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1. INTRODUCTION

Low weight and excellent formability make polymer materials attractive for an increasing number of 
applications. However, the comparatively low stiffness and strength of these materials is a challenge. These 
properties can be substantially improved by including fibres during the production process. According to 
today’s design practice, for instance in the automotive and offshore industry, most parts in a structure, 
including those made of polymers, are modelled and analysed with the finite element method. To accurately 
predict the behaviour of the materials, the designers need reliable material models. For fibre-reinforced 
polymers, however, the existing models still need improvements.

2. OBJECTIVES

The research project has three main objectives: (1) to implement a material model for fibre-reinforced 
polymers in the nonlinear finite element code Abaqus; (2) to verify and validate the implementation by use of 
experimental, analytical and numerical results from the literature; (3) to apply the material model in a 
parametric study on the behaviour of fibre-reinforced polymer components.

3. A SHORT DESCRIPTION OF THE RESEARCH PROJECT

The main topics in the research project will be as follows;

1. Literature review: Perform a literature review on the behaviour and modelling of fibre-reinforced 
polymers and on characterization methods for fibre content and fibre distribution. 

2. Model formulation: Establish the mathematical formulation of the material model for fibre-reinforced 
polymers.

3. Numerical implementation: Establish the algorithms for integration of the rate constitutive equations and 
implement the material model in Abaqus.

4. Verification and validation: Use existing experimental, analytical and numerical results to verify and 
validate the implemented material model. 

5. Parameter identification: Establish a method for identifying the model parameters based on experimental 
data with particular emphasis on the effects of the fibres.

6. Numerical study: Perform a parametric study on the behaviour of fibre-reinforced polymer components 
as a function of the fibre content and fibre distribution. 
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Abstract

This thesis is concerned with the constitutive modelling of short fibre-
reinforced composites in the finite element code Abaqus/Explicit. The
model is presented as a generic framework which is based on a two-phase
representation of the composite material. The fibres and matrix define
the two phases. The fibre phase is characterised by its volume fraction
and a discrete representation of the orientation distribution where each
discrete representative is modelled with a simple one-dimensional elas-
tic constitutive relation. The matrix phase is modelled with a pressure
sensitive elastic-plastic mechanical behaviour, but the generic framework
allows for the easy implementation of other constitutive relations as well.
The contributions from both phases are scaled based on their respective
volume fractions and added together to form a tangible stress state.

The model is then implemented in FORTRAN. The implementation is
verified through a series of comparisons to other existing models and so-
lutions. The verification process yielded reasonable results and the model
is assumed to be working according to the established foundation.

Experimental data from uniaxial tensile tests of fibre-reinforced polypropy-
lene retrieved from a literature source were used in the validation of the
model. The validation process disclosed the potency of the model, but
also some shortcomings. Finally, concrete suggestions for improving the
model are presented.
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Chapter1Introduction

1.1 Motivation

In an ever demanding technological era, the interaction between material and
component design is becoming increasingly important. High requirements
in material properties such as formability, weight, stiffness, strength and es-
pecially the combinations of all of these, often make traditional engineering
materials such as metals, insufficient. As a results of this increase in efficiency
requirements, the spotlight shines increasingly brighter on composite mate-
rials. The automotive industry is just one of the examples of industries that
embraces and develop the potential in these kind of materials.

There are numerous attempts for estimating the macroscopic mechanical re-
sponse for composites based on microscopic properties. Kelly and Tyson [1]
presents the basic concept of the now well known rule-of-mixture which weights
the phase contribution based on volume fraction. Bowyer and Bader [2] ac-
counts for the length and orientation of the fibres by enriching the rule-of-
mixture by correctional parameters. More recent models have also been de-
veloped [3, 4]. According to present day demands, more complex methods
of analysis are needed. Today, many structures are analysed with the finite
element method which needs reliable material models to properly predict the
capabilities of components [5, 6]. Notta-Cuvier et al. presented an efficient
material model for short fibre-reinforced composites in [7] in 2013. The pro-
posed model uses a two-dimensional representation of the fibre orientations
within the fibre phase. The contribution from all fibres are calculated based

1



2 CHAPTER 1. INTRODUCTION

on the mechanical response of discrete fibre representatives. The individual
responses are superimposed through a rule-of-mixture along with the con-
tribution from the matrix phase. Some of the same authors have proposed
extensions of the model in [7] in a series of papers [8, 9, 10] where more com-
plex fibre orientations and implementation of damage phenomena in both
matrix and fibres have been included. Large parts of the thesis herein has
been concerned with creating and implementing a very similar model to the
one proposed in [7]. The model described in [7] is essentially a framework
which can be easily remodelled to be used along with existing models devel-
oped at SIMLab.

Although the popularity in the study of short fibre-reinforced composites has
been on composites where fibres are applied as reinforcements to polymers,
the application for the following concepts is not necessarily restricted to re-
inforced plastics as demonstrated in [7]. The model presented in this thesis
is therefore dubbed the Short Fibre-Refinforced Materials-model or simply the
SFRM-model.

1.2 Objectives

The objective of this thesis is to create and quality assure the foundation and
implementation of a constitutive material model for short fibre-reinforced
materials which takes the distribution of fibre orientations and fibre volume
content into account. The objective is divided into sub-objectives which in-
cludes

1. the establishment of the mathematical foundation for the material model,

2. the implementation of the material model to be used in the nonlinear
finite element code Abaqus/Explicit,

3. a verification process of the implementation by comparison with exist-
ing solutions,

4. and a validation process of the established model through comparison
with experimental uniaxial tensile data.
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1.3 Scope

The scope of the thesis presented herein is confined to the following:

• Rate-independent constitutive modelling of both phases.

• No modelling of damage for fibres, matrix nor fibre/matrix-interphase.

• Verification and validation are confined to uniaxial tensile test speci-
mens.

1.4 Overview of thesis

This thesis report is divided into chapters which presents the development of
the SFRM-model in chronological order. A short description of each chapter
is found below.

Chapter 2: Essential theory
Chapter 2 contains a presentation of the theoretical foundation which is
needed to fully grasp the concepts and results presented herein.

Chapter 3: SFRM-model
Chapter 3 presents the SFRM-model starting with the overall frame-
work and ending with the actual source code implementation. The
chapter is designed to give the reader a structured and intuitive under-
standing of the model through illustrations and pseudo formulations of
various notions.

Chapter 4: Verification
Chapter 4 sets out to present the verification process of the implemented
model. The chapter presents an outline of the preliminary controls
made during development and a series of comparisons of the SFRM-
model to different solutions.

Chapter 5: Validation
Chapter 5 applies the SFRM-model to experimental tensile test results
of fibre-reinforced polypropylene retrieved from the master’s thesis of
Anne Amundsen [11].
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Chapter 6: Future work
Chapter 6 presents concrete suggestions for future development and
work related to the SFRM-model.

Chapter 7: Conclusion
Chapter 7 presents a summary of the results produced in this thesis
along with concluding remarks.



Chapter2Essential theory

2.1 Expected prior knowledge

When reading this thesis, the reader is presumed to have prior knowledge
in the fields: materials mechanics, continuum mechanics, numerical meth-
ods, linear algebra, computer programming, material science, statistical the-
ory and the Abaqus FEA software suite. The following sections are meant to
give the reader an understanding of the theories which are needed to fully un-
derstand the SFRM-model. It is not meant as an thorough introduction, but
as a refreshment of prior knowledge. In order to fully grasp the concepts, the
reader is referred to the listed literature references at the end of each section.
The theory presented in the following sections are based upon these listed
sources.

2.2 Materials science

2.2.1 Directional dependency

If a material’s properties are invariant of direction, the material properties are
said to be isotropic. Material properties that exhibits different behaviour with
respect to material direction is said to be anisotropic. The degree of anisotropy
that a property may exhibit is related to the degree of symmetry within the
material. Several material processes may introduces anisotropic behavior in
a material such as extrusion of component members and reinforcements in a
composite.

5



6 CHAPTER 2. ESSENTIAL THEORY

For a better understanding on the topic of the directional dependencies of
material properties, the reader is referred to [12, 13, 14].

2.2.2 Composite materials

The field of composites is as vast as it is complex. This section sets aim to give
the reader a notion of the type of composites and material phenomena which
the SFRM-model seeks to model.

While composites can be said to have existed for a long time in nature in the
form of materials such as wood and bone the popularity of these tailor-made
materials have greatly risen during the past decades. Callister and Rethwisch
[14] gives a general definition of composites; ...a composite is considered to be
any multiphase material that exhibits a significant proportion of the properties of
both constituent phases such that a better combination of properties is realized.
The constituent phases are chemically different and have a distinguishable
interface that separates them. Although they can be made up of multiple con-
stituent phases, composites often consist of only two. One phase is dispersed
in the other. The continuous and surrounding phase is know as the matrix
phase and holds the second phase which is known as the dispersed phase. A
general categorisation of composites can be made based on the geometry of
the dispersed phase. Figure 2.1 illustrate a simple hierarchical classification
of some different composite types. The bluish coloured path in the figure is
the topical composite type for this thesis.

Common materials used as the matrix phase are polymers, metals and ce-
ramics. Due to lack of toughness in ceramic materials, the introduction of a
dispersed phase, such as fibres, counteracts the matrix’ disposition to catas-
trophic failure. This differs from the general perception of composites where
the fibres are thought to carry most of the applied load. The latter applies to
composites with polymers and metals as the matrix phase [15].

In fibre-reinforced composites, the material consists of a matrix and a fibrous
dispersed phase. Most composites are reinforced with fibres as materials tend
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Composite materials

Particle-reinforced

Large-
particles

Dispersion-
strengthened

Fibre-reinforced

Short

Aligned Misaligned

Continuous

Figure 2.1: General categorization of composites.

to be stronger and stiffer as fibres compared to other forms [15]. The orien-
tations of fibres may vary as illustrated in Figure 2.2. The figure on the left
shows fibres uniformly aligned in one direction. A uniform distribution of fi-
bres is often desired in order to achieve ideal anisotropic material properties.
This is often not possible due to the nature of commonly used fabrication pro-
cesses such as injection molding presented in Section 2.2.3. Fibre-reinforced
composites are further classified based on the length of the fibres. Long con-
tinuous fibres make up one sub-classification. Continuous fibres are normally
aligned and make the reinforcement more effective. The theme for this thesis,
is composites with short fibres in its dispersed phase. Although short (dis-
continous) fibres are not as effective as reinforcements, short fibre-reinforced
composites can be made to have elastic stiffness moduli and tensile strengths
up to 90% of their continuous fibre analogue [14].

Callister and Rethwisch [14] states that there exists a critical fiber length lc
which is necessary for effectively transferring the applied load between the
matrix and fibre phases. Equation 2.1 defines lc as a function of the ulti-
mate tensile strength σUTSf and the diameter d of the fibre, and the phase-
interface bond strength (or the shear yield stress of the matrix - whichever
has the smallest value) τc.

lc =
σUTSf d

2τc
(2.1)

Fibres with length l << lc are termed discontinuous or short. The limit that
separates discontinuous from continuous fibres is normally set to l = 15lc [14].



8 CHAPTER 2. ESSENTIAL THEORY

Figure 2.2: Aligned and misaligned fibres inside a matrix material.

Fabrication processes such as injection molding tend to produce composites
with short fibres shorter than lc with an unfavorable fibre orientations [16].

2.2.2.1 Short fibre reinforced composites

The use of short fibre-reinforced composites (SFRC) in load bearing structures
is becoming increasingly attractive in industrial application due to their many
favorable attributes such as inexpensive fabrication and formability. How-
ever, the formability of SFRCs comes at a cost in terms of efficiency of the
reinforcing fibres. As mentioned above, common fabrication techniques pro-
duces short fibres with lower reinforcing efficiency. The lower efficiency is
partly due to the reduced ability to transfer load from the matrix to the fi-
bres, but also the non-optimal orientations of the fibres [14, 17, 16, 18]. The
SFRCs mechanical properties are also seen to be functions of the fibre content
[16, 19, 11].

The reader is referred to [15, 14] for further reading on the subject of gen-
eral composites.
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Figure 2.3: A simple illustration of the principle of X-ray computed to-
mography.

2.2.3 Injection molding

Injection molding is the most widely used fabrication process for thermoplas-
tic materials. The technique allows for short cycle times and the creation of
components with complex geometries at low unit cost.

The process uses pelletized material which is fed through a feed hopper into
a cylinder. In the cylinder, the material is pushed into a heated chamber by a
hydraulic plunger or ram. The material is forced around a spreader in order
to make contact with the heated walls of the chamber, and melts to form a
viscous liquid. The molten material exits the heated chamber by extrusion
through a nozzle and into a mould cavity where it cools and solidifies. The
direction of which the molten material is injected is referred to as the injection
flow direction. The process is explained with illustrations in [14].

2.3 X-ray computed tomography

X-ray computed tomography (i.e. X-ray CT) refers to the concept of recon-
structing a three-dimensional image of an object based on a series of X-ray
images sampled at different angles.

Figure 2.3 gives a simple illustration of the concept. An object is placed be-
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tween a X-ray source and an X-ray detector. The source radiates the object
with X-rays, which is partly absorbed by the object. The amount of X-rays
absorbed is a function of the different densities present in the object. The
detector detects the X-rays which passes through the object and produces an
image of the internal structure. The object is slightly rotated by a given ro-
tation and a new image is then produced. This procedure is repeated until a
full mapping of the object is achieved. The set of X-ray images is then recon-
structed into a three-dimensional visualisation.

For more information on subject of X-ray CT, the reader is referred to [20].

2.4 Materials mechanics

2.4.1 Large deformations

As the rotations and deformations of a continuum extends beyond the validity
of the theory of small deformation, a more extensive theory is needed. This
section presents the large deformation theory relevant for this thesis.

2.4.1.1 The deformation gradient

When describing large deformations of a continuum, it is important to differ-
entiate between the reference (undeformed) and the current (deformed) con-
figuration. Any material points in the reference and current configurations
are given by the vectors X and x, respectively. These vectors are defined in a
Cartesian coordinate system through the Equations 2.2 and 2.3.

X = Xiei (2.2)

x = xiei (2.3)

ei (i = 1,2,3) are the basis vectors for the Cartesian coordinate system. This is
illustrated in Figure 2.4. Assuming that there exists a function ζ(X, t) which
maps the motion of the continuum, so that

x = ζ(X, t). (2.4)
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X3,x3
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e2

e3
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q
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Reference configuration

Current configuration

Figure 2.4: The reference and current configuration of a continuum.

ζ is assumed to be continuously differentiable with respect to X. The defor-
mation gradient F(X,t) is then defined as

∇ζ = F(X, t) =
∂ζ
∂X

=
∂x
∂X

or Fij =
dxi
dXj

=
dζi
dXj

. (2.5)

An infinitesimal line segment dX is spanned between two material point, P
andQ, in the continuum in the reference configuration. The mapping of these
two points in the current configuration is denoted p and q and the correspond-
ing infinitesimal line segment between is dx. Thus, the relation between the
two line segments in the reference and current configuration of the contin-
uum are given by

dx = FdX or dxi = FijdXj . (2.6)

The theory presented in this section was collected from [13, 21, 22, 23]
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2.4.1.2 Stretch ratio

The stretch ratio λ is a measure of the extensional strain of a differential line
segment. It is defined as the ratio between the lengths of a differential line
segment in its current and reference configuration, respectively. The stretch
ratio is explicitly stated in Equation 2.7 where lcur is the length in the current
configuration while lref is the length in the reference configuration.

λ =
lcur
lref

(2.7)

Seen in context with what stated in Section 2.4.1.1, λ can be expressed as

λ =
‖dx‖
‖dX‖

=
√

NT ·FT ·F ·N. (2.8)

where ‖dx‖ and ‖dX‖ denotes the euclidean norm of dx and dX, respectively.
N is the directional vector of the line segment dX. The reader is referred to
[21] for a more in-depth review on this subject.

2.4.1.3 Corotational reference frame

The deformation of a continuum may be separated into rigid-body motion
and straining. Rigid-body motion can be subdivided into rotations and trans-
lations. A corotated reference frame translate and rotates with the continuum
as the global coordinate system remains fixed. This is illustrated in Figure
2.5. It often necessary to formulate certain theories in a corotated framework,
rather than in the global coordinate system. For further reading, the reader is
referred to [21, 24].

2.4.1.4 True strain

The relationship between the stretch ratio λ and the true strain ε, is given by
Equation 2.9.

ε =

lcur∫
lref

dl
l

= ln
(
lcur
lref

)
= ln(λ) (2.9)
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Figure 2.5: Illustration of a fixed global coordinate system to the left and
a corotated reference frame to the right.

ε

σ

E

Figure 2.6: The blue and green portions of the graph illustrate linear elas-
tic and plastic material response, respectively.

2.4.2 Constitutive relation

A constitutive relation is the relation which relates two physical quantities. In
this thesis, constitutive relations are used to relate stresses and strains. Fig-
ure 2.6 illustrates the relationships between stress and strain for the concepts
presented in the following sections.

2.4.2.1 Linear elasticity

If the relationship between the stresses and strains are linear and the defor-
mation is reversible, the material behavior is said to be linear elastic. Linear
elastic material behavior can be expressed through Hooke’s law. Hooke’s law
is stated for a complex stress state in Equation 2.10.

σij =
E

(1 + νe)
[εij +

νe
(1− 2νe)

δijεkk] (2.10)
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E and νe are the material-specific Young’s modulus and elastic Poisson’s ratio.
For a one-dimensional stress state, Equation 2.10 reduces to Equation 2.11.

σ11 = Eε11 ⇒ σ = Eε (2.11)

The blue line in Figure 2.6 illustrates this one dimensional stress state.

2.4.2.2 Plasticity

The theory of plasticity defines the mechanical response in a solid as it de-
forms beyond the validity of theory of elasticity. The response is highly mate-
rial dependent and the plastic material modelling is therefore based on exper-
imental observations. However, there are three main concepts that are used
to describe plastic material behavior; the yield criterion, the flow rule and the
work-hardening rule. In this section the definition of these concepts and their
individual roles in describing plasticity will be explained.

As a solid is subjected to force it deforms. If the deformation is permanent
when the force is removed, the solid is said to have undergone irreversible
plastic deformation. This deformation occurs after the stress state passes a
critical value known as the yield limit and mathematically this limit is defined
through a yield criterion. The yield criterion is expressed as Equation 2.12.

f (σ ) = 0 (2.12)

The yield criterion consists of a yield function f that is a continuous function
of the stress state σ . The yield criterion in Equation 2.12 can be geometrically
interpreted as a surface in the vector space defined by the components of σ .
This surface is referred to as the yield surface. As the stress state is below the
critical yield limit, and therefore on the inside of the yield surface, the de-
formation is elastic and f (σ ) < 0. It is worth mentioning that f (σ ) > 0 is not
acceptable. An illustration of the yield surface is given in Figure 2.7.

The formulation of the yield function f depends on the chosen yield crite-
rion. The choice of a suitable yield criterion is dependent on the material in
use, and is often based on experience and experiments. For materials such
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σ2

σ1

f (σ ) < 0 : Elastic behavior
f (σ ) = 0 : Yielding
f (σ ) > 0 : Not allowedYield surface

Figure 2.7: Geometric interpretation of the von Mises yield surface in two
dimensions. σ1 and σ2 are the principal stress components.

as metals and alloys, the yield criterion is often assumed to only be depen-
dent on the deviatoric stress state, σ ′ . These materials are said to be pressure
insensitive and the yield function take the form of Equation 2.13.

f (σ ′) = 0 (2.13)

Other materials such as soils, concretes and some polymers, may be assumed
to be pressure sensitive. The yield function for these materials may be defined
as a function of both σ ′ and the hydrostatic stress, σH , and written as in Equa-
tion 2.14

f (σ ′ ,σH ) = 0 (2.14)

A convenient way of writing the yield function is through Equation 2.15 in
terms of effective stress, σe, and flow stress, σy . The different yield criteria differs
in the way the yield function is defined. Table 2.1 gives some examples of
common yield criteria.

f (σ ) = σe(σ )− σy (2.15)

Most materials experience some sort of evolution of their yield surfaces dur-
ing plastic deformation. There are two main notions when it comes to mate-
rial hardening; isotropic hardening and kinematic hardening. Equation 2.16
presents a general yield function with material hardening where p is the equiv-
alent plastic strain and χ is known as the back stress that represents a transla-
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Table 2.1: Common yield criteria.

Name Yield function

Von mises / J2
√

3
2σ
′
ijσ
′
ij - σY

Tresca max(|σ1 − σ2|, |σ2 − σ3|, |σ3 − σ1|) - σY

Drucker-Prager

√
3
2 σ
′
ijσ
′
ij+α

1
3 σH

1+α - σY

tion of the yield surface.

f (σ ,p) = σe(σ −χ(p))− σy(p) (2.16)

Equation 2.17 mathematically defines the cases of hardening. Perfect plastic-
ity represents no evolution of the yield surface, while the two other cases are
illustrated in Figure 2.8.

χ(p) = 0,
∂σy(p)

∂p
= 0 ⇒ perfect plasticity

χ(p) = 0,
∂σy(p)

∂p
> 0 ⇒ isotropic hardening

χ(p) , 0,
∂σy(p)

∂p
= 0 ⇒ kinematic hardening

(2.17)

The green line of Figure 2.6 illustrates the isotropic hardening of a material
subjected to a one-dimensional stress state.

Equation 2.18 presents the decomposition of the total strain increment, dε,
into an elastic contribution and a plastic contribution.

dε = dεe + dεp (2.18)

A flow rule is used to determine the plastic strain increment tensor dεp based
on the stress tensor, σ . It must be chosen in a way that ensures positive dissi-
pation as plastic strains develop.

dεp = dλ
∂g(σ )
∂σ

(2.19)
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σ2

σ1

σ2

σ1

Figure 2.8: Evolution of a Von Mises yield surface due to work-hardening.
The left figure illustrates the concept of isotropic hardening and the right
figure illustrates kinematic hardening.

A general expression for the flow rule is presented Equation 2.19 where dλ
and g(σ ) are known as the plastic multiplier and plastic potential function,
respectively. The stated flow rule is known as a non-assosiated flow rule. If the
plastic potential function is chosen as the yield function f , the resulting flow
rule is defined as assosiated.

For a detailed presentation of the presented concepts, the reader is referred to
[25, 13, 12].

2.4.3 Transformation of stress

Transforming the stress tensor from one coordinate basis systems to another,
can be done through Equation 2.20.

σ =Q ·σ ·QT (2.20)

See section 2.5.3 for the definition of the transformation matrix Q. For a fur-
ther review on the subject of stress transformation, the reader is referred to
[26].
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r

ϕ

θ

Figure 2.9: Convention for the spherical coordinate system.

2.5 Euclidean space

In order to develop the mathematical basis for the model, one must represent
points in geometric space. The systems and techniques used to represent eu-
clidean space are therefore defined in this section.

For further reading on the subjects of presented in Section 2.5.1 and 2.5.2,
the reader is referred to [27].

2.5.1 Spherical coordinate system

The convention used for the spherical coordinate system is illustrated in Fig-
ure 2.9.

• The radial distance r is the euclidean distance between the origin O and
the point P.

• The azimuthal angle θ is defined as the angle between the first axis in
the reference Cartesian coordinate system, X1, and the projection of the
line segment OP onto the reference plane spanned by X1 and X2. Posi-
tive values for θ is given for positive rotations about the reference sys-
tem’s third axis X3 as seen in Figure 2.9.
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X1

X2

x1

x2

θ

Figure 2.10: Rotation of coordinate basis in two dimensions.

• The inclination angle ϕ is defined as the angle between the reference
system’s third axis and the line segment OP.

2.5.2 Coordinate system conversion

The formulas for conversion between Cartesian and spherical coordinates are
given in Equation 2.21.

X1 = r sin(ϕ)cos(θ)

X2 = r sin(ϕ)sin(θ)

X3 = r cos(ϕ)

(2.21)

2.5.3 Coordinate transformations

When describing an object in several bases it is important to establish the
necessary operators. Figure 2.10 illustrates a basis which have been rotated
with respect to a reference system. The relation between the reference system,
X, and the rotated basis, x is given as

X = R · x (2.22)

where R is the rotation matrix. As R is orthogonal, R−1 = RT i.e. RTR = I. RT

is denoted Q and referred to as the transformation matrix, giving rise to

x = Q ·X (2.23)



20 CHAPTER 2. ESSENTIAL THEORY

Transformation matrix, Q:
The coordinate system rotates while the object remains fixed.

Rotation matrix, R:
The object rotates while the coordinate system remains fixed.

As an example, the rotation matrix for the case in Figure 2.10 is

R =
[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
. (2.24)

A general expression for the transformation matrix can be formulated for
three dimensions as done in Equation 2.25.

Q =


x1

1 x2
1 x3

1

x1
2 x2

2 x3
2

x1
3 x2

3 x3
3

 (2.25)

where xji is the j component of the i basis vector for the rotated coordinate
system in the reference coordinate system.

For a more thorough presentation of the theory in Section 2.5.3, the reader
is referred to [28] and [26].

2.6 Statistical theory

This section presents the concepts of the statistical theories that are relevant
for this thesis. Normal distributions have been used to represent the random
variation in fibre properties such as the orientation of fibres in dispersed in the
matrix material, but the concepts also apply to other statistical distributions.

2.6.1 Normal distribution

The normal distribution goes under many names; Bell curve, Gaussian dis-
tribution, Gaussian bell curve, etc. The normal distribution is a continu-
ous probability distribution which is used to model the random variation of
stochastic variables.
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2.6.1.1 Univariate

The univariate normal distribution is the simplest form of normal distribu-
tion. It represents the random variation of one single stochastic variable. The
normal probability density function f is presented in Equation 2.26.

f (x,µ,σ ) =
1

√
2πσ

e−
1
2 ( x−µσ )2

(2.26)

The standard deviation σ is the square root of variance of x which is the
stochastic variable of the univariate distribution and µ is the expected value
of x. The definition of the cumulative distribution function P is defined in 2.27.

P (−∞ ≤ X ≤ a) = P (X ≤ a) =
∫ a

−∞
f (x,µ,σ )dx (2.27)

P (X ≤ a) represents the probability of X taking a value of ≤ a. The cumulative
distribution function for the normal distribution becomes

P (X ≤ a) =
1
2

[1 +
1
√
π

∫ a

−a
e−

1
2 ( x−µσ )2

dx]. (2.28)

2.6.1.2 Multivariante

A system is often dependent on more than one stochastic variable. The vari-
ables may then be modeled with a multivariate distribution. The multivari-
ate normal distribution is a generalisation of the univariate normal distribu-
tion and represents the random distribution of a set of stochastic variables.
The single distributed variable of the univariate distribution becomes a k-
dimensional vector of distributed values x = {X1,X2, ....,Xk}. The probabil-
ity density function for the multivariate normal distribution is presented in
Equation 2.29.

f (x,µ,Σ) =
1√

(2π)k |Σ|
e−

1
2 (x−µ)T Σ−1(x−µ) (2.29)

where Σ is the covariance matrix with dimension k × k and entries Σij =
cov(Xi ,Xj ), and the expected value vector µ = {E(X1),E(X2), ....,E(Xk)}. Fig-
ure 2.11 illustrates a multivariate normal distribution of X1 and X2 where Σ

has non-zero off-diagonal entries.
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Figure 2.11: Illustration of the contours from a multivariate (bivariate)
distributed normal density function.
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x

Figure 2.12: Cumulative probability function for a univariate normal dis-
tribution with σ2 = 0.5 and µ = 0.

2.6.2 Monte Carlo cycles

In Monte Carlo analysis, values are generated from a given probability distri-
bution. It is used to model complex systems which depend on one or more
stochastic variables where the resulting distribution of the system is not eas-
ily obtained. In the SFRM-model, Monte Carlo iterations are used to generate
distributed fibre orientations.
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A method of generating random variables according to a given probability
distribution is to first generate values in the range [0, 1] for a uniformly dis-
tributed variable U , find the inverse of the cumulative distribution function,
P −1, and then finally calculate P −1(U ). Figure 2.12 illustrates the idea of using
the inverse of P as a function of uniformly distributed U to generate a value
sampled from a certain probability distribution. Unfortunately, a difficulty
arises as the inverse of the normal cumulative probability function does not
have a closed-form expression. Box and Muller [29] presents a method for
overcoming this obstacle, called the Box Muller transform.

2.6.2.1 Box Muller

The procedure which Box and Muller [29] presents, generates a pair of values
sampled from the same normal distribution, X1 and X2, from a pair of uni-
formly distributed values U1 and U2. U1 and U2 are both in the range of [0,
1]. The relationship between the two pairs, is presented in Equation 2.30.

X1 =
√
−2ln(U1)cos(2πU2)

X2 =
√
−2ln(U1)sin(2πU2)

(2.30)

The details concerning the derivation of Equation 2.30 is presented in [29]

2.7 Abaqus interface

2.7.1 Subroutine interfaces

As an option to customise the software, Abaqus provides a set of interfaces
in the form of programmable subroutines. Through these user subroutines,
the user can control and modify analysis features such as specifying pre-
scribed boundary conditions, element formulation, mechanical constitutive
behaviour of materials, etc. The subroutines that specify the mechanical con-
stitutive behaviour of materials are named UMAT and VUMAT for Abaqus/Im-
plicit and Abaqus/Explicit, respectively. According the Abaqus Documenta-
tion [30], Abaqus FEA supports user subroutines implemented in the pro-
gramming languages FORTRAN and C/C++. The SFRM-model is imple-
mented in FORTRAN for Abaqus/Explicit (i.e. subroutine VUMAT). Figure
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2.13 gives a simple overview of an analysis in Abaqus/Explicit and where the
constitutive material modelling (via VUMAT) is required.

2.7.2 The Abaqus Scripting Interface

Abaqus FEA also provides another useful interface; The Abaqus Scripting In-
terface. This is an application programming interface (API) developed as an
customised extension of the Python programming language. It gives the user
access to many functionalities such as modelling of components, submitting
of analysis to the solvers and quick extraction of analysis results. The use
of this feature may not be reflected explicitly in this thesis report, but it has
served as a valuable tool in the development of the SFRM-model.
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Figure 2.13: Overview of an analysis in Abaqus/Explicit. The colour
codes give an indication of the levels within the analysis.





Chapter3Short Fibre-Reinforced Materials -
model

In this chapter, the Short Fibre-Reinforced Materials-model (SFRM-model) is
presented. The overall framework of the model will first be explained in order
to give the reader a conceptual idea along with the mathematical definition of
features related to the model. Following this, a condensed pseudo formula-
tion of the model will be presented where some of the equations are restated.
Finally, aspects concerning the software implementation in FORTRAN will be
discussed.

The SFRM-model is similar to what was presented in [7], but with some ex-
ceptions. The model in [7] will later be used as a means to verify the imple-
mentation of the SFRM-model.

3.1 Framework

In the SFRM-model, the fibre reinforced material is thought to consist of two
phases; a matrix phase and a fibre phase. In the model, the two phases are
managed somewhat separately. The two phases are decomposed, the stress
tensor for each phase is calculated and the contributions are then superim-
posed to a tangible stress tensor for the material as a whole. The matrix ma-
terial model can be modeled with an arbitrary constitutive relation that the
user finds suitable. The focus of this thesis has not been the implementation
of matrix constitutive relation, but the development of the foundation for the
dispersed fibre phase.

27
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X2

X3

X1

Figure 3.1: Single fibre in a surronding matrix phase.

For a given short fibre reinforced material, a given number of fibres are dis-
persed in the continuous matrix phase, but for the following three sections,
the reader should picture a single fibre surrounded by a continuous matrix
like the illustration in Figure 3.1. Both fibre and matrix take up a given frac-
tion of the volume, vf and vm. The fibre has a given orientation characterised
by a unit vector Nf in a reference coordinate system X. The model assumes
an iso-strain state for the fibre and matrix phase. The single-fibre-explanation
will later be expanded to include multiple fibres in a continuous matrix with
variation in orientation.

3.1.1 Matrix phase

As mentioned above, the constitutive material behavior of the matrix is not
the main focus of this thesis. The matrix can, for example, be modelled with
an arbitrary elastic-plastic material behavior as described in Section 2.4.2.2.
The matrix model which was used during the development of the SFRM-
model is presented in Section 3.4.

The matrix phase is subjected to a strain increment, calculated at each in-
crement in the explicit analysis, and the constitutive material relation gives a
stress state as the Cauchy stress tensor σm expressed in the global reference
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Figure 3.2: Stress state in the two phases.

system X. The illustration on the left in Figure 3.2 illustrates the stress state
in the matrix phase.

σm =


σ11,m σ12,m σ13,m

σ21,m σ22,m σ23,m

σ31,m σ32,m σ33,m


3.1.2 Fibre phase

The constitutive material response of the fibre, is modelled as linear elastic
with a given stiffness modulus, Ef . The fibre is assumed to only deform in its
longitudinal direction. At each increment in the explicit analysis, a deforma-
tion gradient F is calculated and passed to the VUMAT. The list that follows
outlines the procedure that calculates the fibre stress σf in the direction of the
fibre orientation (Nf ) as illustrated in Figure 3.2.

1. The stretch λf that occurs in the fibre is calculated from F and the fibre
orientation Nf from Equation 2.8.

2. λf is converted to true strain εf with Equation 2.9.

3. The fibre stress σf is calculated with Equation 2.11 using εf and Ef .
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Figure 3.3: Orthonormal basis X with X1-axis parallel to Nf and the illus-
tration of the stress tensor σm.

4. An orthonormal basis X in R
3 with Nf as the first axis, is established.

3.1.3 Combining of phases

After the σm and σf have been calculated, the contributions need to be com-
bined into a final stress tensor. The procedure for combining the contributions
is summarised as

1. Transform σm into X using the theory presented in Section 2.4.3, and
denote the resulting stress tensor σm. σm and X are illustrated in Figure
3.3.

2. Replace σ11,m with σf . The resulting stress tensor is denoted σ f .

3. Transform σ f into X, and denote it the fibre stress tensor σ f .

4. The contributions are then superimposed in a rule-of-mixture stated in
Equation 3.1.

σ = σ f vf +σmvm (3.1)

The volume fraction of the fibre vf ∈ [0,1] gives the volume fraction of the
matrix as vm = 1− vf .
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3.1.4 Discretisation of fibre orientation

In the previous sections, the model framework was presented using a single
fibre surrounded by a matrix phase. This single-fibre-representation of the
total dispersed fibre phase volume fraction vf would be sufficient to represent
all fibre contributions to Equation 3.1 if all fibres had the same orientation (i.e.
aligned). The following presents a means of representing fibre contribution
in a short fibre reinforced material where fibres are misaligned.

3.1.4.1 Grouping and weighting of similar fibres

Fibres with similar orientation are assorted in group i and represented by
orientation vector Ni

f . The number of fibres in i make up the fraction W i
f out

of the total number of fibres. If there are a total of k groups of fibres, then

k∑
i=1

W i
f = 1

W i
f can be viewed as a weight of the group i. The fibre stress tensor that is

calculated for group i, according to the procedure for the fiber phase, is σ if .
The total fibre stress tensor for the weighted and summed contribution for all
groups, becomes

σ f =
k∑
i=1

σ ifW
i
f

The rule-of-mixture in Equation 3.1 can now be expanded to include a fibre
phase with multiple fibre orientations as in Equation 3.2.

σ =
( k∑
i=1

σ ifW
i
f

)
vf +σmvm (3.2)

The amount of fibres that is assosiated with each group may be modelled with
a given distribution such as the an uniform- or normal distribution. After
the orientations have been discretised into groups, the density function for
the specific distribution may then be used to weight the groups according to
Equation 3.3.

W i
f =

f (θi ,ϕi)∑m
n=1 f (θn,ϕn)

(3.3)
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Figure 3.4: Fibre discretisation and weighting where θ ∼N(µ = 90◦,σ =
22.5◦).

An example: In-plane fibre distribution

Picture a fibre phase where all fibres lie in the X1X2-plane (i.e. ϕ = 90◦).
The variation in orientation in the X1X2-plane is given as a Normal dis-
tributed θ with expected value µ = 90◦ and standard deviation σ = 22.5◦.
Figure 3.4 illustrates a discretisation of 20 groups for the given distribu-
tion of θ. The unit vector Ni

f for each group is described by (θ, ϕ)=(θi ,
90◦) in spherical coordinates. The figure to the left illustrates the den-
sity function of the distribution and each marker is a group with a cor-
responding density value, fθ(θi). The figure to the right illustrates Ni

f

with color variation based on each group’s weight W i
f . Red to blue color

variation illustrates a decreasing weight.

3.1.4.2 Representing fiber orientation

In the SFRM-model, the orientation of each group i is uniquely described by
its unit vector Ni

f which is given by the spherical angles θi and ϕi . The do-
main which is needed for any of the two angles to give an unique orientation,
is [0◦,180◦). For example, θi = 230◦(= θi) would be the equivalent of θi = 50◦

like illustrated in Figure 3.5. A generalised scheme for sorting angular values
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Figure 3.5: Illustration of θi and θi .

into the given domain needs to be established as the user may wish to input
a distribution which has large portions of its population below 0◦ or above

180◦. If θ
i

and ϕi defines the angular discretisation of user specified domain,
then θi and ϕi defines the equivalent values within [0◦,180◦). Equation 3.4

establishes θ
i

and ϕi .

θ
i

= θ
domain
min +

θ
domain
max −θdomainmin

(kθ − 1)
(i − 1)

ϕi = ϕdomainmin +
ϕdomainmax −ϕdomainmin

(kϕ − 1)
(i − 1)

(3.4)

kθ and kϕ are the requested number of discretisation points for each spherical

angle. For θ, θ
domain
max and θ

domain
min are the upper- and lower bounds of the

user domain, respectivly. For a fibre phase distributed according to a Normal
distribution with a standard deviation σ and expected value µ, the upper-
and lower bounds can be defined through (µ+ a · σ ) and (µ − a · σ ). a = 3 will
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cover 99.8% of the occurrences. Equation 3.5 handles the mapping of the user
defined domain into [0◦,180◦).

θi = θ
i − 180◦

⌊ θ
i

180◦

⌋
ϕi = ϕi − 180◦

⌊ ϕi

180◦

⌋ (3.5)

A reminder: Mathematical notation bxc

The mathematical notation of bxc denotes rounding down the decimal
number x to the largest integer which does not exceed x.

Equation 3.3 is used with θ
i

and ϕi to establish the corresponding weights,
and becomes

W i
f =

f (θ
i
,ϕi)∑m

n=1 f (θ
i
,ϕi)

Figure 3.6 illustrates the concepts presented above with a Normal distribution
representing the variation of θ. With expected value µ = 150◦ and standard
deviation σ = 22.5◦, a significant portion of the area under the density func-
tion extends above θ = 180◦ (red dashed line). The blue dashed line shows
the conversion of the domain that exceeds 180◦, according to Equation 3.4.

3.1.4.3 Fibre distribution schemes

The establishing of the user requested discretisation scheme that produces the
groups (orientation and weight) was solved with various fibre distribution
cases. There are different routines for the each case and are invoked using
user-defined flag parameters. One case may handle aligned fibres, another
may distribute the fibres based on bivariate normal distributions for θ and ϕ.
The similarity of all cases is that they produce the orthonormal basis (with
Nf as the first axis) and the group weight Wf for all groups. The majority
of all the cases follows the methods described in the previous sections. The
procedure that goes into creating every group i for all i ∈ {1,2, ..., k} where k is
still the number of requested groups, is as follows.
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fθ

θ180
◦

0
◦

150
◦

θ

θ

Figure 3.6: Normal density function for θ converted into the domain of
θ.

1. Establish θ
i

and ϕi based on requested domain and fibre distribution.

2. Establish W i
f based on the given distribution parameters.

3. Convert θ
i

and ϕi to θi and ϕi

4. Establish Ni
f from θi and ϕi .

5. Establish the orthonormal basis X
i

based on Ni
f as first axis.

6. Establish transformation matrix Qi from X
i
.

As the orientations of the fibres may vary from composite to composite, the
complexity of the mathematical foundation needed to model the fibre distri-
bution, will also vary. A handful of fibre distribution cases have been imple-
mented in the present SFRM-model, but the user may need to add customised
cases to the source code in order to model specific fibre distributions. The no-
tion of cases creates an area within the FORTRAN source code where the user
only needs to focus on developing the source code for step 1 through 3 in the
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procedure stated above. In the presentation of the model framework in Sec-
tion 3.1 and the example in Section 3.1.4.1, outlines for the cases which man-
age aligned and in-plane univariate normal distributed fibre phases were used
to describe important aspects of the model. Table 3.1 presents an overview of
all the cases currently implemented in SFRM-model. The corresponding fig-
ures in the table displays orientation vectors with colouring assosiated with
the relative weight of each group. Red to blue color variation illustrates a de-
creasing relative weight exactly like in Figure 3.4.

The only fibre distribution case that does not follow the outlined procedure
stated above, is Case 5 in Table 3.1. This implementation uses Monte Carlo
cycles which draw values for θ and ϕ from univariate normal distributions
using the theory presented in Section 2.6.2. With this method, the whole fibre
phase is represented by random samples rather than evaluating the fibre dis-
tribution through group discretisation. For every fibre sample a, a set of (θa,
ϕa) values are drawn and used to create the orientation vector Na

f for the sam-
ple. All samples are weighted equal. If ksamples is the total amount of samples
drawn, then each sample weight W a

f becomes

W a
f =

1
ksamples

3.2 Pseudo formulation

With these concepts in place, a more compact formulation should be expressed
to ease the source code implementation. The following section presents a
pseudo formulation in Algorithm 1 of the SFRM-model. The first lines of
establishing of the spherical angles are simplified and shortened due to the
varying complexity in the fibre distribution cases.
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Table 3.1: Overview of implemented fibre distribution cases in the cur-
rent SFRM-model.

X1

X3

X2

Case 1: Constant value θ and constant value ϕ.

Case 2: Constant value for ϕ and univariate normal distri-
bution for θ.

Case 3: Constant value for θ and univariate normal distri-
bution for ϕ.

Case 4: Bivariate normal distribution for θ and ϕ.

Case 5: Monte Carlo cycling which draws from two indi-
vidual univariate normal distributions for θ and ϕ.

Case 6: Uniform distribution of θ and constant value of ϕ.
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for abaqus/explicit analysis using SFRM-model do

1 establish groups: θi and ϕi ⇒ θi and ϕi

2 calculate W i
f : W i

f =
f iθ,ϕ (θi ,ϕi )∑m
n=1 f

n
θ,ϕ (θi ,ϕi )

3 establish Nif : Nif = [sin(ϕi )cos(θi ), sin(ϕi )sin(θi ), cos(ϕi )]T

4 establish Xi :

if (1− tolerance) ≤ |Nif ·X1 | ≤ (1 + tolerance) then

Xi = X
else

X
i
1 = Nif ; X

i
3 =

 Xi1×X2
|Xi1×X2 |

 ; X
i
2 = Xi3 ×X

i
1

end
5 establish Qi :

Qi =


(X1

1)i (X2
1)i (X3

1)i

(X1
2)i (X2

2)i (X3
2)i

(X1
3)i (X2

3)i (X3
3)i


foreach step do

foreach increment do
foreach integration point j do

foreach group i do

6 establish σ
j
m: from constitutive model for matrix phase

7 calculate λ
j,i
f : λ

j,i
f =

√
(Nif )T (Fj )T (Fj )(Nif )

8 calculate ε
j,i
f : ε

j,i
f = ln(λ

j,i
f )

9 calculate σ
j,i
f : σ

j,i
f = Ef ε

j,i
f

10 calculate σ
j,i
m : σ

j,i
m = (Qi )(σ im)(Qi )T

11 establish σ
j,i
f

if conditions are met then

σ
j,i
11,m = σ

j,i
f

σ
j,i
f = σ

j,i
m

else

σ
j,i
f = σ

j,i
m

end

12 calculate σ
j,i
f : σ

j,i
f = (Qi )T (σ

j,i
f )(Qi )

13 calculate σ j : σ j =
(∑k

i=1 σ
j,i
f W

i
f

)
vf +σ

j
m(1− vf )

end
end

end
end

end

Algorithm 1: Pseudo formulation of SFRM-model.
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3.3 FORTRAN implementation

The development of the FORTRAN implementation was made with the In-
tel® Visual Fortran Composer XE 2013 Update 5 including Intel® Visual Fortran
Compiler Version 13.1.3, and Abaqus 6.14.

The FORTRAN compiler supports automatic parallelization, so the source
code was developed with parallel computing, software efficiency and read-
ability in mind; i.e., shared memory dependency should be kept to a mini-
mum to allow for parallel execution of the code. Difficulties arose when de-
veloping the implementation for the group weights and transformation matri-
ces. These values should be established the first time the VUMAT subroutine
is called (analysis time equals zero) and then be used throughout the analysis.
Due to the design of the subroutine interface in Abaqus and the FORTRAN
programming language, it proved difficult to pass these matrices (or multidi-
mensional arrays) to the subroutine for each time the VUMAT is called. The
chosen solution was to save these two arrays as common blocks. A Common
block is a native feature in FORTRAN which allows several programs to share
a specified part of memory between them. This use of common blocks may
introduce memory dependencies within the subroutines.

3.3.1 Source code structure

The main flow of the FORTRAN implementation is presented in Algorithm
2. The implementation of the SFRM-model was solved by dividing the source
code into several subroutines whilst trying to follow the logical flow presented
in Section 3.1. As presented in Algorithm 2, the subroutine which calculates
the stress of the matrix phase, SMATRIX(), is called each time the VUMAT
subroutine is called. If the analysis time equals zero, the subroutine that han-
dles the fibre discretisation and weighting, SFD(), is called. The subroutine
that calculates the stress in the fibres and combines the contributions from the
phases into a final stress tensor is denoted SFIBER() and is the final module
to be called in the VUMAT. As the matrix definition is arbitrary, an explicit
presentation of the implemented source code will not be included in this the-
sis. However, an outline of the currently applied matrix model is presented in
Section 3.4. The full VUMAT subroutine with the SFRM-model implemented
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contains over 900 lines of FORTRAN code. The FORTRAN source code for the
SFIBER() and SFD() subroutines can be found in Appendix A.1 and Appendix
A.2, respectively.

subroutine VUMAT()
1 subroutine SMATRIX()

if analysis time equals zero then
2 subroutine SFD()

end
3 subroutine SFIBER()

end
Algorithm 2: Pseudo formulation of the FORTRAN implementation.

3.4 Applied matrix model

Although an arbitrary constitutive relation may be applied to model the ma-
trix phase, a tangible implementation is needed in the following chapters
herein. The matrix implementation presented in [7] will be used as a basis
for the matrix phase in the further exploration of the SFRM-model. For a
thorough presentation of the matrix implementation, the reader is therefore
referred to [7]. However in the following section, the respective matrix model
is rendered with respect to the theory presented in Section 2.4.2.

The matrix material is modelled with an elastic-plastic behavior. The elas-
tic behavior is modelled with isotropic linear elasticity and a Drucker-Prager
model is used for plasticity. The Drucker-Prager yield criterion is pressure
sensitive i.e. dependent on the hydrostatic pressure and therefore often suit-
able for plasticity modelling of polymers which may experience phenomena
such as void growth. The matrix model considers the initial yield stress to
have different values for compression, σ0,C , and tension, σ0,T . The plastic
retraction coefficient νp governs the matrix model’s compressibility where
νp = 0.5 gives an incompressible plastic flow. The evolution of the flow stress
σy is according to an isotropic hardening relation which is given in Equation
3.6.

σy = σ0,T +R(p) where R(p) = k1p+ k2[1− exp(−mp)] (3.6)
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Table 3.2: Table-structure for fibre parameters.

Vf Ef Groups Case Case variables

Fibre
volume
fraction.

Young’s
modulus
for fibres.

Number
of fibre
groups.

Case
number.

See Tab. 3.1.

Case specific
parameters. May

range from 1 to 10
parameters.

Table 3.3: Table-structure for matrix parameters.

σ0,T σ0,C Em νe νp k1 k2 m

Initial
yield
stress

in
tension.

Initial
yield
stress

in
compression.

Young’s
modulus

for
matrix.

Elastic
Poisson’s

ratio.

Plastic
retraction
coefficient.

See
Eq.
3.6.

See
Eq.
3.6.

See
Eq.
3.6.

3.5 User-defined parameters

In order to systematically present the user-defined parameters that are used
with the SFRM-model in the analyses for the succeeding chapters of this re-
port, a table-structure was established. Two separate tables will be used to
present the parameters used by the fibre modules (i.e. SFIBER and SFD) and
the matrix module (i.e. SMATRIX). The structure of the two tables are pre-
sented in Table 3.2 and Table 3.3. In Table 3.2, a set of Case variables will
present the parameters used by fibre distribution cases presented in Table
3.1. The numbers of parameters demanded by each case varies.
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«Are you building it right?»

In the development of the SFRM-model, there were possibly two major sources
of error: Flaws in the mathematical foundation and mistakes in the software
implementation of the mathematical foundation. This section presents the
outline and some details of the effort that went into the reducing the chance
of the latter.

4.1 Preliminary controls

In software development, the chance of software bugs1 being introduced into
the program is always present. During the development of the VUMAT sub-
routine in FORTRAN, a continuous quality control of the code was performed
in order to verify the model implementation. Examples of the steps that went
into this quality control are:

• Modularised prototypes of the model framework were implemented in
Python in order to compare it to the results produced by the FORTRAN
implementation of the SFRM-model. The prototyping of functions and
subroutines in Python has served as a valuable tool.

• Symbolic matrix operations were preformed in MATLAB and transferred
over to the FORTRAN source code in order to prevent mathematical er-
rors.

1A software bug is an error or flaw in a computer program.

43
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Figure 4.1: Comparison of the equivalent stress and equivalent plastic
strain produced by the native Drucker-Prager plasticity model in Abaqus
and the implemented SMATRIX().

• Raw data of preliminary results produced by the FORTRAN implemen-
tation was extracted and Python was used to produce graphical plots.

• Command line output of results produced by the FORTRAN implemen-
tation.

• Interpretation of results produced by preliminary analyses in Abaqus
/Explicit running with the FORTRAN implementation.

4.2 Comparison with native Abaqus model

In order to isolate a possible source of error, the current matrix implementa-
tion of the SFRM-model was compared to the native Drucker-Prager plasticity
model available in Abaqus. A simple analysis was run where two cubes, each
with separate material definitions, were pulled in tension with the matrix pa-
rameters presented in Table 4.1. The equivalent plastic strain p and the von
Mises equivalent stress σmises for the two models are presented in Figure 4.1.
The results for σmises coincide while some minor deviations can be observed
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Table 4.1: Matrix material data for the analysis in Section 4.2.

σ0,T
[MPa]

σ0,C
[MPa]

Em
[MPa]

νe νp
k1

[MPa]
k2

[MPa]
m

20 -30 1500 0.4 0.1 139 32.7 319.4

for p. The small deviations seen may be related to how the equivalent plastic
strain is calculated by Abaqus.

4.3 Comparison with semi-analytical solution

For configurations where fibres are aligned in the loading direction, a simple
semi-analytical solution exists through Equation 3.1 which becomes

σ22 = vf Ef ε22 + (1− vf )σ22,m. (4.1)

σ22,m is obtained by running an analysis where the pure matrix model (vf =
0.0) is used. This gives a semi-analytical solution which depends on the finite
element solution for the pure matrix material, and the analytical solution for
the fibre contribution. This approach isolates and reveals possible inconsis-
tencies in the fibre implementation of the SFRM-model.

4.3.1 Model and analyses description

The analyses were made with a single 1mm3 C3D8 linear solid fully integrated
element in Abaqus/Explicit with large strains. For aligned fibres, one group
is sufficient to model the fibres contribution (i.e. Nf (θ,ϕ) with Wf = 1). The
model is illustrated in Figure 4.2 and fibre direction is illustrated in Figure
4.3. The different colours of the nodal sets refer to applied boundary condi-
tions:

• The red node is fixed.

• The blue nodes are restrained from translation in the X2-direction.

• A displacement u2 = ±0.05mm is applied to the green nodes in X2-
direction.
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X1

X3

X2

X1

X3

X2

Figure 4.2: Finite element model used for comparison with semi-
analytical solution. The colours of the nodal sets refer to varying bound-
ary conditions.

A positive displacement u2 = 0.05mm results in a final true strain equal to

ε
f inal
22 = ln

(
1 +

0.05
1

)
= 0.04879

while a negative displacement u2 = −0.05mm results in final true strain equal
to

ε
f inal
22 = ln

(
1 +
−0.05

1

)
= −0.05129.

Table 4.2: Fibre parameters applied in Section 4.3.

Vf
Ef

[GPa]
Groups Case θconstant ϕconstant

0.3 72.0 1 1 90◦ 90◦

Table 4.3 and Table 4.2 summarises the elastic-plastic material behavior for
the matrix and the parameters related to the fibre implementation, respec-
tively.
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X2, loading direction

X3

X1

Fibre
θ = 90◦

ϕ = 90◦

Figure 4.3: Illustration of the fibre alignment for comparison with the
semi-analytical solution.

Table 4.3: Matrix material data for the analyses in Section 4.3.

σ0,T
[MPa]

σ0,C
[MPa]

Em
[MPa]

νe νp
k1

[MPa]
k2

[MPa]
m

40 -40 2100 0.3 0.5 139 32.7 319.4

4.3.2 Results

The results from tension and compression are presented in Figure 4.4 and Fig-
ure 4.5, respectively. The results from the SFRM-model and semi-analytical
solution (i.e. Equation 4.1) coincide, with

σ
f inal
22 = 1099 MPa for ε

f inal
22 = 0.04879 and

σ
f inal
22 = −1168 MPa for ε

f inal
22 = −0.05129.

4.4 Comparison with literature

As a means of verification, the SFRM-model was compared to results pre-
sented in [7]. The analyses in the article examines a variety of modeling
configurations, such as different element discretisations and boundary condi-
tions, material models for the matrix matrial, fibre distributions and material
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Figure 4.4: Results from tension (i.e. final u2 = 0.05mm).
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Figure 4.5: Results from compression (i.e. final u2 = −0.05mm).
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X1

X3

X2

X1

X3

X2

Figure 4.6: Finite element model for the tension and compression analy-
ses presented in [7]. Nodal sets with different colours refers to different
boundary conditions.

properties for the fibres. The focus of the verification process for the SFRM-
model has been to replicate the tension and compression analyses in [7]. Since
this section is dedicated to comparison with an existing model, discussion
concerning the presented result is confined merely to deviations between the
two models. For an evaluation of the results related to this section, the reader
is referred to [7].

4.4.1 Model and analyses description

The finite element model consists of a 1mm3 cube discretised into eight C3D8
linear solid elements with full integration (i.e. eight integration points per
element). Figure 4.6 illustrates the model discretisation along with colour
codes for different nodal sets:

• The red nodes are fixed.

• The blue nodes are restrained from translation in the X1X3-plane (u1 =
u3 = 0) and subjected to a prescribed displacement in the X2-direction
which becomes ±0.05mm at the end of the analyses.

• The black nodes are unrestrained.

The analysis time was sufficiently low to ensure quasi-static conditions.
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Table 4.4: Fibre data for the analyses in Section 4.4. The notation seen
under θconstant is meant to be understood as a set with lower bound 0◦,
upper bound 90◦ and increment size 5◦.

Vf
Ef

[GPa]
Groups Case ϕconstant θconstant

0.3 72.0 1 1 90◦ {0◦: 5◦:90◦}

A clarification

The described model configuration may at first seem unsuited for ten-
sile and compression analyses. The applied boundary conditions heavily
constrains the model which restricts transverse retraction at the bound-
aries. After inspecting the behaviour of the SFRM-model, it became ev-
ident that a model consisting of a few number of elements needs to be
restrained in order to yield comparable results as the orientation of the
fibres was varied. For example, the one-element-model which was used
in Section 4.3 produces incomparable results in a set of analyses where
the orientation of the fibre is varied. Fibre representations which are not
axis-aligned results in skewing of the single element with uniaxial dis-
placement and the strain amplitudes will not be comparable.

Also, the definition of θ in [7] is not the same as the definition in this
report. This angle representation, and the subindices for strains and
stresses have been changed to fit the coordinate systems and direction
of loading of this report.

The analyses are meant to simulate an aligned orientation of fibres. The fibres
are therefore represented with only one group for each analysis. For both ten-
sion and compression, 19 analyses were run where ϕ was kept equal to 90◦

and θ was changed for each analysis. θ was changed between 0◦ and 90◦ with
step size of 5◦. The data for the fibre is given in Table 4.4 and an illustration
for the described fibre orientation is given in Figure 4.7.
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X2, loading direction

X3

X1
Fibreθ

ϕ = 90◦

Figure 4.7: Illustration of the fibre alignment for the tension/compression
analyses.

Table 4.5: Matrix material data for the analyses in Section 4.4.

σ0,T
[MPa]

σ0,C
[MPa]

Em
[MPa]

νe νp
k1

[MPa]
k2

[MPa]
m

29 -40 2100 0.3
0.1 if σH ≥ 0
0.5 if σH < 0

139 32.7 319.4

In [7], the matrix was modelled with incompressible plastic flow in compres-
sion so the plastic retraction coefficient νp is set to 0.5 for σH < 0. When the
matrix phase is subjected to tension σH ≥ 0, the volume is allowed increase as
νp = 0.1. The matrix parameters which were used are stated in Table 4.5.

4.4.2 Uncertainties in the comparison

There are a few issues when attempting to replicate the results in [7].

• The article only specifies where the stress is sampled from for Fig.32.
There, Notta-Cuvier et al. [7] presents a figure where the axial stress is
computed at the elements centroids, though only presenting data corre-
sponding to one variable set. The element model consists of eight fully
integrated elements which, due to the nature of the model, produce dif-
ferent centroid values. There is no mention of where other variables are

2The Fig.-notation refers to the figure labels in [7].
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sampled from. The data presented for the SFRM-model in the following
sections are the average value of all integration points in the model (i.e.
average for all centroids).

• The data sets were retrieved from the article using software developed
for extracting data from graphical plots. This method of extracting raw
data will most likely introduce some small deviations from the original
data used.

4.4.3 Results from tension

Figure 4.8 states the results from Fig.2 along with the corresponding results
from the SFRM-model. The SFRM-model yields considerable higher values of
σ22 for θ > 50◦. The stress deviation at θ = 90◦ is 56 MPa. Figure 4.9 gives
the transverse strains ε11 and ε33 at the end of the analyses for the SFRM-
model and the data retrieved from Fig.5 including the corresponding pure
matrix values for both models. The deviations are major, and also apparent
in the comparison in Figure 4.10 which presents relative volume variations
according to Equation 4.2.

∆V
V0

= exp[ε11 + ε22 + ε33]− 1 (4.2)

Despite these deviations, the trends in both models are distinctively similar.

4.4.4 Results from compression

The results from the SFRM-model and the model in [7] corresponds much bet-
ter in compression where the plastic flow is isochoric. Figure 4.11 illustrates
the same deviation pattern as in Figure 4.8, but the compressive stresses are
lower for the model developed in this thesis. The results from the figures re-
lated to the strains, Figure 4.12 and 4.13, corresponds better than for tension,
yielding almost coinciding results for θ < 50.

4.5 Evaluation of verification

As seen in the comparison of the native Drucker-Prager in Abaqus and the
implemented SMATRIX(), the matrix model currently applied to the SFRM-
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Figure 4.8: Results from tension at the end of the analyses. Comparison
with Fig.2 in [7].
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Figure 4.9: Results from tension at the end of the analyses. Comparison
with Fig.5 in [7]. The notation NC(2013) refers to Notta-Cuvier et al. [7].
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Figure 4.10: Results from tension at the end of the analyses. Comparison
with Fig.6 in [7].
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Figure 4.11: Results from compression at the end of the analyses. Com-
parison with Fig.9 in [7].
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Figure 4.12: Results from compression at the end of the analyses. Com-
parison with Fig.12 in [7]. The notation NC(2013) refers to Notta-Cuvier
et al. [7].
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model seems to yield reasonable results. Some minor deviations were ob-
served, but this is reasoned to be related to the computation of the equiva-
lent plastic strain within Abaqus as the strain components from the analysis,
coincide. It is concluded that the current implementation of SMATRIX() is
working properly.

The comparison with the semi-analytical solution is seen to yield coinciding
results. The analysis made with the SFRM-model in Section 4.3 may seem
simple, but it verifies the majority of the core features implemented in the
SFD() and SFIBER().

Deviations between the SFRM-model and the model from [7] for higher values
of θ are observed in the figures displaying stress data, Figure 4.8 and Figure
4.11, for both tension and compression. Deviations in the same range of θ is
also observed in the figure for the transverse strains, Figure 4.12, and the vol-
ume variations, Figure 4.13, for compression. However, major deviations are
seen in the equivalent figures for tension, Figure 4.9 and Figure 4.10. A shift
in the values are seen in both these figures which is also the case for the neat
matrix model. Some of these deviation may be related to the uncertainties
presented in Section 4.4.2, but as results from compression seem to almost
coincide, this is reasoned not be the most prominent source of this deviation.
A simple estimate of the transverse strains for the pure matrix material in the
tension configuration are therefore made and presented in the framed box
below.
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An estimate: Transverse strains for matrix model

The longitudinal stress and longitudinal strain, i.e. in the direction of
loading, for tension are about

σ = 65 MPa and εl = 0.05.

By decomposition of the transverse and longitudinal strain, one has

εl = εelasticl + εplasticl and εw = εelasticw + εplasticw

where εw denotes the total transverse strain which can be related to ε11
and ε33 in Figure 4.9. The following relations are assumed to apply:

εelasticl =
σ
Em

, εelasticw = −νeεelasticl and ε
plastic
w = −νpε

plastic
l .

Finally,

εw = −νe
σ
Em
− νp

(
εl −

σ
Em

)
= −0.3

65
2100

− 0.1
(
0.05− 65

2100

)
= −0.011.

From Figure 4.9,

ε11,SFRM = ε33,SFRM = −0.0093 and

ε11,NC(2013) = ε33,NC(2013) = −0.0033

for the pure matrix.

The estimate of the transverse strains is expected to be lower than what yielded
by the element discretisation in Section 4.3.1 due to the restrains at the bound-
aries. It is seen that the estimate coincides better with the results from the
SFRM-model than with what presented by Notta-Cuvier et al. [7].

As the comparisons presented in this chapter seem to yield reasonable results,
the SFRM-model is considered to be working according to the foundation pre-
sented in Chapter 3.





Chapter5Validation

«Are you building the right thing?»

An important requisite when building a material model is that it actually
replicates the mechanical behaviour of the psychical material. In this chapter,
the SFRM-model will be applied to the experimental data presented in the
master’s thesis of Anne Amundsen [11]. The thesis evaluates the mechani-
cal behaviour of injection moulded glass fibre reinforced polypropylene with
varying fibre content. An extensive series of tests with multiple repetitions
were performed for all relevant materials in uniaxial tension, bending and
for a plate with a centric hole. This chapter is concerned with applying the
SFRM-model to the uniaxial tension tests from this thesis.

5.1 Materials

Three materials with three different fibre contents were tested. The three ma-
terials were denoted P P , P P 10 and P P 30 which is polypropylene with fibre
weight contents of 0%, 10% and 30%, respectively. The samples in [11] were
cut out of plates made of the same materials as Andreas Koukal used in his
PhD thesis [31]. Prior to testing, the materials used by Amundsen [11] were
stored in an office at room temperature for more than one year.

Amundsen [11] lists some material properties found in the data sheets is-
sued by the material producer SABIC. As the PP10 was exclusively made for
Koukal [31], no material data are supplied by the producer for this specific

59
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Table 5.1: Nominal material data for PP, PP10 and PP30 retrieved from
Amundsen [11].

Material
Material
density
ρ [kg/m3]

Initial
yield stress
σ0 [MPa]

Tensile
modulus
E [MPa]

Fibre
weight fraction

mf

PP 905 36 1750 0

PP10 - - - 0.10

PP30 1120 - 6650 0.30

material. A relevant selection of the available material data are summarised
in Table 5.1 of this thesis.

5.2 Calibration of the SFRM-model

In order for the SFRM-model to produce comparable results, some material
parameters need to be established. The following section documents the pro-
cess of determining suitable material parameters for the fibre and matrix
modules of the SFRM-model.

5.2.1 Weight fraction conversion

The relationship between the fibre volume fraction vf and the fibre weight
fraction mf of each material can be expressed by Equation 5.1 through the
material densities of each phase.

mf =
Mf

Mm +Mf
=

ρf vf
(ρmvm + ρf vf )

⇒ vf =
ρm

ρf
(1−mf
mf

)
+ ρm

(5.1)

It is reminded that vf = 1 − vm. Mf and Mm denotes the mass of the fibres
and mass of the matrix, respectively. Assuming that the density of the unre-
inforced polypropylene (i.e. PP) equals the density of the matrix phase in the
two other materials (i.e. ρm), ρf remains to be determined. By using the total
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Table 5.2: Calculated values for PP, PP10 and PP30. Values with the
colour red are calculated values.

Material
Material
density
ρ [kg/m3]

Fibre
weight fraction

mf

Fibre
volume fraction

vf

PP 905 0.0 0.000

PP10 966 0.10 0.038

PP30 1120 0.30 0.134

density value for one of the fibre reinforced materials ρ, ρf can be established
as done in Equation 5.2.

ρ =
mass
volume

=
ρf vf + ρmvm
vf + vm

⇒ ρf =
ρ − ρm(1− vf )

vf
(5.2)

Inserting Equation 5.2 into Equation 5.1 results in Equation 5.3.

vf = 1−
ρ

ρm

(
1−mf

)
(5.3)

By using the total density value for PP30, the estimated fibre volume fraction
and density becomes what is stated in Equation 5.4.

vf = 0.134

ρf = 2513 kg/m3
(5.4)

Equation 5.1 and the estimated value of ρf are consistent with what stated
by Koukal [31]. Table 5.2 presents the fibre contents produced through these
equations for the three materials.

5.2.2 Calibration of matrix model

The experimental tensile test results for PP presented in [11] was used to cal-
ibrate the model for the matrix phase. The results presented by Amundsen
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Figure 5.1: Experimental data from a representative data set for the uni-
axial tensile test for unreinforced polypropylene (PP) in [11].

[11] revealed that this PP has an isotropic mechanical behaviour. The linear
exponential hardening law from Equation 3.6 which is already implemented
in the matrix model was used to model the isotropic evolution of the yield
surface. However, the relationship needs to be calibrated to the experimental
data in order to establish the coefficients k1, k2 and m. The graphs present-
ing the transverse and longitudinal strain will be used to estimate the elastic
Poisson’s ratio and plastic retraction coefficient. The retrieved data sets from
[11] are presented in Figure 5.1 and Figure 5.2.

5.2.2.1 Young’s modulus

Table 5.1 contains the Young’s modulus for PP retrieved from the material
data sheets given by the material producer. Amundsen [11] found the Young’s
modulus to be equal 1508 MPa for PP. Therefore,

Em = 1508 MPa.
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Figure 5.2: Longitudinal and transverse strains as a function of time re-
trieved from [11].

5.2.2.2 Retraction ratios

The longitudinal strain εl and the transverse strain εw from the uniaxial ten-
sile tests of PP were retrieved from [11] and are presented in Figure 5.2. w and
l corresponds to the X1- and X2-directions in Figure 5.8, respectively. From
the sampled strain values for when εl << 0.02 (≈ σ0

Em
) , the elastic Poisson’s

ration was estimated as

νe = −εw
εl

∣∣∣∣
εl<<0.02

≈ 0.48.

Koukal [31] found that νe = 0.41, but it is here chosen to base the matrix
parameters on the results of [11] as this is the source of comparison. The
plastic retraction coefficient νp was established using the definition

νp = −ε
p
w

ε
p
l

(5.5)

where εpw and εpl are the plastic strain components. Through decomposition
of the total longitudinal and transverse strains, the plastic components can be
expressed as

ε
p
l = εl − εel and ε

p
w = εw − εew.
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The elastic strain component εel is calculated from

εel =
σ
Em

.

The definition of the Poisson’s ratio gives

νe = −ε
e
w

εel
⇒ εew = −νeεel = −νe

σ
Em

where σ is the uniaxial stress from Figure 5.1 where ε = εl . By substitution of
the presented relations into Equation 5.5, the plastic retraction coefficient can
be expressed as

νp = −ε
p
w

ε
p
l

= −
εw + νe

σ
Em

εl − σ
Em

. (5.6)

Figure 5.3 presents the variation of Equation 5.6 as a function of time. Strains
sampled before experiment time equal to approximately 400 seconds are omit-
ted as these represent elastic material behavior. The true stress data available
in [11] is limited to εl ≤ 1.0 which corresponds to an experiment time approx-
imately equal to 900 seconds, the results presented in Figure 5.3 are limited
to experiment time less than 900 seconds. A constant value for νp is estimated
by taking the average value of Equation 5.6 between 400 and 900 seconds, and
becomes

νp = 0.42.

5.2.2.3 Strain hardening law

The coefficients in Equation 3.6 was calibrated with the data presented in
Figure 5.1. The Young’s modulus for the matrix material has already been
established as 1508 MPa. In Figure 5.4, the experimental uniaxial results from
Figure 5.1 are displayed along with the elastic stress relation

σ = Emε.

The two graphs intersect at

σ = 17.4 MPa
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Figure 5.3: A single value for the plastic contraction coefficient was estab-
lished as the average value of νp as a function of experiment time. νp was
estimated using Equation 5.6.
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Figure 5.4: The experimental tensile test data presented along with σ =
Emε in order to determine a suitable starting point to fit the implemented
strain hardening relation.
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Figure 5.5: Equation 3.6 fitted to experimental results for true stress as a
function of the plastic strain p according to Equation 5.7.

which then becomes the natural choice of model yield stress rather than the
nominal value from Table 5.1. Equation 3.6 is a function of the equivalent
plastic strain p, and in the case of uniaxial tension

p = εp = ε − εe = ε − σ
Em

. (5.7)

A non-linear least squares method was used to fit Equation 3.6 to the data
in Figure 5.1 with the elastic contribution subtracted as in Equation 5.7. If
σy,i denotes a stress point produced by Equation 3.6, and σi denotes the cor-
responding experimental stress point from Figure 5.1 at pi , a least squares
method will find the optimal set of k1, k2 and m so that

n∑
i=1

(σy,i − σi)2

is minimised. The results are illustrated in Figure 5.5 and the parameters are
presented in Table 5.3 along with the rest of the material parameters related to
the matrix model used in this work. As no compression results are presented
for PP in [11], it is assumed that

σ0,T = σ0 and σ0,C = −σ0.
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Table 5.3: Established material parameters for the matrix model used in
Chapter 5.

σ0,T
[MPa]

σ0,C
[MPa]

Em
[MPa]

νe νp
k1

[MPa]
k2

[MPa]
m

17.4 -17.4 1508 0.48 0.42 13.3 15.5 66.1

5.3 Tensile test specimen

The uniaxial tensile test specimens used by Amundsen [11] were machined
from injection moulded plates made out of PP, PP10 and PP30. The nominal
geometry of the specimens is presented in Figure 5.6. For all three materials,
specimens were cut in 0◦, 45◦ and 90◦ relative to the injection flow direction
as illustrated in Figure 5.7. Three repetitions were performed of each mate-
rial and orientation configuration. A total of 27 uniaxial tensile tests were
performed. It should be emphasised that the specimens were cut from a va-
riety of places on the plate. The fibre orientation study presented in Section
5.4 was made with one sample cut from left-over material of PP10. Due to the
nature of the material flow (e.g. influence of boundaries) during the moulding
process, the variation of the fibre orientations across the whole plate may not
necessarily be adequately represented by one sample.

5.3.1 Finite element model

The finite element discretisation of the specimen is presented Figure 5.8. A
velocity was prescribed to the node set marked with the colour yellow (over
the thickness of the specimen) while fixing the node set marked with the
colour green. The prescribed velocity was sufficiently low to ensure quasi-
static conditions.

The different specimen orientations illustrated in Figure 5.7 were simulated
by rotating the local material basis in each element in Abaqus as illustrated in
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Figure 5.6: Geometry of uniaxial tensile test specimen. Dimensions are in
millimetres [mm].

0◦
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90◦

Injection
flow direction

Figure 5.7: Illustration of the three specimen orientations with respect
to the injection flow direction. The surrounding box illustrates one half of
the injection moulded plate from where the specimens were cut from. The
dimensions of the illustrated plate and the specimens are proportional,
but the position of the specimen outlines do not necessarily represent the
position from where they were cut.
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Figure 5.8: The finite element discretisation of the uniaxial tensile test
specimen. The model consists of C3D8R-elements (i.e. eight node solid
linear element with reduced integration). There are three elements across
the thickness of the model. The colour codes in the figure represents
node sets relevant to the establishment of state variables during post-
processing. The volume between the red and blue nodes are referred to as
the gauge area.
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X̃1
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Figure 5.9: Illustration of how the different specimen orientations in Fig-
ure 5.7 was modelled by rotating the local material orientation for the
elements in the finite element model. X̃2 corresponds to the direction of
the applied load.

Figure 5.9. The three specimen orientations corresponds to

ψ ∈ {0◦,45◦,90◦}

in the figure. The X1X2X3-system refers to the local material orientation,
while the X̃1X̃2X̃3-system corresponds to the global basis of the finite element
model.
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5.3.1.1 Variable calculation

The single nodes which are marked with blue and red colours are used to
measure relative displacement over the gauge area of the specimen in Figure
5.8. In order to replicate the procedure of strain extraction in [11] for PP10
and PP30, the average displacement of all the red nodes, uavgred , were subtracted
from the average displacement of the blue nodes, uavgblue, in the direction of the
applied load so that

∆l = uavgblue −u
avg
red = lcur − lref ⇒ lcur = ∆l + lref .

From Equation 2.7 and Equation 2.9, true strain can be formulated as

ε = ln
( lcur
lref

)
= ln

(
1 +

∆l
lref

)
where εeng =

∆l
lref

The distance between the red and blue nodes in the undeformed reference
configuration was

lref = 11.84mm.

The sum of the reaction forces in X̃2-direction measured across the green node
set is denoted F. The cross sectional area of the gauge volume is

Aref = 2.7mm× 10mm = 27mm2.

The engineering stress across the gauge area is defined as

σeng =
F
Aref

.

Amundsen [11] states that the reinforced polypropylene did not exhibit any
significant volume change during testing. The matrix model for the analyses
in this chapter is implemented with some volume variation (νe,νp , 0.5). It
was chosen to base the calculation of the true stress on the assumption of iso-
choric deformation to allow for comparison with the calculations in Amund-
sen [11]. The relationship between σeng and the true stress σ then becomes

σ = σeng (1 + εeng ).
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5.4 Fibre orientation distribution mapping

To include quantitative information about the fibre orientations of the mate-
rial tested in [11] in the SFRM-model, data from a X-ray computed tomogra-
phy (CT) was analysed. The raw CT data which was used, originated from
a scan performed at the RECX laboratory at the Department of Physics at
NTNU in June 2014. It was achieved from a sample of PP10 cut from the same
plates as the tensile test specimens used in [11]. The raw data was analysed
using the Fiber composite Material Analysis-plugin to the CT post-processing
software VGStudio MAX. For more information regarding the software and
plugin used in this fibre study, the reader is referred to the developer’s web-
site [32]. The objective of this analysis was to quantify the fibre orientation
distributions for the injection moulded fibre-reinforced composite. Although
a more extensive and structured mapping of the internal structure of the sam-
ple could be performed, the produced results gives an indication of the fibre
orientation distributions in the injection moulded plate. The trends observed
for the fibre distributions will later be applied to the SFRM-model.

5.4.1 Scan of PP10 sample

A column-shaped material sample with a square cross-section was extracted
from the same injection moulded plate of PP10 as the tensile test specimens.
The sample was scanned with CT. Due to the limited computing resources
available, only a smaller volume of the scanned sample was analysed us-
ing VGStudio MAX. An illustration of the injection moulded plate, the CT
scanned material sample, the analysed volume V0 and the tensile test speci-
men corresponding to ψ = 0◦ is displayed in Figure 5.10. The yellow outline
in the figure illustrates V0. The size of the analysed volume was

V0 = 2.6mm× 2.7mm× 5.1mm = 35.8mm3. (5.8)

The software separates and displays the different phases (or material densi-
ties) using gray-scale values. As the glass fibres are denser than the polypropy-
lene, separate gray-scale value ranges are assigned to the two phases. Figure
5.11 presents the visual results from the analysis of V0 where the gray-scale
values corresponding to the density range of the polypropylene material are
excluded.
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X3

X2

X1

Figure 5.10: Illustration of the injection moulded plate of PP10 which
the tensile test specimens and the CT sample were machined from. The
illustration is not in proportions to exact dimensions, but illustrates the
correct orientations. X2 is parallel to injection flow direction. The whole
outlined column illustrates the sample scanned with CT, while the yellow
outline illustrates a smaller volume analysed in VGStudio MAX.
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Figure 5.11: Analysis sample from CT scan of PP10. The sample dis-
played in this figure corresponds to the yellow outline (V0) in Figure 5.10.
The grey-scale values of the matrix material is here excluded leaving only
the dispersed fibres. (Screen caption taken in VGStudio MAX)
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Figure 5.12: Same screen caption as in Figure 5.11, but with colour coded
coordinate planes included. The colours of the planes corresponds to il-
lustration in Figure 5.10. (Screen caption taken in VGStudio MAX)

5.4.2 Analysis of PP10 sample

A coordinate system where the origin was placed at the volume center of V0
was established. The planes of this coordinate system is displayed in Fig-
ure 5.12. The coordinate system and the colours of the planes are equivalent
to that illustrated in Figure 5.10. In order study the variation in the fibre
orientation distributions over the plate thickness, the distributions were sam-
pled from three layers. Three center-planes of the three layers were placed

at Xlayer3 = {−0.70,0.00,0.70} and with surface normals parallel to the X3-axis.
The fibres which are included in the layers are illustrated in Figure 5.13. All

the layers have thickness 0.20mm (i.e. between Xlayer3 ± 0.10mm).

The results from the fibre analyses of the three layers where the distributions
are projected onto coordinate planes, are displayed in Figure 5.14, Figure 5.15
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Figure 5.13: Illustration of the layers where the projected fibre orienta-
tion distributions were studied. The layers are denoted lower, middle and
upper layer. The names correspond to the three figures, starting from the
leftmost to the far-right figure, respectively. (Screen captions taken in
VGStudio MAX)

and Figure 5.16. The vertical axes are displayed without a measure of unit,
but the total area under the graphs equals one in order to represent the whole
distribution. Each figure presents the projected fibre orientation distributions
for the three layers, projected onto the planes stated in the lower right corners.
These planes corresponds with what was illustrated in Figure 5.10.

Clear orientation trends can be observed in Figure 5.14 and Figure 5.16. β
has a larger deviation from its distribution peak than the variations of α and
γ , and there is an observable difference in shape of the distributions between
the three layers in Figure 5.15. The fibre orientations seem to be more ran-
dom in the X1X2-plane, but based on the two other projections, the majority
of the fibres seem to lay in this plane. This planar orientation is consistent
with what presented by Singh and Kamal [33]. Based on these findings, the
fibre orientation distributions applied to the succeeding analyses will have an
expected orientation parallel to the injection flow direction (i.e. X2−axis) and
in theX1X2-plane. Multiple configurations for the user-defined fibre distribu-
tions corresponding to the cases 1 and 2 in Table 3.1 in the defined coordinate
system in Figure 5.10, will be used.
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Figure 5.14: The distribution of fibre orientations projected onto the
X2X3-plane. The projected fibre orientations are given by the angle α
as defined in the figure.
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Figure 5.15: The distribution of fibre orientations projected onto the
X1X2-plane. The projected fibre orientations are given by the angle β as
defined in the figure.
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Figure 5.16: The distribution of fibre orientations projected onto the
X1X3-plane. The projected fibre orientations are given by the angle γ
as defined in the figure.
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Figure 5.17: Illustration of the two fibre configurations used with the
SFRM-model in Section 5.5. The left figure models the situation where
the whole fibre phase is aligned in the injection flow direction while the
right figure shows a normally distributed weighting over a group discreti-
sation of θ ∈ [0◦,180◦). Red to blue colour variation illustrates decreasing
group weighting.

5.5 Comparison with experimental results

This section presents the comparison of the results produced by the calibrated
SFRM-model with the corresponding uniaxial tensile tests in [11]. The matrix
model is analysed and compared to the results of unreinforced polypropylene
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in [11] as a means of validating the matrix implementation with the calibrated
parameters.

For the two materials of fibre-reinforced polypropylene, PP10 and PP30, two
fibre configurations are examined using two of the fibre distribution cases
which are implemented in the SFRM-model (Case 1 and Case 2). In the analy-
ses related to the different fibre configurations, the matrix model parameters
will remain the same (Table 5.3). The analyses where a range of values for a
single fibre parameter is studied are grouped into analysis sets. The following
configurations are used:

• A configuration where the whole fibre phase is aligned with X2 is ex-
amined using fibre distribution Case 1. This configuration is used with
ψ = 0◦, 45◦ and 90◦.

• A configuration where the fibre phase is oriented according to a normal
distribution in the X1X2-plane using fibre distribution Case 2. The ex-
pected value of the distribution is parallel to the X2-axis, while a range
of standard deviations is studied in an analysis set. Analyses sets with
this configuration is presented for ψ = 0◦, 45◦ and 90◦.

These fibre configurations are illustrated in Figure 5.17. The comparisons
will be made for both PP10 and PP30 in order to study the effect of fibre
volume content. The user-defined fibre parameters are presented for each
configuration for each material using the convention established in Section
3.5. The Young’s modulus for the glass fibres will be the same as in Chapter 4
(i.e. Ef = 72 GPa).
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A clarification: Experimental test scatter

Representative graphs from the experimental uniaxial tensile tests made
with the fibre-reinforced composites presented by Amundsen [11] will
be used in the succeeding comparison. Amundsen [11] performed three
repetitions for each material and orientation, which produced some scat-
ter in the results related to PP10 and PP30. The graphs which are stated
to be retrieved from [11] are the respective representatives, presented by
Amundsen [11], for each material. However, the results from the uniaxial
tensile tests made with PP yielded very little scatter.

5.5.1 PP

The matrix implementation with the user-defined parameters from Table 5.3
was compared to the retrieved graph in Figure 5.1. The true stress and strain
were computed differently from what was presented in Section 5.3.1.1. Un-
like PP10 and PP30, PP experienced necking during testing. By following the
methodology of Amundsen [11], the average strain components, εl and εw,
were sampled directly from the elements across the necking region. Amund-
sen [11] also argues that PP experience non-isochoric flow so the true stress is
therefore computed by

σ = σenge
−2εw .

The results are compared in Figure 5.18. The red dashed outline shows a
good correspondence at strains lower than 0.05 which is the magnitude for
the global strains seen in the tensile experiments related to PP10 and PP30.
The local strains may reach a higher level than the global strains for the rein-
forced polypropylene. An modification of the implemented strain hardening
relation may be considered in the future as the current implementation for
the evolution of the flow stress may not give an optimal fit at higher levels of
strains. The current implementation with the stated matrix parameters will
be used to model the matrix phase in the following sections.

5.5.2 PP10

A sample of PP10 was scanned using X-ray CT and analysed in Section 5.4. It
was observed that the fibre phase has a tendency to be oriented in the injec-
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Figure 5.18: Results from the uniaxial tensile test of PP from [11] com-
pared with the matrix model using the calibrated matrix parameter stated
in Table 5.3. The red outline illustrates the results at lower strain values
which are at the magnitude relevant for the global strains level of PP10
and PP30. The unit of measure for the vertical axis is MPa.

tion flow direction and distributed mainly in the X1X2-plane. In this section,
multiple fibre orientation distributions will be examined and compared to the
experimental results found in [11] for PP10. The two different fibre config-
urations were studied for all value of ψ. The first applies the SFRM-model
with totally aligned fibres parallel to X2 (using Case 1) while the second con-
figuration uses a normally distributed orientation of fibres with a variety of
standard deviation values, but with a constant expected orientation parallel
to X2 (using Case 2).
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5.5.2.1 Aligned fibre orientations

Table 5.4 contains the parameters for the applied with Case 1 in order to sim-
ulate a fully aligned fibre phase. The fibres are represented with one group
parallel to X2 (i.e. θ = 90◦ and ϕ = 90◦). The results for all ψ are presented in
Figure 5.19. The dashed lines in the figures displays the results from the anal-
yses made with the SFRM-model while the full drawn lines corresponds to
equivalent experimental results presented in [11]. The colours of the graphs
corresponds to the same specimen orientation. It is seen that for ψ = 0◦, the
SFRM-model overestimates the stress, while underestimating for the ψ equal
to 45◦ to 90◦. It is also observed that the result at ψ = 45◦ falls below that of
ψ = 0◦. This is seen to be caused by the fibres constraining the analysis for
ψ = 90◦ from transverse contraction and in that way providing a stiffness con-
tribution. For ψ = 45◦, the developing stress state will have significant shear
components due to the stress introduced by the fibre.

In Figure 5.20, contour plots of the axial stress in the load direction for PP,
PP10 at ψ = 0◦, PP10 at ψ = 45◦ and PP10 at ψ = 90◦, is presented from
the top down, respectively. The effects of the fibres are especially visible at
ψ = 45◦ where a clear shear pattern emerges.

In Figure 5.19, the analysis results for ψ = 0◦ ends at around ε = 0.029. An
instability occurs when introducing the fibres. The instability, which causes
the analysis to abort, is prominent for the other values of ψ, but at a higher
global strain. It is observed to occur in areas where the difference in strain
across the elements are large.

Table 5.4: Fibre parameters applied in Section 5.5.2.1.

Vf
Ef

[GPa]
Groups Case θconstant ϕconstant

0.038 72.0 1 1 90◦ 90◦
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Figure 5.19: Results from the aligned fibre configuration for all ψ for
PP10. The colours of the dashed lines corresponds to the colours of the
full drawn graphs which is the experimental data from [11]. The applied
fibre parameters are stated in Table 5.4.
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Figure 5.20: Contour plots for variation of the axial stress component in
X2 corresponding to a global displacement of 1.11 mm for aligned fibres.
From top to bottom: Unreinforced PP, PP10 at ψ = 0◦, PP10 at ψ = 45◦,
and PP10 at ψ = 90◦.
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Table 5.5: Fibre parameters applied in Section 5.5.2.2.

Vf
Ef

[GPa]
Groups Case ϕconstant θµ θσ aθ

0.038 72.0 16 2 90◦ 90◦
{10◦,20◦,
30◦,40◦,
50◦,60◦}

90◦
θσ

5.5.2.2 Distributed fibre orientations

Table 5.5 contains the parameters related to the fibre implementation of SFRM-
model for the analysis sets in this section. Case 2 in Table 3.1 is applied to
distributed the fibre phase. A set of standard deviations for the normal dis-
tribution of θ is studied for all ψ. This set is presented in Table 5.5 under θσ
and the expected value for the distribution is stated under θµ. It is reminded
that aθ governs the upper and lower limit of the domain for θ as presented
in Chapter 3. The domain for θ is [0◦,180◦), so aθ becomes a function of
θσ . An increase in θσ increases the weights of the fibre groups with large
X1-components while decreasing the weights of the fibre groups with large
X2-components. Figure 5.21 presents the results for ψ = 0◦. The effect of in-
creasing the standard deviation of the normal distribution is obvious. For an
increase in standard deviation, a decrease in the true stress is seen for ψ = 0◦.
However, as seen in Figure 5.22 and Figure 5.23, the true stresses increase
with an increase in standard deviation for ψ = 45◦ and ψ = 90◦.

The SFRM-model yields a fairly linear response while the experiments are
seen to deflect as the specimen is strained beyond certain strain values for all
the different values ofψ. Fibre-reinforced materials experience failure mecha-
nisms such as fibre breakage, matrix cracking and decohesion in the interface
between the fibres and surrounding matrix [34]. It not unlikely that the ex-
perimental tensile tests are experiencing the mentioned damage phenomena
which the current implementation of the SFRM-model does not account for.
Good correspondence in all three comparisons are seen for low strain values,
however, at different values of θσ .
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Figure 5.21: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 0◦ for PP10. The blue full
drawn graph and the blue dashed graph correspond to the graphs of same
colour in Figure 5.19. The applied fibre parameters are stated in Table
5.5.

5.5.3 PP30

Although the mapping of the fibre orientations presented in Section 5.4 was
made using a sample of PP10, the same fibre distributions were used to anal-
yse PP30. The difference in fibre content for PP30 compared to PP10, may
have an influence on the orientations of the fibres. This means that the same
distributions seen in Section 5.4 may not apply for the fibre phase in PP30. In
order to observe the effects of the increase in volume fraction, the same anal-
ysis sets presented in Section 5.5.2 are also studied in this section. According
to Table 5.2, the volume fraction of the fibre phase in PP30 is

vf = 0.134.
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Figure 5.22: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 45◦ for PP10. The red full
drawn graph and the red dashed graph correspond to the graphs of same
colour in Figure 5.19. The applied fibre parameters are stated in Table
5.5.

5.5.3.1 Aligned fibre orientations

The current fibre parameters for this section are stated in Table 5.6. The re-
sults produced by the SFRM-model with aligned fibres and the experimental
graphs for PP30, are given in Figure 5.24. The figure gives the same tenden-
cies as for PP10, but the increase in vf is seen to produce a major increase
in stress for ψ = 0◦. For ψ = 45◦ and ψ = 90◦, this increase is minor. This in-
crease in stress levels is also observed in the experimental data. The instability
observed for PP10 is also observed in the analyses for PP30.
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Figure 5.23: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 90◦ for PP10. The green full
drawn graph and the green dashed graph correspond to the graphs of
same colour in Figure 5.19. The applied fibre parameters are stated in
Table 5.5.

Table 5.6: Fibre parameters applied in Section 5.5.3.1.

Vf
Ef

[GPa]
Groups Case θconstant ϕconstant

0.134 72.0 1 1 90◦ 90◦
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Figure 5.24: Results from the aligned fibre configuration for all ψ for
PP30. The colours of the dashed lines corresponds to the colours of the
full drawn graphs which is the experimental data from [11]. The applied
fibre parameters are stated in Table 5.6.

Table 5.7: Fibre parameters applied in Section 5.5.3.2.

Vf
Ef

[GPa]
Groups Case ϕconstant θµ θσ aθ

0.134 72.0 16 2 90◦ 90◦
{10◦,20◦,
30◦,40◦,
50◦,60◦}

90◦
θσ

5.5.3.2 Distributed fibre orientations

The fibre parameters used for this configuration are stated in Table 5.7. The
results of the SFRM-model applied to PP30 for ψ = 0◦, 45◦ and 90◦ are pre-
sented in Figure 5.25, 5.26 and 5.27, respectively. As the fibre content in-
creases with a distributed fibre phase, the influence of fibre phase becomes
greater. Changing θσ is seen to generally have a greater effect on the axial
stress compared to what seen for equivalent analyses for PP10.
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Figure 5.25: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 0◦ for PP30. The blue full
drawn graph and the blue dashed graph correspond to the graphs of same
colour in Figure 5.24. The applied fibre parameters are stated in Table
5.7.

5.6 Evaluation of validation

From the comparisons made in this chapter, it is seen that the introduction of
fibres to the neat matrix model has a significant impact on the total mechani-
cal behaviour. The most important observations made were:

• An increase in fibre volume content yielded a stiffer response. This was
more prominent for the configurations where the fibre phase was mostly
oriented in the direction of loading.

• The configurations where the fibre phase was modelled as fully aligned
produced either an over- or underestimation in tensile response depend-
ing on the value of ψ with respect to the corresponding experimental
results from Amundsen [11]. However, a planar distribution of the fibre
phase was observed in the CT analysis of PP10, and distributed fibre
representations are also seen to coincide better with the compared ex-
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Figure 5.26: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 45◦ for PP30. The red full
drawn graph and the red dashed graph correspond to the graphs of same
colour in Figure 5.24. The applied fibre parameters are stated in Table
5.7.

perimental data.

• The effects of varying the standard deviation in the planar normal dis-
tributions for the fibre phase was evident. An increase in standard devi-
ation yields a lower tensile stress in the case of ψ = 0◦ while contributes
to a higher tensile stress response for the other two values of ψ.

• Higher stress levels were observed for ψ = 90◦ compared to that of
ψ = 45◦ for the fully aligned fibre configuration. Although the fibre
representation in ψ = 45◦ has a larger directional component in the ten-
sile direction, the fibre in ψ = 90◦ seem to have a greater impact on the
tensile response in the analyses. It is seen that in the aligned analyses for
PP10 and PP30 for ψ = 90◦, the specimen is constrained from transverse
contraction.

• A pattern of occurring instabilities are observed in the majority of the
analyses performed with the SFRM-model. The instability produces ex-



5.6. EVALUATION OF VALIDATION 91

0.000 0.005 0.010 0.015 0.020 0.025 0.030

True strain, ε

0

20

40

60

80

100

T
ru

e
st

re
ss

,
σ

[M
P

a]

θσ = 10◦

θσ = 20◦

θσ = 30◦

θσ = 40◦

θσ = 50◦

θσ = 60◦

Figure 5.27: Results from the normally distributed configuration studied
over a range of standard deviations for ψ = 90◦ for PP30. The green full
drawn graph and the green dashed graph correspond to the graphs of
same colour in Figure 5.24. The applied fibre parameters are stated in
Table 5.7.

cessive element deformation which causes the analysis to abort. Through
visual inspections of deformation plots, the starting point of the insta-
bility seems to be traced back to areas with large strain gradients. The
observed instabilities seem to occur in the analyses where the stress in
the fibres are high, as for ψ = 0◦ in to comparison of PP10 and PP30.

• As the tensile specimens are strained, progressive loss of stiffness are
seen the experimental tensile test results from Amundsen [11]. Fig-
ure 5.28 presents the change in tangent stiffness for ψ = 0◦ for PP10
as an example. The degree of non-linearity is not replicated well with
the current implementation of the SFRM-model. Although a noticeable
change in tangent stiffness is observed as plasticity starts to dominate
the global response of the matrix model, the linear constitutive me-
chanical behaviour of the fibres seems to dominate the total response.
Karger-Kocsis et al. [35] and Barré and Benzeggagh [36] investigated
the development of different damage mechanisms in fibre-reinforced
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Figure 5.28: ∂σ∂ε versus ε for ψ = 0◦ for PP10. Both aligned and distributed
fibre representations are presented. The blue full drawn graph is the cor-
responding experimental tensile results from Amundsen [11].

polypropylene by recording the acoustic signals emitted during various
tests. The occurrences of these signals are associated with increasing
levels of damage in the material [36]. It was observed that the accumu-
lation of acoustic signals started at early stages and had an increasing
growth rate as testing progressed. This has a great impact on modelling
of such materials. As damage phenomena are present from early stages
of deformation, they should also be included in the modelling. Damage
modelling is not implemented in neither the matrix model nor the fibre
definition of the current version of the SFRM-model.



Chapter6Conclusion

This thesis presents the foundation, implementation, verification and vali-
dation of a two-phase constitutive relation for the mechanical behaviour of
short fibre-reinforced materials which is very similar to the model presented
by Notta-Cuvier et al. [7]. By combining the weighted contributions of both
the matrix phase and the orientation distribution of the fibre phase, a potent
method for calculating the total mechanical response was established.

The mathematical framework was established and presented via an illustra-
tive and intuitive approach while still firmly grounded in the presented the-
ory. The presentation was enriched with illustrations, examples and chrono-
logical procedures that represents important aspects of the model. A pseudo
formulation of the mathematical equations was then presented in order to
easier get an understanding of the source code implementation.

The source code implementation in FORTRAN was then created based on this
framework. A modularised subroutine structure was strived in order to form
a computational effective and generic model compatible with different matrix
models and fibre distribution configurations. A set of predefined fibre distri-
bution schemes was also implemented in order to represent the plausible dis-
tributions of the fibre orientations found in fabricated short fibre-reinforced
materials.

A thorough verification was then conducted where the implementation was
controlled and evaluated. Known solutions and models, such as the model
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by Notta-Cuvier et al. [7], were used as comparisons to equivalent results
produced by the SFRM-model. The verification process yielded reasonable
results, but with some minor discrepancies. The observed discrepancies were
reasoned to not be associated with the implemented model presented herein.
The SFRM-model was therefore deemed as functioning.

As the established constitutive model was working properly according to the
mathematical foundation, a validation was performed in order to study the
validity of the mathematical foundation. The SFRM-model was calibrated and
compared to the results from experimental uniaxial tensile tests conducted by
Anne Amundsen [11]. Three injection molded materials in the form of plates,
were examined by Amundsen. The material were unreinforced polypropylene
(PP), fibre-reinforced polypropylene with 10% fibre weight content (PP10)
and fibre-reinforced polypropylene with 30% fibre weight content (PP30).
The matrix module of the SFRM-model was adapted and validated using the
unreinforced polypropylene. The results yielded by the validation of the ma-
trix was acceptable, but more advanced plasticity models may be considered
in the future.

Raw data from a previously performed X-ray computed tomography of a PP10-
sample was analysed in order to quantify the fibre orientation distributions
within the material. The fibres were found to be mostly distributed in the
plate plane. The SFRM-model was therefore applied to multiple analysis sets
where the planar distribution of fibres were studied. Configurations for com-
pletely aligned and normally distributed fibre orientations were applied for
both PP10 and PP30. Interesting observations were made during the valida-
tion process which shed light on different behavioural aspects of the current
SFRM-model, such as:

• A general increase in stress levels were caused by an increase in fibre
volume content.

• A variation in fibre orientation distribution had a significant impact on
results. A distributed fibre phase had generally a better correspondence
with experimental tests than a fully aligned fibre representation.
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The SFRM-model developed in this thesis is seen to be a potent framework
which models the behaviour of fibre-reinforced composites in a satisfying
manner for low levels of strain.

A possible need for modelling progressive damage in both the matrix and
the fibres were seen in order replicate damage mechanisms seen in fibre-
reinforced composites. Such features are already implemented in the model
by Notta-Cuvier et al. [8, 9, 10]. The constitutive relation of the fibres may
also need to be re-evaluated to more accurately reproduce the behaviour of
fibre-reinforced materials. This is further discussed in Chapter 7.





Chapter7Future work

As the development of the model herein was limited by time, some concerns
and ideas still remain unresolved and unexplored. This chapter presents some
concrete suggestions to future activities related to the SFRM-model.

7.1 Failure modes

In Chapter 5, it was observed that the SFRM-model tend to produce a linear
response for uniaxial tension tests while equivalent experiments shows a de-
crease in tangent stiffness. Failure modes such as fracture in the reinforcing
fibres, and decohesion of the interface between the fibre and matrix phase are
yet to be accounted for in the SFRM-model. An implementation of these phe-
nomena may contributed to give a more realistic global response as strains
develop [37, 34, 38, 39, 40]. Notta-Cuvier et al. have already implemented
phase decohesion in [10] with seemingly good results.

Fracture in the fibres may be implemented via a simple strain energy based
fracture criterion, such as

U ≥Umax where U =

εf∫
0

σf dεf =
1
2
Ef ε

2
f

for linear elastic fibres. If the strain energy in the representative for a fi-
bre group i, U i , exceeds the critical Umax, all the fibres in the group may be
thought of as fractured, and unable to bear any future loading.
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Decohesion of the interface between the fibre and matrix phase (also known
as fibre pull-out) may be implemented based on the notion of an interfacial
shear strength τmax which governs the interface’s ability to transfer the load
between the matrix and fibre phase. A possible criterion for modelling the
pull-out phenomenon may, for example, be based on the shear components
of σm. If the established criterion is exceeded, the fibres in group i may be
considered decohered from the matrix phase, and unable to bear any future
loading.

Independent of the failure mode, the fibres in group i will still take up a
portion of the volume which is represented by the relation

W i
f vf .

If a failure criterion is exceeded, the one-dimensional fibre stress σ if could be
thought to take on the value of σ11,m or simply be put equal to zero.

7.2 Constitutive modelling of fibre phase

In the current implementation of the SFRM-model, the fibres’ mechanical be-
havior is assumed to be linear elastic with the same properties in both com-
pression and tension. It may be reasonable to assume that the fibres may ex-
perience buckling when subjected to compression. Figure 7.1 illustrates the
current and possible future implementations where the fibres’ possible lack
of load bearing capabilities in compression, are accounted for. The left most
figure illustrates Equation 7.1 which is the current implementation where the
mechanical response is linear in both compression and tension according to
the slope Ef .

σf = Ef εf ∀ εf (7.1)

Equation 7.2 is illustrated by the middle figure of Figure 7.1. The possible
constitutive relation suggests that the fibres are uable to bear any compressive
stress.

σf =

 Ef εf if εf > 0

0 if εf ≤ 0
(7.2)
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Figure 7.1: Illustration of constitutive relation for the fibres. The figures
illustrates, from left to right, Equation 7.1, Equation 7.2 and Equation 7.3,
respectively.

The figure on the right illustrates the relation expressed in Equation 7.3 where
the fibres are allowed to take some compressive stress.

σf =

 Ef εf if εf > 0

F(εf ) if εf ≤ 0
(7.3)

An explicit definition of F(εf ) is not suggested herein, but may for example
take the shape of the rightmost illustration in Figure 7.1.

7.3 Including other fibre properties

Apart from orientation which is described by an orientational vector, every
single fibre may have an individual set of properties such as length, thick-
ness, fracture strength, interfacial shear strength, etc. Some of these proper-
ties may have an influence on the total mechanical response of the short fibre
reinforced material [[41], [42], [34], [43], [44], [19]]. These properties may
follow a certain distribution or assume a constant value.

The method of grouping fibre orientation and weighting the groups based
on the amount of members they hold, can be extended to include other fibre
properties as well. For example, if the fibre orientation is given in spherical
coordinates, two variables are sufficient to represent fibre orientation (θ and
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Al

lf

1

Figure 7.2: Possible relationship between the fibre length efficiency scal-
ing factor Al and fibre length lf .

ϕ). These two variables are used to establish N i
f which in turn is used to

establish σ if . The variations in both θ and ϕ are according to a given distri-
bution. The domain for these two variables are [0◦, 180◦) which is discretised
into kϕ and kθ number of groups for ϕ and θ, respectively. This alone pro-
duces a total of k groups where k = kϕkθ .

Continuing, the fibre length lf has also a given distribution, and discretised
into kl groups. Since lf does not have a constitutive influence on σ if , a scaling
is suggested. As presented in Section 2.2.2, the strength of the composite
material increases with fibre length. Miwa and Horiba [18] study the effect of
fibre length in epoxy resin reinforced with short glass and carbon fibres. A
typical relation looks something like the shape in Figure 7.2, but the tensile
strength has been replaced with a scaling factor Al . Al is a function of lf , and
may range below and above factor 1.

σ f =
k∑
i=1

σ ifW
i
f Al(l

i
f )

The total number of groups for this extended case, is

k =
∏
prop

kprop = kϕkθkl

The product W i
f Al(l

i
f ) may be thought of as the effective weight for the fibre
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group, and
k∑
i=1

W i
f Al(l

i
f ) , 1

The notion of introducing factors that governs the fibre’s efficiency in a mod-
ified rule of mixtures is not unlike what presented in [2, 17, 34, 37].

7.4 Development of fibre distribution cases

The currently implemented fibre distribution cases presented in Table 3.1,
may not necessarily be suited to represent all distributions found within a
fibre-reinforced material. Apart from the Monte Carlo case, the fibre distri-
bution cases can be viewed as preforming two jobs: the discretisation of the
fibre groups into directional vectors, and the weighting of each individual
group. In the event of fully random three-dimensional orientation of the fi-
bres, a problem with the current Case 4 will emerge. The discretisation of the
fibre phase is currently made by discretisation the domains for ϕ and θ into,
respectively, kϕ and kθ number of points. The total number of discretisation
points which represents each fibre group’s orientation, will then be

k = kϕkθ .

For every value of ϕ, the domain of θ will be represented by kθ number of
points. This three-dimensional discretisation is applied with kθ = kϕ in Case
4. In Figure 7.3, the group discretisation applied in Case 4 is illustrated with
k = 36. This uniform discretisation scheme in θ and ϕ, i.e. the left figure of
Figure 7.3, will not a produce a uniform discretisation of the direction vectors
as seen in to the right in the Figure 7.3. If an uniform weighting distribution
is applied, all the fibre groups are weighted equal so that

W i
f =

1
k
.

This will produce an non-uniform discretisation as the density of groups is
higher for ϕ values close to 0◦ and 180◦. The need for an uniform group
discretisation is therefore evident and is suggest in future development of the
model.
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Figure 7.3: Illustration of the discretisation of the groups direction vector
as it is done in Case 4 for kθ = kϕ = 6⇒ k = 36.

7.5 Further exploration

Future exploration of aspects related to the SFRM-model should be performed.
Some suggestions for future activites follows in the list below:

• Amundsen [11] used a brittle polymer model made at SIMLab at NTNU
to analyse the experimental data in the thesis. The performance of this
model could be compared to that of the SFRM-model.

• Amundsen also conducted experiments with bending and plates with a
centric hole to which the SFRM-model could be applied and studied.

• A more advanced rate-dependent matrix model could be integrated with
the SFRM-model to better model the matrix phase.

• A difference between the distributions over the thickness of an injection
molded plate is observed. A material sectioning in the finite element
model where different fibre distributions are used, may be considered.

• A thorough study of Case 5 which is the Monte Carlo distribution of
discrete fibres. The distribution scheme is interesting as it does not di-
rectly homogenise the fibre phase into groups. This case may be able
to represent the scatter which is often seen in composites’ mechanical
properties.
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ChapterASource code

A.1 SFIBER.for

SFIBER.for
1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * * * " SFIBER . fo r " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
3 * * * Written by Ole Vestrum * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 * * * Spring , 2015 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
5 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
6 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 ! SFIBER ( )
8 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 SUBROUTINE SFIBER (STRESS ,SM, F ,dm, nf , nlq )

10 i m p l i c i t none
11 rea l *8 STRESS ( nlq , 6 ) ,SM( nlq , 6 ) , F ( nlq , 9 )
12 rea l *8 STRESSFiber ( nlq , 6 ) ,dm(250)
13 i n teger nf , nlq , i , j
14 rea l *8 Vf , Ef
15 rea l *8 SMTRA( nlq , 6 , nf )
16 rea l *8 lambda ( nlq , nf ) , SF ( nlq , nf )
17 rea l *8 SMF( nlq , 6 , nf )
18 rea l *8 Q(600 ,9 ,625) , Wf(600 ,625)
19 common / rotmat / Q
20 common /weight / Wf
21 ! _______________________________________________________________________
22 ! EXECUTABLE STATEMENTS
23 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 ! I n i t i a l i z i n g values
25 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 Vf = dm(1 )
27 Ef = dm(2 )
28 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 ! Rotat ing the matr ix s t ress (SM) in to f i b e r subspace which i s
30 ! spaned by the row space of Q. [ SMTRA = Q.SM.Q^{T } ]
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31 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
32 do i =1 , nf
33 do j =1 , nlq
34 SMTRA( j , 1 , i )=Q( j , 1 , i ) * (Q( j , 1 , i ) *SM( j ,1 )+Q( j , 2 , i ) *SM( j , 4 )
35 + +Q( j , 3 , i ) *SM( j , 6 ) ) +Q( j , 2 , i ) * (Q( j , 2 , i ) *SM( j , 2 )
36 + +Q( j , 1 , i ) *SM( j ,4 )+Q( j , 3 , i ) *SM( j , 5 ) )
37 + +Q( j , 3 , i ) * (Q( j , 3 , i ) *SM( j ,3 )+Q( j , 1 , i ) *SM( j , 6 )
38 + +Q( j , 2 , i ) *SM( j , 5 ) )
39 SMTRA( j , 2 , i )=Q( j , 4 , i ) * (Q( j , 4 , i ) *SM( j ,1 )+Q( j , 5 , i ) *SM( j , 4 )
40 + +Q( j , 6 , i ) *SM( j , 6 ) ) +Q( j , 5 , i ) * (Q( j , 5 , i ) *SM( j , 2 )
41 + +Q( j , 4 , i ) *SM( j ,4 )+Q( j , 6 , i ) *SM( j , 5 ) )
42 + +Q( j , 6 , i ) * (Q( j , 6 , i ) *SM( j ,3 )+Q( j , 4 , i ) *SM( j , 6 )
43 + +Q( j , 5 , i ) *SM( j , 5 ) )
44 SMTRA( j , 3 , i )=Q( j , 7 , i ) * (Q( j , 7 , i ) *SM( j ,1 )+Q( j , 8 , i ) *SM( j , 4 )
45 + +Q( j , 9 , i ) *SM( j , 6 ) ) +Q( j , 8 , i ) * (Q( j , 8 , i ) *SM( j , 2 )
46 + +Q( j , 7 , i ) *SM( j ,4 )+Q( j , 9 , i ) *SM( j , 5 ) )
47 + +Q( j , 9 , i ) * (Q( j , 9 , i ) *SM( j ,3 )+Q( j , 7 , i ) *SM( j , 6 )
48 + +Q( j , 8 , i ) *SM( j , 5 ) )
49 SMTRA( j , 4 , i )=Q( j , 4 , i ) * (Q( j , 1 , i ) *SM( j ,1 )+Q( j , 2 , i ) *SM( j , 4 )
50 + +Q( j , 3 , i ) *SM( j , 6 ) ) +Q( j , 5 , i ) * (Q( j , 2 , i ) *SM( j , 2 )
51 + +Q( j , 1 , i ) *SM( j ,4 )+Q( j , 3 , i ) *SM( j , 5 ) )
52 + +Q( j , 6 , i ) * (Q( j , 3 , i ) *SM( j ,3 )+Q( j , 1 , i ) *SM( j , 6 )
53 + +Q( j , 2 , i ) *SM( j , 5 ) )
54 SMTRA( j , 5 , i )=Q( j , 7 , i ) * (Q( j , 4 , i ) *SM( j ,1 )+Q( j , 5 , i ) *SM( j , 4 )
55 + +Q( j , 6 , i ) *SM( j , 6 ) ) +Q( j , 8 , i ) * (Q( j , 5 , i ) *SM( j , 2 )
56 + +Q( j , 4 , i ) *SM( j ,4 )+Q( j , 6 , i ) *SM( j , 5 ) )
57 + +Q( j , 9 , i ) * (Q( j , 6 , i ) *SM( j ,3 )+Q( j , 4 , i ) *SM( j , 6 )
58 + +Q( j , 5 , i ) *SM( j , 5 ) )
59 SMTRA( j , 6 , i )=Q( j , 1 , i ) * (Q( j , 7 , i ) *SM( j ,1 )+Q( j , 8 , i ) *SM( j , 4 )
60 + +Q( j , 9 , i ) *SM( j , 6 ) ) +Q( j , 2 , i ) * (Q( j , 8 , i ) *SM( j , 2 )
61 + +Q( j , 7 , i ) *SM( j ,4 )+Q( j , 9 , i ) *SM( j , 5 ) )
62 + +Q( j , 3 , i ) * (Q( j , 9 , i ) *SM( j ,3 )+Q( j , 7 , i ) *SM( j , 6 )
63 + +Q( j , 8 , i ) *SM( j , 5 ) )
64 enddo
65 enddo
66 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 ! Ca lcu lat ing the st re tch introduced in to the f i b e r by the
68 ! deformation gradient F . [ LAMBDA = SQRT( n . F^{T } . F . n ) ]
69 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
70 do i =1 , nf
71 do j =1 , nlq
72 lambda ( j , i ) = sqr t (Q( j , 1 , i ) * ( F ( j , 1 ) * ( F ( j , 1 ) *Q( j , 1 , i )
73 + +F ( j , 2 ) *Q( j , 2 , i )+ F ( j , 3 ) *Q( j , 3 , i ) )
74 + +F ( j , 4 ) * ( F ( j , 4 ) *Q( j , 1 , i )+ F ( j , 5 ) *Q( j , 2 , i )
75 + +F ( j , 6 ) *Q( j , 3 , i ) ) + F ( j , 7 ) * ( F ( j , 7 ) *Q( j , 1 , i )
76 + +F ( j , 8 ) *Q( j , 2 , i )+ F ( j , 9 ) *Q( j , 3 , i ) ) )
77 + +Q( j , 2 , i ) * ( F ( j , 2 ) * ( F ( j , 1 ) *Q( j , 1 , i )
78 + +F ( j , 2 ) *Q( j , 2 , i )+ F ( j , 3 ) *Q( j , 3 , i ) )
79 + +F ( j , 5 ) * ( F ( j , 4 ) *Q( j , 1 , i )+ F ( j , 5 ) *Q( j , 2 , i )
80 + +F ( j , 6 ) *Q( j , 3 , i ) ) + F ( j , 8 ) * ( F ( j , 7 ) *Q( j , 1 , i )
81 + +F ( j , 8 ) *Q( j , 2 , i )+ F ( j , 9 ) *Q( j , 3 , i ) ) )
82 + +Q( j , 3 , i ) * ( F ( j , 3 ) * ( F ( j , 1 ) *Q( j , 1 , i )
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83 + +F ( j , 2 ) *Q( j , 2 , i )+ F ( j , 3 ) *Q( j , 3 , i ) )
84 + +F ( j , 6 ) * ( F ( j , 4 ) *Q( j , 1 , i )+ F ( j , 5 ) *Q( j , 2 , i )
85 + +F ( j , 6 ) *Q( j , 3 , i ) ) + F ( j , 9 ) * ( F ( j , 7 ) *Q( j , 1 , i )
86 + +F ( j , 8 ) *Q( j , 2 , i )+ F ( j , 9 ) *Q( j , 3 , i ) ) ) )
87 enddo
88 enddo
89 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
90 ! Ca lcu lat ing the stresses introduced in to the f i b e r ( SF ) by the
91 ! s t re tch LAMBDA . [ SF = Ef * ln (LAMBDA ) ]
92 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 do i =1 , nf
94 do j =1 , nlq
95 i f ( lambda ( j , i ) . ge . 1 . 0 d0 ) then
96 SF ( j , i ) = Ef * log ( lambda ( j , i ) )
97 else
98 SF ( j , i ) = 0.0d0
99 end i f

100 enddo
101 enddo
102 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
103 ! Poss ib ly rep lac ing the f i b e r s t ress ( SF ) with f i r s t normal
104 ! component in the rotated matr ix s t ress tensor (SMTRA ( : , 1 , : ) ) .
105 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
106 do i =1 , nf
107 do j =1 , nlq
108 i f ( ( SF ( j , i ) . gt . SMTRA( j , 1 , i ) ) . and . ( SF ( j , i ) . gt . 0 . 0 ) ) then
109 SMTRA( j , 1 , i ) = SF ( j , i )
110 end i f
111 enddo
112 enddo
113 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
114 ! Rotat ing the ( poss ib l y ) a l tered matr ix s t ress tensor in f i b e r
115 ! space back in to matr ix space and weight ing each fami ly with
116 ! the corresponding fami ly weight .
117 ! [ SMF = ( Q^{T } . SMTRA .Q ) * Wf ]
118 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
119 do i =1 , nf
120 do j =1 , nlq
121 SMF( j , 1 , i )=Q( j , 1 , i ) * (Q( j , 1 , i ) *SMTRA( j , 1 , i )
122 + +Q( j , 4 , i ) *SMTRA( j , 4 , i )+Q( j , 7 , i ) *SMTRA( j , 6 , i ) )
123 + +Q( j , 4 , i ) * (Q( j , 1 , i ) *SMTRA( j , 4 , i )
124 + +Q( j , 4 , i ) *SMTRA( j , 2 , i )+Q( j , 7 , i ) *SMTRA( j , 5 , i ) )
125 + +Q( j , 7 , i ) * (Q( j , 1 , i ) *SMTRA( j , 6 , i )
126 + +Q( j , 4 , i ) *SMTRA( j , 5 , i )+Q( j , 7 , i ) *SMTRA( j , 3 , i ) )
127 SMF( j , 2 , i )=Q( j , 2 , i ) * (Q( j , 2 , i ) *SMTRA( j , 1 , i )
128 + +Q( j , 5 , i ) *SMTRA( j , 4 , i )+Q( j , 8 , i ) *SMTRA( j , 6 , i ) )
129 + +Q( j , 5 , i ) * (Q( j , 2 , i ) *SMTRA( j , 4 , i )
130 + +Q( j , 5 , i ) *SMTRA( j , 2 , i )+Q( j , 8 , i ) *SMTRA( j , 5 , i ) )
131 + +Q( j , 8 , i ) * (Q( j , 2 , i ) *SMTRA( j , 6 , i )
132 + +Q( j , 5 , i ) *SMTRA( j , 5 , i )+Q( j , 8 , i ) *SMTRA( j , 3 , i ) )
133 SMF( j , 3 , i )=Q( j , 3 , i ) * (Q( j , 3 , i ) *SMTRA( j , 1 , i )
134 + +Q( j , 6 , i ) *SMTRA( j , 4 , i )+Q( j , 9 , i ) *SMTRA( j , 6 , i ) )
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135 + +Q( j , 6 , i ) * (Q( j , 3 , i ) *SMTRA( j , 4 , i )
136 + +Q( j , 6 , i ) *SMTRA( j , 2 , i )+Q( j , 9 , i ) *SMTRA( j , 5 , i ) )
137 + +Q( j , 9 , i ) * (Q( j , 3 , i ) *SMTRA( j , 6 , i )
138 + +Q( j , 6 , i ) *SMTRA( j , 5 , i )+Q( j , 9 , i ) *SMTRA( j , 3 , i ) )
139 SMF( j , 4 , i )=Q( j , 2 , i ) * (Q( j , 1 , i ) *SMTRA( j , 1 , i )
140 + +Q( j , 4 , i ) *SMTRA( j , 4 , i )+Q( j , 7 , i ) *SMTRA( j , 6 , i ) )
141 + +Q( j , 5 , i ) * (Q( j , 1 , i ) *SMTRA( j , 4 , i )
142 + +Q( j , 4 , i ) *SMTRA( j , 2 , i )+Q( j , 7 , i ) *SMTRA( j , 5 , i ) )
143 + +Q( j , 8 , i ) * (Q( j , 1 , i ) *SMTRA( j , 6 , i )
144 + +Q( j , 4 , i ) *SMTRA( j , 5 , i )+Q( j , 7 , i ) *SMTRA( j , 3 , i ) )
145 SMF( j , 5 , i )=Q( j , 3 , i ) * (Q( j , 2 , i ) *SMTRA( j , 1 , i )
146 + +Q( j , 5 , i ) *SMTRA( j , 4 , i )+Q( j , 8 , i ) *SMTRA( j , 6 , i ) )
147 + +Q( j , 6 , i ) * (Q( j , 2 , i ) *SMTRA( j , 4 , i )
148 + +Q( j , 5 , i ) *SMTRA( j , 2 , i )+Q( j , 8 , i ) *SMTRA( j , 5 , i ) )
149 + +Q( j , 9 , i ) * (Q( j , 2 , i ) *SMTRA( j , 6 , i )
150 + +Q( j , 5 , i ) *SMTRA( j , 5 , i )+Q( j , 8 , i ) *SMTRA( j , 3 , i ) )
151 SMF( j , 6 , i )=Q( j , 1 , i ) * (Q( j , 3 , i ) *SMTRA( j , 1 , i )
152 + +Q( j , 6 , i ) *SMTRA( j , 4 , i )+Q( j , 9 , i ) *SMTRA( j , 6 , i ) )
153 + +Q( j , 4 , i ) * (Q( j , 3 , i ) *SMTRA( j , 4 , i )
154 + +Q( j , 6 , i ) *SMTRA( j , 2 , i )+Q( j , 9 , i ) *SMTRA( j , 5 , i ) )
155 + +Q( j , 7 , i ) * (Q( j , 3 , i ) *SMTRA( j , 6 , i )
156 + +Q( j , 6 , i ) *SMTRA( j , 5 , i )+Q( j , 9 , i ) *SMTRA( j , 3 , i ) )
157 enddo
158 enddo
159 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
160 ! Summing f i b e r fami l i es ’ s t ress cont r i bu t ions .
161 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
162 STRESSFiber = 0.0d0
163 do i =1 , nf
164 do j =1 , nlq
165 STRESSFiber ( j , 1 ) = STRESSFiber ( j , 1 )+SMF( j , 1 , i ) *Wf( j , i )
166 STRESSFiber ( j , 2 ) = STRESSFiber ( j , 2 )+SMF( j , 2 , i ) *Wf( j , i )
167 STRESSFiber ( j , 3 ) = STRESSFiber ( j , 3 )+SMF( j , 3 , i ) *Wf( j , i )
168 STRESSFiber ( j , 4 ) = STRESSFiber ( j , 4 )+SMF( j , 4 , i ) *Wf( j , i )
169 STRESSFiber ( j , 5 ) = STRESSFiber ( j , 5 )+SMF( j , 5 , i ) *Wf( j , i )
170 STRESSFiber ( j , 6 ) = STRESSFiber ( j , 6 )+SMF( j , 6 , i ) *Wf( j , i )
171 enddo
172 enddo
173 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
174 ! Apply ing a law of mixture
175 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
176 do j =1 , nlq
177 STRESS ( j , 1 ) = Vf *STRESSFiber ( j ,1 )+(1 .0 − Vf ) *SM( j , 1 )
178 STRESS ( j , 2 ) = Vf *STRESSFiber ( j ,2 )+(1 .0 − Vf ) *SM( j , 2 )
179 STRESS ( j , 3 ) = Vf *STRESSFiber ( j ,3 )+(1 .0 − Vf ) *SM( j , 3 )
180 STRESS ( j , 4 ) = Vf *STRESSFiber ( j ,4 )+(1 .0 − Vf ) *SM( j , 4 )
181 STRESS ( j , 5 ) = Vf *STRESSFiber ( j ,5 )+(1 .0 − Vf ) *SM( j , 5 )
182 STRESS ( j , 6 ) = Vf *STRESSFiber ( j ,6 )+(1 .0 − Vf ) *SM( j , 6 )
183 enddo
184 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 ! End subrout ine
186 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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187 RETURN
188 END SUBROUTINE SFIBER

A.2 SFD.for

SFD.for
1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
2 * * * "SFD . fo r " * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
3 * * * Written by Ole Vestrum * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
4 * * * Spring , 2015 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
5 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
6 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
7 ! SFD ( )
8 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 ! ! ! Mater ia l parameter overview ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

10 ! ! ! HARD VARIABLES SOFT VARIABLES ( Case s pe c i f i c ) ! ! !
11 ! ! ! |<−−−−−−−−−−−−−−−−−−−−−−−−>|<−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ! ! !
12 ! ! ! 1 2 3 4 5 6 7 8 9 10 ! ! !
13 ! ! ! Vf , Ef , kf , CASEFLAG , var1 , var2 , var3 , var4 , var5 , var6 ! ! !
14 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
15 SUBROUTINE SFD (dm, nf , nlq )
16 i m p l i c i t none
17 rea l *8 dm(250)
18 i n teger nf , nlq , sqnf
19 rea l *8 theta ( nlq , nf ) , ph i ( nlq , nf ) , P I , df1 ,
20 2 df2 , Wftmp ( nlq , nf ) , tmp1 , tmp2 , phsta , phend , phinc , to l ,
21 3 thtmp ( nf ) , phtmp ( nf ) , tmp3 , tmp4 , tmp5 , tmp6 , tmp7 , tmp8 ,
22 4 tmp9 , tmp10 , tmp11 , tmp12 , tmp13 , random , U1 , U2 , Z , seed ,
23 5 check
24 rea l *8 thmin , thmax , phmin , phmax
25 i n teger i , j , n , m, FDFLAG
26 rea l *8 Q(600 ,9 ,625) , Wf(600 , 625)
27 PARAMETER( P I =4*atan (1 .0d0 ) , t o l=1e−5)
28 common / rotmat / Q
29 common /weight / Wf
30 ! _______________________________________________________________________
31 ! EXECUTABLE STATEMENTS
32 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 ! I n i t i a l i z i n g values
34 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
35 FDFLAG = i n t (dm( 4 ) )
36 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
37 ! Se lect ing f i b r e d i s t r i b u t i o n case .
38 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 se lec t case ( FDFLAG )
40 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
41 ! Case 1 : Constant theta and phi values
42 ! dm(5 ) = constant , theta



114 APPENDIX A. SOURCE CODE

43 ! dm(6 ) = constant , ph i
44 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
45 case (1 )
46 tmp1 = 1/ rea l ( nf )
47 do j =1 , nlq
48 do i =1 , nf
49 theta ( j , i ) = dm(5 )
50 phi ( j , i ) = dm(6 )
51 Wf( j , i ) = tmp1
52 end do
53 end do
54 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 ! Case 2 : Gaussian d i s t r i bu t ed theta and constant phi
56 ! dm(5 ) = mu, theta
57 ! dm(6 ) = std , theta
58 ! dm(7 ) = range cut of f , theta
59 ! dm(8 ) = constant , ph i
60 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
61 case (2 )
62 thmin = dm(5 ) − dm(7 ) *dm(6 )
63 thmax = dm(5 ) + dm(7 ) *dm(6 )
64 th inc = ( thmax − thmin ) / ( nf −1)
65 df1 = (1/ (dm(6 ) * sqr t (2* P I ) ) )
66 df2 = (2*dm(6 ) * *2 )
67 do j =1 , nlq
68 tmp1 = 0
69 do i =1 , nf
70 theta ( j , i ) = thmin + th inc * ( i −1)
71 phi ( j , i ) = dm(8 )
72 Wftmp ( j , i ) = df1 *exp ( − ( theta ( j , i )−dm(5 ) ) * *2/ df2 )
73 tmp1 = tmp1 + Wftmp ( j , i )
74 end do
75 tmp2 = 1/tmp1
76 do i =1 , nf
77 Wf( j , i ) = Wftmp ( j , i ) * tmp2
78 tmp1 = theta ( j , i )
79 theta ( j , i ) = tmp1 − 180* f l o o r ( tmp1/180)
80 end do
81 end do
82 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 ! Case 3 : Constant theta and gaussian d i s t r i bu t ed phi
84 ! dm(5 ) = constant , theta
85 ! dm(6 ) = mu, phi
86 ! dm(7 ) = std , ph i
87 ! dm(8 ) = range cut of f , ph i
88 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
89 case (3 )
90 phmin = dm(6 ) − dm(8 ) *dm(7 )
91 phmax = dm(6 ) + dm(8 ) *dm(7 )
92 phinc = (phmax − phmin ) / ( nf −1)
93 df1 = (1/ (dm(7 ) * sqr t (2* P I ) ) )
94 df2 = (2*dm(7 ) * *2 )
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95 do j =1 , nlq
96 tmp1 = 0
97 do i =1 , nf
98 theta ( j , i ) = dm(5 )
99 phi ( j , i ) = phmin + phinc * ( i −1)

100 Wftmp ( j , i ) = df1 *exp ( − ( ph i ( j , i )−dm(6 ) ) * *2/ df2 )
101 tmp1 = tmp1 + Wftmp ( j , i )
102 end do
103 tmp2 = 1/tmp1
104 do i =1 , nf
105 Wf( j , i ) = Wftmp ( j , i ) * tmp2
106 tmp1 = phi ( j , i )
107 phi ( j , i ) = tmp1 − 180* f l oo r ( tmp1/180)
108 end do
109 end do
110 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
111 ! Case 4 : B i var ian te gaussian d i s t r i bu t ed values for theta and phi
112 ! dm(5 ) = mu, theta
113 ! dm(6 ) = std , theta
114 ! dm(7 ) = range cut of f , theta
115 ! dm(8 ) = mu, phi
116 ! dm(9 ) = std , ph i
117 ! dm(10) = range cut of f , ph i
118 ! dm(11) = C11 , dm(6 ) * *2
119 ! dm(12) = C12
120 ! dm(13) = C21
121 ! dm(14) = C22 , dm(9 ) * *2
122 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
123 case (4 )
124 tmp1 = rea l ( nf )
125 sqnf = i n t ( sqr t ( tmp1 ) )
126 nf = i n t ( sqnf * *2 )
127 thmin = dm(5 ) − dm(7 ) *dm(6 )
128 thmax = dm(5 ) + dm(7 ) *dm(6 )
129 th inc = ( thmax − thmin ) / ( sqnf −1)
130 phmin = dm(8 ) − dm(10) *dm(9 )
131 phmax = dm(8 ) + dm(10) *dm(9 )
132 phinc = (phmax − phmin ) / ( sqnf −1)
133
134 do j =1 , nlq
135 do i =1 , sqnf
136 thtmp ( i ) = thmin + th inc * ( i −1)
137 phtmp ( i ) = phmin + phinc * ( i −1)
138 end do
139 do i =1 , sqnf
140 tmp1 = phtmp ( i )
141 phtmp ( i ) = tmp1 − 180* f l o o r ( tmp1/180)
142 tmp1 = thtmp ( i )
143 thtmp ( i ) = tmp1 − 180* f l o o r ( tmp1/180)
144 end do
145 i = 1
146 do n=1 , sqnf
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147 do m=1 , sqnf
148 phi ( j , i ) = phtmp (n )
149 theta ( j , i ) = thtmp (m)
150 i = i + 1
151 end do
152 end do
153 end do
154 do j =1 , nlq
155 tmp1 = 1/(2* P I * sqr t (dm(11 ) *dm(14)−dm(13) *dm( 12 ) ) )
156 tmp13 = 0
157 do i =1 , nf
158 tmp2 = (dm(5 ) − theta ( j , i ) )
159 tmp3 = (dm(13 ) * (dm(8)/2 − phi ( j , i ) / 2 ) )
160 tmp4 = (dm(11 ) *dm(14) − dm(12) *dm(13 ) )
161 tmp5 = (dm(14 ) * (dm(5)/2 − theta ( j , i ) / 2 ) )
162 tmp6 = (dm(11 ) *dm(14) − dm(12) *dm(13 ) )
163 tmp7 = (dm(8 ) − phi ( j , i ) )
164 tmp8 = (dm(11 ) * (dm(8)/2 − phi ( j , i ) / 2 ) )
165 tmp9 = (dm(11 ) *dm(14) − dm(12) *dm(13 ) )
166 tmp10 = (dm(12 ) * (dm(5)/2 − theta ( j , i ) / 2 ) )
167 tmp11 = (dm(11 ) *dm(14) − dm(12) *dm(13 ) )
168 tmp12 = tmp2 * ( tmp3/tmp4 − tmp5/tmp6 ) −
169 2 tmp7 * ( tmp8/tmp9 − tmp10/tmp11 )
170 Wftmp ( j , i ) = tmp1*exp ( tmp12 )
171 tmp13 = tmp13 + Wftmp ( j , i )
172 end do
173 tmp1 = 1/tmp13
174 do i =1 , nf
175 Wf( j , i ) = Wftmp ( j , i ) * tmp1
176 end do
177 end do
178 tmp13 = 0.0d0
179 do j =1 , nlq
180 do i =1 , nf
181 tmp13 = tmp13 + Wf ( j , i )
182 end do
183 end do
184 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
185 ! Case 5 : Monte Carlo case
186 ! dm(5 ) = mu, theta
187 ! dm(6 ) = std , theta
188 ! dm(7 ) = seed value , theta
189 ! dm(8 ) = constant , ph i
190 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
191 case (5 )
192 tmp1 = 1/ rea l ( nf )
193 do j =1 , nlq
194 do i =1 , nf
195 U1 = random( i n t (dm( 7 ) ) )
196 U2 = random( i n t (dm( 7 ) ) )
197 Z = sqrt (−2* log (U1 ) ) * cos (2* P I *U2)
198 theta ( j , i ) = dm(5)+dm(6 ) * Z
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199 phi ( j , i ) = dm(8 )
200 Wf( j , i ) = tmp1
201 end do
202 do i =1 , nf
203 i f ( theta ( j , i ) . LT . 0 . 0 ) then
204 tmp1 = theta ( j , i )
205 theta ( j , i ) = tmp1 + 180.0* ( abs ( i n t ( tmp1/180))+1)
206 else i f ( theta ( j , i ) . GT .180 .0 ) then
207 tmp1 = theta ( j , i )
208 theta ( j , i ) = tmp1 − 180.0* ( abs ( i n t ( tmp1/180) ) )
209 end i f
210 end do
211 end do
212 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
213 ! Case 6 : Uniform theta and constant phi
214 ! dm(5 ) = constant , ph i
215 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
216 case (6 )
217 tmp1 = 1.0d0/ rea l ( nf )
218 thmin = 0.0d0
219 thmax = 180.0d0
220 th inc = ( thmax − thmin ) / ( nf −1)
221
222 do i =1 , nf
223 do j =1 , nlq
224 phi ( j , i ) = dm(5 )
225 theta ( j , i )= thmin + th inc * ( i −1)
226 Wf( j , i ) = tmp1
227 end do
228 end do
229 case defau l t
230 end se lec t
231 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
232 ! Creat ing d i r e c t i ona l vectors
233 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234 tmp2 = P I /180.0
235 do i =1 , nf
236 do j =1 , nlq
237 tmp3 = phi ( j , i ) * tmp2
238 tmp4 = theta ( j , i ) * tmp2
239 Q( j , 1 , i ) = s in ( tmp3 ) * cos ( tmp4 )
240 Q( j , 2 , i ) = s in ( tmp3 ) * s in ( tmp4 )
241 Q( j , 3 , i ) = cos ( tmp3 )
242 tmp1 = 1/ sqr t (Q( j , 1 , i ) * *2 + Q( j , 2 , i ) * *2 + Q( j , 3 , i ) * *2 )
243 Q( j , 1 , i ) = Q( j , 1 , i ) * tmp1
244 Q( j , 2 , i ) = Q( j , 2 , i ) * tmp1
245 Q( j , 3 , i ) = Q( j , 3 , i ) * tmp1
246
247 end do
248 end do
249 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
250 ! Creat ing f i b e r coordinate systems and transformation matrices
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251 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
252 do i =1 , nf
253 do j =1 , nlq
254 check = abs (Q( j , 1 , i ) )
255 i f ( ( CHECK . GE . (1 .0 − t o l ) ) . and . ( CHECK . LE . ( 1 . 0+ t o l ) ) ) then
256 Q( j , 1 , i ) = 1.0d0
257 Q( j , 2 , i ) = 0.0d0
258 Q( j , 3 , i ) = 0.0d0
259 Q( j , 4 , i ) = 0.0d0
260 Q( j , 5 , i ) = 1.0d0
261 Q( j , 6 , i ) = 0.0d0
262 Q( j , 7 , i ) = 0.0d0
263 Q( j , 8 , i ) = 0.0d0
264 Q( j , 9 , i ) = 1.0d0
265 else
266 Q( j , 7 , i ) = 0.0d0
267 Q( j , 8 , i ) = −Q( j , 3 , i )
268 Q( j , 9 , i ) = Q( j , 2 , i )
269 tmp1 = 1/ sqr t (Q( j , 7 , i ) * *2 + Q( j , 8 , i ) * *2 + Q( j , 9 , i ) * *2 )
270 Q( j , 8 , i ) = Q( j , 8 , i ) * tmp1
271 Q( j , 9 , i ) = Q( j , 9 , i ) * tmp1
272 Q( j , 4 , i ) = Q( j , 3 , i ) *Q( j , 8 , i )−Q( j , 2 , i ) *Q( j , 9 , i )
273 Q( j , 5 , i ) = Q( j , 1 , i ) *Q( j , 9 , i )−Q( j , 3 , i ) *Q( j , 7 , i )
274 Q( j , 6 , i ) = Q( j , 2 , i ) *Q( j , 7 , i )−Q( j , 1 , i ) *Q( j , 8 , i )
275 end i f
276 end do
277 end do
278 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
279 ! End subrout ine
280 ! −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
281 RETURN
282 END SUBROUTINE SFD


