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Abstract 

 

The goal of this thesis is to develop concepts to separate photosynthetic hydrogen production 

from oxygen production. For this the strains will be generate and with deficient in the 

photosystems (PSI and PSII) that mediate oxygen production and hydrogen production, 

respectively. The potential to interfacing these two strains via artificial and natural electron 

transport systems will be evaluated. The growth experiment will be estimated for mutants on 

different iron and manganese sources, with light or dark condition.  

Cyanobacteria are large and diverse group of prokaryote. It is composed of two main 

membrane, cell wall and cytoplasmic membrane. Within the membrane the photosynthetic 

apparatus is incorporated where photosynthesis take place. Photosynthesis is the most 

important process on Earth, by which the oxygen gas is produced and released. The 

photosynthesis began with light been absorbed by the pigment on the surface of the 

photosystem II. Energy from the absorbed electron then is used for water oxidation. The 

electron from water molecule together with electron from the light are transferred to 

cytochrome b6f complex. Cytochrome b6f complex catalyzes the transfer of electrons from 

plastoquinol to plastocyanin. It mediates the electrons from photosystem II complex to 

photosystem I complex. The electron is re-energies and then used to drive synthesis ATP.  

The Synechocystis sp. PCC6803 was used to create mutants with deficient photosystems (PSI 

and PSII). The mutant with deficient in PSI was created by deletion slr1834-1835 gene, that 

is responsible for production P700 apoprotein subunit Ia and Ib. The PSII deficient were 

create by deletion slr0906 gene, which produce core light harvesting protein. The growth 

experiments were performed with different iron and manganese sources and exposed to the 

dark condition and light condition. The results showed that all mutants possess ability to growth 

on all the media that was made for this experiment. However, there are small differences in 

growth rate on different media. The Δslr1834-1835 showed increased growth on media that 

were supplemented with manganese sources exposed to dark condition, compared to the 

Δslr0906 mutant. The Δslr0906 showed increased growth rate on media supplemented with 
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iron and manganese sources exposed to dark condition. The strains grown on media exposed 

to light condition showed increased growth rate compared to the growth under the darkness. 

The strains that were grown under the light condition showed the most increased growth rate 

over the time. The interfacing two strains via artificial and natural electron transport systems 

will not be evaluated. This is due to lack of time. 
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Sammendrag 

 

Målet med denne oppgaven er å utvikle konsepter for å kunne skille 

fotosyntesehydrogenproduksjonfra oksygen produksjon. For å kunne utføre dette, 

cyanobakteriastammersom er mangelfulle i fotosystemer ( PSI og PSII ) som formidler 

hendholdsvis oksygenproduksjon og hydrogenproduksjon skal genereres. Potensialet til 

tilkoplingen av disse to stammene via kunstige og naturlige elektrontransportsystemene vil 

bli evaluert. Vekstforsøket vil bli estimert for mutanter i forskjellige jern- og mangankilder, 

med lys eller mørk tilstand. 

Cyanobakterier er stor og mangfoldig gruppe av prokaryote. De er sammensatt av to 

hovedmembraner, cellevegg og cytoplasmisk membran. Innenfor membranen inngår 

fotosyntese anordningen der fotosyntesen foregår. Fotosyntese er den viktigste prosessen på 

jorden , ved hjelp av hvilken oksygengass produseres og frigjøres . Fotosyntesen begynte ved 

at lys ble absorbert av pigmentene på overflaten av fotosystem II .Energien fra den absorberte 

elektronen deretter brukes for vannoksidasjon . Elektronen fra vannmolekylet overføres 

sammen med elektronen fra lyset til cytokrom b6f kompleks. Cytokrom b6f kompleks 

katalyserer overføring av elektroner fra plastoquinol til plastocyanin. Den formidler 

elektronene fra fotosystem II kompleks til fotosystem I kompleks. Elektronet blir gjennladet 

og deretter brukt til å drive syntese ATP. 

Synechocystis sp. PCC6803 ble brukt til å lage mutanter med mangler fotosystem( PSI og 

PSII ) . Mutanten med mangler i PSI ble opprettet ved sletting av slr1834-1835 genet , som er 

ansvarlig for produksjonen av P700 apoprotein underenhet Ia og Ib . PSII mangelen var 

opprettet ved sletting av  slr0906 genen , som produserer kjernelys høste protein. 

Veksteksperimenter ble utført med forskjellige jern og mangan kilder og utsatt for både mørk  

og lys tilstand . Resultatene viste at alle mutanter vokser på alle forskjellige jern- og 

mangankilder . Men det er små forskjeller i vekstrate på ulike medier. Δslr1834-1835 viste 

økt vekst på medium som ble supplert med mangan kilder utsatt for mørke forhold , 

sammenlignet med Δslr0906 mutanten. Slr0906 viste økt veksttakt på medium supplert med 

jern og mangan kilder utsatt for mørk tilstandstammene dyrket på media som ble utsatt for lys 



 
 

5 
 

viste økt vekst sammenlignet med vekst i mørk tilstand. Stammene som ble dyrket under lys 

tilstand viste den mest økte veksthastighet over tid.  

På grunn av tidsmangel vill grensesnittet av stammene Δslr1834-1835 og Δslr0906 via 

kunstige og naturlige elektrontransportsystemenevil ikke bli vurdert. 
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1 Introduction 

Introduction 
Cyanobacteria are one of the largest and diverse groups of prokaryotes. In the past the 

cyanobacteria were described as blue-green algae, however this name is misleading because 

the cyanobacteria are not true algae, which belong to group of eukaryote. The cyanobacteria 

mechanism of photosynthesis shows similarities to the photosystem found in eukaryotes. 

Cyanobacteria are resilient organisms that are highly flexible and can adjust to number types 

of environment. Therefore, cyanobacteria are found in almost any environment, starting from 

distilled water, freshwater, marine environment to extreme ones like hot springs, benthos, hot 

desert, tropical rain forest and Antarctic cold desert. All existing cyanobacteria are 

photoautotrophs; however there are some species that can growth photoheterotrophically 

(Srivastava, Rai, & Neilan, 2013),(Blankenship, 2002). 

Cyanobacteria are one of the largest groups of organisms that produced 20 %-30% oxygen 

productivity on global scale. In addition cyanobacteria show ability to fix atmospheric N2 to 

form biologically accessible compound. In order to fix N2 cyanobacteria contain enzyme 

nitrogenase, which is sensitive to O2. The oxygen molecule produced by the photosystem II 

in cyanobacteria is incompatible during nitrogen fixation. Therefore, cyanobacteria possess 

remarkably adaptation abilities, in which can solve this problem in many different ways. One 

of them is to change the characteristic of the cell to heterocyst in which create filamentous 

form of cell that growth as a string. In this type of cell the photosystem is absent, and the cell 

dos not diffuse oxygen molecule inside the cell. The other way to adapt is to perform N2 

fixation during dark condition when the cell do not produce oxygen molecule. In some of the 

group of cyanobacteria there are species that have ability to switch H2O to H2S in order to 

produce electron, in that case the elemental sulfur is produced. However in absent of H2S 

organisms is capable to produce O2 in the same manner as other cyanobacteria (Blankenship, 

2002)  

The cyanobacteria cell is compost of two main membranes, first is cell wall and the second is 

cytoplasmic membrane. The cell wall is compost of murein and cytoplasmic membrane 

separates cytoplasm from the periplasm. Most cyanobacteria contain large internal system of 
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thylakoid membrane. Within the membrane the photosynthetic apparatus are incorporated 

(Blankenship, 2002). Therefore, oxygenic photosynthesis takes place in thylakoid membrane. 

The structure of cyanobacteria cell membrane is simply described in Figure 1. 

 

 

Figure 1 Schematic structure represents intercellular membranes and compartments located in the 

cyanobacteria cell. Thylakoid membranes is consist of chlorophyll a, is involved in photosynthetic and 

respiratory electron transfer. Cytoplasmic membrane system contains carotenoids and performs only 

respiratory electron transfer.  The thylakoid lumen is a space between a pair of thylakoid membrane. The 

thylakoid membrane is the place where the protons produced during the photosynthetic and respiratory 

electron transfer are collected (Srivastava et al., 2013)(Wimp FJ Vergas, 2001).  

The cyanobacteria mechanism of oxygenic photosynthesis is high comparable to that one in 

oxygenic eukaryotes. Therefore, cyanobacteria can be use as a model organism to study how 

the system is regulated and different aspects of oxygenic photosynthesis (Srivastava et al., 

2013). 

 

Iron metabolism 

Iron is a trace element that’s plays important role in photosynthetic apparatus. It may be 

associated with biosynthesis of chlorophyll and phycobilin pigments, with many components 

within the photosystem II and photosystem I, nitrate assimilation and as well with electron 

transport (Wei Xing, Wen-min Huang, Dun-hai Li, & Yong-ding Liu, 2006). The iron 

acquisition showed great importance in variety of metabolism processes within almost all 

organisms living on Earth. However, in order to imbibed the iron from the environments 

microorganisms have to create various uptake systems (Briat et al., 1995). Cyanobacteria are 
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the one of the organisms that requires large number of iron for supplying the Fe-rich 

photosynthetic apparatus. In the highly variable environment, in order to maintain 

homeostasis cyanobacteria species acquire large numbers of genomes that code for 

transporters. The genes encoding iron transporters include iron-responsive elements, iron 

storage complexes and iron transporters. In order to bind iron metals from the environment 

microorganisms produce siderophore. The siderophore has small molecular weight and are 

responsible for scavenging irons Fe(III) from the environment (Chauvat & Cassier-Chauvat, 

2013, p. 57). Ones the iron is bound create the ferric-siderophore complexes, therefore the 

iron can be transported inside the cell. This transport can occur by the siderophore transport 

system. The release of iron from the siderophore usually take place in the cytoplasm (Lis, 

Kranzler, Keren, & Shaked, 2015a).  

 

Manganese metabolism 

The manganese is the essential trace mineral element for the electron transfer apparatus in all 

microorganisms. Therefore, plants and cyanobacteria create special uptake and accumulation 

system in order to store metals irons (Bartsevich & Pakrasi, 1996). In photosynthetic 

apparatus the Mn atoms are located within the photosystem II in thylakoid membranes, where 

carried out the process of water oxidation (Ogawa, 2002). Therefore, Mn can be specific only 

for photosystem II complex. Although under restricted number of quantity of manganese the 

high-affinity MntABC transport system is triggered in cyanobacteria. Therefore, inactivation 

of this transporting system leads to reduction of activity of photosystem II (Shcolnick & 

Keren, 2006).  

 

Oxygenic photosynthesis 

Oxygenic photosynthesis is the one of the most essential biological process on the earth. All 

higher organisms depend on oxygen in the atmosphere, which is produced by oxygenic 

organisms. Within oxygenic organisms the light energy is converting into chemical energy, 

which can be stored. During this process oxygen gas is secreted and released as a byproduct. 

This is followed by the reduction of carbon, using the energy obtained from light. Thereby, 

energy equivalents and carbonbased molecules can be used by the oxygenic organism to 

drive all the necessary cellular processes (Srivastava et al., 2013)(Blankenship, 2002)(Wim 

FJ Vermaas, 2001).  
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Photosynthesis begins with energy being absorbed; this energy comes from the sunlight. 

Before light reaches the surface of the earth, it is attenuated by scattering and molecules that 

exist in the atmosphere. The fraction of solar light left after being absorbed by the atmosphere 

can then be utilized on the surface of the earth. The visible light range together with 

wavelengths from 700 to 1000 nanometers (nm), are significant in carrying out the process of 

photosynthesis. Oxygenic photosynthetic organisms contain pigments that absorb light in the 

visible light range. Furthermore, many algae and plants appear green, as they reflect yellow 

and green wavelengths of light. Red and blue wavelengths of light are absorbed by these 

pigments and provide the energy that is used for photosynthetic carbon fixation. On Earth the 

production of oxygen is important for all of the higher organisms. The organisms that can 

drive this process are called photoautotrophs. The photoautotrophic group includes plants, 

algae, cyanobacteria and photosynthetic bacteria (Blankenship, 2002).  

Within algae, oxygenic photosynthesis starts in the thylakoid membrane where antenna 

system (PBSs) containing pigment molecules absorb light. This excitation energy is then 

transferred to the reaction center (RC) complex. The manganese oxide cluster (Mn40xCa) 

then oxidizes water molecules into 4 protons, 4 electrons and oxygen molecule. These 

electrons are then transferred by the redox active tyrosine molecule (Tyr) to RC of 

photosystem II (PSII). Within the RC excitation energy will pass the electrons to a series of 

proteins located in thylakoid membrane. Plastoquinone A (QA) is electron acceptor of PSII 

which accepts one electron and transfer one by one to the plastoquinone B (QB). Next 

plastoquinone B molecule accepts and transfers two of those electrons simultaneously and 

collects two protons from stroma and transfers them to the thylakoid space. This protons 

transfer increases the hydrogen ion gradient over the thylakoid membrane. The hydrogen ion 

gradient allows ATP synthase to phosphorylate ADT to ATP. The low energy electrons 

leaving the PSII are then transported to photosystem I (PSI).  Within PSI the electrons are 

reenergized and transport via an electron transport pathway to ferredoxin-NADP
+
 reductase 

(FNR).  FNR is an enzyme that reduces NADP+ to form NADHP (“Z-Scheme Figure 

Legend,” n.d.). 
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Photosynthesis and respiration in cyanobacteria  
Cyanobacteria are found to be oldest photosynthetic organisms on Earth, is have been 

estimated to be 3.5 bilin years old, respectively. The reason why cyanobacteria are the 

evolutionary oldest organisms lies in their ability to perform effective metabolic pathway. 

This organism is in one of the few groups that can perform oxygenic photosynthesis and 

respiration spontaneously and as well they are located in the same compartments within the 

cell. Therefore, they are resilient and highly flexible to various types of environment. The 

combinations of photosynthesis along with respiration require electron transport that is 

catalyzed by the protein complexes located within the membrane. The thylakoid membrane 

contains both electron transport chains for photosynthesis and respiration. Within oxygenic 

photosynthesis conversion water molecule and CO2 to sugar take place, however the 

respiration converts sugar to water and CO2. Therefore the cytoplasmic membrane contains 

respiratory electron pathway, in which there is no photosynthetic components associated 

with. The thylakoid membrane contain photosynthetic electron transport, however in many 

cyanobacteria the respiratory electron transfer take place alike in thylakoid and cytoplasmic 

membrane. The photosynthesis and respiration electron transport chains are simply described 

in Figure 2. The cyanobacteria thylakoid membranes containing the photosynthesis and 

respiration electron transfer utilize many redox-active components. Utilizing the redox-active 

components includes the plastoquinone (PQ) pool, cytochrome b6f complex and electron 

carriers plastocyanin or cytochrome c553 (cytochrome c6) (Wim FJ Vermaas, 2001).  
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Figure 2 Schematic structure represent photosynthetic and respiration electron pathway in thylakoid 

membrane of the cyanobacterium Synechocystis sp. PCC 6803. The arrow signifies electron transfer 

pathways, the thunderbolts indicate light that is in the motion within the redox reaction in both 

photosystem. The thick arrows indicate the rate of the corresponding reactions. Electron transport 

complexes are PSII and PSI, and for respiration are designated as NDH-1, SDH together with terminal 

oxidase.  PQ, cyt b6f and PC are sheering this same electron transport pathway. The arrow drowns in both 

way indicated SDH electron flow. Abbreviations: cyt b6f, the cytochrome b6f complex; Fdox and Fdred, 

ferredoxin in oxidized and reduced forms, respectively; NADP(H), nicotinamide – adenine dinucleotide 

phosphate (reduced form); NDH-1, type 1 NADPH dehydrogenase; Ox, terminal oxidase; PC, plastocyanin; 

PQ, plastoquinone; PS I, photosystem I; PS II, photosystem II; SDH, succinate dehydrogenase (Wim FJ 

Vermaas, 2001). 

 

 

Electron pathway 
Photosynthesis began from the light being absorbed by the pigments located on the surface of 

membrane in the photosynthetic organism. The absorption of lights the first phase in the 

electron pathway. Photosynthesis can be divided in four phases: first phase is light absorption 

where the energy transport is performed by antenna system; second phase is primary electron 

transfer in photosynthetic RC; third phase is energy stabilization carried out by secondary 

processes; the last phase is synthesis and transport of the final product.  In those four phases 

there is only one phase that depends on the light and it is photon absorption. The other three 

phases do not hinge on light (Blankenship, 2002).  
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Energy transfer in antennas 

The antenna complex contains various numbers of pigments associated with PSI and PSII. 

Mostly pigments are connected with proteins using highly specific bonds. The antenna 

complex may consist of a variety of pigments. The most common pigments are carotenoids 

and open chain tetrapyrrole found in phycobilisome antenna complex. The main function of 

the pigments is collecting light and transporting energy to the RC. The antenna systems do 

not function based on chemistry; they function based on a quantum physical process where 

excited energy migrates from one pigment to another (Blankenship, 2002; Freer et al., 1996). 

Inside the antenna complex the absorbed light energy jumps from one short-wavelength- to 

other longer-wavelength-absorbing pigments. The short wavelength pigments are located 

peripherally while the longer wavelength pigments are placed close to the RC. The short 

wavelength pigments are higher energy pigments and the longer wavelength pigment are 

lower energy pigments. Therefore the energy transfers accurse from higher to lower 

pigments. The energy transport creates a unidirectional energy transfer downstream to the 

spectral gradient (Blankenship, 2002). 

The entire surface that is created by the antenna complex increases the amount of absorbed 

energy compared to a single pigment. In situations of relatively diluted sunlight, an increased 

absorption surface area enhances the photon absorption. The sunlight hits the surface of the 

pigments, and the energy is transferred from the pigments to the RC (Blankenship, 2002; 

Freer et al., 1996).  

In order to store the light energy the photon needs to be absorbed by one of the pigments 

located in photosynthetic complex (Blankenship, 2002)(Freer et al., 1996). The absorbed 

photon generates an excited state, in which results in charge separation within RC, liberating 

electrons from H2O. 

 

Electron transfer in reaction centres 

The structure of PSI and PSII contain the RC, where the transformations of pure energy to 

chemical energy take place. The RC is located in the centers of the two photosystems and is 

composed of a multi-subunit protein complex-pigment. It integrates chlorophylls and electron 

transfer cofactors, for example quinines, iron sulfur centers and highly hydrophobic peptides. 

The RC is consisting of pigment dimer that is the primary electron donor. The dimer 

pigments are chemically identical to the pigments located in the antenna complex, however 
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there emplacement gives those dimer pigments distinct characteristics. The final stage of the 

transport of electron in the antenna complex is the transfer of energy to the dimer pigments. 

The energy transferred excites the dimer to excited state. The transfer of electrons in the RC 

is simply described in Figure 3. The excitation of the pigment (P) occurs by direct absorption 

of a photon which occurs rarely or more likely by transfer energy from the antenna complex. 

The excited pigment (P*) quickly loses an electron and this is transferred to the closest 

electron acceptor molecule (A). The transfer generates the ion pair (P
+
A

-
), known as primary 

reaction of photosynthesis. Within the primary reaction the electronic excitation has been 

converted to chemical redox energy. At this point the system is in position to lose the stored 

energy. In the primary reaction there is a possibility of losing the stored energy because the 

electron can be transferred back to P
+
 from A

-
, leading to the conversion of energy into heat 

and further transport of electrons cannot occur. However the system prevents this reverse 

electron transport by a series of quick secondary reactions. The secondary reaction performs 

separation of positive and negative charges. The secondary reaction is placed on the one side 

of the P+A-where acceptor is located. The result of oxidized and reduced pigments leads to 

the separation in the distance of the biological membrane. The quantum yield of the product 

carried out by the absorbed photon is 1.0 in which gives the system perfect efficiency 

(Blankenship, 2002). 
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Figure 3 Schematic structure of electron transfer in reaction centers within the photosystems. Light 

energy excite pigment (P) to an excited state (P*).  Excited pigment losses an electron to molecule (A), to 

form iron-pair state P
+
A

-
. Secondary reaction separates the charges by electron transfer from the electron 

donor (D) and from initial acceptor to secondary acceptor (A’) (Blankenship, 2002).  

 

Stabilization by secondary reaction 

Photosynthesis starts with energy transfer from the excited chlorophyll pigments in the 

antenna complex to the RC where the acceptor pigment is located. After the excitation energy 

has been transferred, the rapid series of secondary chemical reaction occur where the 

separation of positive and negative charge takes place. All the photosynthetic RCs operate 

based on this reaction principle. However, depending on the photosynthetic organisms in 

which it is located this may contain a distinct pattern of electron transfer (Blankenship, 2002). 

Within some organisms where the one light drives electron transfer and stabilization, the 

entire cyclic electron transfer chain occurs. Figure 4 shows energy input in the system caused 

by the photon absorption (vertical arrow) and further more spontaneous electron transfer, 
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wherein optionally the electron returns to the primary electron donor. In order to obtain a 

productive cyclic electron transfer process, part of the absorbed energy must be stored. The 

membrane proton movement and electron transfer results in pH differences or 

electrochemical gradient on both sides of the membrane. The pH differences and 

electrochemical gradient is then used in carrying out the synthesis of ATP (Blankenship, 

2002).  

 

 

Figure 4 Schematic structure of cyclic electron transfer chain, found in anoxygenic photosynthetic 

bacteria. The vertical arrows describe photon absorption. P is primary electron donor, D, A and C is 

secondary donor, acceptor and carriers (Blankenship, 2002).  

The oxygenic photosynthetic organisms contain two RC complexes that work simultaneously 

in noncyclic electron transport chain. The schematic structure of noncyclic electron transport 

chain is shown in Figure 5. The RCs are located in PSI and PSII. In PSII, oxidation of water 

molecules takes place and oxygen is released as a byproduct. The extracted electron from the 
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water molecule is then transferred to PSI. In a matter of few seconds the light driven electron 

transfer takes place and eventually the intermediate electron acceptor NADP
+ 

is reduced. 

During the process, protons are transported across the thylakoid membrane creating a pH 

gradient. The energy is then used to drive the synthesis of ATP (Blankenship, 2002).  

 

 

Figure 5 Schematic structure represents noncyclic electron transfer chain, found in oxygenic 

photosynthetic organisms. (a) General electron transfer pathway. (b) Schematic diagram of protein 

complexes incorporated in photosynthetic membrane (Blankenship, 2002).  
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Synthesis and transport of the final product 

Synthesis and transport of photosynthetic products is the last phase. The stable product is 

produced and released to drive all necessary intercellular processes. This phase includes the 

use of intermediate reduced compound NADPH, which is provided by FNR associated with 

PSI. Synthesis of the final product requires phosphate bond energy from ATP which is 

responsible for carbon fixation [Figure 6]. Therefore, sugar and carbon can be assimilated by 

the photosynthetic organism (Blankenship, 2002). 

 

 

Figure 6 Structure of the ATP synthase enzyme (Blankenship, 2002). 
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Components 

Within the photosynthetic membrane two complexes convert the light energy into chemical 

energy for the photosynthetic organism. The two compounds are called PSI and PSII.  

PSII 

Photosystem II is one of the most important complexes for all living organisms that inhabit 

the Earth. It carries out the process of water oxidation, where the water molecule is split into 

hydrogen and oxygen gas. The reaction scheme is shown in Eq.1.  

  2H2O + 2PQ  O2 + 2PQH2        (1) 

where PQ indicates oxidized plastoquinone and PQH is reduced plastoquinone(Blankenship, 

2002). Evolved oxygen is released into the atmosphere and the energy that is obtained from 

this process is used for further chemical reactions by PSI. The water oxidation is carried out 

by oxygen-evolving complex (OEC).  The OEC is composed of tetranuclear Mn cluster, 

where four oxidizing equivalents are captured from photochemical reaction within the 

photoactive pigments (Blankenship, 2002).  

The structure of the PSII protein complex is shown in Figure 7. Within the complex proteins 

D1 and D2 can be distinguished as main core subunits. PSII also contains many other 

associate proteins, in which the function role for most is not clear yet. Therefore, the 

experiments were performed where many proteins have been deleted from the photosystem 

complex, even though these mutants showed the same growth as the wild-type organisms. 

Those mutants show tremendous ability to grow, and insignificance of the subunits within the 

photosystem.  
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Figure 7 Schematic structure of photosystem II, the protein subunits are indicated by name or by 

molecular masses. More characteristic of protein are given in text (Blankenship, 2002).  

The PSII RC consists of proteins D1 and D2, cytochrome b6f and small peptide PsbO gene 

product. The peptide PsbO is the one of the units that has been studied for a long time 

compared with cytochrome b559 in which the function role is not yet known. The PSII RC also 

includes β-carotene, six chlorophyll a molecules, two pheophytin a molecules, and the two 

core antenna complexes CP43 and CP47 (Blankenship, 2002).  

In a large number of photosynthetic organisms the antenna complex shows a wide variation. 

Therefore, it is used to define the groups of photosynthetic organisms. The large number of 

antenna complex shows different variation of the structure and as well types of the pigments. 

The antenna complex mostly contains pigment-bound proteins, where the pigments and 

proteins are bound in the specific structure complex. The antenna complex can be divided 

into two groups: integral antenna complex and peripheral antenna complex. The integral 

antenna complexes consist of the proteins that pass through the lipid bilayer. The peripheral 

antenna complexes contain the proteins that do not pass through the membrane, but these 

complexes are attached to the thylakoid membrane. This type of the antenna complex can be 
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found in cyanobacteria and red algae. Phycobilisomes are an example of such peripheral 

antenna complexes (Freer et al., 1996).    

A various numbers of the phycobilisome are found in photosynthetic organisms. The 

hemidiscoidal phycobilisome is one of the types of the phycobilisomes which it is well 

studied. The structure of the phycobilisome is shown in Figure 8. The structure of the 

phycobilisome includes biliproteins and linkers. The biliproteins are two or three pigment-

proteins while the linker consists of a group of proteins associated with antenna complexes. 

The biliproteins have three different types: allophycocyanin and phycocyanin (van Thor, 

Gruters, Matthijs, & Hellingwerf, 1999). Allophycocyanin form the center of the antenna 

complex, where the phycocyanin is connected to the core and where the phycoerythrin is 

attached to the phycocyanin. All together forms the rods of the phycobilisome (van Thor et 

al., 1999)(Blankenship, 2002) (Srivastava et al., 2013).  

 

 

Figure 8 Schematic structure of Phycobilisome (Blankenship, 2002) 
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PSI 

Photosystem I is integral protein complex of the membrane, where the light is being absorbed 

and used for electron transfer from plastocyanin to ferredoxin. The high resolution structure 

of PSI is known from X-ray crystallographic studies. The crystallographic studies where 

performed at 2.5 Å resolutions. The PSI complex found in cyanobacteria it consist of ninety 

six chlorophyll a molecules, twenty two β-carotenes,  twelve protein subunits, four lipid 

molecules, three [4Fe-4S] clusters and two phylloquinone (Xu et al., 2011)(Blankenship, 

2002) 

Within the PSI RC electron transfer occurs between primary electron donor P-700 and 

acceptors: A0 (chlorophyll), A1 (a phylloquinone) and Fx, Fa and Fb (4Fe-4S iron-sulphur 

centres). P700 is a dimmer of chlorophyll a molecules and Spa and Past are the two main 

subunits of the PSI. These subunits form the core of PSI where bind to the P700 and electron 

acceptors A0, A1 and Fix. In order to stabilized the entire complex the core binds to other 

additional cofactors. The Pac is peripheral protein bind Far and Fib. When the electrons reach 

the PSI it generates excited state of P700 in which leads to charge separation. Electron is then 

transferred to A0, A1 and furthermore to series of three clusters where ultimate reaches a 

ferredoxin molecule. On the lumen side of thylakoid membrane the PSI complex recessive 

electron that was donated from the plastocyanin. In cyanobacteria and algae the plastocyanin 

can be replace by cytochrome c6 under specific condition. In order to maintain the structure 

of RC proteins environment around P700 plays important role. Furthermore, P700 plays 

major function in granting special properties of the P700 chlorophyll pair, and in electron 

transfer from the cytochrome c6 to P700 (Xu et al., 2011).  
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Aim of the project 

The aim of this project is to develop concepts to separate photosynthetic hydrogen production 

from oxygen production. For this the student will generate and strains deficient in the 

photosystems (PSI and PSII) that mediate oxygen production and hydrogen production, 

respectively. The growth will be conducted to evaluate the effect of different metals on the 

growth of each of the mutants. The potential to interfacing these two strains via artificial and 

natural electron transport systems will be evaluated.  
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2 Material and Methods 

 

Material and Methods 
The Synechocystis sp. PCC 6803 cells were cultured on BG11 agar plates contained 5 mM 

glucose (Table 2), 20 am atrazine (for selected strains)(Table 3), and appropriate antibiotic 

were added if necessary. BG-11 liquid cultures containing 5 mM glucose and appropriate 

antibiotic were added if necessary (Table 1). The liquid cell cultures were aerated by an 

aquarium pump (Figure 9). The air was filtrated through distilled water which maintained 

hydration of the cultures. Both liquid and agar plates with cell cultures were grown under 

continuous illumination 30 μE.m-2.s-1 at 30°C. 

 

 

Figure 9 BG11 liquid cell cultures incubated under continuous illumination (30 μE.m
-2

.s
-1

) at 

30°C. 
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Medium constituents: 

 

BG-11 agar plates: BG-11 liquid media supplemented with 10 mM TES-Noah (pH 

8.2); 0.3 % sodium thiosulfate; 1.5 % bacteriological agar. 

 

100x BG-11: 1.76 M NaNO3; 30.4 mM MgSO4.7H2O; 24.5 mM CaCl2
.
2H2O; 2.86 mM 

C6H8O7 (citric acid); 0.25 mM Neeta, (pH 8.0); 10 % (v/v) trace minerals, deionized water. 

 

Trace Minerals: 42.26 mM H3BO3; 8.9 mM MnCl2.4H2O; 0.77 mM ZnSO4.7H2O; 

Na2Mo04
.
H20 ; 0.32 mM CuSO4

.
5H2O; 0.17 mM Co(NO3)2

.
6H2O. 

 

BG-11 liquid media: 1x BG-11; 6 μg mL
-1

 ferric ammonium citrate (~16 mM final 

concentration); 20 μg mL
-1

 Na2CO2; 30.5 μg mL
-1

 K2HPO4. 

 

 

Table 1 Antibiotics required for the Selection of Synechocystis sp. PCC 6803 

Strains. 

 

Antibiotic Stock 
concentration 

Final 
concentration 

  dilution factor 

Kanamycin 50 mg / mL (water) 25 ug / mL 2000 

Spectinomycin 50 mg / mL (water) 25 ug / mL 2000 

Chloramphenicol 
30 mg / mL 
(ethanol) 15 ug / mL 2000 

 

 

 

Table 2 The carbon source for the selection of Synechocystis sp. PCC 6803 Strains. 

 

Carbon source Stock 
concentration 

Final 
concentration 

  dilution factor 

Glucose 1M (water) 5mM 200 
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Table 3 Herbicide for selection of strains Synechocystis sp. PCC 6803. 

 

Herbicide Stock 
concentration 

Final 
concentration 

  dilution factor 

Atrazin 20 mM (methanol) 20 uM 1000 

 

 

Plasmid Construction 
The primes were design for each deletion gene slr1834-1835 and slr0906 together with 

overlapping sequences containing (Figure 10-11). Plasmid contained left flanking region, 

antibiotic resistance cassette, right flank region and Litmus backbone.  

 

Figure 10 slr0906 Genomic Deletion. (A) The wild-type genomic DNA map of the slr0906 gene 

relative to the left flanking region (LFR) and the right flanking region (RFR) used for homologous 

integration of the kanamycin resistance cassette. (B) The genomic DNA map after homologous 

recombination of the kanamycin-resistance cassette. The relative position of both pLitmus-slr0906-Kan 

left fragment forward (f) and right fragment reverse (r) primers used for genotyping have been shown 

(Author self resource). 
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Figure 11 slr1834-1835 Genomic Deletion. (a) The wild-type genomic DNA map of the slr1834-1835 

gene relative to the left flanking region (LFR) and the right flanking region (RFR) used for homologous 

integration of the chloramphenicol resistance cassette. (b) The genomic DNA map after homologous 

recombination of the chloramphenicol -resistance cassette. The relative position of both pLitmus- 

slr1834-1835-Chlor left fragment forward (f) and right fragment reverse (r) primers used for 

genotyping have been shown (Author self resource). 

. 

slr0906-Deletion 

slr0906 left flank forward    cccagtcacgacGGAATGCCACAAGAACATCAAG  

slr0906 left flank reverse   acaacgtggcggccgcAACCGAACAAGACAGACAGAG 

Kanamycin-resistance cassette forward gttcggttgcggccgcCACGTTGTGTCTCAAAATCTC  

Kanamycin-resistance cassette reverse atgctggggcggccgcTACAACCAATTAACCAATTCTG 

slr0906 right flank forward   tggttgtagcggccgcCCCAGCATCGGGAGATTTAG 

slr0906 right flank reverse  gctatgaccatgCCAGTTCCTGTTGTAGGTTGTA  

Litmus forward     aacaggaactggCATGGTCATAGCTGTTTCC  

Litmus reverse     ttgtggcattccGTCGTGACTGGGAAAACC  

 

 

 slr1834 + slr1835 Deletion  
slr1834 + slr1835 left flank forward  cccagtcacgacTCCCAAGTTGCCCTACCTATAC  

slr1834 + slr1835 left flank reverse  acaacgtggcggccgcGGCAAGACCTGCGTAACAATAA 

Kanamycin-resistance cassette forward gtcttgccgcggccgcCACGTTGTGTCTCAAAATCTC 

Kanamycin-resistance cassette reverse aatcgaacgcggccgcTACAACCAATTAACCAATTCTG 

slr1834 + slr1835 right flank forward  tggttgtagcggccgcGTTCGATTAGGGCAGGGATATG 

slr1834 + slr1835 right flank reverse  gctatgaccatgGGTCAACCTGCGACAGAATTA   

Litmus forward     cgcaggttgaccCATGGTCATAGCTGTTTCC 

Litmus reverse     ggcaacttgggaGTCGTGACTGGGAAAACC 
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Colony PCR 
Synechocystis sp. PCC6803 cells were used as a template for amplification by colony PCR. 

The reactions were performed together with fallowing compounds: Phusion High-Fidelity 

DNA polymerase, dNTP, polymerase buffer and primers. PCR conditions were: (1) initial 

denaturing step at 98°C for 10 min (length of time is to ensure rupture of cells and 

denaturation of intracellular proteins); (2) 14 cycles of 98°C for 30 s, annealing at 62°C (-1°C 

per cycle) for 30 s, extension at 72°C for 30 s/kb; (3) 16 cycles of 98°C for 30 s, annealing at 

62°C for 30 s, extension at 72°C for 30 s/kb; then (4) final extension at 72°C for 5 min. PCR 

products were separated by gel electrophoresis using gel green and visualized under UV light 

illumination. 

 

 

Separation of DNA Samples by Gel Electrophoresis 

Samples of DNA were separated by electrophoresis using 0.8% agarose gels in the presence 

of 20 μl GelGreen per 300 ml of gel. The conditions were: 95 V for 60 min. Prior to loading, 

samples were mixed with 10×loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol 

FF and 30% glycerol).The DNA was visualized by exposure to a UV light. Gel images were 

captured using a GelDoc (BioRad, Molecular Imager, and ChemiDoc XRS+) with Image lab 

4.1 software. 

 

 

 

Cleaning the sample by PCR purification kit 

The DNA samples were cleaned using QIA quick PCR purification kit. To one volume of 

PCR reaction, 5 volumes of the buffer PB were added and mixed. To bind DNA, samples 

were transferred into 2 ml collection tubes and centrifuged at full speed for 1 min. The 

supernatant was removed and XX µL of the buffer PE was added. Samples were centrifuge 

for 1 min, the supernatant was removed and the samples were centrifuge once again for 1 

min. To elute DNA, buffer EB was added and incubated on the bench for at least1 min. The 

samples were then centrifuged and pure DNA samples were stored at -20 °C. 
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Nano-drop measurement  

Two-to-three microliters of deionized water was applied onto the lower measurement 

pedestal to clean the sensor. Then using the nucleic acid application on the computer, a 1.5 

µL aliquot of the blanking buffer was loaded onto the lower measurement pedestal. The 

sampling arm was lowered and the spectra measurement was initiated using software on the 

PC. The samples were then pipette with the volume of 1.5 µL directly onto the measurement 

pedestal and the spectra measurement where initiated. The software automatically calculated 

the nucleic acid concentration and purity ratios.  

 

 

DNA ligation by Gibson assembly  
All DNA fragments where ligated using Gibson assembly. The total concentration of DNA 

fragments that were assembled was 0.2 pmoles. To calculate the number of pmols of each 

fragment for optimal assembly the following formula was used: 

 

pmols = (weight in ng) x 1,000 / (base pairs x 650 daltons) 

 

50 ng of 5000 bp dsDNA is about 0.015 pmols. 

 

50 ng of 500 bp dsDNA is about 0.15 pmols. 

 

The concentration (ng per µL) of each fragment can be measured using the NanoDrop 

instrument. The sample was then incubated in a thermocycler at 50°C for 60 min.  

 

Escherichia coli transformation  
 

The competent cells of E.coli were prepared for transformation. The vector DNA was added 

to the culture and incubated. The cultures were transferred onto the solid LB media and 

growth incubated overnight at 37°C. The samples were verified by enzymatic digestion and 

visualized on agarose gel.    
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Making E.coli Competent Cells 

A DH5α culture was inoculated with 20 mL SOC Media at 37°C.The overnight DH5α culture 

was transferred into 300mL of pre-warmed ѰB media and allowed to grow to OD600 between 

0.3 – 0.4. Cells were then incubated on ice for 5 min, transferred to two pre-chilled 50 mL 

falcon tubes and centrifuged for 10 min at 4000 rpm at 4°C. In each tube, the supernatant was 

discarded and cells were resuspended with15 mL chilled TfBI buffer on ice and centrifuged 

immediately for 10 min at 4000 rpm, 4°C. Cell pellets were gently resuspended with 1 mL of 

chilled TfBII. Competent cells were snap frozen using liquid nitrogen in aliquots of 100 μL 

and stored in a -80°C freezer. 

 

TfBI buffer: (30 mM potassium salt, 50 mM MnCl2, 100 mMRbCl, 1mM CaCl2, 14% 

glycerol, pH 5.8) 

TfBII buffer: (10 mM MOPS, 75 mM CaCl2, 1mM RbCl, 15% glycerol, pH 7.0) 

 

 

Heat-shock transformation of E.coli 

Frozen competent cells were thawed on ice for 5-10 min. Vector DNA was added, and cells 

were incubated on ice for a 30 min. Cells were then transferred to 37°C incubator for 2 min 

followed by a further 3 min incubation on ice. Cells at this point were then transferred into 2 

mL LB media and left at 37°C with ~220 rpm shaking for 90min on an orbital culture shaker. 

The cell culture was plated directly onto an agar plate with appropriate antibiotics. Plates 

were inverted and incubated overnight at 37°C. The samples were verified by digestion with 

Not1 and visualized on 0.8% agarose gel.  

 

DNA extraction 

Transformed E.coli cells were used as a template for amplification in PCR. The reaction 

conditions are identical for those one used in colony PCR for Synechocystis sp. PCC 6803.  
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Transformation of Synechocystis sp. PCC 6803   

 

A started culture was set up with an OD730 of 0.25 and grown overnight at 30°C, irradiation 

30 μE.m-2.s-1. The OD730 of the culture was measured the following morning to be between 0.4 

– 0.6. The cells were transferred to sterile 50 mL tube and spun down in the centrifuge set to 

2500 g at room temperature. The OD730 was measured, the supernatant was discarded, and the 

cells were concentrated to an OD730 of 5.0. Five hundred microliters of culture was placed 

into sterile test tubes. The transformation DNA was added to each test tube and mixed gently. 

The tubes were transferred to a growth chamber at 30°C for six hours, with gentle mixing at 3 

hours.  Sterile filters (NucleporeTrak-Etch Membrane SN: 145318) were placed onto BG-11 

+ Glucose plates. The entire contents in test tubes were distributed onto the sterile filter that 

had been placed onto a BG-11 + Glucose plate.  The samples were left to dry in the sterile 

hood for ~30 minutes and incubated overnight at 30 °C with 30 μE.m-2.s-1The filters were 

transferred to BG11 medium containing appropriate antibiotics, glucose and atrazine. After 

three or four weeks single colonies were picked and streaked-out weekly for three weeks to 

ensure complete segregation. Colony PCR was used to verify complete segregation. 

Colony PCR and Sequencing  

The colony PCR was used to isolate the sequence fragment. The 30 μl of fragment containing 

deletion mutation along with 5 μl of 5 pmol of primer were send for sequencing to GATC.  
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Growth experiment 
The media for growth experiment were made with different iron and manganese source under 

the light and dark condition (Figure 12). The wild–type and strains were cultured and spotted 

on plates with OD 1 and 0.1. The plates with variation of iron and manganese sources were 

subjected to everyday shooting by camera. The parameter of growth rate was measured using 

custom program.   

 

 

Figure 12 Starting from the left plates incubated under dark condition, covered with aluminum 

foil. From the right plates incubated under the light condition.    

 

Media for growth experiment 

The agar plates were prepared with 10 different conditions, six different iron source and four 

different manganese source exposed to the darkness. Four plates were prepared in 

combination of different iron and manganese sources and exposed to the light. The iron 

solutions were made containing six different irons at 18 mM of iron (Table 6). The 

manganese solutions were made containing four different manganese sources, 14 mM of 

manganese (Table 7). The calculated amount of ingredients was added and supplemented 

with dH2O up to a volume of 100 mL. The agar plates were made together with ingredients 

used in BG11 media, with slight modification. Some modifications of fallowed media were 

preformed. The trace minerals were prepared with MnCl2 substituted by NaCl (Table 4). The 

trace mineral were used to make special 100X BG11, without MnCl2 (Table 5). The order of 

added media has been maintained: liquid media were added first, iron solution second and 

then solid media. 
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Table 4 Trace minerals. The elements were added and supplemented to volume of 1liter. 

Element Mass in milligrams 

H3BO3 2.86 

ZnSO4 0.22 

Na2MoO4 0.39 

CuSO4 0.079 

Co(NO3)2 0,049 

NaCl 1.07 

 

Table 5 100X BG11. The mixture was supplemented to volume of 100 mL. 

Element Mass in milligrams Mass in milliliters 

NaNO3 14.95 x 

MgSO4 0.75 x 

CaCl2 0.36 x 

Citric acid 0.06 x 

NaEDTA x 0.11 

Trace minerals (no MnCl2) x 10 

 

Table 6 Iron sources. The mixture was supplemented to volume of 100 mL. 

Iron solution Mass in milligrams 

1000X ammonium iron (II) citrate  600 

1000X geothite 159 

1000X ion (II) oxide 129 

1000X ion (II, III) oxide 143 

1000X potassium hexacyanoferrate (III) 99 

1000X iron (III) chloride hexahydrate 486 
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Table 7 Manganese sources. The mixture was supplemented to volume of 100 mL 

Iron solution Mass in milligrams 

1000X MnCl2 181 

1000X Mn (III) oxide 111 

1000X Mn (IV) oxide 122 

1000X Mn (II, III) oxide 107 

 

 

Growth experiment exposed to darkness 

Media for agar plates with different iron sources and manganese are showed in Table 8.  

Table 8 Media compositions for dark growth experiment. Symbol x – refers added 

ingredient, blank space – no added ingredient. Plates were numerated from one to ten (Author 

self resource). 

Media Ingredients 

Amount of 

added 

ingredients 

Plate 

numb

er 

1 2 3 4 5 6 7 8 9 
1
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of 
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 c
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100X BG11 (w/o Mn, 

Fe, Phosphate or 

Carbonate) 

100 µl 

  

x x x x x x x x x x 

1000X NaCO3 100 µl x x x x x x x x x x 

1000X K2HPO4 100 µl x x x x x x x x x x 

1000X MnCl2 100 µl x x x x x x         

1M TES/NaOH buffer 

pH 8.2 
1mL x x x x x x x x x x 
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Glucose 500 µl x x x x x x x x x x 

1000X ammonium iron 

(III) citrate  
100 µl             x x x x 

Solid 

media 

Na-thiosulfate 0.3 g   x x x x x x x x x x 

Agar 2 g   x x x x x x x x x x 

Ir
o
n

 s
o
lu

ti
o
n

s 

1000X ammonium iron 

(III) citrate  
100 µl                     x 

1000X geothite 100 µl                   x   

1000X iron (II) oxide 
100 µl                 x     

1000X iron (II, III) 

oxide 
100 µl               x       

1000X potassium 

hexacyanoferrate (III) 

100 µl             x         

1000X iron (III) chloride 

hexahydrate 

100 µl           x           

M
a
n

g
a

n
es

e 
so

lu
ti

o
n

 

1000X MnCl2 100 µl     x                 

1000X Mn (III) oxide 
100 µl       x               

1000X Mn (IV) oxide 
100 µl         x             

1000X Mn (II, III) oxide 
100 µl   x                   
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Growth experiment exposed to light 

The combinations of iron and manganese sources are showed in Table 9. 

Table 9 Media compositions for light growth experiment. Symbol x - refers added 

ingredient, blank space – no added ingredient (Author self resource). 

Media Ingredients 

Amount of 

added 

ingredients 

Plate 

num

bers 

1 2 3 4 5 6 7 8 9 
1

0 
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100X BG11 (w/o Mn, Fe, 

Phosphate or Carbonate) 

100 µl   x x x x x x x x x x 

  1000X NaCO3 100 µl   x x x x x x x x x x 

  1000X K2HPO4 100 µl   x x x x x x x x x x 

  1M TES/NaOH buffer pH 

8.2 
1mL   x x x x x x x x x x 

  

Glucose 
500 µl   x x x x x x x x x x 

Solid 

media 

Na-thiosulfate 0.3 g   x x x x x x x x x x 

Agar 

2 g   x x x x x x x x x x 
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1000X ammonium iron 

(III) citrate + 1000X MnCl2 

100 µl                     x 

100 µl     x                 

1000X ammonium iron 

(III) citrate + 1000X Mn 

(IV) oxide 

100 µl                     x 

100 µl         x             
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1000X iron (II) oxide + 

1000X MnCl2 

100 µl                 x     

100 µl     x                 

1000X iron (II) oxide + 

1000X Mn (IV) oxide 

100 µl                 x     

100 µl         x             

 

 

Llabelling Petri dish with media for different variants 

To maintain the order of performed pictures in a further step of growth experiment the plates 

with different variants [Table 8] were numbered from one to ten. The dotted line were made 

to separate two different concentration of the cells that was spotted. The arrow was 

positioned perpendicular to the dotted line to visualize the started point of spotted dots on the 

plate (Figure 13).  

 

 

Figure 13 The petri plate with technical markings. The dotted line separates the sample application 

of the various dilutions, arrow represents startup dilution OD 1 (Author self resource). 

.  
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Spotting 

The mutant’s Δslr1834-1835, Δslr0906 and wild-type were cultured to an OD 2.0. The 1 ml 

of each culture was transferred to eppendorf tube, and spin at 3000 g-force for 5 minutes. The 

supernatant were discarded and samples were resuspended with 1 ml of liquid BG11 medium. 

Each sample was measured using a spectrophotometer at 730nm. The cultures were diluted to 

an OD of 1 and 0.1. The samples were spotted in three replicates for each type at volume of  

3 μl on the plate (Figure 14). The plates were leaved to dry completely in sterile hood. The 

plates were placed in 30°C incubator at constant illumination (30 μE.m-2.s-1). 

 

Figure 14 Petri dish with graphic representation of wild-type and mutants dots at OD 1 and 0.1 

(Author self resource). 
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Plates image 

The wild-type and mutants grown on media were placed on the custom-build stage and 

subjected to light source from beneath. Digital cameras were placed above the stage, targeted 

the plates (Figure 15).   

 

Figure 15 Custom-build stage. Plate with one of the iron or manganese sources placed on 

stage, where the digital camera is positioned vertically from the top. 

 

Growth measurement 

The captured images were stored on memory card as JPEG and CRW formats. The custom 

program was used to generate a growth curve.   
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3 Results 

Results  
The wild-type Synechocystis sp. PCC6803 was used to generate deletion mutants of Δslr0906 

(Figure 16, 18). The Δslr1834-1835 strain was ordered from the University of Otago,        

New Zealand (Figure 17).  

 

Figure 16 Wild-type Synechocystis sp. PCC6803 growth on BG11 solid media.  

 

 

Figure 17 Δslr1834-1835 mutant grown on BG11 solid media supplemented with appropriate 

antibiotic, atrazine and glucose.   
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Figure 18 Δslr0906 grown on BG11 solid media supplemented with appropriate antibiotic and 

glucose.  From the left: Δslr0906-k (Kanamycin), Δslr0906-s (Spectinomycin) and Δslr0906-c 

(Chloramphenicol). 

 

 

Plasmid construction 

The PCC6803 colony PCR with adequate primers was conducted. The electrophoresis gel 

image conformed product of knockout gene slr0906. The construct samples contains 

fragment of left flanking regions and right flanking region. The Litmus plasmid was used to 

generate kanamycin resistance cassette. The QIA quick PCR purification kit was used to 

purify DNA samples. The nano-drop measurement was used to measure concentration of the 

DNA fragments. The Gibson assembly was used to ligate DNA fragments, each samples has 

0.2 pmoles. The plasmid containing DNA fragments with deleted mutation of slr0906 gene 

was constructed.  

 

E.coli transformation  

The deletion construct was transferred into E. coli DH5α by heat–shock transformation. The 

transformed cells were grown on the LB media; total 2 colonies appeared after 24 hours 

incubation at 37°C. The two colonies was transfer on the LB media, large number of colonies 

appeared after 24 hours incubation at 37°C. The digestion with restriction enzyme Not 1 

conformed transformation (Figure 19). The restriction enzyme Not 1 cut the sequence in two 

places, on each end of the Litmus fragment, therefore the samples will have two bands one 

with ~3700 bp and second approximately 1000 bp. The colony PCR was used to extract DNA 

fragment containing slr0906 gene deletion from transformed E.coli cells. 
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Figure 19 Gel electrophoresis image representing E.coli+slr0906 gene samples after E. coli 

minipreps, digested by Not1. The slr0906 A and B are the samples duplicated.   

 

Synechocystis sp. PCC6803 transformation 

The wild-type Synechocystis sp. PCC6803 was used, to grown starter cultures to OD 5. The 

transformation DNA was added on the sterile filters that were placed onto BG11 plates with 

glucose. The cells showed grown on the filters after 24 hours incubation at 30°C (Figure 20). 

These sterile filters were used to transfer onto new BG11 media with the corresponding 

antibiotic; couple colonies appeared after four weeks of incubation at 30°C (Figure 21). The 

colony PCR were used to verify complete segregation and transformation of PCC6803, the 

gel electrophoresis image were generation to confirm deletion of mutant Δslr0906 (Figure X). 

The Sequencing GATC was used and conformed sequence of inserter plasmid. The mutants 

were transferred on new BG11 media with appropriate antibiotic and leave to growth in order 

to maintain cell culture. 
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Figure 20 PCC6803 strains distributed throughout the whole filter, grown on BG11 media. The green 

surface is visible conforming cell growth. 

 

Figure 21 Gene transformed into PCC6803. Green colonies are visible, which confirmed the complete 

transformation. 
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Synechocystis sp. PCC6803 mutants 
The Δslr0906 mutant has deletion of slr0906 gene, which is responsible in production of core 

light harvesting protein in photosystem II (Figure 23). In order to function properly the light 

reaction required iron as an essential component. Likewise, iron plays important function in 

photosynthetic electron transfer in cyanobacteria. The Δslr1834-1835 mutant has deletion of 

slr1834-1835 gene, which is responsible for production P700 apoprotein subunit Ia and Ib in 

photosystem I. The main function of the protein is metal ion binding (Figure 22) (Briat et al., 

1995). 

 

Figure 22 Photosystems simple graph describing active PSII complex and inactivated PSI 

complex in cyanobacteria. The deletion of slr1834-1835 gene, encode P700 apoprotein in 

photosystem I. The red-cross indicated inactive photosystem (Author self resource).  
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Figure 23 Photosystems simple graph describing active PSI complex and inactivated PSII 

complex in cyanobacteria. The deletion of slr0906 gene, encodes core light harvesting protein in 

photosystem II. The red-cross indicated inactive photosystem (Author self resource). 

 

  Growth experiment under different iron and manganese sources 
The conducted research showed a significant impact on the growth of the cyanobacterium in 

both iron and the manganese sources. The growth of the Synechocystis sp. PCC6803 strains 

were studied under one of the fallowed ingredients: iron sources (ammonium iron (III) citrate, 

goethite, iron (II) oxide, iron (II, III) oxide, potassium hexacyanoferrate (III), iron (III) 

chloride hexahydrate) and manganese sources (MnCl2, Mn (III) oxide, Mn (IV) oxide, Mn 

(II, III) oxide. Experiments were performed from the cultures grown on liquid BG11 medium 

and were dilute to an OD 1 and 0.1. The agar plate was used to spot-on the three microliters 

of samples in three replicates. In each experiment, growths of all the strains were obtained. 

Agar plates were imaged using digital camera once per day. The results were plotted into the 

graphs using commercial program. The generated graphs are showing below, error bars 

denote standard deviation (SD). The antibiotic resistance cassettes were inserted as needed in 

strains, shortcut description of antibiotics is presents as follows: c – Chloramphenicol, s – 

Spectinomycin and k – Kanamycin. All detailed data (values of cell density) are shown in 

appendix. 
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Dark condition 
The Synechocystis sp. PCC6803 wild-type, and the mutant’s Δslr1834-1835-c and               

Δslr0906-c, -s, -k was grown and exposed to the dark condition over a period of eight days 

(Figure 24). The plates were cover using aluminum foil (Figure 12). Analysis of wild-type 

and mutants showed an increase in concentrations of cells density along with the time axis in 

incubator at 30°C. 

 

 

Figure 24 Growth experiment carried out under the dark condition. Order of spotted strains is 

shown in Figure 14.  

 

Manganese (II, III) oxide 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (II, III). The samples were diluted to an OD 1, the growth curves are showed 

in Figure 25. Initially in the first three days the wild-type and Δslr0906-c showed the negative 

volume of cell density, -98 and -39.7. The third day (71.1 h) to the second day (118.5h) of 

incubation showing significant increase of cell density in almost all of the strains. The 

Δslr0906-s in particular showing decreased growth (309.7 - cell density) on this media along 

with the time axis.  
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Figure 25 Growth curves of strains grown on manganese (II, III) oxide source in dark condition 

at 30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (II, III) oxide. The samples were diluted to an OD 0.1, the growth curves are 

showed in Figure 26. The wild-type demonstrate minuses growth along the time axis. It is 

noticeable that the Δslr1834-1835-c spotted on this medium with this dilution factor showed 

the most increased cell density up to 600. Other strains showed increase growth curve.  
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Figure 26 Growth curves of strains grown on manganese (II, III) oxide source in dark condition 

at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points.  

 

Manganese (II) chloride 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (II) chloride. The samples were diluted to an OD 1, the growth curves are 

showed in Figure 27. The Δslr1834-1835-c and Δslr0906-c,-k showed equal high growth 

curve up to 800 of cell density. The strains wild-type showed stable growth, however 

Δslr0906-s growth curve is minimal comparing to the others.  
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Figure 27 Growth curves of strains grown on manganese (II) chloride source in dark condition at 

30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (II) chloride. The samples were diluted to an OD 0.1, the growth curves are 

showed in Figure 28. The Δslr0906-k showed decreasing growth curve in till 71.1 hours, 

however the growth curve between 192.1 h and 214.5 hours of incubation showing steady 

increased growth. The other strains showed stable growth curve along the time axis wherein 

the Δslr1834-1835-c increasing cell density.  
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Figure 28 Growth curves of strains grown on manganese (II) chloride source in dark condition at 

30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. 

The error bars represent the lowest and highest values of cell density in each of the time points. 

 

Manngeses (III) oxide 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (III) oxide. The samples were diluted to an OD 1, the growth curves are 

showed in Figure 29. The Δslr1834-1835-c and Δslr0906-c,-k showed equal high growth 

curves up to 800 cell density. The wild-type showed decreased growth up to 400 of cell 

density. The Δslr0906-s showed decreasing but significant growth at 100 of cell density along 

the time axis.  
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Figure 29 Growth curves of strains grown on manganese (III) oxide source in dark condition at 

30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (III) oxide. The samples were diluted to an OD 0.1, the growth curves are 

showed in Figure 30. The Δslr1834-1835-c and Δslr0906-k showed the growth at 200 of cell 

density. The Δslr0906-c showed the growth at 114 cell density. The wild-type and Δslr0906-s 

showed growth approximately at 20 of cell density.  
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Figure 30 Growth curves of strains grown on manganese (III) oxide source in dark condition at 

30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. 

The error bars represent the lowest and highest values of cell density in each of the time points. 

 

Manganese (IV) oxide 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manganese (IV) oxide. The samples were diluted to an OD 1, the growth curves are 

showed in Figure 31. The wild-type, Δslr1834-1835-c and Δslr0906 c showed increased 

growth, however after 144.5 hours the growth curve is decreasing. The Δslr0906-k showed 

increased growth till 120.6 hours of incubation subsequently decreasing. The Δslr0906-k 

showed stable growth along the time axis.  
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Figure 31 Growth curves of strains grown on manganese (IV) oxide source in dark condition at 

30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with manngeses (IV) oxide. The samples were diluted to an OD 0.1 the growth curves are 

showed in Figure 32. The wild-type, Δslr0906-c,-k and Δslr1834-1835-c showed increasing 

growth after 145.7 hours of incubation, however the growth stabilized and decrease. The 

Δslr0906s growth curve showed minimal of cell density along the time axis.  
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Figure 32 Growth curves of strains grown on manganese (IV) oxide source in dark condition at 

30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. 

The error bars represent the lowest and highest values of cell density in each of the time points. 

 

Iron (III) chloride hexahydrate 

The strains growth curves were observed on the plates with the solid medium supplemented 

with iron (III) chloride hexahydrate. The samples were diluted to an OD 1 the growth curves 

are showed in Figure 33. The Δslr0906-s showed the decreasing growth along with the time 

axis. The wild-type, Δslr0906-c,-k and Δslr1834-1835-c showed increasing growth, however 

the Δslr0909k showed efficient growth up to 600 of cell density.  
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Figure 33 Growth curves of strains grown on iron (III) chloride hexahydrate source in dark 

condition at 30°C. The optical density spotted strains is one. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

The strains growth curve was observed on the plates with the solid medium supplemented 

with iron (III) chloride hexahydrate. The samples were diluted to an OD 0.1 the growth 

curves are showed in Figure 34. The wild-type and Δslr0906-c,-s showed decreasing growth 

along the time axis. The Δslr0906-k showed the decreased growth till 118.5 hours of 

incubation, however after this time growth stabilized and increased, also in the same time this 

strain showed the higher growth rate. The Δslr1834-1835-c showed increased growth along 

the time axis.  
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Figure 34 Growth curves of strains grown on iron (III) chloride hexahydrate source in dark 

condition at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

 

Potassium hexacyanoferrate (III) 

The strains growth curve was observed on the plates with the solid medium supplemented 

with potassium hexacyanoferrate (III). The samples were diluted to an OD 1 the growth 

curves are showed in Figure 35. The Δslr0906-s the lowest growth curve, 84 of cell density 

and, the Δslr0906-k showed increasing growth curve up to 905.7 of cell density.  
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Figure 35 Growth curves of strains grown on potassium hexacyanoferrate (III) source in dark 

condition at 30°C. The optical density spotted strains is one. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

The strains growth curve was observed on the plates with the solid medium supplemented 

with potassium hexacyanoferrate (III). The samples were diluted to an OD 0.1 the growth 

curves are showed in Figure 36. The all the strains showed decreased growth; however the 

Δslr0906-c,-k and Δslr1834-1835-c showed increased growth from 192.1 hours of incubation. 

The wild-type and Δslr0906s showed minimal growth curve. The Δslr0906-k showed 

negative growth at 71.2 hours of incubation showed increased growth.  



Results 

 

62 
 

 

Figure 36 Growth curves of strains grown on potassium hexacyanoferrate (III) source in dark 

condition at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

 

Iron (II, III) oxide 

The strains growth curves were observed on the plates with the solid medium supplemented 

with Iron (II, III) chloride. The samples were diluted to an OD 1, the growth curves are 

showed in Figure 37. The Δslr0906-k showed high growth curve on this medium compared to 

other strains. The wild-type, Δslr0906-c and Δslr1834-1835-c showed minimal and stable 

growth. The Δslr0906-s showed negative growth along the time axis.  
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Figure 37 Growth curves of strains grown on iron (II, III) oxide source in dark condition at 30°C. 

The optical density spotted strains is one. In the chart are shown error bars, marked as black lines. The 

error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with iron (II, III) chloride. The samples were diluted to an OD 0.1, the growth curves are 

showed in Figure 38. The wild-type and the strains showed the decreased growth curve, 

wherein the wild-type showed the negative growth along the time axis in till 145.7 hours of 

incubation from that time strain showed minimal but stable growth.  
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Figure 38 Growth curves of strains grown on iron (II, III) oxide source in dark condition at 30°C. 

The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. The 

error bars represent the lowest and highest values of cell density in each of the time points. 

 

Iron (II) oxide 

The strains growth curves were observed on the plates with the solid medium supplemented 

with iron (II) oxide. The samples were diluted to an OD 1, the growth curves are showed in 

Figure 39. The Δslr0906-k showed very large growth curve up to 1300 of cell density. The 

wild-type, Δslr0906-c, and Δslr1834-1835-c showed increased growth. The Δslr0906-s 

showed decreased growth curve.  
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Figure 39 Growth curves of strains grown on iron (II) oxide source in dark condition at 30°C. 

The optical density spotted strains is one. In the chart are shown error bars, marked as black lines. The 

error bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with iron (II) chloride. The samples were diluted to an OD 0.1, the growth curves are showed 

in Figure 40. The Δslr0906-k showed increased growth compared to the others strains. The 

wild-type, Δslr0906-c, and Δslr1834-1835-c showed stable growth. The Δslr0906-s showed 

decreased growth curve.  

 

 



Results 

 

66 
 

 

Figure 40 Growth curves of strains grown on iron (II) oxide source in dark condition at 30°C. 

The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. The 

error bars represent the lowest and highest values of cell density in each of the time points. 

 

Goethite 

The strains growth curves were observed on the plates with the solid medium supplemented 

with goethite. The samples were diluted to an OD 1, the growth curves are showed in    

Figure 41. The Δslr0906-k strain showed increased growth. The Δslr0906-c and Δslr1834-

1835-c showed stable growth, between 158.2 hours to 214.6 hours of incubation. The wild-

type, Δslr0906-s showed minimal growth curves along the time axis. 
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Figure 41 Growth curves of strains grown on goethite source in dark condition at 30°C. The 

optical density spotted strains is one. In the chart are shown error bars, marked as black lines. The error 

bars represent the lowest and highest values of cell density in each of the time points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with goethite. The samples were diluted to an OD 0.1, the growth curves are showed in 

Figure 42. The wild-type and strains showed slow growth during the incubation, wherein the 

Δslr0906-c,-k and Δslr1834-1835-c showed increased growth after 192.1 hours of incubation.  
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Figure 42 Growth curves of strains grown on goethite source in dark condition at 30°C. The 

optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. The error 

bars represent the lowest and highest values of cell density in each of the time points. 

 

Ammonium iron (III) citrate   

The strains growth curves were observed on the plates with the solid medium supplemented 

with ammonium iron (III) citrate. The samples were diluted to an OD 1, the growth curves 

are showed in Figure 43. The Δslr0906-k showed high growth around 800 of cell density. The 

Δslr0906-c and Δslr1834-1835-c showed optimal growth in range 400-600 of cell density. 

The wild-type and Δslr0906-s showed a minimal increase in cells density.  
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Figure 43 Growth curves of strains grown on ammonium iron (III) citrate source in dark 

condition at 30°C. The optical density spotted strains is one. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

The strains growth curves were observed on the plates with the solid medium supplemented 

with ammonium iron (III) citrate. The samples were diluted to an OD 0.1, the growth curves 

are showed in Figure 44. The wild-type and the other strains showed a slower rate of growth 

curve of cells density in the first days of incubation, wherein in the last days of incubation 

Δslr0906-k showed high increased growth. The Δslr0906-c and Δslr1834-1835-c showed 

increased growth in the 192.1 hours of incubation.  
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Figure 44 Growth curves of strains grown on Ammonium iron (III) citrate source in dark 

condition at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked 

as black lines. The error bars represent the lowest and highest values of cell density in each of the time 

points. 

The results showed that Δslr1834-1835-c strain growth rate is very high on media contained 

manganese as a source under the dark condition. However, the media that contained iron as a 

source showed increased growth of the strain, although cell densities oscillate around ~400 of 

cell density. The highest growth of strain Δslr0906-k in dark condition was observed on the 

plate containing the media with iron (II) oxide, were the strain reached 1296 of cell density 

along with time axis. The second media that Δslr0906-k showed high growth rate on iron (II, 

III) oxide were the cell density oscillates around ~1000.   
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Light condition  

The Synechocystis sp. PCC6803 wild-type, and the mutants Δslr1834-1835-c and                

Δslr0906-c, -s, -k showed the growth (Figure 45). The plates was uncovered and exposed to 

full light 30 μE.m-2.s-1 in the incubator. The growth experiment exposed to light condition was 

conducted over a period of ten days. Analysis of wild-type and mutants showed in graphs 

with cells density along with the time (h) axis. The mix conditions of the  2 iron and 2 

manganese sources are: ammonium iron (III) citrate + MnCl2, ammonium iron (III) citrate + 

Mn (IV) oxide, iron (II) oxide + MnCl2 and iron (II) oxide + Mn (IV) oxide.  

 

Figure 45 Growth experiment carried out under the light condition. Order of spotted strains is 

shown in Figure 10. 

 

Iron (II) oxide + MnCl2 

The plates with the media were supplemented with iron (II) oxide + MnCl2 sources, the 

strains were spotted and diluted to an OD 1, and the growth was observed in Figure 46. The 

wild-type and Δslr0906-c,-s, k showed increased growth curve at 89.5 hours of incubation. 

The Δslr1834-1835-c showed increased growth curve at 138.1 hours of incubation.  
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Figure 46 Growth curves of strains grown on iron (II) oxide + MnCl2 source in light condition at 

30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

The plates with the media were supplemented with iron (II) oxide + MnCl2 sources, the 

strains were spotted and diluted to an OD 0.1, and the growth was observed in Figure 47. The 

wild-type and the Δslr0906-c,-s,-k showed increased growth curve after 138.1 hours of 

incubation. The Δslr1834-1835-c showed slower increased growth curve at 188.1 hours of 

incubation.  
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Figure 47 Growth curves of strains grown on iron (II) oxide + MnCl2 source in light condition at 

30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black lines. 

The error bars represent the lowest and highest values of cell density in each of the time points. 

 

Iron (II) oxide + Mn (IV) oxide 

The plates with the media were supplemented with iron (II) oxide + Mn (IV) oxide sources, 

the strains were spotted and diluted to an OD 1, and the growth was observed in Figure 48. 

The wild-type and the Δslr0906-c,-s,-k showed increased growth curve from 89.5 hours of 

incubation. The Δslr1834-1835-c showed slower increased growth curve at 138.1 hours of 

incubation.  
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Figure 48 Growth curves of strains grown on iron (II) oxide + Mn (IV) source in light condition 

at 30°C. The optical density spotted strains is one. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

 

 

The plates with the media were supplemented with iron (II) oxide + Mn (IV) oxide sources, 

the strains were spotted and diluted to an OD 0.1, and the growth was observed in Figure 49. 

The wild-type and the Δslr0906-c,-s,-k showed increased growth curve from 116.4 hours of 

incubation. The Δslr1834-1835-c showed smooth increased growth curve.  
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Figure 49 Growth curves of strains grown on iron (II) oxide + Mn (IV) source in light condition 

at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, marked as black 

lines. The error bars represent the lowest and highest values of cell density in each of the time points. 

 

Ammonium iron (III) citrate + MnCl2 

The plates with the media were supplemented with ammonium iron (III) citrate + MnCl2 

sources, the strains were spotted and diluted to an OD 1, and the growth was observed in              

Figure 50. The wild-type showed increased growth curve at 116.4 hours of incubation, 

however after this time the growth decreasing rapidly. The Δslr0906-c,-s,-k showed stable 

increased growth curve. The Δslr1834-1835-c showed slower increased growth curve at          

89.5 hours of incubation.  
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Figure 50 Growth curves of strains grown on ammonium iron (III) citrate + MnCl2 source in 

light condition at 30°C. The optical density spotted strains is one. In the chart are shown error bars, 

marked as black lines. The error bars represent the lowest and highest values of cell density in each of 

the time points. 

The plates with the media were supplemented with ammonium iron (III) citrate + MnCl2 

sources, the strains were spotted and diluted to an OD 0.1, and the growth was observed in 

Figure 51. The wild-type and the Δslr0906-c,-s,-k showed increased growth curve from           

89.5 hours of incubation. The Δslr1834-1835-c showed slower increased growth curve at                

138.1 hours of incubation.  
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Figure 51 Growth curves of strains grown on ammonium iron (III) citrate + MnCl2 source in 

light condition at 30°C. The optical density spotted strains is 0.1. In the chart are shown error bars, 

marked as black lines. The error bars represent the lowest and highest values of cell density in each of 

the time points. 

 

Ammonium iron (III) citrate + Mn (IV) oxide 

The plates with the media were supplemented with ammonium iron (III) citrate + Mn (IV) 

oxide sources, the strains were spotted and diluted to an OD 1, and the growth was observed 

in Figure 52. The wild-type and the Δslr0906-c,-s,-k showed increased growth curve from 66 

hours of incubation, wherein the wild-type from 116.4 hours drops down drastically.                

The Δslr1834-1835-c showed slower increased growth curve from 89.5 hours of incubation.  
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Figure 52 Growth curves of strains grown on ammonium iron (III) citrate + Mn (IV) oxide 

source in light condition at 30°C. The optical density spotted strains is one. In the chart are shown 

error bars, marked as black lines. The error bars represent the lowest and highest values of cell density 

in each of the time points. 

The plates with the media were supplemented with ammonium iron (III) citrate + Mn (IV) 

oxide sources, the strains were spotted and diluted to an OD 0.1, and the growth was 

observed in Figure 53. The wild-type and the Δslr0906-c,-s,-k showed increased growth 

curve from 89.5 hours of incubation. The Δslr1834-1835-c showed slower increased growth 

curve from 138.1 hours of incubation.  
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Figure 53 Growth curves of strains grown on ammonium iron (III) citrate + Mn (IV) oxide 

source in light condition at 30°C. The optical density spotted strains is 0.1. In the chart are shown 

error bars, marked as black lines. The error bars represent the lowest and highest values of cell density 

in each of the time points. 

The Δslr1834-1835-c on the media contained mix with the two metals iron and manganese as 

a source showed delayed growth, although in a later period of incubation showed increased 

growth that aligns to the value of cell density of other strains. The Δslr0906-s,-c,-k grown on 

light condition with the medium mixed with two metals: iron and manganese as a source, 

strains showed equal growth curve in four different variations. The plates with media 

contained mix with the two metals iron and manganese as a source showed that all the strains 

grown to high cell density minimum 15000 of cell density. The Δslr0906-k strain under dark 

condition showed the biggest growth compared to Δslr1834-1835-c, but when exposed to 

intense light indicates even more significant growth.  
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4 Discussion 

Discussion 
The wild-type Synechocystis sp. PCC6803 and the mutant’s Δslr0906 and Δslr1834-1835 

showed growth on all of the variants of the media and as well under the light and dark 

conditions. The growth experiments were performed in dark (covered with aluminum foil) 

and light condition at 30°C. The Δslr0906-s showed decreased growth curve on all the media 

supplemented with different iron and manganese sources under the dark condition. The 

Δslr0906-s strain does not exceed the value of 309.7 of cell density on media with manganese 

sources, likewise on media containing iron sources where the strain showed very low growth 

curve not exceeding the volume of 114.3 of cell density. The Δslr0906-k strain showed more 

effectively growth on media with iron sources rather than on media with manganese as a 

source. The Δslr1834-1835-c grown on media with manganese source in dark condition 

shows approximately more effectively growths curve then grown on media with iron sources. 

However, all the mutants that grown on light condition showed increased growth rate in the 

range of 1500 of cell density.  

The Synechocystis sp. PCC6803 strains wild-type and mutants were cultured on solid media 

containing iron and manganese sources. The agar plates were imaged every day using the 

digital camera which was placed in the plate imaging apparatus. The digital camera was not 

permanently mounted on a pedestal therefore, could be easy removed [Figure 15]. Therefore, 

during performing images of the plates it is easy to create image distortion; this further can 

influence obtained results which commercial program analyze. The image distortion could 

also affect the negative value of growth or standard deviation (error bars). The negative value 

of growth rate was found in many of the strains on different media under the dark condition; 

despite the fact that on the plates with spotted strains the growth was visible around third day. 

In some of the variant with different iron or manganese sources decreased growth with the 

negative value was observed, this may be caused by interference due to the background; in 

this case the media or plate stage [Figure 26, 28,34, 36, 38]. Noticeable negative values are 

largely visible in the samples diluted to an OD 0.1. The standard deviation are used to 

describe error bars, which allow the researcher to complete analysis of results. It allows you 

to show how the data is spread, includes the highest and lowest volume of cell density of the 
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samples (Cumming, Fidler, & Vaux, 2007). The standard deviation shown in the graphs 

reveal error bars for the triple repetition, every day of each strain. The big error bars are 

shown in the chart with iron (III) chloride hexahydrate where the samples were diluted to an 

OD 0.1 (Figure 34). The large value of error bars are found in the strains which showed 

incred growth rate in triple repeated sample (no visible differences in growth). Wherein, the 

samples diluted to an OD 1, the standard deviations are not observed; this may be due to the 

fact that triple repeated sample showed diferent growth rate in particule time of incubation.  

The Δslr0906 that lack the slr0906 gene have inactive complex of photosystem II and thus 

the photosystem I will be activate (Figure 23). The photosystem I has ability to facilitate iron 

acquisition (Briat et al., 1995). The result showed major growth of Δslr0906 on media 

supplemented with iron sourceses under the dark condition. This is due to the fact that PSI 

that has ability to assimilate iron works with high efficiency only under exposure to the light. 

Under the dark condition the iron assimilation is decreased (Briat et al., 1995). The Lis 

research on iron uptake in cyanobacteria showed that whether the strains were iron limited or 

non-limited conditions it exhibit linear iron uptake (Lis, Kranzler, Keren, & Shaked, 2015b). 

The results presented in experiment carried out under dark condition present that the mutants 

with deletion of core light harvesting protein showed increased growth on media 

supplemented with iron as well as manganese as a source [Figure 24]. This may be due to the 

fact that the removal of core light harvesting protein inhibits light harvesting in PSII, 

although do not inhibit process of water oxidation where the manganese works as a essential 

cofactor (Yachandra, Sauer, & Klein, 1996). The exemption is Δslr0906-k mutant that 

showed increased growth curve on both media supplemented with iron and manganese 

sources, under the dark condition [Figures 24, 33-44]. Interestingly, the Δslr0906 strains that 

have different antibiotic resistance cassette inserted (describes as: Δslr0906-s,-c,-k) exhibit 

distinct growth curve from the plates with different iron and manganese sources exposed to 

dark condition.  

The Δslr1834-1835 mutant that lack the slr1834-1835 have inactive complex of             

photosystem I, thus the photosystem II will be active (Figure 22). The photosystem II has 

incorporate Mn atoms in the centrum of complex which is involved in process of water 

oxidation (Blankenship, 2002; Shcolnick & Keren, 2006). The Salomon and Keren research 

showed that Mn accumulation does not take place in conditions of darkness (Salomon & 

Keren, 2011). However, obtained results with mutant slr1834-1835 gene deletion cultured 

during dark condition showed growth on media supplemented with manganese as a sources 
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[Figure 25-32]. This may prove that in condition of limited availability to light the process of 

photosynthesis is not inhibited, however, growth rate is slow with stationary phase extended. 

The PSI complex plays key role in producing carbon as a sources, therefore the cyanobacteria 

are self-sufficient organisms (Blankenship, 2002). The result presented in experiment carried 

out under light condition showed that the Δslr1834-1835 growth slower than others strains 

[Figure 46-53]. This may be due to the fact that deletion of P700 apoprotein subunit Ia and Ib 

results in inhibition of electron transfer, thereby causing inhibition of carbon assimilation. 
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5 Conclusion 

Conclusion 
The Δslr1834-1835 mutant with deletion of slr1834-1835 gene showed increased high 

growth on the manganese sources in condition of darkness. The Δslr1834-1835 growths slow 

growth on media contained with two-mixed iron and manganese as a source, exposed to light 

condition. The Δslr0906 mutant with deletion of slr0906 gene showed increased high growth 

on iron sources in condition of darkness. The Δslr0906-k showed increased growth on the 

media contained iron sources rather than on manganese. Implemented different antibiotic 

resistance cassettes into the Δslr0906 strain showed diverse growth on the media. The 

Δslr0906-c,-s,-k showed increased growth on condition with two-mixed iron and manganese 

as a source. All the strains conducted under the light condition increased growth into large 

number cell density. The water oxidation and iron acquisition require light condition, 

therefore Δslr1834-1835 and Δslr0906 showed increased growth on light. The strains that 

were grown under the light condition showed the most increased growth rate compared to the 

dark condition.  
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Appendix 

Dark condition 

Manganese(II, III) oxide  

Table Appendix 1 Cell density of strains grown on manganese(II, III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is one.  

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 12 5 -311 0 26 4 14 18 -151 -8 0 7 25 13 -20 

47,6 35 35 -313 52 66 44 49 28 -171 26 3 -14 41 61 43 

71,1 32 54 -361 134 156 107 111 74 -141 18 14 6 122 111 86 

118,5 214 287 71 499 606 465 475 432 251 60 53 20 386 428 416 

145,7 332 446 230 479 630 676 483 563 297 129 114 70 318 420 572 

168,2 459 580 347 521 696 835 605 715 318 191 178 122 414 509 783 

192,1 543 642 401 572 744 844 700 819 368 259 250 167 434 535 761 

214,5 545 682 408 535 529 788 501 455 266 402 321 206 265 319 716 

 

 

Table Appendix 2 Cell density of strains grown on manganese(II, III) oxide source in 

dark condition at 30°C. The spotted strains were repeated three times and optical density is 

0.1.  

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 10 -5 -442 5 -6 -5 4 -31 -19 -13 5 3 -25 4 -38 

47,6 -1 -216 -430 9 -5 -2 -11 3 1 2 3 3 -14 -9 -36 

71,1 1 -187 -438 15 22 3 14 -2 29 -3 14 1 -12 -9 -15 

118,5 3 -61 -224 89 125 103 47 37 79 9 -1 -3 27 58 -5 

145,7 5 -50 -191 180 266 224 83 85 148 18 17 22 42 82 1 

168,2 15 -69 -221 271 410 295 83 175 203 23 9 49 119 146 -35 

192,1 13 -48 -191 375 519 371 151 237 264 34 25 61 239 291 6 

214,5 18 -35 -159 413 572 407 134 273 346 55 42 73 233 180 6 
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Manganese(II) chloride  

Table Appendix 3 Cell density of strains grown on manganese(II) chloride source in 

dark condition at 30°C. The spotted strains were repeated three times and optical density is 

one.  

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 22 6 17 17 15 6 14 22 22 -1 5 1 -7 8 -9 

47,6 63 36 40 98 88 55 64 70 49 11 7 -6 26 33 57 

71,3 44 124 129 194 166 119 128 128 131 4 11 -11 95 80 90 

118,5 327 173 215 446 488 398 429 401 388 41 40 32 531 392 437 

145,7 612 287 281 639 683 473 639 587 593 73 81 72 720 567 623 

168,2 579 417 393 797 842 600 809 735 778 120 125 105 867 760 804 

192,1 679 434 356 905 871 649 779 734 659 149 157 166 735 499 655 

214,5 667 513 477 796 833 592 836 758 789 165 183 165 815 754 809 

 

 

Table Appendix 4 Cell density of strains grown on manganese(II) chloride source in 

dark condition at 30°C. The spotted strains were repeated three times and optical density is 

0.1.  

 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 17 -2 1 -11 0 1 -19 -1 -8 -8 -12 20 -23 15 -708 

47,6 31 15 8 6 13 0 -8 2 -7 -3 -15 9 -7 23 -541 

71,3 -43 -6 -15 5 12 -2 -14 2 -17 7 -19 29 1 6 -706 

118,5 36 15 23 90 83 99 17 73 82 5 0 -1 12 59 -107 

145,7 53 48 41 129 130 152 47 100 119 12 23 8 -8 53 -191 

168,2 56 53 59 218 207 258 97 166 196 20 21 15 60 138 -113 

192,1 76 58 66 238 230 226 77 119 101 26 14 25 -21 62 -44 

214,5 101 91 86 327 301 356 153 246 281 35 18 35 165 369 244 
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Manngeses(III) oxide 

 

Table Appendix 5  Cell density of strains grown on manganese (III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is one.  

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 3 6 3 8 4 -3 -4 3 12 -1 8 -18 8 14 5 

47,6 43 49 27 95 67 35 37 26 28 1 25 -8 57 41 28 

71,2 81 90 91 191 161 99 85 62 78 28 14 -24 114 85 61 

118,5 233 236 243 394 383 354 270 277 277 36 38 23 315 222 188 

145,7 274 357 362 507 510 450 355 425 428 55 70 47 478 362 382 

168,2 299 359 405 547 581 631 402 505 540 81 90 46 550 376 462 

192,1 362 430 490 666 698 808 572 652 700 113 106 71 854 689 827 

214,5 404 446 383 709 660 681 592 583 641 123 117 88 697 487 666 

 

 

Table Appendix 6 Cell density of strains grown on manganese(III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is 0.1.  

OD 0.1 

WT PSI slr 0906 c slr 0906 s slr 0906 k 

-19 12 -20 -4 2 -5 -8 -16 1 -20 -9 -17 -4 -11 0 

-17 4 -3 -11 10 -10 -10 -4 1 -11 6 -15 13 -6 -5 

-19 12 -13 1 9 -8 -7 -11 23 1 15 -36 5 -16 -35 

3 -1 -56 54 36 43 36 24 17 -1 -3 6 41 -4 -8 

30 41 16 106 93 98 64 60 63 6 5 18 78 52 53 

39 13 12 128 144 132 86 63 78 4 17 7 116 31 9 

58 50 33 215 225 230 164 130 155 17 12 20 275 214 226 

39 32 17 172 241 173 137 95 110 11 22 17 301 162 145 
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Manganese(IV) oxide  

 

Table Appendix 7 Cell density of strains grown on manganese(IV) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is one 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 44 51 45 23 30 37 47 24 18 44 31 -8 26 31 47 

23,7 91 85 68 65 93 88 68 57 61 33 13 -5 18 89 80 

70,9 283 307 298 259 448 413 260 347 454 61 42 46 226 311 293 

98,1 402 439 402 315 518 492 298 430 562 144 67 121 290 354 380 

120,6 452 502 418 319 464 599 328 431 608 198 119 184 376 426 460 

144,5 580 611 591 418 691 622 419 640 780 250 137 234 297 359 423 

167,0 483 508 468 275 427 531 246 437 544 242 114 248 193 238 305 

191,2 550 573 491 284 413 510 299 441 579 336 174 346 163 210 295 

 

 

Table Appendix 8 Cell density of strains grown on manganese(IV) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is 0.1.  

 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 0 29 9 -7 -5 -8 -35 -9 25 -13 -1 13 -6 26 0 

23,7 1 13 1 -2 8 22 -36 -3 48 1 16 1 0 6 16 

70,9 18 21 45 56 78 117 -11 75 90 10 4 14 52 99 79 

98,1 13 5 54 68 113 175 -10 98 151 8 2 15 92 153 120 

120,6 -3 16 9 58 152 231 49 34 99 7 13 29 115 143 179 

144,5 47 31 105 215 279 367 44 224 290 16 33 36 337 466 393 

167,0 40 54 97 129 223 330 60 214 308 30 40 38 388 489 446 

191,2 -8 -17 34 123 235 357 64 134 209 47 51 66 374 472 422 
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Iron (III) chloride hexahydrate  

Table Appendix 9 Cell density of strains grown on iron (III) chloride hexahydrate 

source in dark condition at 30°C. The spotted strains were repeated three times and optical 

density is one 

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 -13 -1 -3 -5 -15 -17 13 7 -16 -16 -15 -6 16 12 13 

47,6 14 43 13 51 -10 21 31 27 16 -8 -13 -15 57 38 25 

71,2 47 66 -3 132 -16 50 79 52 33 7 0 -27 150 100 69 

118,5 166 200 56 316 17 241 177 98 209 3 9 8 265 199 136 

145,7 232 320 127 421 75 471 330 212 321 4 7 28 499 395 294 

168,2 258 342 85 513 72 532 392 230 475 -1 30 37 646 517 406 

192,1 298 381 119 525 106 665 455 281 503 2 34 63 743 607 487 

214,6 345 427 174 517 151 665 437 302 461 17 40 63 678 483 369 

 

 

Table Appendix 10 Cell density of strains grown on iron (III) chloride hexahydrate 

source in dark condition at 30°C. The spotted strains were repeated three times and optical 

density is 0.1 

 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 -14 5 -10 -13 11 -7 6 -9 19 -7 20 -16 -6 -13 -57 

47,6 -9 14 0 -2 1 2 0 -19 -1 7 -2 5 -39 -12 -40 

71,2 0 11 -2 -49 50 28 -8 -48 39 -13 13 -5 -23 -14 -122 

118,5 10 -2 8 11 29 55 3 1 49 -4 8 0 3 19 28 

145,7 9 -1 8 18 45 101 -1 -14 59 6 5 -4 13 5 12 

168,2 4 -11 -18 11 23 120 -20 -31 31 -4 11 7 17 3 40 

192,1 23 -7 -7 17 56 147 -4 -30 29 9 15 4 76 67 84 

214,6 12 -13 1 24 77 161 -4 -35 28 -7 -8 5 126 116 157 
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Potassium hexacyanoferrate (III) 

Table Appendix 11 Cell density of strains grown on potassium hexacyanoferrate (III) 

source in dark condition at 30°C. The spotted strains were repeated three times and optical 

density is one 

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 18 14 -5 10 27 0 17 23 6 -2 6 8 11 26 2 

47,6 47 49 -24 68 74 48 56 75 25 7 -1 3 77 62 33 

71,2 124 101 25 194 188 150 195 144 82 4 1 18 217 174 65 

118,5 212 179 136 437 326 329 348 280 162 30 26 19 411 362 261 

145,7 322 206 203 553 355 333 405 408 186 40 37 31 916 494 380 

168,2 408 292 263 688 430 482 532 551 242 73 62 45 1162 676 591 

192,1 487 304 314 689 470 430 508 540 253 86 70 57 1287 637 615 

214,6 513 414 358 789 626 679 669 633 405 109 75 68 1118 836 763 

 

 

 

Table Appendix 12 Cell density of strains grown on potassium hexacyanoferrate (III) 

source in dark condition at 30°C. The spotted strains were repeated three times and optical 

density is 0.1. 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 8 20 -16 -2 -1 -5 -3 3 4 4 -7 11 4 4 -131 

47,6 17 19 -20 15 4 -1 -3 33 7 8 -12 7 -19 11 -151 

71,2 44 -33 -1 29 15 -10 19 39 19 -4 19 -3 13 -5 -169 

118,5 6 9 7 62 66 45 36 52 37 -1 0 9 33 53 1 

145,7 25 14 15 76 81 50 40 68 55 2 0 9 7 66 12 

168,2 29 31 30 116 109 101 78 107 95 6 12 12 58 126 47 

192,1 30 19 36 134 153 107 89 124 119 7 10 19 55 174 130 

214,6 42 44 56 216 223 209 169 198 190 8 18 24 293 362 236 
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Iron (II, III) oxide 

Table Appendix 13 Cell density of strains grown on iron (II, III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is one 

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 18 27 14 37 -6 -126 16 11 -258 22 5 -259 20 -2 -69 

47,6 36 55 6 91 50 4 51 47 -176 9 14 -114 80 41 31 

71,1 46 76 55 139 87 -158 113 78 -224 22 22 -465 188 57 -33 

118,5 58 124 35 301 163 193 233 131 107 17 24 -109 426 136 200 

145,7 110 154 62 459 231 259 315 259 -41 59 42 -35 681 296 521 

168,2 123 209 102 585 274 330 378 307 14 79 49 -6 935 461 776 

192,1 144 221 93 523 286 366 422 294 70 73 59 -173 1160 561 744 

214,6 152 251 91 501 305 353 444 284 231 70 79 -156 1375 740 892 

 

 

Table Appendix 14 Cell density of strains grown on iron (II, III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density strains is 

0.1 

 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 8 0 -218 0 0 -7 11 27 5 -20 -7 28 5 -18 -5 

47,6 8 13 -117 11 44 -2 7 24 -1 0 -18 32 17 18 -24 

71,1 13 15 -344 7 33 17 20 38 17 -3 -23 17 10 28 -23 

118,5 -22 -4 -301 28 57 27 21 46 23 2 -1 4 21 31 21 

145,7 5 9 19 31 39 53 28 53 34 11 -11 1 48 77 34 

168,2 14 15 34 36 49 63 32 63 47 4 -10 7 71 106 36 

192,1 2 4 -9 51 66 86 39 88 65 -1 9 8 114 170 112 

214,6 3 3 0 79 78 102 37 100 66 7 12 3 166 261 165 
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Iron (II) oxide  

Table Appendix 15 Cell density of strains grown on iron (II, III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is one 

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 15 33 36 24 3 -3 30 11 6 4 7 -13 -5 20 1 

47,6 96 92 64 84 109 8 75 7 16 47 25 2 33 41 98 

71,3 111 116 86 138 171 57 140 59 98 22 11 -30 56 103 163 

118,5 253 254 163 322 294 199 208 124 184 24 26 5 131 393 439 

145,7 293 357 251 376 414 294 321 250 294 33 34 27 243 498 670 

168,2 463 485 275 569 506 346 368 261 360 43 60 37 377 907 894 

192,1 444 497 298 606 579 396 404 231 317 79 78 54 598 1239 1516 

214,6 577 573 289 701 611 369 407 233 329 91 92 64 782 1417 1690 

 

 

 

Table Appendix  16 Cell density of strains grown on iron (II, III) oxide source in dark 

condition at 30°C. The spotted strains were repeated three times and optical density is 0.1 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 -15 2 -8 1 -1 -5 -2 -4 10 -8 -8 0 -4 3 4 

47,6 27 17 -18 34 -20 52 -32 -6 -12 31 8 -3 -9 -5 11 

71,3 30 8 -17 44 -21 -30 -30 -2 2 10 3 24 18 20 25 

118,5 27 17 18 56 42 44 17 23 12 -1 -7 4 20 44 39 

145,7 35 29 31 67 68 88 20 40 19 -2 2 12 85 78 85 

168,2 40 36 57 96 110 142 53 88 67 10 9 -3 115 178 174 

192,1 77 70 65 146 118 151 74 64 107 1 10 10 209 250 301 

214,6 64 46 63 113 99 152 52 43 50 4 -1 7 228 294 304 
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Goethite 

Table Appendix  17 Cell density of strains grown on goethite source in dark condition at 

30°C. The spotted strains were repeated three times and optical density is one 

 

 
OD 1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 5 19 -520 -1 8 3 2 4 -283 20 -4 -19 13 11 -89 

47,6 19 34 -513 11 18 68 43 60 -282 56 3 -4 45 45 -71 

71,2 26 45 -530 58 46 112 66 81 -286 45 16 -5 84 78 25 

118,5 30 31 -139 78 64 183 62 96 55 49 -8 12 159 147 254 

145,7 49 59 -37 112 90 368 146 106 136 48 20 26 336 235 576 

168,2 126 111 -92 252 198 571 265 153 178 34 30 33 598 347 940 

192,1 137 122 -59 284 219 677 303 181 258 44 37 46 759 477 1210 

214,6 115 92 -88 233 221 615 240 239 302 53 38 43 615 538 1249 

 

 

Table Appendix 18 Cell density of strains grown on goethite source in dark condition at 

30°C. The spotted strains were repeated three times and optical density is 0.1 

 

 
OD 0.1 

Time (h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 -11 13 -3 -1 1 -18 -1 -1 -5 6 -9 10 -7 -5 -23 

47,6 -5 13 -19 33 -37 12 2 10 -5 33 3 9 -43 -37 -9 

71,2 -3 6 -14 4 -32 17 16 14 -11 11 3 19 -4 -16 -48 

118,5 8 -1 -25 17 -22 3 6 10 10 15 -16 25 -25 12 -7 

145,7 5 3 -8 10 -14 10 -20 -7 -8 20 2 17 -25 5 -28 

168,2 18 8 16 42 35 46 -24 14 27 7 4 1 -19 25 -17 

192,1 15 1 36 45 46 58 -29 13 34 9 4 7 8 69 4 

214,6 17 14 21 83 67 89 10 73 79 3 -2 5 82 197 98 
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Ammonium iron (III) citrate   

 

Table Appendix 19 Cell density of strains grown on ammonium iron (III) citrate source 

in dark condition at 30°C. The spotted strains were repeated three times and optical density 

is one 

 
OD 1 

 
WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 5 2 -161 1 11 -8 11 -3 -7 11 17 6 4 29 1 

47,6 16 26 -44 24 38 45 53 31 36 6 12 57 40 70 70 

71,2 33 45 -44 57 64 96 67 49 94 16 9 55 59 172 93 

118,5 106 92 -18 221 184 231 204 192 215 32 33 28 113 408 277 

145,7 164 130 -10 276 267 361 253 279 268 46 51 68 225 765 402 

168,2 234 197 -42 358 373 522 312 356 401 79 86 83 353 1186 632 

192,1 283 245 3 406 468 606 394 481 488 96 104 101 516 1483 615 

214,6 252 238 118 543 515 583 470 495 534 109 103 131 563 1201 629 

 

 

 

Table Appendix 20 Cell density of strains grown on Ammonium iron (III) citrate source 

in dark condition at 30°C. The spotted strains were repeated three times and optical density 

is 0.1 

 
OD 0.1 

 
WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 2 -12 -11 -2 -2 -1 -4 -12 -9 -14 -19 17 -18 14 -24 

47,6 13 19 -61 -54 1 -43 18 5 10 -13 -17 19 5 21 -21 

71,2 11 13 -21 -49 5 5 6 23 4 1 -13 14 6 18 -7 

118,5 16 12 6 8 40 48 45 33 30 3 2 1 42 44 32 

145,7 18 13 -2 -8 71 36 37 53 50 3 -2 1 43 68 79 

168,2 10 1 10 34 91 72 104 37 23 1 -5 5 96 125 67 

192,1 19 33 29 85 156 156 149 95 147 13 17 -2 181 271 248 

214,6 17 37 22 56 122 97 155 59 80 -4 5 -12 246 272 190 
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Light condition  

Iron (II) oxide + MnCl2 

Table Appendix 21 Cell density of strains grown on iron (II) oxide + MnCl2 source in 

light condition at 30°C. The spotted strains were repeated three times and optical density is 

one 

 
OD 1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 24 24 20 9 9 5 14 8 4 12 13 9 11 17 9 

19,0 14 14 28 13 8 7 24 7 20 15 19 30 13 19 19 

43,2 38 30 33 9 2 6 79 49 59 49 68 75 57 60 61 

66,0 161 149 158 7 6 14 285 130 
19

2 193 269 320 205 211 264 

89,5 522 452 455 58 30 65 544 445 
38

9 324 643 682 472 416 630 

116,4 
179

7 
185

8 
143

1 248 109 263 
138

1 877 
83

0 
109

7 
167

1 
147

0 
124

9 
118

5 
123

1 

138,1 
163

6 
148

6 
125

2 629 333 591 
145

8 
117

7 
99

1 
111

8 
170

5 
154

8 
155

0 
126

4 
160

9 

164,0 
187

2 
168

6 
160

5 
164

0 990 
150

6 
181

9 
111

7 
99

4 
146

7 
213

6 
220

6 
170

7 
175

3 
187

4 

188,1 
136

0 
140

2 
139

1 
179

8 
113

5 
201

4 
147

0 
107

5 
96

0 
124

8 
199

4 
185

9 
141

8 
146

0 
164

4 

210,4 
131

5 
123

7 
119

6 
147

1 
114

2 
157

4 
123

6 
112

9 
96

9 
100

6 
153

5 
141

2 
123

2 
122

3 
141

5 

 

 

Table Appendix 22 Cell density of strains grown on iron (II) oxide + MnCl2 source in 

light condition at 30°C. The spotted strains were repeated three times and optical density is 

0.1 

 
OD 0.1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 1 -7 1 0 1 -2 0 -2 -9 -10 -16 4 -10 5 4 

19,0 -6 0 -3 4 -2 -2 3 -2 1 -4 -2 -5 -1 6 -2 

43,2 2 5 -3 -2 -3 -7 12 9 2 -3 -14 9 -9 -5 11 

66,0 4 0 4 -5 6 -4 28 21 20 9 -17 5 -7 27 8 

89,5 37 47 -4 8 12 -3 87 116 95 69 86 116 82 73 59 

116,4 251 346 267 22 14 19 365 423 478 263 364 358 266 213 210 

138,1 744 
104

7 826 76 64 73 812 883 884 582 823 825 662 659 433 

164,0 
166

7 
165

6 
154

2 224 
17

9 
24

2 
196

9 
213

3 
221

7 
163

4 
186

5 
191

7 
177

8 
125

5 
117

2 

188,1 
130

7 
104

7 
137

3 393 
32

0 
42

7 
161

3 
171

9 
185

4 
160

9 
163

3 
161

2 
188

7 
133

2 
149

7 

210,4 
113

9 
142

0 
104

7 
105

4 
82

9 
95

6 
137

3 
148

0 
153

5 
126

5 
145

3 
156

6 
152

6 
153

2 
107

8 
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Iron (II) oxide + Mn (IV) oxide 

Table Appendix 23 Cell density of strains grown on iron (II) oxide + Mn (IV) source 

in light condition at 30°C. The spotted strains were repeated three times and optical density 

is one 

 
OD 1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 28 19 12 6 9 3 10 9 10 9 13 12 12 5 10 

19,0 29 33 9 -18 20 -8 12 41 14 -4 31 -9 7 13 -8 

43,2 48 39 34 7 9 -6 42 81 53 44 39 42 54 34 34 

66,0 155 122 103 18 28 20 143 245 167 112 124 131 170 99 133 

89,5 806 602 549 42 45 55 482 588 706 374 219 562 531 221 406 

116,4 
157

8 
115

7 
146

8 110 149 162 
119

6 
119

8 
146

9 
108

7 893 
116

3 
110

6 810 981 

138,1 
175

1 
182

4 
147

7 370 381 434 
140

7 
133

5 
166

1 
115

3 978 
156

3 
147

8 
117

0 
133

6 

164,0 
201

4 
194

1 
167

5 
114

9 
124

3 
139

6 
128

6 
160

8 
166

8 
121

6 
108

3 
207

5 
183

4 932 
141

1 

188,1 
146

1 
109

9 
152

9 
108

7 
132

9 
135

1 959 
126

8 
140

2 
121

9 
107

8 
138

6 
139

3 
111

6 
128

9 

210,4 
167

5 
154

0 
163

9 
169

7 
182

1 
193

1 918 
153

9 
156

9 
107

8 959 
187

0 
155

0 772 
118

4 

 

Table Appendix 24 Cell density of strains grown on iron (II) oxide + Mn (IV) source 

in light condition at 30°C. The spotted strains were repeated three times and optical density 

is 0.1 

 

 
OD 0.1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 -9 3 -2 5 9 -11 -3 -3 -1 -2 -6 -2 -8 -6 -2 

19,0 7 11 -17 -1 -6 -12 -13 -37 43 22 24 11 -11 4 0 

43,2 2 7 -17 1 4 2 10 0 18 29 6 -4 1 -14 15 

66,0 18 17 -22 17 7 -1 44 -17 59 74 21 4 13 -7 6 

89,5 45 38 47 -6 21 8 141 80 95 61 151 123 28 12 96 

116,4 246 188 287 26 23 16 405 278 318 312 508 410 140 111 322 

138,1 
107

4 688 797 50 54 47 
103

4 735 810 451 
125

0 823 310 413 943 

164,0 
196

4 
155

7 
157

3 
19

5 236 
17

7 
228

0 
192

4 
196

0 
130

7 
220

3 
182

1 712 933 
183

2 

188,1 
146

9 
128

1 
148

8 
37

5 515 
32

1 
167

3 
146

6 
140

4 
150

2 
198

1 
153

5 
111

2 
118

6 
184

4 

210,4 
170

2 
147

8 
152

1 
86

4 
108

8 
77

7 
229

8 
186

7 
180

4 
168

2 
259

9 
182

8 
127

3 
155

8 
245

7 
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Ammonium iron (III) citrate + MnCl2 

Table Appendix 25 Cell density of strains grown on ammonium iron (III) citrate + 

MnCl2 source in light condition at 30°C. The spotted strains were repeated three times and 

optical density is one 

 
OD 1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 20 14 13 12 8 5 3 8 6 16 4 -3 0 9 6 

19,0 16 20 27 9 8 7 19 14 16 22 22 15 11 16 10 

43,2 41 47 55 9 4 1 76 78 83 84 63 80 50 73 57 

66,0 168 163 229 28 13 14 257 280 295 302 207 242 193 275 204 

89,5 
110

2 923 
114

3 82 104 97 962 790 778 
102

2 733 893 710 783 757 

116,4 
160

0 
171

4 
199

2 218 254 278 
148

0 
134

4 
135

6 
130

0 
143

9 
125

5 
128

4 
110

7 
122

7 

138,1 
120

9 
115

5 
137

1 448 627 595 
126

8 
115

0 
111

1 
126

7 
131

8 
125

9 
121

6 
123

9 
116

0 

164,0 925 
110

7 
115

4 
136

7 
159

8 
138

3 
152

1 
130

1 
111

4 
179

4 
143

5 
146

7 
133

4 
170

3 
123

2 

188,1 866 518 620 
125

2 
157

5 
166

8 
117

0 
131

4 
129

6 
120

9 
143

6 
133

7 
110

1 
118

4 
104

9 

210,4 648 577 692 
151

2 
176

6 
142

8 
139

5 
118

5 
100

6 
154

4 
120

3 
135

1 
114

1 
151

1 
103

1 

 

Table Appendix 26 Cell density of strains grown on ammonium iron (III) citrate + 

MnCl2 source in light condition at 30°C. The spotted strains were repeated three times and 

optical density is 0.1 

 

 
OD 0.1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 0 0 -6 -7 -1 1 -16 -10 -4 -1 -6 6 0 2 -4 

19,0 0 -2 -6 2 2 -3 8 -3 0 1 -2 3 -4 2 0 

43,2 0 -4 -8 -7 5 -7 -14 -9 -2 -7 6 5 2 -10 -12 

66,0 0 0 -3 4 0 -8 -13 1 -6 -7 -12 6 -2 -3 -12 

89,5 201 30 94 11 9 19 203 242 263 184 254 203 150 185 195 

116,4 631 673 906 78 31 22 546 670 574 454 594 616 403 417 572 

138,1 
126

8 
109

9 
125

3 165 62 86 
105

9 
143

0 
132

7 955 
113

5 
100

2 808 868 
138

2 

164,0 
204

4 
109

2 
135

4 369 
32

2 393 
197

8 
233

5 
238

3 
188

8 
239

6 
177

4 
183

2 
192

5 
197

4 

188,1 
143

2 
114

0 734 608 
55

9 685 
180

7 
224

4 
168

2 
181

8 
185

0 
206

0 
180

4 
145

2 
189

5 

210,4 
136

4 796 
107

3 
106

8 
89

0 
157

6 
168

5 
201

2 
195

8 
169

5 
217

7 
166

1 
182

5 
183

9 
167

6 
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Ammonium iron (III) citrate + Mn (IV) oxide 

Table Appendix 27 Cell density of strains grown on ammonium iron (III) citrate + 

MnCl2 source in light condition at 30°C. The spotted strains were repeated three times and 

optical density is one 

 
OD 1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 13 14 7 5 9 -3 13 4 10 12 5 5 10 8 7 

19,0 24 11 20 6 5 4 18 30 17 22 11 10 3 30 17 

43,2 54 41 41 13 1 -21 80 69 51 77 56 62 43 67 58 

66,0 138 142 138 26 18 11 331 271 224 277 215 298 200 275 222 

89,5 
106

9 683 810 66 74 53 706 607 525 931 612 672 547 622 623 

116,4 
165

6 
164

2 
142

5 274 309 266 
166

2 
155

6 
129

3 
159

7 
118

7 
175

0 
132

2 
172

8 
135

4 

138,1 
142

3 
128

6 
114

7 468 492 438 
138

4 
126

9 
113

4 
147

1 
124

4 
126

9 
125

9 
132

6 
120

0 

164,0 896 
108

8 766 
104

4 
119

2 
104

6 
136

8 
135

0 
119

0 
139

0 
137

2 
152

4 
119

7 
154

1 
130

0 

188,1 425 694 482 
138

1 
140

1 
120

5 
118

8 
122

1 
108

8 
116

1 
123

9 
135

7 
110

0 
128

3 
113

4 

210,4 511 942 742 
120

6 
128

4 
107

6 
121

1 
123

8 
112

5 
127

0 
130

7 
132

0 
124

0 
128

0 
116

1 

 

 

Table 28 Cell density of strains grown on ammonium iron (III) citrate + MnCl2 source 

on light condition at 30°C. The spotted strains were repeated three times and optical density 

is 0.1 

 

 
OD 0.1 

Time 
(h) WT PSI slr 0906 c slr 0906 s slr 0906 k 

0,0 7 3 -2 -1 -1 -10 -1 1 0 0 2 6 1 2 -7 

19,0 -13 -4 17 -2 6 -6 4 7 7 -1 10 7 -2 -4 -14 

43,2 -8 4 15 -9 -9 -4 10 -1 4 3 11 6 -1 19 -8 

66,0 7 7 11 6 3 -2 29 33 23 33 36 28 23 22 11 

89,5 47 89 70 -7 -1 11 121 93 123 107 127 102 69 94 49 

116,4 716 583 438 28 42 25 658 476 612 578 592 476 330 418 318 

138,1 
107

5 
111

8 895 61 52 46 755 638 737 810 737 578 562 592 445 

164,0 
152

6 
165

6 
118

7 
24

1 
29

2 
21

1 
160

4 
116

3 
139

2 
147

5 
165

0 
125

1 
120

4 
132

9 
114

2 

188,1 
133

2 
124

7 
102

4 
55

0 
58

1 
44

2 
143

7 
107

1 
124

6 
134

7 
141

5 
112

0 
113

4 
123

7 
109

7 

210,4 
124

4 
140

5 
103

5 
68

8 
74

0 
55

4 
120

8 976 
110

8 
120

6 
123

9 
101

3 
103

9 
113

3 975 

 


