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Abstract

As a part of the new coastal highway E39 which is being planned and built along the west

coast of Norway by the Norwegian Public Roads Administration, state of the art methods

of structural dynamics needs to be developed and used to cross the deep and wide fjords.

Operational modal analysis aims to find the modal properties; natural frequencies, damping

ratios and mode shapes of a structure while it is under operating conditions using its vibration

data. Several methods of operational modal analysis are developed and they can broadly be

divided into time-domain and frequency-domain. Theory of operational modal analysis and

the methods chosen are presented in this thesis.

The main objective of this thesis was to develop MATLAB functions which implements several

of these methods. The methods are performed on two case studies. A shear frame with low

and high damping where the exact modal parameters are known, this is done to check that

the methods work properly and to see how damping influences the accuracy of the methods.

Then the methods are used on the Hardanger Bridge, a bridge in operating conditions. The

modal properties are extracted for each of the methods and then compared on account of

accuracy. The methods are also compared regarding ease of use and computational efficiency.

Most of the methods found the natural frequencies for the low damping shear frame, but for

high damping some of the methods proved to be inadequate. For damping ratio and mode

shapes only a few of the methods managed to give satisfactory results. For the Hardanger

Bridge most of the methods managed to find the natural frequencies, but only a few managed

to estimate the damping ratios and mode shapes. Overall, Cov-SSI proved to be the best

method.
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Sammendrag

Som en del av den nye motorveien E39 som er under planlegging og bygging langs vestkysten

av Norge av Statens Vegvesen trengs siste nytt av metoder innen konstruksjonsdynamikk

å bli utviklet og brukt for å krysse dype og brede fjorder. Modalanalyse prøver å finne

dynamisk respons; egenfrekvenser, demping og svingeformer, av en konstruksjon imens den

er i bruk ved å bruke konstruksjonens vibrasjonsdata. Flere metoder av modalanalyse har

blitt utviklet og de kan grovt deles inn i tidsplanet og frekvensplanet. Teori om modalanalyse

og metodene som er valgt vil bli presentert i denne oppgaven.

Hovedm̊alet med denne oppgaven var å utvikle MATLAB-funksjoner som implementerer flere

av disse metodene. Metodene er utført p̊a to sakstudier. En rammekonstruksjon med lav og

høy demping hvor den eksakste dynamiske responsen er kjent, dette for å sjekke om metodene

fungerer og for å se hvordan demping p̊avirker nøyaktigheten til metodene. Deretter blir

metodene utført p̊a Hardangerbrua, en bru i operativ tilstand. Den dynamiske responsen

blir funnet for hver av metodene og sammenlignet med tanke p̊a nøyaktighet. Metodene blir

ogs̊a sammenlignet n̊ar det gjelder brukervennelighet og dataeffektivitet.

De fleste metodene fant egenfrekvensene for rammekonstruksjonen med lav demping, men for

høy demping var flere av metodene utilstrekkelige. For demping og svingeformer var det bare

noen av metodene som ga tilfredsstillende resultat. For Hardangerbrua klarte de fleste meto-

dene å finne egenfrekvensene, men bare noen klarte å estimere demping og svingeformene.

Cov-SSI viste seg å være den beste metoden alt i alt.
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Chapter 1

Introduction

1.1 Motivation for Research

Dynamic behavior is an important part of many civil engineering structures. Only trough

understanding vibrations, an optimization of design can be achieved. To gain knowledge of

the dynamic response of a civil structure experimental tests have been used, a practice dating

back to the middle of the twentieth century [18]. Experimental modal analysis (EMA) identi-

fies the dynamic response from measurements of the applied force and the vibration response.

It is a classic input-output method where input need to be applied, controlled and measured.

The output, vibration response, also need to be measured. EMA is a method widely used in

different fields of engineering [19]. For civil structures EMA techniques become more chal-

lenging, due to their large size and low frequency range [18]. For large buildings, bridges etc.

it can be expensive or disruptive to carry out EMA. Therefore another method, operational

modal analysis (OMA) have been developed which takes advantage of the naturally occurring

loads (e.g. wind or traffic).

OMA is defined as the modal testing procedure that allows the experimental estimation of

the modal parameters of the structure from measurements of the vibration response only [18].

Most of the OMA methods have been derived from EMA procedures, because they share a

common theoretical background. The main difference is regarding the input, for EMA it is

known and measured, while for OMA it is random and not measured. For civil structures the
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1.2. Scope of Thesis

advantages of OMA over EMA is many, mainly the reduction in cost and the possibility to

use the structure as normal while data is collected. The disadvantages are more complicated

methods and lower accuracy [24].

1.2 Scope of Thesis

This thesis aims to implement different methods of OMA into MATLAB. They are used on

two case studies. The first is a simple shear frame where the exact solution is known to

check if the methods work sufficiently. The methods will be tested on a shear frame with low

damping and on a shear frame with high damping, this is done to check how the methods

react to the degree of damping. The second is on the Hardanger Bridge, using time series from

measurements. The methods aim to find the modal properties; natural frequency, damping

ratios and mode shapes for the problems. The accuracy and efficiency of the methods are

then compared.

This thesis will derive and present a comprehensive theoretical basis for the methods im-

plemented. The methods to be presented are based on the work of others, but the imple-

mentation in MATLAB is new work. The reader is assumed to already be familiar with

conventional mechanics and structural dynamics. However a small introduction to a MDOF

system will be given. The reader is also assumed to be familiar with basic mathematics and

statistics.

1.3 Structure of the Report

Chapter 2: Comprehensive theoretical basis for OMA and the methods implemented.

Chapter 3: Case study on a shear frame.

Chapter 4: Case study on the Hardanger Bridge.

Chapter 5: Conclusions and remarks about possible future work.
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Chapter 2

Theory

2.1 Structural Dynamics and Modal Analysis

The dynamic behavior of a structure can be represented in either the time domain or the

frequency domain. In the time domain it is a set of differential equations, while in the

frequency domain it is a set of algebraic equations.

2.1.1 Time Domain

The equation of motion is traditionally given in the time domain. For a general multi-degree

of freedom (MDOF) system the equation of motion is:

[M ][ÿ(t)] + [C][ẏ(t)] + [K][y(t)] = [f(t)] (2.1.1)

Where [M], [C] and [K] symbolizes the constant mass, damping and stiffness matrix for

the system respectively. [ÿ(t)], [ẏ(t)] and [y(t)] symbolizes the acceleration, velocity and

displacement respectively. [f(t)] symbolizes the force vector. The solution for the dynamic

parameters of a MDOF system is represented by different modes, which relates to the relative

displacement of the system’s degrees of freedom. Each mode have a natural frequency (ωn)

and a damping ratio (ζ). One way to extract these dynamic parameters is to solve the

differential Equation 2.1.1. This differential equation is assumed to have a solution on the

form [4]:
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2.1. Structural Dynamics and Modal Analysis

[y(t)] = [q]eλt (2.1.2)

Derivative of the displacement gives:

[ẏ(t)] = λ[q]eλt (2.1.3)

[ÿ(t)] = λ2[q]eλt (2.1.4)

Putting Equation 2.1.2, Equation 2.1.3 and Equation 2.1.4 into Equation 2.1.1 and assuming

the system is unloaded (f(t)=0) gives:

(λ2[M ] + λ[C] + [K])q = [0] (2.1.5)

The solution of Equation 2.1.5 depends on the damping of the system. For most civil struc-

tures the damping of the system is underdamped which means that the solution for λ is a

complex conjugate pair. One of the solutions are:

λk = −ζωn ±
√

1− ζ2ωni (2.1.6)

Which gives:

ωn = |λk| (2.1.7)

ωd = Im(λk) (2.1.8)

ζ = −Re(λk)
|λk|

(2.1.9)

4



2.2. Operational Modal Analysis

2.1.2 Frequency Domain

By applying the Fourier transform, which will be explained in Section 2.4.1, to Equation

2.1.1 it becomes a set of linear algebraic equations [18]:

(−ω2[M ] + iω[C] + [K])[Y (ω)] = [F (ω)] (2.1.10)

Where [Y(ω)] and [F(ω)] are the Fourier transforms of [y(t)] and [f(t)] respectively and i is

the imaginary unit. By introducing the frequency response function (FRF) H(ω):

[H(ω)]−1 = −ω2[M ] + iω[C] + [K] (2.1.11)

Substituting Equation 2.1.11 into Equation 2.1.10 gives:

[H(ω)]−1[Y (ω)] = [F (ω)] (2.1.12)

Which means that the FRF represents the ratio between the Fourier transforms of the input

and the output:

[H(ω)] = [Y (ω)]
[F (ω)] (2.1.13)

2.2 Operational Modal Analysis

OMA takes in measured data in form of a signal. A signal is a physical quantity varying with

respect to one or more independent variables and associated to information of interest[18].

The signal can be in different domains (time or frequency) and can be converted from one

to another. A system converts an input signal into an output signal. Finding response to a

known system and given input is called a forward problem. While an inverse problem is where

output is known, but either input or system characteristics are unknown. Noise is undesired

signal superimposed on the signal of interest. Since input is not controlled for OMA some

assumptions need to be made. If a structure is excited by white noise, a Gaussian distributed,

statistically independent value with a constant input spectrum, then all the modes are equally
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2.3. State Space Models

excited and the output spectrum contains full information about the structure [18]. However

the naturally occurring loads (wind, traffic etc.) are uncontrollable and immeasurable and

noise is likely to occur during a measurement. Therefore in OMA the structure is assumed

to be excited by unknown forces, which are the output of the excitation system loaded by

white noise as shown in Figure 2.1.

Figure 2.1: Combined system

Where N(ω) is the Fourier transformation of the white noise input into the excitation system

given by its FRF Hf (ω). F (ω) is the Fourier transform of the excitation system output and

Hs(ω) is the FRF of the structure. Y (ω) is the output from the structure, which is the value

measured in OMA. Given by the following equations:

[F (ω)] = [Hf (ω)][N(ω)] (2.2.1)

[Y (ω)] = [Hs(ω)][F (ω)] (2.2.2)

2.3 State Space Models

State space models are used to convert a second order differential equation into two first order

differential equations defined by the so-called state equation and the observation equation.

We can obtain the state equation from Equation 2.1.1. If we factorize [f(t)] into [B̄] and

[u(t)]. Where the matrix [B̄] defines the location of inputs and the vector [u(t)] describes
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2.3. State Space Models

the time variation [18]. The second order differential equation given by Equation 2.1.1 can

be rewritten as:

[M ][ÿ(t)] + [C][ẏ(t)] + [K][y(t)] = [B̄][u(t)] (2.3.1)

Dividing by [M]:

[ÿ(t)] + [M ]−1[C][ẏ(t)] + [M ]−1[K][y(t)] = [M ]−1[B̄][u(t)] (2.3.2)

Introducing the state vector, defined by:

[s(t)] =

ẏ(t)

y(t)

 (2.3.3)

And the derivative of the state vector:

[ṡ(t)] =

ÿ(t)

ẏ(t)

 (2.3.4)

Equation 2.3.3 into Equation 2.3.2 and rearranging gives:

[ÿ(t)] =
[
−[M ]−1[C] −[M ]−1[K]

]
[s(t)] +

[
[M ]−1[B̄]]

]
[u(t)] (2.3.5)

And it can easily be seen from Equation 2.3.3 that, where [I] is the identity matrix:

[ẏ(t)] =
[
[I] [0]

]
[s(t)] (2.3.6)

Equation 2.3.5 and Equation 2.3.6 into Equation 2.3.4 gives:

[ṡ(t)] =

−[M ]−1[C] −[M ]−1[K]

[I] [0]

 [s(t)] +

[M ]−1[B̄]

[0]

 [u(t)] (2.3.7)

From Equation 2.3.7 the State matrix [Ac] and the input influence matrix [Bc] can be defined:

[Ac] =

−[M ]−1[C] −[M ]−1[K]

[I] [0]

 (2.3.8)
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2.3. State Space Models

[Bc] =

[M ]−1[B̄]

[0]

 (2.3.9)

Together they yield the state equation:

[ṡ(t)] = [Ac][s(t)] + [Bc][u(t)] (2.3.10)

If we assume that the structural response measurements are taken at l locations and the sensor

are accelerometers (first term), velocimeters (second term) and displacement transducers

(third term) the observation equation can be written as [18]:

[yl(t)] = [Ca][ÿ(t))] + [Cv][ẏ(t)] + [Cd][y(t)] (2.3.11)

Substituting Equation 2.3.3 and Equation 2.3.5 into Equation 2.3.11:

[yl(t)] =
[
[Cv]− [Ca][M ]−1[C] [Cd]− [Ca][M ]−1[K]

]
[s(t)] +

[
[Ca][M ]−1[B̄]]

]
[u(t)] (2.3.12)

From Equation 2.3.12 the output influence matrix [Cc] and the direct transmission matrix

[Dc] can be defined:

[Cc] =
[
[Cv]− [Ca][M ]−1[C] [Cd]− [Ca][M ]−1[K]

]
(2.3.13)

[Dc] =
[
[Ca][M ]−1[B̄]]

]
(2.3.14)

Together they yield the observation equation:

[y(t)] = [Cc][s(t)] + [Dc][u(t)] (2.3.15)

Measurements from experiments are taken at discrete time instants, and therefore Equation

2.3.10 and Equation 2.3.15 has to be converted to discrete time. For a given sampling period

∆t, the discrete time instants are tk = k∆t. Zero order hold (ZOH) states that the input
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2.3. State Space Models

is piecewise constant over the sampling period [18]. If we assume this, Equation 2.3.10 and

Equation 2.3.15 can be converted to the discrete-time state space model:

[sk+1] = [A][sk] + [B][uk] (2.3.16)

[yk] = [C][sk] + [D][uk] (2.3.17)

Where [A] is the discrete state matrix, [B] is the discrete input matrix, [C] is the discrete

output matrix and [D] is the direct transmission matrix [18]. [sk] = [s(k∆t)] is the discrete-

time state vector which yields the sampled displacements and velocities. [uk] is the sampled

input, while [yk] is the sampled output. The relations between the matrices [A], [B], [C] and

[D] in continuous time and in discrete time are [18]:

[A] = e|Ac|∆t (2.3.18)

[B] = ([A]− [I])[Ac]−1[Bc] (2.3.19)

[C] = [Cc] (2.3.20)

[D] = [Dc] (2.3.21)

The discrete-time state space model shown in Equation 2.3.16 and Equation 2.3.17 is a

deterministic model, since the input is deterministic. To describe actual measurement data

you need a stochastic component, and therefore process noise [wk] and measurement noise

[vk] is introduced. [wk] and [vk] are two stochastic processes, and the discrete-time combined

deterministic-stochastic state-space model is obtained:

[sk+1] = [A][sk] + [B][uk] + [wk] (2.3.22)
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2.3. State Space Models

[yk] = [C][sk] + [D][uk] + [vk] (2.3.23)

The process noise [wk] is due to disturbances and model inaccuracies, while the measurement

noise [vk] is due to sensor inaccuracies [18].

For OMA, the input of the structure is immeasurable. [uk] is not available and therefore the

system output [yk] is generated only by [wk] and [vk]. This gives the discrete-time stochastic

state-space model:

[sk+1] = [A][sk] + [wk] (2.3.24)

[yk] = [C][sk] + [vk] (2.3.25)

The goal of the stochastic subspace identification (SSI) methods of OMA is to measure a

large amount of output [yk] to be able to find [A] and [C]. [wk] and [vk] is immeasurable but

are assumed to be zero mean white noise processes with the following covariance matrices if

p = q:

E


[wp]

[vp]

 [
[wq]T [vq]T

] =

 [Qww] [Swv]

[Swv]T [Rvv]

 (2.3.26)

And if p 6= q:

E


[wp]

[vp]

 [
[wq]T [vq]T

] = [0] (2.3.27)

Where p and q are two arbitrary time instants.

With this assumption the system response in the state-space model is also represented by

a zero mean Gaussian process. Then the covariance of the output, the output covariance

matrix [R], is given by:

[Ri] = E([yk+i][yk]T ) (2.3.28)
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2.3. State Space Models

The discrete-time state vector [sk] is also a zero mean Gaussian process. And the covariance

of the state vector is:

[Σ] = E([sk][sk]T ) (2.3.29)

And [sk] is uncorrelated with [wk] and [vk]:

E([sk][wk]T ) = [0] (2.3.30)

E([sk][vk]T ) = [0] (2.3.31)

Taking these realizations into account mathematical manipulations give [18]:

[Σ] = [A][Σ][A]T + [Qww] (2.3.32)

[R0] = [C][Σ][C]T + [Rvv] (2.3.33)

[G] = [A][Σ][C]T + [Swv] (2.3.34)

[Ri] = [C][A]i−1[G] (2.3.35)

Where the next state-output covariance matrix [G] is given by:

[G] = E([sk+i][yk]T ) (2.3.36)
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2.4. Frequency Response

2.4 Frequency Response

2.4.1 Fourier Transform

A signal y(t) can be described as the sum of harmonic signals. To divide the signal into the

harmonic components Fourier transformation is used. It changes the time-domain signal y(t)

to the frequency-domain function Y (ω). For a non-periodic signal y(t) it is given by [18]:

Y (ω) =
∫ ∞
−∞

y(t)e−i2πftdt (2.4.1)

y(t) =
∫ ∞
−∞

Y (ω)e−i2πftdω (2.4.2)

In practical applications the measurements are done over a limited sampling period, T ,

and therefore you need to take the discrete Fourier transformation (DFT) instead of the

continuous Fourier transformation. Which yields [14]:

Yk = 1
N

N−1∑
r=0

yre
−i2π kr

N (2.4.3)

yr =
N−1∑
k=0

Yke
i2π kr

N (2.4.4)

Where N is the total number of measurements N = T∆t. And the N measurement taken

at equally spaced time instants ∆t are numbered r = 0, 1, 2, ....., N − 1. And the frequency

values are numbered k = 0, 1, 2, ....., N − 1. The evaluation of Equation 2.4.3 requires N2

operations [18]. As a consequence the fast Fourier transform (FFT) was developed. Provided

that the number of data points equals a power of 2, the number of operations is reduced to

Nlog2N in FFT [5].
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2.4.2 Spectrum

Power Spectral Density

The power spectral density (PSD) [Sy(ω)] gives a representation of how the power of a signal

is distributed over its frequencies. For a stochastic signal y(t) the correlation function Ry is

defined as [14]:

Ry(τ) = E[y(t)y(t+ τ)] (2.4.5)

The PSD and the correlation function are a Fourier transform pair [14]:

Sy(ω) =
∫ ∞
−∞

Ry(τ)e−i2πftdt (2.4.6)

Ry(τ) =
∫ ∞
−∞

Sy(ω)e−i2πftdω (2.4.7)

The PSDs are real valued functions.

Cross Power Spectral Density

The cross power spectral density (CPSD) [Sxy(ω)] gives a representation of how the power of

the covariance between two signals is distributed over their frequencies. For two stochastic

signals x(t) and y(t) the cross-correlation function Rxy is defined as [14]:

Rxy(τ) = E[x(t)y(t+ τ)] (2.4.8)

The CPSD and the cross-correlation function are a Fourier transform pair [14]:

Sxy(ω) =
∫ ∞
−∞

Rxy(τ)e−i2πftdt (2.4.9)

Rxy(τ) =
∫ ∞
−∞

Sxy(ω)e−i2πftdω (2.4.10)

The CPSDs are complex valued functions.
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Coherence

The coherence function is defined as [18]:

γ2
xy(ω) = |Sxy(ω)|2

Sx(ω)Sy(ω) (2.4.11)

With the constraints:

0 ≤ γ2
xy(ω) ≤ 1 (2.4.12)

2.4.3 Frequency Response Function

Taking the realization found earlier (Equation 2.1.13), the definition of the PSD and the

properties of transpose, the following relation between the PSD of the input, the PSD of the

output and the FRF matrix can be obtained [18]:

[Sy(ω)] = [H(ω)]H [Sf (ω)][H(ω)]T (2.4.13)

Where H denotes the complex conjugate transpose or the Hermitian adjoint. So if the PSD

of the input Sf (ω) is constant as assumed in Section 2.2, since the input to the combined

system is a stationary, zero mean Gaussian white noise, the output PSD carries the same

information as the FRF. This is a realization that is used later for the frequency domain

methods.

FRF is a special case of matrix fraction description (MFD) represented by [18]:

[H(ω)] = [B(ω)]
A(ω) (2.4.14)

Where the numerator [B(ω)] is a matrix polynomial:

[B(ω)] =
n∑
j=0

[Bj(ω)]zj(ω) (2.4.15)

And the denominator A(ω) is a polynomial characterized by scalar coefficients:
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2.5. Welch’s Method

A(ω) =
n∑
j=0

aj(ω)zj(ω) (2.4.16)

Another version of MFD is the right matrix fraction description (RMFD) [3]:

[H(ω)] = [BR(ω)][AR(ω)]−1 (2.4.17)

Both FRF and RMFD are used later for the frequency domain methods.

2.5 Welch’s Method

In mpsd.m Welch’s method is used to estimate the PSD and CPSD for each measurement

channel. Welch’s method is carried out by dividing the time series into K short sections [23].

Then the periodogram, estimate of the spectral density, of that section is calculated:

pk = 1
M
Y (ω)Y (ω)H (2.5.1)

Where Y (ω) is the FFT of the time series of that section and M is the number of samples in

FFT (NFFT).

Then the PSD is given as an average of the periodograms across the period [23]:

Sy(ω) = 1
K

K∑
k=1

pk (2.5.2)

In the same way the CPSD can be calculated:

pk = 1
M
X(ω)Y (ω)H (2.5.3)

Sxy(ω) = 1
K

K∑
k=1

pk (2.5.4)
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2.5. Welch’s Method

If the signal is periodic the sectioning of the time series should be done equally to the wave

length of the signal. If not, the time series will get a discontinuity at each change of section.

For a non-periodic signal you will get this discontinuity no matter what length you choose for

the section. And therefore a windowing function is introduced. It is a mathematical function

that is zero-valued outside the chosen interval. A sample record x(t) can be represented as

an unlimited record v(t) multiplied with a time window w(t). The simplest window function

is a rectangular window given as:

x(t) = w(t)v(t) w(t) =

 1 0 ≤ t ≤ T

0 elsewhere
(2.5.5)

This will however not remove the problem with the discontinuity as the value at the edge of

the section is multiplied with one. Figure 2.2 shows the windowing function and its effect on

the FFT with 25 samples.

Figure 2.2: Rectangular window

A triangular window function would remove the problem with discontinuity as it is zero at

the edges as show in Figure 2.3.
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2.5. Welch’s Method

Figure 2.3: Triangular window

mpsd.m takes the window function as an input and the user is free to use whatever windowing

function he or she prefer as they have different advantages and disadvantages . In this thesis

the Hanning window is used:

x(t) = w(t)v(t) w(t) =

 1− cos2(πt
T

) 0 ≤ t ≤ T

0 elsewhere
(2.5.6)

The effect is shown in Figure 2.4.

Figure 2.4: Hanning window

For the triangular window and the Hanning window the edges of the window suffers a ”loss”,

therefore overlapping is used to compensate. For instance if 50% overlap is chosen, the second

17



2.6. Time Domain Methods

half of the first section is the same as the first half of the second section. Since their scaling

factor, from the windowing function, will be ”opposite” at a time t in the time series this

will reduce the loss at the edges. This can be seen in Figure 2.4.

2.6 Time Domain Methods

2.6.1 Covariance-Driven Stochastic Subspace Identification

Covariance-driven stochastic subspace identification (Cov-SSI) identifies a stochastic state-

space model from output-only data. It is a time-domain, parametric, covariance driven

procedure for OMA [18]. The goal of this method is to use the output measurements to

obtain [A],[C] and [G] as shown in Section 2.3, from which the dynamic response is found.

Input

A system of order n is possible to observe only if the so called observability matrix and

controllability matrix is of rank n. They will be introduced later in this section. However, as

the system order is usually unknown for complicated problems, a conservative approach is to

overestimate the order of the system. Due to the fact that the system order is overestimated

additional nonphysical poles, mathematical poles, will occur next to the physical poles [18].

To be able to distinguish them and find the correct poles a stabilization diagram has to be

used. It is further discussed in Section 2.8. This overestimated max order, nmax, is used as

an input for the problem and therefore some experience is needed to choose an appropriate

value. If the max order is chosen to be smaller than the correct system order you will not

get any correct results. If you however assume this value too high you will get too many

nonphysical modes and it will be harder to derive which modes that are the actual correct

physical modes, in addition the computational time greatly increases.

Another input required for Cov-SSI is the data matrix. It can either be measured deformation,

velocity or acceleration under the influence of environmental loads. The data matrix Y have

dimensions l*N where l is the number of measurement channels and N is the number of
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measurements. The time between each measurement is the time step. The last input is the

magnitude of block rows which will be explained shortly.

Initial Calculations

The first step of this method is to calculate the output correlations (Equation 2.3.28). [Ri]

denotes the unbiased estimate of the correlation matrix at time lag i based on a finite number

of data [18]:

[Ri] = 1
N − i

[Y(1:N−i)][Y(i:N)]T (2.6.1)

Where [Y(1:N−i)] is the data matrix Y with the last block rows i removed. And [Y(i:N)]T is the

transpose data matrix with the first block rows i removed. Therefore each [Ri] matrix get

dimensions l*l. The estimated correlations at different time lags (Equation 2.6.1) are then

gathered into a matrix called the block Toeplitz matrix:

[T1|i] =



[Ri] [Ri−1] · · · [R1]

[Ri+1] [Ri] · · · [R2]
... ... . . . ...

[R2i−1] [R2i−2] · · · [Ri]


(2.6.2)

The Toeplitz matrix contains i*i [Ri] matrices and is therefore of dimensions li*li. For the

identification of the modal parameters of a system of order n, the Toeplitz matrix need to be

n*n. Therefore the following need to be true for the number of block rows i:

li ≥ n (2.6.3)

Where n is the system order. However as mentioned earlier the system order is usually

unknown and the following should be fulfilled:

imin = nmax
l

(2.6.4)

For complicated structures the number of block rows should be higher than this minimum

criteria for better results. The magnitude x of this depends on the problem and should be
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chosen as an input by the user:

imin = x
nmax
l

(2.6.5)

Then the singular value decomposition (SVD) of the block Toeplitz is calculated. It gives the

unitary matrices [U] and [V], with dimensions li*n and n*li respectively. And the positive

singular values (which equals its rank) in descending order in the diagonal matrix [Σ] [22].

[T1|i] = [U1][Σ1][V1]T (2.6.6)

During this step the one-lag shifted Toeplitz matrix is also calculated:

[T2|i+1] =



[Ri+1] [Ri] · · · [R2]

[Ri+2] [Ri+1] · · · [R3]
... ... . . . ...

[R2i] [R2i−1] · · · [Ri+1]


(2.6.7)

State Matrix

To extract the dynamic response you need to obtain the state matrix [A] (Equation 2.3.18).

This is done for each order from 1 to nmax. The first thing needed is to find the observability

matrix [Oi] and the reversed controllability matrix [Γi] which is found by the factorization of

[T1|i]. This factorization comes from the connection given by Equation 2.3.35:

[T1|i] = [Oi][Γi] (2.6.8)

Where the observability matrix [Oi] with dimensions li*n is given by:

[Oi] =



[C]

[C][A]
...

[C][A]i−1


(2.6.9)

And the reversed controllability matrix [Γi] with dimensions n*li is given by:

20



2.6. Time Domain Methods

[Γi] =
[
[A]i−1[G] · · · [A][G] [G]

]
(2.6.10)

The SVD of [T1|i] is already computed in Equation 2.6.6 and we can use the result to find

[Oi] and [Γi]. By splitting the SVD in two parts and using the identity matrix [I]:

[Oi] = [U1][Σ1]1/2[I]T (2.6.11)

[Γi] = [I]−1[Σ1]1/2[V1]T (2.6.12)

Now that we have obtained [Oi] and [Γi] we can find the output influence matrix [C] and the

next state-output covariance matrix [G]. [C] is obtained from the first l rows of [Oi] as seen

in Equation 2.6.9. And in the same way [G] is obtained from the last l columns of [Γi] as

seen in Equation 2.6.10.

The one-lag shifted Toeplitz matrix (Equation 2.6.7) can be factorized in the same way as

the normal Toeplitz matrix, which yields:

[T2|i+1] = [Oi][A][Γi] (2.6.13)

Introducing Equation 2.6.11 and Equation 2.6.12 into Equation 2.6.13 and then solving for

[A] gives us the n*n state matrix:

[A] = [Σ1]−1/2[U1]T [T2|i+1][V1][Σ1]−1/2 (2.6.14)

Modal Parameters

Now that the state matrix [A] and the output influence matrix [C] is known, modal parameters

can be extracted [18]. Solving the eigenvalue problem for [A] yields the diagonal matrix [M]

which contains the eigenvalues µ and the eigenvectors [Ψ] [4]:

[A] = [Ψ][M ][Ψ]−1 (2.6.15)
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The mode shapes of the system [Φ] is obtained from [Ψ] and [C]:

[Φ] = [C][Ψ] (2.6.16)

The rest of the modal parameters are obtained from the eigenvalues µ. They are found in the

diagonal matrix [M]. For each mode, µm are found, they are obtained in discrete time and

need to be converted to continuous time. This is done according to Equation 2.3.18, which

yields:

λm = ln(µm)
∆t (2.6.17)

And we obtain the complex λm as we found in Equation 2.1.6. λm contains the continuous

time eigenvalues of each mode for the current order. It can be used to find the natural

frequencies (ωn), damped modal frequencies (ωd) and the damping ratio (ζ) for the r-th

mode as shown in Equation 2.1.7, Equation 2.1.8 and Equation 2.1.9:

ωn,r = |λm,r| (2.6.18)

ωd,r = Im(λm,r) (2.6.19)

ζr = −Re(λm,r)
|λm,r|

(2.6.20)

When the modal parameters are found for the current order, the process of finding the state

matrix and the modal parameters are repeated for each order up until nmax. Then all the

parameters are plotted in a stabilization diagram, which will be discussed in Section 2.8.

2.6.2 Data-Driven Stochastic Subspace Identification

Data-driven stochastic subspace identification (DD-SSI) is similar to Cov-SSI, but identifies

the state sequence before the estimation of the state-space matrices. It is a numerically very

efficient method, as it uses well known and robust linear algebra to identify the state-space
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matrices. The input of DD-SSI is identical to the input of Cov-SSI.

Initial Calculations

Firstly the number of block rows i is set equal to x times the maximum system order (nmax)

divided by the number of measurement channels l:

i = x
nmax
l

(2.6.21)

Where x is the magnitude of block rows as for Cov-SSI.

Then the Hankel matrix is constructed. The number of columns j of the Hankel matrix is

assumed to be ∞ for the statistical proof of the method, and therefore j needs to be large.

In practical applications it is set as N − 2i+ 1 so that all given data samples are used under

the construction of the Hankel matrix [18].

j = N − 2i+ 1 (2.6.22)

The Hankel matrix is constructed directly from the measured data Y (1 : N):

[H0|2i−1] = 1√
j



[y0] [y1] · · · [yj−1]

[y1] [y2] · · · [yj]
... ... . . . ...

[yi−1] [yi] · · · [yi+j−2]

[yi] [yi+1] · · · [yi+j−1]

[yi+1] [yi+2] · · · [yi+j]
... ... . . . ...

[y2i−1] [y2i] · · · [y2i+j−2]



(2.6.23)

Then the LQ factorization of the Hankel matrix is done [11]:

[H0|2i−1] = [L][Q] (2.6.24)
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Which means that the Hankel matrix is expressed as a product of a lower triangular matrix

[L] and an orthonormal matrix [Q] [8]:

[L] =

li l l(i− 1)

↔ ↔ ↔


li l [L11] [0] [0]

l l [L21] [L22] [0]

l(i− 1) l [L31] [L32] [L33]

(2.6.25)

[Q] =

j

↔
[Q1]T

[Q2]T

[Q3]T


(2.6.26)

The projections [Pi] and [Pi−1] can be obtained from the LQ decomposition:

[Pi] =

[L21]

[L31]

 [Q1]T (2.6.27)

[Pi−1] =
[
[L31] [L32]

] [Q1]T

[Q2]T

 (2.6.28)

So can the output sequence [Yi|i]:

[Yi|i] =
[
[L21] [L22]

] [Q1]T

[Q2]T

 (2.6.29)

And finally the SVD of [Pi] is calculated:

[Pi] = [U ][Σ][V ]T (2.6.30)
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State Matrix

As for Cov-SSI these steps are repeated for each order from 1 to nmax. First the observability

matrix [Oi] and the Kalman filter state sequence [Ŝi] is found from the factorization of [Pi] :

[Pi] = [Oi][Ŝi] (2.6.31)

The SVD of [Pi] is already calculated (Equation 2.6.30) and can be used to compute the

observability matrix in the same way as for Cov-SSI:

[Oi] = [U ][Σ]1/2[I]T (2.6.32)

From Equation 2.6.31 the Kalman filter state sequence can be computed as:

[Ŝi] = [Oi]+[Pi] (2.6.33)

Where [Oi]+ means the pseudo-inverse of [Oi].

With a factorization similar to Equation 2.6.31 of [Pi−1]:

[Pi−1] = [O↑i ][Ŝi] (2.6.34)

One can find the Kalman state sequence [Ŝi+1] in the same way as Equation 2.6.33:

[Ŝi+1] = [O↑i ]+[Pi] (2.6.35)

Where [O↑i ] is obtained from [Oi] by deleting the last l rows.

Now that [Ŝi+1], [Ŝi] and [Yi|i] is found one can find the asymptotically unbiased least squares

estimate of [A] and [C] [21]:

[A]

[C]

 =

[Ŝi+1]

[Yi|i]

 [Ŝi]+ (2.6.36)
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When the state matrix [A] and the output influence matrix [C] is known the modal parameters

are extracted in the same way as for Cov-SSI. The process is then repeated for each system

order and then plotted in a stabilization diagram (Section 2.8).

2.6.3 Second Order Blind Identification

Second order blind identification (SOBI) is identified as a time-domain, nonparametric method

which uses blind source separation (BSS) to extract a set of signals, called sources, from ob-

servation of their mixtures [18]. The only input required is the data matrix Y and the time

step ∆t.

Initial Calculations

The first part of the SOBI algorithm is centering (make zero mean) and whitening the data

[25].

[z] = [W ][Yc] (2.6.37)

Where [Yc] is the centered data matrix, [W ] is the whitening matrix and [z] is the whitened

data.

By taking the SVD of the centered data [Yc]:

[Yc] = [U ][Σ][V ]T (2.6.38)

The whitening matrix [W ] can be found:

[W ] = [Σ]+[V ]T (2.6.39)

A number of time-shifted covariance matrices have to be computed:

[Rz(τk)] (2.6.40)

Where k = 1, 2, ....., p.
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Joint Approximation Diagonalization

A joint approximation diagonalization (JAD) technique is used on the time-shifted covariance

matrices (Equation 2.6.40), where the goal is to find the unitary matrix [Ã′]. This is a

minimization problem where you want to find the matrix [Ã′] which minimizes the sum of

the off diagonal terms of ([Ã′]T [Rz(τk)][Ã′]) as seen in Equation 2.6.41 [18]:

min
n∑
k=1

([Ã′]T [Rz(τk)][Ã′]) (2.6.41)

The solution of this problem is done by a numerical algorithm based on the Jacobi rotation

technique [2]. Two parameters have to be set, the number of time lags p and the threshold t.

The performance of the diagonalization improves with an increasing p, but seems to rapidly

converge [18], therefore these values have been chosen initially:

p = min(100, N/3) (2.6.42)

As for the threshold, the value where the JAD should stop, it is usually not necessary to

have very small values, as the diagonalization already only is an approximation [18]. This

value has been chosen initially:

t = 1√
N

(2.6.43)

Once the unitary matrix [Ã′] has been found [6] the mixing matrix [Am] can be computed:

[Am] = [W ]+[Ã′] (2.6.44)

And the sources [so(t)]:

[so(t)] = [Ã′]T ∗ [z(t)] (2.6.45)

Modal Parameters

The mode shapes can be found right from the columns of the mixing matrix. While the nat-

ural frequency, damped modal frequency and damping ratio is obtained with a single-degree
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of freedom (SDOF) curve fitting estimator. It is based on FFT and then picking one peak

(therefore SDOF). The process is repeated for the number of measurement channels, and

therefore the number of modal parameters found by SOBI is the same as the number of mea-

surement channels. The SOBI algorithm is not especially sophisticated, and damping ratio

estimates are not particularly good [18], SOBI will therefore not be used to estimate damp-

ing ratios in this thesis, but extraction for damping ratios is implemented in the MATLAB

function.

2.7 Frequency Domain Methods

2.7.1 Peak Picking

Peak picking is the most basic OMA method. It has been widely used in the past and is still

used due to its efficiency and simplicity. The input is the PSDs and CPSDs between each

measurement channel, as well as the corresponding frequency vector. It can be classified as

a SDOF method, because it is based on the assumption that, around a resonance, only one

mode is dominant [18]. Therefore, it is not a good method to find closely spaced modes.

The theoretical proof of the method is based on the fact that the structural response is

approximately equal to the modal response if only one mode is dominant [15]:

[y(t)] ≈ [Φ]p(t) (2.7.1)

Where [Φ] is the modal vector and p(t) is the modal coordinate. The correlation matrix [Ry]

is approximately:

[Ry(τ)] = E
[
[y(t+ τ)][y(t)]T

]
= Rp(τ)[Φ][Φ]T (2.7.2)

Where the modal auto-correlation function Rp(τ) is given by:

Rp(τ) = E
[
[p(t+ τ)]p(t)

]
(2.7.3)

By taking the Fourier transform of Equation 2.7.2 you’ll get the PSD:
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[Sy(ω)] = Sp(ω)[Φ][Φ]H (2.7.4)

Where Sp(ω) is the PSD of the modal coordinate, and therefore [Sy(ω)] must have rank one.

So at resonance any column of [Sy(ω)] will give an estimate of the mode shape up to a scaling

factor [18].

Plotting

From plotting the PSD of each measurement channel you can pick the peaks to identify

the natural frequencies. Then, the corresponding mode shapes can be found. Ideally one

measurement channel could find all the structural modes of the system, but often in practical

applications several measurement channels are required to find all the modes. Especially a

measurement channel in x-direction can sometimes only find the horizontal modes, and then

a measurement channel in y-direction is required to find the vertical modes. Usually both

the x-direction and y-direction channels can find the torsion modes. In addition two sensors

placed on opposite parts of a bridge will also show different impact on the different modes.

You would also want to plot the CPSD between the measurement channels as shown in Figure

2.5 to help picking the correct peaks. As an alternative you could plot the coherence between

the channels as shown in Figure 2.6. At an actual mode the coherence is close to 1, while at

fake peaks due to disturbances in the PSD, the coherence is not close to 1 and picking these

fake peaks can therefore be avoided.
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Figure 2.5: Example of PSD and CPSD plots

Figure 2.6: Example of PSD and coherence plots
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2.7.2 Frequency Domain Decomposition

Since peak picking had problems with identifying closely spaced modes, another method was

introduced, the frequency domain decomposition (FDD) method. The input required for the

FDD method is the same as for the peak picking method, the PSDs and CPSDs, as well as

the frequency vector.

Calculations

The theoretical proof of the method is based on the modal expansion of the structural re-

sponse [18]:

[y(t)] = [Φ][p(t)] (2.7.5)

Where [Φ] is the modal matrix and [p(t)] is the vector of modal coordinates. The correlation

matrix [Ry] of the response is:

[Ry(τ)] = E
[
[y(t+ τ)][y(t)]T

]
= [Φ][Rp(τ)][Φ]T (2.7.6)

By taking the Fourier transform you’ll get the PSD:

[Sy(ω)] = [Φ][Sp(ω)][Φ]H (2.7.7)

As shown in Equation 2.7.7 one needs to gather the PSDs and CPSDs for each frequency

line. This results in a l ∗ l matrix with the values for each frequency line from 1, 2, ....., Nf .

Then a SVD is computed for each frequency line:

[Sy(ω)] = [U ][Σ][V ]H (2.7.8)

The PSDs and CPSDs gathered for each frequency line is a Hermitian and positive definite

matrix, meaning that its real values is symmetric and its complex values is equal to its own

conjugate transpose. Therefore [U ] = [V ] and Equation 2.7.8 can be rewritten:

[Sy(ω)] = [U ][Σ][U ]H (2.7.9)
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The similarities between Equation 2.7.7 and Equation 2.7.9 suggests that one can find the

mode shapes [Φ] from [U ] and the Singular values [S] corresponds to the modal response.

Since they are sorted in a descending order, the first singular value will peak close to a

resonance. And then one can find the mode shape from the first row of [U] for that singular

value. A logarithmic plot of the singular values will show which modes are dominant.

From the Singular value plots one can pick the peaks. A simple example is shown in Figure

2.7. One can easily pick the two peaks which relates to the two modes of the system, the

mode shapes can then be extracted.

Figure 2.7: Example of singular value plots

2.7.3 Least Squares Complex Frequency Method

Least squares complex frequency method (LSCF) takes advantage of the global character of

the structural poles and common-denominator model to identify the modal parameters [18].

It is a parametric, frequency domain modal identification procedure [18].

LSCF input is the same as for the other frequency domain methods. The PSDs and CPSDs

computed for all the measurement channels, as well as the corresponding frequency vector.
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It also needs the time step ∆t and a nmax for the plotting of the stabilization diagram.

Intial Calculations

LSCF is based on FRF as shown in Section 2.4.3 and Equation 2.4.14. For the l measurement

channels you obtain l ∗ l PSDs and CPSDs. They are numbered as k = 1, 2, ......, l ∗ l and

arranged, as for FDD, by each frequency line f = 1, 2, ......, Nf .

Sk(ωf ) = Nk(zf , [θ])
d(zf , [θ])

(2.7.10)

Where the numerator polynomial Nk is:

Nk(zf , [θ]) =
n∑
j=0

Nk,jz
j
f (2.7.11)

And the common-denominator polynomial d is:

d(zf , [θ] =
n∑
j=0

djz
j
f (2.7.12)

The coefficients dj are gathered in θd, which are the complex-valued parameters to be esti-

mated:

[θd] =



d0

d1

d2
...

dn


(2.7.13)

Where one of the denominator coefficients should be equal to 1 for mathematical reasons

[18]. dn is set equal to 1, since this choice simplifies the identification of the structural pole

[18].

zf is the generalized transform variable at frequency line f . Different choices for zf is possible,

but here the following is chosen [3]:
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zjf = eiωf ∆t (2.7.14)

Calculations

These calculations are repeated for n = 1, 2, ......., nmax and then plotted in a stabilization

diagram for each n. Γk and Υk are calculated for each k:

[Γk] =



z0
1 z1

1 · · · zn1

z0
2 z1

2 · · · zn2
... ... . . . ...

z0
Nf

z1
Nf
· · · znNf


(2.7.15)

[Υk] =



−Sk(ω1)z0
1 −Sk(ω1)z1

1 · · · −Sk(ω1)zn1
−Sk(ω2)z0

2 −Sk(ω2)z1
2 · · · −Sk(ω2)zn2

... ... . . . ...

−Sk(ωNf
)z0
Nf
−Sk(ωNf

)z1
Nf
· · · −Sk(ωNf

)znNf


(2.7.16)

Where zjf is as in Equation 2.7.14 and Sk(ωf ) as Equation 2.7.10.

Some matrices are defined. It can be shown [10] that using only the real parts of these

matrices in the following gives a good result with lower computational cost:

[Rk] = Re([Γk]H [Γk]) (2.7.17)

[Sk] = Re([Γk]H [Υk]) (2.7.18)

[Tk] = Re([Υk]H [Υk]) (2.7.19)

The reduced normal equations are given as [3]:

[M ][θd] ≈ [0] (2.7.20)
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Where [M ] is given as [10]:

[M ] = 2
l∗l∑
k=1

([Tk]− [Sk]H [Rk]−1[Sk]) (2.7.21)

When [M ] is calculated it can be used to find [θd] as given by Equation 2.7.13:

[θd] =

−[M(1 : n, 1 : n)]−1[M(1 : n, n+ 1)]

1

 (2.7.22)

Where [M(1 : n, 1 : n)] is the submatrix of [M ] made by the first n rows and n columns.

And [M(1 : n, n+ 1)] is the submatrix of [M ] made by the first n rows and the last column

since [M ] has dimensions (n+ 1) ∗ (n+ 1).

Once [θd] is known, [zf ] can be found from Equation 2.7.12 by solving the roots. Then the

natural frequencies and damping ratio can be found by first using Equation 2.6.17 , then

Equation 2.6.18, Equation 2.6.19 and Equation 2.6.20.

2.7.4 Poly-Reference Least Squares Complex Frequency Method

Poly-reference least squares complex frequency method (pLSCF), also called PolyMax, works

in much the same way as LSCF, but is based on RMFD as shown in Section 2.4.3 and

Equation 2.4.17. It improves the method especially concerning the identification of closely

spaced modes [16]. The input is the same as for LSCF.

Initial Calculations

For each frequency line f = 1, 2, ....., Nf the PSD and CPSD vector is:

[Sy(ωf )] = [B(zf , [θ])][A(zf , θ]−1 (2.7.23)

Where the numerator matrix polynomial [Bo(zf , [θ])] for each measurement channel o =

1, 2, .....l is:
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[Bo(zf , [θ])] =
n∑
j=1

[Bo,j]zjf (2.7.24)

And the denominator matrix polynomial [A(zf , [Φ]] is:

[A(zf , [θ]] =
n∑
j=0

[Aj]zjf (2.7.25)

The coefficients [Aj] is gathered in α:

[α] =



[A0]

[A1]

[A2]
...

[An]


(2.7.26)

As for LSCF the last coefficient [An] is set equal to the identity matrix with dimensions l ∗ l.

zf is chosen as for LSCF:

zjf = eiωf ∆t (2.7.27)

Calculations

The calculations are repeated for n = 1, 2, ....nmax and plotted in a stabilization diagram. Γo
and Υo are calculated for each o [10]:

[Γo] =



z0
1 z1

1 · · · zn1

z0
2 z1

2 · · · zn2
... ... . . . ...

z0
Nf

z1
Nf
· · · znNf


(2.7.28)
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[Υo] =



−
(
z0

1 z1
1 · · · zn1

)
⊗ So(ω1)

−
(
z0

2 z1
2 · · · zn2

)
⊗ So(ω2)

...

−
(
z0
Nf

z1
Nf
· · · znNf

)
⊗ So(ωNf

)


(2.7.29)

Where zjf is as in Equation 2.7.27 and So(ωf ) as in Equation 2.7.23. ⊗ denotes the Kronecker

product. Since So(ωf ) have dimensions 1 ∗ l, Υo will have dimensions Nf ∗ (n+ 1)l while Γo
have dimensions Nf ∗ (n+ 1).

As for LSCF some matrices are defined. It can be shown [17] that they can be substituted

by its real part, which reduces computational cost:

[Ro] = Re([Γo]H [Γo]) (2.7.30)

[So] = Re([Γo]H [Υo]) (2.7.31)

[To] = Re([Υo]H [Υo]) (2.7.32)

And M is calculated [17]:

[M ] = 2
l∑

o=1
([To]− [So]H [Ro]−1[So]) (2.7.33)

Since [18]:

[M ][α] ≈ [0] (2.7.34)

[α] can now be calculated:

[α] =

−[M(1 : nl, 1 : nl)]−1[M(1 : nl, (nl + 1) : (n+ 1)l)]

Il

 (2.7.35)
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Where [M(1 : nl, 1 : nl)] is the submatrix of [M ] made by the first n ∗ l rows and n ∗ l

columns. And [M(1 : nl, (nl + 1) : (n + 1)l)] is the submatrix of [M ] made by the first n ∗ l

rows and the last l columns.

Now that [α] is calculated, the roots zf of the denominator polynomial [A(zf , [Φ]] can be

found as the eigenvalues of the following companion matrix [9]:

[A] =



[0] [I] [0] · · · [0] [0]

[0] [0] [I] · · · [0] [0]
... ... ... . . . ... ...

[0] [0] [0] · · · [0] [I]

−[A0]T −[A1]T −[A2]T · · · −[An−2]T −[An−1]T


(2.7.36)

When the eigenvalues have been found they need to be converted to continuous time as seen

in Equation 2.6.17 and then the modal parameters can be extracted as shown in Equation

2.6.18, Equation 2.6.19 and Equation 2.6.20.

2.8 Stabilization Diagram

When the modal parameters are found the stabilization diagram can be constructed. Here

the natural frequencies obtained are plotted for each order. Since the order of the system

is overestimated the plot will contain noise modes and mathematical modes. The noise

modes are due to physical reasons, whereas the mathematical modes are created to ensure

mathematical description of the measured data. The aim of the stabilization diagram is

to separate the physical poles from the mathematical poles. The mathematical poles tends

to be more scattered and typically do not stabilize [18]. Therefore physical modes can be

determined from an alignment of stable poles. To find these alignments you need to separate

the stable poles from the unstable ones. This is based on the comparison of the poles

associated to a given model order with those obtained from a one-order lower model [18].

The natural frequencies and damping ratio of poles from two orders are compared:
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|f(n− 1)− f(n)|
f(n− 1) < x (2.8.1)

|ζ(n− 1)− ζ(n)|
ζ(n− 1) < y (2.8.2)

Only the poles that fulfill a stabilization criteria defined by the user (x and y) are labeled as

stable. The size of these depends on several factors, among them the structure complexity

and the measurements accuracy. For natural frequency the values should coincide well and

a low stability requirement should be used. However for damping ratios the values can

vary more. Especially for lightly damped modes where their percentage variation could be

relatively large. The value should initially be chosen relatively small and then increased if

needed.
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Chapter 3

Case: Shear Frame

3.1 System Description

Two different shear frames will be analyzed, one with low damping and one with high damp-

ing. This is done to check that the methods work probably and how the different methods

react to damping.

3.1.1 Low Damping

The different MATLAB functions will be tested on this shear frame. The shear frame is a

10 story high building with one degree of freedom (DOF) per story as shown in Figure 3.1.

Each story have the same stiffness k, damping c and the same lumped mass m. The values

are chosen as:

k = 50N
m

c = 0.1Ns
m

m = 5kg

To construct this problem two functions created by Knut Andreas Kv̊ale were used: shear-

Frame.m and newmark.m. shearFrame.m takes k, c and m and the number of story’s to

establish [K], [C] and [M ]. Then MATLABs randn.m function is used to create the force

vector [P ] with white noise. The time step ∆t and the total number of samples N is chosen

as:
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3.1. System Description

Figure 3.1: Shear frame

∆t = 0.01s N = 1000000

The starting conditions are taken as:

u0 = 0m v0 = 0m
s

a0 = 0m
s2

[P ], [K], [C], [M ], ∆t, uo, v0 and a0 are used as input into newmark.m to get the time series

for displacement u, velocity v and acceleration a.

3.1.2 High Damping

Everything is exactly the same in this analysis, except the damping which is:

c = 3.5Ns
m
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3.2. Analysis

3.2 Analysis

MATLABs function polyeig.m is used on [K], [C] and [M ] to find the exact values for natural

frequencies, damping ratios and mode shapes. They are compared to the values found for

each method in the following. Mode shapes are only estimated for Cov-SSI with low damping

as it is space-demanding.

In StabDiag.m the poles that are found stable is given a blue color and the unstable poles

are given red. For natural frequencies a circle is used and for damping ratio a cross is used.

The following criteria were used:

|f(n− 1)− f(n)|
f(n− 1) < 0.005

|ζ(n− 1)− ζ(n)|
ζ(n− 1) < 0.01

3.2.1 Covariance-Driven Stochastic Subspace Identification

First the analysis is carried out using Cov-SSI with SSICov.m. The input used was the

displacement u time series, nmax = 50 and the magnitude of block rows = 1 for this simple

analysis.

Low Damping

The stabilization diagram is shown in Figure 3.2. The stable modes are very clear and the

natural frequencies can be picked easily. The natural frequencies are gathered in Table 3.1.

To get a good estimate of the damping ratios, they are plotted in Figure 3.3. The damping

ratio of the first nine modes are pretty stable, but the tenth mode did not stabilize. A mean

value for the damping ratio has been chosen and gathered in Table 3.2. The mode shapes

are found during the analysis and then organized and plotted using ModeShapes.m. Figure

3.6 shows the modes found, which can be compared to the exact modes shown in Figure 3.7.
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3.2. Analysis

High Damping

For the case with high damping the stabilization diagram is shown in Figure 3.4. The stable

modes are very clear for the high damping as well and the natural frequencies are found,

then gathered in Table 3.1. As for the low damping the damping ratios are plotted in Figure

3.5. The plot looks pretty similar to that of the low damping case. A mean value for the

damping ratio has been chosen and gathered in Table 3.3.

Figure 3.2: Stabilization diagram with Cov-SSI low damping
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3.2. Analysis

Figure 3.3: Damping ratios with Cov-SSI low damping

Figure 3.4: Stabilization diagram with Cov-SSI high damping
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3.2. Analysis

Figure 3.5: Damping ratios with Cov-SSI high damping

Table 3.1: Natural frequencies for Cov-SSI
Mode number Exact Cov-SSI (low damping) Cov-SSI (high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 +0.002 0
2 1.407 0 +.0.001
3 2.311 0 +0.003
4 3.162 0 0
5 3.943 +0.001 +0.001
6 4.636 -0.001 0
7 5.226 -0.001 +0.001
8 5.698 +0.001 +0.001
9 6.044 -0.002 -0.001
10 6.254 +0.001 0
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3.2. Analysis

Table 3.2: Damping ratios for Cov-SSI low damping
Mode number Exact Cov-SSI

n ζ ζ
1 0.02116 +0.00014
2 0.00711 -0.00139
3 0.00433 -0.00015
4 0.00316 +0.00004
5 0.00254 -0.00004
6 0.00216 0
7 0.00191 -0.00016
8 0.00175 -0.00005
9 0.00165 -0.00003
10 0.00160 0

Table 3.3: Damping ratios for Cov-SSI high damping
Mode number Exact Cov-SSI

n ζ ζ
1 0.7405 +0.0019
2 0.2487 -0.0029
3 0.1515 +0.0048
4 0.1107 -0.0012
5 0.0888 +0.0009
6 0.0755 +0.0003
7 0.0670 +0.0004
8 0.0614 -0.0011
9 0.0579 +0.0013
10 0.0560 +0.0021
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3.2. Analysis

Figure 3.6: Mode shapes found with Cov-SSI

Figure 3.7: Exact mode shapes
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3.2. Analysis

Results

The natural frequencies found by Cov-SSI are very close to the exact values for both low and

high damping. For the case with the low damping most damping ratios are accurate, except

for the second mode. For the high damping case all the damping ratios are accurate. The

mode shapes found are almost identical with the exact values. The numerical error is less

then 1% and the difference can hardly be seen in the figures.

3.2.2 Data-Driven Stochastic Subspace Identification

Then the analysis is carried out using DD-SSI with SSIData.m. The input used was the

displacement u time series and nmax = 50.

Low Damping

The stabilization diagram is shown in Figure 3.8. The stable modes are very clear and the

natural frequencies can be picked easily and gathered in Table 3.4. To get a good estimate

of the damping ratios, they are plotted in Figure 3.9. As for Cov-SSI an average value is

chosen and gathered in Table 3.5.

High Damping

The stabilization diagram is shown in Figure 3.10. They are not as stable as for the low

damping case, but are still easy to pick. When that is done they are gathered in Table 3.4.

The damping ratios are plotted in Figure 3.11 and found in the same way as for low damping,

then they are gathered in Table 3.6.
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Figure 3.8: Stabilization diagram with DD-SSI low damping

Figure 3.9: Damping ratios with DD-SSI low damping
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3.2. Analysis

Figure 3.10: Stabilization diagram with DD-SSI high damping

Figure 3.11: Damping ratios with DD-SSI high damping
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3.2. Analysis

Table 3.4: Natural frequencies for DD-SSI
Mode number Exact DD-SSI(low damping) DD-SSI(high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 -0.004 +0.006
2 1.407 +0.001 -0.008
3 2.311 -0.002 -0.002
4 3.162 +0.003 +0.006
5 3.943 +0.001 -0.002
6 4.636 +0.001 -0.008
7 5.226 +0.001 -0.002
8 5.698 +0.001 -0.005
9 6.044 -0.001 -0.007
10 6.254 +0.004 -0.001

Table 3.5: Damping ratios for DD-SSI low damping
Mode number Exact DD-SSI

n ζ ζ
1 0.02116 +0.01079
2 0.00711 +0.00341
3 0.00433 +0.00260
4 0.00316 +0.00088
5 0.00254 +0.00007
6 0.00216 -0.00023
7 0.00191 -0.00018
8 0.00175 -0.00005
9 0.00165 -0.00028
10 0.00160 -0.00069

Table 3.6: Damping ratios for DD-SSI high damping
Mode number Exact DD-SSI

n ζ ζ
1 0.7405 -0.0266
2 0.2487 0
3 0.1515 -0.0027
4 0.1107 +0.0020
5 0.0888 +.0.0016
6 0.0755 -0.0007
7 0.0670 +0.0011
8 0.0614 +0.0001
9 0.0579 -0.0010
10 0.0560 -0.0020
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Results

The natural frequencies found by DD-SSI are very accurate for low damping. For high

damping they are a bit less accurate, but still good. The damping ratios extracted are not

that good for low damping, but pretty accurate for high damping, except for the first mode.

3.2.3 Second Order Blind Identification

For the SOBI algorithm sobi.m was used with the displacement u time series to find the mixing

matrix and the sources. And then sobifind.m was used to estimate the natural frequencies,

which then were gathered in Table 3.7.

Table 3.7: Natural frequencies for SOBI
Mode number Exact SOBI(low damping) SOBI(high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 -0.004 -0.325
2 1.407 0 +0.037
3 2.311 +0.005 -0.143
4 3.162 0 -0.226
5 3.943 -0.003 0.114
6 4.636 -0.003 0.110
7 5.226 -0.001 +0.024
8 5.698 -0.004 +0.137
9 6.044 -0.009 +0.104
10 6.254 -0.002 -0.026

Results

All the natural frequencies where found. For low damping they are close to the accurate

values. However for high damping the SOBI algorithm is not accurate at all. One of the

reasons that the values you find using SOBI for high damping are not accurate is because the

values you find are not really the undamped natural frequencies. The reason for this is that

a SDOF estimator have been used which is based on FFT as mentioned in Chapter 2. The

values of the peaks will not be the undamped natural frequencies and some sort of transfer

function should be used.
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3.2.4 Peak Picking

Low Damping

Using mpsd.m with the velocity v time series, Hanning window with 65536 number of samples

in FFT and 50% overlap gave the PSDs and CPSDs. PSDplot.m was then used on all

the measurement channels to plot the PSDs and CPSDs. Only the first four measurement

channels are shown in Figure 3.12 for convenience. PSDplot2.m was also tested on all the

measurement channels to plot the PSDs and the coherence functions as shown in Figure 3.13.

From both plots it is easy to pick the correct modes. The coherence plots are the easiest

way to separate real eigenvalues and peaks due to disturbance and is therefore prioritized

for the rest of this thesis. The natural frequencies found by studying the plots for all the

measurement channels are gathered in Table 3.8.

High Damping

For the case with high damping, mpsd.m was used with the velocity v time series, Hanning

window with 16384 number of samples in FFT and 0% overlap. The PSDs and coherence

function is plotted using PSDplot2.m. The plot of the first 4 measurement channels is shown

in Figure 3.14. It is at once obvious that the peak picking method experience trouble with

high damping. That is also the reason the number of samples in FFT had to be reduced

compared to the case with low damping. Picking the modes is much harder, and not all the

modes can be clearly found. Studying all the measurement channels and coherence functions

gives some values which are gathered in Table 3.8.
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Figure 3.12: PSD and CPSD for the first 4 measurement channels low damping

Figure 3.13: PSD and coherence for the first 4 measurement channels low damping
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Figure 3.14: PSD and coherence for the first 4 measurement channels high damping

Table 3.8: Natural frequencies for peak picking
Mode number Exact Peak picking(low damping) Peak picking(high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 -0.003 -0.089
2 1.407 +0.002 +0.012
3 2.311 0 -0.048
4 3.162 +0.002 +0.021
5 3.943 -0.003 -0.146
6 4.636 +0.004 -0.034
7 5.226 -0.001 -0.010
8 5.698 +0.001 +0.169
9 6.044 +0.001 +0.054
10 6.254 -0.003 +0.035

Results

From Figure 3.13 and Table 3.8 you can see that peak picking is an accurate and efficient

method for low damping. But for high damping it is clear that peak picking is not sufficient.

If there was no other results to compare it and the number of modes were unknown this
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method would be useless. As for SOBI, peak picking is based on FFT and therefore a

transfer function should be used to find the actual natural frequencies. Since this is a MDOF

problem, this function would also be influenced by the other modes.

3.2.5 Frequency Domain Decomposition

Low Damping

Using mpsd.m with the velocity v time series, Hanning window with 65536 number of samples

in FFT and 50% overlap gave the PSDs and CPSDs. They were used as input in FDD.m to

get the singular values. Only the three highest singular values are plotted in Figure 3.15. It

is easy to pick the correct natural frequencies and they are gathered in Table 3.9.

High Damping

For the case with high damping, mpsd.m was used with the velocity v time series, Hanning

window with 8192 number of samples in FFT and 50% overlap. Then the singular value

plot looks like Figure B.1. The peaks are almost impossible to pick accurately. Therefore a

non-logarithmic plot was used, as shown in Figure 3.16. From this plot values for the natural

frequencies were picked and gathered in Table 3.9.
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Figure 3.15: Singular value plots low damping

Figure 3.16: Singular value plots high damping non-logarithmic

58



3.2. Analysis

Table 3.9: Natural frequencies for FDD
Mode number Exact FDD(low damping) FDD(high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 -0.003 +0.064
2 1.407 +0.002 -0.103
3 2.311 0 +0.067
4 3.162 +0.002 -0.094
5 3.943 -0.003 -0.031
6 4.636 +0.004 -0.034
7 5.226 -0.001 +0.066
8 5.698 +0.001 +0.054
9 6.044 +0.001 +0.015
10 6.254 -0.003 +0.035

Results

For the low damping the values are identical to the ones obtained in peak picking. For the

case with high damping the FDD performs approximately as peak picking, both are way off.

But for FDD it is easy to pick the number of modes, and the results would be much better

than peak picking if the exact values were unknown. Here aswell, the values for high damping

won’t be correct because of the lack of a transfer function as mentioned for peak picking.

3.2.6 Least Squares Complex Frequency Method

Using mpsd.m with the acceleration a time series, Hanning window with 8192 number of

samples in FFT and 50% overlap gave the PSDs and CPSDs. They were used as input in

LSCF.m along with a nmax.

Low Damping

nmax = 400 gave the stabilization diagram in Figure B.2. Only some modes are found, so

nmax = 500 is tried and the result can be seen in Figure 3.17. The modes that can be found

are gathered in Table 3.10.
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High Damping

nmax = 500 gave the stabilization diagram in Figure 3.18. Even fewer of the modes are found

for high damping, those that are found are gathered in Table 3.10.

Figure 3.17: Stabilization diagram with LSCF low damping nmax = 500
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Figure 3.18: Stabilization diagram with LSCF high damping nmax = 500

Table 3.10: Natural frequencies for LSCF
Mode number Exact LSCF (low damping) LSCF (high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473
2 1.407 -0.069 +0.381
3 2.311 +0.001
4 3.162 +0.054 -0.209
5 3.943 +0.124 +0.257
6 4.636 +0.159
7 5.226 +0.213 -0.226
8 5.698
9 6.044 -0.126 -0.259
10 6.254 -0.009 -0.283

Results

The results from LSCF are not good for either low or high damping. Many modes are missing

and most of the estimates are not accurate.
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3.2.7 Poly-Reference Least Squares Complex Frequency Method

Using mpsd.m with the acceleration a time series, Hanning window with 16384 number of

samples in FFT and 50% overlap gave the PSDs and CPSDs. They were used as input in

pLSCF.m along with a nmax.

Low Damping

nmax = 50 gave the stabilization diagram in Figure 3.19. The modes stabilizes very fast and

are easy to pick, except for the first which does not stabilize, they are then gathered in Table

3.11. The damping ratios are labeled as unstable for most orders, a plot of the damping

ratios in Figure B.3 shows why, they do not stabilize at all. Damping ratios can therefore

not be picked.

High Damping

nmax = 50 gave the stabilization diagram in Figure B.4. The 6 last modes are found, but it

doesn’t manage to find the modes with low natural frequencies at all. Therefore nmax = 100

had to be tried as shown in Figure B.5. Still only the last 6 modes are completely stable,

but two more modes are starting to look stable. nmax is then taken as 150 as shown in

Figure 3.20, but still not all the modes are stable. The natural frequencies that are stable

are found, and gathered in Table 3.11. A plot of the damping ratios in Figure B.6 shows that

the damping ratios doesn’t stabilize at all. And they can therefore not be gathered for high

damping either.

62



3.2. Analysis

Figure 3.19: Stabilization diagram with pLSCF low damping

Figure 3.20: Stabilization diagram with pLSCF high damping nmax = 150
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Table 3.11: Natural frequencies for pLSCF
Mode number Exact pLSCF (low damping) pLSCF (high damping)

n ωn( rad
s

) ωn( rad
s

) ωn( rad
s

)
1 0.473 -0.304
2 1.407 +0.003 +0.305
3 2.311 -0.002 +0.054
4 3.162 -0.001 +0.041
5 3.943 -0.001 +0.032
6 4.636 +0.001 +0.034
7 5.226 -0.004 +0.010
8 5.698 -0.001 -0.003
9 6.044 -0.001 -0.002
10 6.254 -0.002 -0.006

Results

The natural frequencies found by pLSCF are very close to the exact values for low damping,

except for the first mode. The high damping case required a high nmax to find the natural

frequencies, but even then they were not particularly accurate. The first mode was not found

at all and except for the three last modes the rest were not very close. The damping ratios

were not stable for either low or high damping and could not be extracted.

3.3 Discussion of Results

Low Damping

For low damping all the methods managed to find all modes except LSCF. Most methods

are accurate, with the exception that pLSCF is not accurate for the first mode. As for the

methods that find the natural frequencies SOBI is the most effective. It is computational

inexpensive and gives accurate estimations of all the modes. However SOBI has the huge

drawback that the method just gives the answer, with no option to verify that the modes

are found correctly. As a verification of other results it is extremely efficient and easy to use,

but it is not a good tool on its own.

Peak picking and FDD are also very efficient methods, but requires the user to manually find
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the values. As shown in the plots that is an easy job for the low damping and the values

found are very accurate. Both these methods require some knowledge of modal analysis to

choose the different input parameters to find the PSDs and CPSDs. However for an easy case

like this most reasonable input parameters would have given sufficient results. One of the

advantages of FDD instead of peak picking is the ability to separate closely spaced modes.

For this shear frame none of the modes are closely spaced, and therefore FDD doesn’t show

any particular advantages over peak picking.

Cov-SSI and DD-SSI give very clear stabilization diagrams, both are easy to pick and the

values are accurate. They also gives estimates of the damping ratio, as the only methods, and

both looks pretty stable. However the values for Cov-SSI is better than DD-SSI. In addition

Cov-SSI is computationally more efficient than DD-SSI. Since Cov-SSI proved to be the best

overall method it was chosen to extract the mode shapes which where very accurate.

LSCF doesn’t manage to find all the modes, and most estimations are not accurate either.

The method is also computational expensive. pLSCF find all the modes accurately, except

for the first one. The poles look stable already at a very low order, but the calculations

are quite expensive per order and not comparable to the SSI methods. The damping ratio

estimates are very bad and not pickable.

High Damping

For high damping several of the methods are starting to have problems. SOBI still manages

to find all modes and is very computational inefficient, but gives very rough estimates for

the natural frequencies. Peak picking manages to find all the modes, but, as previously

mentioned, the method is useless on its own as it would be impossible to pick the correct

modes if the answers were not already known. The answers obtained are, as for SOBI, only

rough estimates. FDD also gives rough estimates, but compared to peak picking it is much

better as it manage to find all the modes on it own.

Cov-SSI is still very accurate and gives clear stabilization diagrams. DD-SSI also gives quite
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clear stabilization diagrams and good estimates, but not as good as Cov-SSI. For damping

ratio both the methods achieve better accuracy than for low damping and they are both

equally good. Still Cov-SSI is computationally more efficient than DD-SSI.

LSCF is as bad as for the case with low damping. pLSCF requires a very high nmax to

find the natural frequencies and still only some of them are found accurately. With the high

system order the analysis takes a long time and the results are not impressive. pLSCF doesn’t

manage to find the damping ratios for high damping either.
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Chapter 4

Case: The Hardanger Bridge

4.1 System Description

With the new coastal highway route E39 along the west coast of Norway, running almost 1100

km from Kristiansand in the south to Trondheim in Central Norway, the Norwegian Public

Road Administration aims to remove ferry crossings. Today there is several ferry crossings

and the new highway will reduce transportation time with 7-9 hours [7]. The Hardanger

Bridge crossing the Hardangerfjord was finished in 2013 and be can used as a study example

[1]. It is a suspension bridge with 1310 meter main span and 70 meter side span. Tower

height is 200 meter and sailing height under the bridge is 55 meter [1]. It connects Ulvik and

Bu and eliminate the need for a ferry crossing.

The Hardanger Bridge have been instrumented with accelerometers and anemometers which

measures acceleration over time and changes in wind velocity and wind direction, respectively.

The position of the 20 accelerometers can be seen in Figure 4.1 [13]. 16 are placed over the

bridge span, while the remaining four are placed at the top of the towers. Except for position

3 and 14 (marked in red color) they are all in pairs.

The length of one time series is approximately 30 minutes and the measurements are taken

at 200 Hz. The accelerometers data is measured in g, where g = 9.81m
s2 .
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Figure 4.1: Accelerometer positions

4.2 Time Series

For this analysis only one time series have been used, it was measured on 03.02.2014. The

length of the data matrix is 371998 measurements, which means:

371998
200

measurements
Hz

= 1860 seconds = 31 minutes

Each of the accelerometers have three outputs, x-direction, y-direction and z-direction, which

means:

l = 20 ∗ 3 = 60 measurement channels

First the data is detrended in Matlab, which means removing the mean value or linear trend

from the time series. Then the sampling frequency is evaluated. Originally it is 200 Hz

which is unnecessary big and requires a lot of time to process. Therefore the data matrix is

resampled to 20 Hz, which gives the following dimensions for the data matrix Y :

l = 60 measurement channels N = 37200 samples ∆t = 0.05 seconds

4.3 Analysis

The modal parameters found during these analyses are compared to the ones found analyt-

ically by an ABAQUS model [20]. The stabilization diagram uses the same values as for

Chapter 3.
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4.3.1 Covariance-Driven Stochastic Subspace Identification

For the analysis with Cov-SSI a nmax of 400 has been chosen. Different values for magnitude

of block rows have been tried and the results can be seen in Figure C.1, Figure C.2, Figure

4.2 and Figure C.3. The first is obviously not good enough, for x = 5 most poles seems to

stabilize. But problems occur for low frequencies and for closely spaced modes. For x = 8

all poles seem stable, but for x = 10 some of the mathematical poles are beginning to look

stable. Therefore x = 8 is chosen to find the natural frequencies, then they are gathered in

Table 4.1.

For the estimation of damping ratios they were also plotted for different values of x and the

results can be seen in Figure C.4, Figure C.5, Figure 4.3 and Figure C.6. For a low x there

is no alignments. As the magnitude of block rows increases they seem to stabilize more, but

for x = 10 it starts to look chaotic. Therefore x = 8 is chosen and the damping ratios are

found and gathered in Table 4.2.

The mode shapes are extracted and plotted in Figure 4.4 to Figure 4.18. The plots show

both the horizontal and the vertical plane, from this we can find which modes are related to

the different planes. This is added to Table 4.1. On the vertical plane two deformed nodes

can be seen on many of the deformations, this relates to the different deflection at each side

of the bridge (where sensors are located at each side). This is particularly important for the

torsional modes.
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Figure 4.2: Stabilization diagram using Cov-SSI with x = 8

Figure 4.3: Damping ratios using Cov-SSI with x = 8
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Table 4.1: Natural frequencies for Cov-SSI
Mode number Analytical Cov-SSI Mode shape

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.29 Horizontal
2 0.71 0.65 Horizontal
3 0.79 0.74 Vertical
4 0.89 0.89 Vertical
5 1.27 1.15 Horizontal
6 1.33 1.29 Vertical
7 1.34 1.33 Vertical
8 1.74 1.73 Vertical
9 2.08 1.96 Horizontal
10 2.15 2.09 Vertical
11 2.33 2.34 Torsional
12 2.52 2.51 Vertical
13 2.92 2.84 Horizontal
14 3.02 2.95 Vertical
15 3.41 3.44 Torsional

Table 4.2: Damping ratios for Cov-SSI
Mode number Cov-SSI

n ζ
1 0.01262
2 0.01193
3 0.00807
4 0.00709
5 0.00461
6 0.00425
7 0.00401
8 0.00381
9 0.00378
10 0.00349
11 0.00320
12 0.00246
13 0.00171
14 0.00077
15 0.00046
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Figure 4.4: Mode 1 horizontal

Figure 4.5: Mode 2 horizontal
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Figure 4.6: Mode 3 vertical

Figure 4.7: Mode 4 vertical
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Figure 4.8: Mode 5 horizontal

Figure 4.9: Mode 6 vertical

74



4.3. Analysis

Figure 4.10: Mode 7 vertical

Figure 4.11: Mode 8 vertical
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Figure 4.12: Mode 9 horizontal

Figure 4.13: Mode 10 vertical

76



4.3. Analysis

Figure 4.14: Mode 11 torsional

Figure 4.15: Mode 12 vertical
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Figure 4.16: Mode 13 horizontal

Figure 4.17: Mode 14 vertical
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Figure 4.18: Mode 15 torsional

Results

The natural frequencies obtained looks very stable and are easily extracted. The natural

frequencies are probably quite accurate. The damping ratios are much harder, and the values

obtained should only be used as estimates. The mode shapes seem accurate and logical. A

few of the nodes seems to be a bit off on some of the modes, but still the shape of each mode

can easily be seen.

4.3.2 Data-Driven Stochastic Subspace Identification

DD-SSI require a nmax that is dividable with l, so therefore a value of 420 has been chosen.

As for Cov-SSI different values for x have been tried and the results can be seen in Figure

C.7, Figure C.8 and Figure 4.19. For x = 2 many of the poles have started to stabilize, but

it is not able to separate closely spaced modes. For x = 4 you can see that the closely spaced

modes (e.g around ωn = 1.3) are starting to split up, however there still seems to be trouble

for the modes with a low natural frequency. When x = 8 most poles seems to stabilize.
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Therefore 8 is chosen to find the natural frequencies, then they are gathered in Table 4.3.

For damping ratio estimation they were also plotted for different values of x and the results

can be seen in Figure C.9, Figure C.10 and Figure 4.20. For a low x there is no alignments.

As the magnitude of block rows increases they seem to stabilize more and therefore it is

possible to pick the damping ratios with x = 8 which are gathered in Table 4.4.

Figure 4.19: Stabilization diagram using DD-SSI with x = 8
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Figure 4.20: Damping ratios using DD-SSI with x = 8

Table 4.3: Natural frequencies for DD-SSI
Mode number Analytical DD-SSI

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.30
2 0.71 0.65
3 0.79 0.74
4 0.89 0.89
5 1.27 1.15
6 1.33 1.29
7 1.34 1.33
8 1.74 1.73
9 2.08 2.02
10 2.15 2.09
11 2.33 2.30
12 2.52 2.51
13 2.92 2.91
14 3.02 2.95
15 3.41 3.42
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Table 4.4: Damping ratios for DD-SSI
Mode number DD-SSI

n ζ
1 0.01115
2 0.00993
3 0.00833
4 0.00629
5 0.00551
6 0.00490
7 0.00459
8 0.00428
9 0.00366
10 0.00318
11 0.00271
12 0.00237
13 0.00196
14 0.00159
15 0.00047

Results

The natural frequencies found for DD-SSI are very good, and all the modes are easy to pick.

For mode number 9, it could be preferable with a higher system order to see that it stabilizes

completely. The damping ratios were harder to pick, but alignments could be found. As for

Cov-SSI these damping ratios are only estimates.

4.3.3 Second Order Blind Identification

For the SOBI algorithm you will get as many natural frequencies as there are measurement

channels. So for this analysis you will get 60 frequencies, but most of them are very high,

so therefore it is easy to find the correct values. sobi.m doesn’t necessary find all the correct

modes at the first analysis(here 12 of 15 was found during the first analysis), therefore the

analysis was repeated with different values of number of time lags p, different threshold for

the JAD algorithm and different number of peaks and number of samples in FFT for the

SDOF estimator.
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Table 4.5: Natural frequencies for SOBI
Mode number Analytical SOBI

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.32
2 0.71 0.66
3 0.79 0.73
4 0.89 0.89
5 1.27 1.13
6 1.33 1.28
7 1.34 1.33
8 1.74 1.73
9 2.08 2.09
10 2.15 2.11
11 2.33 2.31
12 2.52 2.51
13 2.92 2.94
14 3.02 3.21
15 3.41 3.44

Results

Although good estimates are found at last, a big drawback with this method is that not all

modes are found at first try. Another issue is the lack of insurance that the modes you pick

are correct, compared to e.g. the SSI methods with a stabilization diagram.

4.3.4 Peak Picking

The analysis was run with Hanning window and 50% overlap. Different number of samples

in FFT was tried as shown in Figure C.11, Figure 4.21 and Figure C.12, where the first

four measurement channels are shown. For a low NFFT some of the peaks is hard to pick

accurately as they might be between two points because of the low resolution of the frequency

vector. For a too high NFFT some of the peaks become more dominant, which makes it harder

to pick the other peaks. In addition the coherence plot gets more chaotic. Therefore it is

easiest to pick the peaks for a medium value of NFFT, here 8192 is chosen.

There is three measurement channels per sensor. For the one in the axial direction the poles

are not very clear, as can be seen for the first and last PSD on Figure 4.21. For the two other

83



4.3. Analysis

directions they differ between the vertical and the horizontal modes. As shown in Figure 4.22

where the horizontal poles can easily be found and in Figure 4.23 where the vertical poles

can easily be found. Both directions manage to find the torsional modes. The values found

are gathered in Table 4.6.

Figure 4.21: PSD and Coherence for NFFT = 8192
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Figure 4.22: PSD and Coherence for NFFT = 8192 horizontal modes

Figure 4.23: PSD and Coherence for NFFT = 8192 vertical modes
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Table 4.6: Natural frequencies for peak picking
Mode number Analytical Peak picking

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.32
2 0.71 0.65
3 0.79 0.74
4 0.89 0.89
5 1.27 1.10
6 1.33 1.29
7 1.34
8 1.74 1.73
9 2.08 1.97
10 2.15 2.09
11 2.33 2.36
12 2.52 2.50
13 2.92 2.92
14 3.02 2.95
15 3.41 3.44

Results

With the peak picking method, several of the poles were hard to pick. Especially for high

frequencies and the horizontal modes. As mentioned earlier one of the disadvantages of the

peak picking method is the ability to separate closely spaced modes, here one mode couldn’t

be found. The values that are found are quite accurate.

4.3.5 Frequency Domain Decomposition

The analysis was run with Hanning window and 50% overlap. Different number of samples

in FFT was tried as shown in Figure C.13, Figure 4.24, Figure C.14 and Figure C.15. For

a low NFFT some of the peaks are hard to pick accurately as they might be between two

points because of the low resolution of the frequency vector. For a too high NFFT the peaks

are not as easily separateable. Therefore it is easiest to pick the peaks from a medium value

of NFFT, here 8192 is chosen. The values found are gathered in Table 4.7.
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Figure 4.24: Singular value plots for NFFT = 8192

Table 4.7: Natural frequencies for FDD
Mode number Analytical FDD

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.32
2 0.71 0.64
3 0.79 0.74
4 0.89 0.89
5 1.27 1.15
6 1.33 1.29
7 1.34 1.32
8 1.74 1.73
9 2.08 1.98
10 2.15 2.09
11 2.33 2.30
12 2.52 2.52
13 2.92 2.90
14 3.02 2.95
15 3.41 3.42
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Results

The fifth and seventh peak is not that prominent, but except for that all the peaks are very

easy to pick and the values found are quite accurate.

4.3.6 Least Squares Complex Frequency Method

The analysis was run with Hanning window, 50% overlap, NFFT = 8192 and nmax = 300.

The stabilization diagram obtained is shown in Figure C.16. Only 8 of the modes are findable,

but those are very clear. nmax = 400 is tried and the result can be seen in Figure C.17. Now

9 of the modes can be found, but still 6 is missing. Therefore nmax = 500 and nmax = 600

is tried as shown in Figure C.18 and Figure 4.25. From nmax = 600 values where found and

gathered in Table 4.8.

Figure 4.25: Stabilization diagram using LSCF nmax = 600
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Table 4.8: Natural frequencies for LSCF
Mode number Analytical LSCF

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.32
2 0.71 0.68
3 0.79 0.73
4 0.89 0.90
5 1.27
6 1.33 1.30
7 1.34 1.31
8 1.74 1.73
9 2.08
10 2.15 2.09
11 2.33 2.36
12 2.52 2.51
13 2.92
14 3.02 2.95
15 3.41 3.43

Results

Even with the nmax = 600 LSCF doesn’t manage to find all modes and such a large system

order is very computational expensive. The modes that are found are quite accurate.

4.3.7 Poly-Reference Least Squares Complex Frequency Method

The analysis was run with Hanning window, 50% overlap, NFFT = 8192 and nmax = 50.

The stabilization diagram obtained is shown in Figure C.19. Since this plot is a bit chaotic,

a plot where only the poles that was classified as stable regarding natural frequencies were

plotted, as shown in Figure 4.26. From here all the modes look stable and the values found

are gathered in Table 4.9. As seen on the first figure, not many of the damping ratios were

stable. This can also be seen in Figure C.20 where the damping ratios are plotted. Some of

the first damping ratios look stable, but for higher modes they are not stable at all and can

therefore not be gathered.

89



4.3. Analysis

Figure 4.26: Stabilization diagram using pLSCF with only stable poles

Table 4.9: Natural frequencies for pLSCF
Mode number Analytical pLSCF

n ωn( rad
s

) ωn( rad
s

)
1 0.37 0.32
2 0.71 0.65
3 0.79 0.74
4 0.89 0.89
5 1.27 1.14
6 1.33 1.29
7 1.34 1.33
8 1.74 1.73
9 2.08 2.00
10 2.15 2.09
11 2.33 2.31
12 2.52 2.51
13 2.92 2.91
14 3.02 2.95
15 3.41 3.42
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Results

The natural frequencies found are quite accurate and easy to pick.

4.4 Discussion of Results

The methods managed to find all the modes, except for peak picking and LSCF. SOBI ended

up finding all the modes with good accuracy, but since the method doesn’t give all the correct

modes on the first try and even find some natural frequencies that does not correspond to

actual physical modes it is a dangerous method. It should only be used as a verification of

other results as discussed for the shear frame.

For peak picking it is hard to find the modes for higher frequencies. Also it did not manage

to separate between the two closely spaced modes 6 and 7. Even though the analysis is very

efficient it takes some time to manually find the modes and try different parameters. FDD

also requires the user to try different parameters and find the modes manually, but picking

them is very easy for most of the modes. They are also more accurate than for peak picking.

Both Cov-SSI and DD-SSI gives clear stabilization diagrams and accurate values. The damp-

ing ratios are easier to pick for DD-SSI, but, as for the shear frame, Cov-SSI is more compu-

tational efficient than DD-SSI. As for the shear frame mode shapes were only plotted using

Cov-SSI, as it has proven to be the most efficient method.

LSCF only managed to find 12 of the modes. The stabilization diagram is actually the easiest

to pick the modes from, but since the system order need to be so high it is computational

expensive and the analysis takes a very long time. pLSCF doesn’t require a high system

order and all the modes can be found easily and accurately, but still it takes longer time to

do the analysis then the SSI methods and it is not able to find the damping ratios.
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Chapter 5

Conclusion

5.1 Main Results and Research Findings

This thesis aimed to implement several OMA methods in MATLAB and compare them. They

were tested on a shear frame with low and high damping influenced by white noise. Then

they were tested on the Hardanger Bridge with actual measurement data. Both the basic

methods (SOBI, peak picking and FDD) and the more advanced methods (Cov-SSI, DD-

SSI, LSCF and pLSCF) proved to give mostly good estimates. Although they were effected

differently by the amount of damping and noise on the measured data.

Cov-SSI was the best method. It is the computational most efficient of the advanced methods.

It gave among the clearest stabilization diagrams and generally gave the best estimates of

natural frequencies. As one of only two methods it managed to find good estimates of the

damping ratios. Cov-SSI was also chosen as the method to find the mode shapes, because of

this. DD-SSI also gave clear stabilization diagrams, and almost as good estimates as Cov-SSI.

However, it was much more computational demanding. LSCF was computational demanding

and did a poor job in estimating the natural frequencies for all three cases. pLSCF was better,

but was also computational demanding and the estimates for damping ratio were not good.

The comments about computational efficiency is based on the implementation done in this

thesis, and may not be representative for the method, but rather the implementations.
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For the basic methods FDD proved to give the best estimates. SOBI is perhaps the easiest

method to use and very computationally efficient, but because of the previously mentioned

drawbacks regarding the safety of the extracted values it is not recommended. Peak picking

is not easier to use than FDD and not more efficient. The natural frequencies found by FDD

were very accurate for the shear frame with low damping and the Hardanger Bridge, but a bit

off for the shear frame with high damping. Still, it was actually one of the best estimates for

natural frequencies on the shear frame with high damping, only beaten by the SSI methods.

The basic methods were not used to estimate damping ratio and mode shapes in this thesis.

5.2 Future Work

Some suggestions for further work is:

• The application of weighting matrices for LSFC and pLSFC [3] [10], and for DD-SSI

[18] and how they would influence the accuracy of the methods.

• The implementation of a fast algorithm for DD-SSI [12].

• Further work on the MATLAB functions to reduce computational time, especially LSCF

and pLSCF.

• Use other programs (e.g. LabVIEW) to compare results.
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Appendix A

Matlab Code

A.1 Example.m

1 % Example: Script to construct the shear frame case

2 %

3 %

4 % REQUIRED FUNCTIONS

5 % shearFrame.m

6 % newmark.m

7 %

8 %

9 % Sindre Schanke 2015

10

11

12 clc

13 clear all

14 close all

15

16

17 %------------------------------Input--------------------------------------%

18 nDofs=10; %Number of storys

19 dt=0.01; %Timestep

20 nTime=1000000; %Total time
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21 k=50; %Stiffness for each story

22 c=0.1; %Damping for each story

23 m=5; %Mass for each story

24 %-------------------------------------------------------------------------%

25

26

27 %-------------------------Generating time series--------------------------%

28 [K,C,M]=shearFrame(nDofs,k,c,m); %K,C and M matrices for the shear frame

29 P=randn(nDofs,nTime); %White noise force vector

30 u0=zeros(nDofs,1); %Starting displacement

31 v0=zeros(nDofs,1); %Starting velocity

32 a0=zeros(nDofs,1); %Starting acceleration

33 [u,v,a]=newmark(K,C,M,P,dt,1/6,1/2,u0,v0,a0); %Time series

34 %-------------------------------------------------------------------------%

35

36

37 %---------------------------Exact solution--------------------------------%

38 [X,e]=polyeig(K,C,M); %Polynomial eigenvalue problem

39

40 f=abs(e); %Natural frequencies

41 fd=imag(e); %Damped modal frequencies

42 d=-real(e)./abs(e); %Damping ratio

43 %-------------------------------------------------------------------------%

44

45 clear C K M a0 v0 u0 m c k nDofs nTime P

A.2 Examplesolve.m

1 % Examplesolve: Script to test the different methods on the shear frame

2 %

3 %

4 % REQUIRED FUNCTIONS

5 % SSICOV.m
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6 % SSIData.m

7 % sobi.m

8 % sobifind.m

9 % mpsd.m

10 % PSDplot.m

11 % PSDplt2.m

12 % LSCF.m

13 % pLSCF.m

14 % FDD.m

15 %

16 %

17 % Sindre Schanke 2015

18

19

20 %------------------------------Time domain--------------------------------&

21 % SSI

22 n=50; %Max system order

23 x=2; %Magnitude of block rows

24 [f,c]=SSICov(u,dt,n,x); %Solving using COV-SSI

25 [f,c]=SSIData(u,dt,n,x); %Solving using DD-SSI

26

27 % Plotting for SSICov and SSIData

28 figure(1)

29 axis([0,7,0,n]);

30

31 % SOBI

32 [A,S] = sobi(u); %Solving using SOBI

33 [f,c] = sobifind(S,dt); %Finding Modal Parameters

34 %-------------------------------------------------------------------------%

35

36

37 %----------------------------Frequency domain-----------------------------%

38 % Welchs method

39 NFFT=65536; %Number of samples to use in FFT

40 overlap=0.5 %Amount of overlap

41 [Sy,freq]=mpsd(a,hanning(NFFT),dt,NFFT,overlap); %Calculate PSDs and CPSDs
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42

43 % Peak Picking

44 PSDplot(Sy,freq); %Solving using Peak Picking with PSDs and CPSDs

45 PSDplot2(Sy,freq); %Solving using Peak Picking with PSDs and Coherence

46

47 % LSCF and pLSCF

48 n=300; %Max system order

49 [f,c] = LSCF(Sy,freq,dt,n); %Solving using LSCF

50 [f,c] = pLSCF(Sy,freq,dt,n); %Solving using pLSCF

51

52 % Plotting for LSCF and pLSCF

53 figure(1)

54 axis([0,7,0,n]);

55

56 % FDD

57 [S] = FDD(Sy,freq); %Solving using FDD

58

59 % Plotting for FDD

60 figure(1)

61 semilogy(freq,S(:,1:3)) %Only three first singular values

62 title('Singular value plots')

63 xlabel('\omega (rad/s)')

64 xlim([0 7])

65 %-------------------------------------------------------------------------%

A.3 Hardanger.m

1 % Hardanger: Script which loads the Hardanger data and arranges it

2 %

3 %

4 % Sindre Schanke 2015

5

6
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7 clc

8 clear all

9 close all

10

11

12 %---------------------Load data and arrange-------------------------------%

13 load('HB141M-2014-02-03 00-00-56.mat') %Load data

14

15 %Data from each measurement channel

16 H1E=HB.Sensors.H1E.Data';

17 H1W=HB.Sensors.H1W.Data';

18 H2W=HB.Sensors.H2W.Data';

19 H3E=HB.Sensors.H3E.Data';

20 H3W=HB.Sensors.H3W.Data';

21 H4E=HB.Sensors.H4E.Data';

22 H4W=HB.Sensors.H4W.Data';

23 H5E=HB.Sensors.H5E.Data';

24 H5W=HB.Sensors.H5W.Data';

25 H6E=HB.Sensors.H6E.Data';

26 H6W=HB.Sensors.H6W.Data';

27 H7E=HB.Sensors.H7E.Data';

28 H7W=HB.Sensors.H7W.Data';

29 H8E=HB.Sensors.H8E.Data';

30 H9E=HB.Sensors.H9E.Data';

31 H9W=HB.Sensors.H9W.Data';

32 TVE=HB.Sensors.TVE.Data';

33 TVW=HB.Sensors.TVW.Data';

34 TBE=HB.Sensors.TBE.Data';

35 TBW=HB.Sensors.TBW.Data';

36

37 %Gather data from all measurement channels into one matrix

38 T=[H1E; H1W; H2W; H3E; H3W; H4E; H4W; H5E; H5W; H6E; H6W; H7E; H7W; H8E;

39 H9E; H9W; TBE; TBW; TVE; TVW];

40 T=detrend(T); %Remove linear trend

41

42
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43 T=T(:,1:10:end); %Resample to 20 Hz

44 dt=0.05; %Time step

45 %-------------------------------------------------------------------------%

46

47 clear HB H1E H1W H2W H3E H3W H4E H4W H5E H5W H6E H6W H7E H7W H8E H9E H9W

48 clear TVE TVW TBE TBW To Td

A.4 Hardangersolve.m

1 % Hardangersolve: Script to test the different methods on the Hardanger

2 % Bridge

3 %

4 %

5 % REQUIRED FUNCTIONS

6 % SSICOV.m

7 % SSIData.m

8 % sobi.m

9 % sobifind.m

10 % mpsd.m

11 % PSDplot.m

12 % PSDplt2.m

13 % LSCF.m

14 % pLSCF.m

15 % FDD.m

16 %

17 %

18 % Sindre Schanke 2015

19

20

21 %------------------------------Time domain--------------------------------&

22 % SSI

23 n=400; %Max system order

24 x=8; %Magnitude of block rows
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25 [f,c]=SSICov(T,dt,n,x); %Solving using COV-SSI

26 [f,c]=SSIData(T,dt,n,x); %Solving using DD-SSI

27

28 % Plotting for SSICov and SSIData

29 figure(1)

30 axis([0,4,0,n]);

31

32 % SOBI

33 [A,S] = sobi(T); %Solving using SOBI

34 [f,c] = sobifind(S,dt); %Finding Modal Parameters

35 %-------------------------------------------------------------------------%

36

37

38 %----------------------------Frequency domain-----------------------------%

39 % Welchs method

40 NFFT=65536; %Number of samples to use in FFT

41 overlap=0.5 %Amount of overlap

42 [Sy,freq]=mpsd(T,hanning(NFFT),dt,NFFT,overlap); %Calculate PSDs and CPSDs

43

44 % Peak Picking

45 PSDplot(Sy,freq); %Solving using Peak Picking with PSDs and CPSDs

46 PSDplot2(Sy,freq); %Solving using Peak Picking with PSDs and Coherence

47

48 % LSCF and pLSCF

49 n=400; %Max system order

50 [f,c] = LSCF(Sy,freq,dt,n); %Solving using LSCF

51 [f,c] = pLSCF(Sy,freq,dt,n); %Solving using pLSCF

52

53 % Plotting for LSCF and pLSCF

54 figure(1)

55 axis([0,4,0,n]);

56

57 % FDD

58 [S] = FDD(Sy,freq); %Solving using FDD

59

60 % Plotting for FDD
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61 figure(1)

62 semilogy(freq,S(:,1:3)) %Only three first singular values

63 title('Singular value plots')

64 xlabel('\omega (rad/s)')

65 xlim([0 4])

66 %-------------------------------------------------------------------------%

A.5 SSICov.m

1 function [f,c] = SSICov(Y,dt,n,x)

2

3

4 % SSICov: Covariance-Driven Stochastic Subspace Identification Method

5 %

6 % [f,c] = SSICov(Y,dt,n,x)

7 %

8 %

9 % INPUTS Y: Data matrix from time series

10 % dt: Time step

11 % n: Max system order

12 % x: Magnitude of block rows i

13 %

14 % OUTPUTS f: Natural frequencies of the system

15 % c: Damping ratio of the system

16 %

17 % REQUIRED FUNCTIONS

18 % StabDiag.m

19 %

20 %

21 % Sindre Schanke 2015

22

23

24 %----------------------------Initial steps--------------------------------%
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25 [l,N]=size(Y); %Measurement channels and number of measurements

26 i=x*ceil(n/l); %Number of block rows >= n/l 4.207

27 %-------------------------------------------------------------------------%

28

29

30 %---------------------Toeplitz matrix with SVD----------------------------%

31 % Computing correlation matrixes from R(1) to R(2i)

32 for j=1:(2*i)

33 R{j}=1/(N-j)*Y(1:l,1:N-j)*transpose(Y(1:l,j+1:N)); %4.205

34 end

35

36 % Gather R into Toeplitz matrix(T1) and one-lag shifted Toeplitz matrix(T2)

37 for j=1:i

38 ln=0;

39 for k=i:-1:1

40 ln=ln+1;

41 T1(j,k)=R(ln+j-1); %4.206

42 T2(j,k)=R(ln+j); %4.216

43 end

44 end

45

46 % Toeplitz matrixes in array form

47 Ta1=cell2mat(T1);

48 Ta2=cell2mat(T2);

49

50 % SVD of the block Toeplitz matrix with U, Sum and V

51 [U,S,V] = svd(Ta1); %4.212

52 s=diag(S);

53 clear S Ta1 T1 T2 ln R N Y j k

54 %-------------------------------------------------------------------------%

55

56

57 %----Calculation of state matrix A and modal parameters for each order----%

58 f=zeros(n,n); %Define for computer efficiency

59 c=zeros(n,n); %Define for computer efficiency

60 for k=1:n
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61 ss=diag(sqrt(s(1:k))); %Define for later use

62 Oi=U(:,1:k)*ss; %Observability matrix Oi. 4.213

63 Ti=ss*V(:,1:k).'; %Reversed controllability matrix Ti 4.214

64

65 %C=Oi(1:l,1:k); %Output influence matrix C 4.209

66 %G=Ti(1:k,l*i-l+1:l*i); %Next state-output covariance matrix G 4.210

67

68 A=inv(ss)*U(:,1:k).'*Ta2*V(:,1:k)*inv(ss); %State matrix A 4.217

69

70 [phi,M] = eig(A); %Eigenvalue solution of A 4.77

71 my=diag(M); %Eigenvalues from diagonal matrix M

72

73 %mode{k}=[C]*phi; %Mode shapes 4.79

74

75 lambda= log(my)/dt; %From discrete-time to continuous time

76

77 f(1:k,k)=abs(lambda); %Natural frequencies (rad/s) 4.137

78 %fd(1:k,k)=imag(lambda); %Damped modal frequencies (rad/s) 4.138

79 c(1:k,k)=-real(lambda)./abs(lambda);%Damping ratio 4.139

80 end

81 %-------------------------------------------------------------------------%

82

83 StabDiag(f,c,n,1); %Stabilization Diagram

84 end

A.6 SSIData.m

1 function [f,c] = SSIData(Y,dt,n,x)

2

3

4 % SSIData: Data-Driven Stochastic Subspace Identification Method

5 %

6 % [f,c] = SSIData(Y,dt,n)
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7 %

8 %

9 % INPUTS Y: Data matrix from time series

10 % dt: Time step

11 % n: Max system order

12 % x: Magnitude of block rows i

13 %

14 % OUTPUTS f: Natural frequencies of the system

15 % c: Damping ratio of the system

16 %

17 % REQUIRED FUNCTIONS

18 % StabDiag.m

19 %

20 %

21 % Sindre Schanke 2015

22

23

24 %----------------------------Initial steps--------------------------------%

25 [l,N]=size(Y); %Measurement channels and number of measurements

26 i=x*ceil(n/l); %Number of block rows >= n/l 4.207

27 j=N-2*i+1; %Number of columns j in practical applications

28 %-------------------------------------------------------------------------%

29

30

31 %-----------------------Hankel matrix with SVD----------------------------%

32 %Hankel Matrix

33 H=zeros(l*2*i,j);

34 for k=1:2*i

35 H((k-1)*l+1:k*l,:)=Y(:,k:k+j-1); %4.229

36 end

37

38 %LQ factorization

39 [Q,L]=qr(H',0); %4.233

40 L=L'; %Lower triangular matrix L 4.234

41 Q=Q'; %Orthonormal matrix Q 4.235

42
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43 %Values from L and Q matrixes which are used later

44 L21=L(l*i+1:l*i+l,1:l*i);

45 L22=L(l*i+1:l*i+l,l*i+1:l*i+l);

46 L31=L(l*i+l+1:2*l*i,1:l*i);

47 L32=L(l*i+l+1:2*l*i,l*i+1:l*i+l);

48 Q1=Q(1:l*i,:);

49 Q2=Q(l*i+1:l*i+l,:);

50

51 %Projection

52 Pi=[L21;L31]*Q1; %4.236

53 Pim=[L31 L32]*[Q1;Q2]; %4.237

54

55 %Output sequence

56 Yi=[L21 L22]*[Q1;Q2]; %4.238

57

58 %SVD

59 [U,S]=svd(Pi); %4.240

60 s=diag(S);

61

62 clear L Q L21 L22 L31 L32 Q1 Q2 H S N Y

63 %-------------------------------------------------------------------------%

64

65

66 %----Calculation of state matrix A and modal parameters for each order----%

67 f=zeros(n,n); %Define for computer efficiency

68 c=zeros(n,n); %Define for computer efficiency

69 for k=1:n

70 Uk=U(:,1:k); %Define for later use

71 ss=diag(sqrt(s(1:k))); %Define for later use

72 Oi=Uk*ss; %Observability matrix Oi 4.241

73 Si=pinv(Oi)*Pi; %Kalman filter state sequence 4.242

74

75 Oim=Uk(1:l*(i-1),:)*ss;%Observability matrix Oi with last l row deleted

76 Sip=pinv(Oim)*Pim; %Kalman state sequence 4.244

77

78 RHS=[Sip;Yi]*pinv(Si); %4.246
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79 A=RHS(1:k,:); %State matrix A 4.246

80 %C=RHS(k+1:k+l,:); %Output influence matrix C 4.246

81

82 [phi,M] = eig(A); %Eigenvalue solution of A 4.77

83 my=diag(M); %Eigenvalues from diagonal matrix M

84

85 %mode{k}=[C]*phi; %Mode shapes 4.79

86

87 lambda= log(my)/dt; %From discrete-time to continuous time

88

89 f(1:k,k)=abs(lambda); %Natural frequencies (rad/s) 4.137

90 %fd(1:k,k)=imag(lambda); %Damped modal frequency (rad/s) 4.138

91 c(1:k,k)=-real(lambda)./abs(lambda); %Damping ratio 4.139

92 end

93 %-------------------------------------------------------------------------%

94

95 StabDiag(f,c,n,1); %Stabilization Diagram

96 end

A.7 StabDiag.m

1 function [] = StabDiag(f,c,n,l)

2

3

4 % StabDiag: Plot Stabilization Diagram

5 %

6 % [] = StabDiag(f,c,n,l)

7 %

8 %

9 % INPUTS f: Natural frequencies of the system

10 % c: Damping ratio of the system

11 % n: Max system order

12 % l: For PLSCF: Number of measurement channels
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13 % For other methods: l=1

14 %

15 %

16 % Sindre Schanke 2015

17

18

19 %-------------Plotting the results in a stabilization diagram-------------%

20 %Sorting frequencies and damping ratio

21 f(~f) = nan;

22 [f,ix]=sort(f);

23 c(~c) = nan;

24 for p=1:size(c,1)

25 if p<n+1

26 c(:,p)=c(ix(:,p),p);

27 end

28 end

29

30 %Checking stability requirements for frequencies and damping ratio

31 fu(:,1)=f(:,1); %Unstable frequencies

32 fs(:,1)=nan; %Stable frequencies

33 fcu(:,1)=f(:,1); %Unstable damping ratios

34 fcs(:,1)=nan; %Stable damping ratios

35 for k=2:n

36 for j=1:n*l

37 ch=0;

38 chd=0;

39 for m=1:n*l

40 if ch == 0

41 sf=abs(f(m,k-1)-f(j,k))/f(m,k-1); %Checking for frequency

42 if sf < 0.005 %Limit value for frequency

43 fs(j,k)=f(j,k);

44 fu(j,k)=nan;

45 ch=1;

46 else

47 fu(j,k)=f(j,k);

48 fs(j,k)=nan;
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49 ch=0;

50 end

51 end

52 if chd == 0

53 sc=abs(c(m,k-1)-c(j,k))/c(m,k-1); %Checking for damping

54 if sc < 0.05 %Limit value for damping ratio

55 fcs(j,k)=f(j,k);

56 fcu(j,k)=nan;

57 chd=1;

58 else

59 fcu(j,k)=f(j,k);

60 fcs(j,k)=nan;

61 chd=0;

62 end

63 end

64 end

65 end

66 end

67

68 %Plotting

69 figure(1);

70 for k=1:n

71 scatter(fs(:,k),ones(1,n*l)*k,50,'blue');

72 scatter(fu(:,k),ones(1,n*l)*k,50,'red');

73 scatter(fcs(:,k),ones(1,n*l)*k,50,'blue','+');

74 scatter(fcu(:,k),ones(1,n*l)*k,50,'red','+');

75 hold on

76 end

77 hold off

78

79 xlabel('\omega (rad/s)');

80 ylabel('Order');

81 title('Stabilization Diagram');

82 %-------------------------------------------------------------------------%

83 end
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A.8 sobi.m

1 function [A,S] = sobi(Y)

2

3

4 % sobi: Second Order Blind Identification

5 %

6 % [A,S] = sobi(Y)

7 %

8 %

9 % INPUT Y: Data matrix from time series

10 %

11 % OUTPUTS A: Mixing Matrix

12 % S: Sources

13 %

14 % REQUIRED FUNCTIONS

15 % JAD.m

16 %

17 %

18 % Sindre Schanke 2015

19

20

21 %----------------------------Initial steps--------------------------------%

22 [l,N]=size(Y); %Measurement channels and number of measurements

23 p=min(100,ceil(N/3)); %Number of time lags

24 Y=Y-kron(mean(Y')',ones(1,N)); %Make data zero mean

25 %-------------------------------------------------------------------------%

26

27

28 %------------------------Whitening the data-------------------------------%

29 [~,S,V]=svd(Y',0); %SVD of the observed data

30 W= pinv(S)*V'; %Whitening matrix

31 Z=W*Y; %Whitended data 4.265

32 clear S V Y

33 %-------------------------------------------------------------------------%

114



34

35

36 %------------------------Correlation Matrix-------------------------------%

37 k=1;

38 for j=1:l:p*l

39 k=k+1;

40 Rxp=Z(:,k:N)*Z(:,1:N-k+1)'/(N-k+1)/1;

41 Rz(:,j:j+l-1)=sqrt(sum(diag(Rxp'*Rxp)))*Rxp;

42 end;

43 %-------------------------------------------------------------------------%

44

45

46 %------------------Joint Approximate Diagonalization----------------------%

47 [UA] = JAD(l,N,p,Rz);

48 %-------------------------------------------------------------------------%

49

50 %------------------------Mixing matrix and Sources------------------------%

51 A=pinv(W)*UA; %Mixing Matrix 4.277

52 S=UA'*Z; %Sources 4.265 4.276 2.278

53 %-------------------------------------------------------------------------%

54

55 end

A.9 JAD.m

1 function [UA] = JAD(l,N,p,Rz)

2

3

4 % JAD: Perform Joint Approximation Diagonalization

5 %

6 % [UA] = JAD(l,N,p,Rz)

7 %

8 %
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9 % INPUTS l: Measurement channels

10 % N: Number of measurements

11 % p: Number of time lags

12 % Rz: Correlation Matrix

13 %

14 % OUTPUT UA: Unitary matrix

15 %

16 %

17 % Sindre Schanke 2015

18

19

20 %----------------------------Initial steps--------------------------------%

21 UA=eye(l); %Define for later use

22 t=1/sqrt(N); %Treshold

23 %-------------------------------------------------------------------------%

24

25

26 %------------------Joint Approximate Diagonalization----------------------%

27 check=1; %Set to start

28 while check %While under treshold

29 check=0;

30 for j=1:l-1,

31 for k=j+1:l,

32 j1=j:l:p*l;

33 k1=k:l:p*l;

34 G=[Rz(j,j1)-Rz(k,k1);Rz(j,k1)+Rz(k,j1);1i*(Rz(k,j1)-Rz(j,k1))];

35

36 [E,D] = eig(real(G*G'));

37 [~,K]=sort(diag(D));

38

39 angle=E(:,K(3));

40 if angle(1)<0

41 angle=-angle;

42 end

43 c=sqrt(0.5+angle(1)/2);

44 s=0.5*(angle(2)-1i*angle(3))/c;
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45

46 if abs(s)>t

47 check=1;

48 index=[j;k];

49 R=[c -conj(s) ; s c]; %Rotation matrix

50

51 %Update the correlations matrix

52 Rz(index,:)=R'*Rz(index,:);

53 Rz(:,[j1 k1])=[c*Rz(:,j1)+s*Rz(:,k1), ...

54 -conj(s)*Rz(:,j1)+c*Rz(:,k1)];

55

56 %Update unitary matrix

57 UA(:,index)=UA(:,index)*R;

58 end

59 end

60 end

61 end

62 %-------------------------------------------------------------------------%

63

64 end

A.10 sobifind.m

1 function [f,c] = sobifind(S,dt)

2

3

4 % sobi find: Find frequencies and damping ratio from sources (sobi)

5 %

6 % [f,c] = sobi find(S,dt)

7 %

8 %

9 % INPUTS Y: Sources from SOBI

10 % dt: Time step
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11 %

12 % OUTPUTS f: Natural frequencies of the system

13 % c: Damping ratio of the system

14 %

15 %

16 % Sindre Schanke 2015

17

18

19 %----------------------------Initial steps--------------------------------%

20 [l,N]=size(S); %Measurement channels and number of measurements

21 nfft=2048*512; %Number of samples to use in FFT

22 np=7; %Number of peaks

23 freq=2*pi*[0:nfft-1].'*1/(dt*nfft); %Frequency in rad/s

24 %-------------------------------------------------------------------------%

25

26

27 %------Calculations of modal parameters for each measurement channel------%

28 for k=1:l

29 g(:,k)=fft(S(k,:),nfft)/N; %Fast fourier transform

30

31 [~,top]=max(abs(g(:,k))); %Find peak

32

33 ns=floor(np/2); %Number of surrounding values

34 if top<(ns+1) %To avoid negative ie

35 ie=(1:np);

36 else

37 ie=(top-ns:top+ns);

38 end

39

40 A=[g(ie,k),ones(np,1)];

41 B=1i*freq(ie).*g(ie,k);

42 x=A\B; %Solve system of linear equations

43

44 lambda=x(1); %Eigenvalues

45

46 f(k,1)=abs(lambda); %Natural frequencies (rad/s) 4.137
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47 %fd(k,1)=imag(lambda); %Damped modal frequency (rad/s) 4.138

48 c(k,1)=-real(lambda)./abs(lambda); %Damping ratio 4.139

49 end

50 %-------------------------------------------------------------------------%

51 end

A.11 mpsd.m

1 function [Sy,f]=mpsd(Y,win,dt,nfft,noverlap)

2

3

4 % mpsd: Compute Power Spectral density (PSD) and Cross Power Spectral

5 % density (CPSD) by Welch's averaging method and gather them into an

6 % array matrix

7 %

8 % [Sy,f]=mpsd(Y,win,fs,nfft,noverlap)

9 %

10 %

11 % INPUTS Y: Data matrix from time series

12 % win: Windowing fuction and number of samples for each section

13 % dt: Time step

14 % noverlap: Fraction which the sections overlap

15 % nfft: Number of samples to use in FFT

16 %

17 % OUTPUTS Sy: PSD and CPSD in array form

18 % freq: Frequency vector of PSD in rad/s

19 %

20 %

21 % Sindre Schanke 2015

22

23

24 %----------------------------Initial steps--------------------------------%

25 [l,N]=size(Y); %Measurement channels and number of measurements
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26 fs=1/dt; %Sampling frequency in Hz

27 f=2*pi*(0:nfft/2)*(fs/nfft); %Frequency vector in rad/s

28 %-------------------------------------------------------------------------%

29

30

31 %---------------------Calculate PSDs and CPSDs----------------------------%

32 n=(floor((N-nfft)/(nfft*(1-noverlap))))+1; %Number of windows to be applied

33 for i=1:l

34 for ie=1:l

35 S1=zeros(nfft,1);

36 index=1:nfft; %Intial index

37 for j=1:n

38 X1=win.*Y(i,index)';

39 if i==ie %Calculate PSD

40 S1=S1+fft(X1,nfft).*conj(fft(X1,nfft));

41 else %Calculate CPSD

42 Y1=win.*Y(ie,index)';

43 S1=S1+fft(X1,nfft).*conj(fft(Y1,nfft));

44 end

45 index=index+floor((nfft*(1-noverlap))); %Update index

46 end

47

48 S1=S1/mean(win.ˆ2); %Compensate for windowing

49 S1=S1(1:((nfft/2)+1),:); %Remove second half(reflection)

50 S1=S1/n; %Average power by number of windows

51 S1=S1/(fs*nfft); %Normalize by sampling rate & window length

52 S1(2:end-1)=2.*S1(2:end-1); %Account for double-sided nature of FFT

53 Sy{i,ie}=S1; %Save in Output matrix

54 end

55 end

56 %-------------------------------------------------------------------------%

57

58 end
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A.12 PSDplot.m

1 function PSDplot(Sy,freq)

2

3

4 % PSDplot: Plot PSD and CPSD for selected measurement channels

5 %

6 % PSDplot(Sy,freq)

7 %

8 %

9 % INPUTS Sy: PSD and CPSD in array form

10 % freq: Frequency vector of PSD in rad/s

11 %

12 %

13 % Sindre Schanke 2015

14

15

16 %----------------------------Initial steps--------------------------------%

17 l=length(Sy);

18 %-------------------------------------------------------------------------%

19

20

21 %------------------------Plotting the results-----------------------------%

22 figure(1)

23 for i=1:l

24 for j=1:l

25 subplot(l,l,(i-1)*l+j)

26 plot(freq,real(Sy{i,j}),'blue') %Plotting real part

27 if i~=j %If CPSD

28 hold on

29 plot(freq,imag(Sy{i,j}),'red') %Plotting imaginary part

30 end

31 title(['S',num2str(i),num2str(j)])

32 xlabel('\omega (rad/s)')

33 xlim([0 7])
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34 hold off

35 end

36 end

37 %-------------------------------------------------------------------------%

38

39 end

A.13 PSDplot2.m

1 function PSDplot2(Sy,freq)

2

3

4 % PSDplot: Plot PSD and Coherence for selected measurement channels

5 %

6 % PSDplot(Sy,freq)

7 %

8 %

9 % INPUTS Sy: PSD and CPSD in array form

10 % freq: Frequency vector of PSD in rad/s

11 %

12 %

13 % Sindre Schanke 2015

14

15

16 %----------------------------Initial steps--------------------------------%

17 l=length(Sy);

18 Nf=length(freq);

19 %-------------------------------------------------------------------------%

20

21

22 %---------------------------Find Coherence--------------------------------%

23 for i=1:l

24 for j=1:l
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25 for ie=1:Nf

26 if i~=j

27 Coh{i,j}(ie)=abs(Sy{i,j}(ie))ˆ2/(Sy{i,i}(ie)*Sy{j,j}(ie));

28 end

29 end

30 end

31 end

32 %-------------------------------------------------------------------------%

33

34

35 %------------------------Plotting the results-----------------------------%

36 figure(1)

37 for i=1:l

38 for j=1:l

39 subplot(l,l,(i-1)*l+j)

40 if i==j

41 plot(freq,real(Sy{i,j})) %Plotting PSD

42 title(['S',num2str(i),num2str(j)])

43 else

44 plot(freq,real(Coh{i,j})) %Plotting Coherence

45 title(['Coherence',num2str(i),num2str(j)])

46 end

47 xlabel('\omega (rad/s)')

48 xlim([0 7])

49 end

50 end

51 %-------------------------------------------------------------------------%

52

53 end

A.14 FDD.m

1 function [S] = FDD(Sy,freq)
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2

3

4 % FDD: Frequency Domain Decomposition Method

5 %

6 % [S] = FDD(Sy,freq)

7 %

8 %

9 % INPUTS Sy: PSD and CPSD in array form

10 % freq: Frequency vector of PSD in rad/s

11 %

12 % OUTPUT S: Singular values

13 %

14 %

15 % Sindre Schanke 2015

16

17

18 %----------------------------Initial steps--------------------------------%

19 Nf = length(freq);

20 [l,N]=size(Sy);

21 %-------------------------------------------------------------------------%

22

23

24 %--------------Rearranging and finding the singular values----------------%

25 for i =1:Nf

26 for j=1:l

27 for k=1:N

28 G(j,k) = Sy{j,k}(i); %Arrange PSD and CPSD by frequency line

29 end

30 end

31 [~,Si] = svd(G); % Take SVD of PSD

32 for j=1:l

33 S(i,j)=Si(j,j); %Gather singular values

34 end

35 end

36 %-------------------------------------------------------------------------%

37
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38 end

A.15 LSCF.m

1 function [f,c] = LSCF(Sy,freq,dt,n)

2

3

4 % LSCF: Least Squares Complex Frequency Method

5 %

6 % [f,c] = LSCF(Sy,freq,dt,n)

7 %

8 %

9 % INPUTS Sy: PSD and CPSD in array form

10 % freq: Frequency vector of PSD in rad/s

11 % dt: Time step

12 % n: Max system order

13 %

14 % OUTPUTS f: Natural frequencies of the system

15 % c: Damping ratio of the system

16 %

17 % REQUIRED FUNCTIONS

18 % StabDiag.m

19 %

20 %

21 % Sindre Schanke 2015

22

23

24 %----------------------------Initial steps--------------------------------%

25 l=length(Sy); %Measurement channels

26 Nf=length(freq); %Number of frequency lines

27 for i=1:Nf

28 for j=1:l

29 for k=1:l
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30 G{i}((j-1)*l+k) = Sy{j,k}(i); %PSD and CPSD by freq line 4.113

31 end

32 end

33 end

34 clear Sy i j k

35 %-------------------------------------------------------------------------%

36

37

38 %-----Calculation of coefficients and modal parameters for each order-----%

39 f=zeros(n,n); %Define for computer efficiency

40 c=zeros(n,n); %Define for computer efficiency

41 for j=1:n

42 Md=zeros(j+1); %Define for later use

43 I0=zeros(Nf,j+1); %Define for computer efficiency

44 for m=0:j

45 I0(:,m+1)=exp(1i*freq*dt*m); %4.126

46 end

47 I0i=I0'; %Calculate complex transpose for later use

48 Rk=real(I0i*I0); %Calculate here to avoid multiple calculations 4.129

49

50 for k=1:l*l

51 Yk=zeros(Nf,j+1); %Define for computer efficiency

52 for ie=1:Nf

53 Yk(ie,:)=-G{ie}(k)*I0(ie,:); %4.127

54 end

55 Sk=real(I0i*Yk); %4.130

56 Tk=real(Yk'*Yk); %4.131

57 Md=Md+2*(Tk-Sk'*inv(Rk)*Sk); %4.134

58 clear Yk Sk Tk

59 end

60 clear Rk I0 I0i

61

62 delta=[-inv(Md(1:j,1:j))*Md(1:j,j+1);1]; %4.135

63 my=roots(fliplr(delta')); %Solve 4.115 for z

64

65 lambda= log(my)/dt; %From discrete-time to continuous time
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66

67 f(1:j,j)=abs(lambda); %Natural frequencies (rad/s) 4.137

68 %fd(1:k,k)=imag(lambda(1:k,k)); %Damped modal frequency (rad/s) 4.138

69 c(1:j,j)=-real(lambda)./abs(lambda);%Damping ratio initial calc 4.139

70

71 clear lambda my delta Md

72 end

73 %-------------------------------------------------------------------------%

74

75 StabDiag(f,c,n,1); %Stabilization Diagram

76 end

A.16 pLSCF.m

1 function [f,c] = pLSCF(Sy,freq,dt,n)

2

3

4 % pLSCF: Poly-Reference Least Squares Complex Frequency Method

5 %

6 % [f,c] = pLSCF(Sy,freq,dt,n)

7 %

8 %

9 % INPUTS Sy: PSD and CPSD in array form

10 % freq: Frequency vector of PSD in rad/s

11 % dt: Time step

12 % n: Max system order

13 %

14 % OUTPUTS f: Natural frequencies of the system

15 % c: Damping ratio of the system

16 %

17 % REQUIRED FUNCTIONS

18 % StabDiag.m

19 %
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20 %

21 % Sindre Schanke 2015

22

23

24 %----------------------------Initial steps--------------------------------%

25 l=length(Sy); %Measurement channels

26 Nf=length(freq); %Number of frequency lines

27 for i =1:Nf

28 for j=1:l

29 for k=1:l

30 G{i}(j,k) = Sy{j,k}(i); %PSD and CPSD by freq line 4.149

31 end

32 end

33 end

34 clear Sy i j k

35 %-------------------------------------------------------------------------%

36

37

38 %--Calculation of companion matrix A and modal parameters for each order--%

39 f=zeros(n*l,n); %Define for computer efficiency

40 c=zeros(n*l,n); %Define for computer efficiency

41 for k=1:n

42 M=zeros((k+1)*l); %Define for later use

43 I0=zeros(Nf,k+1); %Define for computer efficiency

44 for m=0:k

45 I0(:,m+1)=exp(1i*freq*dt*m); %4.159

46 end

47 I0i=I0'; %Calculate complex transpose for later use

48 R0=real(I0i*I0); %Calculate here to avoid multiple calculations 4.163

49

50 for o=1:l

51 Y0=zeros(Nf,(k+1)*l); %Define for computer efficiency

52 for j=1:Nf

53 Y0(j,:)=kron(-I0(j,:),G{j}(o,:)); %4.160

54 end

55 S0=real(I0i*Y0); %4.164
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56 T0=real(Y0'*Y0); %4.165

57 M=M+2*(T0-S0'*inv(R0)*S0); %4.167

58 end

59

60 alfa=[-inv(M(1:k*l,1:k*l))*M(1:k*l,k*l+1:(k+1)*l)]; %4.169

61 clear An j m o S0 T0 R0 I0 Y0

62

63 %Companion matrix 4.170

64 A=zeros(k*l,k*l);

65 A(1:(k-1)*l,l+1:k*l)=eye((k-1)*l);

66 for ie=1:k

67 A((k-1)*l+1:k*l,(ie-1)*l+1:ie*l)=-alfa((ie-1)*l+1:ie*l,:)';

68 end

69

70 %Eigenvalueproblem

71 [~,My] = eig(A);

72 my=diag(My);

73

74 lambda=log(my)/dt; %From discrete-time to continuous time 4.136

75

76 f(1:k*l,k)=abs(lambda); %Natural frequencies (rad/s) 4.137

77 %fd(1:k,:)=imag(lambda); %Damped modal frequency (rad/s) 4.138

78 c(1:k*l,k)=-real(lambda)./abs(lambda);%Damping ratio initial calc 4.139

79

80 clear M My An alfa A my M lambda

81 end

82 %-------------------------------------------------------------------------%

83

84 StabDiag(f,c,n,l); %Stabilization Diagram

85 end

A.17 ModeShapes.m
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1 function [] = ModeShapes(nDofs,geo)

2

3

4 % ModeShapes: Mode Shapes for 2D shear frame

5 %

6 % [] = ModeShapes(nDofs,geo)

7 %

8 %

9 % INPUTS nDofs: Number of storys

10 % geo: Height between floors and width of building [h w]

11 %

12 %

13 % Sindre Schanke 2015

14

15

16 %----------------------------Initial steps--------------------------------%

17 %Construct coordinates

18 for i=1:nDofs

19 coords(i,:)=[0 geo(1)*i]; %Left side of building

20 coords2(i,:)=[geo(2) geo(1)*i]; %Right side of building

21 end

22

23 %Ensure only real value of eigenvectors are used

24 Phi=real(Phi);

25

26 %Scale largest deformation to 1

27 for i=1:length(Phi)

28 m=max(abs(Phi(:,i)));

29 Phi(:,i)=Phi(:,i)/m;

30 end

31 %-------------------------------------------------------------------------%

32

33

34 %-----------------------------Plotting------------------------------------%

35 figure(1)

36 for i=1:length(Phi)
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37 %New coordinates

38 nc=[coords(:,1)+Phi(:,i), coords(:,2)];

39 nc2=[coords2(:,1)+Phi(:,i), coords2(:,2)];

40

41 %Plot undeformed

42 subplot(2,5,i)

43 line([0 coords(1,1)], [0 coords(1,2)]);

44 line([5 coords2(1,1)], [0 coords2(1,2)]);

45 for i=1:length(coords)

46 line([coords(i,1) coords2(i,1)],[coords(i,2) coords2(i,2)]);

47 end

48 for i=2:length(coords)

49 line([coords(i-1,1) coords(i,1)],[coords(i-1,2) coords(i,2)])

50 line([coords2(i-1,1) coords2(i,1)],[coords2(i-1,2) coords2(i,2)])

51 end

52

53 %Plot deformed

54 line([0 nc(1,1)], [0 nc(1,2)],'color','red');

55 line([5 nc2(1,1)], [0 nc2(1,2)],'color','red');

56 for i=1:length(nc)

57 line([nc(i,1) nc2(i,1)],[nc(i,2) nc2(i,2)]);

58 end

59 for j=2:length(nc)

60 line([nc(j-1,1) nc(j,1)],[nc(j-1,2) nc(j,2)],'color','red')

61 line([nc2(j-1,1) nc2(j,1)],[nc2(j-1,2) nc2(j,2)],'color','red')

62 end

63 end

64

65 %Title and labels

66 tekst = findobj(figure(1),'Type','Axes');

67 for i=1:length(tekst)

68 ylabel(tekst(i),{'Meter'})

69 xlabel(tekst(i),{'Meter'})

70 title(tekst(i),{'Mode Shapes'})

71 end

72 %-------------------------------------------------------------------------%
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73

74 end

A.18 ModeShapesYZ.m

1 function [] = ModeShapesYZ()

2

3

4 % ModeShapes: Mode Shapes for 3D plots

5 %

6 % [] = ModeShapes()

7 %

8 %

9 % INPUTS f:

10 %

11 % REQUIRED FUNCTIONS

12 % Hardangergeo.m

13 %

14 %

15 % Sindre Schanke 2015

16

17

18 %----------------------------Initial steps--------------------------------%

19 load('HB141M-2014-02-03 00-00-56.mat') %Load data

20 coord=HB.Prop.SensorPositions(:,1:20); %Load coordinates

21 coord(:,17:20)=[-20 -20 1310 1310;10 -10 10 -10;50 50 50 50]; %Set BC

22

23 %Sort coordinates

24 x=coord(1,:);

25 y=coord(2,:);

26 z=coord(3,:);

27

28 %Ensure only real value of eigenvectors are used
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29 Phi=real(Phi);

30 s=size(Phi); %Find mode shapes to be plotted

31

32 %Scale largest deformation to a number

33 for i=1:s(2)

34 m=max(abs(Phi(:,i)));

35 Phi(:,i)=Phi(:,i)/m;

36 end

37

38 %Set deformation at boundary conditions=0

39 Phi(49:60,:)=0;

40 Phi(2:3:20,:)=-Phi(2:3:20,:);

41 %-------------------------------------------------------------------------%

42

43

44 %-----------------------------Plotting------------------------------------%

45 %Horizontal plane

46 for i=1:s(2)

47 figure(i)

48 subplot(2,1,1)

49 scatter(x,y,z) %Show sensors

50 hold on

51

52 %Underformed

53 Hardangergeo(x,y,1,1) %Plot lines between undeformed points

54

55 %Deformed

56 %New coordinates

57 nx=x+Phi(1:3:58,i)';

58 ny=y+Phi(2:3:59,i)';

59 nz=z+Phi(3:3:60,i)';

60

61 scatter(nx,ny,nz,'red') %Show sensors with deformation

62 Hardangergeo(nx,ny,0,0) %Plot lines between deformed points

63 hold off

64
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65 %Title

66 title(['Mode',num2str(i)])

67 ylabel('y')

68 set(gca, 'YTickLabelMode', 'manual', 'YTickLabel', []);

69 end

70

71 %Vertical plane

72 for i=1:s(2)

73 figure(i)

74 subplot(2,1,2)

75 scatter(x,z) %Show sensors

76 hold on

77

78 %Underformed

79 Hardangergeo(x,z,1,1) %Plot lines between undeformed points

80

81 %Deformed

82 %New coordinates

83 nx=x+Phi(1:3:58,i)';

84 ny=y+Phi(2:3:59,i)';

85 nz=z+Phi(3:3:60,i)';

86 scatter(nx,nz,'red') %Show sensors with deformation

87 Hardangergeo(nx,nz,0,0) %Plot lines between deformed points

88 hold off

89

90 %Title

91 ylabel('z')

92 xlabel('x')

93 set(gca, 'YTickLabelMode', 'manual', 'YTickLabel', []);

94 end

95 %-------------------------------------------------------------------------%

96

97 end
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A.19 Hardangergeo.m

1 function [] = Hardangergeo(x,y,c,f)

2

3

4 % Hardangergeo: Draw up the geometry for the Hardanger bridge

5 %

6 % [] = Hardangergeo(x,y,c,f)

7 %

8 %

9 % INPUTS x: x-coordinates

10 % y: y/z-coordinates

11 % c: 1 for blue and 0 for red

12 % f: 1 for drawing lines across bridge

13 %

14 %

15 % REQUIRED FUNCTIONS

16 % Hardangergeo.m

17 %

18 %

19 % Sindre Schanke 2015

20

21 if c==1

22 d='blue';

23 else

24 d='red';

25 end

26

27 line([x(19) x(1)],[y(19) y(1)],'color',d)

28 line([x(20) x(2)],[y(20) y(2)],'color',d)

29 line([x(1) x(4)],[y(1) y(4)],'color',d)

30 line([x(2) x(3)],[y(2) y(3)],'color',d)

31 line([x(3) x(5)],[y(3) y(5)],'color',d)

32 line([x(4) x(6)],[y(4) y(6)],'color',d)

33 line([x(5) x(7)],[y(5) y(7)],'color',d)
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34 line([x(6) x(8)],[y(6) y(8)],'color',d)

35 line([x(7) x(9)],[y(7) y(9)],'color',d)

36 line([x(8) x(10)],[y(8) y(10)],'color',d)

37 line([x(9) x(11)],[y(9) y(11)],'color',d)

38 line([x(10) x(12)],[y(10) y(12)],'color',d)

39 line([x(11) x(13)],[y(11) y(13)],'color',d)

40 line([x(12) x(14)],[y(12) y(14)],'color',d)

41 line([x(13) x(16)],[y(13) y(16)],'color',d)

42 line([x(14) x(15)],[y(14) y(15)],'color',d)

43 line([x(15) x(17)],[y(15) y(17)],'color',d)

44 line([x(16) x(18)],[y(16) y(18)],'color',d)

45

46 if f==1

47 line([x(1) x(2)],[y(1) y(2)],'color',d)

48 line([x(4) x(5)],[y(4) y(5)],'color',d)

49 line([x(6) x(7)],[y(6) y(7)],'color',d)

50 line([x(8) x(9)],[y(8) y(9)],'color',d)

51 line([x(10) x(11)],[y(10) y(11)],'color',d)

52 line([x(12) x(13)],[y(12) y(13)],'color',d)

53 line([x(14) x(15)],[y(14) y(15)],'color',d)

54 line([x(15) x(16)],[y(15) y(16)],'color',d)

55 else

56 end

57

58 end
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Appendix B

Chapter 3 Additional Figures

Figure B.1: Singular value plots high damping
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Figure B.2: Stabilization diagram with LSCF low damping nmax = 400

Figure B.3: Damping ratios with pLSCF low damping
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Figure B.4: Stabilization diagram with pLSCF high damping nmax = 50

Figure B.5: Stabilization diagram with pLSCF high damping nmax = 100
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Figure B.6: Damping ratios with pLSCF high damping
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Appendix C

Chapter 4 Additional Figures

Figure C.1: Stabilization diagram using Cov-SSI with x = 1
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Figure C.2: Stabilization diagram using Cov-SSI with x = 5

Figure C.3: Stabilization diagram using Cov-SSI with x = 10
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Figure C.4: Damping ratios using Cov-SSI with x = 1

Figure C.5: Damping ratios using Cov-SSI with x = 5
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Figure C.6: Damping ratios using Cov-SSI with x = 10

Figure C.7: Stabilization diagram using DD-SSI with x = 2
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Figure C.8: Stabilization diagram using DD-SSI with x = 4

Figure C.9: Damping ratios using DD-SSI with x = 2
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Figure C.10: Damping ratios using DD-SSI with x = 4

Figure C.11: PSD and Coherence for NFFT = 4096
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Figure C.12: PSD and Coherence for NFFT = 16384

Figure C.13: Singular value plots for NFFT = 4096
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Figure C.14: Singular value plots for NFFT = 16384

Figure C.15: Singular value plots for NFFT = 32768

148



Figure C.16: Stabilization diagram using LSCF nmax = 300

Figure C.17: Stabilization diagram using LSCF nmax = 400
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Figure C.18: Stabilization diagram using LSCF nmax = 500

Figure C.19: Stabilization diagram using pLSCF
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Figure C.20: Damping ratios using pLSCF
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