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Preface

This is a Master’s thesis in RAMS (Reliability, Availability, Maintainability and Safety) at NTNU

as part of the study program, when it was carried out during the spring semester of 2015).

In this report, The basic concepts in prognostics and health management and different diag-

nostic and prognostic methods have been discussed. a case study of choke valve is implemented

and one hybrid model has been proposed for valve erosion.

The reader is assumed to have some basic knowledge of condition-based maintenance or

prognostics and health management.

Trondheim, 2015-06-16

Jie Zhang
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Summary and Conclusions

As the consequence of the more widely used complex systems, there has been a shift in main-

tenance strategy. The traditional corrective maintenance is gradually replaced by preventive

maintenance or even more advanced philosophy such as condition based maintenance and

prognostics and health management. This thesis introduces prognostics and health manage-

ment that can implement the advanced condition-based maintenance for the more complex

and dynamic systems. First, the content of prognostics and health management is discussed,

and then the procedure is described as data acquisition, data processing, diagnostics and prog-

nostics, and maintenance decision making. In addition, historical literatures about diagnostic

and prognostic models are systematically and throughly reviewed. It consists of model-based

models and data-driven models and the paper focuses more on data-driven models, due to its

simplicity and generality. Since degradation is one of main causes for system failure either for

either machinery or electronics, degradation status assessment and prognostics are discussed

in this paper. Gamma process is suitable for monotonic degradation, but there is a prerequi-

site that the degradation indicator is observable. In order to overcome this limitation, ANNs

are used to calculate the value of indicator by monitoring relevant measurable covariates. One

hybrid model is proposed consists of ANNs model together with Gamma process for degrada-

tion prognostics. Bayesian estimation for updating the scale parameter of gamma process is

suggested to improve the accuracy.

Chock valve is studied as a case to demonstrate how the hybrid model can be applied to

estimate valve residual useful life. The case study approves the results from hybrid prognostic

model, the distribution of RUL can support the maintenance decision making. This proposed

hybrid model can not only be applied to subsea valves erosion prognostics, but also can be

applied to other equipment degradation prognostics problem.
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Chapter 1

Introduction

1.1 Background

During the past half century, more and more complex and highly embedded and automated

systems has been used in industries. The cost of unavailability of these systems is so huge that

no one can afford and in addition, the high reliability and availability of systems are the key to

ensure the safety and environment are protected. The simplest maintenance strategy (run to

failure) is out of date for the complex system. The scheduled preventive maintenance is also

not economically wise to implement since it may lead to waste of components or subsystems

useful life. As the maintenance cost accounts more and more of the operational cost, the need

to lower the maintenance cost and at the same time without compromising safe operation is in

emergency.

Condition-based maintenance has developed to minimize the unnecessary preventive main-

tenance by assessing actual equipments or components health condition based on real-time

sensor data analysis. A lot of effort has been put on failure or fault detection and diagnostics,

and the principle of diagnostics is once the monitored indicator reaches the presetting thresh-

old, system will send alarms to inform there is something wrong within the system. Based on

the diagnostic techniques, the prognostics-related techniques like fault propagation and resid-

ual useful life estimation of the system or components have only recently attracted attentions in

research studies. While according to Li and Nilkitsaranont (2009), making accurate prognostic

predictions allows benefits such as advanced scheduling of maintenance activities, proactive al-

1



CHAPTER 1. INTRODUCTION 2

location of replacement parts and enhanced fleet deployment decisions based on the estimated

progression of component life consumption.

In military and aerospace, Prognostics and health management (PHM) has been developed

as a system that can implement the advanced condition-based maintenance strategy and focus

more on prognostics and predicting the residual life. PHM has already been used in the aircraft

(Carl S. Byington et al. (2004))and military for decades, and the benefits of apply PHM is ap-

parent and remarkable. For example, the capability allows end users to improve fault isolation,

better plan maintenance, reduce or eliminate inspections, and decrease time-based mainte-

nance intervals with confidence, as well as an overall decrease in life cycle costs. Whilst in other

industries PHM is still not applied widely. For example, oil and gas industry already starts to im-

plement condition monitoring technologies to monitor the equipments’ degradation, but the

prognostics has not even been considered as one necessary practice. Considering the more time

consuming and difficult maintenance for subsea equipments, it is imperative to apply prognos-

tic algorithms in subsea industry to calculate the residual useful life (RUL) of the equipments,

which can let the proactive maintenance practicable. Prognostics and health management is

a wide topic and in this paper the main focus is the prognostic algorithms used in prognostics

and health management systems.

The book George Vachtsevanos (2006) details the technologies in CBM and PHM that have

been introduced by researchers and practitioners within different application domains. It con-

tains the important concepts within this field, the data collection and processing techniques,

and the diagnostics and prognostics methods. The diagnostics and prognostics methods will be

reviewed in detail in Chapter 2 in this thesis.

1.2 Objectives

The main objective is to study prognostics methods that can be used in Prognostics and Health

Management for predicting the residual useful life which can help the maintenance scheduling.

Using a subsea choke valve as a case study to discuss how can different methods be combined

together.

The sub-objectives are:
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1. Summarize the prognostics and health management content and procedure;

2. Discuss different diagnostics and prognostics methods used in Prognostics and Health

Management;

3. Propose a hybrid model for dealing with the equipments degradation problem;

4. Apply the hybrid model for prognostics of choke valve erosion.

1.3 Limitations

1. This thesis focus on prognostics models more than diagnostics, and it just gives a sum-

mary for different diagnostics methods. More deep understanding of diagnostics will help

to understand prognostics better since prognostic models is developed based on diagnos-

tics;

2. The report has discussed more about the machinery prognostics, the prognostics of elec-

tronics is not covered.

3. Due to time limitation and lacking of relevant knowledge, some relevant topics have not

been introduced in detail, such as signal processing techniques, the system level health

assessment.

4. Since no field data for the case study of choke erosion, the manually generated data is

used for calculation.

1.4 Approach

The background knowledge about prognostics and health management is obtained by literature

review, and in addition the most currently common used diagnostics and prognostics method

are also reviewed. For choke valve erosion, Gamma process could be suitable method for ero-

sion prognostics and residual useful life prediction, if the limitation of Gamma process can be

solved. By compare the merits and limits of different models, ANNs model is chosen to solve the

limitation of Gamma process together with data processing techniques.



CHAPTER 1. INTRODUCTION 4

1.5 Structure of the report

The report is structured as:

• Chapter 1 introduces the background of Prognostics and health management and objec-

tives of this report;

• Chapter 2 gives a detailed introduction of the content of Prognostics and health manage-

ment and a literature review of the relevant diagnostic and prognostic models;

• A hybrid prognostics model is proposed for the equipment degradation in Chapter 3 and

the details about the ANNs model and Stochastic model are discussed;

• Chapter 4 introduces subsea choke valve as a case study, and demonstrates the hybrid

prognostic model for valve erosion;

• Chapter 5 presents the summary and conclusion of the report and recommends the future

works.



Chapter 2

Introduction of prognostics and health

management

2.1 Evolution of maintenance technologies

The earliest maintenance techniques is basically breakdown maintenance (also called correc-

tive maintenance or run-to-failure), where no actions are taken to maintain the equipment until

it breaks and consequently needs a repair or replacement. Breakdown maintenance only applies

to the equipment that is not expensive and the failure does not lead to a severe consequence.

In the 1950s, preventive maintenance (planned maintenance) was introduced to prevent the

catastrophic failures, which means regular inspections and maintenance is implemented in

certain intervals regardless of the condition of the equipment. Bazovsky (1961) pioneers the

use of mathematical optimization methods in preventive maintenance policies. Jardine (1973)

introduces decision models for determining optimal replacement or overhaul interval by ana-

lyzing reliability data (e.g. historical breakdown events) and cost data. These polices do reduce

some failures, but they can not eliminate all the catastrophic failures and at the same time it

needs more labor or sometime is more costly. Both preventative and corrective maintenance

approaches have financial implications with them. The use of conservative failure rate to de-

cide the maintenance interval will result in components regularly being replaced away before

they actually reached their end of life time. Alternatively, the use of corrective maintenance ap-

proaches makes the best use of the components serviceable time, however, the failure of com-
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ponents can cause damage to other part of a system, resulting in significant repair cost and

down time cost. The common factor making them unsuitable is that the actual condition of the

equipment is not considered.

As system and equipment become more complex and expensive, the cost of the failure of sys-

tems and corresponding cost such as down time cost and safety cost is significantly increased.

In addition, high availability and reliability of the system becomes more demanding than ever.

These factors drive the industries to look for a new maintenance philosophy. Eventually, condition-

based maintenance(CBM) starts to play a role in different industries. CBM is a maintenance

program that recommends maintenance actions based on the information collected through

condition monitoring and only when there is evidence of abnormal behaviors in the equipment.

ISO (2012) defines condition monitoring (CM) as the process of monitoring a parameter of con-

dition in machinery (vibration, temperature etc.), in order to identify a significant change which

is indicative of a developing fault.

Condition-based maintenance is a kind of proactive maintenance. Compared with tradi-

tional reactive maintenance, it can not only improve operational availability, but also reduce

the unnecessary scheduled maintenance cost, reduce the spare parts inventory cost, and mini-

mize the life-cycle cost. However it can not be applied to every system. CBM can be applied in

systems that (1) can be regarded as being deterministic to some extent. (2) is stationary or static,

and (3) for which signal variables that can be good health indicators can be extracted.

With the development and advancement in censoring technology, data collection storage

and processing capabilities, and continuous improvements in algorithms and data analysis tech-

niques, CBM approaches is developing and improving. Currently, more and more focus has

shifted to prognostics and health management which focus more on incipient failure detec-

tion, current health assessment and remaining useful life prediction. Figure 2.1 illustrates the

relationship between CBM and PHM. According to Kalgren et al. (2006), PHM is a health man-

agement approach utilizing measurements, models, and software to perform incipient fault de-

tection, condition assessment, and failure progression prediction. Lee et al. (2014) considers

PHM as an evolved form of CBM, and CBM techniques can be used as input for the prognostics

models in PHM and support the timely, accurate decision making.
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Figure 2.1: Stages within Prognostics and Health Management systems
, adapted from Hess et al. (2006)

2.2 Content of Prognostics and Health Management

According to E. Lunde and Spjøtvold (2010), PHM primarily consists of two main technologies:

health assessment and health management. Figure 2.2 illustrates the contents within each suite

and their interaction. As shown in the figure 2.2, the typical capabilities in health manage-

ment include diagnostics, prognostics, and anomaly detection, while the capacities in health

management include decision-making, optimization and scheduling. Health assessment is a

bottom-up analysis of a device and the analysis is at components or subsystems level, and it

assumes that the state of the device can be explained by the state of its components. In con-

trast, health management is a top-down method, which utilizes the information obtained from

health assessment to explore, evaluate and propose appropriate decisions along with opera-

tional, maintenance, supply chain and other logistics related aspects, in order to maintain the

desired system performance and meet requirements and constrains. Logistics issues like re-

pair scheduling, operational reconfiguration, spare allocation, customer notification are also

included inside the health management.

Prognostics and Health Management has been applied to Aerospace and Military systems for

more than 20 years. Early on, the concept was simply to detect and report failures – basic Built-
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Figure 2.2: Two main issues of Prognostics and Health Management
, adapted from E. Lunde and Spjøtvold (2010)

In-Test. And it gradually grows into more sophisticated technologies and methods for evaluating

the health of equipment and for using the results to direct and support maintenance. Hess et al.

(2006) describes that PHM is developed for the new F-35 Joint-Strike Fighter(JSF), enabling the

vision of autonomic logistics and helping to meet the overall affordability and supportability

goals of the latest military fighter aircraft. So far, a lot of prognostics methods and systems have

been developed for machinery maintenance. The academic research focus mostly on remaining

residual life estimation, but it is only one part of the prognostics. Hess et al. (2006) lists some

functionalities and capabilities that might be contained within a modern PHM system, as shown

below:

• Fault detection / isolation

• Advanced diagnostics
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• Predictive prognostics

• RUL and time-to-failure predictions

• Component life usage tracking

• Warranty guarantee tracking

• Health reporting and information management

• Utilization tracking

• Decision support systems

• Fault accommodation

• Information fusion and reasoners

2.3 Procedure of PHM

2.3.1 FMECA analysis

The fist step of PHM system development is to implement a comprehensive FMECA study. The

objective is to relate failures to the root causes. Through FMECA studies, all potential failure

modes, the severity of them and the probabilities of occurrence, the fault symptoms and the

monitoring methods and sensors required will be covered in the analysis at component level or

subsystem level.

Butler (2012) claims that FMECA are often used as the starting point of development of fault

diagnostics capabilities, and it typically requires input from variety of sources including domain

experts, maintenance personnel, equipment specialists and designers.

2.3.2 Data Acquisition

According to Jardine et al. (2006) data acquisition is a process of collecting and storing useful

data(information) and it is an essential step for fault diagnostics and prognostics. And Data

could be categorized into two types, namely event data and condition monitoring data. Event
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data includes the information on what happened and what was done to the systems or equip-

ments. while condition monitoring data can be the measurements related to the condition of

the equipment. In practice, event data always need manual data entry to the information sys-

tems and sometimes may be neglected by personnel, but event data and condition monitoring

data are equally important.

With the rapid development of the computer and sensor technologies, more and more pow-

erful data acquisition techniques is becoming affordable. The most common monitoring data

can be vibration data, acoustic data, oil analysis data, temperature, pressure, humidity, mois-

ture, weather or environment data, etc. Various sensors have been designed for data collec-

tion, such as micro-sensors, ultrasonic sensors, acoustic emission sensors. This thesis will not

cover the detail about data acquisition techniques, but books like Nikolay V. Kirianaki (2002)

and Austerlitz (2002) will provide more details.

2.3.3 Data processing

Data cleaning

The first step of data processing is data cleaning. This is an important step since data, especially

event data, which is usually entered manually, always contains errors. Data cleaning ensures, or

at least increases the chance, that clean (error-free) data are used for further analysis and mod-

eling. Data errors are caused by many factors including the human factor and sensor faults. In

general, however, there is no simple way to clean data. Sometimes it requires manual examina-

tion of data. Graphical tools would be very helpful to finding and removing data errors. Data

cleaning is, indeed, a big area. It is not in the scope and will not be discussed in detail here.

Data analysis

The next step of data processing is data analysis. Jardine et al. (2006) categorizes condition

monitoring data into three categories: value type, waveform type, and multi dimension type.

Value type data is single value, like temperature, pressure, etc. Waveform data is like vibration

signals and acoustic emissions, motor current, partial discharge, etc. An example for multidi-

mensional type data is the image data. A variety of models, algorithms and tools are available in
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the literature to analyze data for better understanding and interpretation of data. The models,

algorithms and tools used for data analysis depend mainly on the types of data collected. For

example, for waveform data analysis, frequency-domain analysis obtained by transformation

from time domain, can easily identify and isolate certain frequency components of interest. For

detail introduction about time-domain, frequency domain and time frequency analysis meth-

ods, check the article Jardine et al. (2006).

2.3.4 Diagnostics

Fault diagnostic, according to George Vachtsevanos (2006), is the foundation of the condition-

based maintenance, and it is designed to detect system performance, monitor degradation lev-

els, and identify faults based on physical property changes, through detectable phenomena.

Early diagnostic was developed in the form of built-in-test(BIT) equipment in the aircraft.

Built-in test is defined as an on-board hardware-software diagnostic means to identify and lo-

cate faults, and includes error detection and correction circuits. Later on fault diagnostic ca-

pability has bee improved due to the continuous improvement in computer power and data

storage capabilities.

The term fault diagnostics is used to describe a range of tasks and capabilities and it has not

yet been well defined. The following definition is given by George Vachtsevanos (2006):

Z Fault diagnosis: Detecting, isolating, and identifying an impending or incipient failure condition-

the affected component (subsystem, or system) is still operational even though at a degraded

mode.

Failure diagnosis: Detecting, isolating, and identifying a component (subsystem, or system)

that has ceased to operate.

Fault (failure) detection involves identifying the occurrence of a fault, or failure, in a mon-

itored system, or the identification of abnormal behavior which may be indicative of a fault

condition.

Fault (failure) isolation involves identifying which component/subsystem/system has a fault

condition, or has failed.

Fault (failure) identification involves determining the nature and extent of a system fault
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condition or failure.

2.3.5 Prognostics

Diagnostics is conducted to investigate or analyze the cause or nature of a condition situation

or problem, whereas prognostics is concerned with calculating or predicting the future as a re-

sult of rational study and analysis of available data. Prognostics has the ability to identify the

presence of incipient fault conditions and incipient faults identification enables maintenance

personnel to potentially avoid the catastrophic failures. Butler (2012) considers prognostics as

a more difficult task than diagnostics since evolution of equipment fault conditions is subject

to stochastic processes and in addtion prognostics involves a large degree of uncertainty. The

figure 2.3 describes a clear relationship between diagnostics and prognostics according to the

propagation of the fault.

Figure 2.3: Diagnostics and Prognostics, adapted from Lee et al. (2014)

The standard ISO 13381-1 introduces a definition of prognostics, which is an estimation of

time to failure and risk for one or more existing and future failure modes. The most common

prognostics is to predict how much time left before a failure (or a fault) occurs given the current

machine condition and past operation profile. The time left before failure is called remaining

useful life(RUL). Except for RUL prediction, the probability that the machine can survive until



CHAPTER 2. INTRODUCTION OF PROGNOSTICS AND HEALTH MANAGEMENT 13

next inspection given the current condition and history operation profiles is also a good refer-

ence for maintenance personnel to make decisions.

2.3.6 Decision making

the results from prognostics such as residual useful life with its confidence level and the prob-

ability of failure before next inspection is the vital information for supporting the maitnenacen

decision making. Except for that, there are also other issue should be taken into considera-

tion, such as the availability of spare parts and specific tools, human resources, economic costs,

maintenance strategy, regulations and laws, etc. Hence, a robust maintenance decision making

system is needed to balance the different profits and boundaries. Jardine et al. (2001) introduces

the EXAKT software for optimizing maintenance decisions for the mine haul truck wheel mo-

tors. EXAKT not only considers the results from prognostics but also considers the cost function,

replacement policy, hazard sensitivity and cost sensitivity for making decision.

2.4 Diagnostics methods review

As discussed in last section diagnostics is the basis of prognostics and has been deeply re-

searched. In this section common diagnostics methods that has used are briefly reviewed, and

more focus is given to prognostics. According to George Vachtsevanos (2006) fault diagnosis

methods can be classified into two types, model-based and data-based approaches. In the fol-

lowing both two types will be introduced.

2.4.1 Model-based approaches

Model-based fault diagnostic approaches utilize a mathematical model of the system under ob-

servation. The estimated results generated by the model are then compared with the actual pro-

cess outputs, and the potential fault conditions are identified based on the residual value. The

model being utilized is derived from fist principles, and embodied by series of dynamic equa-

tions that define relationships, at a given time or load cycle, between damage (or degradation) of

a system or component and environmental and operational conditions under which the system
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or component are operated. Figure 2.4 illustrates the basic concepts of a typical model-based

approach to fault diagnostics.

Figure 2.4: Model-based Diagnostic Approach

As illustrated in figure 2.4, a residual is generated after the comparison of actual system out-

put and the model estimate. For normal operation, the value of residual signal should be ap-

proximately zero, while when the value of the residual signal is deviated from zero, the residual

signal will be forwarded to a decision logic routine which is used to map the behavior of the

residual signal onto a specific fault condition.

2.4.2 Data-driven approaches

The general principle of data-driven approaches to fault diagnostics is to utilize pattern recogni-

tion techniques to map data in the measurement, or feature, space, to equipment faults within

the fault space. And data-driven approaches is categorized into two types, namely statistical

approaches and artificial intelligence based approaches by Jardine et al. (2006).

Statistical approaches has some common methods, such as statistical process control(SPC),

principal component analysis(PCA), and partial least squares(PLS).
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Statistical process control, SPC, which was originally developed in quality control theory, has

been well developed and widely used in fault detection and diagnostics. The principle of SPC is

to measure the deviation of the current signal from a reference signal representing the normal

condition to see whether the current signal is within the control limits or not. Gallagher et al.

(1997) uses SPC for semiconductor chamber damage detection

Principal component analysis, PCA, is often applied to high-dimensional datasets to trans-

form a number of related variables to a smaller set of uncorrelated variables. According to

Venkatasubramanian et al. (2003), the basic principle of PCA for fault diagnostics is to derive

a PCA model using a dataset of normal fault-free behavior. Future observations are then com-

pared with this model using statistical measures such as the T 2 and Q statistics. If the measured

statistics exceed a defined limit, a potential fault condition is flagged.

Partial least squares, PLS, is a multivariate regression algorithm based upon PCA. Whilst

PCA is concerned with decomposing an input matrix X into its principal components, PLS is

concerned with developing a linear regression model by first projecting the input matrix X and

output matrix Y onto a lower dimensional space. Qin (2009) gives a contemporary review of

applications of PCA and PLS to fault diagnostics.

Cluster analysis, as a multivariate statistical analysis method, is a statistical classification ap-

proach that groups signals into different fault categories on the basis of the similarity of the char-

acteristics or features they possess. It seeks to minimize within-group variance and maximize

between-group variance. The result of cluster analysis is a number of heterogeneous groups

with homogeneous contents: There are substantial differences between the groups, but the sig-

nals within a single group are similar.

AI approaches for diagnostics includes artificial neural networks(ANNs), support vector clas-

sification, and fuzzy logic. And the detail of ANNs will be discussed in next section.

2.5 Prognostics methods review

Due to the variety of techniques that are applied into prognostics problems, it is not easy to

categorize different approaches into different classes. George Vachtsevanos (2006) categorizes

prognostics approaches into three classes, experience-based, data-driven and model-based ap-
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proaches. Figure 2.5 illustrates how we move from experience-based to model-based approaches,

with increasing capability and performance. However, George Vachtsevanos (2006) points out

that the applicability seems to be decreasing.

Figure 2.5: Technical approaches to prognostics, adapted from George Vachtsevanos (2006)

In the following sections, a brief review of these three classes of approaches is presented,

and relevant applications of different approaches will also be discussed.

2.5.1 Experience-based prognostics approaches

The simplest prognostics approaches reply on statistical information that are collected from

event records of a big population of identical items and used to examine historical failure rate of

systems or components. And these data can be used for developing life-usage models in terms

of distribution of failure rates over time. Rausand and Høyland (2004) has introduced many

parametric statistical models, such as Exponential, Weibull, Normal, Log-normal, Logistic, Log-

logistic and Gamma distributions. And the Exponential and Weibull distribution are the most

common used distributions among them. The former is very simple and easy to apply and the
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later has the ability to adjust to varies types of failure rate in different phases, like infant, mature,

wear out phases.

The conventional experience-based approach is used for preventive maintenance schedul-

ing based on the mean time between failure(MTBF). However, these approaches do not have

predictive capability and are not the real prognostics techniques. In general, these approaches

can be applied widely in systems or components with low criticality and cost, or in the situation

where the sensor data is not available. The following data-driven and model-based methods are

developed for individual component or system prognostics.

2.5.2 Data-driven method

Data-driven approaches attempt to derive models directly from routinely collected condition

monitoring data instead of building models based on comprehensive system physics and hu-

man expertise. They are built based on historical records and produce prediction outputs di-

rectly in terms of CM data, so that it only needs the certain amount of data, and it does not

require comprehensive understanding of the system . However, the main drawback of this ap-

proach is that its effectiveness and accuracy is highly dependent on the quantity and quality of

operational data used to build the model. While, data driven models are considered to be the

most popular method for prognostics.

Data driven approach can be divided into three major categories: Artificial Intelligent (AI)

methods; stochastic process based models; and covariate based hazard models. Figure 2.6 lists

most of the date-driven method for prognostics.

Time series approaches

The conventional data-driven methods rely on simple projection models, which project the

current level of degradation into the future. Such common used approaches can be exponen-

tial smoothing techniques (Byington and Roemer (2002)) and autoregressive model (Wu et al.

(2007b)). One major advantage of these techniques is the simplicity of their calculations, which

can be carried out on a programmable calculator. However, the limitation of these trend fore-

casting techniques is the assumption of some underlying stability in the monitored system and

relying on past patterns of degradation to project future degradation.
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Figure 2.6: Data-driven methods for Prognostics,

Artificial intelligent methods

Artificial intelligence has been increasingly applied to machine diagnostics and prognostics. In

literature A.Poongodai and S.Bhuvaneswari (2013) and Schwabacher and Goebel (2007) there

has listed many AI methods, such as machine learning techniques(e.g. Neural Networks(NNs)

and Support Vector Machines(SVM)), knowledge based techniques(Expert Systems(ESs) and

fuzzy logic systems), and graphical techniques (decision trees, Petri Net, and Bayesian Net-

works). In the following content a brief introduction of some artificial intelligent methods will

be given, while Neural Networks will be discussed in detail in chapter 3 since its simplicity and

popularity.

Artificial neural network(ANN) is the most common and traditional machine learning tech-

niques. It can be used for classification(e.g. failure diagnostics) and prediction (e.g. failure

prognostics) problems. Feedforward NNs and recurrent NNs are two typical structures of Neural

Networks. The common used activation functions of the neurons for forecasting are radial-basis

function networks polynomial and wavelet. Gebraeel et al. (2004) estimated the bearing failure

time using a feedforward NN model. Wu et al. (2007a) developed an integrated feedforward NN

model that uses sensory information to predict the life percentage of a rotating machine. Vacht-
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sevanos and Wang (2001) develop a recurrent wavelet neural network to predict rolling element

bearing crack propagation.

Support vector machines (SVMs) are supervised learning models with associated learning al-

gorithms that analyze data and recognize patterns, used for classification and regression analy-

sis. It is relatively new and complex machine learning techniques that overcomes the overfitting

problem of NNs. Widodo and Yang (2007) has reviewed and summarized the recent research

and developments of SVMs in machine condition monitoring. Li et al. (2007) has used a SVM

approach to predict the condition residual life.

Stochastic process based models

Stochastic process based models are developed to describe degradation of an asset using suit-

able stochastic process. Gaussian and non-Gaussian process are common underlying degrada-

tion process that were applied in prognostics issue.

The Wiener process ( Brownian motion with drift) is a well-known Gaussian process. It is a

continuous-time Markov process with independent increments. Wiener process originally was

developed to model the movement of small particles in fluids and air, so the increments can

be either positive or negative, while in reliability issue, some pattens are only monotone, such

as fatigue crack propagation, creep, and the amount of erosion. Also, Wiener process is a time

homogeneous process, but the degradation process may not have this nature.

One common non-Gaussian process is Gamma process. Gamma process is a natural model

for degradation processes where deterioration is supposed to take place gradually over time in

a sequence of tiny positive increments. In theory, Gamma process has 3 properties: (1) the

increments Y (ti )−Y (ti−1) for a given time interval ∆t has a gamma distribution; (2) The incre-

ments in any disjoint time intervals are independent random variables; (3) Y (0) = 0. Lawless

and Crowder (2004) applies a Gamma process model to fatigue growth problem, Pandey et al.

(2005) has compared the random variable deteriorate model with Gamma process model for

aging structural components.

Compound Poisson process is a continuous-time Markov process with non-negative, sta-

tionary, and independent increments. The main difference from Gamma process is Compound

Poisson process has a finite number of jumps in finite time intervals. And Compound Poisson
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process is suitable for modeling usage such as damage due to shocks.

State-space models are models that use state variables to describe a system by a set of first-

order differential or difference equations. State variables x(t) can be reconstructed from the

measured input-output data, but are not themselves measured during an experiment. General

state models are represented by the following equations:

xt = Ft (xt−1, wt ) (2.1)

yt = Ht (xt−1, vt ) (2.2)

Where the yt is observed state value, xt is the unobserved state process, Ft and Ht are arbitrary

functions.

State space models are appropriate for handling multivariate data, linear Gaussian process

and nonlinear-Gaussian process. According to J. Durbin. (2012) the advantage of state space

models is the ability to model the behavior of different components of the series separately and

then put the sub-models together to form an overall model for the series. When the state vari-

ables are discrete, it is often called Hidden Markov Model (HMM).

Covariate-based hazard models

In practice, wear out of mechanical components or deterioration of electrical devices is caused

by one or more factors, and these factors are called covariates, for example, temperature, humid-

ity, pressure, etc. These covariates change stochastically and may influence and or indicate the

lifetime. Therefore, it is important to incorporate these covariates into lifetime modeling. con-

dition monitoring can record the change of these covariates. Considering the condition moni-

toring data together with the historical failure data,is the advantage of covariate-based hazard

models. Proportional hazard model is one common used model and it has been used in various

applications (e.x. Jardine et al. (2001), Kumar and Westberg (1996)).
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2.5.3 Model based method

Model-based approaches is also called physics-based model. Prognosis of remaining useful life

(RUL) is carried out based on knowledge of the processes causing degradation and leading to

failure of the system. It combines a physical damage model with measure data to predict fu-

ture behavior of degradation or damage as illustrated in figure 2.7. The RUL is estimated by

progressing the damage state reaches the threshold.

Figure 2.7: Illustration of Physics-based prognostics

The main advantage of physics-based approach is that the model represents the physical

features of the machine that are more visualized and understandable for the maintenance per-

sonnel. In addition, the physics-based model can produce more accurate results than data-

driven models, especially for long-term prediction.

On the other hand, since the models contains some assumptions and approximations, it

required to be validated before applying. And secondly, as the model increases, the number

of parameter also increases, which will lead estimation of parameter very difficult. However,
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parameter identification and estimation is the most important issue because the behavior of a

physical model depends on the model parameter estimation. Thirdly, sometimes the system is

so complex that a mathematical model can not be developed from the first principles. Finally,

due to the variate principles, different components should use different models. The process of

building models requires the personnel to have a very deep understanding of the system and it

is also very time consuming and costly.



Chapter 3

Proposed hybrid model for degradation

prognostics

In last chapter both of model-based and data-driven prognostics methods has been discussed

and compared. Unlike model-based prognostic method, data-driven prognostic approaches are

much more practicable to implement for industries because data-driven methods are easy to

understand and mostly there are a big amount of monitoring data existing. Within data-driven

methods, artificial neural networks (ANNs) and Stochastic process based models are relatively

new in applications in the reliability field and have not yet been effectively applied in remaining

asset lifetime prediction problems. These models are promising to demonstrate both linear and

nonlinear relationships between covariate data and actual asset health. In this chapter these

two methods will be used to deal with the degradation prognostics.

Degradation or deterioration problem is a common issue either for machinery or electron-

ics. Currently, the industry common strategy for degradation is using model-based diagnostic

method to send alarm if something goes wrong, however, the need to maintain high availabil-

ity of the system is necessary, which means maintenance planning in advance is prerequisite.

Therefore the prognostic ability becomes more important and imperative.

23
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3.1 Propose a hybrid model

For machinery, many researches has been done on degradation relevant issues. The conclusion

is the Gamma process is the most suitable model for monotonic degradation issues, such as cor-

rosion, erosion, crack propagation, etc. Gamma process is a suitable method for predicting the

trend of degradation with stochastic property. Nevertheless, the assumption always made for

gamma process is that the degradation status is directly observed. In fact the indicator some-

times is not observable. For example subsea equipments are located on the seabed and difficult

for retrieval and inspection. It is difficult and time-consuming and also very costly. The prob-

lem of degradation indicator selection and extraction has not yet been studied much so far. This

paper is going to discover the method for solving the gamma process application limitation.

As the condition monitoring technology is developing fast and being applied in various in-

dustries, it becomes easier for the degradation visualization. The degradation level is not di-

rectly detected, but it is possible to monitor the relevant covariates that can be fused into a

parameter that indicates current status of the monitored system or component. For example

DWS team introduces that the tire deflation is detected not directly by the air pressure, instead,

Dunlop Tech monitors the wheel speed to indicate the deflation.

The relationship between the degradation indicator and its relevant covariates can be ei-

ther linear or non-linear, and it is normally derived from the first principles. Ideally the trend

of degradation indicator should be monotonic due to the property of the degradation, but in

reality, the results of the degradation parameter will always varies, with a lot of noise.

The non-monotone degradation parameter calculated from the monitoring data, needs to

be processed by techniques such as filtering and smoothing. When data processing is done, the

relationship between the history monitoring data set (measurable covariates) with these post-

processed values of degradation parameter could be built by ANNs model to replace the original

physics-orientated relation. The post-processed degradation parameter values are used as the

output of the ANNs, and the values of the measurable variables are fitted in ANNs as inputs.

The ANNs is trained with a certain amount of the history data sets. After training, if the future

measurable variables are collected and putted into the ANNs model, the degradation parameter

value can be obtained from the new output of ANNs, which infers the health condition of com-
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ponents or subsystems. The new output sets are the target values that is assumed as a gamma

process and used for prognostics. The technical road map of this method is shown in the figure

3.1:

Figure 3.1: The procedure of proposed method for degradation problem

In a word, a hybrid model is proposed with Artificial Neural Network for degradation state

visualization and Gamma process for degradation prognostics. And in the following content,

the theory of Artificial Neural Networks and Gamma process will be discussed in detail.

3.2 Artificial Neural Network

As described in previous chapter, artificial neural network is a flexible model that can be used

for nonlinear modeling. ANNs model relationships between input and output variables with a

model structure inspired by the neural structure of the human brain.

According to Heng et al. (2009), an ANN consists of a layer of input nodes, one or more lay-

ers of hidden nodes, one layer of output nodes and connecting weights. The network learns
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the unknown function by adjusting its weights with repetitive observations of inputs and out-

puts. After the training process, the validation should be done using another sets of history data

before ANN is used for prediction.

Neural network can be classified into two major types: the static neural network and the dy-

namic neural network. Static neural networks have no feedback elements and contain no time

delays. Contrary to the static neural network, the dynamic neural network, the output depends

on the current or previous inputs, outputs or states of the networks. Moreover, dynamic network

can be divided into two subgroups: Dynamic networks with feed-forward connections, where

the output response depends both on inputs and time; dynamic networks with feedback or re-

current connections, where the output depends on the previous states and time. For example,

recurrent neural networks (RNNs), according to Boden (2001), have one or more feedback loops

and it has the ability to store the preceding states and record the characteristics of a system it

represents over time. The figure 3.2 shows an illustrative example of the general structure of a

recurrent network.

Figure 3.2: Recurrent Neural Network

Since the ANNs is not going to applied for prediction in this paper, the recurrent neural net-

works will be not discussed here. In the following the feed-forward neural network (FFNN) is

introduced.
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Figure 3.3: Two-layer neural network

3.2.1 Feedforward neural network

Figure 3.3 shows the typical structure of two layer feed-forward neural network. The value xk

are the inputs, and yi are its output. Function σ(ů) is a nonlinear activation function contained

in the hidden-layer. The hidden layer weights are v j k , and its bias values are θv j . The output

layer weights are wi j and bias values are θwi . The number of hidden layer neurons is L.

The neuron computes the weighted sum of the inputs and adds a bias value θ. The results

are then delivered to the activation function in the neuron σ(ů), to yield the neurons outputs.

After that, the neuron outputs are then passed as an input to the next layer, here namely the

output layer, the outputs of the hidden layer will be transfered again by the activation function

in the output layer. A mathematical formula descrying the NN is given by

yi =σ(
L∑

j=1
wi jσ(

n∑
k=1

v j k xk +θv j )+θwi ) (3.1)
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Activation functions

There is a variety of linear or non-linear activation functions in the neurons and some common

ones are step function, log-sigmoid, and tan-sigmoid functions, radial-basis, ridge polynomial,

wavelet functions. A.Poongodai and S.Bhuvaneswari (2013) claims that log-sigmoid activation

function is often used in output layer for classification problems, to limit the output to a small

range, whilst linear activation function is often used in output layer for regression problems, to

avoid limiting the output range.

Network Training

A network training procedure is to identify the optimal set of weights and bias values for each

neuron, given a set of input and output training data. The most common training approach is

the back propagation algorithm, and the procedure of network training is described here:

(1) The first step is put the training data into the network, and networks weights and bias are

randomly generated, and output can be calculated;

(2) The second step is to compare the model output yi with the target value ŷi from the data

set, and the sum of squared error(SSE) is computed as below:

SSE =
n∑

i=1

m∑
j=1

(yi − ŷi ) (3.2)

where n is the number of input-output samples in the training data set, m is the number of

outputs.

(3) The next step is to evaluate the error and minimize the SSE by modifying the weights

between each neuron. A common weight-tuning algorithm is the gradient algorithm based on

back-propagated error. This algorithm is given by:

Wt+1 = Wt +Fσ(VT
t Xd)ET

t (3.3)

Vt+1 = Vt +GXd(σ
′T
t WtEt)T (3.4)

Where t is the time index, and Et = yd−yt is the output error at time t, yd is the output value from

the training data set, yt is the model output at time t. F and G are weighting matrices selected
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by the designer that determine the speed of convergence of the algorithm.

(4) The training process is then repeated until the error reaches a desired threshold value,

or until the required number of training iteration has been done. At that time, the network is

deemed to have done with training, and can be used for prediction.

3.2.2 NNs merits and limitations

Merits

According to Heng et al. (2009), numerous studies from various disciplines have demonstrated

the merits of ANNs:

a) It performs faster than system identification techniques in multivariate prognosis;

b) Its performance is at least as good as the best traditional statistical methods, without re-

quiring untenable distributional assumptions [33,34];

c) It is able to capture complex phenomenon without a priori knowledge.

Limitations

a) The first issue is the selection of the network architecture. There is always problems to de-

termine the number of neurons should be contained in the network, as well as the number

of layers. Lawrence has utilized the mean square errors in order to find the optimal num-

ber of neurons. Ostafe introduces a method to determine the number of hidden layers by

using pattern recognition. However, there is still no standard method. It is often a trial

and error exercise. More neurons within the network, more powerful the ability of net-

work to model more complex relationship. However, more neurons maybe lead to over fit

the data, and the generalization capability will reduce. Many issues should be considered

during network size selection.

b) Finding the optimal parameters is another problem for neural networks. As known for

more complex system the network will contain more neurons. It is extremely difficult to

find global optimum if there are many parameters, especially for back propagation.
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c) The uncertainty caused by the noise in the data is not considered in neural network. And

there is no parameters related to the noise of data. For the noise in the data, it is com-

mon to provide the confidence bounds. Few works has been done on probabilistic neural

network in order to handle the uncertainty. Khawaja introduces a way to obtain confi-

dence bounds and also confidence distributions. The ability of handling noise of data is

still need to be improved to build confidence.

d) Lacking of transparency is also an issue that is argued by many authors. However, Bost-

wick and Burke (2001) argues that the transparency will reduce when model complexity

increase for both of traditional statistical models and ANN models. It is just that ANNs are

more capable in modeling complex phenomenon and consequently need a more complex

structure to represent the phenomenon.

e) There is no clear documentation shows how the decisions are reached in a trained neural

network, since NNs are the black box . While, Thong (2000) argues that rules can actually

be extracted from trained ANNs to explain how decisions are reached.

3.3 Stochastic Process

As discussed in chapter 2.6, the stochastic process is a very powerful method to model the

temporal uncertainty associated with the evolution of deterioration. And the common used

stochastic process are Gamma process, Wiener process and Levy process. Since most of the

degradation is monotone and random, which makes Gamma process most suitable model for

analyzing the wear and fatigue propagation, corrosion, erosion, etc. And it overcomes the prob-

lem of random coefficient regression based model. The regression based model is simple to

implement but they are lacking of temporal randomness even if they use nonlinear regression,

and also the regression based model may not be able to derive a closed-form expressions for

time to failure(TTF) distribution or residual useful life (RUL) distribution.

In the Gamma process model, the cumulative deterioration X (t ) at time t follows a gamma

distribution, with a shape function λ(t ) > 0 and a scale parameter u > 0, which is a constant

value. Since gamma process has the monotonic property, the shape function λ(t ) is required
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to be increasing function of time t, and also λ(0) = 0 . The probability density function of the

cumulative deterioration is given as

fX (t )(x) = uλ(t )

Γ(λ(t ))
xλ(t )−1e−ux =Ga (x|λ(t ),u) (3.5)

The mean value E(X (t )), the variance V ar (X (t )), and the coefficient of variance (COV) COV (X (t ))

of the cumulative deterioration at time t are given as

E(X (t )) = λ(t )

u
,V ar (X (t )) = λ(t )

u2
,COV (X (t )) = 1p

λ(t )
(3.6)

For the deterioration process, normally the item is assumed to be failed if the deterioration

level reached a specific value, and this level is called critical deterioration level, which can be

denoted as L. So the probability of failure can be derived as

Pr (T É t ) = Pr (X (t ) Ê L) =
∫ ∞

L
fX (t )(x)d x = Γ[λ(t ),uL]

Γ[λ(t )]
(3.7)

The damage increment from time τ to t , represented by X (τ)−X (t ), is a non-negative quan-

tity that is independent of the cumulative deterioration at time t , X (t ). The increment is also

a gamma distribution with shape function λ(τ)−λ(t ), and the scale parameter u as a constant.

That is because Gamma process has the properties that the increments are independent ran-

dom variables also with gamma distribution. The probability density function of the increment

X (τ)−X (t ) is given as

fX (τ)−X (t )(x) = uλ(τ)−λ(t )

Γ(λ(τ)−λ(t ))
xλ(τ)−λ(t )−1e−ux =Ga (x|λ(τ)−λ(t ),u) (3.8)

J.M. van Noortwijk (2004) claims that empirical studies show that shape function λ(t ) is pro-

portional to a power law and it can be written as:

λ(t ) = ct b (3.9)

where c and b are physical constants. For the parameter b, it can either be given by the ex-

perts or can be inferred numerically by maximum likelihood estimation. It is common to use
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expert judgment to get the value of b, for example, sometimes b equals to 1 for simplicity, which

means λ(t ) = ct . In this case, it is a stationary gamma process, where the average deterioration

increases linearly with time. According to J.M. van Noortwijk (2004), the gamma process is not

restricted to using a power law for modeling the expected deterioration over time. As a matter

of fact, any shape function λ(t ) suffices, as long as it is a non-decreasing, right continuous, and

real-valued function. So now the probability density function is

fX (t )(x) = uct b

Γ(ct b)
xct b−1e−ux =Ga

(
x|ct b ,u

)
(3.10)

After substitute λ(t ) withct b , the mean and variance is given as

E(X (t )) = ct b

u
,V ar (X (t )) = ct b

u2
(3.11)

3.3.1 Parameter Estimation

The commonly used estimation methods are Probability Plotting, Least Squares, Maximum

Likelihood Estimation and Bayesian Estimation Methods. A paper on Reliawiki said the method

of maximum likelihood estimation method is, with some exceptions, considered to be the most

robust of the parameter estimation techniques. In general, for a fixed set of data and underlying

statistical model, the method of maximum likelihood selects values of the model parameters

that produce a distribution that gives the observed data the greatest probability (i.e., parame-

ters that maximize the likelihood function). Assuming we have n observations x1, x2, .., xn . The

principle of maximum likelihood assumes that the sample data set is representative of the pop-

ulation with a probability density function of f (x1, x2, .., xn ;θ) and chooses that value for θ (un-

known parameter) that most likely caused the observed data to occur.

The maximum likelihood function can be setting up by using the independent increments

di = X (ti )−X (ti−1) in interval (ti−1, ti ), di is a product of independent gamma densities:

L(d1,d2, ...,dn |c,u) =
n∏

i=1
fX (ti )−X (ti−1)(di )

=
n∏

i=1

uc(tb
i −tb

i−1)

Γ[c(t b
i −t b

i−1)]
d

c(t b
i −t b

i−1)

i e−udi

(3.12)
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We know the cumulative amounts of deterioration at last inspection time tn are measured as

xn , so the Expected value E(X (tn)) = xn . And since E(x(tn)) = ct b
n

u , the estimated value of scale

parameter can be derived as

û = ĉ t b
n

xn
(3.13)

3.3.2 Estimation of RUL

After estimating parameters of Gamma distribution function, the reliability function of time to

failure could be deduced. For a single item, R(t ) is the probability of the deterioration level at

time t smaller than the critical threshold L, and it can be derived as

R(t ) = Pr (T Ê t )

= Pr (X É L)

= Pr (X t −X0 É L)

= ∫ L
0 Ga (v |ct ,u)d v

(3.14)

Similarly, the conditional reliability function, given that at time the item is still functioning

at time t j can be given as

R(t |T > t j ) = Pr (T Ê t |T > t j )

= Pr (X t É L|T > t j )

= Pr (X t −X0 É L|X t j −X0 < L)

=
∫ L

0 Ga(v |ct ,u)d v∫ L
0 Ga(v |ct j ,u)du

(3.15)

Finally, the residual useful life distribution function RRU L(h) at time t j can be derived as

RRU L(t j )(h) = Pr (RU L(t j ) > h)

= Pr (X t j+h < L|X t j < L, X t j = xt j )

= Pr (X t j+h −X t j É L−xt j |X t j < L)

=
∫ L−xt j

0 Ga(v |ch,u)d v∫ L
0 Ga(v |αt j ,β)d v

(3.16)
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3.3.3 Merits and Limitations

Merits

a) Gamma process is a stochastic process and it can account for the population variability

and temporal variability associated with a degradation process.

b) Gamma process has a straightforward mathematic calculations and it is easy to under-

stand.

Limitations

a) Gamma process is only suitable for modeling the wear and fatigue issues, with a strictly

monotonic process. Or this can also be the advantage of Gamma process in terms of

monotonic process.

b) The degradation state should be observed directly. This can be solved by this hybrid

model.



Chapter 4

Hybrid model application on subsea valves

Subsea industry is growing very fast in 21st century, since the easy fields in the world have al-

ready been explored, and the left oil and gas reservoir is far from shore and deep under water.

However, the maintenance for subsea equipments are different from topside facilities, much

longer time needed for retrieval of failed equipments and replacement of new one. Even though

the condition monitoring has applied for many subsea equipments, the utilization ability of

monitoring data and prognostics algorithms has not been deeply explored. In this paper, a sub-

sea choke valve will be studied as a case, and the relevant prognostics issues are going to be

discussed in this chapter.

4.1 Subsea choke valves introduction

As the choke valves used on topside, the subsea choke valves regulates the main flow from its

corresponding wells into a common manifold. There are many suppliers of subsea chokes,

namely, FMC Technologies, Master Flo, Cameron, etc. Different suppliers offers different types

of subsea choke valves. While, according to Cameron website Cameron (2009), subsea chokes

are typically used to:

• Start up and shut in subsea wells

• Balance pressures from different wells to a common manifold

• Reduce flow line pressures and costs
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• Protect against reservoir collapse during startup

• Control flow rates to extend production life

• Protect subsea gate valves from high-pressure drops during startup and shutdown

The figure 4.1 is a simple sketch of angle style chokes. It is a single stage cage with an internal

plug. For an overview of other typical used subsea chokes, see attachment A. And Figure 4.2 is a

choke valve (P25 E BB 15000) from Master Flo.

Figure 4.1: Single sketch of angle style choke valve, adapted from Master Flo

4.2 Choke valve erosion

Erosion is defined as the loss of original material due to solid particles impact on the material

surface. If the particles are sand, then it is called sand erosion. The sand erosion potential

increases as the flow velocity increases. Sand erosion is in general a major problem when it

comes to choke valves. Sand production can not be avoided in the life cycle of the reservoir,
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Figure 4.2: Choke valve P25 E BB 15000, adapted from Master Flo

especially in the late life phase when the pressure starts decreasing dramatically. For economic

purpose downstream pressure at the choke valve is decreased to enhance the production rate,

however at the same time more sand will pass through the choke valve and therefore increases

the erosion rate of choke valve.

Many researches have been done so far within the choke erosion. Peri and Rogers (2007)

has introduced how CFD can be used for modeling the erosion of choke valves. With the help

of experiments or computational fluid dynamic modeling, many models for assessing the sand

erosion rate are developed. Veritas (2007) has made a outline of most of the methods for piping

systems. Sæther (2010) introduces some models for calculating choke valves erosion rate and
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also claims that Cv of valves is the best indicator on choke valve erosion.

Flow coefficient(Cv ) of a device is a relative measure of its efficiency at allowing fluid flow. It

describes the relationship between the pressure drop across an orifice, valve or other assembly

and the corresponding flow rate. Therefore, the flow coefficient (Cv ) is an important indicator

of choke performance, and the difference between the actual and theoretical flow coefficient,

δCv =C ac
v −C th

v , could be a good indicator of the valve erosion level.

4.3 Hybrid model for choke RUL estimation

In terms of choke erosion, directly observing the erosion level of the subsea choke valves is an

unpractical issue, since they are located several hundred meters under the seawater, sometime

even several thousand meters. Even for the retrievable subsea choke valve, it is also undesired

from the economic point of view. From last section, the δCv is considered to be a good choke

valve degradation state indicator. If the value of indicator is obtained, Gamma process can be

a practicable model for choke erosion prediction. In the next two sections the procedure of the

application of hybrid model will be introduced in detail.

Before discussing the hybrid model for choke erosion, the issue of data set used in this paper

is discussed here. Since the choke valves have been used for many decades in oil and gas in-

dustry and condition monitoring technologies are also developed many years ago, there should

exist many historical records of chokes operational and environmental condition data. Unfortu-

nately the data normally is kept by the operation companies as their secret database. So in this

paper, the data used is generated artificially from Matlab and it is just used for model demon-

stration. The data set for 10 similar choke valves are listed in the appendix. The purpose is to

show how the hybrid model is used for choke valve erosion prognostics and RUL calculation.

4.4 Visualization of the erosion indicator

4.4.1 Calculating δCv

The theoretical flow coefficient C th
v is always provided by the valve supplier, and is dependent

on the valve type and valve opening (Stem travel shown in figure 4.3 ). An example is shown in
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the figure 4.3.

Figure 4.3: Theoretical Cv value of a choke valve from Master Flo Company

EMERSON (2010) has said Daniel Bernoulli has used principle of conservation of energy, and

found the square of the fluid velocity is directly proportional to the pressure differential across

the orifice and inversely proportional to the specific gravity of the fluid. And the equation can

be written as

Q =Cv

p
∆P/G (4.1)

Where:

Q= Capacity in gallons per minute of the mixture

Cv = Valve sizing coefficient

∆P= Pressure differential in psi

G=Specific gravity of fluid

The standardized equation has been introduced in EMERSON (2010) and ISA-75.01.01-2007

(1989). The flow coefficient is derived as

Cv = q

N1Fp

√
P1−P2

G f

(4.2)
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Where q = qg + qw + qo , is the total volumetric flow rate of the mixture (kg /h). N1 = 0.865,

the value of N is shown in the Appendix B B.8. Fp is the so-called piping geometry factor and

P1 −P2 is the pressure drop across the valve (bar), G f is specific gravity of the mixture. And the

specific gravity of the mixture can be calculated as

G f =

(
fg

ρg∗J 2 + fw
ρw

+ fo
ρo

)−1

ρw
(4.3)

Theoretically the relationship between the flow coefficient with other basic value type vari-

ables, such as pressure, temperature, and flow rate is built. Practically, the temperature, pres-

sure, flow rate and the opening angle can be collected by high-tech sensors. With the devel-

opment of the sensor technologies, it boosts the speed of implementing condition monitoring.

The sensors for metering the temperature, pressure, and flow rate have already been used for

oil and gas industry for many decades. Therefore on basis of on-line monitoring, the model

based method for indicator visualization is to calculate the difference between the actual and

theoretical flow coefficient, δCv , can be derived as

δCv =C ac
v −C th

v

= q

N1Fp

√
(P1−P2)

(
fg

ρg ∗J2 + fw
ρw

+ fo
ρo

)−1

/ρw

−C th
v

(4.4)

This calculation of δCv can be carried out by Matlab directly, and the simple code is shown

in figure 4.4 for demonstration.

4.4.2 Filtering of δCv

Fitting in the actual everyday average value of the six on-line monitoring variables, the trend of

outcome should be slightly increasing from the beginning, but it varies quite much, not always

a monotonic increment. The main reasons are listed below:

a) The big sharp variance is due to the short valve opening variations;

b) The value of everyday flow rate of oil, gas, and water is not precise enough;
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Figure 4.4: Matlab code for calculate the δCV

c) While, even though the sensor technologies are well developed at present, the value we

get from sensors may still have some noises, which makes the pressure drop between the

choke are little noisy, as well as the temperature, and the opening angle value.

However, the prerequisite of gamma process is that the δCv should be a monotonically in-

creasing process. So more works should be done for outcome data δCv . There are many com-

mon methods exists for data filtering and smoothing, such as moving average, Savitzky-Golay

filters, and local regression with and without weights and robustness (lowess, loess, rlowess
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and rloess). Moving average is widely used for simple data smoothing. A moving average fil-

ter smooths data by replacing each data point with the average of the neighboring data points

defined within the span. This process is equivalent to low-pass filtering with the response of the

smoothing given by the difference equation:

ys(i ) = 1

2N +1
(y(i +N )+ y(i +N −1)+ ...+ y(i −N )) (4.5)

where ys(i )is the smoothed value for the i th data point, 2N +1 is the span.

After the moving average smoothing, the next step is to use moving maxima filtering to get a

monotonic trend. Finally the monotone data sets are obtained and can be used for prognostics.

The figure 4.5 shows the plot of the original output data (red line), smoothed data (blue line)

and the final monotone data (green line). And the Matlab code is shown in figure 4.6

Figure 4.5: The plot of three types of data

4.4.3 Building ANNs model

Since ANNs is a good method for modeling the nonlinear relationship between input and out-

put, ANNs will be used for modeling the relationship between the erosion level and the choke
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Figure 4.6: Matlab code for data processing

operational condition such as the pressure and flow rate. Now one feed-forward neural net-

work (FFNN) model has built with six inputs and one output. The input in the training data set

is the original data collected form sensors, namely, upstream and downstream pressure drops,

the valve opening angle, and the daily oil, gas and water flow rate. The output data is the final

processed values, X ti .

And the feed-forward neural network (FFNN) model of the choke erosion is built using a

toolbox in Matlab. The ANNs consists of 5 inputs and one hidden layer with 10, 15 neurons

respectively and one output elements. The data used is generated manually, and it is a matrix of

5∗758 (Choke A and B monitoring data), and the results is shown in Appendix B. Due to lacking

of real data, the accuracy is not good enough, but the objective is just demonstration.

4.5 Gamma process parameter estimation

4.5.1 Maximum likelihood method

Figure 4.7 is a plot of the erosion level at each day within the life cycle of choke A obtained by

the ANNs model. As shown in the figure 4.7, until 268 days, the erosion level X t268 of this choke

reached the threshold, which is always estimated by the expert. Once the reliable processed

outcome , the value of X ti , is computed, gamma process with shape parameter λ(t ), and scale

parameter u will be used for erosion prediction.

The increment at time ti is di = X (ti )− X (ti−1) and the shape function is ct b
i − ct b

i−1, b is a

known constant, and the scale parameter is u. So the increment density function can be derived
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Figure 4.7: The plot of the trend of the Choke A erosion indicator

as

fX (ti )−X (ti−1)(x) = uct b
i −ct b

i−1

Γ(ct b
i − ct b

i−1)
xct b

i −ct b
i−1−1e−ux =Ga

(
x|ct b

i − ct b
i−1,u

)
(4.6)

And the likelihood function is

L(d1,d2, ...,dn |c,u) =
268∏
i=1

fX (ti )−X (ti−1)(di )

=
268∏
i=1

uc(tb
i −tb

i−1)

Γ[c(t b
i −t b

i−1)]
d

c(t b
i −t b

i−1)

i e−udi

(4.7)

The cumulative amounts of erosion at last inspection time t268 is measured as x268 = 16.1425.

According to expected value E(X (tn)) = xn , the estimated value of scale parameter can be de-

rived as

û = ĉ t b
n

xn
= ĉ268b

16.1425
(4.8)
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Taking logarithm of the likelihood function, the log-likelihood function is

∂
∂c l og L(d1,d2, ...,dn |c,u)

=
n∑

i=1

∂
∂c

{
c[t b

i − t b
i−1]log

(
ct b

n
xn

)
− l ogΓ(c[t b

i − t b
i−1])+ (

c[t b
i − t b

i−1]−1
)

logδi − ct b
n

xn
δi

}
=

n∑
i=1

{
[t b

i − t b
i−1]

[
log

(
ct b

n
xn

)
+1−ψ(c[t b

i − t b
i−1])+ logδi

]
− t b

n
xn
δi

}
= t b

n log
(

ct b
n

xn

)
+

n∑
i=1

[t b
i − t b

i−1]
{
logδi −ψ(c[t b

i − t b
i−1])

}
= 0

(4.9)

Where the function ψ(a) is the derivative of the logarithm of the gamma function:

ψ(a) = Γ′(a)

Γ(a)
= ∂logΓ(a)

∂a
(4.10)

for a > 0. Summarizing the maximum likelihood estimation, we can get

û = ĉ268b

16.1425
,

268∑
i=1

[t b
i − t b

i−1]
{
ψ(c[t b

i − t b
i−1])− logδi

}
= 268blog

(
c268b

16.1425

)
(4.11)

The parameter b is assumed to be 1, and the other two parameters c and β are estimated

by Matlab, and the code is shown below in figure 4.8. The result from the maximum likelihood

estimation is listed as formula 4.12 and the figure of estimated expected erosion level is shown in

figure 4.9, and some other figures with different b values are shown in the Appendix. In addition,

for Choke B, the results are shown in the Appendix.

ĉ = 0.8487, û = 14.0902 (4.12)

As shown in figure 4.9, the red line is actual δCv and the blue line is the plot of estimated

value. The erosion level is overestimated when t < 160, while it is underestimated by the ex-

pected value from the gamma proces when t > 160. The same happens with the other b values

(b 6= 1), even though they do not represent linear increments. The solution for this problem is to

use Bayesian method for updating estimate parameters to reach a more precise estimation.
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Figure 4.8: Matlab code for estimate c and u

4.5.2 Bayesian method for updating u

As discussed above, using a fixed estimated parameter value is sometimes troublesome and can

not produce a precise prediction. Here, Bayesian method is proposed for estimating the scale

parameter since it is always assumed to be constant in gamma process. It is not reasonable to

have a constant parameter since there always exists some variance, even though some compo-

nents may be similar. While, Bayesian method can exactly solve this problem.

In general, Bayes theorem can be written as

f (θ|x) = f (θ)π(x|θ)∫
π(θ)

(4.13)

According to van Noortwijk (2009), the family of gamma distribution is a conjugate family

with respect to the gamma likelihood function with unknown scale parameter, as both prior and
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Figure 4.9: Estimated expected δCv when b=1

posterior distribution belong to the family of gamma distributions. Therefore, scale parameter

u is assumed to be a gamma distribution with shape parameter α and scale parameter β. The

prior distribution of scale parameter u can be written as

f (u|α,β) = βα

Γ(α)
uα−1exp(−uβ) (4.14)

The parameters α and β is either from expert judgment, or derived from parameter estima-

tion. Here assuming that for the historical data of similar valves, maximum likelihood has been

used for estimating c and u, and then the expected value of u and variance of u can be easily

derived. According to the property of gamma distribution, E(u) = α
β

and V (u) = α
β2 , the value of

α and β can be calculated.
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And the posterior distribution can be derived as

f (u|d1,d2, ...,dn) = f (u|α,β)L(d1,d2, ...,dn)

= βα

Γ(α) uα−1exp(−uβ)
n∏

i=1

uc(tb
i −tb

i−1)

Γ[c(t b
i −t b

i−1)]
d

c(t b
i −t b

i−1)

i e−udi

=Ga(u|α+ ct b
n ,β+xn)×

(
1

β+xn

)α+ct b
n βαΓ(α+ct b

n )
Γ(α)

n∏
i=1

di
c(tb

i −tb
i−1)

Γ(c(t b
i −t b

i−1))

∝Ga(u|α+ ct b
n ,β+xn)

(4.15)

Where c is an known variable, which is estimated by maximum likelihood function. As

shown in the formula 4.15, the posterior distribution of u is also a gamma distribution with

shape parameter α+ ct b
n and scale parameter β+xn .

As discussed in last section, the parameter b is assumed to be 1, and other parameters c and

u are estimated by maximum likelihood method. For parameter u, the expected value is 14, and

the variance is 9. To make the prediction more precise, the Bayesian method will be applied for

updating parameter u. so the prior distribution of u is Ga(u|α= 1.6,β= 21.7), once a new Xi is

collected, then derive the posterior distribution. The Beyes esimate is given by the mean in this

distribution of u.

û = α+ cti

β+xi
= 21.7+ cti

1.6+xi
(4.16)

After applying Bayes method, the prediction is shown in the figure 4.10. From the plot, it

shows that as more data collected for the choke A, more precise the prediction will be.

4.6 Residual useful life Prediction

For choke A, by setting the erosion threshold, L = 16, and b = 1,c = 0.85,u = 14 the cumulative

lifetime distribution can be obtained as

F (t ) = Pr (T É t ) = Pr (X Ê L) =
∫ ∞

16

140.85t

Γ(0.85t )
x0.85t−1e−14xd x = Γ(0.85t ,14∗16)

Γ(0.85t )
(4.17)

Plot the F (t ) in Matlab, the plot is with some error, since the data is generated randomly.

And also because the estimation of parameters is at time t = 0 without Bayesian method is not
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Figure 4.10: Estimated expected δCv when b=1 with Bayesian method

accurate. However when t = 100, with Bayesian estimation of scale parameter, u = 2.97, and the

plot of F (t |X t100 ) is shown below in figure 4.11 the cumulative distribution function of the RUL

is derives as

F (t |X100) = Pr (T É t |X100 = 7.23)

= Pr (X t Ê L)

= ∫ ∞
16

2.970.85t

Γ(0.85t ) x0.85t−1e−2.97xd x

= Γ(0.85t ,2.97∗16)
Γ(0.85t )

(4.18)

The residual useful life distribution at time t = 100d ay s is calculated as equation4.19 and

the plot of the cumulative distribution of RUL at t = 100 is shown in figure 4.12

FRU L(t100)(h) = Pr (RU L(t100) < h)

= Pr (X t100+h > L|X t100 < L, X t100 = 7.23)

= Pr (X t100+h −X t100 Ê L−xt100 |X t100 < L)

=
∫ ∞

L−xt j
Ga

(
v |ch,

α+ct j
β+xt j

)
d v

∫ L
0 Ga

(
v |ct j ,

α+ct j
β+xt j

)
d v

(4.19)
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Figure 4.11: The cumulative F(t|100)

Figure 4.12: The cumulative F(t|100)

The RUL cumulative density function is the output of the prognostic algorithm and it de-

scribes the distribution in respect of likely residual time of equipment. Seen from figure 4.11, at
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time t = 100d ay s the residual life estimation is generated. If the acceptable probability of fail-

ure is 0.1, which defines the acceptable risk level, the latest time when the maintenance must

to be carried out is about 30 days in the future. Considering other aspects such as the time

length needed for maintenance (MTTR), the availability of spare parts together with the RUL,

the optimal maintenance schedule will be decided.



Chapter 5

Summary and recommendations for further

work

5.1 Summary and conclusions

The thesis has presented the main content of prognostics and health management and its pro-

cedure. It summarized the relevant theory and techniques within each steps, namely, data ac-

quisition and processing, and diagnostics and prognostics which is the foundation of decision

making. In addition, a systematic and comprehensive review of different methods and mod-

els for diagnostics and prognostics has been presented, such as the statistical control method

for diagnostics and the the conventional reliability method, artificial intelligence method, and

stochastic methods and model based method for prognostics.

After the review, the problem of degradation prognostics is discussed. Various research has

done on degradation and gamma process is approved to be a well known stochastic method for

solving degradation problems. Whilst the problem of the unobservable degradation indicator

has not been deeply studied. In this paper, a proposed hybrid model is introduced and devel-

oped to deal with the limitation of applying Gamma process into the degradation prognostics.

The hybrid model first trains a ANNs model to use the indirect monitored variables to obtain a

monotonically increasing degradation indicator, and the data processing tasks need to be done

before the ANNs training. And the next step is to apply Gamma process to the degradation

prognostics and calculate the residual useful life. The gamma process parameter estimation
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is improved by applying bayesian method for updating the scale parameter. The main reason

for developing the hybrid model instead of using a single one is to take advantage of the ANNs

powerful nonlinear regression ability and the well-known ability of modeling degradation by

Gamma process.

Subsea choke valve erosion is studied as a case. The flow coefficient is selected as the degra-

dation indicator. The results from the hybrid prognostic model, the distribution of RUL is one

of the vital and supportive information for scheduling maintenance tasks such replacement of

valves. This proposed hybrid model can not only be applied to subsea valves erosion prognos-

tics, but also can be applied to other equipment degradation prognostics problem. For other

equipment degradation, each time applying this model, new relationship with the indicator and

relevant covariates should be investigated for the indicator visualization.

5.2 Discussion

The fist part of the hybrid model is degradation visualization, and the method varies. The indi-

cator of degradation may be obtained from only a single measured variable or some variables

together. For example, the bearing degradation can be obtained by the value of the amplitude of

the corresponding frequency based on the motor vibration. The key is to find the right indicator

that can represent the current condition of the equipment, and the relationship between the

indicator and its relevant measurable covariates.

5.3 Recommendations for further work

You should give recommendations to possible extensions to your work. The recommendations

should be as specific as possible, preferably with an objective and an indication of a possible

approach.

The recommendations may be classified as:

• Due to the time limitation and lacking of real data, the hybrid model sensitivity has not

been studied, especially for the ANNs model. The indicator visualization is the founda-

tion of the prognostics by applying gamma process. The issue such as the data smoothing
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method, the input numbers of ANNs model should be studied further in the future re-

search.

• Electrical equipments are more commonly used in industries, for example, Subsea in-

dustry is focus on developing all electrical control systems. However, in this paper more

focus is put on machinery, therefore, the models for electronics deterioration prognostics

should be paid more attention.

• The subsystems or the components health condition assessment and their fault prognos-

tics are the main focus at present, however, it is also very important to get the health status

at the the system level.



Appendix A

Acronyms

PM Preventive maintenance

CM Corrective maintenance

CBM Condition-based maintenance

PHM Prognostics and health management

CM Condition monitoring

SPC Statistical process control

PCA Principal component analysis

PLS Partial least squares

MTBF Mean time between failure

TTF Time to failure

AI Artificail intelligent

SVM Support vector machines

ANNs Artificial neural networks

RNN Recurrent neural network
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FFNN Feed-forward neural network

RUL Residual useful life

Var Variance

COV Coefficient of variance

MLE Maximum likelihood estimation



Appendix B

B.1 ANNs

Figure B.1: The simulation results of ANNs fitting when there are 10 neurons in hidden layer
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Figure B.2: The simulation results of ANNs fitting when there are 15 neurons in hidden layer

B.2 Choke A

For choke A, using maximum likelihood estimation for parameter c and u, when assuming b =
0.5 and the results is ĉ = 23.15, û = 23.47; when assuming b = 1.5, the estimated parameter ĉ =
2.83, û = 0.8. The following two figures ?? and B.5 are the plots of the estimated expected δCv

B.3 Choke B

For choke B, the plot of the degradation trend that obtained from the ANNs model is shown in

figureB.6.

The maximum likelihood estimation code is shown below in figure B.7. And the results of

the estimated parameters are ĉ = 0.74, û = 12.28 when b = 1 and ĉ = 0.035, û = 9.51 when b = 1.5.
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Figure B.3: Estimated expected δCv when b=0.5 without Bayesian method

Figure B.4: Estimated expected δCv when b=1.5 without Bayesian method
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Figure B.5: Estimated expected δCv when b=2 without Bayesian method

Figure B.6: The plot of the choke B erosion indicator
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Figure B.7: Matlab code for parameter estimation of choke B
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Figure B.8: The value of N, adapted from ISA-75.01.01-2007 (1989)
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