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Abstract

The understanding of irreversible phenomena in the world around us is of great
importance – not only for the intrinsic value of such understanding, but also
for the industrial applications and technological benefits such an understanding
brings with it. The main aim of the current work is to explore such phenomena
– with emphasis on treating simultaneous mass and heat transfer – by studying
the entropy production using mathematical modelling.

A model consisting of two connected subsystems containing a binary ideal gas
mixture is developed and studied. In the case of a closed system, a perturbation
from the equilibrium state give rise to a manifold of constant entropy given
the constraints. In the case of an open system, the steady-state is maintained
by external reservoir of thermal and chemical nature. The resulting internal
mass and heat transfer between the two subsystems give rise to a manifold of
constant entropy production given the constraints. In order to investigate these
two situations, a variable step-length predictor-corrector method is developed
and employed. Both types of manifolds are successfully traced.

By solving the models, a relationship of seemingly deep nature between the
two types of manifolds is observed. It is shown that the projections of both
manifolds into suitable coordinates in the Cartesian R2 plane may be described
as generalised ellipses, which opens the possibility of a mapping between the
two manifolds. Thus, a possible connection between the deviation from equilib-
rium entropy on the one hand and the constant entropy production of an open,
steady-state system is established.
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The results from the current work are not yet conclusive as to whether the cor-
relation between the entropy production manifold and manifold of constant
entropy may be employed to predict or describe the general behaviour of irre-
versible processes occurring. However, the results are seen as a promising, and
further investigations are recommended.



Sammendrag

Irreversible fenomen er en viktig del av verden rundt oss. En grundig forståelse
av disse er av stor betydning - både av akademisk interesse, men også med
hensyn på mulige industrielle applikasjoner og teknologiske fordeler en slik
innsikt bringer med seg. Hovedformålet denne oppgaven er å utforske og belyse
slike fenomen – med særlig vekt på simultan masse- og varmeoverføring –ved
å bruke matematisk modellering til å betrakte entropiproduksjon.

En modell bestående av to sammenkoblede delsystem er blitt utviklet, hvorav
hvert delsystem inneholder en binær, ideell gassblanding. To grensetilfeller er
studert. I det ene tilfellet betraktes et lukket system. Her vil en forstyrrelse av
likevektstilstanden gi opphav til et manifold av konstant entropi, gitt likningene
som begrenser systemet. I det andre tilfellet betraktes et åpent system som
opprettholdes ved stasjonære betingelser ved hjelp av ytre reservoar som tilfører
masse og varme til systemet. Her gir de irreversible prosessene knyttet til den
indre masse- og varmeoverføring mellom de to delsystemene opphav til et
manifold av konstant entropiproduksjon. For å kunne behandle disse to tilfellene
er det utviklet en prediktor-korrektor-metode med variabel steglengde. Denne
er benyttet for å kartlegge begge manifoldene, med vellykket resultat.

Ved å betrakte resultatene er det avdekket en tilsynelatende dyp sammenheng
mellom de to typene manifolder. Det er vist at dersom manifoldene projiseres
ned i egnede kartesiske koordinater i R2 kan begge beskrives som generiske
ellipser. Dette åpner for å gå fra den ene manifoldbeskrivelsen til den til den
andre, som igjen åpner for en mulig sammenheng mellom avviket fra likevek-
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tentropi på den ene siden og konstant entropiproduksjon i et åpent, stasjonært
system på den andre siden.

Basert på resultatene fra dette arbeidet er det ikke mulig å si noe entydig om
hvorvidt sammenhengen mellom entropiproduksjonsmanifoldet og manifoldet
for konstant entropi kan brukes til å forutsi eller beskrive den generelle oppfør-
selen til irreversible prosesser. Resultatene betraktes imidlertid som lovende, og
videre undersøkelser av dette konseptet anbefales.
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4.3.5 Two roads to Ṡirr: a powerful consistency check . . . . . . 60

5 Numerical methods for manifold tracing 63
5.1 The general manifold tracing problem . . . . . . . . . . . . . . . 64

5.1.1 The relation to numerical continuation methods . . . . . . 65

5.2 The predictor-corrector method . . . . . . . . . . . . . . . . . . . 66

5.3 Computing the predictor step . . . . . . . . . . . . . . . . . . . . 69

5.4 The Newton-Raphson corrector method . . . . . . . . . . . . . . 72

5.4.1 Mathematics of the Newton-Raphson method . . . . . . . 72

5.4.2 Outline of the corrector algorithm . . . . . . . . . . . . . . 74

6 Results and discussion 77
6.1 Overview of the cases . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Case 0: Constant entropy manifold . . . . . . . . . . . . . . . . . 78

6.3 Case 1: constant entropy production manifold . . . . . . . . . . . 80

6.4 Integrating the entropy production . . . . . . . . . . . . . . . . . 85



Contents xi

6.5 A relationship between ∆S = const and Ṡirr = const . . . . . . . 87
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Chapter 1

Introduction

In science it is always necessary to
abstract from the complexity of
the real world and in its place to
substitute a more or less idealized
situation that is more amenable to
analysis.

k . g . denbigh
1

In the natural sciences, a fundamental desire is to describe, understand and
predict the behaviour of the world around us. In the pursuit of such understand-
ing and knowledge, we need models – mental, mathematical or otherwise – that
act as glasses through which we observe and make sense of the way Nature
operates. Models help us systematise and sort our knowledge and experiences.

The choice of model must reflect the desired outcome – no model, however
advanced, is a perfect replica of the real world we live in. Models are human
inventions – a model does not equal reality (Zumdahl, 2009). For a model to be
used effectively, one must understand both its weaknesses and its strengths, and
ask only the appropriate questions. In other words, one most choose a model
that is sufficiently accurate in describing the processes and phenomena of interest – and
only expect the model to answer questions related to these.

1Introduction to “The Thermodynamics of the Steady State”, (Denbigh, 1951)
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2 Introduction

Modelling irreversible processes: no single best way?

Despite the huge success of classical equilibrium thermodynamics, the world we
live in is fundamentally irreversible – in the strictest sense, no true equilibrium
exists.2 Essentially everything – from the smallest cells in our bodies to the
largest industrial process plants – is governed by irreversible phenomena.

Thus, the understanding of irreversible phenomena in the world around us is
of great importance – not only for the intrinsic value of such understanding,
but also for the industrial applications and technological benefits such an un-
derstanding brings with it. The NOx absorption process – e.g. that of Yara
International ASA – which is a part of the nitric acid production is one indus-
trial example where irreversible transport phenomena and chemical reactions
are of key importance (Pradhan et al., 1997; Chatterjee and Joshi, 2008). There
are many more; one other example being that of (multicomponent) distillation,
as described by e.g. Kooijman and Taylor (1995) or Taylor et al. (1994). It may
be argued that understanding irreversible phenomena – and when they must be
treated as such, i.e. that an equilibrium approach is insufficient – is at the heart
of applied chemical engineering (Wesselingh, 1997). The importance of such an
understanding can not be underestimated.

“Much remains to be done, but the utility of transport phenom-
ena can be expected to increase rather than diminish. Each of the
exiting new technologies blossoming around us is governed, at the
detailed level of interest, by the conservation laws and flux expres-
sions, together with information on the transport coefficients.”
–(Bird et al., 2007)

The aim of the current work is to explore the nature of irreversible phenomena –
more specifically, those of simultaneous mass and heat transfer – with emphasis
on principles rather than pragmatic application. The latter is an important part of
chemical engineering – many heuristics and empirical correlations yield results

2 This is, of course, a question of time-scale for any practical purposes. Systems with irreversible
processes that are sufficiently slow in the time-scales of interest may be treated as though they were
at equilibrium. However, as Earth is an open system with respect to energy – there is a continuous
influx of energy from the Sun, which in turn stems from the irreversible processes of nuclear fusion
– no state of true equilibrium may exist.
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and rules of thumb that are of great importance in the chemical process industry.
However, such an approach will seldom lead to insight into the fundamentals,
such as the possibility of relating the thermodynamics of reversible phenomena
and the theory of irreversible transport phenomena. It is such insight – or rather,
a small step towards it – that is the main goal of this thesis.

This may seem like one step backwards – by nature, simplified systems must
be studied. Why not use models that mimic the real world with the greatest
possible precision? To paraphrase Otto Redlich: it is often helpful to take a few
steps backwards when challenging subjects are treated in order to pave the road
for subsequent progress.3 The hope is that such insight will eventually lead to
progress both in real-world practise and theoretical knowledge – both are of
great value.

It is noted that the interest in transport phenomena in particular and rate phe-
nomena in general seems to have increased in the last half of the 20th century
and this far into the 21st (Bird, 2004). This seems to stem from an ever-increasing
desire to understand Nature – not only for its intrinsic value, but also because
of the industrial applications and benefits that follow. As computing power is
ever more available and the regulations on emissions, energy expenditure and
HSE are increasing, the need for and availability of models to represent the real
world is larger than ever before.

However, there seems to be no single-agreed upon approach to modelling such
rate problems. The classical texts on separation processes in chemical engineer-
ing such as (Geankoplis, 2003) frequently employs the assumption that phenom-
ena that are inherently irreversible – such as distillation – may be treated as
though an equilibrium is locally instilled. The latter gives rise to the celebrated
concept of the equilibrium tray. In order to describe the behaviour and opera-
tion of real separation processes, empirical correction factors must regularly be
employed. It is argued that such an approach often lead to unphysical and un-

3
otto redlich (1896-1978) made numerous contributions to science, with the Redlich-Kwong

equation of state (EOS) being the best-known to most chemical engineers. The full quotation
paraphrased above: “It is the ability of retracing to the fundamentals that distinguishes the technologist
from the technician, who applies well established formulae according to old examples. Whenever a really new
problem arises and the established model fails, the technologist has to go back step by step in order to find the
point of departure from where he must start to blaze a new trail.” (Redlich, 1976)



4 Introduction

realistic descriptions, especially so for multicomponent mixtures (Krishna and
Wesselingh, 1990).

In what may be argued to be the classic text in engineering transport phenom-
ena – (Bird et al., 2007) – dimensionless quantities and empirical relations are
emphasised. While such an approach is certainly of great practical value, the un-
derlying phenomena may often be obscured at first sight.4 A similar approach
is taken by (Jakobsen, 2008), with emphasis on the implications for chemical
reactor modelling.

Other authors take a different approach; in the field of non-equilibrium thermo-
dynamics (NET), the consistent treatment of coupled, irreversible phenomena
is at the very centre (Denbigh, 1959; de Groot and Mazur, 1984; Kjelstrup et al.,
2010). The framework extends classical equilibrium thermodynamics, employing
the pioneering work of Onsager5 to describe the nature of irreversible processes
as a sum of force-flux relations. A brief outline of the subject will be given in
Chapter 3. Others again focus on certain aspects of irreversible phenomena –
such as the Maxwell-Stefan (M-S) approach to mass transfer outlined by (Krish-
namurthy and Taylor, 1985a,b; Krishna and Taylor, 1993). This approach has
proved to be especially successful for multicomponent mass transfer applica-
tions, e.g. in separation processes such as distillation.

It is frequently emphasised in the literature that classical thermodynamics is a
science of states, not rates (Callen, 1985; Kondepudi, 2008). In other words, while
reversible processes6 are adequately treated, the irreversible processes such as
mass and heat transfer are seen as being outside the scope of thermodynamics.
Whether this is taken as true or not – the aforementioned NET framework may

4 The author wishes to emphasise that this must not be seen as criticism towards (Bird et al.,
2007) – the text is extensive and excellently written, presenting the mathematical analogy between
the treatment of momentum, mass and energy transport in a rigorous way. The main point is mainly
to contrast this classical engineering approach with that of other, related frameworks to underpin
the fact that there seems to be no single way of treating irreversible phenomena in the available literature.

5 American-Norwegian scientist and 1968 Nobel laureate Lars Onsager (1903-1976) is often
credited with being the father of irreversible thermodynamics due to his discovery of the reciprocal
relations (Onsager, 1931a,b) bearing his name that are at the core of the subject (Callen, 1985).

6 It should be emphasised that while no real process is truly reversible, many processes evolve
through a series of quasi-equilibrium states – where any irreversible processes are of negligible
importance – such that they may be treated as though the were equilibrium processes. This notion
will be further explored in the context of the model development in Chapter 4.
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serve as an illustration that such a restriction may not be the full story – it must
be emphasised that the time and space invariant state of equilibrium governed by
classical thermodynamics will always be a limiting case for any irreversible process. In
other words, one may state that thermodynamics provide boundaries that must
be respected – all irreversible processes should cease at the state of equilibrium,
since the driving forces for such phenomena are necessarily zero at this state
(Sandler, 1989; Callen, 1985). All models used to describe irreversible phenomena
– whichever are chosen and for whatever reason – should converge to the state
of thermodynamic equilibrium in the absence of external constraints and given
sufficient time.7 This state may never be realised on the relevant time scales –
and the pragmatic engineer may thus be inclined to dismiss the whole point as
being of no practical implication. However, it is proposed - - that consistence
with classical thermodynamics is still of both great interest and importance in any
modelling of irreversible phenomena. Employing models that are consistent in
their description of Nature must be seen as a major benefit – such models are
robust in the sense that they may be used to describe the steady-state scenario
and the equilibrium situation alike.

Thesis objective

The aim of the current work is to investigate the modelling of irreversible phe-
nomena in general – with emphasis on mass and heat transfer in particular –
using driving forces that are consistent with classical equilibrium thermodynam-
ics. In addition, avoiding a detailed integration of the transport equations over
the connecting volume is sought to be avoided – the gradients of a true continu-
ous description are approximated by the differences of lumped description.

7 The notion of sufficient is of great importance – whether relaxation towards equilibrium is a
fast or slow process differs with vast orders of magnitude. As an example, mechanical equilibrium in
gaseous systems is often assumed to be instantaneous on the relevant time scales of most chemical
engineering applications (de Groot and Mazur, 1984) – this assumption will be employed as part
of the model development in Chapter 4. In contrast, a commonly cited example of the opposite is
that of diamond – this carbon structure is thermodynamically unstable at standard temperature
and pressure. In other words, the diamond jewellery is a non-equilibrium system waiting to relax
back to its most stable form – that of graphite. However, since the activation energy barrier for this
phase transition is very high, the rates of this process is extremely slow on the time scales relevant
to a human life. Thus, the diamond may - with justice - be regarded as a stable compound for all
practical purposes (Kjelstrup and Helbæk, 2006)



6 Introduction

In order to achieve this, a two-compartment system of a binary ideal gas mixture
is studied. Simultaneous mass and heat transfer is treated, assuming that there
is no direct coupling8 between the two – in other words, the phenomena are
considered to be superposed. The set of equations governing the composite
system gives rise to manifolds of constant entropy – for the closed system – and
manifolds of constant entropy production – for the open system maintained at a
steady-state. Tracing out these manifolds is a central part of the current work,
using a self-developed, generalised predictor-corrector method implemented in
python. The tracing of the constant entropy production manifold is performed
using different phenomenological transport laws in order to observe and explore
the implications of the different formulations. Since ensuring consistency is seen
as important, it is verified that the proposed model obey the a priori inferred
relations between the different formulations of the entropy production, as well
as that of the integrated entropy production along the path of relaxation towards
a state of equilibrium from that of a non-equilibrium state. These notions are
further explored in Chapter 2 and Chapter 4.

The main focus is on principles and understanding at the cost of practical engineer-
ing results. Thus, this thesis will not provide an improved method or correlation
for predicting transport phenomena as observed in real process plants – the aim
is not a valid model. Rather, the intention is to explore whether a thermody-
namically consistent formulation of such irreversible processes is feasible, and
if we can learn anything new about the nature of such phenomena by exploring
them in such a framework. Model consistency – and thus model verification are
regarded as highly important.

Thesis structure

The theory of classical thermodynamics that is applicable to the current work
is outlined in Chapter 2. This chapter also contains a discussion of the role
of entropy in the modelling of irreversible phenomena, and how the entropy
balance may be exploited for consistency checking in the latter context. Further-

8 In other words, that the Soret and Dufour effects are negligible. These concepts – and their
implications for the results – will be further discussed in Chapter 3.
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more, an overview of the relevant transport phenomena theory for simultaneous
mass and heat transfer is given in Chapter 3. Next, the model development –
including model structure, constraint equations and modelling assumptions – is
outlined in Chapter 4 The numerical method developed for the manifold tracing
– a variable step-length predictor-corrector method – is presented in Chapter 5.
Employing this to solve the developed models yields the results discussed in
Chapter 6. Lastly, concluding remarks and suggestions for further work are
given in Chapter 7.

The bigger picture

It is interesting to reflect on the topic of the current work in the context of the
slightly bigger picture of general irreversible phenomena. It should be explicitly
noted that the thesis objectives outlined above deviate from those of the original
scope. The initial purpose of the current work was to explore how the combin-
ation of mass and heat transport and chemical reactions might be treated in a
consistent manner for a gas-liquid interface – assuming that these were to be
treated as irreversible, i.e. that the rates of the processes would have to be expli-
citly accounted for. Such a situation represents the reality for many problems
relevant to the chemical engineer – including the process of NOx absorption
that is a part of the nitric acid production used as a step in modern fertilizer
manufacturing. The latter was the subject of the literature study conducted by
the author as part of the specialisation project of the autumn 2014 (Sonerud,
2014), and the continuation of this by computational modelling was seen as an
attractive topic.

The notion of tracing and exploring the entropy (production) manifolds that
ended up being central in the current work were originally seen as an interesting
idea only, and creating a proof-of-concept model to investigate this was expected
to be a relatively swift process. However, it was realised that the complexity of
both developing and solving the models necessary to shed light on this idea –
even using idealisations such as ideal gas or simplified phenomenological laws –
was largely underestimated by the author. As such, the original goal of treating
chemical reactions was moderated, and the present goal of treating mass and
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heat transfer only arose.

This experience underscores the seemingly established fact from the literature
that a consistent treatment of multiple simultaneous irreversible processes is
highly complex. Thus, the question of whether this is due to the inherent nature
of these phenomena or the way we – as scientists and chemical engineers –
approach them arises. The large increase in degrees of freedom of a true non-
equilibrium problem treated as time and space variant – e.g. in terms of the
amount of experimental parameters that are required – seems to give support
to the former. However, the seemingly varying nature of the different attempts
to describe such problems indicates that the optimal approach is not yet found.

In this context, the value of a proper focus on structure and abstraction is ap-
preciated. These powerful principles apply to both programming and science
alike – and especially so when the two subjects are combined as in the case of
computer modelling in a thermodynamic context. While solving the particular is
usually much more accessible, the true power of modelling arises with a focus
of generality – in the sense that the same model or formulation may be employed
to solve, explore and illuminate a diverse set of problems and challenges. This
is often hard to achieve or formulate – a focus on structure and abstraction is
demanding – but the eventual pay-off is often proportionally rewarding.



Chapter 2

Thermodynamics

Thermodynamics is two laws and
a little calculus.

k . a . dill & s . bromberg
1

It may be argued that the impressive power of classical thermodynamics to
handle a wide array of problems first and foremost stems from its generality –
with a relatively small number of postulates, concepts and the necessary mathem-
atical tools, a vast number of theoretical and practical problems may be treated
and solved. The purpose of this chapter is to provide the necessary thermo-
dynamic and mathematical background that enable the subsequent modelling
and exploration of irreversible phenomena in later chapters. In doing so, the
postulatory approach of (Haug-Warberg, 2006b) and (Callen, 1985) is followed –
both are recommended for any reader interested in a more thorough discussion
of the concepts presented below.

Classical thermodynamics is the study of energy and its conversion from one
form to the other – in situations as diverse as that of living cells and industrial
refrigeration cycles (Atkins, 2010). It is a macroscopic science, abstracting the
detailed properties of the myriads of interacting atoms and molecules that com-
prise the system in question to a few state variables. For an illustrative example
of the abstractive powers of classical thermodynamics, consider a balloon filled

1Chapter 6 in “Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics,
and Nanoscience”, (Dill and Bromberg, 2010)

9
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with helium (He) at standard temperature and pressure.2 At first, one might
imagine that in order to describe the macroscopic state of this ensemble of atoms,
the microscopic position and momentum of each atom would have to be known –
a number of variables of the order 1× 1023. However, from the point of view of
classical thermodynamics, this system may be fully characterised by three vari-
ables only – (T, V, N) – where T is (absolute) temperature, V is volume and N
is the number of moles of He.3 To say that this is an enormous reduction in the
amount of data needed to fully describe the macroscopic state of the system is
an understatement. Put differently, most of the microscopic coordinates are not
of interest from the macroscopic point of view – most of the ≈1× 1023 degrees
of freedom cancel out.

2.1 Fundamental postulates of classical thermodynamics

The purpose of this section is to present the fundamental postulates of classical
equilibrium thermodynamics on which the rest of this chapter resides. Choosing
the internal energy formulation as a starting point, it is postulated that there
exists an extensive thermodynamic state function U(S, V, n) - the fundamental
equation - such that

dU =

(
∂U
∂S

)
V,n

dS +

(
∂U
∂V

)
S,n

dV +
m

∑
i=1

(
∂U
∂Ni

)
S,V,N j 6=i

dNi (2.1)

The extensive variables of the system are the independent variables of eq. (2.1),
with S being the entropy of the system, V being the volume of the system and n
being the mole vector of the m components of the system. In the internal energy
formulation, these are the canonical4 variables.

2 The standard state pressure is normally assumed to be 1 bar – or 1× 105 Pa – and the standard
temperature is 298.15 K – or 25 ◦C

3 In fact, the intensive state of this system may be described by only two variables, e.g. T and p.
However, in order to fully account for the extensive state of the system, a third variable related to
the size of the system is needed – e.g. the number of moles of He in the above example.

4 Following (Siepmann, 2006), the canonical variables are the natural variables of a thermody-
namic state function. By employing the Legendre transform described in Section 2.2, it is possible
to go from one canonical representation to another without loss of information
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Defining the partial derivatives of internal energy with respect to the extensive
variables – the intensive variables of the system – as(

∂U
∂S

)
V,n

, T (2.2)(
∂U
∂V

)
S,n

, −p (2.3)(
∂U
∂Ni

)
S,V,N j 6=i

, µi (2.4)

with T being the (absolute) temperature, p being the pressure and µi being the
chemical potential of component i, it is possible to restate eq. (2.1) as

dU = T dS− p dV +
m

∑
i=1

µi dNi (2.5)

The understanding of the intensive variables as the ones that are independent
of the size of the system, while the extensive variables scale with the size of the
system corresponds to the more formal definition of the concepts as Euler ho-
mogeneous of zeroth and first order, respectively. The latter is further discussed
in Section 2.3.

Another important postulate is that the internal energy is additive – a composite
system that consists of several (separate) subsystems, each with internal energy
U j = U j(Sj, V j, N j), is characterised by

Utot = ∑
j

U j(Sj, V j, N j) (2.6)

While this may seem obvious based on empirical and practical experience, it is
nonetheless an important statement which will be employed in the subsequent
sections.

Furthermore, it is postulated that a state of thermodynamic equilibrium is one
of minimal internal energy constrained by the independent variables, such that

Ueq = min
S,V,n

Utot (2.7)

In many practical situations, holding e.g. the entropy constant may prove to
be difficult. Thus, it is desirable to be able to formulate other energy functions
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where one or more of the extensive variables are interchanged with the corres-
ponding intensive variables. From a practical perspective, it is usually easier
to work with, measure and control intensive variables such as temperature or
pressure. 5 Herein lies some of the true power of classical equilibrium thermo-
dynamics – the state variables and the corresponding energy function may be
chosen so that it is the most convenient for the problem at hand. The mathematical
framework to achieve this – the Legendre transform – is presented in Section 2.2.

2.2 Legendre transform

The mathematical transformation known as the Legendre transform is an import-
ant tool in thermodynamics, as it allows for variable transformation necessary to
conveniently describe the problem using the energy function that is most suited.
In short, the Legendre transform allows the conversion from one set of inde-
pendent variables to another without loss of any information. The mathematics of
the concept may easily be extended to functions of any number of variables. The
Legendre transform provides a powerful framework for formulating classical
thermodynamics – it ensures consistency, and lends itself to elegant abstraction.

Following (Haug-Warberg, 2006b), the formal definition of the Legendre transform,
fi, of the function f is taken to be

fi(ξi, xj, xk, . . . , xn) , f (xi, xj, xk, . . . , xn)−
(

∂ f
∂xi

)
xj ,xk ,...,xn

xi (2.8)

fi(ξi, xj, xk, . . . , xn) = f (xi, xj, xk, . . . , xn)− ξixi (2.9)

where

ξi ,
(

∂ f
∂xi

)
xj ,xk ,...,xn

(2.10)

5Indeed, the Gibbs free energy– G(T, p, n), as will be shown in Section 2.2 – is regarded as the
classical state function of chemical thermodynamics due to the fact that T and p are frequently the
variables under our control in a laboratory setting (Atkins and de Paula, 2010; Dill and Bromberg,
2010). From a theoretical point of view, it may be argued that the Helmholtz free energy may be a
better choice in many cases as the equation of state (EOS) employed are often given on pressure-
explicit form, p = p(T, V, n), and thus the (T, V, n) are the most natural state variables. This will be
further discussed in
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If needed, it is possible to perform several transformations, obtaining several
new transformed functions. The only information needed to define an arbitrary
Legendre transform is the knowledge of the function f and its corresponding
(partial) first derivatives, as can be seen from eq. (2.8). It is important to note that
repeated Legendre transformations using the same variable will lead back to
the original function. Thus, no information is lost in the transformation process.
Essentially, the Legendre transform exploits the fact that a curve may either be
represented as a set of points (x, y), or as a set of slopes of tangent lines α and
their intersection with the y-axis, β, as illustrated by Løvfall (2008).

By applying the concept of the Legendre transformation to the internal energy
U(S, V, n) postulated in Section 2.1, several new thermodynamic potentials may
be defined. Each of these will have their own set of canonical variables from the
above definitions and the transformation defined in eq. (2.8)

Enthalpy: H(S, p, n) , U −
(

∂U
∂V

)
S,n

V = U + pV (2.11a)

Helmholtz free energy: A(T, V, n) , U −
(

∂U
∂S

)
V,n

S = U − TS (2.11b)

Gibbs free energy: G(T, p, n) , U −
(

∂U
∂V

)
S,n

V −
(

∂U
∂S

)
V,n

S

= U + pV − TS = H − TS (2.11c)

Here, the most used thermodynamic potentials are defined in terms of their
respective Legendre transform from the internal energy, U. Thus, when facing a
particular problem, the thermodynamics may be transformed to fit the problem –
working in the canonical variables for the particular case. The fact that the partial
first derivatives of the fundamental equation are intensive variables of physical
significance – e.g.

(
∂U
∂S

)
V,n

= T – the concept of the Legendre transform is

particularly appealing in the context of thermodynamics.

It should be noted theconcept of a Legendre transform is not restricted to using
internal energy as a starting point. As an example, the latter may be expressed
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as a function of the Helmholtz free energy as follows

U = A−
(

∂A
∂T

)
V,n

T (2.12)

U = A− TAT (2.13)

where AT denotes the partial derivative of Helmholtz free energy with respect
to (absolute) temperature. Thus, given that A(T, V, n) is known, U may be cal-
culated.6 As will be further discussed in Chapter 4 and later in the current
chapter, the Helmholtz free energy– corresponding to the independent variables
(T, V, n), as shown in eq. (2.11b) – is a convenient state function for describing
the gas phase, and will be employed in the current work. On the other hand,
the Gibbs free energy– corresponding to the independent variables (T, p, n), as
shown in eq. (2.11c) – is often the most suitable state function for the description
of condensed phases, e.g. liquids and solids, and has historically been the state
function of choice in chemical engineering. However, Helmholtz free energy
models have been used more frequently to describe both gas and liquid phases
due to progress in the development of suitable EOS in the later years. As such, it
is argued that the classical choice of using Gibbs free energy models in chemical
engineering should be reconsidered in light of this (Pereira et al., 2014).

As a side note, performing a Legendre transform on U with respect to each of
the extensive variables S, V and n yields the zero potential

Zero potential O(T, p, µ) = U −
(

∂U
∂V

)
S,n
−
(

∂U
∂S

)
V,n
−
(

∂U
∂n

)
S,V

(2.14)

= U − TS + pV −
m

∑
i=1

µi dNi = 0 (2.15)

From a total differential of the latter equation, the Gibbs-Duhem equation is ob-

6 The approach may be taken one step further; differentiation of eq. (2.12) with respect to X
yield UX = AX − TX AT − TATX , where X ∈ {T, V, n}. This is a useful way of quickly finding the
partial derivatives of U in Helmholtz free energy coordinates. E.g. taking X = T, one quickly finds
UT = ��AT −��AT − TATT = −TATT .
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tained

0 = ���T dS −�
��p dV +

�
�
�
��m

∑
i=1

µi dNi −���T dS − S dT +�
��p dV + V dp

−
�
�
�
��m

∑
i=1

µi dNi −
m

∑
i=1

Ni dµi

0 = −S dT + V dp−
m

∑
i=1

Ni dµi (2.16)

This equation plays an important part in consistency checking in thermodynam-
ics, as it provides a relationship between the 2 + m intensive variables of an m
component system. In other words, the Gibbs-Duhem equation dictates that only
1 + m of the intensive variables are independent. This restriction will provide
an important relationship in the discussion of the thermodynamic driving force
for mass transfer

The same relationship may be derived by combining eq. (2.1) and the Euler
integrated form of the internal energy. The latter concept is the topic of Section 2.3.

2.3 Euler integration and Euler homogeneous functions

The concept of Euler homogeneity is closely related to the thermodynamic concept
of intensive and extensive variables – the latter are Euler homogeneous of order
zero and one, respectively. When this is established, Euler integration may be
used to go from the (total) differential form to the Euler integrated form of a
thermodynamic potential.

Euler homogeneous functions are explored with mathematical rigour in (Haug-
Warberg, 2006b, chap. 4). Below, the approach of (Callen, 1985, chap. 3) is fol-
lowed, with focus on the practical implications in the context of thermodynam-
ics.

Using λ as a dimensionless parameter and employing vector notation, a function
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is said to be Euler homogeneous of order k if the following holds true

F = f (X, ξ) (2.17)

F = λk f (x, ξ) (2.18)

X = λx (2.19)

Using the fact that the thermodynamic energy functions are known to be extens-
ive functions , and thus Euler homogeneous of first order, it is possible to write
the following for the internal energy

U(λS, λV, λn) = λU(S, V, n) (2.20)

Differentiation with respect to λ yields

∂U(λS, λV, λn)
∂λS

∂λS
∂λ

+
∂U(λS, λV, λn)

∂λV
∂λV
∂λ

+
m

∑
i=1

∂U(λS, λV, λn)
∂λNi

∂λNi
∂λ

= U(S, V, n) (2.21)

Note that the variables that are held constant in each partial derivative are
omitted for clarity. By simplifying eq. (2.21) using eq. (2.20) and eq. (2.5), the
equation may be rewritten as

U(S, V, n) =
∂U(S, V, n)

∂S
S +

∂U(S, V, n)
∂V

V +
m

∑
i=1

∂U(S, V, n)
∂Ni

Ni (2.22)

U(S, V, n) = TS− pV +
m

∑
i=1

µi Ni (2.23)

The latter is referred to as the Euler integrated form of the internal energy. By
applying the Legendre transform discussed in Section 2.2, equivalent expres-
sions may be derived for the enthalpy (H), Gibbs free energy (G) and Helmholtz
free energy (A). As the Euler integrated form of the Helmholtz free energy will
prove to be crucial in Chapter 4, the explicit expression is shown in eq. (2.24)
below. Using the definition of A as the Legendre transform of U with respect to
S – as shown in eq. (2.11b) – along with eq. (2.23) above, it follows that

A(T, V, n) = U − TS = −pV +
m

∑
i=1

µi Ni (2.24)
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From eq. (2.24) it is evident that if p = p(T, V, n) and µ = µ(T, V, n) are known,
the Helmholtz free energy may be calculated for a given state (T, V, n). This
idea forms the backbone of the thermodynamic model utilized in Chapter 4.

Euler integration and consistency checking

The concept of Euler homogeneous functions provides an additional useful
feature – it allows for consistency checking of the implemented thermodynamic
model. As stated in Section 2.3, any thermodynamic potential is an Euler ho-
mogeneous function of 1st order, and may be written on Euler integrated form
as

P(xext, xint) =

(
∂P

∂x>ext

)
xext (2.25)

where P is a generalised thermodynamic potential, xext represents the (canonical)
extensive variables and xint represents the (canonical) intensive variables. Fol-
lowing (Siepmann, 2006), differentiating eq. (2.25) with respect to the extensive
variables yield

∂P(xext, xint)

∂xext
=

(
∂2P

∂xext∂x>ext

)
xext +

∂P
∂xext

(2.26)

Thus, eq. (2.27) must be fulfilled(
∂2P

∂xext∂x>ext

)
xext = 0 (2.27)

This may be used as a check that e.g. the Hessian7 of a thermodynamic potential
with only extensive variables such as U is correct, by calculating UXX · X

?
= 0,

where X = [S, V, n]>.8 For potentials that are functions of both intensive and
7The Hessian of a scalar-valued function f is a square matrix of second-order partial derivatives,

H> = ∇2 f (x). The Hessian is central in thermodynamics in several respects, among others when
the mapping between coordinate sets are concerned. See (Thomas Jr. et al., 2009; Nocedal and
Wright, 1999) for a more thorough mathematical description of the Hessian and it’s central place in
e.g. optimization problems

8In order to provide a concise notation, PX designates the partial derivative of P with respect to
X, holding other state variables constant. In a similar fashion, PX1X2 designates the second derivative
of P with respect to X1 and X2, holding other state variables constant. Note that X1 and X2 may
be the same variable. Using vector notation, PX and PXX designates the gradient and Hessian of P
with respect to X, respectively.
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extensive variables, such as Helmholtz free energy, the part of the Hessian with
respect to the extensive variables must still fulfil eq. (2.27). As such, AXX ·X

?
= 0

should evaluate to zero when X = [V, n]> and A>XX is a sub-matrix of the
Hessian of A containing the derivatives with respect to V and n.

In terms of consistency checking, the above property allows the verification of
the thermodynamic model implementation in the sense that if the model is not
consistent – either by mistake or by design – the requirement of eq. (2.27) will
not hold.

While the main topic of the current work is to study irreversible phenomena, the
concept of thermodynamic equilibrium remains important also in this context – e.g.
as a possible set of driving forces for such processes. The purpose of Section 2.4
is to explore the general criterion for such an equilibrium state.

2.4 Thermodynamic equilibrium

From the pragmatic perspective of the experimentalist, it may be stated that
a thermodynamic system is in equilibrium when none of its thermodynamic
properties are changing with time at any measurable rate (Reiss, 1996).9 The
purpose of Section 2.4 is to show that a state of thermodynamic equilibrium
between two subsystems may be more precisely characterised by equality of the
intensive variables of the respective subsystems10 , using phase equilibrium between
gas and liquid as an illustrative example.

In general, the equilibrium state of a given system corresponds to a minimum
of the thermodynamic potential that uses the system’s independent variables as

9 Note that it is essential that such a definition must account for both changes in the system
and the surroundings – otherwise, it would be impossible to distinguish the time-invariant state
of true thermodynamic equilibrium from the time-invariant steady-state that is a limiting case of
non-equilibrium systems. While the distinction between the two may seem small at first glance, the
difference is of large importance in subsequent chapters.

10 It should be noted that true thermodynamic equilibrium – however practically unattainable –
is a time and space invariant state. Put differently, classical thermodynamics is not concerned with
the coordinates of regular space and time at all – a statement such that “the temperature varies
with time” has no place in equilibrium thermodynamics. In contrast, the intensive variables of
non-equilibrium systems are in general both time and space variant, e.g. T = T(t, x), the latter
representing the space coordinates.
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its canonical variables.11 In the case of internal energy, a phase equilibrium may
thus be characterised as

Utot,eq = min
S,V,n

Utot = min
S,V,n

(
Uliq + Ugas

)
(2.28)

Assuming that the system is closed and isolated – i.e. that there are no flows
of mass, energy or momentum across the boundary – the following constraints
apply12

Sliq + Sgas = Stot (2.29a)

Vliq + Vgas = Vtot (2.29b)

nliq + ngas = ntot (2.29c)

Here, the superscripts gas and liq are used to distinguish the two phases, as
this corresponds to the physical interpretation of the problem. Note, however,
that this is arbitrary. This minimisation of the internal energy is the same as
finding the entropy, volume and composition distribution that gives a zero total
differential in the potential

d(Utot) = d(Uliq + Ugas) = 0 (2.30)

Substituting in the derivatives of U with respect to S, V and n from Section 2.1,

11From statistical thermodynamics, a state of equilibrium is typically characterised by Seq =
maxU,V,n Stot (Hill, 1960; Dill and Bromberg, 2010). As argued by e.g. (Callen, 1985), the choice of
characterising an equilibrium state as a state of maximum entropy or minimum energy is – from a
theoretical point of view – equivalent. In practical terms, minimizing an energy function is frequently
easier to achieve in practise, as the state variables are usually variables that are easier to control,
such as G(T, p, n) discussed earlier.

12 It is important to note the distinction between the system described here and the actual
model system of Chapter 4. The former allow a redistribution of volume – in the words of the
chosen example, the gas-liquid interface is allowed to move. In the implemented model system, the
volumes are specifically fixed. Thus, the equality of pressure in each subsystem will not in general be the
equilibrium criterion. However, by invoking the assumption of mechanical equilibrium – as discussed
in Chapter 4 – a non-thermodynamic constraint will impose the equality of pressure at all times,
including at the state of equilibrium.
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so that the total differential may be written as

((
∂U
∂S

)liq

V,n
dSliq +

(
∂U
∂V

)liq

S,n
dVliq +

(
∂U
∂n

)liq

S,V
dnliq

)

+

((
∂U
∂S

)gas

V,n
dSgas +

(
∂U
∂V

)gas

S,n
dVgas +

(
∂U
∂n

)gas

S,V
dngas

)
= 0 (2.31a)

(Tliq dSliq − pliq dVliq + µliq dnliq)

+(Tgas dSgas − pgas dVgas + µgas dngas) = 0 (2.31b)

(−Tliq dSgas + pliq dVgas − µliq dngas)

+(Tgas dSgas − pgas dVgas + µgas dngas) = 0 (2.31c)

[Tgas − Tliq]dSgas − [pgas − pliq]dVgas + [µgas − µliq]dngas = 0 (2.31d)

where the relations dSliq = −dSgas, dVliq = −dVgas and dnliq = −dngas

from the differentiation of the total balances in eq. (2.29) are used. In order for
eq. (2.31) to hold for any arbitrary choice of dSgas, dVgas and dngas, it must be
true that

(Tgas − Tliq) = 0 =⇒ Tgas = Tliq (2.32a)

−(pgas − pliq) = 0 =⇒ pgas = pliq (2.32b)

(µgas − µliq) = 0 =⇒ µgas = µliq (2.32c)

Thus, it is shown that the intensive variables – that is, (T, p, µ) – of the gas and
liquid phase must be the same at equilibrium conditions. In fact, it may be shown
that this is a general observation that holds for any number of components and
phases.

As such, it may be natural to take the deviation from Teq, peq and µeq of the
intensive variables as driving forces for irreversible phenomena – such as heat,
momentum and mass transfer. With a few alterations – accounting for the fact
that S(U, V, n) is taken as the starting point – this is indeed proposed in the
non-equilibrium thermodynamics (NET) framework, to be further discussed in
Section 3.2.
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2.5 Choice of thermodynamic coordinates

The choice of thermodynamic coordinates for modelling is a non-trivial matter.
The true power – from the perspective of the master – and a source of frequent
confusion – from the perspective of the inexperienced student – lies in the many
possible choices of thermodynamic coordinates.

The concept of state variables is central to thermodynamics. Simply put, the state
variables of a certain model are the variables that need to be known in order to
determine all other properties of interest. In other words, if the state variables
of the system are known, the state of the system is uniquely defined and any
other quantity may be derived. The choice of state variables for any given case
is closely tied to the choice of thermodynamic model used. For example, given
a pressure-explicit EOS on the form p = p(T, V, n), it is natural to take the
variable set (T, V, n) as the state variables.

As briefly mentioned in Section 2.1, the canonical variables of any thermodynamic
state function are those natural to that function, as defined by the Legendre
transform outlined in Section 2.2. Thus, the canonical variables of Helmholtz
free energy are (T, V, n), while the canonical variables for Gibbs free energy are
(T, p, n). While using non-canonical thermodynamic functions is possible, it may
be argued that employing canonical variables for thermodynamic modelling
is beneficial (Siepmann, 2006). This way, a suitable Legendre transform may
provide an alternative thermodynamic potential of which the natural variables
may be better suited to describe the problem at hand. It is frequently desired
that the constrained or controlled variables of the problem correspond to the free
variables of the chosen potential, as discussed by Berglihn (2010). Thus, if the
problem is constrained in (T, p, n) – as is often the case in a laboratory setting –
employing the Gibbs free energy as the chosen state function is likely beneficial
with respect to problem structure.

It should be noted that there is a trade-off between exploiting the structure of
the problem and adhering to the natural variables of the thermodynamic model
describing the system in question. As an example, employing an internal energy
description, U(S, V, n), in the context of the model developed in Chapter 4 will
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structurally simplify the calculation of the Jacobian. The same is true in the
case of employing the slightly more exotic V(S, U, n), which would structurally
simplify matters further.

However, while there is no theoretical issue with using a canonical potential in
non-EOS coordinates by employing a suitable Legendre transform, in practice
it must be assessed whether the construction of the mapping Jacobians needed
and the extra code and functions it requires has a sufficient pay-off in terms
of simplifying the problem at hand. In other words, modelling directly in the
same thermodynamic coordinates as the thermodynamic model – frequently
dictated by the choice of EOS– has the benefit of avoiding such mappings to a
large extent unless a framework for automatic calculation of analytical Jacobians
is used – as done by Løvfall (2008) – the use of non-EOS coordinates may be
(pragmatically) prohibited by the needed calculations.

These difficulties are further illuminated by a brief discussion of thermodynamic
surfaces versus thermodynamic manifolds. Working directly in the state variables of
the chosen thermodynamic model – e.g. the ideal gas EOS– provides an explicit
thermodynamic surface, in this case A(T, V, N). Given a point on this surface,
any other thermodynamic property of interest may be derived. The same is not
true in the case when non-model state variables are employed. As an example,
the use of U(S, V, n) when the thermodynamic model for the system is given in
(T, V, n), the former potential forms an implicitly defined manifold.13 In order to
go from (S1, V1, n1)→ (S2, V2, n2), one must go via the Helmholtz free energy
surface, thus requiring an iteration on T2 until the value of U equals that of U2.
While this is certainly possible, it requires either a) iteration or b) a linearisation
(assuming that the manifold is sufficiently smooth in relation to the step size
of the linearisation) which in turn requires a Jacobian. Either of these requires
extra work from the perspective of the modeller, and while this may pay off in
terms of ease of model structure, such a pay-off is not necessarily guaranteed.

13 In mathematics, a manifold may be seen as a geometrical object with local Euclidean properties.
The simplest example is perhaps that of the surface of a sphere – the latter is a manifold, thus not an
Euclidean space. However, living on Earth we have no problems with assuming that the local surface
is indeed a surface in Euclidean R2 space. It should be noted that while the above description is not
in conflict with the distinction between explicit surfaces and implicit manifolds in a thermodynamic
context in the main text, the latter is more practically valuable here.
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(T, V, N)

are state
variables

Equations
of state

p(T, V, N)
µ(T, V, N)

Euler integration

A = −pV + ∑i µi Ni

Other state
functions

S = −AT
U = A− TAT

. . .

F igure 2 .1 : The relationship between state variables, equation of state and other state
functions

The reader is referred to (Berglihn, 2010) for a more in-depth discussion on this
topic.

2.5.1 A visual summary

The summary of the relationship between the concepts of EOS, state variables
and the corresponding thermodynamic potential, and other state functions and
thermodynamic properties is illustrated in Figure 2.1

Given the necessary equations of state and the current (values of the) state
variables, a corresponding thermodynamic potential may be calculated from
Euler integration, as outlined in Section 2.3. In the case of (T, V, N) coordinates -
as in the current model implementation using the ideal gas EOS- the Helmholtz
free energy is a suitable choice, given that (T, V, N) are the canonical variables
of the latter.

Now, knowing (the value of) the Helmholtz free energy makes the calculation
of any state function possible using a suitable Legendre transform, as described
in Section 2.2. As an example, the pressure may be re-calculated as AV , or the
enthalpy may be calculated from H = A− TAT −VAV

Herein lies the true elegance of equilibrium thermodynamics. The choice of
thermodynamic model implies a set of natural state variables, and thus a cor-
responding thermodynamic potential given that one is to work in canonical
variables. However, any desired property may be derived once the potential is known
for a given state.
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2.6 Entropy and its role in irreversible processes

Entropy has a central role in the study of irreversible processes. As discussed
in Section 2.4, the entropy attains a maximum value at the state of equilibrium.
Furthermore, the entropy production arising from irreversible processes is positive
for all non-equilibrium systems (Sandler, 1989). The role of entropy and the en-
tropy production in the context of the NET framework will be briefly discussed
in Chapter 3 – the purpose of the present chapter is to show how the entropy
balance may be used for ensuring model consistency when modelling irreversible
phenomena.

For the purpose of the current work, only a macroscopic entropy balance for a
lumped system14 is required. A more detailed microscopic entropy balance may
also be derived – the interested reader is referred to (Sandler, 1989, Chap. 3.6)
or (Kjelstrup et al., 2010).

The entropy balance may be formulated as

dS
dt

= Ŝin − Ŝout + ∑
j

Q̂j

T j
+ Ṡirr (2.33)

where Ŝ is the entropy transported into or out of the control volume across the

boundary due to mass flow, ∑i
Q̂j
T j

represents the entropy gain or loss of the

system due to heat flows and Ṡirr represents the internal entropy production of
the control volume due to irreversible processes – a source term analogous to that
of chemical reactions. Note that the sum of heat flows in eq. (2.33) above may be
seen as the total net heat flow into the control volume in question, assuming that
the flow is perpendicular to the area of heat transfer. If the latter assumption does
not hold, the sum in eq. (2.33) must be replaced by an integral. Note also that
Ŝin − Ŝout = ∑j N̂ j s̄j, where N̂ j is the jth mass flow to the system, transporting
the jth partial molar entropy, s̄j.15

14 In this context, a lumped system refers to a system that is uniform and homogeneous. Put
differently, the system is assumed to be well-mixed – no significant internal gradients are present.
While the state of the system may vary with time, it is assumed to be space invariant.

15 Note that the latter applies to multicomponent systems. For flows of pure components – e.g.
from a single-component reservoir, as further discussed in Chapter 4 – the molar entropy sj should
be used in place of the partial molar entropy s̄j
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It is important to realise that while the balance equations for mass, energy and
momentum – to be discussed in Chapter 4 – all arise as a result of conservation
laws16 of the same quantities. The entropy balance, on the other hand, is not
derived from a conservation law – the entropy is not a conserved quantity.

As discussed in Section 2.4, the entropy attains its maximum at the time-invariant
state that is thermodynamic equilibrium. This implies that the left-hand side of
eq. (2.33) – dS

dt – is zero. Also, there can be no fluxes across the system bound-
aries at equilibrium, thus eq. (2.33) implies that the entropy production must
vanish at the equilibrium state

(Ṡirr)eq = 0 (2.34)

For all non-equilibrium states, the entropy production must be positive accord-
ing to the second law of thermodynamics (Kjelstrup et al., 2010).

The entropy balance provides an additional balance – that is, in addition to the
mass, energy and momentum balances commonly applied in chemical engineer-
ing practice. Thus, it allows us to study, analyse and solve problems that may
not be solved by the three former balances alone. The entropy balance extends
our toolbox – sometimes, this extra tool is not particularly useful, but at other
times it is an absolute necessity in order to solve the problem at hand.

The entropy balance may be employed for consistency checking of irreversible
models in two important ways. First, as discussed by (Kondepudi, 2008), the
integration of the local entropy production at the steady-state must yield the flux of
entropy across the boundaries. In the context of the macroscopic, lumped entropy
balance of eq. (2.33), this is equal to the statement that

(Ṡirr)
ss = (Ŝin)

ss − (Ŝout)
ss + (∑

j

Q̂j

T j
)ss (2.35)

16 From the work of Emily Noether it is argued that such conservation laws are in turn a result of
underlying symmetries in the Universe we live in (Susskind and Hrabovsky, 2014; Bird et al., 2007).
In short, Noether’s theorem proves a deep link between the symmetries of a variational problem
and the conservation laws for the associated variational equations. A detailed discussion of the
consequences of Noether’s brilliant formulation – “one of the most amazing and useful theorems in
physics” (Hanc et al., 2004) – is far beyond the scope of this work. The interested reader is referred to
this paper, or the historical overview provided by (Schwarzbach and Kosmann-Schwarzbach, 2010) –
the latter containing English translations of Noether’s original work.
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where the ss superscript signifies the steady-state. From eq. (2.35), it is clear that
for any model treating irreversible phenomena at steady-state the internal entropy
production due to irreversible phenomena must equal the influx of entropy to the system
stemming from the processes that maintain the system at a steady-state. In other words,
eq. (2.35) may also be seen as two alternative routes for evaluation the entropy
production of a steady-state system – either by a detailed description of the
internal irreversible phenomena or by regarding the internals of the system as a
black box and only considering the flows of entropy into and out of the system.
The practical implications of the above for the current modelling will be treated
in Chapter 4.

Furthermore, it is shown by van der Ham (2011) that while eq. (2.35) provides
a powerful consistency check for the modelling, it may also be employed to
determine certain properties needed for calculation of irreversible phenomena
such as mass transport. In (van der Ham, 2011, Chap. 7), such an approach
is used to determine the ratio of the vapour and liquid film thickness, using
the assumption that the calculated entropy production must be equal using the
two approaches outlined above. This may be seen as an interesting strategy for
determining properties that are otherwise hard to measure.17

It should be pointed out that the above argument does not rely on any par-
ticular choice of transport model, as long as the internal entropy production
arising from the model may be evaluated. Thus, while the NET framework is
frequently employed in this context – assuming that the local entropy production
is calculated as a sum of force-flux products, integrated over the system volume
in question – the fundamental requirement for consistency given in eq. (2.35)
applies regardless of whether this framework is utilized or not. Frequently, em-
ploying the NET framework might be beneficial for calculating the local entropy
production – but it is not a necessary requirement.

Given that the entropy attains its maximum value at thermodynamic equilib-

17 It should be emphasised that in (van der Ham, 2011, Chap. 7), a binary nitrogen-oxygen
mixture was investigated. Whether or not the argument readily extends to multicomponent mixtures
is unclear – but the suspicion is that it will not. In a multicomponent system, it is not in general
possible to define a single film thickness ratio – and since the entropy production argument is related
to the overall transfer process, it is difficult to imagine that this alone would provide sufficient
information.
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S[J/K]

t[s]

Steady state

Equilibrium state

∆S

t0

F igure 2 .2 : The difference in entropy, ∆S, between a steady-state and a state of ther-
modynamic equilibrium. Note that ∆S is positive as defined in eq. (2.36)

rium, any non-equilibrium steady-state must necessarily have a lower value for
S, such that

∆S = (S)eq − (S)ss > 0 (2.36)

As defined in eq. (2.36), ∆S is a positive quantity that designates how far the
steady-state system is from that of equilibrium. This is illustrated in Figure 2.2,
where a transition from a steady-state to the state of thermodynamic equilibrium
is shown. This concept is further discussed below in terms of entropy production.
Imagine that a system is at first maintained at a non-equilibrium, time-invariant
steady-state – a state of entropy lower than that of equilibrium – by influx of
mass and heat from the surroundings. Such a system is said to be driven – if the
external constraints that maintain the non-equilibrium situation are removed,
the system will relax to the state of equilibrium given sufficient time. Thus, if the
system is suddenly isolated at t = t0, the internal irreversible processes ensure
that the system moves towards equilibrium – “all spontaneous flows in Nature
tend to dissipate the driving forces that cause them” (Sandler, 1989). This situation is
illustrated in Figure 2.3.

If the (time-variant) entropy production is integrated along the relaxation path
outlined in Figure 2.3, the difference in entropy between the steady-state and
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Ṡirr[J/K s]

t[s]

Steady state

Ṡirr = 0
Equilibrium state

t0

(Ṡirr)− = (Ṡirr)+

F igure 2 .3 : Illustration of the change in entropy production, Ṡ, for the transition from
a steady-state to a state of (thermodynamic) equilibrium. In is postu-
lated that the entropy production should be continuous at t0, i.e. in the
transition from a steady-state situation to a dynamic situation.

the equilibrium state (∆S) must be obtained (de Koeijer, 2002; Kjelstrup et al.,
2010). Stated differently,

∆S =
∫ t=∞

t=t0

Ṡirr dt (2.37)

The accumulated entropy production over the time interval necessary to reach
the state of thermodynamic equilibrium must equal ∆S. This provides an addi-
tional consistency check for the modelling of irreversible processes. Note that
integration to t = ∞ is practically unfeasible. Thus, it is assumed that the fol-
lowing holds approximately

∆S =
∫ t=∞

t=t0

Ṡirr dt ≈
∫ t�t0

t=t0

Ṡirr dt (2.38)

where the actual value of the upper integration limit, t� t0, must be chosen so
theentropy production is negligibly small with respect to the desired accuracy
of the consistency check.
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2.7 The differences and equalities of equilibrium and
non-equilibrium systems

The purpose of this section is to shed light on the similarities and differences
between equilibrium and non-equilibrium systems. Such an understanding is
deemed to be of great importance for the current work.

Classical thermodynamics is space invariant. In other words, the system is as-
sumed to be homogeneous and isotropic – no matter where you are or in which
direction you look, the properties of the system (e.g. T, V, µi) are the same. At
the state of equilibrium, a thermodynamic system is also time invariant – there
is no change in any of the system’s properties between the time t and t + ∆t.
As such, a thermodynamic system in equilibrium may be fully described in a
coordinate system that is fully separate from time and space. E.g. an isolated
container with pure H

2
O - assuming that the thermodynamic equilibrium is

reached, thus that the time passed is much greater than the relaxation time for
any relevant internal processes - the state of the system is uniquely specified
given only three variables18 , e.g. (T, p, NH2O).

In contrast, a non-equilibrium system is in general neither space nor time in-
variant. One or more of the properties of the system – e.g. the temperature T
– will vary in space. More precisely stated, there will be a continuous change
throughout space for one or more of the scalar fields describing the system state.
This notion is analogous to that of a local equilibrium invoked in the context
of NET, as further discussed in Chapter 3. Often, the anisotropy is negligible
for fluid phases – gas and liquids do seldom display directional variations in
the basic properties. In other words, long-range interactions are seldom of great
importance19 The same assumption may not necessarily be applied to the solid
state.

18 It follows from Gibbs’ phase law – see e.g. (Callen, 1985) – that any simple system, single-phase
system may be described by F = 2 + C variables, where C is the number of components in the
system

19 This may be justified due to the frequent interactions – e.g. in terms of collisions – of the
molecules composing the fluid. The inherit randomness of such interactions seldom allow directional
variations to arise, although exceptions - such as liquid crystals - exist (Atkins and de Paula, 2010)
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For an isolated system – a system with no interactions with the surroundings, i.e.
no transport of heat, mass or momentum across the boundary – the system will
proceed towards an equilibrium state. The rate of relaxation towards equilibrium
may vary, but for the case where t → ∞ the equilibrium state will always be
attained.

For a non-equilibrium system, the concept of a steady state occurs when the
system is time invariant due to the boundary conditions – the net flux of any
conserved quantity across the boundaries is zero.

As pointed out by e.g. (Denbigh, 1951), the concept of a time-invariant equilib-
rium state in classical thermodynamics and the treatment of reversible processes
is – in a sense – analogous to the time-invariant steady-state of non-equilibrium
thermodynamics and the treatment of irreversible phenomena such as mass and
heat transfer.



Chapter 3

Transport phenomena

The study of irreversible processes – rate processes such as mass and heat trans-
port or chemical kinetics – is a vast field. The common reality for the chemical
engineer – that of a non-isothermal, multi-component, reactive multi-phase sys-
tem – seems to be far from common and consistent description. As discussed by
(Bird, 2004), such systems are generally still considered to be “extremely difficult
problems”. This is not to diminish the science of transport phenomena – only to
emphasise that a full understanding of the reality of such phenomena is not yet
attained. In light of the inherent complexity of such systems, it may be doubted
that a full understanding is ever attainable.

The purpose of this chapter is to given an overview of the theory related to irre-
versible phenomena, with emphasis on the treatment of mass and heat transfer.
Chemical kinetics and momentum transport is beyond the scope of the current
work – as such, mechanical equilibrium is assumed and a non-reactive gas mixture
is modelled. These assumptions are further discussed in Chapter 4. The inter-
ested reader is directed to (Bird et al., 2007) for an introduction to the former,
and (Chorkendorff and Niemantsverdriet, 2007; Fogler, 2005) for an introductory
treatment of the latter. The common engineering approach will be contrasted
with that of irreversible thermodynamics, and a discussion of the respective
benefits and limitations follow. As a thermodynamically consistent treatment
of diffusive mass transfer seem to be more difficult to obtain than a thermo-
dynamically consistent treatment of diffusive heat transfer. While both will be
presented, the discussion of the different formulations of the driving forces for

31
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mass transfer will dominate.

It should be explicitly emphasised that the focus of the current chapter is diffusive
transport phenomena as opposed to bulk transport. The latter describe how mass
and energy are transported by a bulk flow - such a transport is called advection.
This term is often confused with convection – to be precise, the latter is the sum
of advection and diffusion (Bird et al., 2007).

3.1 Classical approach to mass and heat transfer: Fick’s and
Fourier’s laws

In this section, a brief presentation of the classical treatment of diffusive mass
and heat transfer – using Fick’s and Fourier’s laws, respectively – is given. In
the case of the former, it is – usually implicitly – assumed that the conditions
are isothermal. While this is not true in the current context, it is interesting to
observe what such a naive formulation yields in terms of tracing the constant
entropy production manifold. This will be further discussed in Section 3.3.

Following (Geankoplis, 2003), the classical formulation of Fick’s law for diffusive
mass transport in a binary system of A and B is

JA = −CDAB
dxA
dz

(3.1)

JA = −DAB
dCA
dz

(3.2)

where J is the diffusive component mass flux of A, and x is the mole fraction of A.
The latter formulation is the one most commonly used, where the concentration
gradient is assumed to act as the driving force for diffusive mass transfer. While
the transition from eq. (3.1) to eq. (3.2) is only strictly valid in the case of constant
total concentration C, this formulation is frequently employed as long as the
variation is relatively small (Geankoplis, 2003).

At this point, it should be noted that there is often more convenient to work
with the total diffusive component mass flux instead of the aforementioned diffusive
component mass flux used in eq. (3.1). The two variables are related through

N̂ = Achar J (3.3)
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where Achar is the characteristic contact area relevant for the diffusive mass
transfer. Assuming that the gradient in eq. (3.2) may be adequately treated as a
difference, and by introducing the characteristic diffusion length lchar, it follows
that

N̂ = −(Dtot)AB∆CA (3.4)

where (Dtot)AB = DAB
Achar
lchar

is the total diffusion coefficient. This is the form of
Fick’s law that is used in the context of the current model, as further discussed
in Chapter 4. At this point, it should be noted that for equimolar counterdiffu-
sion of an ideal gas, it may be shown that DAB = DBA – in other words, that
diffusivity coefficient for A diffusion into B is identical to that of B diffusing
into A (Geankoplis, 2003; Haug-Warberg, 2015b). This notion is also employed
in Chapter 4.

Similarly, the classical treatment of conductive1 heat transfer is that of using
Fourier’s law. The mathematical nature of this equation is similar to that of
eq. (3.2)

q = −k
dT
dz

(3.5)

where q is the heat flux. From eq. (3.5), it is evident that the driving force for
conductive heat transfer is that of the temperature gradient. By using a similar
approach as the one yielding eq. (3.4), one may obtain

Q̂ = Acharq (3.6)

Q̂ = −ktot∆T (3.7)

where (ktot = k Achar
lchar

and the temperature gradient is approximated by a temper-
ature difference as the driving force for heat transfer. The formulation of eq. (3.7)
is the one employed in Chapter 4.

3.2 Non-equilibrium thermodynamics

The purpose of this section is to give a brief overview of non-equilibrium ther-
modynamics, and its relation to the description and modelling of irreversible

1 As conductive heat transfer is by nature diffusive – as opposed to convective (bulk) heat
transfer or heat transfer by radiation – the terms are used interchangeably.
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phenomena. While this approach is not rigorously employed in the current work,
many notions and concepts from non-equilibrium thermodynamics (NET) are
of interest in the current context.

The NET framework is mainly concerned with coupled transport processes – sim-
ultaneous heat and mass transfer being one such example. In such cases, the
transport phenomena are in general not independent – that is, mass transfer will
induce heat flux and vice versa. While it is frequently argued that such cross-
effects are small in most practical applications, e.g. by Denbigh (1959), they are
known to exist – that is, they have been frequently verified experimentally for
many different systems since the notions of such couplings where first put forth
in the 1850s2. Scholars working within the field of NET– e.g. Kjelstrup et al.
(2010) – strongly argues that such coupling effects should in general not be ig-
nored. Thus, the NET framework seek to provide a consistent way of modelling
such phenomena – in the cases where such cross-couplings are of interest, they
are accounted for, and in the cases where such effects are small they will simply
be quantitatively insignificant without requiring any change in the framework it-
self. In contrast, the classical approach to mass and heat transfer in the chemical
engineering literature – e.g. (Geankoplis, 2003) – seldom mentions or accounts
for such coupling effects.

From a theoretical point of view, the effects of cross-coupling are restricted by
what is known as Curie’s principle3 One important consequence of this principle

2Lord Kelvin proposed relations describing thermoelectric effects – the coupling of simultaneous
heat fluxes and electric fluxes – in 1854 on the basis of experimental observations (Callen, 1985)

3 There is a fundamental restriction to the direct coupling of rate phenomena in isotropic systems:
namely that processes whose tensorial character differ by an odd integer may not couple (Glasser, 1965)
This is a consequence of the more fundamental restriction that the fluxes and thermodynamic forces of
different tensorial order do not couple in an isotropic system. The latter is a result of the spatial symmetry
properties of matter (de Groot and Mazur, 1984, Chap. VI). As explained by (Kjelstrup et al., 2010),
former of the above statements is true due to the fact that tensorial phenomena (e.g. the shear
pressure tensor in the momentum balance) may be decomposed into a scalar contribution (tensorial
order 0) and a tensorial contribution (tensorial order 2). As such, coupling between chemical reactions
and viscous phenomena is - in theory - possible. In practise, the most important consequence of the
above statements is that scalar phenomena (tensorial order 0, e.g. chemical reactions) do not directly
couple with vectorial phenomena (tensorial order 1, e.g. mass and heat transfer). Intuitively, this may
seem plausible: a chemical reaction - producing a scalar reaction field - does not directly alter the
vector field representing mass and heat transfer in an isotropic system. However, the driving forces
for the latter phenomena - e.g. the scalar field of T for the process of diffusive heat transfer - may
indeed by affected by chemical reactions of (due to the effect of heat of reaction). Thus, indirect
coupling is still possible.
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is that vectorial transport phenomena such as mass and heat transfer do not
directly couple with the scalar phenomena of (irreversible) chemical reactions. In
light of this, choosing to model a non-reactive mixture should not fundamentally
change the nature or structure of the problem. This valuable a valuable notion
in the context of Chapter 4.

3.2.1 Transport phenomena in non-equilibrium thermodynamics

In the context of NET, transport phenomena are generally described by the rela-
tions between fluxes and their response to the thermodynamic forces – sometimes
called affinities – that drive the process towards the equilibrium state (Callen,
1985). At equilibrium, the driving forces cease to exist – thus, the same is true
for the fluxes.

Following Denbigh (1959), a general procedure for treating irreversible processes
such as transport phenomena in the NET framework is presented. To simplify
the discussion, a discrete system is treated. It is assumed that the thermodynamic
driving forces satisfy the following relation for the production of entropy

dS
dt

= ∑ JiXi (3.8)

where Ji may be seen as the flux corresponding to the driving force Xi. Further-
more, it is assumed that the fluxes Ji may be expressed – to the desired accuracy
– as linear functions of the forces Xi such that

Ji =
n

∑
k=1

LikXk (3.9)

with n being the number of fluxes in the system of interest and Lik being the
phenomenological coefficients that relate the flux Ji to each of the driving forces
Xk. As may be seen from eq. (3.9), each flux is dependent on all driving forces
as long as Lik 6= 0. Note that if the cross-coupling coefficients are zero – or
if they may be neglected for the system in question without much error – the
framework reduces to that of no coupling between the irreversible processes.

An important result due to Onsager (1931a,b) – the Onsager reciprocal relations – is
given below. Onsagers pioneering discovery exploits the concept of microscopic
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reversibility, yielding the seemingly simple relation that

Lik = Lki (3.10)

In other words, the cross-coefficients must be equal – e.g. the phenomenological
constant that determines the (diffusive) mass flux due to a temperature gradient
(known as the thermal diffusion or Soret effect) must be equal to the one that
determines the heat flux due to a concentration gradient (known as the Dufour
effect). Thus, the Onsager relation determines an important symmetry of the
linear effects dictated by eq. (3.9).

As discussed by (Kondepudi, 2008, p. 330), the assumption of local equilibrium
is central to irreversible thermodynamics. The assumption is essentially that
the equilibrium thermodynamic relations are valid for small subvolumes. The
intensive variables are thus functions of both time and space

T = T(x, t) (3.11)

p = p(x, t) (3.12)

µ = µ(x, t) (3.13)

Furthermore, the relations of classical equilibrium thermodynamics – such as
eq. (2.5) – are assumed to hold locally. According to (Kondepudi and Prigogine,
1998), this notion of a local equilibrium holds for systems of characteristic length
of more than 1 µm.4

3.2.2 The driving force for heat transfer

Using the NET framework to treat the process of conductive heat transfer for
a discrete system, the driving force for this irreversible process is seen as ∆( 1

T )

rather than ∆T as in eq. (3.7). The purpose of this short outline is exemplify that

4 The concept of local equilibrium is closely tied to that of the Maxwellian velocity distribution.
It is argued by Kondepudi (2008) – on the basis of molecular dynamic simulations – that the
characteristic time scale for phenomena that significantly perturbs the Maxwellian distribution must
be ∼ 1× 10−8 s. Thus, only very fast processes – such as very fast chemical reactions – may ruin the
validity of the assumption of local equilibrium. The interested reader is referred to (Prigogine, 1949)
for the original paper arguing that the local equilibrium assumption is valid using the Chapman-
Enskog kinetic theory.
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these two formulations for the heat transfer driving force are identical – thus
introducing the notion that many of the seemingly different driving forces for
irreversible phenomena may be related upon closer inspection.

Following Kjelstrup et al. (2010), it may be shown that when the driving forces
for mass transfer are zero, the conductive heat transfer is given by

J
′
q = lqq∇(

1
T
) =⇒ J

′
q ≈ −lqq(

∆T
T2 ) (3.14)

where the gradient is approximated by the difference. Furthermore, the NET
notion of J

′
q must equal that of q – the conductive heat transfer predicted by the

NET approach must equal that of eq. (3.5) – so that

k = (
1

T2 )lqq (3.15)

In other words, the only distinction between the Fourier’s law and the equations
of NET is the proportionality constant used.5 As such, it is hard to argue that
one is better than the other – it seems that eq. (3.5) and eq. (3.14) differ only in
choice of k versus lqq.

3.3 Driving force formulations for mass transfer

The main purpose of this section is to outline and contrast some of the commonly
employed driving forces for diffusive mass transfer, in addition to postulating
some fundamental requirements for these driving forces that must apply also in
the non-isothermal case.

As stated in eq. (3.4), the diffusive mass transfer using Fick’s law is frequently
argued as being proportional to

JA ∝ ∆CA (3.16)

Note that the implicit assumption of constant total concentration is often not
explicitly stated. If one accounts for the latter, the following is obtained

JA ∝ ∆xA (3.17)
5 This is true for the limiting case of heat transfer only – i.e. no other irreversible phenomena

occurring simultaneously. If such coupling is introduced, the predictions of Fourier’s law and that of
the NET is likely to differ. However, the relation between the coefficients should remain the same.
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If one is to use a – seemingly – slightly more sophisticated approach, one might
argue that the difference in chemical potential should be employed as a driving
force for mass transfer

JA ∝ ∆µA (3.18)

This notion is attractive in the sense that it obeys classical thermodynamics
– µA,1 = µA,2 at equilibrium, thus the driving force disappears. The same is
in general not true for eq. (3.16) or eq. (3.17) – for non-ideal solutions, equal
component concentrations is not the equilibrium criterion.

In the non-isothermal case, one quicly realises that both using eq. (3.16) and
eq. (3.18) leads to the non-physical situation of which the predicted diffusive
mass transfer is a direct function of the temperature difference, J ∝ ∆T.6 As
argued by Atkins and de Paula (2010), from the microscopic view the diffusion
process is inherently one of statistical nature. Thus, particles tend to diffuse as
a result of non-uniform particle density in space – “Nature abhors a wrinkle”
– and any non-uniform distribution will tend to level out in the absence of
constraints. As such, it is postulated that the physically sensible driving force in
the non-isothermal case is that of eq. (3.17).

In addition to the aforementioned issue of temperature dependence, the chem-
ical potential is in general dependent on the choice of reference state. As this is an
arbitrary choice made by the modeller, it cannot fundamentally impact the dif-
fusive mass transfer occuring in Nature.

Lastly, it should be noted that the diffusive mass flux of a component A should
be proportional to the particle density of the same component – either explicitly
or implicitly in terms of the driving force. The argument is physically simple –
if there are no particles present to diffuse, no diffusion should occur.

As such, one must take care in order to avoid these issues. To counteract this,

6 The pure pragmatic might argue that based on a time-scale analysis, the irreversible heat
transport phenomena will in certain cases be sufficiently fast as to dampen out any temperature
gradients – thus yielding quasi-isothermal mass transport conditions. However, this does not seem
to be a general argument of sufficient validity, and one should take care if such arguments are
employed in the modelling process.
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one7 might propose that the mass transfer should be governed by

JA ∝ ∆

(
µA − µref

A
RT

)
(3.19)

This expression is analogous to the one governing rates in chemical kinetics. The
analogy is seen as a strong point in favour of eq. (3.19).

Another possible solution is to employ

JA ∝ ∆(CART) (3.20)

which reduces to that of
JA ∝ ∆pA (3.21)

in the case of the ideal gas, using that NART
V = pA. One should note that the

diffusion coefficient – often measured with a Fickian model approach – must be
adjusted in order to employ these formulations.

Lastly, it is shown by Haug-Warberg (2015a) that a thermodynamic driving force
that is consistent with the criterion discussed above yields

JA ∝ R (d ln(ai))T,p (3.22)

Here, ai is the activity of component i. The derivation is based on a backwards
reasoning, answering the question “What must the thermodynamic driving force
look like in order to give a predicted diffusive mass flux that is equal to that of
eq. (3.17) for the limiting case of an ideal gas?”. In this limiting case, the activity
of component i is xi, so that a difference form of eq. (3.22) reduces to

JA ∝ R ln
(

xi,2

xi,1

)
(3.23)

This notion is exploited in Section 6.5, where it is shown that the manifold
of constant entropy and the manifold of constant entropy production may be
related through the transformation of ellipses.

Some authors argue strongly that the only true treatment of transport phenom-
ena should be based on experiments. Thus, theoretically based frameworks such

7 This analogy to chemical kinetics was suggested by the author’s co-supervisor, dr.ing. Volker
Siepmann.
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as NET are often seen as having little practical value. As an example, Cussler
(2009) argue strongly against both NET and more elaborate theories for diffus-
ive mass transfer such as the Maxwell-Stefan (M-S) approach of Krishna and
Taylor (1993). Mass transfer is best viewed as a Fickian diffusion process, and
any other theories are seen as unnecessary complications.

While complicated mathematical theories may serve to obscure the underlying
physical principles, there is not necessarily any inherent conflict between seeking
fundamental principles and ending up with models for irreversible phenomena
that illuminate the underlying physical principles. While fit between theory and
experiment is not necessarily ensured, having a general framework that is based
on correct physical insight is greatly preferred to empirical correlations as black-
box models. As famously stated by John von Neumann: “With four parameters
I can fit an elephant, and with five I can make him wriggle his trunk.”8 A
sufficiently complex model with sufficiently many fitted parameters may always
describe the physical reality to a high degree of accuracy. The main question is
whether the same model will allow for predictions of hitherto unmeasured and
unfitted experiments. A sound framework based on the correct principles and
physical insight may – at the very least – provide a correct qualitative picture of
the phenomenon in question. Thus, such frameworks may be of greater value
to the engineer who is constantly asked to make predictions about problems
or experiments that have not yet been conducted, as opposed to relying on
black-box models with little or no rooting in physical principles.

8 Attributed to john von neumann by enrico fermi, as stated in Nature, 427, 297 (22

January 2004)



Chapter 4

Model development

Remember that all models are
wrong; the practical question is
how wrong do they have to be to
not be useful.

g . box and n . draper
1

The purpose of the present chapter is to describe the model system being studied,
with emphasis on its equation structure and underlying assumptions. Attention
is given to the difference between the case of the closed system being perturbed
from equilibrium and that of the open system being maintained at steady-state
through the use of external reservoirs. The former yields a constant entropy
manifold upon solution using the methods of Chapter 5, while the latter yields
a constant entropy production manifold upon solution with the same meth-
ods. The underlying aim is to use a relatively simple model to illuminate and
investigate the different driving force formulations for mass and heat transfer.

As stated in Chapter 1, it is not the ambition to use the models developed in
this chapter to realistically represent any real system of industrial or practical
interest. Rather, an idealised case is studied in order to shed light on the effects
of different transport formulations and the possible correlations of reversible
and irreversible phenomena. It is deemed that such relations are more apparent
when any non-essential complexities are stripped away. The main aim is to

1Chapter 3 in “Response Surfaces, Mixtures, and Ridge Analyses”, (Box and Draper, 2007)

41
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describe the principles at work, not the detailed behaviour. The idea is that
using simplified models without unnecessary complications will give maximum
insight for minimum effort.2

4.1 Model overview

The model to be investigated is illustrated in Figure 4.1. The system consists
of two connected compartments, each filled with a binary (two-component) gas
mixture.3 The gases are assumed to be governed by the ideal gas equation of
state (EOS)

p = p(T, V, n) =
NRT

V
(4.1)

where p is the pressure, T is the (absolute) temperature and V is the volume.
Furthermore, n is the mole vector while N is the total mole number. R is the
universal gas constant.

As discussed in Chapter 2, the use of Helmholtz free energy as the thermo-
dynamic potential to describe the system is natural when a pressure-explicit
EOS is given for a gas-system. As such, (T, V, n) are taken as the thermody-
namic state variables – such that A(T, V, n) is used to describe each individual
subsystem.4

For the closed system shown in Figure 4.1, the equilibrium state is that charac-
terised by equality in the intensive variables (T, p, µ), as discussed in Section 2.4.
Thus, a perturbation in one or more of these variables will – as the general rule –

2 The latter philosophy - “Maximum insight for the minimum effort” - is attributed to Associate
Professor Tore Haug-Warberg (Haug-Warberg, 2006b)

3 While the same two components are used in both compartments in each simulation, different
species are available in order to investigate the effect of e.g. differences in cp on the resulting mass
and heat transfer, and thus the resulting manifolds.

4 Since the ideal gas law given in eq. (4.1) may be equally stated on a volume explicit form,
V = V(T, p, n) = NRT

p , the Gibbs free energy formulation might seem equally justified. While this is
true for the limiting EOS that is the ideal gas law, most other EOS describing gas phase behaviour –
e.g. Redlich-Kwong (RK), Peng-Robinson (PR), Soave-Redlich-Kwong (SRK)– are given on pressure
explicit form. Thus, using a Helmholtz free energy model to describe the gas phase is – for the sake
of modularity, i.e. being able to alter the chosen EOS without modifying the structure of the model
– preferred.
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Q̂

N̂A

N̂BSystem 1

A1(T1, V1, n1)

System 2

A2(T2, V2, n2)

F igure 4 .1 : Illustration of the model system: a connected, two-compartment system
using an Helmholtz free energy model with the ideal gas law as EOS

result in a non-equilibrium system, giving rise to mass, momentum and energy
fluxes between the two subsystems until a new equilibrium is attained.5

4.1.1 Model assumptions

For the model implemented in this work, the assumption of mechanical equilib-
rium is invoked, such that p1 = p2 at all times.6 Such an argument is frequently
used in the chemical engineering literature – see e.g. (Krishnamurthy and Taylor,
1985a) – due to the fact that the explicit treatment of the momentum balance and
momentum transport inherently lead to a more complex mathematical treat-
ment due to the tensorial character of the latter phenomena. On the basis of
a time-scale analysis, it may be argued that since the pressure equilibration is
usually a fast process compared to those of thermal, chemical and diffusive
processes, mechanical equilibrium may be seen as instantaneous on the time-
scales of interest. This assumption is often taken as valid for normal engineering
applications – no substantial error is expected to be introduced as a result. A

5 This is true for a closed system: when t → ∞, a new equilibrium will be reached. For an open
system, the external influxes of mass, heat and momentum may keep the system at a time-invariant
steady state.

6 Note that this is not to say that the pressure is invariant with the state of the system or time,
only that any such variation must be equal in each subsystem. As shall be seen in Chapter 6, the pressure
does indeed vary as the manifold is traced out in both the constant entropy and constant entropy
production case – although not substantially.



44 Model development

rigorous discussion in support of this is given by de Groot and Mazur (1984,
Chap. 5, §2 ).

As such, the relationship p1 = p2 effectively substitutes the momentum balance –
thus, no explicit treatment of the momentum balance or (irreversible) momentum
transfer is permitted.7 However, the connection between the two compartments
permit a redistribution of both mass and energy. The resulting simultaneous
mass and heat transfer is the main focus of the current work.

Each of the subsystem in Figure 4.1 are assumed to be lumped and well-mixed –
that is, each subsystem is homogeneous, with no spatial variation in the state
variables. The connection between the two subsystems is not modelled as a sep-
arate volume – it has no capacity. As such, the nature of the connection between
the two subsystem is discrete – thus, any gradients are approximated by the cor-
responding differences. In the general case, a non-equilibrium system is both time
and space invariant, and should be modelled as a continuous system. However,
such a model will in general result in a mathematical treatment involving partial
differential equations (PDEs). Avoiding such complexity is the main rationale
behind the choice of the system as lumped.

A further assumption is made regarding the direct coupling of mass and heat
transport phenomena – namely that such couplings are assumed to be small, and
thus negligible. There is certainly an indirect coupling in the sense that a diffusive
mass flux will result in a net transport of energy between the compartments, but
the Soret effect (thermal diffusion) and Dufour effect are not accounted for. While
these effects may be substantial in certain situations, they are generally assumed
to be small in most practical situations (Bird et al., 2007; Denbigh, 1959).

In addition, reacting mixtures are not treated – neither equilibrium reactions nor
rate-limited reactions governed by chemical kinetics are studies in the proposed
models. The reason for making this restriction is straightforward: while such
reactive systems would definitively be of great interest, it makes for a more
complicated model system that is beyond the scope of the current work. From a

7 While a fully general non-equilibrium model should take the momentum balance and the
momentum transfer into explicit consideration, the resulting model will drastically more complex to
solve and investigate. For the purpose of the current work, this assumption is deemed an appropriate
simplification in order to make the study of mass and heat transfer more accessible.
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theoretical point of view, the Curie principle briefly outlined in Section 3.2 asserts
that chemical reaction – being scalar phenomena – would in any case not directly
couple to the vectorial phenomena of mass and heat transfer. As such, excluding the
explicit treatment of chemical reactions should not substantially affect the nature
of the irreversible phenomena studied.8

4.1.2 Modelling the components

The gas phase components implemented, along with the key parameters for
the thermodynamic modelling of these, are shown in Table 4.1. Note that the
components are labelled as polyatomic, diatomic and monoatomic, respectively.
This is done in order to emphasise that focus is on the characteristic behaviour of
the components of a certain class (e.g. diatomic) rather than specific behaviour
of e.g. N

2
.

Table 4 .1 : Key thermodynamic parameters of the gas phase components. The values
of ∆ f h◦ and s◦ are taken from (Linstrom and Mallard, n.d.)

Component cp ∆ f h◦ s◦

J K−1 mol−1 J mol−1 J K−1 mol−1

Polyatomic (SF
6
) 23

2 R −1220.47 291.52

Diatomic (N
2
) 7

2 R 0.00 191.61

Monoatomic (Ar) 5
2 R 0.00 154.84

As shown in eq. (2.24), the Helmholtz free energy may be calculated given that
p = p(T, V, n) and µ = µ(T, V, n) are known. The former is found directly from
eq. (4.1) in the case of an ideal gas – the latter may be found from

µig(T, V, n) = hig − Tsig (4.2)

8 In this context, it should be explicitly repeated that while no direct coupling between the scalar
phenomena of chemical reactions and the vectorial phenomena of mass and heat transfer may occur,
indirect coupling is still possible. Indeed, any reaction will in general affect both the composition and
temperature of the reacting mixture, thus influencing the driving force of mass and heat transfer –
to a smaller or larger extent, depending on the rate of reaction and heat of reaction, among other
factors.
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where sig is the ideal gas molar entropy vector and hig is the ideal gas molar
enthalpy vector

hig(T) = ∆ f hig(Tref) +
∫ T

Tref

cp(τ)dτ (4.3)

where cp is the molar heat capacity as defined in the second column of Table 4.1,
and ∆ f hig is the standard molar enthalpy of formation found in the third column
of the same table.

The former, sig, is found as

sig(T, V, n) = sig(Tref, pref) +
∫ T

Tref

cp(τ)

τ
dτ − R ln

(
nRT
Vpref

)
(4.4)

where sig(Tref, pref) is the reference entropy found in the fourth column of
Table 4.1.

Using the above definitions, the Euler integrated form of the Helmholtz free
energy for an ideal gas is found as

Aig(T, V, n) = −pigV + n>µig

= −NRT + n>(hig − Tsig) (4.5)

All other ideal gas properties of interest may be found from eq. (4.5) and its
derivatives. This expression is the core of the thermodynamic model object
implemented in python.

The ideal gas heat capacities for the components given in Table 4.1 are taken
to be multiples of R. Following (Saad, 1997), the specific molar heat capacity at
constant volume of an ideal gas may be found from

cV =
1
2

f R (4.6)

where f is the fully developed degrees of freedom of the molecules that con-
stitute the gas.9 Thus, using the fact that cp = cV + R, the specific molar heat

9 This is a result of the equipartition theorem, or principle for the partition of energy, which states that
each degree of freedom will contribute 1

2 kBT to the total energy (Dill and Bromberg, 2010). Here, kB
is Boltzmann’s constant and T is (absolute) temperature. For macroscopic systems, using R = kB NA
is frequently more convenient, and eq. (4.6) follows
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capacity of an ideal gas at constant pressure may be found as

cp =

(
1 +

1
2

f
)

R (4.7)

For monoatomic gases, only the translational degrees of freedom contribute
to the heat capacity. Thus, f = 3, and cp = 5

2 R. This compares favourably to
the empirical evidence for monoatomic gases such as helium or argon at room
temperature. Furthermore, in diatomic gases, two additional rotational degrees
of freedom contribute to the heat capacity. As such, f = 5, and cp = 7

2 R.

In the case of more complicated, polyatomic molecules such as SF
6
, it is harder

to predict the exact heat capacity following the above argument without detailed
knowledge of its symmetry and consequent vibrational modes. Thus, the heat
capacity is chosen to correspond well with that from (Aylward and Findlay,
2008) – while being kept a multiple of R.

For the purpose of this work, using the ideal gas heat capacities described above
is deemed sufficiently accurate. The main objective is to investigate the irrevers-
ible phenomena of heat and mass transfer – an accurate thermodynamic descrip-
tion is not the goal. For more accurate values of the ideal gas heat capacity, the
Shomate equation employed by NIST Chemistry Webbook (Linstrom and Mal-
lard, n.d.) or the Aly-Lee equation described in e.g. (Gmehling et al., 2012) may
be employed. In general, the central philosophy of the way the thermodynamic
model is implemented – due to Associate Professor Tore Haug-Warberg – is that
the model itself may be substituted without changing the structure of the rest of the
code.

4.2 Closed system: constant entropy manifold

In this section, the case of a closed system perturbed from its equilibrium state
will be outlined. This is illustrated in Figure 4.2 The aim is to formulate the
constraint equations such that a constant entropy manifold may be allowing mass
and energy to be redistributed between the subsystems. Note that no transport
equations or irreversible terms are introduced – in this case, the system is purely
thermodynamic, only being perturbed from its initial state of equilibrium. Put
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Q̂

N̂A

N̂B

System 1 System 2

F igure 4 .2 : Illustration of the closed, two-compartment system used to investigate
the entropy contour.

differently, the manifold of constant entropy that is defined is that of the system’s
state at t = t0, before any irreversible transport phenomena take the system back
towards the equilibrium state.

Assuming that the system is both isolated and closed – i.e. that there is no
flow of mass or energy across the system boundaries – the macroscopic balance
equation for mass and energy may be written as

U1 + U2 = Utot (4.8)

NA,1 + NA,2 = NA,tot (4.9)

NB,1 + NB,2 = NB,tot (4.10)

stating that the sum of component mass and internal energy remains the same
for the aggregate system, no matter how mass and energy is redistributed
between the two subsystems.

Furthermore, the volumes of the two subsystems are kept constant – the subsys-
tems may be seen as rigid containers. Thus,

V1 = V0
1 (4.11)

V2 = V0
2 (4.12)

where V0
1 and V0

2 are the initial (and constant) volumes of subsystem 1 and 2,
respectively. Thus, any change in volume is not possible.
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Next, the assumption of mechanical equilibrium discussed in Section 4.1 imposes
an additional constraint on the system

p1 − p2 = 0 (4.13)

where the equation is formulated implicitly in order to match the structure of
the rest of the constraints.

Lastly, the solution of interest is one of constant entropy – the aim is to trace
out a constant entropy manifold by varying the distribution of mass and energy
between the subsystems. Stated differently, the aim is to describe a curve that
is perturbed from equilibrium with a constant deviation in entropy, ∆S = const.
Thus, the following constraint applies

S1 + S2 = Sinit (4.14)

stating that the total entropy of the subsystems is constant along the manifold
to be traced, and equal to the initial total entropy of the perturbed composite
system, Sinit.

In other words, the projection of the manifold in the Cartesian R2 plane of mass
and energy deviation should depict a contour curve around the origin, with the
origin being the equilibrium state of the compound system.

With the scaled10 deviation of temperature and (component) chemical potential
between the subsystems as the (x, y) coordinates, a contour such as the one
depicted in Figure 4.3 is expected. Some elliptic contour enclosing the origin
is predicted – the eccentricity of the ellipse depending on the relative contribu-
tions of mass and energy redistribution on the resulting entropy deviation from
equilibrium, ∆S.

As discussed in Chapter 2, the state of equilibrium is characterised by a max-
imum in the total entropy given the constraints. Thus, any non-equilibrium

10 The deviation in the chemical potential of component i, ∆µi , and the deviation in temperature,
∆T, is scaled by the equilibrium values µi,eq and Teq, respectively. The reason for such a scaling is
to avoid the fact that different units of measure for the two quantities could distort the physical
insight arising from the produced curves – i.e. that expected deviations in temperature and chemical
potential in absolute terms is expected to be of different orders of magnitude if the appropriate
scaling is not used.
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∆µi
µi,eq

∆T
TeqSeq

Sinit < Seq

F igure 4 .3 : Illustration of the general form of the expected entropy contour for the
closed, two-compartment system

state must by necessity of this criterion have a lower total entropy, as shown in
Figure 4.3.

In summary, eqs. (4.8) to (4.14) yield 7 equations constraining the system. With 8

state variables being independent – (T1, V1, NA,1, NB,1) and (T2, V2, NA,2, NB,2)

– there is a single degree of freedom (DOF) left. Thus, a manifold of constant
entropy may be traced out using the methods outlined in Chapter 5.

4.3 Open system: constant entropy production manifold

In order to investigate the time-invariant steady-state, an open system is mod-
elled by adding thermal and component reservoirs to the closed system in Fig-
ure 4.2. The four reservoirs for mass influx are modelled as single-component
thermodynamic systems, while an explicit model for the two thermal reservoirs
is not needed. These reservoirs ensure that the new open system – both subsys-
tem 1 and subsystem 2 – are maintained at a steady-state by continuous supply
of heat and mass. This new, extended system is illustrated in Figure 4.4.
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Q̂

N̂A

N̂B
Q̂1 Q̂2

System 1 System 2

Reservoir 1B

N̂B1

Reservoir 1A

N̂A1

Reservoir 2B

N̂B2

Reservoir 2A

N̂A2

F igure 4 .4 : Illustration of the open, two-compartment system with reservoirs used to
investigate the constant entropy production contour.

The purpose of the extended model is to investigate the constant entropy pro-
duction manifold that arise from the constraint equations – analogous to the
constant entropy manifold depicted in Figure 4.3. The idea is that, if these two
manifolds are correlated, it may provide interesting insight into the nature of
irreversible phenomena and how they should be described in a modelling con-
text.

In order to describe the steady-state situation, new constraint equations and
new state variables are introduced. It should be noted that not all these variables
are true thermodynamic state variables – rather, some are variables tied to the
irreversible transport problem itself. Both the constraint equations and variables
will be further discussed after the additional assumptions necessary to describe
the open system are listed in Subsection 4.3.1.

4.3.1 Additional assumptions

Compared with the closed system described in Section 4.2, a few additional as-
sumptions are needed for the modelling of the open system shown in Figure 4.4.
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First, the connection between subsystem 1 and subsystem 2 is assumed to be
maintained at a steady-state in the same way as the rest of the system. Fur-
thermore, this connection is assumed to have zero capacity – it is not explicitly
modelled using a thermodynamic model such as for the subsystems or reser-
voirs.

Second, the component reservoirs are assumed to be in thermal and chemical
equilibrium with the respective subsystem at all times. While this may seem like
an unrealistic assumption, the reservoirs should be seen as controlled variables –
in an actual experiment, the properties of these reservoirs would be adjusted to
maintain the steady-state.

Third, it is assumed that all the internal entropy production happens at the
connection between the two systems. This corresponds to the assumption of a
well-mixed, lumped volume that must be seen as a quasi-equilibrium system –
the model is created in such a way that the ratio of transported mass and heat to
that of the mass and energy capacities of the two subsystems is small. As such,
assuming that each subsystem is in quasi-equilibrium is justified.

Fourth, since equilibrium is assumed between the subsystems and the compon-
ent reservoirs, no entropy is produced by the process of mass transport from
the reservoir to the subsystem. While entropy is certainly transported across the
subsystem boundary, no entropy production is taking place during this process.
Such a situation might be practically realised e.g. through the use of a suitable
membrane.

4.3.2 Open system: mass balance

In order to investigate the extended, open system depicted in Figure 4.4, the
steady-state mass balance equations are needed. These are given below. For a
more thorough derivation of these equations based on the microscopic equations
of change, see (Bird, 1957; Bird et al., 2007).
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Mass balance, system 1 (component A)

dNA1

dt
= (N̂A1)

rsvr − N̂A

0 = (N̂A1)
rsvr − N̂A (4.15)

Mass balance, system 1 (component B)

dNB1

dt
= (N̂B1)

rsvr − N̂B

0 = (N̂B1)
rsvr − N̂B (4.16)

Mass balance, system 2 (component A)

dNA2

dt
= −(N̂A2)

rsvr + N̂A

0 = −(N̂A2)
rsvr + N̂A (4.17)

Mass balance, system 2 (component B)

dNB2

dt
= −(N̂B2)

rsvr + N̂B

0 = −(N̂B2)
rsvr + N̂B (4.18)

where (N̂ij)
rsvr is the total component mass flux of i between subsystem j and the

corresponding reservoir, and N̂i is the total component mass flux of i between
the two subsystems due to diffusion. Furthermore, N̂i is taken as positive if there
is a net flow of component i from subsystem 1 to subsystem 2. Note that the
steady-state mass balances of eqs. (4.15) to (4.18) in effect dictates that the flow
of mass from the reservoirs is equivalent to the internal mass transfer between
subsystem 1 and subsystem 2 – in other words, the reservoirs act to maintain
the steady-state condition of the subsystems in terms of mole numbers of each
individual component.

4.3.3 Open system: energy balance

Due to the non-isothermal nature of the problem, the energy balances prove to
be slightly more complicated than the mass balances of Subsection 4.3.2. While
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no separate mass balance was needed for the zero-capacity connection between
subsystem 1 and 2, an explicit steady-state energy balance for this connection
must be given in order to account for the difference in partial molar enthalpy of the
mass flows.11 This idea will be further elaborated.

The steady-state macroscopic energy balances given below may – analogous to
the mass balances in Subsection 4.3.2 – be derivation based on the microscopic
equations of change. The interested reader is again referred to (Bird, 1957; Bird
et al., 2007).

Energy balance, system 1:

dU1

dt
= Q̂1 − Q̂− Q̂† + N̂A1(hA1)

rsvr + N̂B1(hB1)
rsvr − N̂A h̄A1 − N̂B h̄B1 (4.19)

0 = Q̂1 − Q̂− Q̂† + N̂A1(hA1)
rsvr + N̂B1(hB1)

rsvr − N̂A h̄A1 − N̂B h̄B1 (4.20)

Energy balance, system 2:

dU2

dt
= −Q̂2 + Q̂− N̂A2(hA2)

rsvr − N̂B2(hB2)
rsvr + N̂A h̄A2 + N̂B h̄B2 (4.21)

0 = −Q̂2 + Q̂− N̂A2(hA2)
rsvr − N̂B2(hB2)

rsvr + N̂A h̄A2 + N̂B h̄B2 (4.22)

Energy balance, connection:

dUcon

dt
= Q̂− Q̂ + Q̂† + N̂A h̄A2 − N̂A h̄A1 + N̂B h̄B2 − N̂B h̄B2 (4.23)

0 = Q̂† + N̂A(h̄A2 − h̄A1) + N̂B(h̄B2 − h̄B2) (4.24)

In the eqs. (4.20) to (4.24), Q̂j is the total heat flux from the thermal reservoir to
system j, Q̂ signifies the diffusive heat transport between subsystem 1 and 2 and

11 This issue arises due to the simplification of viewing the transition from subsystem 1 to
subsystem 2 as a discrete change. Imagine a molecule leaving subsystem 1 with temperature T1 and
entering subsystem 2 with a temperature T2 > T1, so that T2− T1 = ∆T. A certain amount of energy
is needed for the molecule to attain this new state of higher temperature, and that energy must be taken
from somewhere. In order to ensure that the connection between the subsystems is indeed maintained
at steady-state, this energy requirement must be taken into explicit account. In a continuous system,
such a situation would not arise – a scalar temperature field T(t, x) exists everywhere between
subsystem 1 and subsystem 2. Rather, the situation is analogous to that of vaporisation from liquid
to gas – this is usually viewed as a discrete change of state where an amount of energy equal to
∆vaph must be supplied in order for the process to occur.
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Q̂† is discrete heat of transfer to be further explained below.12 The total mass
flux notation is the same as the one employed in Subsection 4.3.2 – the same
is true for the definition of positive flow direction, which also applies to the
heat transfer. Furthermore, (hi,j)

rsvr is the molar enthalpy of reservoir j, while
h̄i,j is the partial molar enthalpy of component i in subsystem j. These two latter
quantities account for the transport of energy that arises due to the diffusive
mass transfer.

From eq. (4.24), Q̂† may be seen as the amount of heat that must be added
to the channel connecting the two subsystems in order to compensate for the
change in partial molar enthalpy for the components between subsystem 1 and
subsystem 2 . In a sense, this is the amount of heat that must be added to ensure
that the molecules that flow through the channel are maintained at the channel
temperature at each point in space.

The introduction of Q̂† is analogous to the non-equilibrium thermodynamics
(NET) notion of a difference between an energy flux and a measurable heat flux
(Kjelstrup et al., 2010, Chap. 3)

Jq = J
′
q +

n

∑
j=i

Hj Jj (4.25)

where Jq is the total energy flux, J
′
q is the measurable heat flux and the sum

signifies the partial molar enthalpies Hj carried by the diffusive component
fluxes Jj. Note that the notation of (Kjelstrup et al., 2010) is used in eq. (4.25).

Using the notation from eq. (4.24), it seems that

Jq − J
′
q = +

n

∑
j=i

Hj Jj =⇒ Q̂† = Jq − J
′
q (4.26)

Thus, Q̂† may be seen as a difference between the total energy flow and the
actual measurable heat flow. Analogous to the argument made by (Kjelstrup

12 It is important to explicitly note that Q̂† is not the same as the concept of heat of transfer – often
denoted as Q∗ – as discussed by extensively by (Denbigh, 1951; Lewis and Randall, 1961). The latter
concept seems firmly tied to coupled irreversible phenomena, such as the Soret effect or thermal
effusion. While the author was at one point puzzled by the seemingly similar nature of Q̂† and Q∗ –
and while the latter concept is interesting in its own right – it is concluded that the heat of transfer
has no direct implication for the current work. As such, no further discussion is provided – the
interested reader is referred to the above books, both which are excellent.
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et al., 2010) regarding the role of Jq − J
′
q in a steady-state process, Q̂† may be

seen as the difference between the amount of heat Q̂1 entering subsystem 1

and the amount of heat Q̂2 exiting subsystem 2 in order to maintain the system at
steady-state conditions.

It should be noted that the Q̂† only appears in eq. (4.20), not in eq. (4.22). As such,
only subsystem 1 is directly affected by Q̂†, which introduced an asymmetry into
the equations. While this is not expected to have a large impact on the resulting
constant entropy production manifold, the full implications of this assumption
is not understood.

Here, the analogy to that of a phase change should by noted.13 Imagine a bucket
filled with water (H

2
O), where the latter is allowed to evaporate. This is – by

nature – an endothermic process, so that heat must be supplied from somewhere.
In other words, either the liquid phase of H

2
O in the bucket, the gas/vapour

phase of H
2
O and air or both the liquid and the gas/vapour phase must be cooled by

the process. The fact that thermal equilibrium between the two phases will be
rapidly instilled in reality does not subtract from the fact that when modelling
– or observing – such a system, one has to make an assumption as to where
the necessary thermal energy for the evaporation comes from. In reality, one might
argue that the rapid dynamic equilibrium between local evaporation and re-
condensation will ensure that no single phase is the source of the necessary
thermal energy. When modelling discrete systems, such an assumption is not
possible. While the above will introduce a certain asymmetry in the system,

4.3.4 Open system: additional constraints

The constraints on subsystem volume, total internal energy and total component
mole numbers – as stated by eqs. (4.8) to (4.12) in Section 4.2 – also apply to
the open system. The same is true for the criterion of mechanical equilibrium of
eq. (4.13).

Constant entropy production:
In place of the constrain on entropy, eq. (4.14), a constraint on the entropy

13 Due credit is given to dr.ing. Volker Siepmann form pointing out this analogy, which helps
put the rather abstract notion of Q̂† into a more understandable perspective.
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production is given for the open system at steady-state

Ṡirr = (Ṡirr)init (4.27)

=⇒ 0 = − Q̂1

T1
+

Q̂2

T2
− N̂A1(sA1)

rsvr + N̂A2(sA2)
rsvr

− N̂B1(sB1)
rsvr + N̂B2(sB2)

rsvr − (Ṡirr)init (4.28)

where the notation from Subsection 4.3.2 and Subsection 4.3.3 is employed,
both in terms of symbols and positive flow direction. Furthermore, (si,j)

rsvr is
the molar entropy of component A in the pure-component reservoir connected
to subsystem j. In eq. (4.27), the steady-state entropy production is calculated
from the reservoir flows alone – thus no explicit reference is made to the internal
irreversible phenomenon of mass and heat transfer. As pointed out in Section 2.6, s̄
may alternatively be calculated directly from looking at the internal irreversible
processes. The implications of this are further discussed in Subsection 4.3.5.

Transport equations:
In order to separate the problem structure from the model implementation, the equa-
tions governing the diffusive heat and component mass transfer are taken as
implicit constraints – rather than being taken as explicit terms in the mass, en-
ergy and entropy production equations. This simplifies the implementation of
different transport equations, which is exploited in the python implementa-
tion.

Note that all the transport equations are necessarily implemented on a difference
form, due to the discrete nature of the model. The equations utilized are listed
below:

• Heat transfer:

– Fourier’s law, given in eq. (3.7)

• Mass transfer:

– Fick’s law, given in eq. (3.4)

– ∆µi

– ∆(CiRT)
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The reader is referred to Chapter 3 for a more thorough review of the virtues and
deficiencies of the different formulations. Note that the transport laws implemen-
ted are not claimed to be physically correct – e.g. Fick’s law for a non-isothermal
case leads to a strong, non-physical coupling between the diffusive mass transfer
and the temperature, as discussed in Chapter 3. Rather, the implications of the
different formulations on the resulting constant entropy production manifold is
the desired outcome.

In order to evaluate the total diffusive fluxes of component mass and heat,
characteristic values for the constant area and diffusion length are introduces.
As discussed in Chapter 3, Achar is a characteristic contact area and lchar is a
characteristic diffusion distance. The values of these quantities are chosen so
that the resulting Dtot produces a characteristic relaxation time of the diffusive
mass transfer that is deemed physically sensible. A similar approach is taken
with the heat transfer coefficient.

In addition, a simplifying assumption is made regarding the relationship between
D and k, namely that the magnitude of the latter is ≈ 1× 103 times that of the
former in SI units. A summary of these assumptions is given in Table 4.2.

Table 4 .2 : Transport coefficients used in the model implementation

Transport property Value

k 0.025 W K−1 m−1

D 2.5× 10−5 m2 s−1

Achar 0.02 m2

lchar 1× 10−3 m

Using the total heat transfer coefficient and total diffusion coefficient in the mass
and heat transport calculations allows the diffusive flows of component mass
and heat to be calculated.

Thermal and chemical equilibrium with pure-component reservoirs:
As stated in Subsection 4.3.1, the pure-component reservoirs depicted in Fig-
ure 4.4 are assumed to be in chemical and thermal equilibrium with the respect-
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ive subsystems. Additionally, a unit reservoir volume is considered – thus, a
constraint on the reservoir volume results.

As such, the following equations must be fulfilled for each of the four reservoirs

T j − (Ti,j)
rsvr = 0 (4.29)

(Vi,j)
rsvr − (V0

i,j)
rsvr = 0 (4.30)

µi,j − (µi,j)
rsvr = 0 (4.31)

Thus, an additional 12 constraints for the open system are added. All in all, this
makes 29 constraint equations in total – yielding a single degree of freedom
for the 30 state variables14 shown in Table 4.3. Note that the latter show the
state variables collected in natural groups – thinking in terms of such groups
simplify the python implementation of the model. A complementary overview
of the constraint equations and variables may be found in the discussion of the
Jacobian structure – see Appendix C.2.

Table 4 .3 : An overview of the state variables of the open system

Group Variables

System 1 T1, V1, NA,1, NB,1: (4)

System 2 T2, V2, NA,2, NB,2: (4)

Reservoir 1A (TA,1)
rsvr, (VA,1)

rsvr, (NA,1)
rsvr: (3)

Reservoir 2A (TA,2)
rsvr, (VA,2)

rsvr, (NA,2)
rsvr: (3)

Reservoir 1B (TB,1)
rsvr, (VB,1)

rsvr, (NB,1)
rsvr: (3)

Reservoir 2B (TB,2)
rsvr, (VB,2)

rsvr, (NB,2)
rsvr: (3)

Heat transport Q̂, Q̂1, Q̂2, Q̂†: (4)

Mass transport N̂A, N̂A,1, N̂A,2,N̂B, N̂B,1, N̂B,2: (6)

Total: 30

14 It is once again emphasised that the use of the term state variable here is not restricted to that of
true thermodynamic state variables – also the transport variables are accounted for. This is evident
from Table 4.3. The majority of the latter variables may be seen as controlled – the modelling may
be seen as a computer version of a lab experiment where these variables are adjusted in order to
maintain a steady-state.
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Q̂

N̂A

N̂B
Q̂1 Q̂2

System 1 System 2

Reservoir 1B

N̂B1

Reservoir 1A

N̂A1

Reservoir 2B

N̂B2

Reservoir 2A

N̂A2

F igure 4 .5 : Illustration of the external entropy flows arising from the mass and heat
transfer between the subsystems and the respective reservoirs. No ac-
count is made of the internal workings of the system – it is seen as a
black-box in the context of the entropy balance,

4.3.5 Two roads to Ṡirr: a powerful consistency check

As previously stated, the subsystems themselves are assumed to be well-mixed –
the entropy production in these are negligible compared to that of the connecting
bridge where the irreversible transport processes occur. The states of subsystem
1 and 2 pass through a succession of equilibrium states – this is a quasi-static
process (Sandler, 1989, p. 87).

In Figure 4.5, the emphasis is on the flows of mass and heat from the reservoirs
to the system. These flows result in entropy transport between the reservoirs
and the system, and may be calculated as a sum of contributions from the mass
and heat fluxes, as shown in eq. (4.27). Here, the resulting entropy production –
Ṡirr – is calculated without assuming anything about the inner workings of the
systems or the transport laws. This may be viewed as a black-box entropy balance;
simply accounting for all fluxes of heat and mass into the system is sufficient.

On the other hand, if the inner workings of the system are known, the entropy
production from the irreversible phenomena occurring may be calculated. In
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this case, only the system is studied – the transport between subsystem 1 to
subsystem 2 is the only relevant piece of information. This is illustrated in Fig-
ure 4.6. None of the flows between the system and the reservoirs are considered
– as long as the state of the compartments are known, and thus that the mass
and heat transfer between them can be calculated, there is no need to know the
fluxes to and from the system.

Exploiting an approach proposed by Siepmann (2015), the time derivative of
total differential of the internal energy for one of the subsystems is found from
eq. (2.1)

dU j

dt
= T j

dSj

dt
+ µ>j

dnj

dt
(4.32)

This is combined with the energy balance for the same subsystem

dU j

dt
= h̄>j

dnj

dt
+ Q̂ (4.33)

Combining eq. (4.32) and eq. (4.33), and using that (h̄j − µj) = s̄j, the following
is obtained

T j
dSj

dt
= Q̂ + T j s̄>j

dnj

dt
(4.34)

dSj

dt
=

Q̂
T j

+ s̄>j
dnj

dt
(4.35)

where eq. (4.35) is obtained by dividing through with T j in eq. (4.34). It may
be argued that the final result in eq. (4.35) make intuitive sense – the change
of entropy in a subsystem that is not connected to any external flows may be
calculated from the (net) internal entropy flow due to diffusive heat transport
and the (net) internal entropy flow as transported by mass diffusion. Note that
Q̂ and

dnj
dt must be calculated from the chosen transport equations as the total

heat flux and total mass flux, respectively.

The main point is that these two approaches describe the same entropy production.
Thus, the two approaches must result in the same value for the entropy produc-
tion. This may serve as a consistency check for the modelling, as discussed in
Section 2.6.
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Q̂

N̂A

N̂B
Q̂1 Q̂2

System 1 System 2

Reservoir 1B

N̂B1

Reservoir 1A

N̂A1

Reservoir 2B

N̂B2

Reservoir 2A

N̂A2

F igure 4 .6 : Illustration of the internal entropy production that is a result of the irre-
versible processes – mass and heat transfer – occurring within the system.
There is no need to account for the fact that there may or may not be
external flows between the system and the reservoirs.



Chapter 5

Numerical methods for manifold tracing

One approach is to think of the
computer as an employee with
certain strengths, like speed and
precision, and particular
weaknesses, like lack of empathy
and inability to grasp the big
picture.

allen downey
1

The purpose of the current chapter is to present the numerical method used for
the tracing of manifolds of constant entropy and constant entropy production,
as this is seen as a central part of the current work. In order to achieve this, an
outline of the general manifold tracing problem is first provided, followed by a
presentation of the generalised predictor-corrector method for manifold tracing
that is implemented – the latter being done in python. The main ideas of this
numerical solution strategy are discussed, using both pseudocode and flowchart
to illuminate the overall structure of the approach.

1“Think Python - How to Think Like a Computer Scientist”, (Downey, 2012)

63
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5.1 The general manifold tracing problem

In order to provide an easy-to-grasp analogue to the multi-dimensional manifold
tracing problem, the (simple) problem of tracing out a circle centred at the origin
in the Cartesian (x, y) plane is presented.2 Such a circle may be defined as all
points that satisfy the implicit equation

F(x, y) = x2 + y2 − R2 = 0 (5.1)

where R is the radius of the circle (a parameter) and F : R2 7→ R1. Thus,
eq. (5.1) may be seen as a (non-linear) system of equations with a single degree
of freedom (DOF). The points (x, y) that fulfil eq. (5.1) constitute a curve C in
R1 – the circle.3

The multi-dimensional problem of tracing the manifolds of constant entropy
and constant entropy production may be seen as that of computing the set of
solutions to a system of non-linear equations defined by the constraints presen-
ted in Chapter 4. In other words, the aim is to trace out the curve C in RN−1

defined by

F(X) = 0 (5.2)

where F is the general vector-valued function describing the constraints of the
model, such that F : RN 7→ RN−1. In the case of constant entropy, F : R8 7→ R7,
with X ∈ R8. Similarly, for the case of constant entropy production, F : R30 7→
R29, with X ∈ R30. In both cases, there is a single DOF– thus describing a curve
in RN−1.

Following (Brendsdal, 1999), this curve may alternatively be defined by differen-
tiating eq. (5.2)

Ḟ = ∇X F(X)Ẋ = 0 (5.3)

2 The similarity between the circle in R1 and the constant entropy manifold in R7 and constant
entropy production manifold in R29 is exploited later to provide an a priori metric for the predictor
vector used in the general manifold tracing algorithm. The details regarding this strategy are outlined
in Appendix A.

3 It is so common to view the circle as a curve in the Cartesian (x, y) space that it may be
counter-intuitive that a circle with a given radius is indeed a curve in R1. The easiest way to realise
that this must be true is by looking at the same circle in polar coordinates (φ, r). Here, it is evident
that if r is taken to be a (constant) parameter, the circle is defined by φ ∈ R1 alone.
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This is equivalent to the statement that the tangent of the curve C – that is, the
manifold to be traced – is in the nullspace of the gradient of F. The latter cor-
responds to the 29× 30 Jacobian matrix that is obtained by differentiating the
constrain equations from Chapter 4 with respect to all the independent variables.
Thus, by considering the curve C as the solution to the differential equation that
is eq. (5.3), the manifold may be traced out by employing a predictor-corrector
method. Here, the vector spanning the nullspace of the Jacobian, p (with dimen-
sions 30× 1), is used as a starting point for computing the necessary predictor
steps. A corrector step is needed to ensure that the constraints of the problem
– given as eq. (5.2) – are fulfilled along the entire manifold to within the a pri-
ori given tolerance. This corrector is implemented using the Newton-Raphson
(N-R) method, to be further discussed in Section 5.2 and Section 5.4 below.

5.1.1 The relation to numerical continuation methods

The author did not realise until after the method was implemented that this
procedure – and the manifold tracing problem that it solves – may in fact be
seen as a particular implementation of the more general methods of numerical
continuation, as described in e.g. (Allgower and Georg, 2003). The latter is an
area of mathematics concerned with solving non-linear systems of equations of
the type

F(x) = 0 (5.4)

where no good approximation x0 to the zero point is known. For such problems,
applying a regular N-R-approach – as described in e.g. (Kreyszig, 2010) and
further discussed in Subsection 5.4.1 – will often fail to converge. The N-R
method is known to be sensitive with respect to the given initial values, and
one can not hope to obtain a converged solution if the initial guess is far from
the actual solution. The numerical continuation methods propose to remedy
this issue by instead tracing out an implicitly defined curve C from a (known)
starting point to an end-point that corresponds to the solution of eq. (5.4). While
a more detailed description of numerical continuation methods is beyond the
scope of the current work, it is interesting to note that the central problem tackled
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is essentially a manifold tracing problem – parallel to the ones that are solved in the
current work, but with a different end goal.

According to (Allgower and Georg, 2003), some of the key items that must be
“carefully developed” when applying predictor-corrector methods to numerical
continuation problems are

• An effective step size adaptation

• An efficient implementation of the corrector step

• handling or approximating special points on the curve such as turning
points

That the above points are crucial to the manifold tracing problem was realised
by hard-won experience – through the process of implementing the predictor-
corrector method that is the main topic of Section 5.2 – rather than by examining
the theory of numerical continuation. It is likely that the method implemented
in this work would be improved by utilizing some or several of the techniques
and concepts found in the numerical continuation literature. Due to time con-
straints and the fact that the current algorithm adequately traces out the desired
manifolds, any such improvement has not been attempted.

5.2 The predictor-corrector method

The purpose of Section 5.2 is to present and discuss the predictor-corrector
implemented to solve the manifold tracing problem. The particular workings
of the predictor step computation and the N-R corrector step computation is
discussed in Section 5.3 and Section 5.4, respectively. Thus, the topic of the
current section is the main algorithm. Note that details are omitted for clarity.

The main goal of the predictor-corrector algorithm is to trace out the manifolds
of constant entropy and constant entropy production, as discussed in Section 5.1.
In order to achieve this goal, a variable step-length predictor-corrector method
is implemented

Predictor: The predictor method consists of an Euler-type integration, following
the tangent of C the predictor step.
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<initialization>
step_counter = 0
ps_factor = 1

delta_x = <predictor>
step_object.update(delta_x)
convergence = <corrector>

convergence? No

<Revert to last converged state>
ps_factor *= 0.5

step_counter > steps

ps_factor < 1Yes

ps_factor *= 2

No

<Update list of converged states>
step_counter += ps_factor

No

Yes

<process results>

Yes

F igure 5 .1 : Flowchart for the variable step-length predictor-corrector method. Note
that step_counter is a floating point number here; this is done in order
to account for steps smaller than the nominal length of 1 that arises due
to the variable step-length strategy

Corrector: The corrector method used a N-R-type corrector, demanding that the

corrector step is orthogonal to that of the predictor,
(

∆xpredictor

)T
dxcorrector =

0. This condition augments the Jacobian matrix stemming from the con-
straints described in Chapter 4. As such, a square N × N Jacobian for the
corrector is obtained, as needed by the N-R method.

The flowchart describing the overall algorithm is given in Figure 5.1. This is a
graphical representation of the pseudocode given in Algorithm 1 – both emphas-
ise on outlining the principles of the method rather than the implementation
details.

The main idea of the predictor-corrector method shown in Figure 5.1 and Al-
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gorithm 1 is to ensure that the predictor step is sufficiently small so that the
corrector converges quickly – i.e. that the step size of each predictor step is
sufficiently small so that the integration stays close to the manifold at all times. This
is necessary in order to secure convergence at all points along the manifold.

The two main work-horses of the method – <predictor>, the calculation of
the predictor step at line 9 – and <corrector>, the N-R corrector method at
line 11 – are outlined in Section 5.2 and Section 5.4, respectively. Here, the
< . . . > notation is used to indicate that actually calling either the predictor
or the corrector needs both function input (i.e. variables such as number of
predictor steps and corrector tolerance) and a slightly more complicated syntax.
However, for the purpose of outlining the general workings of the method, it is
judged that such details provide no further insight – only clutter. Thus, they are
not shown.

If the corrector does not converge during the maximum allowed corrector steps
(currently maxiter= 74 ), the state object is reverted back to the last converged
state and the step size is halved – and the predictor step is repeated with a
smaller step size. From Algorithm 1 it seems that such halving may – in theory
– produce an infinite loop if the method for some reason hits a singularity. In
practice, this is avoided by forcing the user to approve further step size reduction
after a certain threshold (currently 5 step size reductions, i.e. a step size scaling
factor of 1

25 = 32). Such intervention from the user is seldom needed – the step
size reduction is not needed for most points along the manifold, and even at the
turning points where convergence is most tricky, the method usually converges
after a few step size reductions.

Note that the method tries to go back to full step size – this is ensured by
increasing the scaling factor at line 17. Thus, any step size reduction due to
particular points along the manifold that are difficult to converge will quickly
be reverted back to the full step size as soon as possible. Note that the predictor
has its own, intrinsic argument for both predictor scaling and predictor direction

4 While this choice is admittedly somehow arbitrary, it is chosen in order to ensure a sufficiently
strict criterion on the step-size reduction. In other words, by choosing a (relatively) small number
for maxiter, the algorithm is forced to reduce the step-size at difficult pints along the manifold. This
in turn ensures that the condition number κ of the Jacobian is kept within reasonable bounds.
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based on an a priori argument regarding the change of angle using a suitable
polar coordinate mapping. This is further discussed in Appendix A.

Algorithm 1 Variable step-length predictor-corrector method
1 # Given external values:
2 # steps: The total number of steps to trace out the manifold
3 # state_object: Object holding the current state
4

5 step_count = 0
6 ps_factor = 0
7

8 while step_counter < steps:
9 delta_x = <predictor>

10 state_object.update(delta_x)
11 convergence = <corrector>
12

13 if convergence:
14 <Add current state to list of converged states>
15 step_counter += ps_factor
16 if ps_factor < 1:
17 ps_factor *= 2
18 else:
19 <Revert back to copy of last converged state>
20 ps_factor *= 0.5

5.3 Computing the predictor step

As discussed in Section 5.1, the predictor step is taken to be the X × 1 vector
spanning the nullspace of the Jacobian matrix of the constraint equations, where
X ∈ {8, 30}, depending on whether it is the constant entropy manifold or the con-
stant entropy production manifold that is to be traced. The Jacobian is calculated
analytically from the constraint equations. For the constant entropy manifold,
the Jacobian is relatively dense – on the other hand, the Jacobian is much more
sparse in the case of the constant entropy production manifold; most of the
elements are zero.5 As the respective Jacobians are an integral part of both the

5 In the case of constant entropy, of the 7× 8 = 56 elements of J, there are 30 non-zero elements
(54% of all possible). In the case of constant entropy production, of the 29× 30 = 870 elements of
J, there are 127 non-zero elements (15% of all possible). Note that the above numbers refer to the
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predictor in Section 5.3 and corrector in Section 5.4, a more detailed discussion
of their structure is deemed appropriate – this may be found in Appendix C.

The nullspace – and more importantly, the vector spanning the nullspace – of
J(X) is calculated using Gauss elimination.6 The reader is referred to e.g. (Krey-
szig, 2010) or (Süli and Mayers, 2003) for details on the latter.

When the nullspace vector is calculated, it is subsequently scaled by 1) the
intrinsic scaling argument given in Appendix A on line 11 and 2) by the scaling
factor from the main algorithm stemming from the variable step-size strategy on
line 14. The actual scaling of the nullspace vector elements is performed inside
the for-loop on line 14. The scaled nullspace vector is returned as the predictor.

Algorithm 2 Computing the predictor step
1 # Given external values:
2 # steps: The total number of steps to trace out the manifold
3 # ps_factor: Predictor step scaling factor from main algorithm
4

5 jacobian = self.jacobian
6 nullspace_vector = null(jacobian)
7 phi_dot = self.calculate_phi_dot
8

9 # Direction and intrinsic scaling from phi dot argument
10 direction = sign(phi_dot)
11 step_scaling = (2*pi/steps)*(1/abs(phi_dot))
12

13 # Multiply by scaling factor from main algorithm
14 step_scaling *= ps_factor
15

16 # Initialize predictor vector
17 delta_x = []
18

19 for i in nullspace_vector:
20 delta_x[i] = direction*step_scaling*i
21

22 return delta_x

The reason for introducing a scaling strategy is based on the fact that the Jacobian

elements that are non-zero from an analytical point of view: one or several of the analytical elements
may evaluate to zero at the given state.

6 The python module that performs this Gauss elimination and subsequent nullspace vector
extraction is written by Associate Professor Tore Haug-Warberg, and is used with kind permission.
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of the constraints – from which the nullspace, and subsequently the nullspace
vector – is extracted is not normed in any way. As such, the resulting nullspace
vector length – an thus the predictor step of a method not employing any scaling
– would vary (greatly) along the manifold. This is not the desired behaviour.
While it is difficult to visualize the full 30× 1 nullspace vector, a useful proxy is
the projection of the nullspace vector into the R2 Cartesian plane of the driving
forces for mass and heat transfer. It is postulated that if the method manages
to restrict the step size in this projection – i.e. that the arc length traced out by
the method in each step is approximately constant – a smooth tracing of the
hypersurface that is the manifold is possible.

The fact that there are two separate scaling strategies is important. The scaling
based on the intrinsic φ̇ argument in 1) above is sufficient in itself when the
manifold to be traced has a circle-like shape when projected down into R2

Cartesian plane of the driving forces for mass and heat transfer in the case of
the constant entropy production. In such a projection, requiring that the arc
length traced out with each predictor step is uniform is approximately the same as
requiring a uniform change in angle, that is φ̇ = const. In brief, if it is possible to
calculate the sign and magnitude of φ̇ at each step along the manifold, both the
magnitude and direction of the predictor vector may be appropriately scaled
in the limiting case of a circular projection. However, the method works fairly well
as long as the eccentricity of the ellipse – that is, the projection of the manifold
in R2 – is not large. The details of the argument will be further explained in
Appendix A.

While true for some transport law formulations it turned out that this argument
was not sufficient when the projections were sufficiently eccentric – i.e. that the
resulting ellipse has an eccentricity approaching unity, e→ 1. The eccentricity of a
true circle is zero, and while none of the projected manifolds depict a true circle,
the degree of eccentricity determined whether or not the intrinsic φ̇ argument
worked alone. See (Thomas Jr. et al., 2009) for a discussion on eccentricity.

Thus, an additional scaling argument is needed. A pragmatic approach is taken
– the requirement that the corrector converges is taken as a criterion, halving
the predictor step if convergence is not possible. Note that this scaling is super-
positioned on the intrinsic φ̇ argument – the latter is always in effect, while the
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former is applied only when necessary (as judged by lack of quick convergence).
In practice, this seems like a well-functioning strategy.

5.4 The Newton-Raphson corrector method

The purpose of Section 5.4 is to explain the mathematics behind and implement-
ation of the N-R corrector employed as a part of the general predictor-corrector
strategy outlined in Section 5.2. The former is presented in Subsection 5.4.1,
where thegeneral N-R iteration scheme for solving systems of (non-linear) equa-
tions is discussed. The latter is outlined in Subsection 5.4.2, where the simplified
algorithm for the corrector method is outlined in Algorithm 3.

5.4.1 Mathematics of the Newton-Raphson method

The N-R method is an iterative numerical method for finding an approximate
solution to the root(s) of a (system of) non-linear equation(s), as described in
standard texts on engineering mathematics and numerical methods, e.g. (Krey-
szig, 2010).

The method may be derived from a Taylor series expansion for a multi-variable
function as shown in eq. (5.5), ignoring 2nd order and higher terms. The left-
hand side of eq. (5.5) is taken as zero, as this is the sought-after solution

F(x0 + ∆x) ≈ F(x0) + J(x0)∆x (5.5)

0 ≈ F(x0) + J(x0)∆x

=⇒ ∆x ≈ −J(x0)
−1F(x0) (5.6)

where J(x)−1 is the inverse of the Jacobian matrix of F(x), the latter being
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defined as
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(5.7)

Usually, it is preferred to solve the system of linear equations written as

J(xk)(xk+1 − xk) = − f (xk) (5.8)

rather than performing the actual inversion of the Jacobian matrix. The N-R
method is iterative, such that xk+1 is used as a starting point in the subsequent
iteration loop, finding the approximate solution xk+2. The iteration is continued
until the approximate roots are sufficiently close to zero, usually governed by a
combination of an a priori absolute tolerance and a criterion on the size of the
∆x = (xk+1 − xk) step – the method is allowed to continue as long as the norm
of this vector is decreasing. The details of the tolerance criterion implemented
are further discussed in Subsection 5.4.2.

It is well-known that the N-R method is a second-order method, which may be
shown by analysis of the neglected higher-order terms in the Taylor series of
eq. (5.5) (Kreyszig, 2010, Chap. 19.2). As such, the precision of the approximation
is doubled at every iteration sufficiently close to the solution. This means that
the number of iterations needed for the N-R method to converge is often small.
It should be noted that the method is – in general – sensitive with respect to
the initial guess. In other words, the first approximation to the solution must
be sufficiently close to the actual solution. In the case of employing the N-R
method as the corrector in the manifold tracing strategy, this problem may be
mitigated by taking sufficiently small predictor steps to ensure that the tracing
is always close to the converged manifold.
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5.4.2 Outline of the corrector algorithm

It is argued in (Press et al., 2007) that the N-R method is the only elementary
method for root finding that is applicable for multidimensional problems. It
is emphasised that the N-R method works “very well” given that the initial
guess is close to the actual solution. For the manifold tracing problem – using
a variable step-length predictor – such proximity is ensured. Additionally, the
N-R method shines when an analytical Jacobian is attainable. In the context of
thermodynamics, this is usually possible.

Furthermore, it is claimed that “(...) there are no good, general methods for
solving systems of more than one non-linear equation.” (Press et al., 2007) It is
argued that a priori insight about the system at hand is crucial to be able to solve
it efficiently. In the context of physical problem solving – such as the case in
the current work – such insight is usually attainable. While this in itself is not
sufficient in order to ensure convergence, it certainly does help the chances for
success.

One of the main benefits of using the N-R method over ready-made methods
such as the well-known fsolve() function in matlab is that the N-R method
is both transparent and unforgiving. The former implies that the modeller actually
have a fair idea of what the method actually does to find the solution. The latter
– while seemingly counter-intuitive – is the fact that since the N-R method is
expected to converge fast if everything is as it should be, catching errors is
actually made easier. If the method converges, but does so very slowly, it is
often an indication that e.g. the Jacobian is wrong. Receiving such feedback is
frequently very helpful.

The pseudocode for the implemented N-R method is shown in Algorithm 3.
The computation of the solution to the system of equations described by eq. (5.8)
on line 20 is the key to the method. Here, the system of non-linear equations
is linearised through the use of the Jacobian. The state object is updated by the
N-R step, dx, on line 23, and a new residual us calculated on line 24. Then, the
norm of both the residual and the N-R step is evaluated at line 26. The method
is deemed to have converged if a) the former norm is below an a priori given
tolerance (tolerance = 1× 10−12 is used) and b) the latter norm is larger than
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Algorithm 3 Newton-Raphson corrector method
1 # Given external values:
2 # delta_x: The predictor step
3 # state_object: Object holding the current state
4 # tolerance = 1e− 12: Absolute tolerance
5 # maxiter = 7: Maximum number of allowed iterations
6

7 itercounter = 0
8 convergence = False
9 last_dx_norm = ∞

10

11 current_res = state_obj.residual()
12

13 while not convergence and itercounter < maxiter:
14 itercounter += 1
15 # Augmenting the Jacobian with predictor step
16 # Ensures N × N square Jacobian, as needed
17 current_jac = state_obj.jacobian(delta_x)
18

19 # Solving system of linearised equations
20 dx = solve(current_jac, current_res)
21

22 # Update state, re-evaluate residual
23 state_obj.update(dx)
24 current_res = state_obj.residual()
25

26 if norm(current_res < tolerance) and norm(dx < last_dx_norm):
27 convergence = True
28

29 # No convergence? Update dx norm
30 last_dx_norm = norm(dx)
31

32 return convergence
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that of the last N-R step. Thus, the method is allowed to iterate to a solution
that is as accurate as possible – within the given maximum number of allowed
iterations (maxiter = 7).

If the method converges, the while-loop terminates and the method returns True.
The state_object now holds the converged state of the system, so there is no
explicit return of any values. Using such an object-oriented programming (OOP)
approach is natural in python, and is – if implemented with care – a strong
tool for providing proper abstraction of the code.

If the convergence check at line 26 returns false, the norm of the current N-R step
is stored and the method continues. The Jacobian and residual are re-evaluated
using the new object state, and a new system of linear equations is solved. As
such, the method continues until convergence – or until the maximum number of
allowed iterations is reached. If the latter limit is reached without convergence,
a convergence = False flag is returned to the main algorithm described in
Section 5.2, and the step size is subsequently reduced in order to attempt to find
an initial point for the N-R corrector that is closer to the converged solution –
thus securing convergence.



Chapter 6

Results and discussion

The purpose of computing is
insight, not numbers.

richard hamming
1

The purpose of the current chapter is to present and discuss the results from
tracing the manifolds of constant entropy and constant entropy production. This
includes verification of the internal entropy production matches that calculated
from the external flows, that the integration of the entropy production from a
perturbed state back to that of equilibrium yields the original perturbation in S.

6.1 Overview of the cases

The purpose of the current section is to provide the reader with an overview of
the cases examined and discussed in the current chapter. These are outlined in
Table 6.1 below. It is emphasised that N

2
and Ar should be seen as representative

diatomic and monoatomic components, respectively.

While the original intention was to provide the reader with an extensive set of
cases to be contrasted, time constraints disallowed such an attempt. Thus, the
base cases are studies – in addition to the integration of the entropy production
discussed in Section 6.4 and the notion of a deep relationship between the

1Preface to and motto of “Numerical Methods for Scientists and Engineers”, (Hamming, 1973)
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Table 6 .1 : Overview of the cases discussed in the current chapter

Case Components Initial ∆T System

Case 0 N
2
,Ar 0.5 K Closed system

Case 1 N
2
,Ar 0.5 K Open system

Integration N
2
,Ar 1 K Closed system

Ellipses N
2
,Ar 1 K Open & closed system

constant entropy manifold and the constant entropy production manifold as
outlined in Section 6.5

6.2 Case 0: Constant entropy manifold

The purpose of this section is to establish a familiarity with the base case for
the constant entropy manifold by studying the behaviour of a chosen set of
variables along the manifold. The idea is that this makes it easier to appreciate
the differences between this base case and those resulting from varying e.g. the
composition or initial perturbations of T.2

The constant entropy manifold visualised in (∆Tred, ∆(CA)red) coordinates in R2

are shown in Figure 6.1. The initial perturbation corresponding to ∆T = 0.5 K is
shown as a triangle. It is noted that the contour forms that of an ellipse around
the origin, as expected.

Furthermore, the temperature and mass profiles along the constant entropy
manifold are shown in Figure 6.2. As expected, these are inversely correlated
– the deviation from the equilibrium temperature is at a maximum when the
deviation from equilibrium composition is zero, and vice versa. This behaviour
is apparent from the constraint equations – in order to fulfil these, the mass and
energy redistribution along the constant entropy manifold must balance, so to
speak.

2 As noted in the Section 6.1, time constraints disallowed the study of more cases than the base
case. However, the argument still stands – establishing familiarity with the base case will make
further investigations easier.
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F igure 6 .1 : Case 0: Constant entropy manifold given in (∆Tred, ∆(CA)red) coordinates.
The initial point corresponding to ∆T = 0.5 K is designated by triangle.

It is seen from Figure 6.2 that the maximum temperature deviation from that
of equilibrium for subsystem 1 along the manifold is twice that of subsystem 2.
This corresponds well with the fact that the initial mole number in subsystem 2

is twice that of subsystem 1 – 15 mol and 7.5 mol, respectively.3

The pressure profile along the constant entropy manifold is given in Figure 6.3.
It is evident that the mechanical equilibrium of eq. (4.13) is fulfilled at all points
along the manifold. Note also that the overall change in pressure is small, with
a maximum of a few Pa from that of equilibrium.4 This notion of a small over-
all change in pressure along the manifold will be exploited when the entropy
production of the closed system is integrated from a perturbed state to that of
equilibrium, as further discussed in Section 6.4.

The initial entropy production (Ṡirr)init along the constant entropy manifold is

3 The fact that the components have different heat capacity – 5
2 R and 7

2 R for the monoatomic
(Ar) and diatomic (N

2
) gas component, respectively – is hard to discern from Figure 6.2 alone. This

is largely due to the fact that the change in composition along the manifold is relatively small.
4 At first glance, it may seem counter-intuitive to have a pressure variation in a system at

mechanical equilibrium. However, as briefly discussed in Chapter 4, the fact that p1 = p2 = p along
the manifold does put any restrictions on the actual magnitude of the pressure – only thatisequal in
the two subsystems at all times.
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F igure 6 .2 : Case 0: Temperature and component mass profiles along the constant
entropy manifold.

shown in Figure 6.4. This is calculated using Fick’s law for the mass transport.
In the same figure, the characteristic time constant τ = ∆S

(Ṡirr)init
is presented. As

is evident from this definition, the τ is inversely proportional to (Ṡirr)init. This
is the observed behaviour in Figure 6.4.

6.3 Case 1: constant entropy production manifold

As was the case with Section 6.2, the purpose of this section is to establish a
familiarity with the base case for the constant entropy production manifold. It
is deemed important to have an idea of how the different variables comprising
the system behave in this base case, so that characteristic changes of model
behaviour when exploring e.g different transport law formulations may be better
appreciated.5

The constant entropy manifold from case 1 of Table 6.1 is shown in Figure 6.5
Here, the naive formulations of Fick’s and Fourier’s laws are used for mass

5 As noted in Section 6.1, time constraints disallowed the study of more cases than the base case.
However, the argument still stands – establishing familiarity with the base case will make further
investigations easier.
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F igure 6 .3 : Case 0: Pressure profile along the constant entropy manifold. Note that
p1 = p2 along the whole manifold – as dictated by the mechanical equi-
librium condition of eq. (4.13) – and that the overall change in pressure
is small.

transfer and heat transfer, respectively.

Note the close similarity between Figure 6.1 and Figure 6.5. Both are elliptic,
centred around the origin. The possible consequences of this similarity is further
discussed in Section 6.5

The temperature and component mass profiles of the constant entropy manifold
are displayed in Figure 6.6. While these profiles in some ways are similar to the
ones displayed in Figure 6.2, there are distinct differences. The temperature and
component mass profiles closely match the profiles of mass and heat transfer
shown in Figure 6.7, as must be expected. It is noted that the point of zero total
heat flow corresponds to the point where ∆T = 0, as it should.

The mass and heat transfer – both internal and external – is shown in Figure 6.7.
The notation used is that of Chapter 4. Note that in the case of mass transfer –
displayed to the right of Figure 6.7 – the external transport exactly match the
internal transport in order to maintain the system at steady-state. On the other
hand, Q̂† will necessarily ensure that Q̂1 6= Q̂2, as discussed in Subsection 4.3.3.
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F igure 6 .4 : Case 0: The initial entropy production and characteristic time constant
along the constant entropy manifold.
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F igure 6 .5 : Case 1: Constant entropy production manifold given in (∆Tred, ∆(CA)red)
coordinates. The initial point corresponding to ∆T = 0.5 K is designated
by triangle.

However, as is evident from the figure, this effect is small relative to the absolute
magnitude of the heat transfer – as expected.

As is expected, the maximum mass transport occurs around the point where
Q̂ = 0. This is a direct consequence of the equation structure for the open system
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F igure 6 .6 : Case 1: Temperature and component mass profiles along the constant
entropy production manifold.

– since a restriction is put on Ṡirr to be constant, the mass and heat transport
must vary out of sync along the manifold in order to fulfil this criterion.

In Figure 6.8, the variation of system pressure and reservoir pressures of the
open system along the constant entropy production is shown. As is expected,
the criterion of mechanical equilibrium is maintained at all times. Furthermore,
the change in magnitude of the pressure along the manifold may be seen as
negligible for all practical purposes – a maximum deviation of a couple Pa from
that of the equilibrium state.

The change in the reservoir pressures displayed to the right of Figure 6.8 reflect
the mass transfer occurring between the subsystems. As chemical equilibrium is
assumed to be instilled at all times between the reservoirs and their respective
subsystems, the pressure of the reservoirs is the necessary degree of freedom
(DOF) to ensure that this is fulfilled. In other words: the pressure of the reser-
voirs will adjust so that µi,j = (µi,j)

rsvr.

The error of the entropy production calculated from the external flows ((Ṡirr)ext)
along the manifold is contrasted with that calculated from the internal irre-
versible processes ((Ṡirr)int) in Figure 6.9. Note that the error here is taken as
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F igure 6 .7 : Case 1: Mass and heat transfer along the constant entropy production
manifold. The notation employed is that of Chapter 4. Note that the
external flows in essence are identical to the internal transfer – thus, the
reservoirs merely act to supply mass and energy (the latter in terms of
heat) such that the system is maintained at a steady-state.

the deviation from the entropy production calculated at the initial perturbation
point. As such, the value of Figure 6.9 is twofold; first, it shows that the entropy
production is indeed constant along the traced manifold – to within the accuracy
of the numerical method. Secondly, and perhaps slightly more interesting, is the
fact that the entropy production calculated from observing the external flows is
indeed identical to the one calculated from explicitly accounting for the internal
irreversible processes. The theoretical argument for this is given in Section 2.6 –
as such, Figure 6.9 may be seen as a proof-of-concept for this idea.

In Figure 6.10, the number of Newton-Raphson (N-R) iterations needed at
each step along the manifold is shown. It is evident that the corrector rapidly
converges at each step, as is the desired behaviour based on the discussion in
Chapter 5. Furthermore, the condition number for the Jacobian of the system is
shown. While there is some variation along the manifold, the condition num-
ber never rises to unacceptable values due to the variable step-length method
employed, as discussed in Chapter 5.
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F igure 6 .8 : Case 1: System and reservoir pressure along the constant entropy produc-
tion manifold. It is observed that as in the case of the constant entropy
manifold, the change in pressure is small – and the constraint of mech-
anical equilibrium is maintained along the manifold. Furthermore, the
respective reservoir pressures are observed to correlate well with the mass
transfer – the pressure of the reservoirs must necessarily change in order
to ensure that chemical equilibrium is instilled at all times between the
reservoir and the corresponding subsystem.

6.4 Integrating the entropy production

As discussed in Section 2.6, it is shown that integrating the entropy production
along the trajectory from a perturbed state and back to the state of equilibrium
should yield the difference in entropy between the equilibrium state and that of
the perturbed state. Assuming that it is sufficient to integrate for a finite time
t� t0, eq. (2.37) state that

∆S =

(
dṠirr

dt

)
acc
≈
∫ t�t0

t=t0

Ṡirr dt (6.1)

Here,
(

dṠirr
dt

)
acc

refers to the accumulated entropy production along the integra-
tion path.

In Figure 6.11, the result of such an integration using a simple forward-Euler
approach with logarithmic time is shown. Furthermore, the temperature and
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F igure 6 .9 : Case 1: Consistency check on the entropy production by observing the
error in (Ṡirr)int and (Ṡirr)ext to that of the initial entropy production.
Note the scale on the ordinate axis; the error is negligible for all practical
purposes – it is on the order of the numerical method precision – and it
is confirmed that (Ṡirr)int = (Ṡirr)ext. The latter was argued theoretically
in Section 2.6.

pressure profiles for the subsystems along the integration path are shown in
Figure 6.12. Fick’s and Fourier’s laws are used to describe the diffusive mass
and heat transport, respectively. Note that the pressure of the subsystems is not
controlled during the integration – this will introduce a certain error. However,
it is noted that the deviation in pressure during the relaxation process is small;
thus, the error is expected to be of similar nature. It seems that the argument
given in in eq. (6.1) holds to within the expected error of the integrator. The beha-
viour depicted in Figure 2.3 is displayed, which may be seen as an experimental
verification in favour of the a priori argument.

Note that the initial slope of the entropy production trajectory is unexpected. A
sharp transition between the steady-state production of the open system and
that of the relaxation towards equilibrium for the closed system is predicted –
this does not seem to apply to the current modelling experiment. The reason
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F igure 6 .10 : Case 1: The number of N-R iterations at each point along the constant
entropy manifold, along with the condition number for the Jacobian.

for this deviation from expected behaviour is at the present not explainable, and
should be further investigated.

6.5 A relationship between ∆S = const and Ṡirr = const

In this section, a relationship between the constant entropy manifold and the
constant entropy production manifold in terms of both the respective projections be-
ing ellipses in the Cartesian R2 plane when sufficiently close to equilibrium is explored
and discussed. While certainly an intriguing notion, it should be remarked that
the full implication of this relationship is not yet understood.

In general, an ellipse may be described as the set of points (x, y) in the Cartesian
R2 plane such that x = a cos(θ) and y = b sin(θ + α) for θ ∈ [0, 2π]. Here, a
correspond to the major axis, b correspond to the minor axis and α is a phase
shift governing the angle of the ellipse with respect to the (x, y coordinate system.
Thus, three variables (a, b, α) is sufficient to describe a general ellipse. This will
be exploited below.

From classical thermodynamics it may be shown that the state of equilibrium is
one of maximum entropy, as discussed in Chapter 2. As such, a Taylor expansion
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F igure 6 .11 : Integrating the entropy production along the trajectory from a perturbed
state and back to the state of equilibrium for the closed system. Fick’s
and Fourier’s laws are used for the mass and heat transfer, respectively.

Note that
(

dṠirr
dt

)
acc
≈ ∆S, as expected from Section 2.6.

around the origin yield terms that are of quadratic and higher order, since the
first derivatives must by necessity be zero at the extremal (maximum) point. The
Hessian of Sis known to be positive definite, yielding positive eigenvalues. Thus,
one would expect such a quadratic function to yield an ellipse-like projection in
the Cartesian R2 plane. This is indeed observed, as is shown in Section 6.2.

Furthermore, by combining eq. (3.8) and eq. (3.9) from Section 3.2, one may
show that

Ṡirr = ∑
i,k

XiLikXk ≥ 0 (6.2)

where Xi, Xk are the thermodynamic driving forces and Lik are the phenomeno-
logical coefficients. The inequalities follow from the second law of thermodynam-
ics, stating that the entropy production must be positive at any non-equilibrium
state (Kjelstrup et al., 2010). Thus, it is expected that the constant entropy pro-
duction manifold give an ellipse-like projection in the Cartesian R2 plane. This
is observed behaviour in Section 6.3.

As such, there seems to be a close relationship between the two manifolds.
Returning to the earlier argument, an arbitrary ellipse may be transformed into
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F igure 6 .12 : The temperature and pressure profiles along the integration path from
a perturbed state and back to the state of equilibrium for the closed
system.

any other manipulating the three variables (a, b, α) alone. Thus, one should be
able to map from the constant entropy manifold to that of constant entropy production
using a maximum of three variables for the case of a binary system.

As a visual proof-of-concept of this behaviour, a general ellipse described with
the variables a, b, α is fitted to each of the manifolds of Figure 6.13. Here, the
projections of the respective manifolds are shown in the coordinates that are as-
sumed to correspond to the thermodynamic driving forces that give the desired
behaviour for the mass and heat transport, as briefly discussed in Section 3.3.6

This is achieved by a few iterations of trial-and-error, with surprising ease.7

The key question that arises is this: is it possible to find uncomplicated trans-
formations between the constant entropy manifold and the manifold of constant
entropy production through these ellipses in the general case? If this is so, the ap-
plications could prove to be numerous. Before diving too deep into this question,

6 It should be emphasised that no claim is made from the author to having proved that these
are the relevant thermodynamic driving forces. A convincing argument is made by Haug-Warberg
(2015a) in this regard, and the author has used the end result in order to produce the figure given
in Figure 6.13. As such, it may be viewed as a plausible postulate in the context of the current work.

7 To the author’s slight astonishment, only two to three attempts had to be made in order to fit
the general ellipse equation to each of the manifold projections. While the fit is not entirely perfect,
as is evident from Figure 6.13, the method works well. That being said, the process could – and
should – be automated if this notion of ellipse mapping holds up against further investigation.
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others should be investigated:

1. Does this concept easily extend to multicomponent systems – i.e. systems
that are non-binary?

2. How close must the manifold projections be to the origin – i.e. how large
deviations from equilibrium may be permitted?

3. Is the concept practical – i.e. does a sufficiently simple mapping between
the two manifold projections exist in the general case?

That there is a connection between the constant entropy manifold and constant
entropy production manifold should perhaps not come as a surprise. Nonethe-
less, the fact that the projections show such a close relationship through the use
of regular ellipses is fascinating. At worst, this concept is of theoretical interest
only. At best, it provides a promising approach for describing simultaneous ir-
reversible phenomena using the deviation from equilibrium and a subsequent
mapping to the constant entropy manifold. In order to answer the above ques-
tions, further investigations must be undertaken.
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F igure 6 .13 : A relationship between the ∆S = const and the Ṡirr = const manifold
projections in R2 Cartesian coordinates using ellipses. Note that the fit
between the ellipses and the manifold projections are relatively accur-
ate. The figure must be seen as a proof-of-concept – with a few manual
iterations, two general ellipse equations are fitted to their respective
manifold.





Chapter 7

Concluding remarks and further work

The purpose of the this chapter is to summarise the most important findings
of the current work, and to propose a direction in which this work may be
continued. While the concept of relating the manifolds of constant entropy and
constant entropy production seem to hold great promise, several aspects of the
idea must be clarified in order to judge whether the approach may be put to
practical use.

Conclusion

The main purpose of the current work has been to investigate irreversible phe-
nomena in general, with emphasis on simultaneous mass and heat transfer. An
entropy production formalism is used in connection with mathematical model-
ling in order to study these phenomena. A central task has been the development
and investigating a model system consisting of two connected subsystems, each
containing a binary ideal gas mixture. Mass and heat transfer between the two
subsystems is allowed, thus giving rise to irreversible phenomena and entropy
production.

First, the case of a closed system perturbed from the equilibrium state is invest-
igated. The equations that constrain this problem give rise to constant entropy
manifolds. Next, the subsystems are allowed to exchange mass and energy with
external reservoirs, thus maintaining the total system at a steady-state. The con-
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straint equations for the system will now give rise to manifolds of constant
entropy production. In order to investigate the two situations, a variable step-
length predictor-corrector method was developed and employed. Both types of
manifolds were successfully traced, and the results were subsequently investig-
ated.

It has become clear that employing the entropy balance in the context of model-
ling irreversible phenomena is a powerful tool, which may be utilized in addition
to the conservation laws of mass, energy and momentum normally applied to
chemical engineering problems. Using the entropy balance to ensure modelling
consistency is particularly advantageous – the fact that the same entropy pro-
duction may be calculated in different ways is a powerful principle that should
be exploited.

A central purpose of the manifold tracing has been to investigate the – seemingly
deep – connection between the manifold of constant entropy and the manifold of
constant entropy production. It is shown that the projections of both manifolds to
suitable coordinates in the Cartesian R2 plane may be described as generalised
ellipses. This give rise to possibility of a mapping between the two manifolds,
thus providing a connection between the deviation from equilibrium entropy
on the one hand to that of constant entropy production on the other.

It should be emphasised that the results from the current work are not conclus-
ive as to whether the correlation between the entropy production manifold and
manifold of constant entropy may be employed to predict or describe the general
behaviour of irreversible processes occurring. Thus, it is not known whether the
current work has any direct practical application for the treatment of simultan-
eous mass and heat transfer. However, the results are seen as a promising, and
further investigations are recommended.

Further work

Based on this thesis, it is evident that modelling irreversible phenomena – even
employing assumptions such as ideal gas behaviour and binary mixtures – is a
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complex endeavour. As such, there are several aspects of the current work which
demand further research:

• The current model should be utilized to further investigate the effect of
different transport formulations, as well as the effect of more advanced
thermodynamic model assumptions. This may shed light on the question
of how the connection between the manifolds scale with added complexity.

• The model should be extended so that a two-phase system may be invest-
igated. Such systems are common in the chemical engineering practise –
thus, they are seen as a highly attractive target for further work.

• The relationship between the constant entropy production manifold and
the manifold of constant entropy should be further investigated. There
seems to be a fundamental connection between the two that is yet to be
fully understood, and the possible practical implications of this connection
should be further investigated.

• Reactive mixtures – both equilibrium reactions and rate-based reactions
– should be studied in connection with the simultaneous mass and heat
transfer.
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Appendix A

Integrating in a positive mathematical

direction

When tracing out the manifolds of constant entropy and constant entropy pro-
duction using the method outlined in Chapter 5, a it is important to ensure
that

1. The manifold is traced in a continuous direction. Which direction that is
chosen is largely irrelevant – the important point is that no erratic change of
direction during the tracing may be allowed

2. The predictor step length ensures that the manifold is traced smoothly –
in other words, that the method stays sufficiently close to the manifold at all
times.

Judging the geometric interpretation of the latter criterion is not easy since
the constant entropy manifold and constant entropy production manifold are
in R7 and R29, respectively. It is postulated that a useful metric is to ensure
that the predictor takes a step which length makes the arc length traced in a
suitable R2 projection uniform.1 The latter projection is assumed to be that
of the reduced driving force coordinates, i.e. ( ∆CA

(CA)eq
, ∆T

Teq
using Fick’s law for

the mass transfer. The rationale is that these coordinates are closely tied to

1 It should be explicitly stated that while the rationale behind this strategy is neat – especially so
because it actually works – it should be seen as a elegant solution to a practical problem. In other words,
the practical results of using this approach are valuable regardless of the theoretical soundness of
the argument.
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the irreversible processes that are modelled. For the constant entropy manifold,
this argument has no clear tie to the physical interpretation of the model – as
no irreversible processes are accounted for – but the ( ∆CA

(CA)eq
, ∆T

Teq
coordinates are

used regardless.2 For the purpose of Appendix A, these driving force coordinates
are labelled generically as (x, y), being a projection in the Cartesian R2 plane.

It is further assumed that for a circular contour in R2, ensuring that φ̇ = const
is a useful proxy for the arc length argument. For a true circle,

Larc

2πr
=

φ

2π
=⇒ Larc = φr (A.1)

L̇arc ∝ φ̇ (A.2)

where Larc is the arc length, φ is the angle in polar coordinates and r is the radius
in polar coordinates. Thus, the change in arc length is proportional to the change
in angle. It should be explicitly noted that while the formal argument is only
strictly true for a perfect circle, it is expected to give the (approximate) desired
behaviour – ˙Larc ∝ φ̇ – for elliptic contours that do not deviate substantially from
the circle, thus ensuring a smooth manifold tracing. Now, a way of calculating
φ̇ from the change in the driving force coordinates (x, y) is desired. An clever
mathematical argument by Haug-Warberg (2015c) for this purpose is explored
in Appendix A.1.

A.1 Calculating change in φ from change in (x,y)

In the subsequent derivation, the approach of (Haug-Warberg, 2015c) is followed.
The main idea is to transform from Cartesian (x, y) to a polar (r, φ), and exploit-
ing the fact that this enables the calculation of φ̇ by knowing (x, y) and (ẋ, ẏ)
alone.

In general, a mapping from a Cartesian (x, y) to a polar (r, φ) coordinate system
may be achieved using

x = r cos φ (A.3)

y = r sin φ (A.4)

2 From a practical point of view, this strategy seems to yield the desired result.



A.1. Calculating change in φ from change in (x,y) 105

where r is the radius in polar coordinates and φ is the angle in polar coordinates.

The former is defined as

r =
√

x2 + y2 (A.5)

The reader is referred to e.g. (Thomas Jr. et al., 2009) for more details on polar
coordinates in general.

Differentiation of eq. (A.3) yields

ẋ = r cos φ− r sin φφ̇ (A.6)

ẏ = r sin φ + r cos φφ̇ (A.7)

Written in matrix notation, and using eq. (A.5) to eliminate rẋ

ẏ

 =


x√

x2+y2
−y

y√
x2+y2

x


 ṙ

φ̇

 (A.8)

Calculating the inverse of the coefficient matrix (see e.g. (Kreyszig, 2010) for
details) in order to write

 ṙ

φ̇

 =
1

x2√
x2+y2

+ y2√
x2+y2

 x y

−y√
x2+y2

x√
x2+y2


ẋ

ẏ

 (A.9)

Thus, simplifying 1
x2√
x2+y2

+
y2√
x2+y2

= 1√
x2+y2

and multiplying the prefactor into

the matrix

 ṙ

φ̇

 =

 x√
x2+y2

y√
x2+y2

−y
x2+y2

x
x2+y2


ẋ

ẏ

 (A.10)

Rewriting




(√

x2 + y2
)

ṙ(
x2 + y2) φ̇

 =

 x y

−y x


ẋ

ẏ

 (A.11)

Now, it is possible to calculate the sign of φ̇ as

sign(φ̇) = sign(−yẋ + xẏ) (A.12)

and the magnitude of φ̇ as

φ̇ =
−yẋ + xẏ

x2 + y2 (A.13)

Thus, knowing only the Cartesian coordinates (x, y) and their derivatives (ẋ, ẏ),
the derivative of φ may be calculated. Note that both the sign and the magnitude
of φ̇ is needed – the former avoids erratic change in sign of the predictor, and the
latter scales the size of the predictor step. Thus, the above method will always
ensure both constant direction and equiangular predictor steps.

The beauty of the φ̇ argument is that it provides an a priori condition for the
predictor step size. This, in turn, permits defining the number of points on
the manifold that are to be calculated – while still ensuring that the complete
contour in R2 is traced out exactly3 once. From the perspective of the modeller,
this is a distinct advantage.

A.2 Visual proof-of-concept

From Figure A.1 it is seen that the argument discussed earlier indeed provides a
constant change of angle at each step of the manifold tracing. This is especially
visible by looking at the zoomed-in area seen to the right in Figure A.1.

This may be seen as a visual proof-of-concept of the strategy outlined above.

3 In theory, this would yield an exact metric. In practise, the corrector interferes – more or less,
depending on the particular problem – an thus the method overshoots or undershoots slightly. The
effects on the corrector are discussed in Appendix A.2 below.
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F igure A.1 : Constant entropy production manifold in (∆(CA)red, ∆Tred) coordinates,
using N̂A ∝ ∆CA (Fick’s law). By zooming in on a small area surround-
ing the origin, the fact that φ̇ = const is clearly visible.

Note, however, that the strategy does not work as well for the tracing of man-
ifold which projection into the chosen R2 coordinates display an ellipse with
eccentricity approaching unity. For such a manifold, the argument demanding
constant φ̇ = const is not a good proxy for the underlying desire of constant arc
length of the predictor at each step along the R2 projection. The predictor steps
are (relatively) small in areas close to the origin, and correspondingly (relatively)
large in the areas far from the origin – both in the R2 projection. Large steps
imply that the predictor step does not necessarily stay close to the manifold.
Thus, the corrector must either a) compensate substantially or b) will fail to
converge, as illustrated in Figure A.2.

While the method successfully traces out the manifold, it is evident that the angle
is not constant – a visual clue to the fact that the corrector most compensate
substantially due to the (relatively) long predictor taken at certain areas of the
manifold.
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F igure A.2 : Constant entropy production manifold in (∆(µA)red, ∆Tred) coordinates,
using N̂A ∝ ∆µA. By zooming in on a small area surrounding the origin,
it is evident that the corrector most compensate substantially in the areas,
with the result that φ̇ 6= const at all points along the manifold.



Appendix B

Generating symbolic Hessian using Python

In the current problem formulation, the Helmholtz free energy is used to express
the derivatives of the constraint equations directly. However, at an earlier stage is
was reasoned that using internal energy, U(S, V, N), would provide a simplified
problem structure. The idea was to employ SymPy1 - a python library for
symbolic mathematics - in order to provide a symbolic nullspace vector, which
could in turn be evaluated at the given state. The intention was to avoid any
numerical issues when calculating the nullspace vector, as well as providing a
better understanding of the nullspace vector elements that would constitute the
(unscaled) predictor.

It was found that these benefits were outweighed by the necessity of mapping
from (T, V, N) 7→ (S, V, N), as the former coordinates are those corresponding
to the chosen equation of state (EOS) (ideal gas law). This is – in theory – not
an issue, but in practise such a mapping requires the construction of additional
Jacobians and functions. Also, the symbolic calculations would not scale well as
the system was expanded to account for the necessary reservoirs and transport
equations. A symbolic nullspace vector may be feasible for a relatively small,
purely thermodynamic system, but was deemed to be inadequate for treating the
extended problem formulation. Thus, both using (S, V, N) as the chosen state

1 SymPy is free, lightweight and is written entirely in python- as such, no external libraries are
required. The aim is “(...) to become a full-featured computer algebra system (CAS) while keeping
the code as simple as possible in order to be comprehensible and easily extensible.” An extensive
documentation and example usage is available at http://www.sympy.org/
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variables and using SymPy for the nullspace vector calculations was abandoned.

For completeness, an approach to expressing the Hessian of the internal energy
in terms of Helmholtz free energy coordinates is outlined below using SymPy

for symbolic matrix algebra. The mathematics and thermodynamic argument
behind the general approach is discussed by Haug-Warberg (2006a).

This short script is shown in python code B.1. It should be emphasised that
while the procedure outlined here will provide a more consistent way of cal-
culating symbolic Hessians of other potentials than that of traditional hand
calculations, it is in no way automatic and still requires the user to explicitly
state ∂x

∂y , the Jacobian for the mapping from x 7→ y, and ∂g
∂y , the derivative of the

gradient of U with respect to y. Thus, the benefit of the approach below is that
no matrix inversion is required - an operation that may be both cumbersome
and error-prone.

L isting B.1 : hessian_U_SVN_in_TVN.py
1 ########################################################################
2 # Hessian of U(S,V,N) in terms of A(T,V,N)
3 #
4 # Expression the symbolic Hessian of U(S,V,N) in terms of derivatives of
5 # A(T,V,N), i.e. in Helmholtz coordinates. SymPy - a Python library for
6 # symbolic mathematics - is utilized for the symbolic matrix algebra
7 #
8 # Author: Kjetil Sonerud
9 # Updated: 2015-03-04 14:09:47

10 ########################################################################
11

12 import sympy as sp
13

14 # Define 2nd derivatives of A(T,V,N) as symbols
15 A_TT , A_TV , A_TN = sp.symbols('A_TT A_TV A_TN')
16 A_VT , A_VV , A_VN = sp.symbols('A_VT A_VV A_VN')
17 A_NT , A_NV , A_NN = sp.symbols('A_NT A_NV A_NN')
18

19 # x = (S,V,N)
20 # y = (T,V,N)
21 # g = dU/dx = (T,-p,mu)
22

23 dxdy = sp.Matrix([
24 [-A_TT , -A_TV , -A_TN],
25 [ 0, 1, 0],
26 [ 0, 0, 1]
27 ])
28

29 dgdy = sp.Matrix([
30 [1, 0, 0],
31 [A_VT , A_VV , A_VN],
32 [A_NT , A_NV , A_NN]
33 ])
34

35 # Calculating and printing the symbolic Hessian
36 H = dgdy*(dxdy**-1)
37 print H
38
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39 # Using SymPy's LaTeX output for ease of use in reports etc.
40 print sp.latex(H)

The result from python code B.1 is shown in eq. (B.1) below
− 1

ATT
− ATV

ATT
− ATN

ATT

− AVT
ATT

AVV − ATV AVT
ATT

− ATN AVT
ATT

+ AVN

− ANT
ATT

− ANT ATV
ATT

+ ANV ANN − ANT ATN
ATT

 (B.1)

Here, AX1X2 is the second derivative of Helmholtz free energy with respect to X1

and X2, holding other state variables constant with each differentiation. Thus,
ATT is shorthand for

(
∂2 A
∂T2

)
V,n

. Given that A(T, V, N) is known, the separate

elements of the above Hessian – or the complete matrix – may be evaluated.

While an equivalent result may be found by treating each element of the Hessian
of U(S, V, N) separately, and expressing these in terms of A(T, V, N) by employ-
ing suitable Maxwell relations2 and (clever) use of total differentials, the latter
approach is found - by hard-won experience - to be much more error-prone. In
order to illustrate this alternative approach, finding USS

?
= −A−1

TT is performed.
Starting out with (

∂2U
∂S2

)
V,n

=

(
∂T
∂S

)
V,n

(B.2)

where the definition
(

∂U
∂S

)
V,n

, T from Section 2.1 is used. Alternatively, from

differentiation of eq. (2.11b)

S = −
(

∂A
∂T

)
V,n

=⇒
(

∂S
∂T

)
V,n

= −
(

∂2 A
∂T2

)
V,n

= −ATT (B.3)

2 A Maxwell relation is a – frequently useful – thermodynamic identity between selected par-

tial derivatives, e.g.
(

∂T
∂V

)
S,n

= −
(

∂p
∂S

)
V,n

(Denbigh, 1971). This may be found from the fact that

∂
∂V

(
∂U
∂S

)
= ∂

∂S

(
∂U
∂V

)
– the state variables that are to be held constant during the differentiation are

omitted for clarity. The latter – and Maxwell relations in general – is a result of what is often called
the Mixed Derivative Theorem: if f (x, y) and its partial derivatives fx , fy, fxy, fyx are defined through-
out an open region containing a point (a, b) and are all continuous at (a, b), then fxy(a, b) = fyx(a, b).
According to (Weir et al., 2005), this result was first published by Leonhard Euler in 1734, in a series
of papers he wrote on hydrodynamics.
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Thus, combining eq. (B.2) and eq. (B.3), it is found that(
∂2U
∂S2

)
V,n

= −A−1
TT (B.4)

as expected from eq. (B.1). Deriving the cross-terms may be done in a similar
fashion, but these calculations are more tedious – thus, more prone to human
error.



Appendix C

Jacobian structure

Everyone knows that debugging
is twice as hard as writing a
program in the first place. So if
you’re as clever as you can be
when you write it, how will you
ever debug it?

brian w. kernighan
1

The purpose of Appendix C is to visualise and briefly discuss the structure of
the Jacobians used as a key part of the manifold tracing strategy of Chapter 5. As
both the predictor and the corrector method hinge on the correct implementation
– both structurally and numerically – of the Jacobian, a lot of time was spent
on both derivation and debugging.2 First, the Jacobian for the closed system
described in Section 4.2 is outlined in Appendix C.1. The resulting Jacobian
is the key to tracing the constant entropy manifold. Next, the Jacobian for the
open system described in Section 4.3 is outlined in Appendix C.2. The latter
is an integral part of the numerical tracing of the constant entropy production
manifold.

1“The Elements of Programming Style”, (McGraw-Hill, 1978)
2 Through hard-won experience, it was realised that while it is often easy do derive analytical

Jacobians for a thermodynamic system of moderate size, the strategy scales badly – the likelihood
of human error is large. A single wrong sign may be enough to render the whole Jacobian useless.
Even though a more automated approach is beyond the scope of this work, it would be essential if
the system structure were to be further scaled. The interested reader is referred to (Løvfall, 2008) for
intriguing ideas on this topic in the context of thermodynamics.

113
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T1 V1 NA,1 NB,1 T2 V2 NA,2 NB,2

Eq. 1: U1 + U2 −U0 = 0

Eq. 2: p1 − p2 = 0

Eq. 3: V1 −V0
1 = 0

Eq. 4: V2 −V0
2 = 0

Eq. 5: NA,1 + NA,2 − NA,tot = 0

Eq. 6: NB,1 + NB,2 − NB,tot = 0

Eq. 7: S1 + S2 − Sinit = 0

Eq. 8: (∆x)>dx = 0 * * * * * * * *

F igure C.1 : The structure of the Jacobian for the closed system described in Sec-
tion 4.2. The reader is referred to the main text for an explanation of the
sign convention employed.

C.1 Jacobian structure: closed system

The Jacobian for the closed system is a (relatively) dense 8× 8 matrix, as visual-
ized in Figure C.1. Here, indicates a positive element with a numeric value of
1. The sign of elements marked as may vary based on the state of the system
and the components chosen – no a priori distinction is possible.

Note that the last row – the elements denoted by *** – represent the predictor
vector. As discussed in Chapter 5, the predictor vector is used to extend the 7× 8
Jacobian that results from the differentiation of the constraint equations with
respect to the state variables alone. In addition to ensuring a square Jacobian
needed for the Newton-Raphson (N-R) method, the rationale is that it is sensible
to require the corrector steps to be orthogonal to that of the predictor. It should
be noted that this last row has no connection to the physical model – it is entirely
a result of the numerical strategy chosen to solve the manifold tracing problem.
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C.2 Jacobian structure: open system

The structure of the Jacobian for the open system is shown in Figure C.2. The
convention for the elements are the same as the one employed in Appendix C.1
– denotes a positive element with a numeric value of 1 and denotes that the
sign may vary depending on the state of the subsystems and the components
chosen for the model. In addition, denotes a negative element with numeric
value of −1. It should be noted that all non-starred elements (i.e. , and ) will
structurally remain the same regardless of the implemented thermodynamic model.
Such a distinction is helpful to keep in mind if the model is to be changed – it
is duly exploited when implementing new transport models using an object-
oriented programming (OOP) approach.If the system structure itself is altered,
the Jacobian must evidently be updated accordingly.

As in Appendix C.1, the elements denoted by *** represent the predictor vector.
This is a necessary extension of the Jacobian resulting from the constraint equa-
tions alone – as discussed in Chapter 5 – yielding a 30× 30 square matrix used
in the N-R method. Furthermore, the elements denoted by ** signify the ther-
modynamic state variables of the two subsystems in the two rows that denote
the mass transport equations (Eq. 13 and Eq. 14). Whether these elements are
zero or non-zero depends on the actual transport equations implemented for
the given model – e.g. in the case of Fick’s law for transport of component A,
both the elements corresponding to V and NB,j are zero.

The elements denoted by * are the derivatives of the partial molar enthalpy
with respect to other thermodynamic state variables than T. While these are
strictly zero using the current thermodynamic model – i.e. assuming ideal gas,
as outlined in Chapter 4 – this is not generally true. Thus, it should be noted
that if a new implementation of the thermodynamic model dictates that such
derivatives are non-zero, the Jacobian structure must be updated to reflect this.3

The variables – constituting the columns – and equations – constituting the rows

3 This should ideally have been implemented as a feature of the ideal gas model, so that e.g. ∂h̄
∂V

could be set to zero in this model, not in the Jacobian structure itself. However, this fact was realised
too late – thus, the Jacobian corresponding to the open system must be slightly changed if a more
complicated thermodynamic model is to be implemented.
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– of Figure C.2 are given in TAB1 below. Note that in the case of the equations,
there are only 29 physical constraint equations, as discussed earlier. Abbrevi-
ations for the energy balances (EBs) and mass balances (MBs) are employed
for the purpose of compact notation. For a more thorough description of the
constraint equations and variables, see Section 4.3.
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F igure C.2 : The structure of the Jacobian for the open system described in Section 4.3.
The reader is referred to the main text for an explanation of the sign
convention employed, and to Table C.1 for the physical interpretation of
the variables (columns) and equations (rows).
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Table C.1 : Relating the constraint equations and variables from Section 4.3 to Fig-
ure C.2. It is emphasised that there is no link between equation x and
variable x other than the fact that they share the same number – as row
and column, respectively – in Figure C.2

Row/column number Constraint equation Variable

1 EB, system 1 T1

2 MB, A system 1 V1

3 MB, B system 1 NA,1

4 V1 −V0
1 = 0 NB,1

5 EB, system 2 T2

6 MB, A system 2 V2

7 MB, B system 2 NA,2

8 EB, connection NB,2

9 V2 −V0
2 = 0 (T1,A)

rsvr

10 p1 − p2 = 0 (V1,A)
rsvr

11 s̄ = const (N1,A)
rsvr

12 Heat transport eq. (T2,A)
rsvr

13 Mass transport eq., component A (V2,A)
rsvr

14 Mass transport eq., component B (N2,A)
rsvr

15 U1 + U2 −U0 = 0 (T1,B)
rsvr

16 NA,1 + NA,2 − NA,0 = 0 (V1,B)
rsvr

17 NB,1 + NB,2 − NB,0 = 0 (N1,B)
rsvr

18 (T1,A)
rsvr − T1 = 0 (T2,B)

rsvr

19 (V1,A)
rsvr − (V0

1,A)
rsvr = 0 (V2,B)

rsvr

20 (µ1,A)
rsvr − µA,1 = 0 (N2,B)

rsvr

21 (T2,A)
rsvr − T2 = 0 Q̂

22 (V2,A)
rsvr − (V0

2,A)
rsvr = 0 Q̂1

23 (µ2,A)
rsvr − µA,2 = 0 Q̂2

24 (T1,B)
rsvr − T1 = 0 Q̂†

25 (V1,B)
rsvr − (V0

1,B)
rsvr = 0 N̂A

26 (µ1,B)
rsvr − µB,1 = 0 N̂A,1

27 (T2,B)
rsvr − T2 = 0 N̂A,2

28 (V2,B)
rsvr − (V0

2,B)
rsvr = 0 N̂B

29 (µ2,B)
rsvr − µB,2 = 0 N̂B,1

30 - N̂B,2
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