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Sammendrag

Det har blitt pavist at mikroorganismers vekstrater pavirkes av flere abio-
tiske stresskilder, slik som osmotisk stress. >3] Forstaelse for tilpasningene
som skjer i mikroorganismer under osmotisk stress er viktig, da det kan
bista utviklingen av virkemidler og metoder for konservering av mat, som
er en vanlig smittekilde for patogener hos mennesker. (4!

En av de vanligste patogene organismene som infiserer mennesker er Fs-
cherichia coli (E. coli).l® T 2004 rapporterte “The Center for Disease Con-
trol and Prevention” i USA om to utbrudd av patogen FE. coli, der smitte—
kilden i begge tilfeller var mat. "8 I U-land er akutt diaré den nest
vanligste dgdsarsaken for spedbarn, der E. coli er en av de vanligste kildene
til sykdommen. ! For & motvirke smitte av E. coli i mennesker er det derfor
viktig a utvikle metoder som kan modellere og predikere hvordan denne
organismen reagerer pa eksterne stressfaktorer.

Malet med denne masteroppgaven var a undersgke metabolismen til E. coli
som ble utsatt for varierende grader av osmotisk stress. For a oppna dette
ble det opprettet et

samarbeid med “Institute for Food Research” (IFR) i Norwich, Storbri-
tannia. Gjennom samarbeid med “Computational Microbiology Research
Group” ved IFR ble det tatt malinger av genuttrykk i E. coli utsatt for
varierende grader av osmotisk stress. Disse malingene ble deretter analysert
ved bruk av metabolsk modellering.

Osmotisk stress er et komplekst fenomen, og det ble i lgpet av prosjektet
ngdvendig a utvikle en ny metode for integrering av metabolske modeller og
genuttrykks—malinger, kalt “Metabolic Flux Distribution by Translational
Efficiency and Enzyme Kinetics” (MUTE). MUTE er i stand til & komme
med prediksjoner om endringer i metabolismen til organismer basert pa
genuttrykks—malinger, enzymkinetikk og translasjonseffektivitet. Metoden
ble vist a vaere mer sensitiv for forandringer i genuttrykk enn andre sammen-
lignbare metoder som “Metabolic Adjustment by Differential Expression”
(MADE). Dette resulterte i nye prediksjoner for forandringer i metabolismen
til E. coli utsatt for osmotisk stress. En interessant nyvinning hos MUTE er
detaljnivaet metoden opererer med, der proteinkonsentrasjons-prediksjoner
ligger i samme stgrrelsesorden som det empiriske data rapporterer. ')






Abstract

Microorganisms are known to be affected by stresses such as osmotic stress
by reducing their growth rate.2?3 Understanding the mechanisms behind
this are important, as it can aid in the development of new methods of con-
serving food — a common source of pathogen infection for humans. )

One of the most common pathogenic infections for humans is Fscherichia
coli (E. coli).® In 2014, the Center for Disease Control and Prevention in
the USA reported two outbreaks of pathogenic E. coli, both transmitted
through food."® In developing countries, acute diarrhea is the second most
common cause of infant death, and infection by FE. coli is one of the most
common sources.? In order to effectively combat E. coli infection in hu-
mans, it is important that accurate methods for predicting the organism’s
response to external stresses are developed.

The goal of this master thesis was to investigate the metabolism of E. coli
under osmotic stress. In order to accomplish this, the project was set up
as a collaboration with the Institute for Food Research (IFR) in Norwich,
United Kingdom. Through collaboration with the Computational Micro-
biology Research Group at IFR, gene expression data for F. coli growing
under different states of osmotic stress was collected and analyzed using
metabolic modelling.

The complex nature of osmotic stress required the development of a new
method, dubbed Metabolic Flux Distribution by Translational Efficiency
and Enzyme Kinetics (MUTE). MUTE is able to predict changes in metabolic
flux based on gene expression data, translation efficiencies and enzyme ki-
netics. MUTE was shown to increase the sensitivity to expression data
compared to other methods such as “Metabolic Adjustment by Differential
Expression” (MADE), resulting in new predictions on metabolic changes
during osmotic stress in F. coli. Another novelty of MUTE is its level of
detail, where enzyme concentration predictions are levels reported by em-
pirical data.?
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Chapter 1

Introduction

A long standing strategy in the quest to understand life at a cellular and
molecular level has been a reductionist one, separating complex processes
and systems into simpler ones to allow for their analysis. ™) The fruits of
this labour can not be understated, as it has provided us with a wealth
of new information that now allows us to accomplish feats in life sciences
that we were only able to dream of no more than 20 years ago, such as the
sequencing of the human genome. 2!

The exponential growth in information generation made possible by “next
generation” biology tools has highlighted the need for a complimentary
approach to reductionism.3419 Ags the details governing life are eluci-
dated, it has become evident that many systems can only truly be under-
stood by looking at their emergent properties when viewing the simplified
systems as a whole. 1917 One of the ways in which this can be accomplished
is by using tools from the field of network analysis, which is routinely applied
in various other fields such as computer science, sociology and physics. ['*!
This approach allows both visual and computer aided identification of novel
clusters of connected components, making possible the generation of new
hypotheses and their subsequent experimental testing. !

Systems biology is in part built on the progress made in network theory
and routinely applies it to visualize and analyze biological systems. 16
Analysis of gene expression has allowed for construction of gene regulatory
networks (GRNs), which help shed light on the processes governing a cells’
behaviour under a wide array of conditions. The access to GRNs for several
organisms has helped develop a sub—field of systems biology; genetic circuits,
where potentially novel combinations of genes and regulatory elements are
constructed in order to create novel biological functions. ') Metabolic

modelling has also benefited from the network approach to understanding

life.



The data and insight gained by next-generation tools and bioinformatics
has, for several organisms, resulted in compiled lists of most biochemical
reactions and pathways for several organisms, such as humans.*) Knowing
the reactions that happen inside a cell is useful in itself, and pairing it with
modern optimization theory and constraint based analysis enables modelling
of the metabolism entire cells. 21222324 This type of modelling predicts the
“flow” of matter, or flux, through each reaction or pathway of the cell in
question. The list of organisms whose metabolism has been modelled is
rapidly growing, and several different approaches are used to construct the
models, differing both in the data used to impose restrictions on the system
and the methods for optimizing and solving for the fluxes of the system. 242!

By using information contained in the GRNs to impose retrictions on system
behaviour and flux, it is possible to remove “extreme” pathways which are
only active in a minor set of circumstances, resulting in a flux distribution
that is more realistic for “normal” cell states.[??) This is known as shrinking
the solution space of the model.?¥ A promising next step for constraint-
based metabolic models is to integrate gene expression data to shrink the
solution space ever further and improve upon the accuracy of predictions. >4

The availability of gene expression data has led to their inclusion in constraint-
based metabolic models. Some models use gene expression data as a “boolean
switch”, where they are used to determine whether a given pathway or re-
action is on or off.?® This inclusion of expression data allows for a more
accurate picture of cell metabolism to be modelled, however, the boolean
nature of the expression data’s incorporation may be too simplistic for
accurate modelling. One method adressing this was Gene Expression Flux
Balance Analysis (GX-FBA), in which gene expression levels were used to
set lower and upper bounds on the flux of each pathway, resulting in more

accurate predictions?3.

Systems biology methods are maturing at a rapid pace, and the
complexity and level of details of models and predictions is constantly in-
creasing. Making predictions about cell metabolism and other facets of
cells is now common practice in many research groups, and the applica-
tions of metabolic modelling are spreading to most research areas involving
cells. 2627281 One of these areas is food safety, where researchers investigate
such things as growth of microorganisms in human food.?” Producing new
knowledge on pathogen adaptation and survival in food could be an impor-
tant part of

reducing incidence rates of pathogen outbreaks caused by contaminated
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food, which is becoming important as the world’s food supply becomes
increasingly globalized.? In developing countries diarrhea is a major source
of infant death, and one of the most common causes is infection by pathogenic
E. coli.V)

One of the oldest, and most effective way of curbing microbial growth in
foods is through salting.*%% By increasing the osmolarity of the
environment, salting induces osmotic stress in microorganisms, which greatly
reduces growth rates.??% Developing methods capable of modelling cell
metabolism during osmotic stress would lead to an increased
understanding of the systems regulating osmoadaptation, and might result
in more efficient preservation of food.*% Osmoadaptation is a complex pro-
cess,

involving large changes to cell metabolism. Modelling of this phenomenon
can be aided by the development of methods which are able to accurately
translate gene expression data into changes in the metabolic networks of
cells.

A challenge facing researchers working on gene expression readings today is
the lack of 1:1 correlation between gene expression levels and the resulting
protein levels. ! Progress in elucidating the relationship between mRNA
and protein levels has progressed at a steady pace, and recently the concept
of ribosomal profiling was introduced, where the ribosomal occupancy frac-
tion of mRNAs is profiled across a wide range of mRNAs. 3233l

Ribosomal profiling is capable of generating a unique “Translation effi-
ciency” parameter to mRNAs — a relative measure of the rate of protein
translation from each mRNA.[¥ Coupling translation effiency parameters
with gene expression readings and knowledge on the mean ratio of protein
abundance to mRNA abundance could open the door for methods that pre-
dict enzyme concentrations at empirically measured levels, bringing systems
biology one step closer to truly representative metabolic models.

This thesis will detail the development of one such method, with the goal
of modelling osmotic stress in E. coli.






Chapter 2

Theory

This chapter will give an overview of the methods used in the development
and subsequent analysis of the “Metabolic Flux Distribution by
Translational Efficiency and Enzyme Kinetics” (MUTE) method, which was
developed to reach the primary goal of this thesis — understanding osmotic
stress in Escherichia coli (E. coli). The theory should give the reader
knowledge about the motivations for understanding osmotic stress in

E. coli, how metabolic models are constructed and how they are analyzed.
It will give an overview of existing methods for integrating biological data
with metabolic models, and show why developing the MUTE method was
neccessary.

2.1 FEscherichia colr

E. coli is an enterobacterium which is present in the gastrointestinal tract
of humans. % E. coli has become a massively popular and well understood
model organism due to its relatively small, fully sequenced genome of 4.6
Mbp along with a short doubling time of approximately 30 minutes.343%
The EcoCyc database, dedicated to knowledge on FE. coli strain K-12 sub-
strain MG1655 lists 4501 genes, of which 4282 are protein coding.% Out
of the 4501 genes, 3547 have known functions, representing 78% of the
genome. 3

2.1.1 Pathogenic E. col:

Infection by pathogenic FE. coli manifests mainly in three general clinical
symptoms: Enteric/diarrhoeal disease, urinary tract infection and sepsis. [
A common source of infection for humans is through contaminated food,
where pathogenic F. coli strains are able to colonize the gastrointestinal



6 2.2. MODEL RECONSTRUCTION

tract and cause disease.[) Understanding ways of preventing or slowing
growth of E. coli in food is therefore an important preventative measure
that could reduce the incidence rates of E. coli infections in humans.
Perhaps the most widely used and oldest preventative measure against
pathogen contamination in food is salting, which induces osmotic stress
upon micro

-organisms inhabiting food. !

2.1.2 Osmotic stress in F. colz

Osmotic stress occurs whenever the water activity surrounding a living cell
differs from that on the inside.® Goverened by the unstoppable force of equi-
librium, water will migrate across cell membranes, the direction of which
depends on the nature of the inequality, until

equilibrium is achieved.?

Because salt is added as a preservative to food, microorganisms living there
are typically faced with a hyperosmotic environment, where the water ac-
tivity of its surroundings is higher than inside the cell.? This difference in
water activity will over time dehydrate the cell, as water migrates from the
cytoplasm to the extracellular environment.? To combat this, cells produce
osmoprotectants such as glycine-betaine, which help equalize the

water activities inside and outside of the cell. 7383

Research on osmotic stress in E. coli has previously shown that osmotic
and oxidative stress is connected, and it is likely that an understanding of
one of these systems will increase the understanding of the other. [3:39:40:41]
Progress in understanding osmotic stress relies in part on the ability to
model the phenomenon in silico, using our lists of reactions, genes and
metabolites to build mathematical models which represent the metabolisms
of microorganisms.

2.2 Reconstruction of genome scale metabolic
models

An important aspect of modelling cells’ metabolisms is how to represent
the individual reactions and molecular species that participate. The most
common method is to represent some reaction n as a linear equation, where
all metabolites that participate in the reaction have coefficients equal to
their stoichiometric coefficients, and all other metabolites have coefficients
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equal to zero.*? These coefficients are negative in the case of substrate, and
positive for products, representing the destruction or creation of molecular
species. [+

2.2.1 Stoichiometric matrices

Using Michaelis Menten kinetics, reactions catalyzed by an enzyme E can
be represented by the following schematic: [*4!

E+S =gt gyp (2.1)
k2
which is represented by the following differential equation: *4
P
dt Ky + [S]

Assuming assuming that enzymes are working at saturation and invoking
the steady state assumption, i.e. [S] >> [K,], Vinax = Ekcar allows

simplification of equation (2.2):144
d[P] _ Vinax[S] d[P]
_ — = = Eke, 2.
S 5] VT t (23)

where ke, is the turnover rate of the enzyme E.*4 All reactions in an bio-

chemical network can be represented this way, and assuming mass balance,
ie. % = 0, it is possible to contruct linear stroichiometric matrices where

each row represents the mass balance of a metabolite. For a set of reactions,
the stoichiometric matrix S is of the form:

C11 C12 ... Cin

= C21 Co2 ... Cop

S = (2.4)
Cm1 Cm,2 - Cmn

where ¢, , represents the stoichiometric coefficient of metabolite m in
reaction n. As an example, consider the five reactions and three metabolites
listed below:

— A
— B
A+3B — 2C
2A+B — 3C
C—

A~~~ A/~ A/~ /—~
O o0 3 O Ot
— — ~— ~— —
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The numbering system for the ensuing stoichiometric matrix will be the
same as for the equations. For this set of equations, the stoichiometric
matrix would be:

1o
S=101 -3 -1 0 (2.10)
00

Looking at the reactions it is evident that A is created in reaction 1 and
consumed in reaction 3 and 4. This is represented in the first row stiochio-
metric matrix, where S;; =1, S13 = —1 and S14 = —2.

These matrices uncouple biochemical reactions from their enzymes’ turnover
rates, relying instead on the principle of mass balance, which opens up
several possibilities for modelling the biochemical reactions governing a cell.
Examples include Extreme Pathways, Elementary mode analysis, Minimal
metabolic behaviours, Metabolic Modelling with Enzyme Kinetics and Flux
Balance Analysis. [#3:45:46:4748] \[etabolic models have been compiled for
several organisms, and as of 2009 the number of metabolic models counted
94 for bacteria, 39 for eukaryota and 6 for archaea. Some of the most
complete models today describe the metabolism of E. coli.[49:50:51]

2.2.2 Metabolic models of E. colz

Our detailed understanding of E. coli has allowed the creation of metabolic
models of the organism, where large parts of the organisms metabolic
network is represented by systems of linear equations.® The iAF1260 re-
construction of F. colt metabolism accounts for 1260 Open Reading Frames
(ORFs) and 2382 biochemical reactions, making it possible to model aspects
of the organisms metabolism with relatively high degrees of accuracy. °"!

Orth and coworkers published an updated genome scale reconstruction of
E. coli metabolism, ¢JO1366, accounting for 1366 genes, 2251 metabolic
reactions and 1136 unique metabolites.?” The :JO1366 model is made in
Systems biology Markup Language (SBML), and can be imported by several
software suites where a range of methods can use the model as a structure to
work on.® One of the most popular software suites for metabolic modelling
is the Constraints Based Reconstruction and Analysis (COBRA) toolbox for
Matlab, in which methods such as Flux Balance Analysis (FBA) can be run
to optimize flux distributions in metabolic models. 43:%3]
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2.3 Linear and quadratic programming for
optimization

The field of optimization methods attempts to tackle problems where some
optimal distribution of values need to take place, while simultaneously
making sure that the constraints of the problem are not violated.® Re-
search into optimization has benefited from a large interest in solving com-
plex

logistics problems, and is quickly evolving.[® While typically associated
with engineering and business problems, optimization theory has
applications in almost all fields, including metabolic modelling. [*°!

Optimization problems are commonly defined by an objective function and a
set of constraints.® The objective function, as the name implies, represents
information about the value of the variables, while constraints represent
limits on the range of values variables can take. When optimizing, the goal
of the algorithm of choice is to either minimize or maximize the value of
the objective function by selecting an optimal combination of values for the
variables.® The algorithms are able to do this while making sure that the
limits imposed by the constraints of the problem are not violated, ensuring
that the solution lies within the feasible region of the solution. %!

2.3.1 Linear programming optimization

Linear programming optimization is applicable to a problem when both the
objective function and the constraints of a problem can be expressed as
linear functions. The most well known optimization method for linear
problems is perhaps the “Simplex algorithm”, which was developed by
George Dantzig in 1947. The following quote from Dantzig describes the
method succinctly: %!

“The simplex procedure is a finite iterative method which deals
with problems involving linear inequalities in a manner closely
analogous to the solution of linear equations or matriz inversion
by Gaussian elimination.”
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The method can be described in the following way:

T

min z =¢'
subject to
Az <b
x>0

where A is the constraint coefficient matrix, b is a column vector describing
the limits of all constraints in A and ¢ is a row vector of objective function
coefficients. Following the optimization step iterations, a vector containing
optimal values of Z is returned. ®S!

The simplex algorithm moves from vertex to vertex along the n—dimensional
surface of the feasible solution space.®® If a point is found, where moving
from that point in any direction decreases the value of the objective function,
that point represents an optimal combination of values for the variables. 50l

Example of Simplex agorithm

Consider the following linear problem:

max z = br1+2x2 (2.11)
subject to

4oy — 29 >0 (2.12)

—x1+ 22, <7 (2.13)

1+ 2wy < 13 (2.14)

T+ 29 <9 (2.15)

201 —x9 > 9 (2.16)

x1 — 2x9 >3 (2.17)

x1,T9 >0 (2.18)

In order to solve this, the Simplex algorithm moves from vertex to vertex
along the surface defined by the constraints of the problem. At each
vertex, the value of the objective function in that point is checked, and if
it is greater than the current value, the Simplex algorithm moves to that
point. If the

objective function value in the next vertex is lower than the current, the
global optimum has been found, and the algorithm is finished.

This is caused by the nature of linear problems, which are convex in nature.
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(x1,%2)=(3,5) Objective function:
z=27 z = 5x,+2x,
5 ~ . .
(X1 %)=(1,4) (X1.%2)=(5,4) O starting point
z=13 z=35 Intermediary points
4 r oL O Optimal point
\ O Unvisited point
3 (X1,X2)=(6,3)
z=36
2 Increasing objective
function value f
1
(x1:%2)=(5,1)
z=29
G T | T l T >
2 3 4 5 6

|
(x1,%2)=(0,0) 1
z=0

Figure 2.1: Ilustration of the simplex algorithm.

In convex systems, local and global minima or maxima are equivalent. ®”

Figure 2.1 shows a graphical representation of the Simplex algorithm solving
the linear problem defined in equations (2.11) through (2.18).

In Figure 2.1, the algorithm starts in (z1,22) = (0,0). It then travels
along the first constraint, arriving in the second vertex, (xi,z9) = (1,4),
where the objective function value improves. This is repeated until the
algorithm reaches the optimal point (x1, z5) = (6,3). The next vertex objec-
tive function value, z = 29 is lower than the optimal point, z = 36, and the
algorithm is finished. Note that all vertices represent integer points merely
for convenience, and that the Simplex algorithm is not restricted to integer
programming problems. [°8!

2.3.2 Quadratic programming optimization

In quadratic optimization, both the objective function and the constraints
can have quadratic terms.® Quadratic problems are more complex than
their linear counterparts due to the inclusion of quadratic variables, and
therefore need separate algorithms for solving.®¥ A quadratic optimization
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problem will typically be of the form:

min z = & 7 + ET@i’
subject to
Az <b
x>0

where A is the constraint coefficient matrix, Q is the quadratic objective
coefficient matrix, Z is a vector of variables and ¢ is the linear objective
coefficient row vector®. Compared to linear programming optimization,
where the objective function is convex, quadratic programming problems
have concave objective functions. Checking for local maxima or minima for
concave functions has been shown to be NP-hard — a class of problems with
no known algorithms for exact solutions.®” Optimizing quadratic program-
ming problems therefore requires algorithms, such as the Barrier algorithm,
which make use of certain heuristics in order to converge to optimal solu-
tions. [60)

Quadratic programming optimization can be used for problems such as
minimization of distance between some number and a variable, for instance
the minimization of distance between empirical data and predictions. 6!

2.4 Flux Balance Analysis

Flux Balance Analysis (FBA) is one of the constraint based approaches to
metabolic modelling.*¥ Expanding on the metabolic network defined by
the stoichiometric matrix S, FBA adds linear constraints that shape the
solution space of the metabolic model. *?!

2.4.1 Linear constraints

Linear constraints make it possible to constrain the solution space of a model
by imposing sets of strict (in)equalities on the system. Single variables, or
the sum of several can be prevented from, or forced to, take on values defined
by some numerical limit.*3) Any constraint is of one of the following forms:

$1%1 + SoTo + ... + Spxy, < b (2.19)
S1X1 + Soxo + ... + ST, Z b (220)
$1T1 + SoTo + ... + ST, = b (2.21)
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Using various combinations of these three types of constraints, it is possible
to ensure that models behave in a way that respects a priori knowledge,
resulting in more accurate and applicable predictions. An important part of
FBA is the following set of restrictions, represented here in matrix form: 43!

S-v=0 (2.22)

This set of constraints restricts the model in such a way that the sum of
fluxes for any given metabolite is zero. Implementing this prevents

accumulation of metabolites in biochemical dead ends, and ensures that re-
action fluxes flow through the model according to the logic defined in S. 3
Other constraints limit the lower or upper bound of reaction fluxes, keeping
them at realistic, empirically validated levels. Linear constraints are also
used to define “virtual growth medium” of the metabolic models, limiting
the nutrient availability of the cells. These constraints change the shape of
the solution space of the model, as can be seen in Figure 2.2.1*3! Each edge
in the cone-like structure of Figure 2.2 is defined by some constraint, and

together they form a subspace of the unconstrained solution space.

X2
-~

X3

Figure 2.2: The solution space of a 3-dimensional linear model.

Finally, one last piece is required for FBA, and that is an objective function
which drives flux through the reactions.

2.4.2 Linear objective functions

The objective function, as the name implies, defines the objective of the
model, or in the case of a metabolic model, the objective of the cell.[*3 The
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function is commonly linear, and associates some value ¢ with all
variables.*3] A typical objective function is on the form:

max z = ¢ - T (2.23)
where ¢ is a vector containing the value associated with all variables in Z.
The inclusion of “max” in front of the function is an instruction to the
optimizer that the value of the objective function is to be maximized. The
most common objective function in FBA is the accumulation of biomass,
which will drive the optimization towards a distribution of reaction fluxes
which maximizes the growth rate of the modelled cell. 3!

The optimization step of FBA is handeled by external optimizers such as
Gurobil® GLPKI93] or CPLEX[%4, and returns a vector of predicted
reaction fluxes for all reactions in the model, along with the predicted growth
rate of the modelled cell.*3) FBA has been a popular choice for researchers
investigating such phenomenon as the effect of gene knockouts on metabolic
networks, and has been of great use in disciplines such as metabolic
engineering. %% The downside to FBA is that it is unable to accomodate
OMICS data in the form of gene expression, proteomics— or enzyme kinet-
ics data. Modelling complex and poorly undestood systems such as osmotic
stress relies on these kinds of data to give clues as to what is happening, and
so developing methods which incorporate OMICS data is an area of high
activity. [67]

2.5 High throughput measurements of bio-
logical data

The massive generation of data which has been made possible by relatively
recent advances in molecular biology has allowed us to gain detailed insights
into the inner workings of cells and the flow of information which regulates
life. The OMICS term encompasses many data types, among them data on
gene expression, protein concentrations, metabolite concentrations and

reaction fluxes. Finding ways of integrating various types of OMICS data
has been the goal of many groups working on systems biology, and the num-
ber of methods incorporating these kinds of data are rapidly increasing. 7]

2.5.1 Proteomics

The conventional proteomics methods make use of 2-dimensional gel
separation in order to generate maps of protein abundances. % Proteins are
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applied to wells in a polyacrylamide (PAGE) gel, which is then submerged
in a solution with a pH gradient. Subjecting the system to an electrical
current makes the proteins migrate along the electrical field, until they are
at a point in the pH gradient where their natural charge is neutralized, stop-
ping that particular protein’s migration. %8 After some time, all proteins in
the applied sample will have separated along one dimension based on their
isolelectric point. [®)

After separating the proteins based on isoelectric points, a solution
containing charged detergents, most commonly sodium dodecyl sulfate (SDS)
is added to the protein samples in order to linearize them an impart negative
charge to the proteins.[%8 SDS typically distributes evenly along proteins,
giving all proteins an approximately equal charge to mass ratio.%¥ A new
electric current is applied to the PAGE gel, orthogonal to the previous one.
All proteins now migrate along the new electric field, and separate in the
second dimension based on mass, as larger proteins migrate more slowly
than smaller ones. 08!

After completing the two dimensional separation of proteins based on iso-
electric points and mass, the proteins can be transferred to other surfaces,
such as nitrocellulose membranes, where they can be visualized and charac-
terized more easily. [69)

Two-dimensional separation of proteins on gels is losing ground to mod-
ern methods such as High Pressure Liquid Chromatography (HPLC) and
affinity purification, which are faster and more accurate, but it is impor-
tant to recognize the role of 2-dimensional gel separation has played in
proteomics history. 70772

Isolating proteins has made it possible to determine several of their
characteristics, such as enzyme turnover rates and post-translational modi-
fications. Protein data is becoming more and more important, and methods
such as Metabolic Modeling with Enzyme Kinetics (MOMENT) utilize in-
formation on protein weights and enzyme turnover rates to make flux- and
growth rate predictions from metabolic models. 48!

2.5.2 Gene expression microarrays

Technologies such as gene expression microarrays have made it possible to
detect and measure mRNA levels from the complete set of genes in a genome
simultaneously, and investigating the mRNA levels from specific genes un-
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der different environmental conditions has allowed the elucidation of the
functions of many genes. (™!

Microarrays rely on the principle of hybridization of nucleotides.™ This
hybridization facilitates the design of oligonucleotide probes, which are able
to hybridize with complementary sequences of DNA/RNA.[™ The
oligonucleotide probes are labelled with fluorescent dyes, such as Cy3 and
Cy5, which emit characteristic spectra of light when excited by laser light. (77!

A microarray is produced by printing a set of probes into wells in a glass
plate. The set of probes is selected with a specific experiment in mind,
making sure that each mRNA of interest has a complementary probe at-
tached to the surface of some well on the array. A sample of purified mRNA
is amplified by reverse transcription, producing a corresponding set of cDNA
sequences complimentary to the set of mRNAs. 747

The ¢cDNA sample is applied to the microarray, where the cDNA sequences
hybridize with complimentary probes. Excitation of the fluorescent dyes in
the probes by laser produces a signal for each oligonucleotide probe which
depends on emitted light intensity. These signals are analyzed and used to
measure the original level of mRNA in the experimental sample, represented
by some probe on the array. 747

Gene expression microarrays are a valuable tool for eludicating gene
functions, and methods such as Metabolic Adjustment by Differential Ex-
pression make use of gene expression data to predict changes in the metabolism
of cells. )

2.6 Metabolic Adjustment by Differential Ex-
pression (MADE)

MADE was developed as a way of integrating high-throughput expression
data with metabolic models.!?) MADE takes as input a set of gene
expression measurements which were taken

different environmental/cellular conditions. At least one transition between
these conditions is defined by MADE, describing the fold changes in expres-
sion levels of the measured genes between the two conditions. The method
also relies on the p—values associated with these transitions, commonly found
by performing a t-test on the data series.* Armed with fold changes and
p—values, MADE
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proceeds by grouping each gene’s expression change in each tranition into
one of three sets; increasing, decreasing or constant. An objective function
for each transition is defined as the weighted sum:[?’!

fimit (l’) = Z w(pri—n‘+1 ) («Ti+1 - xz) (224)
zel

+ Z w(pﬂciawl)(xi - zi—&-l) (225)
xeD

- Z w<pil?z‘~>i+l )Aiﬂi,xi+1 (226)
zeC

where

A 0, ifz; =mpq
TiTitl 1 i
;i@ # i

and w(py, ,,,) is the weighting function of the p-value associated with the
transition, typically —log(p). The algorithm then optimizes the sum of all
weighted transition sums: %)

n—1
max Y fisin () (2.27)
=1

Resulting in an optimal set of binary states for each gene for each condition.
Genes whose binary state is set to 0 are predicted by MADE to be inactive
in that condition, while genes whose state is 1 are allowed to carry flux.

2.6.1 [Ilustrative example of MADE

As an example, consider the following case. The imaginary organism
Nanococcus minimalus has three genes. A researcher looking to investigate
N. minimalus sets up a series of experiments where the mRNA levels of each
of the three genes is measured in three different conditions. Following the
experiments, after analyzing the data, the researcher is left with Table 2.1.

Table 2.1: Example of MADE input data.

Fold change Fold change
1—=2 p-value 2—3 p—value
gene 1 2.0 0.001 1.2 0.050
gene 2 0.5 0.003 0.1 0.001
gene 3 0.0 0.001 0.0 0.001
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MADE: Metabolic Adjustment by Differential Expression

Gene counts:

| Increasing Decreasing Constant
Transition | Fit / data Fit / Data Fit / Data
1 ->2 | 1/ 1 0/ 1 1/ 1
2 >3 | 0/ 1 1/ 1 1/ 1

Total match: 4 / 6 (66.7%)

Figure 2.3: Example of MADE output in Matlab.

There are two transitions between the three conditions, each associated
with some p—value. Feeding the data contained in table 2.1 to the MADE
algorithm, along with a metabolic model of N. minimalus produces the
following edited output from Matlab:

The MADE algorithm has adjusted the gene states in the three
conditions to match the experimental data from Table 2.1. The expression
changes in transitions are prioritized according to the weighting function
previously described, where lower p-values are prioritized over higher ones.
For this example, the gene state matrix produced by MADE is shown in
Table 2.2.

Table 2.2: Gene states predicted by MADE.

Gene ‘ Condition 1 Condition 2 Condition 3

Gene 1 0 1 1
Gene 2 1 1 0
Gene 3 1 1 1

The reactions belonging to the genes in Table 2.2 would have their flux
bounds adjusted according to the gene states, where “0” would constrain
the reaction to carry zero flux, while “1” would allow normal flux to flow
through the reaction.
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2.6.2 Strengths and weaknesses of MADE

In the example shown in section 2.6.1, some weaknesses of MADE are made
apparent. By utilizing binary variables for gene states, any consecutive in-
crease in expression over multiple conditions will only result in one gene
state change. This has the potential of misinterpreting the state of genes,
forcing expressed genes in one or more conditions to the off state, because of
a significant increase in a later transition. This leads to a “coarse” mode of
action for MADE, where big changes such as complete metabolic shifts are
represented, while smaller changes that merely alter the flux rates between
conditions are lost.?®) Another weakness is the incompatibility of MADE
models, which are in the TIGER or ELF format, with many COBRA Tool-
box methods, making the analysis of the models challenging. [2576

The strength of the MADE method is its ability to represent transitions
between different environmental conditions. By optimizing the on/off state
of genes over a set of environmental transitions, MADE is able to iden-
tify trends in time series measurements, that can help elucidate adaptation
mechanisms of cells in various states of environmental stress. 2!

2.7 Metabolic Modelling with Enzyme Ki-
netics (MOMENT)

The MOMENT method takes an unconventional approach to predicting
growth rate and flux distributions of organisms. Whereas some methods
incorporate OMICS data in order to increase their predictive accuracy, MO-
MENT makes use of knowledge about the kinetic parameters of the enzymes
which catalyze metabolic reactions, as well as knowledge on the mass com-
position of cells. [*]

Using enzyme kinetics databases such as BRENDA and SABIO-RK, enzyme
turnover rates are collected for all enzymes contained in the model. 7”78 If
some enzyme’s turnover rate is not available for the organism in question,
turnover rates from closely related organisms are used as a substitute, and
if this fails, the mean of all enzyme turnover rates are used instead. [*®!

The chemical composition of cells is used to set an upper limit on enzyme
mass in the cell, and combined with the molecular weights of all enzymes
in the model this can effectively constrain the sum of metabolic fluxes. The
product of an enzyme ¢’s concentration, denoted g;, and its turnover rate,
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denoted kcat; acts as an upper constraint on the allowed flux through some
reaction associated with this enzyme. [*®!

MOMENT formulates the following quadratic programming problem:

max (biomass production) (2.28)
subject to (2.29)
S =0 (2.30)

K. - g, if condition 1

v; <Ky - (ga+ ),  if condition 2 (2.31)

= cat

Kkl - min(gqa, gp), if condition 3

S g MW, < C [Qg—} (2:32)
DW

where S is the stoichiometric matrix, 7 is a vector of reaction fluxes, k’,,
denotes the turnover rate of reaction j, MW, denotes the molecular weight
of enzyme ¢, g; is the predicted amount of enzyme ¢ in the cell, gprotein 1S
the total weight of proteins (assumed to be 56% of E. coli dry weight mass)
and C denotes the fraction of proteins dedicated to metabolic enzymes. *®!
Condition 1 refers to a reaction catalyzed by a single enzyme ¢, condition 2
to a reaction catalyzed by two isozymes a OR b and condition 3 to a reaction
catalyzed by an enzyme complex made up of proteins a AND b.

MOMENT is in many ways a different take on the Flux Balance Analysis
with Molecular Crowding (FBAwMC) method, in which molecular volume is
used in place of molecular weight. ™ Where MOMENT imposes constraints
on total enzyme mass, FBAwMC imposes constraints on total enzyme vol-
umes. Due to the low amount of information on the volumes of enzymes,
compared to their mass, the MOMENT method is at an advantage in its
accuracy, and by extension its predictions. 74l

2.8 Metabolic Flux Distribution by Trans-
lational Efficiency and Enzyme Kinetics
(MUTE)

MUTE was developed as a way of bridging the gap between gene expression
data, protein concentrations and metabolic flux. One challenging aspect of
gene expression measurements is that mRNA levels only weakly correlate
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with reaction fluxes. One of the reasons for the lack of 1:1 correlation is
the system translating mRNA to proteins; ribosomes. Since reaction flux
is ultimately decided by enzyme concentrations and their turnover rates, it
is crucial that an understanding of the translation of mRNA to proteins is
found, so that it is possible generate to more accurate predictions of enzyme
levels and, by extension, reaction fluxes. )

The development of MUTE was inspired in part by the MOMENT method,
which used enzyme turnover rates and total enzyme mass limits to predict
growth rates from metabolic models.*® The implementation of MOMENT,
in which upper bounds on reaction flux are proportional to specific enzyme
levels, makes is necessary to optimize two sets of variables: reaction fluxes
and the enzyme concentrations. While MOMENT’s approach to predicting
growth rates is clever, it is unable to accomodate OMICS data such as gene
expression readings, and so its applications are limited. [*®]

MUTE makes use of gene expression data by coupling each mRNA to a
unique translational efficiency parameter, based on experimental measure-
ments. ®3 The translational efficiency parameter gives a relative measure
of how many proteins each mRNA produces, and the product of the mean
number of proteins pr mRNA, a gene’s mRNA level and its corresponding
translational efficiency parameter should give a good prediction of the re-
sulting enzyme’s concentration.®3 The most ambitious part of MUTE is
perhaps its strong reliance on empirical values for all calculations without
the use of “fudge factors” to better scale predictions to realistic levels.

A limit on the total enzyme mass of a cell is enforced through a linear
constraint, in order to avoid scenarios where cells have unrealistically high
levels of enzymes.
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2.8.1 Problem formulation
MUTE can be separated into three parts:

1. The quadratic programming problem formulation which consists of a
quadratic objective function and a set of linear constraints:

min z = Z V((MRNA,; - T; - k) — ;)2 (2.33)

i=1
subject to
- MCG : FEHZ - MHI’I&CCOHH €
> MW,z < =2 ted (2.34)
i—1 ‘/cell
z; < Chax, Vi € {1,...,n} (2.35)
x; > 0,Vie{l,..,n} (2.36)

2. Total enzyme concentrations for a reaction R are calculated as follows:

Er = Z s; + Z min(¢; s, €1, -+ Cjn) (2.37)

i€ESR CRr,;€CR
CECR’j

3. And finally, upper flux constraints on reactions are set according to:

vp < Eg - k&, (2.38)
where
— mRNA; is the mRNA copy number of gene
— T; is the translation efficiency of mRNA;
— k= tmed_ P i is the median copy number for proteins for the cell,

NA"/;:C ’
Ny is Avongadro’s number and V. is the volume of the cell in liters

— x; is the predicted protein concentration of gene ¢
— Fiy, is the fraction of cell mass dedicated to metabolic enzymes

— Mnaccounted Te€presents the mass of metabolic enzymes which is unac-
counted for by the gene expression data

— Clhax 18 the maximum concentration of any given enzyme. In MUTE’s
current implementation C,.y is set to 2 pmol, or approximately 8000
molecules per cell.
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— FEg is the total enzyme concentration for reaction R

— Sk is the set of single enzymes catalyzing reaction R

— s; is a single enzyme belonging to the set S

— C is the set of enzyme complexes catalyzing reaction R
— (g, is an enzyme complex belonging to the set Cr

— ¢js is a subunit of enzyme complex Cg ;

vg is the flux of reaction R

_ kR

-, 1s the enzyme turnover rate for reaction R

In order to properly assign upper flux bounds to reactions based on their
respective enzymes’ concentrations, every reaction is represented to a binary
AND/OR tree, like the one shown in Figure 2.4. For each reaction, the
concentrations of each isozyme is summed, while enzyme complexes are
assigned a concentration equal to the minimum concentration of any of its
subunits. The enzyme concentration for the whole reaction, shown as the
green node in Figure 2.4 is the sum of the concentrations of all isozymes
(shown as blue nodes), including any eventual complexes (shown as red
nodes).
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enzyme 1
+
enzyme2
enz;me 3
+

enzyme 4
mind{enzyme 5

enzyme 6

enzyme 4
min{enzyme 5
enzyme 6

Figure 2.4: Binary search tree for reaction (green) catalyzed by three isozymes
(blue) and an enzyme complex (red).
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In the end, MUTE returns a modified SBML model object which has
placed new limits on the upper bounds of reaction fluxes, which can be
further analyzed by all other methods using SBML model objects as their
basis structure, such as sampling methods. *2%3]

2.9 Data sampling

When dealing with many-dimensional optimization problems it can be dif-
ficult to get a sense of the distribution of allowed values for the variables
involved. A 2—-dimensional problem with linear constraints on some interval
Tmin < T < Trax, Ymin < Y < Ymax can easily be visualized as some square,
2—dimensional surface. However, when visualizing thousands of variables
the brain struggles to keep up. One way of investigating these distributions
of such problems is through sampling. 5!

One approach to sampling is to enclose our feasible region S in a larger,
simpler region R, which is then sampled. Each sampled point is checked
for membership to the feasible region S, and rejected if it is not a member.
With enough such samples, the feasible region S can be effectively mapped.
This is commonly referred to as rejection methods. 2

2.9.1 Unbiased random sampling of the solution space
of metabolic models

Classical metabolic modelling methods such as Flux Balance Analysis will
return a flux vector solution that is merely one of many equally good solu-
tions. The selected solution will be one of the corner points of the hyper-
sphere which is defined by the constraints of the problem, i.e. where several
constraints intersect, Figure 2.2. Along the isocline of the optimal objective
function value, many alternative flux distributions exist, however only one is
presented to the user. This can result in the drawing of untrue conclusions
from the predictions made by the optimization method, and care must be
taken to avoid this. One method for achieving this is sampling the nullspace
of the model. !

Using sampling methods on metabolic models makes the user able to gen-
erate a range of allowed fluxes for all reactions. It is important that enough
sample points are recorded, in order to ensure that a representative image
of the null space is achieved. [#!
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2.9.2 Hit and Run sampling

Hit and Run sampling is a fast and popular method for sampling convex
spaces. ) In its essence, the Hit and Run sampler can be thought of as
an arrow reflecting off of edges representing the constraints defining the
solution space of the model, Figure 2.5:

v3
A
#» Sampling point
— Arrow direction
—— Constraint

n2

-

New -
direction

v3

Figure 2.5: Hit and run sampling of a 3-dimensional solution space.

The arrow is shot in a random direction from within the solution space
of the model. At some point, the arrow hits an edge/constraint, and is
reflected at an outgoing angle equal to the incoming angle. The reflection
changes the direction of the arrow, sending it on its way until it encounters
another edge/constraint, where it is once again reflected. At even intervals
among the arrows path through the solution space, the coordinates of the
arrow are recorded. These are the sampling points. After some set num-
ber of points have been sampled the arrow is stopped, and a new random
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direction is chosen from the arrows current point. This whole procedure
continues until some predefined number of points have been sampled. 3!

In order to ameliorate numerical instability, the solution space of the prob-
lem is transformed from an n—dimensional to a 2—dimensional space. After
the sampling is done, all points are transformed back to their original di-
mensionality. ®3 Figure 2.5 gives a graphical illustration of sampling for one
random direction in a Hit and Run sampler. The solution space is in this
case 3-dimensional (denoted as v), which is transformed to a 2-dimensional
(denoted as n) surface where the sampling takes place.

2.10 Principal Component Analysis

When working with many-dimensional problems, findings ways of analyz-
ing and visualizing the data can be challenging. Section 2.9 describes how
random sampling of solution spaces can help the investigation of a problem,
but the sample points will in most cases still represent some n—dimensional
space, where n is arbitrarily large. Principal component analysis (PCA) is
able to represented multi-dimensional data in a reduced dimension space. 84

In a many—dimensional data set, PCA creates linear combinations of vari-
ables, called principal components, such that the points that make up
the data set are maximally separated when mapped onto the new “prin-
cipal component dimension”.®¥ The first principal component displays the
largest amount of variance, and the components proceeding it represent the
largest amount of variance while orthogonal to all previous principal compo-
nents. ¥ By mapping each point onto the first two principal components, it
is possible to transform an n—dimensional data set into a 2-dimensional one,
which is easily visualized.® The visualization, when paired with catego-
rization of the points, can reveal subtle differences between sets of measure-
ments. Looking at the scores (weights) of the variables in each component
can help identify variables which contribute significantly to the phenomenon
being investigated. 84
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Chapter 3
Methods

All methods were used within the COBRA Toolbox framework for Matlab
R2013a.

3.1 Generation of MADE models

MADE models were generated using the TIGER Toolbox for Matlab. Gene
expression data sampled from E. coli grown in glucose minimal media with
varying NaCl concentrations (2.0 %, 3.5 %, 4.5 %, 5.0 % and 5.5 % respec-
tively) ¥, and otherwise identical were used as input to the MADE method.
The gene expression data used did not have p-values attached to each read-
ing, and so an alternative approach was used where the gene expression data
set for each salt concentration was fit to a normal distribution. This normal
distribution was then used to assign p-values to all readings, allowing their

use with MADE.

3.2 Visualization of MADE flux predictions

The MADE models were analyzed using the TIGER Toolbox’ Flux Balance
Analysis (FBA) method. The flux distributions predicted by FBA were
visualized by overlaying the reaction fluxes onto metabolic maps of E. coli
central metabolism.

3.3 Generation of MUTE models

The gene expression data used as input for MUTE was the same as for
MADE. Turnover numbers for E. coli enzymes, reported by Adadi et. al.[*s!
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were used for K., ¢-values. Molecular weights for E. coli enzymes were down-
loaded from the EcoGene database!®”. The translation efficiency parameters
used were reported by Li et. al.[3

The gene expression-, translation efficiency-, enzyme turnover rate-, and
molecular weight data were filtered against each other, so that only genes
where data from all four sources existed were included. The resulting data
set, in addition to the 1JO1366 FE. coli metabolic reconstruction was fed
to the MUTE method. Each data set fed to MUTE resulted in a separate
SBML model structure, with upper bounds placed on all reactions where
data from all five sources (reaction exists in reconstruction, gene expression
values, enzyme molecular weights, enzyme turnover numbers, translation
efficiencies) were present.

An alternative data filtering method was applied to the input data, where
genes with no enzyme turnover rate- or translation efficiency data had these
parameters set to the average of the enzyme turnover rate or the transla-
tion efficiency, respectively. Five alternative MUTE models were generated,
where the number of reactions with changed upper flux bounds was much
greater than for the previous approach.

3.4 Visualization of MUTE constraints

The upper flux bounds imposed by MUTE were visualized by overlaying the
flux bounds onto a metabolic map of the ¢JO1366 model. The metabolic
map was downloaded from the BiGG Database[®®l. These metabolic maps
were made so that the reactions (edges) connecting the metabolites were
color coded according to flux size and directionality, making them intuitive
to interpret. Reactions through which there was no flux were colored white,
to enhance the visibility of the active reactions. These upper flux bound
visualizations were done for the five models produced with “strict data fil-
tering” and the five models without “strict data filtering”, and can be found
in the appendix.

3.5 Analysis of MUTE models by unbiased
random sampling

Flux variability analysis (FVA) was performed on all five MUTE-models, in
addition to the original 1JO1366 model. FVA tested all reactions contained
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in the models, and the lower limit for optimal growth rate was set to 100 %
of maximum growth rate.

The lower and upper flux limits predicted by FVA for all reactions were
compared between all “strict data filtering” models, and those with equal
upper and lower limits were filtered out. The solution space of these reac-
tions was sampled using the optGpSampler®” on all five MUTE models,
sampling 10,000 points for each reaction with a step length of 2 between
each sample point. All models had their growth rates locked to the opti-
mum value, as predicted by FBA, before the sampling. The data sampling
procedure was repeated for the MUTE models generated without “strict
data filtering”.

The sampled points from both data filtering regimes were analyzed sepa-
rately using Principal Component Analysis (PCA). All points from the sam-
ples were normalized and transformed into a point in the two-dimensional
space defined by the two first principal components. The transformed points
were visualized in a scatter-plot. Each point in the scatter plot was grouped
into one of the five salt concentrations, based on which MUTE model it
belonged to.

After running PCA on the sample data sets, the principal components were
investigated for interesting reactions. Every reaction in the model was asso-
ciated with some weight, and the reactions who’s weights had a magnitude
of 0.1 or more were checked for involvement in processes such as osmotic-
or oxidative stress.

A different approach to identifying important reactions was conducted. Re-
actions where the flux within each sample had low variance, but where the
mean flux of those reactions varied greatly between each sample were iden-
tified and investigated. This was done for MUTE models both with and
without strict data filtering.
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Chapter 4

Results and discussion

Introduction to reading flux maps

Maps of metabolic fluxes represent a large portion of the results in this
chapter. This section will give a brief overview of how to read them.

Flux maps

In this thesis” metabolic flux maps, red colors represent positive fluxes while
green fluxes represent negative fluxes. Color intensities scale linearly with
flux strength, such that the most intense colors represent the largest fluxes.

4.1 Using MADE to predict flux changes

Owing to the lack of compatibility between the model structures returned
by MADE and many COBRA Toolbox methods, the MADE models were
unable to undergo sampling. All flux predictions for MADE are therefore
those produced by FBA.

The flux distribution in the central metabolism of E. coli for the five MADE
models, as predicted by FBA is shown in Figures 4.1 to 4.5.
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Figure 4.3: MADE FBA core metabolism flux predictions for 4.5 % salt.
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At 2.0 % salt, seen in Figure 4.1, MADE predicts that glucose is con-
verted to gluconate in the periplasm of the cell, before its subsequent im-
port into the cytoplasm. In the cytoplasm, gluconate is converted to 6-
phosphogluconate (6pgc) by gluconate kinase (GNK). The majority of the
gluconate is transformed into glyceraldehyde—3—-phosphate (g3p) and phos-
phoenolpyruvate (pep). Instead of progressing through glycolysis, half of
the g3p isomerizes into dihydroxyacetonephosphate (dhap). Following the
isomerization, g3p and dhap react to create fructose-bisphosphate, which is
converted across two more reactions into glucose-6—phosphate (g6p). G6p
completes the cycle, being converted into 6pgc, producing 1 mol NADPH
pr mol 6pgc. This bypass of glycolysis allows the cell to produce NADPH
instead of the NADH which would be produced during “normal” glycolysis,
providing the cell with valuable reducing agents. This is an indication that
the cell is experiencing oxidative stress, which has been linked to osmotic
stress in a number of studies. #3404 Large parts of the Citric Acid Cycle
do not carry flux at 2.0 % salt. Those that do, also produce NADPH, as ox-
aloacetate (oaa) is ultimately converted to alpha-ketoglutarate (akg). The
high flux reactions from fumarate to oxaloacetate are a result of a reaction
cycle (not shown in the figure) involving an intermediate L-aspartate, cre-
ating artificially high flux. The majority of the carbohydrates produced by
catabolizing gluconate/glucose actually finds its way into the acetate export
pathway, where it is removed from the cell. This is another sign of an ox-
idative stress state, as fermentation products such as acetate are a hallmark
of overflow metabolism. (8!

At 3.5 % salt, Figure 4.2, the NADPH generating cycle which bypasses
glycolysis is no longer active. Instead, the Citric Acid Cycle is fully opera-
tional, possibly meeting the cells demand for NADPH. The signs of oxidative
stress are strenghtened, as the cell begins exporting formate in addition to
acetate, both of which are fermentation products. [*!

For cells in 4.5 % salt, Figure 4.3, large parts of the Citric Acid Cycle are dis-
mantled, and the remaining reactions allow flux up to alpha—ketoglutarate
(akg). Aside from resulting in the production of NADPH, allowing the Cit-
ric Acid Cycle to continue up to akg might be beneficial for the akg itself.
Akg is a known precursor for the production of glutamine, a known osmo-
protectant.? An interesting difference from 3.5 % salt is that acetaldehyde
(acald) is produced from acetyl-CoA (accoa), consuming NADH but gaining
NADPH. The resulting acetate combines with the acetate produced from
accoa, and is exported. Involving acetaldehyde in this way has no effect ex-
cept for the aforementioned consumption/production of NADH/NADPH,
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and so it is possible that this is done to compensate for the lowered activity
in the NADPH producing reactions of the Citric Acid Cycle. The apparent
demand for NADPH, combined with the continued export of fermentation
products such as formate and acetate support the claim that oxidative and
osmotic stress are inherently linked. [3:3940:41]

In Figure 4.4, depicting the central metabolic flux distribution of E. coli
at 5.0 % salt, the Citric Acid Cycle is completely inactive. The shutdown of
the Citric Acid Cycle between 4.5 % and 5.0 % salt is in line with observa-
tion made in other studies. Metris et. al. reported that there is a shift from
aerobic to fermentative metabolism between 4.5 % and 5.0 % salt — a similar
response to that observed during oxidative stress.®) MADE makes a curious
prediction here, setting the flux through the ATP synthase reaction to neg-
ative. This would mean that ATP is being actively consumed in order to
pump protons across the cellular membrane and into the periplasm. If cor-
rect, this could mean that cells undergoing severe osmotic stress are able to
counteract desiccation by reversing the directionality of the ATP synthase
reaction. Studies done on Campilobacter jejuni (C. jejuni) showed that
hyperosmotic stress induces the expression of the ATP synthase gene. 8
Another interesting change at 5.0 % salt is that acetate export has stopped
completely, being supplanted by acald export. In light of the predicted re-
versal of ATP synthase flux, it is difficult to see how shutting down acetate
export is beneficial. Notice in Figure 4.3 that the acetate export pathway
actually results in the production of ATP. It is reasonable to assume that
the reverse ATP synthase activity would benefit from having as many ATP
producing reactions active as possible, making this an odd prediction.

At 5.5 % salt, Figure 4.5, the ATP synthase reversal is maintained. Glucose
enters through the Entner Doudoroff (ED) pathway, consuming ATP but
producing NADPH along its catabolic path. As was observed at 2.0 % salt,
the products from the ED pathway eventually end up as g3p and fructose,
albeit through different reactions. From here, flux proceeds in a completely
linear fashion down to pyruvate, which branches off into either acetyl-CoA
or formate. Formate is exported from the cell, along with acetate, which
has had its export reaction restored, resuming its likely valuable produc-
tion of ATP for the cell. It is important to note that MADE predicted no
growth for E. coli in both 5.0 % and 5.5 % salt, which could be a result of
the reverse ATP synthase reaction. If true, these predictions could indicate
the existance of a stationary phase phenotype during osmotic stress where
almost all energy is devoted towards osmoadaptation.



CHAPTER 4. RESULTS AND DISCUSSION 41

Looking at the whole picture, there is a trend of increasing where the ex-
port of fermentation products increases with increasing salt concentrations.
At some point, between 4.5 % and 5.0 % salt, there is a fundamental shift
in metabolism, where the Citric Acid Cycle shuts down and almost ATP
generated during glycolysis is directed toward pumping protons from the
cytoplasm into the periplasm. Interestingly, this phenomenon has been re-
ported previously in cancer cells, where the release of cytochrome-c¢ induced
a similar response in mitochondrial ATP synthases.*” Additonaly, Perroud
and Rudulier reported that transport of glycine betaine is driven by the
electrochemical proton gradient in E. coli.®! Glycine betaine is an effective
osmoprotectant in F. coli, and FE. coli cells growing in its presence during
osmotic stress have significantly improved growth rates. !

4.2 Combination of OMICS data and MUTE
method

The MUTE method relies on gene expression data for which there is overlap-
ping data on gene expression levels, translation efficiencies, protein molecu-
lar weights and enzyme turnover rates. Some of these parameters, such as
enzyme turnover rates and translation efficiencies, are difficult to measure,
and as a result these kinds of data only exist for a small subset of all genes
in organisms such as E. coli.

During MUTE’s development, the set of genes for which all of these pa-
rameters were known counted only 319 for E. coli, or approximately 7% of
its protein coding genes. Additionaly, none of the 319 genes were repre-
sented in the set of 100 genes who’s expression changed the most between
salt concentrations. This is currently a limitation for the MUTE method,
which limits its range of predictions but, as more data on enzyme turnover
rates and mRNA translation efficiencies is gathered, the situation will hope-
fully improve.

Removing the requirement for overlapping data from gene expression, en-
zyme turnover rates, translation efficiency and molecular weights increased
the number of included genes significantly, from 319 to 905. The loss of
accuracy in enzyme turnover rates and translation effiencies were seen as a
compromise in order to increase the number of included genes.

To differentiate between the MUTE models generated from the two sep-
arate data sets, they will henceforth be referred to as “MUTE models with
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strict data filtering” for the data set which included 319 genes, and “MUTE
models without strict data filtering” for the data set with 905 genes.

In order to visualize the resulting flux bounds placed on the models by
the MUTE method, the flux maps in Figures A.0.1 through A.0.5 and B.0.1
to B.0.5 in the appendix were made.

4.3 Comparison of predicted protein
concentrations and copy numbers with
empirical data

The mean protein copy number and concentration for the five models with

and without strict data filtering generated by MUTE is shown in Table 4.1
and 4.2, respectively.

Table 4.1: Mean protein copy numbers and concentrations for the five osmotic
stress models generated by MUTE with strict data filtering.

Salt concentration ,% | protein copy number, # | protein concentration, ES’V(\),]
2.0 2103 1.3-107°
3.5 2103 1.2-107°
4.5 2-103 8.8-1076
5.0 2103 1.3-107°
5.9 2103 1.3-107°

Table 4.2: Mean protein copy numbers and concentrations for the five osmotic
stress models generated by MUTE without strict data filtering.

Salt concentration, % | protein copy number, # | protein concentration, f;gnv‘\’,l
2.0 1-10° 6.2-107°
3.5 1-103 6.0-1076
4.5 1-10° 5.7-1076
5.0 1-103 6.2-1076
9.9 1-103 6.1-1076

Tables 4.1 and 4.2 show that the average copy number for proteins pre-
dicted by MUTE have an order of magnitude of 10?, which conforms to ex-
perimentally measured average protein abundance numbers. % Notice that
the protein copy numbers in Table 4.2 are lower than in Table 4.1, resulting
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from the difference in the number of included genes. Predicting realistic
protein copy numbers is an important step towards generating realistic sim-
ulations of cell metabolism, but in order to make meaningful predictions
it is important that the predicted protein abundance distributions match
experimentally measured ones. The protein copy number distributions is
shown in Figures 4.6 and 4.7 for MUTE models with and without strict
data filtering, respectively.

The protein copy number distributions in Figures 4.6 and 4.7 show an en-
richment of proteins with abundances around 8 - 10® copies/cell. These en-
richments are an artifact of a constraint on all protein concentrations, which
limits the maximum protein concentration to 20 ‘;DLVC\),I. Without this con-
straint, it is reasonable to assume that the distribution would lie closer to an
exponential distribution. This constraint was imposed as a way of evening
out the protein distribution, as in its absence genes with very high expres-
sion quickly depleted the cell’s enzyme mass budget, leaving most enzymes
with negligible concentrations. The choice of 8000 copies pr cell was cho-
sen as it is approximately twice the size of the average protein concentration
reported in the litterature, allowing some room for “extreme expression” . !’

Previous studies have reported that protein abundance distributions can
be described by a gamma distribution.? Looking at Figures 4.6 and 4.7,
the protein abundance distributions resemble a combination of an exponen-
tial and a flat distribution. Proteins with up to 3000 copies pr cell follow
an exponential distribution while proteins above 3000 copies pr cell appear
to follow a flat distribution. Keeping in mind that the exponential distri-
bution is a particular case of the gamma distribution, the predicted protein
distributions fit empirical data partially, although not completely.
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Figure 4.6: Protein copy number distributions for all MUTE models with strict
data filtering.
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Figures 4.8 and 4.9 visualize the effects of the total enzyme mass con-
straint placed on MUTE. If no total enzyme mass constraint was present, all
protein abundances would align to the red line displayed in the figures. With
the constraint active, the optimization step of MUTE distributes mass to
the enzymes, prioritizing those who have higher gene expression and trans-
lation efficiency values. In Figure 4.8, a large fraction of the proteins are
able to achieve their desired concentrations, while in Figure 4.9 this fraction
is considerably lower. This stems from the difference in the amount genes
included in the input data to MUTE, where the MUTE models without
strict data filtering contain data on 3 times as many genes.

Notice in both data filtering regimes, that at 4.5 % salt the enzyme mass de-
mand from gene expression appears to be much lower than in the other cases.
This can be seen in Figure 4.8c, where the data points almost perfectly line
up to the red line, and in Figure 4.9c where the number of proteins without
their “desired” abundance is much lower. This will have the effect of soft-
ening the effect of the total enzyme mass constraint used by MUTE during
the protein concentration optimization process, and in extreme cases a low
enough total gene expression could make the total enzyme mass constraint
obsolete. In these extreme situations, even genes with very low expression
are “translated” into proteins.

4.4 Unbiased random sampling of MUTE
solution spaces

Sampling the solution space of the models produced by MUTE can help
identify complex and subtle differences between the predicted metabolisms,
but the analysis of the solution spaces only give us measures of possibilities
and potentials. In order to test the performance of the MUTE models when
“growing” with a defined objective or phenotype, the MUTE models had
their objective function flux constrained to the optimum flux predicted by
Flux Balance Analysis. The models were then sampled, and the average of
the sample points were taken for all reactions, resulting in an average flux
vector.

The resulting flux predictions for the core metabolism of E. coli is visu-
alized in Figures 4.10 to 4.14 and Figures 4.15 to 4.19 for MUTE models
with and without strict data filtering, respectively.
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data filtering.
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Beginning with the MUTE models generated with strict data filtering
in Figures 4.10 to 4.14, there are big differences when compared to MADE.
Much larger parts of the metabolic network is maintained across all models,
differing mostly in the strenghts of the fluxes.

In Figure 4.10, glucose enters the cell through the ED pathway, producing 2
NADPH for each glucose consumed on its way towards ribulose-5b—phosphate
(rubp-D). From the ED pathway, the carbohydrates flow towards fructose—
6—phosphate (f6p) and glyceraldehyde-3—-phosphate (g3p). Notice the rel-
atively large flux through the glyoxal bypass, resulting in large amounts
of methylglyoxylate (mthgxl). The carbon resources for producing mthglx
come from f6p and g3p, both of which are converted to dihydroxyacetone—
phosphate (dhap). Mthgxl, which is highly toxic to cells is rapidly converted
into D-lactate, through several reactions, some of which are not shown in
Figure 4.10. The function methylglyoxal bypass, in light of its potential
toxicity is not well understood. Studies in Saccharomyces cerevisiae (S.
cerevisiae) have shown that expression of genes involved in the glyoxal by-
pass are induced during osmotic stress, and these predictions might indicate
that the same response exists in E. coli.”® Methylglyoxylate is rapidly con-
verted into D—lactate through several reactions, some of which are not visible
in Figure 4.10. It is converted into pyruvate, supplementing the pyruvate
produced through glycolysis. As was the case for the MADE predictions,
most of the pyruvate is converted into fermentation products such as for-
mate, acetate and acetaldehyde, which proceed to be exported from the cell.
Some flux is diverted from the export of fermentation products and into the
Citric Acid Cycle where isocitrate is shuttled through the glyoxlate shunt,
completing the cycle. The major export of fermentation products is unex-
pected, as at 2.0 % salt the cell should not be experiencing major osmotic
stress, and by extension oxidative stress.

At 3.5 % salt, shown in Figure 4.11 there are few changes to the connectiv-
ity of the metabolic network compared to 2.0 % salt, but there are changes
in the flux distribution. Most of the glucose entering the cytoplasm still
goes through the ED pathway, but a small amount of glucose-6—phosphate
(gbp) is isomerized into f6p, which is converted into g3p and dhap. The flux
entering the ED pathway is mostly converted into g3p and pyruvate (pyr),
the downstream steps of which are very similar to that of 2.0 % salt. The
same diversion of dhap into the glyoxal bypass is observed, eventually end-
ing up as D-lactate. The distribution of fluxes for 3.5 % salt would lead to
a decrease in the production of NADPH, contradicting the trend observed
from the MADE predictions, where NADPH production was maintained at
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the cost of ATP. The low activity through the Citric Acid Cycle, as well as
the production and export of fermentation products is maintained, further
strengthening the hypothesis that osmotic stress induces excretion of fer-
mentation products.

As the salt concentration hits 4.5 % in Figure 4.12 it is difficult to see any
changes to the metabolism compared to Figure 4.11. There is less import
of glucose, resulting lower flux through the whole network. This seemingly
eliminates some reactions which had very low flux at 3.5 % salt, but the
flux follows the same pattern: catabolism of glucose in the ED and Em-
bden—Meyerhof-Parnas (EMP) pathways, followed by heavy formate and
acetate export, and an almost inactive Citric Acid Cycle. At 4.5 % the cell
should be experiencing significant osmotic stress, and it was expected that
a shift in the central metabolism at would reflect that. It is possible that
the 319 genes who’s expression make up the basis of the MUTE predictions
simply do not affect the central metabolism in any significant way, and that
more data is needed in order to make meaningfull predictions. Looking at
Figures 4.13 and 4.14 goes a long way towards confirming this suspicion, as
the same pattern emerges. The glucose import flux varies, influending the
downstream flux strengths in all reactions, but the identity and connected-
ness of the active reactions fail to change in any significant way.
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Figure 4.16: MUTE average core metabolism flux predictions for 3.5% salt. Without strict data

filtering.
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MUTE average core metabolism flux predictions for 4.5% salt. Without strict data
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The difference between the data filtering regimes is already apparent
in Figure 4.15. Glucose enters into glycolysis through the EMP pathway,
eventually ending up as as pyruvate. As has been the case for all other
predictions, there is high activity in the pathway that exports acetate, in-
dicating overflow metabolism. There is high activity in parts of the Citric
Acid Cycle, mostly maintained by internal loops in the metabolic network
which artificially inflate flux strenghts. Notice that without strict data fil-
tering, MUTE predicts high flux through reactions that scavenge superoxide
radicals from the cytoplasm, a strong indicator that the cell is experiencing
oxidative stress. Keeping in mind the established link between oxidative
and osmotic stress, this could be an indication that including more data,
although less accurate, improves the predictive power of the MUTE method.

Increasing the salt concentration to 3.5 % results in Figure 4.16 in sig-
nificant predicted changes to the central metabolism. As for 2.0 % salt,
glucose enters the EMP pathway of glycolysis, but an additional import of
gluconate activates the ED pathway. The entry point into the ED pathway is
downstream of the NADPH producing reactions, eliminating NADPH pro-
duction as the motivation for the metabolic change. One difference between
the EMP and ED pathways is that the ED pathway consumes slightly less
ATP to produce g3p. This could be beneficial to the cell, but it does not
explain why there is activity in glucose import reactions which bypass the
ED pathway completely. The reactions responsible for handling superoxide
radicals continue to carry high flux, and export of acetate seems to be the
main carbon sink, incidating a persistance of oxidative stress.

When examining Figure 4.12, it appears that the glucose import into the
cell is decreased. As was seen earlier for MUTE models with strict data
filtering, this affects all downstream reactions, lowering their flux. Most
reactions in the ED pathway are now only faintly visible, carrying what
little flux is left into the same reactions as in 3.5 % salt. Once glycolysis
is complete, pyruvate is converted and exported through the acetate export
pathway, but there are two new options as well: D-lactate and pyruvate
export. However, these two export reactions carry so little flux that it is
hard for the naked eye to see, and the implications they bring are probably
insignificant. Keep in mind, from section 4.3, that the expression levels at
4.5 % salt were lower than for the rest of the gene expression sets, resulting
in fewer proteins being produced. The low flux on display in Figure 4.17 is
likely a direct consequence of this, making it difficult to judge the accuracy
of the predictions when compared to the other concentrations.
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Continuing the increase in salt concentration, and by extension the sever-
ity of osmotic stress, Figure 4.13, representing 5.0 % salt, reveals some big
changes from 4.5 % salt. The overall flux strength of the reactions is on av-
erage higher than at 4.5 % salt, strengthening the conjecture that low fluxes
at 4.5 % salt are caused by low overall gene expression. The ED pathway
is almost completely inactive, except for one reaction, which catalyzes the
conversion of f6p and D-erythrose-4-phosphate (edp) into sedoheptulose-7-
phosphate (s7p) and g3p. By doing this, the cell is able to partially bypass
the ATP investment required by the EMP pathway for catabolizing f6p into
g3p and dhap. Downstream of g3p, after glycolysis is completed, the process
of exporting acetate continues. Combined with the high flux through the
superoxide radical scavenging reactions, this indicates that the cell contin-
ues to exhibit signs of oxidative stress.

At the highest salt concentration — 5.5 %, Figure 4.19 is very similar to
Figure 4.18. This is in line with the results from MADE and the MUTE
results without strict data filtering, which also had few differences between
the two highest salt concentrations. This could be an indication that os-
motic stress has a “sigmoidal” response curve, where osmoadaptations are
at their maximum activity at approximately 5.0 % salt, after which the re-
sponse to osmotic stress is unchanging.

Comparing the MUTE predictions without strict data filtering to those
from MADE, it becomes obvious how different the two methods are. MADE
quickly shuts down reactions in a discrete, binary-like fashion as it transi-
tions between salt concentrations, while MUTE’s predictions present a more
continous and subtle change of metabolism. It is disappointing that MUTE
failed to mirror the predictions by MADE of ATP synthase reversing in di-
rectionality, as this was perhaps the most interesting prediction produced.

4.4.1 Principal component analysis of sample data

The samples generated from the MUTE models with strict data filtering
were subjected to PCA. A sorted list of PCA weights and their associated
reactions is shown in table 4.3.
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Table 4.3: Composition of first and second principal component for MUTE

model samples without strict filtering.

First principal component

Reaction name Weight
Lysophospholipase L2 (2-acylglycerophosphoglycerol, n-C14:0) 0.99
hydroxypyruvate isomerase 0.05
Hydrogenase (Demethylmenaquinone-8: 2 protons) (periplasm) 0.03
L-histidine transport via diffusion (extracellular to periplasm) 0.02
mercury (Hg+2) transport via diffusion (extracellular to periplasm) 0.02
LPS heptose kinase II (LPS core synthesis) 0.01
Second principal component
Reaction name ‘Weight
homoserine kinase 0.87
Hydroxypyruvate reductase (NADPH) 0.23
Hydroxypyruvate reductase (NADH) 0.22
3-(3-hydroxyphenyl)propionate transport via proton symport, reversible (periplasm) 0.14
L-homoserine transport via diffusion (extracellular to periplasm) 0.13
homoserine dehydrogenase (NADPH) 0.12

In table 4.3, the “Lysophospholipase L2” reaction completely dominates
the first principal component weights, while “homoserine kinase” dominates
in the second principal component. None of the reactions in table 4.3 were

found to have known roles in osmotic stress.

The sample points were transformed into the first and second principal
component space, grouped by salt concentration and visualized in Figure

4.20.
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There is some separation of the different salt concentrations when view-
ing Figure 4.20, but they are mostly stacked on top of each other. In Figure
4.21 the salt concentration points have been separated from each other for
easier visualization. Flux seems to be more tightly regulated at 5.5 % salt
than for the other conditions, but there is no trend from 2.0 % to 5.0 % to
make this meaningfull.

For the sampling of the MUTE models without strict data filtering, the
components shown in table 4.4 were extracted from the first and second
principal components. The PCA transformed sample points are visualized
in Figures 4.22 and 4.23. The first principal component is almost completely
dominated by an iron-sulphur cluster transport reaction, while the second
component has more balanced weights. It is worth noting that SoxR, a pro-
tein responsible for activating an oxidative stress response in E. coli, is a ho-
modimer with two [2Fe-2S] centers per dimer, possibly linking this reaction
to the oxidative stress response predicted by both MADE and MUTE. [*4

The second principal component reaction who’s weight is the largest in table
4.4, “gamma-butyrobetaine transport”, transports gamma-butyrobetaine
across the outer membrane of the cell and into the periplasm. This com-
pound is a compatible osmoprotectant in Listeria monocytogenes, and could
play a similar role in E. coli.!”” The remaining reactions in table 4.4 were
not found to have connections to osmotic stress in F. coli.
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Table 4.4: Composition of first and second principal component for MUTE
model samples without strict filtering.

First principal component

Reaction name Weight
ISC [2Fe-2S| Transfer 0.92
glycogen synthase (ADPGlc) 0.08
glycerate kinase 0.06
D-galacturonate transport via proton symport, reversible (periplasm) 0.06
Glycine Cleavage System 0.05
L-glutamate transport via proton symport, reversible (periplasm) 0.05
gamma-glutamylcysteine synthetase 0.05
glycolate transport via sodium symport (periplasm) 0.04
glucosyltransferase II (LPS core synthesis) 0.04
sn-glycerol-3-phosphoethanolamine transport via ABC system (periplasm) 0.04
D-glucarate transport via diffusion (extracellular to periplasm) 0.04
D-glycerate transport via diffusion (extracellular to periplasm) 0.04
D-galactose 1-phosphatase 0.04
Glycine betaine transport via ABC system (periplasm) 0.04
1,4-alpha-glucan branching enzyme (glycogen to bglycogen) 0.04
Second principal component
Reaction name Weight
gamma-butyrobetaine transport via diffusion (extracellular to periplasm) 0.19
D-glucosamine transport via diffusion (extracellular to periplasm) 0.18
D-glucuronat transport via diffusion (extracellular to periplasm) 0.14
L-fucose transport via diffusion (extracellular to periplasm) 0.14
D-gluconate transport via proton symport, reversible (periplasm) 0.14
fumarate reductase 0.13
glutamate dehydrogenase (NADP) 0.13
ferric-dicitrate transport via ABC system (periplasm) 0.13
Fe-enterobactin reduction (Fe(III)-unloading) 0.12
glycerol-3-phosphate acyltransferase (C12:0) 0.11
Fructose transport via PEP:Pyr PTS (f6p generating) (periplasm) 0.11
Glucose-6-phosphate transport via phosphate antiport (periplasm) 0.11
guanylate kinase (GMP:ATP) 0.11
glutaminase 0.11
Fe-enterobactin transport via ton system (extracellular) 0.10
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Figure 4.23: Separate PCA point clusters for each MUTE model without strict
data filtering.

The failure of PCA to detect any reactions relevant for osmoadaption
in the sample data from the strict filtering regime of MUTE could be an
indication that the PCA method is poorly suited for investigating stress.
As PCA identifies reactions with high variability, it would miss reactions



70 4.4. SAMPLING SOLUTION SPACES

that are tightly regulated, as might be the case for stress response reactions
during osmoadaptation.

An alternative approach to PCA was attempted, where reactions with low
flux variance in each sample, but where the mean flux of those reactions
varied greatly between the samples, were identified and investigated. This
resulted in a list of reactions who’s sample point distribution resembled
tight clusters distant from each other. Table 4.5 shows a list of the top five
reactions fulfilling these criteria for each filtering regime.

Table 4.5: Reactions who’s points group into distinct clusters grouped by salt
concentration.

MUTE with strict data filtering

Reaction name Variance of means, grgr\ﬁlv‘flh
isochorismate synthase 35
phosphoribosylpyrophosphate synthetase 24
uracil transport in via proton symport 23
cytidine transport in via proton symport 22
phosphopentomutase 21
MUTE without strict data filtering
Reaction name Variance of means, g’grvﬂvo'lh
dihydropteridine reductase 154
L-idonate 5-dehydrogenase 31
thioredoxin reductase (NADPH) 25
uracil transport in via proton symport 19
L-valine reversible transport via proton symport 16

None of the reactions listed in table 4.5 were associated with stress re-
sponses in E. coli, except thioredoxin reductase which is involved in main-
taining a reduced environment in the cytoplasm, connecting it to oxidative
stress. [
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Chapter 5

Conclusion

This thesis has achieved its’ primary goal of modelling osmotic stress in
E. coli. The newly developed method for integrating gene expression data
and metabolic models, MUTE, was able to predict realistic metabolic fluxes
constraints based on predicted protein concentrations.

Investigating osmotic stress using both the MADE and MUTE methods
resulted in predictions that implicated overflow metabolism in E. coli cells
during osmotic stress, indicating that oxidative stress adaptation is acti-
vated during osmoadaptation.

At 5.0 % and 5.5 % salt, MADE predicted that ATP synthase runs in
reverse, transporting protons across the cell membrane from the cytoplasm
into the periplasm, at the expense of ATP. At these two salt concentrations,
MADE predicted no biomass production for E. coli, possibly hinting at some
stationary phase phenotype focused on surviving.

MUTE models with strict data filtering seemed unable to predict signifi-
cant changes in the core metabolism of E. coli during osmotic stress, likely
caused by filtering away important experimental data. The predictions be-
came more responsive to changing conditions once less stringent data filter-
ing regimes were employed, suggesting that more data with less accuracy is
better than the opposite.

Comparisons of the MADE and MUTE methods showed that MUTE main-
tained metabolic network connectivity and flux through several salt concen-
tration transitions, while MADE’s binary interpretation of gene expression
data quickly disabled entire pathways.

Sampling and analyzing MUTE models by PCA revealed high variance in
the activity of the gamma-butyrobetaine transport reaction. Previously
reported as a compatible osmoprotectant in L. monocytogenes, import of
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gamma-butyrobetaine could be an important part of osmoadaptation in F.
coli.

Further research into osmotic stress in E. coli should investigate the presence
of gamma-butyrobetaine in the cytosol during osmotic stress. Measuring the
pH of E. coli’s periplasm at high salt concentrations could be done using
pH sensitive fluorescent proteins in order to investigate the prediction that
ATP synthase is run in reverse in these conditions.
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Appendix A

Visualization of MUTE flux
constraints (with strict data
filtering)
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Appendix B

Visualization of MUTE flux
constraints (without strict data
filtering)
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