see appendix C.5 for
MATLAB script.

D.2.2 Linear state space representation

The standard state space representation for a model linearized over a steady
state is:

ẋ = A∆x+B∆u (171)

135

	Abstract
	Introduction
	Motivation

	Theoretic Background
	Modelling of continuous systems
	The modelling process
	Defining lumped and distributed systems
	The impact of time scales

	Graph theory
	Continous systems
	Hybrid systems

	Hybrid Systems
	Hybrid Automata
	Example discrete dynamics: The Bouncing Ball
	Example discrete state approach to control: Stabilizing an inverted pendulum
	Summary of hybrid automaton applications so far

	Hazard and operability study - HAZOP
	The procedure

	Case Study- Modelling and Automaton generation
	2 Tank Isothermic model
	Modelling
	Defined system
	State Space representation
	Continuous model simulations
	The hybrid automaton for the two tank system
	DEDS -Algorithm completing the automaton with transition tables
	Evaluating the results; the two tank automaton transition tables

	3 Tank hot and cold liquid mixing
	Modelling
	Defined system
	Aquiring the Jacobi incidence matrix
	Dealing with negative flow rates in the enthalpy balances
	Utilizing Heinz Preisig Non-linear Hybrid Automaton generator

	Case Study: Comparison between a traditional approach and utilizing the automaton model
	Traditional hzop analysis of the 3 tank system
	Node selection and purpose identification
	Selection of guidewords and process parameters
	Combining parameters and guidewords. Evaluating a possible deviations and a causes
	Summary of proposed actions by utilizing the Hazop procedure

	Hazop analysis utilizing the 3 tank automaton
	Evaluating the hybrid automaton for tank H
	Hybrid automaton hazop performance
	Hybrid automaton script limitations

	Discussion
	Hybrid automaton modelling script nlinauto.m
	Hybrid automaton approach versus traditional hazop
	The developed search algorithm for hazardous transitions
	Handling state variable transformation
	Further work before plant study

	Conclusion
	Suggested further development
	Variable List
	Indexes and special nomenclature
	Variables

	Automaton Transition tables
	3 Tank Mass Balances
	xs = x1 (Tank H)
	xs = x2 (Tank C)
	xs = x3 (Tank M)

	3 Tank Energy Balances
	xs = x4 (Tank H)
	xs = x5 (Tank C)
	xs = x6 (Tank M)

	Hazop
	Traditional Hazop procedure
	 Tank H
	 Tank C
	 Tank M

	Automaton Hazop procedure
	 Mass balance Tank H
	 Mass balance Tank C
	 Mass balance Tank M
	Energy balance Tank H
	Energy balance Tank C
	Energy balance Tank M

	MATLAB Scripts
	Bouncing ball
	With zero cross detection Runball.m
	Without zero cross detection Runnonball.m

	The inverted pendulum
	Run script Runpendu.m
	Dynamics inversependu.m
	Controller controller.m

	2 tank system
	2D linear automaton by Heinz Preisig linauto2d.m
	Continouos model simulation
	Automaton model visualization

	3 tank system
	Modified non-linear automaton by H. Preisig and B. T. Mathisen nlinauto.m
	Input file for nlinauto.m

	Linearization
	Hazard finder autohaz.m

	Additional tests
	State variable transformation
	Utilizing linear automaton
	Steady State Calculation
	Linear state space representation

