
Wind Load Module For CSi ETABS

Eirik Aasved Holst

Master i ingeniørvitenskap og IKT

Hovedveileder: Tor Guttorm Syvertsen, KT

Institutt for konstruksjonsteknikk

Innlevert: juni 2015

Norges teknisk-naturvitenskapelige universitet

MASTER THESIS 2015

for

Stud.techn. Eirik Aasved Holst

Wind Load Module for CSi ETABS

Vindlastmodul for CSi ETABS

Background
Structural analysis require proper handling of all loads the structure is exposed to, including

environmental loads like wind. In Norway, wind loads are determined from Eurocode 1991-

1-4. The regulations are designed for hand calculations, but it is desirable to be able use a

structural engineering software instead.

The software used in this thesis is CSi ETABS and the objective of the thesis is to develop

an extension for CSi ETABS that provides wind loads in a semi-automatic fashion.

Scope of Work
 Review of previous work and software

 Establish principles for import of structural model

 Establish principles for building envelope subjected to wind

 Develop methods for generating wind-induced loads according to Eurocode

 Develop methods for transferring loads to analysis

 Develop software extensions for CSi ETABS

Deliverables

The thesis will result in an extension (called “Aeolus”) to CSi ETABS with a demo and a

digital report. The demo and the digital report will be graded.

The report is to be handed in to the Department of Structural Engineering by June 10, 2015.

The thesis may be adjusted due to the progress of work and the interests of the student.

The report is to be organized in accordance with the current instructions

(http://www.ntnu.no/kt/studier/masteroppgaven).

Supervisor is Professor Tor G. Syvertsen (torgsyv@gmail.com)

Contact at EDR&Medeso is Øystein Flakk (oystein.flakk@edrmedeso.com)

http://www.ntnu.no/kt/studier/masteroppgaven
mailto:torgsyv@gmail.com
mailto:oystein.flakk@edrmedeso.com

i

Norwegian Abstract: Sammendrag
For korrekt dimensjonering av konstruksjoner er det viktig å medberegne miljøbelastninger,

inkludert vindlaster. I Norge bestemmes vindlaster ved bruk av NS-EN 1991-1-

4:2005+NA:2009. Regelverket er utformet for håndberegninger, og legger ikke til rette for

bruk av datasystemer for effektiv lastberegning.

Denne masteroppgaven går ut på å designe og implementere en utvidelse til analyse-

programmet CSi ETABS. Utvidelsen må kunne etablere en objektmodell basert på

geometrien til en 3D-modell. Den må kunne inkludere terrengfaktorer og påføre modellen

vindlaster i henhold til regelverket.

Denne rapporten forklarer bakgrunnen, teorien, fremgangsmåten og implementeringen til

utvidelsen, heretter kalt Aeolus, etter den greske guden for vind.

ii

iii

Abstract
It is crucial to include environmental loads in the design of a building. Codes and regulation

are still in the age of hand calculation, but it is desirable to use an engineering software to

generate environmental loads, including wind-incudes loads.

The extension created in this project may load a CAD-model/BIM, recognize the geometry,

assign wind loads on the model according to NS-EN 1991-1-4:2005+NA:2009, and save

the model for analysis. Its purpose is to augment the engineering process, not to automate

it.

This report explains the theory, background, and implementation of wind load extension,

hereafter called Aeolus, after the ruler of the winds in Greek mythology.

iv

v

Preface
This report, an extension developed for CSi ETABS and a demo of said extension is the

result of the course TKT4915, Computational Mechanics, Master’s Thesis. The work has

been in cooperation with EDR&Medeso AS and is submitted in partial fulfilment of the

requirements for the degree of Master of Science to NTNU Department of Structural

Engineering.

I would like to thank EDR&Medeso for the opportunity to work with this project in addition

to helping me and providing me what I needed when it came to software, licenses, and

technical assistance.

In addition, I would like to thank Hege Auglænd for teaching and motivating me to use

TDD in developing the extension.

Tor G. Syvertsen has been a great asset to my thesis, and I would like to thank him for his

guidance and enthusiasm.

vi

vii

Table of Contents

1 Introduction ...1

 Background ... 1

 The idea .. 1

 Results ... 1

2 Technologies ..2

 CSi ETABS .. 2

 Application Programming Interface (API) ... 3

 Programming tools ... 4

3 Geometry Recognition ...5

 Wall Recognition .. 6

 Wall Partitioning ... 12

4 Eurocode NS-EN 1991-1-4:2005+NA:2009 ...14

 Assumptions ... 16

 Calculation model .. 17

5 Examples ..19

 Example 1: single wall .. 19

 Results of Example 1 .. 20

 Analytical calculation for example 1 ... 22

 Example 2: Box ... 23

6 Software Development ..25

 Implementation .. 25

 Extension vs Plug-in ... 28

 User Manual ... 30

 Code Complexity .. 36

 Unit Testing .. 38

7 Discussion ..41

 Conclusion .. 42

 Further Work .. 43

8 Bibliography ...44

Appendix A: Newspaper clippings .. 48

Appendix B: Terrain Categories .. 51

Appendix C: Class Overview for Aeolus .. 53

viii

ix

Terms and Definitions

Acronyms and abbreviations
ETABS Extended Three-dimensional Analysis of Building Systems. Software

from Computers and Structures, Inc. [1].

DLL Dynamic-Link Library, data files that provides a mechanism for shared

code and data [2].

API Application Programming Interface [3].

BIM Building Information Model

TDD Test Driven Development [4].

FBD Free Body Diagram

Symbols
𝑣𝑏,0 Fundamental value of the basic wind velocity [5].

𝑣𝑚(𝑧) Mean wind velocity [5].

𝑞𝑝(𝑧) Peak velocity pressure [5].

𝑤𝑒(𝑧) External wind pressure [5].

Notations
�⃗⃗� Vector notation

Software terms (in italic)
MethodName([parameter type 1]

[parameter name 1], [parameter

type 2] [parameter name 2], …)

Object method from a code example.

Model/View/Controller Components in the Model-View-Controller

pattern [6].

Class/Object Object or a class from the code.

x

 1

1 Introduction

 Background
Why are wind loads important? This question has a simple answer: Energy. Air moving at

high speed has a considerable amount of kinetic energy. This energy may be utilized to

generate electricity, but it can also cause severe damage. Every storm rolling in towards

Western Norway may have the capability to take off roofs and leave towns without power.

See Appendix A: Newspaper clippings for examples.

To prevent faulty designs of constructions, The European Committee for Standardization

[7] develops Eurocodes [8], a set of technical regulations for structural design of

constructions in the European Union. Norway is among the countries required to implement

these Standards. However, the regulations are still in the age of hand calculations, and

represent obstacles to a smooth flow of information between the various software

components.

The motivation for this work has been to provide engineers with a tool for efficient

calculation of wind-induced loads. The tool should be capable of exchanging information

with other structural analysis software.

 The idea
Based on geometry-related data from a CAD-model/BIM it should be possible to:

 Establish a structural model including characteristics of the surrounding terrain

 Generate wind-induced loads according to NS-EN 1991-1-4:2005+NA:2009 in a

semi-automatic fashion

It is desirable that the system is interactive and iterative for convenient user control and

presentation of the generated loads.

 Results
Besides this report, the work has resulted in an extension to CSi ETABS for generation of

wind-induced loads according to the Eurocode. Distribution of CSI ETABS and extensions

is restricted, but a video recording demonstrates use of the developed software. The name

of the extension is “Aeolus”, named after the ruler of winds in Greek Mythology [9].

 2

2 Technologies

 CSi ETABS
ETABS [1] is a software package for structural analysis and design of buildings developed

by Computers & Structures, Inc. (CSi) based in Berkeley, CA. Among the well-known

software from CSi are SAP2000 [10], CSiBridge [11] and ETABS. The name ETABS is an

acronym for Extended Three-dimensional Analysis of Building Systems.

The concept of ETABS is based on stories, and it is dominantly used for regularly shaped

high-rise buildings, often office-buildings. ETABS handles this by enabling the user to draw

a planar floor and copy the floor to the number of stories needed. Each story may be edited

individually if needed. Columns, walls, shafts and beams may be auto-generated. This

enables quick and easy modelling of for instance skyscrapers like the world’s tallest

building, Burj Khalifa (formerly Burj Dubai) [12].

ETABS may perform both static and dynamic analysis, including the calculation of

vibration modes and time-history analysis. It also supports material and geometrical

nonlinearity.

ETABS has a wind load feature that is mainly used for stability analysis of structural

systems and it is not specific enough to be used for smaller buildings and/or parts of

structural systems. The current wind load feature will only apply wind loads at the nodes of

the model, which excludes local bending moments. For more information about local

bending moments, see Section 3.2. Wall Partitioning

Figure 2-1: Main views in CSi ETABS 2013 [47]. One planar view and one 3D-view.

Here, one floor is modeled, then copied to the other three floors. Columns, beams and

restraints are auto-generated

 3

 Application Programming Interface (API)
CSi ETABS provides an Application Programming Interface (API) that allows engineers

and developers to modify the software with extensions and bridges to third party software.

The API is compatible with most major programming languages, including Visual Basic,

C#, C++, FORTRAN, Python and MATLAB. However, the current version provides limited

documentation. [13]

The API enables a rich real-time two-way link between an extension and ETABS, allowing

access to models, complete control of execution, extraction, analysis, design information,

all from within Aeolus. [14]

API restrictions
The main challenge regarding implementing an extension using the provided API is that one

cannot access objects in the model. One may enquire unique names of objects and their

properties, but not the object itself. Approaches to overcome this obstacle are discussed in

Chapter 6. Software Development.

Figure 2-2: Aeolus and ETABS communicates through the provided API

 4

 Programming tools

Microsoft Visual Studio
The main programming tool used to create Aeolus is Microsoft Visual Studio [15], which

is an IDE – Integrated Development Environment. This means that the tool includes a source

code editor, a debugger, and a designer. The software is used to develop computer programs

for Microsoft Windows, in addition to web sites, web application, and web services [16]. It

includes a debugger to help fix errors in the code and a forms designer to create GUI

applications. In addition, many other tools available have not been used in this thesis.

Resharper
A plug-in for Visual Studio called Resharper [17] has been used to enhance the

programming process. The plugin augments code editing with suggestions and corrections

of compiler errors, runtime errors, redundancies, code smells [18], and other improvements

while you type. [19]

Programming language
The main programming language used is C# [20], which is general-purpose object-oriented

programming language similar to Java, but developed by Microsoft. In addition, Visual

Basic [21] was used to define macros and other minor tools for Microsoft Word [22] to

simplify writing the report.

 5

3 Geometry Recognition
A human looking at the image of a three-dimensional model will immediately make a mental

model and establish some idea of the relations between different parts of the model. A single

central processing unit (CPU) will never be able to do this because of its main disadvantage

compared to humans: It can only observe one thing at a time. For that reason, geometry

recognition may be challenging for a computer.

The core problem is the establishment of relations between objects. Therefore, increasing

the number of CPUs may speed up the process, but not alleviate the problem.

What is geometry recognition?
The process of geometry recognition is creating an object model from the data available. In

this context, Aeolus receives data from an ETABS model. The API, however, does not

provide access to the ETABS object model, only to lists of attributes and values representing

nodes, beams, etc. An object model contains all elements from the model as objects,

including attributes, methods, and relations to other objects. Aeolus needs to create an object

model from the data available.

Figure 3-1: A) Visual representation of a model from ETABS [25]. 1) Data generated from the ETABS-model via

the API. B) A list of data received from ETABS. 2) Geometry recognition: Interpret the data and create an object

model. C) Example of a class diagram created in the code

 6

 Wall Recognition
As seen in Figure 3-1: A) , walls are uncommon to include in the model, as their contribution

to mass and stiffness matrices are negligible. This may make recognition of walls

challenging, and it may require user input.

Since ETABS is based on stories, the recognizer is able split the problem into two parts:

1. Story periphery part: The recognizer locates the outline of each story.

2. Periphery connecting part: The recognizer connects the story peripheries to form

walls.

Story periphery
The process of recognizing a story periphery may be described in the following two steps

1. Locate a source node on the story
The recognizer locates a periphery node on the story and set this node as a source node. A

source node is defined as a node connected (directly or transitively) to another story and lies

on the periphery of its own story. To locate it the recognizer loops through all nodes on the

story and checks whether the first requirement for a source node is met, and picks the node

with the smallest x coordinate (must be in the periphery).

Figure 3-2: Strategy of wall recognition. From a model (A) the periphery of each story is locates (1).

The peripheries are connected (2), defining the walls (C).

 7

The base story will be a special case because the nodes on the base story are not

necessary connected to each other, depending on the design of the base story. Therefore,

the base story may not be traversed in the same manner. However, the base nodes are

connected to nodes on the story above. Periphery nodes on the base story are defined as

nodes directly below the periphery nodes on the story above.

2. Traverse the periphery of a story from the source node
Starting from a source node on a story, the recognizer traverses the periphery of a story

to locate the other periphery nodes on said story. This is done by “keeping right” when

traversing. In other words, for each node in the path, the next node is found by following

the frame with the lowest counter-clockwise angle from the previous frame. The

traversing stops when the traverser reaches the source node.

Figure 3-4: A) Source node on an

example story in ETABS [51]

Figure 3-3: Base story periphery is defines

by nodes directly below periphery nodes

on the story above.

 8

Every periphery node has an attribute for its periphery node neighbor in the counter-

clockwise direction. This attribute is set when the recognizer traverse a story, to create

relations between the nodes.

When all stories have a defined periphery, the stories may be connected with each other to

create the walls. A possible approach is to define neighbor nodes to the story below for all

stories but the base story (when a neighbor is set for a node object, the neighbors node

attributes is updated). Unlike neighbors on the story, a node may have more than one

neighbor to the story below or above, enabling triangular wall elements.

When the entire periphery of a model is well defined, wall elements may be added in an

efficient manner. All node objects in the periphery of the model have attribute neighbor in

any direction, providing the program the opportunity to loop through the entire periphery of

the model. By following a set of rules when looping through the model, walls in all shapes

are recognized. However, all wall elements are assumed planar. The recognizer uses the

following algorithm to add wall objects:

Figure 3-5: Example of traversing a story. At iteration i, the traverser has reached node C and will

choose node D as next node because αBCD < αBCE

 9

foreach (var story in Storys)
{

foreach (var peripheryNode in story.PeripheryNodes)
{

foreach (var neighborDown in peripheryNode.NeighborsDown)
{

wallList.Add

(

GetWallFromPeripheryNode(peripheryNode,

neighborDown)

);

}

}

}

The method GetWallFromPeripheryNode(Node peripheryNode, Node neighborDown) uses

the same principle as when finding periphery nodes on a story. It uses the information from

the parameters and traverses a wall element periphery by always taking left. For detailed

information, see Figure 3-7.

 10

Figure 3-7: Illustration of how a wall is found by traversing. The function that locates the wall takes

two nodes as parameters: A source node (A) and its neighbor on the story below (B). First, three

nodes need to be found do define the plane of the wall. This is done by starting from a source node

(A), add the neighbor down (B), and then add the neighbor down’s story neighbor in counter-

clockwise direction (C). A normal vector defines the wall plane: �⃗⃗� = 𝐁𝐀⃗⃗ ⃗⃗ ⃗ × 𝐁𝐂⃗⃗⃗⃗ ⃗.

The iteration loop is defined by always going to the next node, in the plane, which makes the smallest

clockwise angle from the previous node. When the traverser reach node C it will choose node A as

the next node since αBCA < ∀αBCD. The wall is defined when the traverser reaches the source node.

Figure 3-6: Node with node

neighbors on story below

 11

User input
When a wall is created by Aeolus, it gets a property (in ETABS) called “WindWall”. This

is used as a reference when Aeolus calculates and applies the actual wind load. Every model

object with said property is considered as a part of the model that is subject to wind-induced

loading. This enables the user to edit the model after the geometry has been recognized,

since the user has the ability to add and delete elements, and assign different properties to

the elements. This process shifts the program’s paradigm from “automation” to

“augmentation”, providing help and support for the user instead of trying to replace the user.

For more information about user input and the workflow of Aeolus, see Section: 6.3. User

Manual

Unrestricted API
If the API had no restrictions and every object and method were accessible, there would be

no need for the extension to create an object model. All objects would already have the

methods and attributes needed for efficient geometry recognition. One could even imagine

that the geometry recognition was excessive because the BIM received from ETABS would

include the necessary information about geometry, walls, connections, restrictions,

relations, and everything needed to add wind induced loads according to the Eurocode.

 12

 Wall Partitioning
In ETABS, a wall element is defined as a list of nodes in that run clockwise or

counterclockwise around the wall element. It is possible to assign a distributed load to a

wall element, but ETABS will lump these loads to the nodes of the wall elements, as these

are the only information about the wall element. The lack of pressure forces on wall

elements in ETABS is a severe limitation because if the columns carry the wall, the load

transferred from the wall to the columns should introduce a distributed load along the

column, not lumped loads at the nodes.

A viable approach to overcome this challenge is to divide the wall into horizontal strips to

distribute the lumped loads along the columns, resulting in a discretized distributed load.

 Figure 3-8: Explanation of wall partitioning. The figure shows one wall with two elements (A) and

the same wall partitioned into twenty elements (B). The wall is six meters tall and one meter wide.

The wall is supported at the base, at the middle and at the top. At (1) the distributed load is displayed

(10 𝑃𝑎). At (2) the distributed load is lumped to the corner of the wall elements. At (3) the reaction

forces and moment diagram is displayed.

 13

A wall is partitioned by attaching a rectangular plane around the wall element, and dividing

this plane into a reasonable amount of vertical strips. These strips define the wall partitions.

See figure below for details. The default setting is that the walls are connected to the

columns; however, the user may choose to connect the walls to either columns, beams or

nodes.

Figure 3-9: Wall partitioning into horizontal strips with equal height. A wall element (A) forms a basis for a

bounding rectangle (B) that is used to partition the wall element. A reasonable number* of partition lines is

created (C) to achieve the coordinates of the points that defines the wall partition corner points. These points

are is defined as the intersection points from the partition lines or the bounding rectangle and the wall frames.

When all intersection points are established, the wall can easily be partitioned (D).

*reasonable number: A value calculated from partition height, which given by the user. The default value for

partition height is 500 mm.

 14

4 Eurocode NS-EN 1991-1-4:2005+NA:2009
Eurocodes [8] are a set of harmonized technical rules developed by the European Committee

for Standardization [7] for structural design of construction works in the European Union.

Its purpose is to provide a basis for construction and engineering contract specifications. It

is mandatory for European public work to obey the regulations and they are intended to

become the de facto standard for the private sector. [8]

There are about 300 published EN standards [23]. However, ten of those standards are

published as The Eurocodes [8]. Each of the ten codes, except EN 1990, are divided into a

number of parts covering specific aspects of the subject. In total there are 58 EN Eurocode

parts distributed in the ten Eurocodes [24]

Eurocode naming
The name NS-EN 1991-1-4:2005+NA:2009 gives information about what the standard is

about. 1991 is actions on structures. 1-4 is general wind actions. 2005 is when the general

document was updated and NA:2009 means the national annex was updated in 2009.

Figure 4-1: Links between the ten Eurocodes [48].

 15

Eurocode complexity
Facts about the extent of the Eurocodes: The 58 parts of the ten Eurocodes consist of about

5077 pages in total [25], averaging 87.5 pages per part. That is without national annexes.

The wind action standard is 149 pages long and contains 126 equations and 105 figures and

tables. The national annex is 27 pages and contains an additional (mainly overriding) 49

equations and 16 tables and figures.

Generally, all this information could be straightforward to implement in software, the

Eurocodes are strongly biased towards hand calculation. The lack of generalization,

extensive use of figures and tables make implementation in computer code difficult.

However, this issue is outside the scope of this report.

 16

 Assumptions
The Eurocodes make assumptions to ease calculation of wind loads. This thesis makes some

assumptions of its own as well, introduced in this section.

Eurocode assumptions
 Buildings are lower than 200 m. Bridges have spans less than 200 m.

 Fundamental value of basic wind velocity 𝑣𝑏,0 is based on zip-coded locations.

 Rectangles, triangles, and circles may define the building surface geometry.

Thesis assumptions
 The structure is static (including 𝐵2 = 1.0, 𝑅2 = 0.0).

Where:

𝐵2 Background factor, allowing for the lack of full correlation of the pressure on the

surface structure.

𝑅2 Resonance factor, allowing for turbulence in the resonance with the vibration mode.

 The wind is coming from North, South, East, or West.

 The walls are piecewise planar.

 The loads from walls are transferred to the columns by default (the user may choose

otherwise).

 The building is closed (no wall openings).

 17

 Calculation model
The general external wind pressure is obtained in four steps:

1. Read 𝑣𝑏,0 from a table, according to zip code provided by the user.

2. Calculate mean wind velocity 𝑣𝑚 as a function of 𝑣𝑏,0, height above ground, and

terrain category. The latter is a factor provided by the user that represents the amount

of obstacles in the terrain. See Appendix B: Terrain Categories and Table B-1

regarding terrain categories.

𝑣𝑚 = 𝑐𝑟(𝑧) ∗ 𝑐0(𝑧) ∗ 𝑣𝑏

Where:

𝑐𝑟(𝑧) Roughness factor depending on terrain category and height above ground

𝑐𝑟(𝑧) = 𝑘𝑟 ln (
𝑧

𝑧0
)

𝑘𝑟 Terrain factor defined by the terrain category

𝑧0 Roughness length defined by the terrain category

𝑐0(𝑧) Orography factor (= 1.0 when ground incline < 3%)

𝑣𝑏 Basic wind velocity (= 𝑣𝑏,0 unless special case, e.g. far out at sea or at extreme

heights)

NB! Height 𝑧 is set to 𝑧𝑚𝑖𝑛, a value defined by the terrain category, if 𝑧 < 𝑧𝑚𝑖𝑛

3. Calculate peak velocity pressure 𝑞𝑝 as a function of mean wind velocity, air density

and a peak velocity factor

𝑞𝑝(𝑧) =
1

2
𝜌𝑣𝑚

2 (𝑧) ∗ [1 + 2 ∗ 𝑘𝑝 ∗ 𝐼𝑣(𝑧)]

Where:

𝜌 Air density with default value 𝜌 = 1.25
𝑘𝑔

𝑚3

[1 + 2𝑘𝑝𝐼𝑣(𝑧)] Peak velocity factor with a magnitude usually around 1.5 − 3.5.

Figure 4-2: Basic wind velocity based on location in Norway

for a 50 year return period and terrain category 2. [5]

 18

𝑘𝑝 Peak factor defined as 3.5 in the Norwegian National Annex of the

Eurocode [5]

𝐼𝑣(𝑧) Turbulence intensity that is proportional to 1/ln (
𝑧

𝑧0
).For more

information, see NA 4.4 of the Eurocode [5]

4. Multiply the peak velocity pressure with a pressure coefficient to get the external

pressure 𝑤𝑒(𝑧).

𝑤𝑒(𝑧) = 𝑞𝑝(𝑧) ∗ 𝑐𝑝𝑒

 Where:

𝑐𝑝𝑒 External pressure coefficient depending on the zone the wall is in, see below.

Table 4-1: Conservative values of external pressure coefficients for vertical walls of rectangular

plan buildings [5]

Zone A B C D E

𝑐𝑝𝑒 -1.4 -1.1 -0.5 +1.0 -0.7

 Figure 4-3: Wall zones for vertical walls

 19

5 Examples
To verify the results from the Aeolus, this section gives two examples where results obtained

with ETABS are compared with an analytical solution. The first example calculates shear

force, bending moments and deflection of a single wall exposed to wind load. The second

example verifies zone allocation of a rectangular model.

 Example 1: single wall

This section gives an example of wind calculation on a single wall with ETABS compared

to an analytical solution. The task is to calculate the shear force, bending moments, and

deflection of the wall.

Technical information:
 Wall height: 𝐻 = 10 𝑚

 Wall width: 𝑏 = 1 𝑚

 Basic wind velocity: 𝑣𝑏 = 22 𝑚/𝑠

 Terrain category: Category 2:

o 𝒌𝒓 = 0.19

o 𝒛𝟎 = 0.05 𝑚

o 𝒛𝒎𝒊𝒏 = 4 𝑚

 𝐸 = 200.000 𝑀𝑃𝑎

 𝐼 = 63.72 ∗ 107𝑚𝑚4

Figure 5-1: Example wall. Constant distributed

wind load (q2) for heights under zmin and a

varying distributed wind load (q1) for heights

over zmin. The roman numerals I and II indicate

the breaks needed to compute the shear force

and bending moments.

 20

 Results of Example 1

Table 5-1: Comparing values from Analytical methods and from ETABS

Value Analytical

results

ETABS and

Aeolus results

Absolute

difference

Relative

difference

𝑞𝑝(𝑧𝑚𝑖𝑛) [𝑃𝑎] 544.6 545 0.40 0.07 %

𝑞𝑝(𝑧1) [𝑃𝑎] 544.6 545 0.40 0.07 %

𝑞𝑝(𝐻) [𝑃𝑎] 711.6 706 5.60 0.79 %

𝑀𝑏 [𝑁𝑚] 30715.9 31422.5 406.60 2.30 %

𝑀(𝑧𝑚𝑖𝑛) [𝑁𝑚] 11015.6 11126.4 110.80 1.01 %

𝑀(𝑧1) [𝑁𝑚] 3008.7 3084.8 16.10 0.54 %

𝐹𝑏 [𝑁] 6015.06 5973.9 41.16 0.68 %

𝑉(𝑧𝑚𝑖𝑛) [𝑁] 3835.06 3795.1 39.96 1.04 %

𝑉(𝑧1) [𝑁] 2039.26 2022.1 17.16 0.84 %

𝑢(𝑧𝑚𝑖𝑛) [𝑚𝑚] 1.59 1.60 0.01 0,63 %

𝑢(𝑡𝑜𝑝) [𝑚𝑚] 6.29 6.40 0.11 1,75 %

Figure 5-2: Results from the analytical solution. Units: qp: [Pa], V: [N], M: [Nm], u: [mm].

z1 is halfway from zmin to H. (z1 = zmin +
H − zmin

2
)

 21

Different results because of partially linearized load
The main reason for the difference in results from Aeolus and an analytical approach is that

Aeolus linearizes the wind load. In Aeolus, the wind load is calculated for a given number

of locations (Default: Every half meter, user may override.) and the distributed load is

defined as a linear interpolation between the calculated values. This gives a good

approximation to an analytical approach, and it saves a considerable amount of CPU time.

0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

1,60%

1,80%

2,00%

qp(z_min) qp(z_1) qp(H) Mb M(z_min) M(z_1) F_b V(z_min) V(Z_1) u(z_min) u(top)

Relative Difference between ETABS and
analytical results

Figure 5-3: Relative difference chart

 22

 Analytical calculation for example 1
Wind force:

𝑞𝑝(𝑧) =
1

2
𝜌𝑘𝑟

2𝑣𝑏
2

{

ln2 (
𝑧

𝑧0
)(1 +

7

ln (
𝑧

𝑧0
)
)

ln2 (
𝑧𝑚𝑖𝑛
𝑧0

)(1 +
7

ln (
𝑧𝑚𝑖𝑛

𝑧0
)
)

𝑓𝑜𝑟 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝐻

𝑓𝑜𝑟 0 ≤ 𝑧 ≤ 𝑧𝑚𝑖𝑛

Shear forces, bending moments, and deflection:
Starting from the top, defining �̃� = 𝐻 − �̃� → 𝑞(𝑧) = 𝑞(𝐻 − �̃�)

Section 1 (𝟎 ≤ �̃� ≤ 𝑯 − 𝒛𝒎𝒊𝒏):

𝑉1(�̃�)∫ 𝑞1(𝐻 − �̃�)𝑑𝑧

𝑧

0

=
1

2
𝜌𝑘𝑟

2𝑣𝑏
2 {[−2(𝐻 − �̃�) − 7�̃�

− 5(𝐻 − �̃�) ln (
𝐻 − �̃�

𝑧0
) − (𝐻 − �̃�) ln2 (

𝐻 − �̃�

𝑧0
)]

− 𝐻 [−2 − 5 ln (
𝐻

𝑧0
) − ln2 (

𝐻

𝑧0
)]}

𝑀1(�̃�) = ∫𝑞1(𝐻 − �̃�)�̃�𝑑𝑧

𝑧

0

=
1

4
𝜌𝑘𝑟

2𝑣𝑏
2 {[(�̃�2 − 𝐻2) ln2 (

𝐻 − �̃�

𝑧0
)

− 2(2𝐻2 + 𝐻�̃� − 3�̃�2) ln (
𝐻 − �̃�

𝑧0
) + 7𝐻2

− 4𝐻�̃� − 3�̃�2]

− [−𝐻2 ln2 (
𝐻

𝑧0
) − 4𝐻2 ln (

𝐻

𝑧0
) + 7𝐻2]}

Section 2 (𝑯− 𝒛𝒎𝒊𝒏 ≤ �̃� ≤ 𝑯)

𝑉2(�̃�) = 𝑉1(𝐻 − �̃�) + 𝑞2(�̃� − (𝐻 − 𝑧𝑚𝑖𝑛))

𝑀2(�̃�) = 𝑀1(𝐻 − �̃�) + 𝑉1(𝐻 − �̃�)(�̃� − (𝐻 − 𝑧𝑚𝑖𝑛))

+
1

2
𝑞2(�̃� − (𝐻 − 𝑧𝑚𝑖𝑛))

2

Deflection:

𝑢(𝑧) =
1

𝐸𝐼
∫ ∫𝑀 𝑑𝑧2

Figure 5-5: FBD of Section

I (0 ≤ z̃ ≤ H − zmin)

Figure 5-4: FBD of Section II

(H − zmin ≤ z̃ ≤ H)

 23

 Example 2: Box
This example explains and verifies the zone allocation and the external pressure coefficients

provided by Aeolus. For more information about construction zones, see Figure 4-3 and

Table 4-1.

The wall parallel to the wind direction (wall b) is twenty meters long and ten meter high. It

should be divided into three vertical zones: A, B, and C, according to the following rules:

 Variables:

o 𝑒 = min {
width of the construction

2 ∗ height of the construction
= 𝑚𝑖𝑛 {

10 𝑚
20 𝑚

= 10 𝑚

o 𝑑 = depth of the construction = 20 𝑚

 Zone A: The part of the wall from the start until e/5 in the wind direction.

 Zone B: The part of the wall from 𝑒/5 until 𝑒 in the wind direction.

 Zone C: The part of the wall from 𝑑 − 𝑒 until the end of the wall in the wind

direction.

This gives the following zones:

Figure 5-6: A box, ten meter high, ten meter wide, and twenty meters deep.

The wind is coming straight towards wall a.

Figure 5-7: Zones of the wall parallel to the wind direction

(wall b in Figure 5-6).

 24

The basic wind velocity is 22 𝑚/𝑠 and the terrain category is Category 0. This gives the

following peak wind velocity (below 𝒛𝒎𝒊𝒏 = 4𝑚): 𝒒𝒑(𝒛𝒎𝒊𝒏) = 679.89 𝑃𝑎. For

information about how this value is calculated, see Chapter 4.2. Calculation model, and the

previous example. Aeolus presents the following results:

Table 5-2: Zones and loads of walls below zmin of the example model

Zone External Pressure
Coefficient, 𝒄𝒑𝒆

pressure calculated
analytically, 𝒒𝒑(𝒛𝒎𝒊𝒏)

Load 𝒘𝒆 =
𝒒𝒑(𝒛𝒎𝒊𝒏) ∗ 𝒄𝒑𝒆

Wind load from
Aeolus

D 1.0 679.89 𝑃𝑎 679.89 𝑃𝑎 -679.9 Pa

A -1.4 679.89 𝑃𝑎 − 951.846 𝑃𝑎 951.8 𝑃𝑎
B -1.1 679.89 𝑃𝑎 − 747.879 𝑃𝑎 749.9 𝑃𝑎

C -0.5 679.89 𝑃𝑎 − 339.945 𝑃𝑎 339.9 𝑃𝑎

As seen in the table above, the results from Aeolus and from and analytical solution

corresponds (with different sign due to different conventions) and thus verifies the zone

allocation for this type of structures.

Figure 5-8: Wind loads applied to the ETABS model by Aeolus. The wall parallel to the wind

direction is divided into three vertical zones, and two horizontal zones. The horizontal zone

split is at z = zmin. The vertical zone splits is at y = 2 m, and y = 10 m. Unis are in kPa.

 25

6 Software Development

 Implementation
The main challenge regarding implementing Aeolus using the API is that one cannot access

objects in the model. This section describes an approach to overcome this challenge.

The crucial part of the implementation was to establish an object model. To do this, new

objects where created to mimic the unobtainable model objects from ETABS. Information

about all objects from the ETABS model is available, through the API, to create a well-

defined object model.

To enable communication between Aeolus and ETABS, the Aeolus project in Microsoft

Visual Studio [15] imported a DLL file called “ETABS2013.dll”. This file, distributed by

CSi may provide a two-way real-time direct link between third party extensions and

ETABS.

Figure 6-1: Class diagram for an example object model created in the code of Aeolus

 26

Architecture
The architecture of the Aeolus is based on the pattern “Model-View-Controller (MVC)” [6],

which separates the user interface from the data and the data controller.

 The View requests information from the Model to generate an output representation

to the user.

 The Model contains all the data from an ETABS model and notifies its associated

View when there has been a change in its state. This notification allows the View to

produce updated output.

 The Controller moves and manipulates data from the Model and sends commands

to update the Model’s state.

The Controller component of the architecture contains three classes: Eurocode, Recognizer,

and CSiInstance. A CSiInstance object is instantiated when the user opens a model and starts

communicating with ETABS. It contains and controls both the Eurocode class and the

Recognizer class. See Appendix C: Class Overview for information about the implemented

classes.

When the user sends a command to recognize geometry, a Recognizer object is instantiated

and immediately executes the methods to detect and create Point objects, Frame objects,

Wall objects etc. based on the ETABS model. These model objects form the basis for the

Model component of the architecture.

When the user sends a command to assign wind loads, a Eurocode object is instantiated

within the CSiInstance and uses the information Recognizer got from the Model component

to calculate wind loads according to the regulations. The calculated wind loads are assigned

to the ETABS model.

Figure 6-2: Typical collaboration of

MVC components [6]

 27

The Recognizer object contains the logic for geometry recognition, but does not

communicate directly with an ETABS model. The CSiInstance class sends and requests

information to and from the ETABS model through the API. This information is passed on

to the Recognizer for geometry recognition and to the Eurocode for load calculation. This

architecture is highly maintainable and enables efficient unit testing. See Chapter: 6.5. Unit

Testing for more details.

Figure 6-3: Detailed view of the Controller-component of the MVC-pattern.

 28

 Extension vs Plug-in
The current version of ETABS supports use of extensions, but not plug-ins, but what it the

difference? Both extensions and plug-ins are computer programs that depend on an existing

software application. Both are intended to expand the usability and/or extend the capability

of the application [26].

Examples of extensions and plug-ins
Common examples of plug-ins are the well-known internet browser plug-ins such as Adobe

Flash Player [27], Apple QuickTime Player [28], and the Java plug-in [29]. Historically,

plug-ins are used as bridges between a main application and a third party software, like the

link between a web browser and Adobe Flash Player, enabling the user to play flash videos

etc. within the browser.

Common examples of extensions are browser toolbars [30] and modifications to computer

games, designed to alter the content of the game. Among the well-known computer games

that started as an extension are Counter Strike [31], Defense of the Ancients (DotA) [32],

and Team Fortress [33]. Extensions are made for the main application, and are only and

intended to expand that application.

Difference between an extension and a plug-in to ETABS
What separates an extension from a plug-in, in the ETABS convention, is primarily when it

is loaded. An extension to ETABS is loaded before ETABS starts, and only one extension

may run at a time. A plug-in may be loaded at any time during the execution ETABS, and

several plug-ins may run simultaneously. The ETABS API does not currently support plug-

ins, but it will in a future release.

Figure 6-4: To be able to play the YouTube [50] video “Rick Astley – Never

Gonna Give You Up”, the internet browser needs a flash player plug-in.

 29

Extension of ETABS
ETABS must by executed through an extension to use it. This means that extensions for

ETABS are stand-alone executable programs with the ability to start an instance of ETABS

from the extension itself. For more information about the workflow of the wind load

extension, see Section: Workflow.

Figure 6-5: Aeolus is loaded as a stand-alone program (A). From within Aeolus, the user may load

an instance of ETABS (B) by selecting “Open Model”. The instance of ETABS will the loaded (C)

with the extension Aeolus.

 30

 User Manual
The features of Aeolus are described in this section. A more detailed user manual for

ETABS in general is available online [34].

The purpose of the main view of Aeolus is to be intuitive and as simple as possible for the

user to use. It has the user interface [35] of a general form [36] from Microsoft Windows.

Figure 6-6: The view is composed of five parts: (A) Location, (B) Environment, (C) Wind

load information, (D) User control and communication with ETABS, (E) Status area that gives

feedback to the user on progress, and (F) opens a new dialog where the user may select options

for the walls.

 31

Workflow
Since Aeolus is an extension, it is started as a stand-alone executable program. The user

workflow is described in the following steps

1. Open Model
The communication with ETABS begins when the user press the “Open Model”

button, which opens an instance of ETABS where the user is asked to choose a model

file to open. This step in the workflow is not required to be the first step, but may be

executed at any time during the usage Aeolus.

2. Select Location
From a dropdown menu, the user selects county and municipality, to provide the

program with a Zip Code. This is used to read a fundamental value of the basic wind

velocity, 𝑣𝑏,0, from table NA.4(901.1) from the Eurocode [5]. For more information

about the Eurocode and its implementation, see Chapter: 4.2. Calculation model. If

the user wants a special case (e.g. not location specific construction, higher-than-

normal wind velocity, etc.), the basic wind velocity may be overridden.

Figure 6-7: An open file dialog is presented to the user when communication between

Aeolus and ETABS is established. The user chooses a model file to open. Model files

have the file extension .EDB

 32

3. Select environmental factors
There are two environmental factors the user need to provide:

1. Terrain Category. A factor representing the terrain and possible obstacles for

the wind. See Appendix B: Terrain Categories and Table B-1 for more

information regarding terrain categories. The default terrain category is

Category 0.

2. Wind direction, which is restricted to four directions; North, East, South, and

West. The default wind direction is West, and the building is located

accordingly in the first quadrant with the positive x towards east. Further

releases of Aeolus may include wind direction from any directions, and

determination of the “worst” wind angle, i.e. the wind angle causing most

harm to the building.

Figure 6-8: Example of selecting a location. At (A) the user chooses a county, and

at (B) the user chooses a municipality within the selected county. This sends a zip-

code to the program that is used to read the basic wind velocity from a table.

 33

4. Select Wall Options
The user may choose options for that structural elements the walls are connected to

(columns, beams, or nodes), and how many partitions the walls should be divided

into.

5. Recognize geometry
The process of geometry recognition is the part of the workflow that consumes most

CPU time. The runtime for the geometry recognition is proportional to 𝑂(𝑚 ∗ 𝑛2),

where 𝑚 is the number of frames (beams, columns, or braces) in the model and 𝑛 is

the number of nodes in the model [37]. However, even for a large model, the time

taken for the program to recognize the geometry should be less than five minutes.

For details regarding geometry recognition, see Chapter: 3. Geometry Recognition.

After the geometry recognition, the user may override what is presented. If, for

instance, a wall element is not where it is supposed to be, the user may delete said

wall element and add a correct one. This is possible due to a property, “WindWall”,

set to all wall elements created by Aeolus. The wind load assigner uses this property

to define a set of walls to be included in the load calculation. When a user add a new

wall, the user may set the “WindWall” property for said wall, thus including it in the

set of wall elements.

Figure 6-9: Wall options dialog. The user may choose if the walls are connected to columns (default), beams

or nodes (A). The number of partitions is selected using a slider (C). An example moment diagram is

displayed, reflected by the number of partitions. The user may choose to accept or to cancel the options

chosen (D).

 34

6. Assign Wind Loads
This is a straightforward procedure where the load assigner calculates wind loads

according to regulations and assigns it to the model elements. For more information

about the regulations, see Chapter: 4. Eurocode NS-EN 1991-1-4:2005+NA:2009

Figure 6-10: Geometry Recognition completed. At (A) the model have no

walls, at (B) walls have been located, added to the ETABS model, and

partitioned to a reasonable number of horizontal strips

Figure 6-11: Load assigned to all wall elements according to regulations. A model without loads (A), and a model

with wind loads assigned (B) (values are in kPa). The local axes on each wall element contains a blue arrow, which

is the walls normal vector that points in the direction of the load (by convention, this is outwards). Here, vb,0 = 22

and terrain category is 0.

 35

The load assigner writes a log containing information about every calculation made.

The user is able to trace back all variables used for every wall element to verify the

results. If the user disagrees with the results, it may be manually overridden in

ETABS.

7. Save model
The user may save the model with wind loads assigned for further analysis and

design. It is also possible to remove all changes to the model and save it as it was.

Figure 6-12: Snippet from a log showing values for variables used in calculating the

load on a wall element

Figure 6-13: Analysis of a model affected by wind loads. At (A), the model is displayed without deformation.

At (B), the model is displayed with moment diagram in the X-Z-Plane. At (C), the model is displayed with

exaggerated deformations

 36

 Code Complexity
It is crucial to write understandable, maintainable, reusable, and robust code. With this in

mind, Aeolus was written using Test Driven Development (TDD) and the focus was to make

a program that other developers might develop further without struggling to understand the

code. For more information about TDD, see Chapter: 6.5 Unit Testing.

Aeolus was written using an Object-Oriented paradigm [38] to reflect the structure of

systems “in the real world”. This means the coded objects interacts with each other and

simulate objects in the physical world.

Code metrics
Code metrics [39] is a set of software measures that provide developers better insight into

the code they are developing. Microsoft has developed the software measures for Visual

Studio.

1. Maintainability Index

This index value between 0 and 100 represents the relative ease of maintaining the code.

Higher values mean better maintainability. Aeolus has a Maintainability Index of 90, which

is considered highly maintainable.

2. Cyclomatic Complexity

This value represents the number of different code paths in the flow of the program. Lower

values mean better code, in respect to comprehensibility and code readability. Aeolus has

an average Cyclomatic Complexity for each method of 2.3, which are considered simple

and easy to understand [40]. However, there are certain methods in the code with a

Cyclomatic Complexity of >20, meaning they might need an effort to understand. These

methods are commented in the code to help describe their functions.

3. Class Coupling

A number representing the amount of code coupling to unique classes through parameters,

local variables, return types, method calls, generic instantiations, and fields. Good software

design dictates that types and methods should have high cohesion and low coupling. High

coupling indicates a design that is difficult to reuse and maintain because of its many

interdependencies to other types.

An analogy to class coupling in the physical world could be a cell phone. If the battery is

soldered to the phone and unable to replace, the phone has tight coupling and thereby

expensive and difficult to maintain by replacing a defect battery. A loosely coupled phone

would allow effortlessly changing the phone battery.

Aeolus is written such that every class may be replaced and edited independently without

causing errors on other classes, by extensive use of interfaces [41] and “The Law of

Demeter” [42]. The latter is an object-oriented software design principle, which can be

summarized as: A method of an object may only call methods of the object itself, an

argument of the method, any object created within the method, or any direct property/field

of the object [43].

 37

The motivation for a low class coupling index is better maintainability. Just like a phone

battery can be replaced on a loosely coupled cell phone, a class in a loosely coupled code

may be edited or even removed without causing compiler errors at other classes. This

simplifies maintaining the code significantly because a developer may maintain one part of

the code as an independent unit.

4. Lines of Code

Aeolus consist of about 2600 lines of code, which does not say anything about how much

time spend writing the code or how good the program is. It is simply a value of how many

lines of code there are. However, the number indicates that the extension is not written

overnight. Six hundred of the 2600 lines are tests that make sure the other 2000 lines do

what they are supposed to do. A net value of code lines produced per hour spent on

developing the extension is estimated to about 6.5
𝑐𝑜𝑑𝑒 𝑙𝑖𝑛𝑒𝑠

ℎ𝑜𝑢𝑟
, corresponding to 400 hours of

coding.

 38

 Unit Testing
Aeolus is implemented using Test Driven Development (TDD) [4], which is a software

development process that relies on the repetition of a very short development cycle:

1. Write an (initially failing) automated unit test case that defines a desired

improvement or a new function.

2. Produce the minimum amount of code to pass that test

3. Refactor the new code to acceptable standards

The reason why developers write the unit tests before writing the code, is to force a focus

on the requirements of the program before writing the code. To write a test, the developer

must clearly understand the feature’s specification and requirements. A unit test is defined

by three elements: What to test, what to test with, and what to expect.

Example of a test is shown in Figure 6-14. The example test demonstrates testing of the

method GetAngle(Frame f1, Frame f2) in the class GeometryLogic. The methods function

is to return the counter-clockwise angle between two frames (f1 and f2) when traversing

from f1 to f2. The test uses two orthogonal frames as input to the method, where f1 points

east, and f2 points north. The expected result from GetAngle() is 3𝜋/2, which is checked

with the method Assert.AreEqual(). The Assert.AreEqual()-method also takes an acceptable

delta as input. The test passes if the two values correctAngle and actualAngle are closer to

each other than the value acceptableDelta.

“Arrange, Act, Assert”
The design pattern used for unit testing in this thesis is the commonly used “Arrange, Act,

Assert”-pattern [44]. The purpose of the pattern is to make unit test easy to read, easy to

understand, and thereby easy to maintain.

Each test is divided into three functional sections [45]:

1. Arrange all necessary preconditions and inputs.

2. Act on the object or method under test.

3. Assert that the expected result have occurred.

 39

Figure 6-14: Code example of a unit test. The name of the test is composed of the three components

of a unit test NameOfMehtod_InputToMethod_ExpectedOutput().

1. [TestMethod]
2. public void GetAngle_OrthogonalFrames_3TimesHalfPi()
3. {
4. //Arrange

5. /*

6. * (j3)

7. * |

8. * f2

9. * |

10. *(j1)--f1--(j2)

11. */

12. _testModel.Points = new List<Point>()

13. {

14. new Point("j1", 0, 0, 0, 0),

15. new Point("j2", 1, 0, 0, 0),

16. new Point("j3", 1, 1, 0, 0)

17. };

18. _testModel.Frames = new List<Frame>()

19. {

20. new Frame

21. (

22. "f1",

23. _testModel.Points[0],

24. _testModel.Points[1]

25.),

26. new Frame

27. (

28. "f2",

29. _testModel.Points[1],

30. _testModel.Points[2]

31.)

32. };

33. const double correctAngle = 3*Math.PI/2;

34. const double acceptableDelta = 0.0001;

35.

36. //Act

37. var actualAngle = GeometryLogic.GetAngle

38. (

39. _testModel.Frames[0],

40. _testModel.Frames[1]

41.);

42.

43. //Assert

44. Assert.AreEqual(correctAngle, actualAngle, acceptableDelta);

 45. }

 40

Advantages of TDD
One of the main advantages of TDD is efficient debugging. If a developer changes anything

in the code at any time that causes an error, the tests will provide information about where

and what the error is. The error feedback loop is short. This enables efficient debugging,

which is important for code maintainability. It also tells the developer “yes, your code does

indeed work”. It will confirm that what you have coded actually does what it is supposed to

do, and thus help developers sleep at night.

Another advantage that may be the most important one is that it forces the developer to think

before he/she writes the code. There has to be a meaning behind the work, and the

specifications have to be in place before writing the code.

TDD is a simple method, but extremely powerful. It encourages developers in the start-up

face of a large project (or when new functionality to an existing project should be

implemented) to divide the problems and challenges into smaller parts, which can be solved

one by one. This is why it is called unit testing. The purpose is to build a project by many

small units that may be tested one by one.

Disadvantages of TDD
One may argue that the time invested in writing tests is a downside of the development

method. In a small project with few people, test writing may not be worth the effort, but in

a complex project involving dozens of coders, time will probably be saved by writing tests.

In this case, it was a personal choice to use TDD, because other developers may develop the

project further, and they will benefit from the tests.

Another aspect of TDD is that it hampers design change of the project during the

development, making the developing process less agile. The tests may have to be rewritten

if the requirements or the architecture of the project changes. However, with proper planning

of the project, this should not be an issue.

 41

7 Discussion
This chapter discusses different aspects of Aeolus and the development process and gives

some concluding remarks. It also gives recommendations for further work.

Why an Extension?
Section 6.2. Extension vs Plug-in states that ETABS has to be launched through Aeolus and

only one extension to ETABS may run at a time. It would be preferable if Aeolus was a

plug-in, enabling it to run within (a running instance of) ETABS and enabling use of other

plug-ins (simultaneously). However, the current release of ETABS API does not support

plug-ins, but future releases of the API will. Conversion from an extension to a plug-in

should be straightforward.

Challenges faced when developing the extension
The main challenges when developing a semi-automatic wind load module is geometry

recognition (see Chapter 3. Geometry Recognition). There is another rather enervating

challenge: The extensiveness of the Eurocode (discussed in Eurocode complexity).

Equations from the Eurocode are logical and straightforward to convert to a software.

However, the many figures represent a challenge because they are intended for a human

interpretation. Engineering judgements and adjustments are required when a figure are

applied to a particular structure, and is hence a poor candidate for automated computations

[46].

However, there is no indication that anything in the Eurocode is impossible to convert to a

software which intension is to augment the engineering environment, not to automate it.

An alternative to a non-digital Eurocode?
One may argue that a Eurocode for wind loads is unnecessary. A viable alternative is to

model the building in a software and run a CFD-analysis [47]. This will give accurate

results, is fairly quick, and will reduce human errors. The European Committee for

Standardization could consider converting the entire set of Eurocodes to a software package,

but that discussion is outside the scope of this report.

 42

 Conclusion
The main product of this thesis work is Aeolus, an extension for CSi ETABS that generates

wind loads on a BIM according to NS-EN 1991-1-4:2005+NA:2009. It is not 100% finished

and ready for professional use. However, connection to ETABS, geometry recognition of

building walls, and wind load calculation for walls have been completed and tested. Aeolus

works well and gives good results. For more information about what remains, see Chapter:

7.2. Further Work. The most important are roof recognition and corner effects.

This report and a demo video of Aeolus are additional results of this thesis work. These

explain theoretical background for Aeolus, how Aeolus is used, how it works, and how the

results may be interpreted.

As shown in Chapter 5. Examples, the results provided by Aeolus are satisfactory. The

results correspond well with an analytical solution and the loads applied to a model are as

expected. The analysis is accurate, and the usage of Aeolus is efficient.

 43

 Further Work
Aeolus is not completely finished; there are still several things that need to be done before

it may be distributed to the engineering community. The essentials are listed in the table

below. In addition, Aeolus should be distributed to a testing group for user feedback.

Table 7-1: Essential further work

Element Description

Plug-in conversion Convert Aeolus from an Extension to a plug-in to enable execution of

Aeolus within a running instance of ETABS and execution of other

plug-ins simultaneously. This process should be straightforward when

CSi enables development of plug-ins to ETABS.

Roof recognition A routine in the geometry recognition should be created to enable the

recognition of model roofs.

Rounded parts The wall objects should include an attribute giving the relative angle to

the adjacent wall object, providing information about whether the wall

is part of a rounded region of the model

Composite buildings Aeolus should be able to handle models that have parts that act as

windscreens for other parts, e.g. several wings or multi-towered models.

Other environmental

loads

Aeolus could be a part of a larger system of semi-automatic

environmental load generators, that includes snow loads, earthquake

loads, etc.

 44

8 Bibliography

[1] "ETABS," Csi, [Online]. Available: http://www.csiamerica.com/products/etabs.

[Accessed 10 October 2014].

[2] "Dynamic-Link Library," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Dynamic-link_library. [Accessed 08 April 2014].

[3] "Application Programming Interface," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Application_programming_interface. [Accessed 10

April 2015].

[4] "Test Driven Development," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Test-driven_development. [Accessed 10 April 10].

[5] NS-EN 1991-1-4:2005+NA:2009, Brussels: European Committee for Standardization.

[6] "Model-View-Controller," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller.

[Accessed 08 April 2014].

[7] "European Committee for Standardization," Wikipedia, [Online]. Available:

https://www.cen.eu/Pages/default.aspx. [Accessed 11 March 2015].

[8] "Eurocode," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Eurocode.

[Accessed 11 March 2015].

[9] "Aeolus," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Aeolus.

[Accessed 22 May 2015].

[10] "SAP2000," CSi, [Online]. Available: http://www.csiamerica.com/products/sap2000.

[Accessed 30 October 2014].

[11] "CSiBridge," Computers & Structures, Inc., [Online]. Available:

http://www.csiamerica.com/products/csibridge. [Accessed 06 May 2015].

[12] W. F. Baker, "Design and construction of the world's talles building: The Burj Dubai,"

CENews, [Online]. Available:

http://cenews.com/article/7709/design_and_construction_of_the_world_acute_s_

tallest_building__the_burj_dubai. [Accessed 30 October 2014].

[13] E. A. Holst, "Wind Load Module for CSi ETABS," Project Assignment, NTNU, Department

of Structural Engineering, Trondheim, 2014.

[14] "Application Programming Interface," Computers and Structures, Inc, [Online].

Available: https://www.csiamerica.com/application-programming-interface.

[Accessed 10 April 2015].

[15] "Visual Studio," Microsoft Corporation, 2014.

 45

[16] "Microsoft Visual Studio," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio. [Accessed 23 April 2015].

[17] "Resharper," Jetbrains, [Online]. Available: https://www.jetbrains.com/resharper/,.

[Accessed 23 April 2015].

[18] "Code Smell," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Code_smell.

[Accessed 13 May 2015].

[19] "Resharper extension," [Online]. Available:

https://visualstudiogallery.msdn.microsoft.com/EA4AC039-1B5C-4D11-804E-

9BEDE2E63ECF. [Accessed 23 April 2015].

[20] "C Sharp (Programming Language)," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29. [Accessed

23 April 2015].

[21] "Visual Basic," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Visual_Basic. [Accessed 23 April 2015].

[22] "Microsoft Word," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Microsoft_Word. [Accessed 23 April 2015].

[23] "List of EN standards," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/List_of_EN_standards. [Accessed 09 April 2015].

[24] "EN Eurocode Parts," European Comittee of Stanradization, [Online]. Available:

http://eurocodes.jrc.ec.europa.eu/showpage.php?id=13. [Accessed 09 April 2015].

[25] "Public Safety Standards of the European Union," Public.Resource.Org, [Online].

Available: https://law.resource.org/pub/eur/manifest.eur.html. [Accessed 09 April

2015].

[26] "Software extension," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Software_extension. [Accessed 04 May 2015].

[27] "Adobe Flash Player," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Adobe_Flash_Player. [Accessed 04 May 2015].

[28] "QuickTime," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/QuickTime.

[Accessed May 04 2015].

[29] "Java applet," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Java_applet.

[Accessed 04 May 2015].

[30] "Browser Toolbar," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Browser_toolbar. [Accessed 04 May 2015].

[31] "Counter Strike," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/Counter-

Strike. [Accessed 04 May 2015].

[32] "Defense of the Ancients," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Defense_of_the_Ancients. [Accessed 05 May 2015].

 46

[33] "Team Fortress Classic," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Team_Fortress_Classic. [Accessed 04 May 2015].

[34] "ETABS User Guide," Computers And Structures, Inc, [Online]. Available:

http://docs.csiamerica.com/manuals/etabs/User%27s%20Guide.pdf. [Accessed 08

April 2015].

[35] "User Interface," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/User_interface. [Accessed 08 May 2015].

[36] "Windows Forms," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Windows_Forms. [Accessed 08 May 2015].

[37] "Big-O Notation," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Big_O_notation. [Accessed 2015 April 28].

[38] "Object-Oriented Programming," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Object-oriented_programming. [Accessed 04 May

2015].

[39] "Code Metrics Values," Microsoft, [Online]. Available: https://msdn.microsoft.com/en-

us/library/bb385914.aspx. [Accessed 04 May 2015].

[40] "Cyclomatic Complexity Ranges," StackExchange, [Online]. Available:

http://programmers.stackexchange.com/questions/194061/cyclomatic-complexity-

ranges. [Accessed 04 May 2015].

[41] "Interface (Programming)," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Interface_%28computing%29. [Accessed 04 May

2015].

[42] "Law of Demeter," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Law_of_Demeter. [Accessed 04 May 2015].

[43] "High Cohesion Loos Coupling," The Bojan's Blog, 08 April 2015. [Online]. Available:

http://thebojan.ninja/2015/04/08/high-cohesion-loose-coupling/. [Accessed 05

May 2015].

[44] "Why and what is Arrange Act Assert," ArrangeActAssert, [Online]. Available:

http://www.arrangeactassert.com/why-and-what-is-arrange-act-assert/. [Accessed

05 May 2015].

[45] "Arrange Act Assert," Jeff Grigg, [Online]. Available:

http://c2.com/cgi/wiki?ArrangeActAssert. [Accessed 05 May 2015].

[46] T. Syvertsen and R. Sandvik, "Computers and Building Codes - Enemies Forever?,"

International Association for Bridge and Structural Engineering (IABSE) 13th

Congress, Helsinki, June 1988.

[47] "Computational Fluid Dynamics," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Computational_fluid_dynamics. [Accessed 07 May

2015].

 47

[48] "Eurocode Links," European Comitee for Standardization, 2009.

[49] "Intelligent code completion," Wikipedia, [Online]. Available:

http://en.wikipedia.org/wiki/Intelligent_code_completion. [Accessed 23 April

2015].

[50] "YouTube," Wikipedia, [Online]. Available: http://en.wikipedia.org/wiki/YouTube.

[Accessed 04 May 2015].

[51] ETABS 2013, Berkley, CA: Computers and Structures, Inc, August 2013.

 48

A. Appendix A: Newspaper clippings

 49

 50

 51

B. Appendix B: Terrain Categories

 52

Table B-1: Terrain Categories and terrain parameters from the Table 5.1 in the Norwegian National

Annex of the Eurocode [5]

Terrain
Category

𝑘𝑟 𝑧0 𝑧𝑚𝑖𝑛

0 0,16 0,003 2

1 0,17 0,01 2
2 0,19 0,05 4

3 0,22 0,3 8

4 0,24 1,0 16

Where:

 𝑘𝑟 Terrain factor

 𝑧0 Roughness length

 𝑧𝑚𝑖𝑛 Minimum height (𝑧𝑚𝑖𝑛 < 𝑧 < 200 𝑚)

 53

C. Appendix C: Class Overview for Aeolus

General classes Function
View Contains attributes and methods for user input and output.

CSiInstance Serves as a controller for the Recognizer, the API and the Eurocode

objects.

Recognizer Contains method for geometry recognition. Gets data from the ETABS

model through the API class and creates model objects based on said

data.

AreaObjectHandler Uses information for the Recognizer class to create Wall objects and to

partition said Wall objects.

Eurocode Contains functionality from NS-EN 1991-1-4:2005+NA:2009,

including necessary methods for wind load calculation for all Wall

elements

API Contains methods to communicate with ETABS, including, but not

limited to GetPointList(), RefreshView(), AddPointToModel(Point p),

and DrawAreaObjectByPoints(List<Point> points).

ConstantHolder Static class that contains data several classes need access to. Includes,

but not limited to, Terrain Category, Construction Height, Basic Wind

Velocity, and Wind Direction

DataReader Contains methods for reading a data file containing location based

information such as basic wind velocity

GeometryLogic Static class that contains basic geometry methods, including, but not

limited to GetNormalVector(Area a), GetVectorRotated(double[] v,

double yaw, double pitch, double roll), IsWindwards(Wall w), and

GetAngle(Frame f1, Frame f2).

LoadAssigner Contains methods to add wind load patterns to the model and wind

load to all area objects.

LogWriter Contains methods to log all logic that is done. Every calculation may

be monitored in retrospect. Every variable for every calculation is

systematically logged.

Model object

classes

Function

Object Contains one attribute: Name. Every model object class inherits from

this class

Point Contains five attributes: X, Y, Z, Story, and ConnectedFrames.

Contains methods to get connected frames and to add connected

frames

PeripheryPoint Subclass of Point. Contains four attributes: NeighborsDown,

NeighborsUp, NeighborClockwise, and NeighborCounterClockwise

 54

Frame Contains two attributes: Point1 and Point2. Contains a method to get

the other point when one point is known.

Area Contains two attributes: PointList and NormalVector. Contains a

method to get the area of the Area object.

Wall Inherits from Area. Containing methods include, but are not limited

to, GetWallZone(), PartitionWall(), and GetCoordinates().

WallPartition Inherits from Wall. Contains attributes Load, centroidX, centroidY

and centroidZ.

Story Contains attributes PeripheryPoints, StoryUp, StoryDown, and

StoryNumber.

Unit Test

classes

(Contains unit tests for the class given in the unit test class name)

GeometryLogicTests

EurocodeTests

RecognizerTests

AreaObjectHandlerTests

WallTester

	Background
	Scope of Work
	Deliverables
	Norwegian Abstract: Sammendrag
	Abstract
	Preface
	Table of Contents
	Terms and Definitions
	Acronyms and abbreviations
	Symbols
	Notations
	Software terms (in italic)

	1 Introduction
	1.1 Background
	1.2 The idea
	1.3 Results

	2 Technologies
	2.1 CSi ETABS
	2.2 Application Programming Interface (API)
	API restrictions

	2.3 Programming tools
	Microsoft Visual Studio
	Resharper
	Programming language

	3 Geometry Recognition
	What is geometry recognition?
	3.1 Wall Recognition
	Story periphery
	1. Locate a source node on the story
	2. Traverse the periphery of a story from the source node
	User input
	Unrestricted API

	3.2 Wall Partitioning

	4 Eurocode NS-EN 1991-1-4:2005+NA:2009
	Eurocode naming
	Eurocode complexity
	4.1 Assumptions
	Eurocode assumptions
	Thesis assumptions

	4.2 Calculation model

	5 Examples
	5.1 Example 1: single wall
	Technical information:

	5.2 Results of Example 1
	Different results because of partially linearized load

	5.3 Analytical calculation for example 1
	Shear forces, bending moments, and deflection:

	5.4 Example 2: Box

	6 Software Development
	6.1 Implementation
	Architecture

	6.2 Extension vs Plug-in
	Examples of extensions and plug-ins
	Difference between an extension and a plug-in to ETABS
	Extension of ETABS

	6.3 User Manual
	Workflow
	1. Open Model
	2. Select Location
	3. Select environmental factors
	4. Select Wall Options
	5. Recognize geometry
	6. Assign Wind Loads
	7. Save model

	6.4 Code Complexity
	Code metrics

	6.5 Unit Testing
	“Arrange, Act, Assert”
	Advantages of TDD
	Disadvantages of TDD

	7 Discussion
	Why an Extension?
	Challenges faced when developing the extension
	An alternative to a non-digital Eurocode?
	7.1 Conclusion
	7.2 Further Work

	8 Bibliography
	A. Appendix A: Newspaper clippings
	B. Appendix B: Terrain Categories
	C. Appendix C: Class Overview for Aeolus

